

Modern Python Cookbook

The latest in modern Python recipes for the busy modern
programmer

Steven F. Lott

BIRMINGHAM - MUMBAI

Modern Python Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2016

Production reference: 1211116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-925-0

www.packtpub.com

http://www.packtpub.com

Credits

Author

Steven F. Lott

Copy Editor

Safis Editing

Reviewers

Sanjeev Kumar Jaiswal
Dr. Vahid Mirjalili

Project Coordinator

Suzanne Coutinho

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Sonali Vernekar

Indexer

Tejal Daruwale Soni

Content Development Editor

Zeeyan Pinheiro

Graphics

Kirk D'Penha

Technical Editors

Pratish Shetty
Abhishek Sharma

Production Coordinator

Aparna Bhagat

About the Author
Steven F. Lott has been programming since the 70s, when computers were large, expensive,
and rare. As a contract software developer and architect, he has worked on hundreds of
projects, from very small to very large. He's been using Python to solve business problems
for over 10 years.

He’s currently leveraging Python to implement microservices and ETL pipelines. His other
titles with Packt Publishing include Python Essentials, Mastering Object-Oriented Python,
Functional Python Programming, and Python for Secret Agents.

Steven is currently a technomad who lives in various places on the east coast of the U.S. His
technology blog is h t t p ://s l o t t - s o f t w a r e a r c h i t e c t . b l o g s p o t . c o m and his LinkedIn
address is h t t p s ://w w w . l i n k e d i n . c o m /i n /s t e v e n - l o t t - 029835.

http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
http://slott-softwarearchitect.blogspot.com
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835
https://www.linkedin.com/in/steven-lott-029835

About the Reviewers
Sanjeev Jaiswal is a computer graduate with 7 years of industrial experience in web
development and cyber security. He basically uses Perl, Python, and GNU/Linux for his
day-to-day activities. He is currently working on projects involving penetration testing,
source code review, and security design and implementations.

He is very much interested in web and cloud security. You can follow him on Twitter at
@aliencoders and on GitHub at h t t p s ://g i t h u b . c o m /j a s s i c s .

He has written Instant PageSpeed Optimization and co-authored Learning Django Web
Development for Packt Publishing. He has reviewed more than 5 books for Packt Publishing
and looks forward to authoring or reviewing more books for Packt Publishing and other
publishers.

Vahid Mirjalili is a software engineer and data scientist, currently working towards his
PhD study in Computer Science at Michigan State University. His research at the i-PRoBE
(integrated pattern recognition and biometrics) lab involves attribute classification of face
images from large image datasets.

Furthermore, he teaches Python programming as well as computing concepts for data
analysis and databases. Owing to his specialty in data mining, he is very interested in
predictive modeling and getting insights from data. He is also a Python developer and likes
to contribute to the open source community.

Moreover, he enjoys making tutorials for different directions of data science and computer
algorithms, which can be found in his GitHub repository at h t t p ://g i t h u b . c o m /m i r j a l i l

/D a t a S c i e n c e .

https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.
http://github.com/mirjalil/DataScience.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Table of Contents
Preface 1

Chapter 1: Numbers, Strings, and Tuples 6

Introduction 6
Creating meaningful names and using variables 7

Getting ready 7
How to do it… 8

Choosing names wisely 8
Assigning names to objects 10

How it works… 11
There's more… 12
See also 12

Working with large and small integers 13
Getting ready 13
How to do it… 13
How it works… 14
There's more… 16
See also 17

Choosing between float, decimal, and fraction 17
Getting ready 17
How to do it… 18

Doing currency calculations 18
Fraction calculations 19
Floating-point approximations 20
Converting numbers from one type to another 21

How it works… 22
There's more… 23
See also 24

Choosing between true division and floor division 25
Getting ready 25
How to do it… 25

Doing floor division 26
Doing true division 26
Rational fraction calculations 27

How it works… 27
See also 28

Rewriting an immutable string 28

[ii]

Getting ready 28
How to do it… 29

Slicing a piece of a string 29
Updating a string with a replacement 30
Making a string all lowercase 31
Removing extra punctuation marks 31

How it works… 31
There's more… 33
See also 33

String parsing with regular expressions 34
Getting ready 34
How to do it… 34
How it works… 36
There's more… 37
See also 37

Building complex strings with “template”.format() 38
Getting ready 38
How to do it… 38
How it works… 40
There's more… 42
See also 42

Building complex strings from lists of characters 43
Getting ready 43
How to do it… 44
How it works… 44
There's more 45
See also 46

Using the Unicode characters that aren't on our keyboards 46
Getting ready 46
How to do it… 47
How it works… 47
See also 48

Encoding strings – creating ASCII and UTF-8 bytes 49
Getting ready 49
How to do it… 49
How it works… 50
See also 51

Decoding bytes – how to get proper characters from some bytes 52
Getting ready 52
How to do it.. 53

[iii]

How it works… 54
See also 55

Using tuples of items 55
Getting ready 55
How to do it… 55

Creating tuples 56
Extracting items from a tuple 56

How it works… 57
There's more 58
See also… 58

Chapter 2: Statements and Syntax 59

Introduction 59
Writing Python script and module files – syntax basics 60

Getting ready 60
How to do it… 61
How it works… 63
There's more… 64
See also 65

Writing long lines of code 65
Getting ready 66
How to do it… 66

Using backslash to break a long statement into logical lines 67
Using the () characters to break a long statement into sensible pieces 67
Using string literal concatenation 68
Assigning intermediate results to separate variables 69

How it works… 69
There's more… 70
See also 70

Including descriptions and documentation 71
Getting ready 71
How to do it… 72

Writing docstrings for scripts 72
Writing docstrings for library modules 74

How it works… 74
There's more… 75
See also 76

Writing better RST markup in docstrings 76
Getting ready 76
How to do it… 77
How it works… 78

[iv]

There's more… 79
Using directives 81
Using inline markup 81

See also 82
Designing complex if…elif chains 82

Getting ready 83
How to do it… 84
How it works… 85
There's more… 86
See also 87

Designing a while statement which terminates properly 87
Getting ready 87
How to do it… 88
How it works… 91
See also 92

Avoiding a potential problem with break statements 93
Getting ready 93
How to do it… 94
How it works… 95
There's more… 96
See also 96

Leveraging the exception matching rules 97
Getting ready 98
How to do it… 99
How it works… 100
There's more… 100
See also 101

Avoiding a potential problem with an except: clause 102
Getting ready 102
How to do it… 102
How it works… 103
See also 103

Chaining exceptions with the raise from statement 104
Getting ready 104
How to do it… 104
How it works… 105
There's more… 106
See also 107

Managing a context using the with statement 107
Getting ready 107

[v]

How to do it… 108
How it works… 109
There's more… 110
See also 110

Chapter 3: Function Definitions 111

Introduction 111
Designing functions with optional parameters 112

Getting ready 112
How to do it… 112

Particular to General Design 113
General to Particular design 115

How it works… 116
There's more… 117
See also 118

Using super flexible keyword parameters 118
Getting ready 119
How to do it… 119
How it works… 121
There's more… 121
See also 122

Forcing keyword-only arguments with the * separator 122
Getting ready 123
How to do it… 124
How it works… 125
There's more… 125
See also 126

Writing explicit types on function parameters 126
Getting ready 127
How to do it… 128
How it works… 129
There's more… 131
See also 132

Picking an order for parameters based on partial functions 132
Getting ready 132
How to do it… 134

Wrapping a function 134
Creating a partial function with keyword parameters 135
Creating a partial function with positional parameters 135

How it works… 136
There's more… 137

[vi]

See also 137
Writing clear documentation strings with RST markup 137

Getting ready 138
How to do it… 138
How it works… 141
There's more… 142
See also 142

Designing recursive functions around Python's stack limits 142
Getting ready 143
How to do it… 144
How it works… 145
There's more… 146
See also 148

Writing reusable scripts with the script library switch 148
Getting ready 148
How to do it… 149
How it works… 151
There's more… 151
See also 152

Chapter 4: Built-in Data Structures – list, set, dict 153

Introduction 153
Choosing a data structure 154

Getting ready 154
How to do it… 154
How it works… 156
There's more… 158
See also 158

Building lists – literals, appending, and comprehensions 159
Getting ready 159
How to do it… 160

Building a list with the append() method 160
Writing a list comprehension 161
Using the list function on a generator expression 162

How it works… 163
There's more… 163

Other ways to extend a list 164
See also 165

Slicing and dicing a list 165
Getting ready 165

[vii]

How to do it… 167
How it works… 169
There's more… 169
See also 170

Deleting from a list – deleting, removing, popping, and filtering 170
Getting ready 170
How to do it… 171

Deleting items from a list 171
The remove() method 172
The pop() method 173
The filter() function 173

How it works… 174
There's more… 175
See also 176

Reversing a copy of a list 176
Getting ready 176
How to do it… 178
How it works… 179
See also 179

Using set methods and operators 179
Getting ready 181
How to do it… 182
How it works… 183
There's more… 184
See also 185

Removing items from a set – remove(), pop(), and difference 186
Getting ready 186
How to do it… 187
How it works… 188
There's more… 188
See also 189

Creating dictionaries – inserting and updating 189
Getting ready 190
How to do it… 191
How it works… 192
There's more… 192
See also 194

Removing from dictionaries – the pop() method and the del statement 194
Getting ready 195
How to do it… 196

[viii]

How it works… 197
There's more… 197
See also 197

Controlling the order of dict keys 198
Getting ready 198
How to do it… 199
How it works… 200
There's more… 200
See also 201

Handling dictionaries and sets in doctest examples 201
Getting ready 201
How to do it… 202
How it works… 203
There's more… 203

Understanding variables, references, and assignment 204
How to do it… 204
How it works… 205
There's more… 206
See also 207

Making shallow and deep copies of objects 207
Getting ready 208
How to do it… 209
How it works… 210
See also 211

Avoiding mutable default values for function parameters 211
Getting ready 212
How to do it… 213
How it works… 214
There's more… 215
See also 216

Chapter 5: User Inputs and Outputs 217

Introduction 217
Using features of the print() function 218

Getting ready 218
How to do it… 220
How it works… 221
There's more… 222
See also 223

Using input() and getpass() for user input 223

[ix]

Getting ready 224
How to do it… 225
How it works… 227
There's more… 228

Input string parsing 228
Interaction via the cmd module 229

See also 229
Debugging with “format”.format_map(vars()) 230

Getting ready 230
How to do it… 231
How it works… 231
There's more… 232
See also 232

Using argparse to get command-line input 232
Getting ready 233
How to do it… 235
How it works… 237
There's more… 238
See also 240

Using cmd for creating command-line applications 240
Getting ready 242
How to do it… 243
How it works… 246
There's more… 247
See also 248

Using the OS environment settings 248
Getting ready 249
How to do it… 250
How it works… 251
There's more… 252
See also 252

Chapter 6: Basics of Classes and Objects 253

Introduction 253
Using a class to encapsulate data and processing 254

Getting ready 254
How to do it… 255
How it works… 258
There's more… 259
See also 260

[x]

Designing classes with lots of processing 260
Getting ready 260
How to do it… 263
How it works… 265
There's more… 266
See also 268

Designing classes with little unique processing 268
Getting ready 268
How to do it… 269

Stateless objects 269
Stateful objects with a new class 270
Stateful objects using an existing class 271

How it works… 271
There's more… 272
See also 273

Optimizing small objects with __slots__ 273
Getting ready 273
How to do it… 274
How it works… 276
There's more… 276
See also 277

Using more sophisticated collections 277
Getting ready 277
How to do it… 278
How it works… 280
There's more… 281
See also 282

Extending a collection – a list that does statistics 282
Getting ready 282
How to do it… 282
How it works… 284
There's more… 285
See also 286

Using properties for lazy attributes 286
Getting ready… 286
How to do it… 288
How it works… 290
There's more… 291
See also… 291

Using settable properties to update eager attributes 292

[xi]

Getting ready 292
How to do it… 293
How it works… 296
There's more… 296

Initialization 296
Calculation 297

See also 298

Chapter 7: More Advanced Class Design 299

Introduction 299
Choosing between inheritance and extension – the is-a question 300

Getting ready 301
How to do it… 302

Wrapping – aggregation and composition 303
Extending – inheritance 305

How it works… 306
There's more… 307
See also 308

Separating concerns via multiple inheritance 309
Getting ready 309
How to do it… 310
How it works… 312
There's more… 313
See also 315

Leveraging Python's duck typing 315
Getting ready 316
How to do it… 316
How it works… 318
There's more… 319
See also 319

Managing global and singleton objects 320
Getting ready 320
How to do it… 321

Module global variable 321
Class-level static variable 323

How it works… 324
There's more… 325

Using more complex structures – maps of lists 325
Getting ready 326
How to do it… 326
How it works… 327

[xii]

There's more… 328
See also 328

Creating a class that has orderable objects 329
Getting ready 329
How to do it… 330
How it works… 332
There's more… 333
See also 334

Defining an ordered collection 335
Getting ready 336
How to do it… 337
How it works… 339
There's more… 340
See also 342

Deleting from a list of mappings 342
Getting ready 343
How to do it… 345
How it works… 346
There's more… 347
See also 348

Chapter 8: Functional and Reactive Programming Features 349

Introduction 349
Writing generator functions with the yield statement 351

Getting ready 351
How to do it… 352
How it works… 355
There's more… 357
See also 359

Using stacked generator expressions 359
Getting ready 360
How to do it… 361
How it works… 364
There's more… 366

Namespace instead of list 367
See also 369

Applying transformations to a collection 369
Getting ready… 370
How to do it… 372
How it works… 373

[xiii]

There's more… 373
See also… 374

Picking a subset – three ways to filter 374
Getting ready… 375
How to do it… 377
How it works… 378
There's more… 379
See also… 380

Summarizing a collection – how to reduce 380
Getting ready 381
How to do it… 383
How it works… 384
There's more… 384

Maxima and minima 385
Potential for abuse 386

Combining map and reduce transformations 386
Getting ready 387
How to do it… 388
How it works… 392
There's more… 393
See also 393

Implementing “there exists” processing 394
Getting ready 394
How to do it… 395
How it works… 396
There's more… 397

The itertools module 398
Creating a partial function 399

Getting ready 400
How to do it… 402

Using functools.partial() 403
Creating a lambda object 403

How it works… 403
There's more… 404

Simplifying complex algorithms with immutable data structures 406
Getting ready 407
How to do it… 410
How it works… 411
There's more… 412

Writing recursive generator functions with the yield from statement 413

[xiv]

Getting ready 414
How to do it… 416
How it works… 417
There's more… 417
See also 419

Chapter 9: Input/Output, Physical Format, and Logical Layout 420

Introduction 420
Using pathlib to work with filenames 422

Getting ready 423
How to do it… 424

Making the output filename by changing the input suffix 424
Making a number of sibling output files with distinct names 425
Creating a directory and a number of files 426
Comparing file dates to see which is newer 427
Removing a file 428
Finding all files that match a given pattern 429

How it works… 429
There's more… 430
See also 431

Reading and writing files with context managers 432
Getting ready 432
How to do it… 434
How it works… 435
There's more… 436
See also 436

Replacing a file while preserving the previous version 437
Getting ready 437
How to do it… 438
How it works… 440
There's more… 440
See also 441

Reading delimited files with the CSV module 441
Getting ready 442
How to do it… 443
How it works… 444
There's more… 445
See also 447

Reading complex formats using regular expressions 447
Getting ready 447
How to do it… 449

[xv]

Defining the parse function 449
Using the parse function 450

How it works… 451
There's more… 452
See also 453

Reading JSON documents 453
Getting ready 454
How to do it… 456
How it works… 457
There's more… 457

Serializing a complex data structure 458
Deserializing a complex data structure 460

See also 461
Reading XML documents 461

Getting ready 462
How to do it… 465
How it works… 465
There's more… 466
See also 468

Reading HTML documents 468
Getting ready 469
How to do it… 471
How it works… 472
There's more… 474
See also 475

Upgrading CSV from DictReader to namedtuple reader 475
Getting ready 475
How to do it… 476
How it works… 478
There's more… 478
See also 480

Upgrading CSV from a DictReader to a namespace reader 481
Getting ready 481
How to do it… 482
How it works… 483
There's more… 483
See also 485

Using multiple contexts for reading and writing files 485
Getting ready 485
How to do it… 487

[xvi]

How it works… 489
There's more… 490
See also 491

Chapter 10: Statistical Programming and Linear Regression 492

Introduction 492
Using the built-in statistics library 493

Getting ready 493
How to do it… 497
How it works… 499
There's more… 500

Average of values in a Counter 502
Getting ready 502
How to do it… 504
How it works… 505
There's more… 505
See also 507

Computing the coefficient of a correlation 507
Getting ready 508
How to do it… 509
How it works… 511
There's more… 512

Computing regression parameters 512
Getting ready 513
How to do it… 514
How it works… 516
There's more… 516

Computing an autocorrelation 517
Getting ready 517
How to do it… 521
How it works… 523
There's more… 523

Long-term model 524
See also 525

Confirming that the data is random – the null hypothesis 525
Getting ready 525
How to do it… 527
How it works… 530
There's more… 531
See also 532

[xvii]

Locating outliers 532
Getting ready 533
How to do it… 534
How it works… 536
There's more… 537
See also 539

Analyzing many variables in one pass 539
Getting ready 540
How to do it… 542
How it works… 544
There's more… 544

Using map() 547
See also 547

Chapter 11: Testing 548

Introduction 548
Using docstrings for testing 549

Getting ready 550
How to do it… 551

Writing examples for stateless functions 552
Writing examples for stateful objects 552

How it works… 554
There's more… 555
See also 556

Testing functions that raise exceptions 557
Getting ready 557
How to do it… 558
How it works… 559
There's more… 560
See also 561

Handling common doctest issues 561
Getting ready 562
How to do it… 564

Writing doctest examples for mapping or set values 564
Writing doctest examples for floating-point values 565

How it works… 566
There's more… 566
See also 567

Creating separate test modules and packages 568
Getting ready 568
How to do it… 570

[xviii]

How it works… 571
There's more… 572

Some other assertions 574
Separate tests directory 575

See also 576
Combining unittest and doctest tests 576

Getting ready 576
How to do it… 578
How it works… 579
There's more… 580
See also 580

Testing things that involve dates or times 580
Getting ready 581
How to do it… 582
How it works… 584
There's more… 585
See also 587

Testing things that involve randomness 587
Getting ready 587
How to do it… 588
How it works… 589
There's more… 590
See also 591

Mocking external resources 591
Getting ready 592

Creating an entry document in the entrylog collection 593
Seeing a typical response 595
Client class for database access 596

How to do it… 598
How it works… 601

Creating a context manager 601
Creating a dynamic, stateful test 602
Mocking a complex object 603
Using the load_tests protocol 604

There's more… 605
See also 605

Chapter 12: Web Services 606

Introduction 606
Implementing web services with WSGI 609

Getting ready 609

[xix]

How to do it… 614
How it works… 617
There's more… 618
See also 621

Using the Flask framework for RESTful APIs 622
Getting ready 622
How to do it… 623
How it works… 626
There's more… 627
See also 629

Parsing the query string in a request 629
Getting ready 631
How to do it… 631
How it works… 633
There's more… 634
See also 636

Making REST requests with urllib 636
Getting ready 636
How to do it… 638
How it works… 641
There's more… 642

The OpenAPI (Swagger) specification 643
Adding Swagger to the server 643

See also 645
Parsing the URL path 645

Getting ready 646
How to do it… 647

Server 647
Client 650

How it works… 652
Deck slicing 653
Client side 654

There's more… 655
Providing a Swagger specification 655
Using a Swagger specification 658

See also 658
Parsing a JSON request 658

Getting ready 659
How to do it… 660

Swagger specification 660
Server 663

[xx]

Client 664
How it works… 666
There's more… 667

Location header 668
Additional resources 668
Query for a specific player 669
Exception handling 670

See also 671
Implementing authentication for web services 671

Getting ready 673
Configuring SSL 673
Users and credentials 674
Flask view function decorator 676

How to do it… 676
Defining the User class 677
Defining a view decorator 680
Creating the server 681
Creating an example client 683

How it works… 686
There's more… 687

Creating a command-line interface 689
Building the Authentication header 689

See also 690

Chapter 13: Application Integration 691

Introduction 691
Finding configuration files 692

Getting ready 693
Why so many choices? 694

How to do it… 695
How it works… 697
There's more… 697
See also 702

Using YAML for configuration files 702
Getting ready 702
How to do it… 703
How it works… 704
There's more… 706
See also 709

Using Python for configuration files 709
Getting ready 710
How to do it… 711

[xxi]

How it works… 711
There's more… 712
See also 713

Using class-as-namespace for configuration 713
Getting ready 714
How to do it… 715
How it works… 716
There's more… 716

Configuration representation 718
See also 719

Designing scripts for composition 720
Getting ready 720
How to do it… 722
How it works… 724
There's more… 726

Designing as a class hierarchy 727
See also 728

Using logging for control and audit output 729
Getting ready 729
How to do it… 733
How it works… 737
There's more… 739

Combining two applications into one 740
Getting ready 740
How to do it… 742
How it works… 743
There's more… 744

Refactoring 744
Concurrency 745
Logging 747

See also 748
Combining many applications using the Command design pattern 748

Getting ready 748
How to do it… 749
How it works… 750
There's more… 751
See also 753

Managing arguments and configuration in composite applications 753
Getting ready 754
How to do it… 755

[xxii]

How it works… 757
The Command design pattern 758

There's more… 759
See also 760

Wrapping and combining CLI applications 760
Getting ready 760
How to do it… 761
How it works… 762
There's more… 763

Unit test 764
See also 767

Wrapping a program and checking the output 767
Getting ready 767
How to do it… 768
How it works… 770
There's more… 771
See also 772

Controlling complex sequences of steps 772
Getting ready 772
How to do it… 773
How it works… 775
There's more… 776

Building conditional processing 776
See also 777

Index 778

Preface
Python is the preferred choice of developers, engineers, data scientists, and hobbyists
everywhere. It is a great scripting language that can power your applications and provide
great speed, safety, and scalability. By exposing Python as a series of simple recipes, you
can gain insights into specific language features in a particular context. Having a tangible
context helps make the language or standard library feature easier to understand.

This book takes a recipe-based approach, where each recipe addresses specific problems
and issues.

What this book covers
Chapter 1, Numbers, Strings, and Tuples, will look at the different kinds of numbers, work
with strings, use tuples, and use the essential built-in types in Python. We will also exploit
the full power of the Unicode character set.

Chapter 2, Statements and Syntax, will cover some basics of creating script files first. Then
we’ll move on to looking at some of the complex statements, including if, while, for, try,
with, and raise.

Chapter 3, Function Definitions, will look at a number of function definition techniques.
We’ll also look at the Python 3.5 typing module and see how we can create more formal
annotations for our functions.

Chapter 4, Built-in Data Structures – list, set, dict, will look at an overview of the various
structures that are available and what problems they solve. From there, we can look at lists,
dictionaries, and sets in detail, and also look at some more advanced topics related to how
Python handles references to objects.

Chapter 5, User Inputs and Outputs, will explain how to use the different features of the
print() function. We'll also look at the different functions used to provide user input.

Chapter 6, Basics of Classes and Objects, will create classes that implement a number of
statistical formulae.

Preface

[2]

Chapter 7, More Advanced Class Design, will dive a little more deeply into Python classes.
We will combine some features we have previously learned about to create more
sophisticated objects.

Chapter 8, Functional and Reactive Programming Features, provides us with methods to
writing small, expressive functions that perform the required data transformations. Moving
ahead, you will learn about the idea of reactive programming, that is, having processing
rules that are evaluated when the inputs become available or change.

Chapter 9, Input/Output, Physical Format, Logical Layout, will work with different file
formats such as JSON, XML, and HTML.

Chapter 10, Statistical Programming and Linear Regression, will look at some basic statistical
calculations that we can do with Python’s built-in libraries and data structures. We’ll look at
the questions of correlation, randomness, and the null hypothesis.

Chapter 11, Testing, will give us a detailed description of the different testing frameworks
used in Python.

Chapter 12, Web Services, will look at a number of recipes for creating RESTful web services
and also serving static or dynamic content.

Chapter 13, Application Integration, will look at ways that we can design applications that
can be composed to create larger, more sophisticated composite applications. We’ll also
look at the complications that can arise from composite applications and the need to
centralize some features, such as command-line parsing.

What you need for this book
All you need to follow through the examples in this book is a computer running any recent
version of Python. While the examples all use Python 3, they can be adapted to work with
Python 2 only a few changes.

Who this book is for
The book is for web developers, programmers, enterprise programmers, engineers, and big
data scientists. If you are a beginner, Python Cookbook will get you started. If you are
experienced, it will expand your knowledge base. A basic knowledge of programming
would help.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

 if distance is None:
 distance = rate * time
 elif rate is None:
 rate = distance / time
 elif time is None:
 time = distance / rate

Any command-line input or output is written as follows:

>>> circumference_diameter_ratio = 355/113
>>> target_color_name = 'FireBrick'
>>> target_color_rgb = (178, 34, 34)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

Preface

[4]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M o d e r n - P y t h o n - C o o k b o o k . We also have other code bundles from our rich catalog
of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/Modern-Python-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Numbers, Strings, and Tuples

We'll cover these recipes to introduce basic Python data types:

Creating meaningful names and using variables
Working with large and small integers
Choosing between float, decimal, and fraction
Choosing between true division and floor division
Rewriting an immutable string
String parsing with regular expressions
Building complex strings with “template”.format()
Building complex strings from lists of characters
Using the Unicode characters that aren't on our keyboards
Encoding strings – creating ASCII and UTF-8 bytes
Decoding bytes – how to get proper characters from some bytes
Using tuples of items

Introduction
This chapter will look at some central types of Python objects. We'll look at the different
kinds of numbers, working with strings, and using tuples. We'll look at these first because
they're the simplest kinds of data Python works with. In later chapters, we'll look at data
collections.

Most of these recipes assume a beginner's level of understanding of Python 3. We'll be
looking at how we use the essential built-in types available in Python—numbers, strings,
and tuples. Python has a rich variety of numbers, and two different division operators, so
we'll need to look closely at the choices available to us.

Numbers, Strings, and Tuples

[7]

When working with strings, there are several common operations that are important. We'll
explore some of the differences between bytes—as used by our OS files, and Strings—as
used by Python. We'll look at how we can exploit the full power of the Unicode character
set.

In this chapter, we'll show the recipes as if we're working from the >>> prompt in
interactive Python. This is sometimes called the read-eval-print loop (REPL). In later
chapters, we'll look more closely at writing script files. The goal is to encourage interactive
exploration because it's a great way to learn the language.

Creating meaningful names and using
variables
How can we be sure our programs make sense? One of the core elements of making
expressive code is to use meaningful names. But what counts as meaningful? In this recipe,
we'll review some common rules for creating meaningful Python names.

We'll also look at some of Python's assignment statement variations. We can, for example,
assign more than one variable in a single statement.

Getting ready
The core issue when creating a name is to ask ourselves the question what is this thing? For
software, we'd like a name that's descriptive of the object being named. Clearly, a name like
x is not very descriptive, it doesn't seem to refer to an actual thing.

Vague, non-descriptive names are distressingly common in some programming. It's not
helpful to others when we use them. A descriptive name helps everyone.

When naming things, it's also important to separate the problem domain—what we're
really trying to accomplish—from the solution domain. The solution domain consists of the
technical details of Python, OS, and Internet. Anyone who reads the code can see the
solution; it doesn't require deep explanation. The problem domain, however, can be
obscured by technical details. It's our job to make the problem clearly visible. Well-chosen
names will help.

Numbers, Strings, and Tuples

[8]

How to do it…
We'll look at names first. Then we'll move on to assignment.

Choosing names wisely
On a purely technical level, Python names must begin with a letter. They can include any
number of letters, digits, and the _ character. Python 3 is based on Unicode, so a letter is not
limited to the Latin alphabet. While the A-Z Latin alphabet is commonly used, it's not
required.

When creating a descriptive variable, we want to create names that are both specific and
articulate the relationships among things in our programs. One widely used technique is to
create longer names in a style that moves from particular to general.

The steps to choosing a name are as follows:

The last part of the name is a very broad summary of the thing. In a few cases,1.
this may be all we need; context will supply the rest. We'll suggest some typical
broad summary categories later.
Use a prefix to narrow this name around your application or problem domain.2.
If needed, put more narrow and specialized prefixes on this name to clarify how3.
it's distinct from other classes, modules, packages, functions, and other objects.
When in doubt about prefixing, remember how domain names work. Think of
mail.google.com—the name flows from particular to general. There's no magic
about the three levels of naming, but it often happens to work out that way.
Format the name depending on how it's used in Python. There are three broad4.
classes of things we'll put names on, which are shown as follows:

Classes: A class has a name that summarizes the objects that are part of
the class. These names will (often) use CapitalizedCamelCase. The
first letter of a class name is capitalized to emphasize that it's a class,
not an instance of the class. A class is often a generic concept, rarely a
description of a tangible thing.
Objects: A name for an object usually uses snake_case – all lowercase
with multiple _ characters between words. In Python, this includes
variables, functions, modules, packages, parameters, attributes of
objects, methods of classes, and almost everything else.
Script and module files: These are really the OS resources, as seen by
Python. Therefore, a filename should follow the conventions for
Python objects, using letters, the _ characters and ending with the .py

Numbers, Strings, and Tuples

[9]

extension. It's technically possible to have pretty wild and free
filenames. Filenames that don't follow Python rules can be difficult to
use as a module or package.

How do we choose the broad category part of a name? The general category depends on
whether we're talking about a thing or a property of a thing. While the world is full of
things, we can create some board groupings that are helpful. Some of the examples are
Document, Enterprise, Place, Program, Product, Process, Person, Asset, Rule, Condition,
Plant, Animal, Mineral, and so on.

We can then narrow these with qualifiers:

 FinalStatusDocument
 ReceivedInventoryItemName

The first example is a class called Document. We've narrowed it slightly by adding a prefix
to call it a StatusDocument. We narrowed it even further by calling it a
FinalStatusDocument. The second example is a Name that we narrowed by specifying
that it's a ReceivedInventoryItemName. This example required a four-level name to
clarify the class.

An object often has properties or attributes. These have a decomposition based in the kind
of information that's being represented. Some examples of terms that should be part of a
complete name are amount, code, identifier, name, text, date, time, datetime, picture, video,
sound, graphic, value, rate, percent, measure, and so on.

The idea is to put the narrow, more detailed description first, and the broad kind of
information last:

 measured_height_value
 estimated_weight_value
 scheduled_delivery_date
 location_code

In the first example, height narrows a more general representation term value. And
measured_height_value further narrows this. Given this name, we can expect to see
other variations on height. Similar thinking applies to weight_value, delivery_date and
location_code. Each of these has a narrowing prefix or two.

Numbers, Strings, and Tuples

[10]

Some things to avoid:
Don't include detailed technical type information using coded prefixes or
suffixes. This is often called Hungarian Notation; we don't use
f_measured_height_value where the f is supposed to mean a floating-
point. A variable like measured_height_value can be any numeric type
and Python will do all the necessary conversions. The technical decoration
doesn't offer much help to someone reading our code, because the type
specification can be misleading or even incorrect.
Don't waste a lot of effort forcing names to look like they belong together.
We don't need to make SpadesCardSuit, ClubsCardSuit, and so on.
Python has many different kinds of namespaces, including packages,
modules, and classes, as well as namespace objects to gather related names
together. If you combine these names in a CardSuit class, you can use
CardSuit.Spades, which uses the class as namespace to separate these
names from other, similar names.

Assigning names to objects
Python doesn't use static variable definitions. A variable is created when a name is assigned
to an object. It's important to think of the objects as central to our processing, and variables
as little more than sticky notes that identify an object. Here's how we use the fundamental
assignment statement:

Create an object. In many of the examples we'll create objects as literals. We'll use1.
355 or 113 as literal representations of integer objects in Python. We might use a
string like FireBrick or a tuple like (178, 34, 34).
Write the following kind of statement: variable = object. Here are some examples:2.

 >>> circumference_diameter_ratio = 355/113
 >>> target_color_name = 'FireBrick'
 >>> target_color_rgb = (178, 34, 34)

We've created some objects and assigned them to variables. The first object is the result of a
calculation. The next two objects are simple literals. Generally, objects are created by
expressions that involve functions or classes.

Numbers, Strings, and Tuples

[11]

This basic statement isn't the only kind of assignment. We can assign a single object to
multiple variables using a kind of duplicated assignment like this:

>>> target_color_name = first_color_name = 'FireBrick'

This creates two names for the same string object. We can confirm this by checking the
internal ID values that Python uses:

>>> id(target_color_name) == id(first_color_name)
True

This comparison shows us that the internal identifiers for these two objects are the same.

A test for equality uses ==. Simple assignment uses =.

When we look at numbers and collections, we'll see that we can combine assignment with
an operator. We can do things like this:

>>> total_count = 0
>>> total_count += 5
>>> total_count += 6
>>> total_count
11

We've augmented assignment with an operator. total_count += 5 is the same as
total_count = total_count + 5. This technique has the advantage of being shorter.

How it works…
This approach to creating names follows the pattern of using narrow, more specific
qualifiers first and the wider, less-specific category last. This follows the common
convention used for domain names and e-mail addresses.

For example, a domain name like mail.google.com has a specific service, a more general
enterprise, and finally a very general domain. This follows the principle of narrow-to-wider.

As another example, service@packtpub.com starts with a specific destination name, has a
more general enterprise, and finally a very general domain. Even the name of destination
(PacktPub) is a two-part name with a narrow enterprise name (Packt) followed by a wider
industry (Pub, short for publishing). (We don't agree with those who suggest it stands for Public
House.)

Numbers, Strings, and Tuples

[12]

The assignment statement is the only way to put a name on an object. We noted that we can
have two names for the same underlying object. This isn't too useful right now. But in
Chapter 4, Built-in Data Structures – list, set, dict we'll see some interesting consequences of
multiple names for a single object.

There's more…
We'll try to show descriptive names in all of the recipes.

We have to grant exceptions to existing software which doesn't follow this
pattern. It's often better to be consistent with legacy software than impose
new rules even if the new rules are better.

Almost every example will involve assignment to variables. It's central to stateful object-
oriented programming.

We'll look at classes and class names in Chapter 6, Basics of Classes and Objects; we'll look at
modules in Chapter 13, Application Integration.

See also
The subject of descriptive naming is a source of ongoing research and discussion. There are
two aspects—syntax and semantics. The starting point for thoughts on Python syntax is the
famous Python Enhancement Proposal number 8 (PEP-8). This leads to use of CamelCase,
and snake_case names.

Also, be sure to do this:

>>> import this

This will provide more insight into Python ideals.

For information on semantics, look at the legacy UDEF and NIEM Naming
and Design Rules standards (h t t p ://w w w . o p e n g r o u p . o r g /u d e f i n f o /A b o u

t T h e U D E F . p d f). Additional details are in ISO11179
(https://en.wikipedia.org/wiki/ISO/IEC_11179), which talks in detail
about meta-data and naming.

http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
http://www.opengroup.org/udefinfo/AboutTheUDEF.pdf
https://en.wikipedia.org/wiki/ISO/IEC_11179

Numbers, Strings, and Tuples

[13]

Working with large and small integers
Many programming languages make a distinction between integers, bytes, and long
integers. Some languages include distinctions for signed versus unsigned integers. How do
we map these concepts to Python?

The easy answer is that we don't. Python handles integers of all sizes in a uniform way.
From bytes to immense numbers with hundreds of digits, it's all just integers to Python.

Getting ready
Imagine you need to calculate something really big. For example, calculate the number of
ways to permute the cards in a 52-card deck. The number 52! = 52 × 51 × 50 × … × 2 × 1, is a
very, very large number. Can we do this in Python?

How to do it…
Don't worry. Really. Python behaves as if it has one universal type of integer, and this
covers all of the bases from bytes to numbers that fill all of the memory. Here are the steps
to using integers properly:

Write the numbers you need. Here are some smallish numbers: 355, 113. There’s1.
no practical upper limit.

Creating a very small value—a single byte—looks like this:2.

 >>> 2
 2

Or perhaps this, if you want to use base 16:

 >>> 0xff
 255

In later recipes, we'll look at a sequence of bytes that has only a single value in it:

 >>> b'\xfe'
 b'\xfe'

This isn't—technically—an integer. It has a prefix of b' that shows us it's a 1-byte
sequence.

Numbers, Strings, and Tuples

[14]

Creating a much, much bigger number with a calculation might look like this:3.

 >>> 2**2048
 323...656

This number has 617 digits. We didn't show all of them.

How it works…
Internally, Python uses two kinds of numbers. The conversion between these two is
seamless and automatic.

For smallish numbers, Python will generally use 4 or 8 byte integer values. Details are
buried in CPython's internals, and depend on the facilities of the C-compiler used to build
Python.

For largish numbers, over sys.maxsize, Python switches to large integer numbers which
are sequences of digits. Digit, in this case, often means a 30-bit value.

How many ways can we permute a standard deck of 52 cards? The answer is 52! ≈ 8 × 1067.
Here's how we can compute that large number. We'll use the factorial function in the math
module, shown as follows:

>>> import math
>>> math.factorial(52)
80658175170943878571660636856403766975289505440883277824000000000000

Yes, these giant numbers work perfectly.

The first parts of our calculation of 52! (from 52 × 51 × 50 × ... down to about 42) could be
performed entirely using the smallish integers. After that, the rest of the calculation had to
switch to largish integers. We don't see the switch; we only see the results.

For some of the details on the internals of integers, we can look at this:

>>> import sys
>>> import math
>>> math.log(sys.maxsize, 2)
63.0
>>> sys.int_info
sys.int_info(bits_per_digit=30, sizeof_digit=4)

Numbers, Strings, and Tuples

[15]

The sys.maxsize value is the largest of the small integer values. We computed the log to
base 2 to find out how many bits are required for this number.

This tells us that our Python uses 63-bit values for small integers. The range of smallish
integers is from -264… 263– 1. Outside this range, largish integers are used.

The values in sys.int_info tells us that large integers are a sequence of numbers that use
30-bit digits, and each of these digits occupies 4 bytes.

A large value like 52! consists of 8 of these 30-bit-sized digits. It can be a little confusing to
think of a digit as requiring 30 bits to represent. Instead of 10 symbols used to represent
base 10 numbers, we'd need 2**30 distinct symbols for each digit of these large numbers.

A calculation involving a number of big integer values can consume a fair bit of memory.
What about small numbers? How can Python manage to keep track of lots of little numbers
like one and zero?

For the commonly used numbers (-5 to 256) Python actually creates a secret pool of objects
to optimize memory management. You can see this when you check the id() value for
integer objects:

>>> id(1)
4297537952
>>> id(2)
4297537984
>>> a=1+1
>>> id(a)
4297537984

We've shown the internal id for the integer 1 and the integer 2. When we calculate a value,
the resulting object turns out to be the same integer 2 object that was found in the pool.

When you try this, your id() values may be different. However, every time the value of 2
is used, it will be the same object; on the author's laptop, it's id = 4297537984. This saves
having many, many copies of the 2 object cluttering up memory.

Here's a little trick for seeing exactly how huge a number is:

>>> len(str(2**2048))
617

We created a string from a calculated number. Then we asked what the length of the string
was. The response tells us that the number had 617 digits.

Numbers, Strings, and Tuples

[16]

There's more…
Python offers us a broad set of arithmetic operators: +, -, *, /, //, %, and **. The / and //
are for division; we'll look at these in a separate recipe named Choosing between true division
and floor division. The ** raises a number to a power.

For dealing with individual bits, we have some additional operations. We can use &, ^, |,
<<, and >>. These operators work bit-by-bit on the internal binary representations of
integers. These compute a binary AND, a binary Exclusive OR, Inclusive OR, Left Shift,
and Right Shift respectively.

While these will work on very big integers, they don't really make much sense outside the
world of individual bytes. Some binary files and network protocols will involve looking at
the bits within an individual byte of data.

We can play around with these operators by using the bin() function to see what's going
on.

Here's a quick example of what we mean:

>>> xor = 0b0011 ^ 0b0101
>>> bin(xor)
'0b110'

We've used 0b0011 and 0b0101 as our two strings of bits. This helps to clarify precisely
what the two numbers have as their binary representation. We applied the exclusive or (^)
operator to these two sequences of bits. We used the bin() function to see the result as a
string of bits. We can carefully line up the bits to see what the operator did.

We can decompose a byte into portions. Say we want to separate the left-most two bits from
the other six bits. One way to do this is with bit-fiddling expressions like these:

>>> composite_byte = 0b01101100
>>> bottom_6_mask = 0b00111111
>>> bin(composite_byte >> 6)
'0b1'
>>> bin(composite_byte & bottom_6_mask)
'0b101100'

We've defined a composite byte which has 01 in the most significant two bits, and 101100
in the least significant six bits. We used the >> shift operator to shift the value by six
positions, removing the least significant bits and preserving the two most significant bits.
We used the & operator with a mask. Where the mask has 1 bit, a position's value is
preserved in the result, where a mask has 0 bits, the result position is set to 0.

Numbers, Strings, and Tuples

[17]

See also
We'll look at the two division operators in the Choosing between true division
and floor division recipe
We'll look at other kinds of numbers in the Choosing between float, decimal, and
fraction recipe
For details on integer processing, see h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p -
0237/

Choosing between float, decimal, and
fraction
Python offers us several ways to work with rational numbers and approximations of
irrational numbers. We have three basic choices:

Float
Decimal
Fraction

With so many choices, when do we use each of these?

Getting ready
It's important to be sure about our core mathematical expectations. If we're not sure what
kind of data we have, or what kinds of results we want to get, we really shouldn't be
coding. We need to take a step back and review things with pencil and paper.

There are three general cases for math that involve numbers beyond integers, which are:

Currency: Dollars, cents, or euros. Currency generally has a fixed number of1.
decimal places. There are rounding rules used to determine what 7.25% of $2.95
is.
Rational Numbers or Fractions: When we're working with American units for2.
feet and inches, or cooking measurements in cups and fluid ounces, we often
need to work in fractions. When we scale a recipe that serves eight, for example,
down to five people, we're doing fractional math using a scaling factor of 5/8 .
How do we apply this to 2/3 cup of rice and still get a measurement that fits an
American kitchen gadget?

https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/

Numbers, Strings, and Tuples

[18]

Irrational Numbers: This includes all other kinds of calculations. It's important to3.
note that digital computers can only approximate these numbers, and we'll
occasionally see odd little artifacts of this approximation. The float
approximations are very fast, but sometimes suffer from truncation issues.

When we have one of the first two cases, we should avoid floating-point numbers.

How to do it…
We'll look at each of the three cases separately. First, we'll look at computing with currency.
Then we'll look at rational numbers, and finally irrational or floating-point numbers.
Finally, we'll look at making explicit conversions among these various types.

Doing currency calculations
When working with currency, we should always use the decimal module. If we try to use
Python's built-in float values, we'll have problems with rounding and truncation of
numbers.

To work with currency, we'll do this. Import the Decimal class from the decimal1.
module:

 >>> from decimal import Decimal

Create Decimal objects from strings or integers:2.

 >>> from decimal import Decimal
 >>> tax_rate = Decimal('7.25')/Decimal(100)
 >>> purchase_amount = Decimal('2.95')
 >>> tax_rate * purchase_amount
 Decimal('0.213875')

We created the tax_rate from two Decimal objects. One was based on a string,
the other based on an integer. We could have used Decimal('0.0725') instead
of doing the division explicitly.

The result is a hair over $0.21. It's computed out correctly to the full number of
decimal places.

Numbers, Strings, and Tuples

[19]

If you try to create decimal objects from floating-point values, you'll see3.
unpleasant artifacts of float approximations. Avoid mixing Decimal and float.
To round to the nearest penny, create a penny object:

 >>> penny=Decimal('0.01')

Quantize your data using this penny object:4.

 >>> total_amount = purchase_amount + tax_rate*purchase_amount
 >>> total_amount.quantize(penny)
 Decimal('3.16')

This shows how we can use the default rounding rule of ROUND_HALF_EVEN.

Every financial wizard has a different style of rounding. The Decimal module offers every
variation. We might, for example, do something like this:

>>> import decimal
>>> total_amount.quantize(penny, decimal.ROUND_UP)
Decimal('3.17')

This shows the consequences of using a different rounding rule.

Fraction calculations
When we're doing calculations that have exact fraction values, we can use the fractions
module. This provides us handy rational numbers that we can use. To work with fractions,
we’ll do this:

Import the Fraction class from the fractions module:1.

 >>> from fractions import Fraction

Create Fraction objects from strings, integers, or pairs of integers. If you create2.
fraction objects from floating-point values, you may see unpleasant artifacts of
float approximations. When the denominator is a power of 2, things can work out
exactly:

 >>> from fractions import Fraction
 >>> sugar_cups = Fraction('2.5')
 >>> scale_factor = Fraction(5/8)
 >>> sugar_cups * scale_factor
 Fraction(25, 16)

Numbers, Strings, and Tuples

[20]

We created one fraction from a string, 2.5. We created the second fraction from a floating-
point calculation, 5/8. Because the denominator is a power of 2, this works out exactly.

The result, 25/16, is a complex-looking fraction. What's a nearby fraction that might be
simpler?

 >>> Fraction(24,16)
 Fraction(3, 2)

We can see that we'll use almost a cup and a half to scale the recipe for five people instead
of eight.

Floating-point approximations
Python's built-in float type is capable of representing a wide variety of values. The trade-
off here is that float often involves an approximation. In some cases—specifically when
doing division that involves powers of 2—it can be as exact as a fraction. In all other
cases, there may be small discrepancies that reveal the differences between the
implementation of float and the mathematical ideal of an irrational number.

To work with float, we often need to round values to make them look sensible.1.
Recognize that all calculations are an approximation:

 >>> (19/155)*(155/19)
 0.9999999999999999

Mathematically, the value should be 1. Because of the approximations used for2.
float, the answer isn't exact. It's not wrong by much, but it's wrong. When we
round appropriately, the value is more useful:

 >>> answer= (19/155)*(155/19)
 >>> round(answer, 3)
 1.0

Know the error term. In this case, we know what the exact answer is supposed to3.
be, so we can compare our calculation with the known correct answer. This gives
us the general error value that can creep into floating-point numbers:

 >>> 1-answer
 1.1102230246251565e-16

Numbers, Strings, and Tuples

[21]

For most floating-point errors, this is the typical value—about 10-16. Python has clever rules
that hide this error some of the time by doing some automatic rounding. For this
calculation, however, the error wasn't hidden.

This is a very important consequence.

Don't compare floating-point values for exact equality.

When we see code that uses an exact == test between floating-point numbers, there are
going to be problems when the approximations differ by a single bit.

Converting numbers from one type to another
We can use the float() function to create a float value from another value. It looks like
this:

>>> float(total_amount)
3.163875
>>> float(sugar_cups * scale_factor)
1.5625

In the first example, we converted a Decimal value to float. In the second example, we
converted a Fraction value to float.

As we just saw, we're never happy trying to convert float to Decimal or Fraction:

>>> Fraction(19/155)
Fraction(8832866365939553, 72057594037927936)
>>> Decimal(19/155)
Decimal('0.12258064516129031640279123394066118635237216949462890625')

In the first example, we did a calculation among integers to create a float value that has a
known truncation problem. When we created a Fraction from that truncated float value,
we got some terrible looking numbers that exposed the details of the truncation.

Similarly, the second example tried to create a Decimal value from a float.

Numbers, Strings, and Tuples

[22]

How it works…
For these numeric types, Python offers us a variety of operators: +, -, *, /, //, %, and **.
These are for addition, subtraction, multiplication, true division, truncated division,
modulus, and raising to a power. We'll look at the two division operators in the Choosing
between true division and floor division recipe.

Python is adept at converting numbers between the various types. We can mix int and
float values; the integers will be promoted to floating-point to provide the most accurate
answer possible. Similarly, we can mix int and Fraction and the results will be
Fractions. We can also mix int and Decimal. We cannot casually mix Decimal with
float or Fraction; we need to provide explicit conversions.

It's important to note that float values are really approximations. The
Python syntax allows us to write numbers as decimal values; that's not
how they're processed internally.

We can write a value like this in Python, using ordinary base-10 values:

>>> 8.066e+67
8.066e+67

The actual value used internally will involve a binary approximation of the decimal value
we wrote.

The internal value for this example, 8.066e+67, is this:

>>> 6737037547376141/2**53*2**226
8.066e+67

The numerator is a big number, 6737037547376141. The denominator is always 253. Since
the denominator is fixed, the resulting fraction can only have 53 meaningful bits of data.
Since more bits aren't available, values might get truncated. This leads to tiny discrepancies
between our idealized abstraction and actual numbers. The exponent (2226) is required to
scale the fraction up to the proper range.

Mathematically, 6737037547376141 * 2226/253.

We can use math.frexp() to see these internal details of a number:

>>> import math
>>> math.frexp(8.066E+67)
(0.7479614202861186, 226)

Numbers, Strings, and Tuples

[23]

The two parts are called the mantissa and the exponent. If we multiply the mantissa by 253,
we always get a whole number, which is the numerator of the binary fraction.

The error we noticed earlier matches this quite nicely: 10-16≈ 2-53 .

Unlike the built-in float, a Fraction is an exact ratio of two integer values. As we saw in
the Working with large and small integers recipe, integers in Python can be very large. We can
create ratios which involve integers with a large number of digits. We're not limited by a
fixed denominator.

A Decimal value, similarly, is based on a very large integer value, and a scaling factor to
determine where the decimal place goes. These numbers can be huge and won't suffer from
peculiar representation issues.

Why use floating-point? Two reasons:
Not all computable numbers can be represented as fractions. That's why
mathematicians introduced (or perhaps discovered) irrational numbers.
The built-in float type is as close as we can get to the mathematical
abstraction of irrational numbers. A value like √2, for example, can't be
represented as a fraction.
Also, float values are very fast.

There's more…
The Python math module contains a number of specialized functions for working with
floating-point values. This module includes common functions such as square root,
logarithms, and various trigonometry functions. It has some other functions such as
gamma, factorial, and the Gaussian error function.

The math module includes several functions that can help us do more accurate floating-
point calculations. For example, the math.fsum() function will compute a floating-point
sum more carefully than the built-in sum() function. It's less susceptible to approximation
issues.

Numbers, Strings, and Tuples

[24]

We can also make use of the math.isclose() function to compare two floating-point
values to see if they're nearly equal:

>>> (19/155)*(155/19) == 1.0
False
>>> math.isclose((19/155)*(155/19), 1)
True

This function provides us with a way to compare floating-point numbers meaningfully.

Python also offers complex data. This involves a real and an imaginary part. In Python, we
write 3.14+2.78j to represent the complex number 3.14 + 2.78 √-1. Python will
comfortably convert between float and complex. We have the usual group of operators
available for complex numbers.

To support complex numbers, there's a cmath package. The cmath.sqrt() function, for
example, will return a complex value rather than raise an exception when extracting the
square root of a negative number. Here's an example:

>>> math.sqrt(-2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> cmath.sqrt(-2)
1.4142135623730951j

This is essential when working with complex numbers.

See also
We'll talk more about floating point and fractions in the Choosing between true
division and floor division recipe
See h t t p s ://e n . w i k i p e d i a . o r g /w i k i /I E E E _ f l o a t i n g _ p o i n t

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point

Numbers, Strings, and Tuples

[25]

Choosing between true division and floor
division
Python offers us two kinds of division operators. What are they, and how do we know
which one to use? We'll also look at the Python division rules and how they apply to integer
values.

Getting ready
There are several general cases for doing division:

A div-mod pair: We want two parts—the quotient and the remainder. We often
use this when converting values from one base to another. When we convert
seconds to hours, minutes, and seconds, we'll be doing a div-mod kind of division.
We don't want the exact number of hours, we want a truncated number of hours,
the remainder will be converted to minutes and seconds.
The true value: This is a typical floating-point value—it will be a good
approximation to the quotient. For example, if we're computing an average of
several measurements, we usually expect the result to be floating-point, even if
the input values are all integers.
A rational fraction value: This is often necessary when working in American units
of feet, inches, and cups. For this, we should be using the Fraction class. When
we divide Fraction objects, we always get exact answers.

We need to decide which of these cases apply, so we know which division operator to use.

How to do it…
We'll look at the three cases separately. First we'll look at truncated floor division. Then
we'll look at true floating-point division. Finally, we'll look at division of fractions.

Numbers, Strings, and Tuples

[26]

Doing floor division
When we are doing the div-mod kind of calculations, we might use floor division, //, and
modulus, %. Or, we might use the divmod() function.

We'll divide the number of seconds by 3600 to get the value of hours; the1.
modulus, or remainder, can be converted separately to minutes and seconds:

 >>> total_seconds = 7385
 >>> hours = total_seconds//3600
 >>> remaining_seconds = total_seconds % 3600

Again, using remaining values, we'll divide the number of seconds by 60 to get2.
minutes; the remainder is a number of seconds less than 60:

 >>> minutes = remaining_seconds//60
 >>> seconds = remaining_seconds % 60
 >>> hours, minutes, seconds
 (2, 3, 5)

Here's the alternative, using the divmod() function:

Compute quotient and remainder at the same time:1.

 >>> total_seconds = 7385
 >>> hours, remaining_seconds = divmod(total_seconds, 3600)

Compute quotient and remainder again:2.

 >>> minutes, seconds = divmod(remaining_seconds, 60)
 >>> hours, minutes, seconds
 (2, 3, 5)

Doing true division
A true value calculation gives as a floating-point approximation. For example, about how
many hours is 7386 seconds? Divide using the true division operator:

>>> total_seconds = 7385
>>> hours = total_seconds / 3600
>>> round(hours,4)
2.0514

Numbers, Strings, and Tuples

[27]

We provided two integer values, but got a floating-point exact result.
Consistent with our previous recipe for using floating-point values, we
rounded the result to avoid having to look at tiny error values.

This true division is a feature of Python 3. We'll look at this from a Python 2 perspective in
the next sections.

Rational fraction calculations
We can do division using Fraction objects and integers. This forces the result to be a
mathematically exact rational number:

Create at least one Fraction value:1.

 >>> from fractions import Fraction
 >>> total_seconds = Fraction(7385)

Use the Fraction value in a calculation. Any integer will be promoted to a2.
Fraction:

 >>> hours = total_seconds / 3600
 >>> hours
 Fraction(1477, 720)

If necessary, convert the exact fraction to a floating-point approximation:3.

 >>> round(float(hours),4)
 2.0514

First, we created a Fraction object for the total number of seconds. When we do arithmetic
on fractions, Python will promote any integers to be fractions; this promotion means that
the math is done as exactly as possible.

How it works…
Python 3 has two division operators.

The / true division operator always tries to produce a true, floating-point result.
It does this even when the two operands are integers. This is an unusual operator
in this respect. All other operators try to preserve the type of the data. The true
division operation – when applied to integers – produces a float result.

Numbers, Strings, and Tuples

[28]

The // truncated division operator always tries to produce a truncated result. For
two integer operands, this is the truncated quotient. For two floating-point
operands, this is a truncated floating-point result:

 >>> 7358.0 // 3600.0
 2.0

By default, Python 2 only has one division operator. For programmers still using Python 2,
we can start using these new division operators with this:

>>> from __future__ import division

This import will install the Python 3 division rules.

See also
For more on the choice between floating-point and fractions, see the Choosing
between float, decimal, and fraction recipe
See h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p - 0238/

Rewriting an immutable string
How can we rewrite an immutable string? We can't change individual characters inside a
string:

 >>> title = "Recipe 5: Rewriting, and the Immutable String"
 >>> title[8]= ''
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: 'str' object does not support item assignment

Since this doesn't work, how do we make a change to a string?

Getting ready
Let's assume we have a string like this:

>>> title = "Recipe 5: Rewriting, and the Immutable String"

https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/

Numbers, Strings, and Tuples

[29]

We'd like to do two transformations:

Remove the part before the :
Replace the punctuation with _, and make all the characters lowercase

Since we can't replace characters in a string object, we have to work out some alternatives.
There are several common things we can do, shown as follows:

A combination of slicing and concatenating a string to create a new string.
When shortening, we often use the partition() method.
We can replace a character or a substring with the replace() method.
We can expand the string into a list of characters, then join the string back into a
single string again. This is the subject for a separate recipe, Building complex
strings with a list of characters.

How to do it…
Since we can't update a string in place, we have to replace the string variable's object with
each modified result. We'll use a statement that looks like this:

 some_string = some_string.method()

Or we could even use:

 some_string = some_string[:chop_here]

We'll look at a number of specific variations on this general theme. We'll slice a piece of a
string, we'll replace individual characters within a string, and we'll apply blanket
transformations such as making the string lowercase. We'll also look at ways to remove
extra _ that show up in our final string.

Slicing a piece of a string
Here's how we can shorten a string via slicing:

Find the boundary:1.

 >>> colon_position = title.index(':')

The index function locates a particular substring and returns the position where
that substring can be found. If the substring doesn't exist, it raises an exception.

Numbers, Strings, and Tuples

[30]

This is always true of the result title[colon_position] == ':'.

Pick the substring:2.

 >>> discard_text, post_colon_text = title[:colon_position],
title[colon_position+1:]
 >>> discard_text
 'Recipe 5'
 >>> post_colon_text
 ' Rewriting, and the Immutable String'

We've used the slicing notation to show the start:end of the characters to pick. We also
used multiple assignment to assign two variables, discard_text and post_colon_text,
from two expressions.

We can use partition() as well as manual slicing. Find the boundary and partition:

>>> pre_colon_text, _, post_colon_text = title.partition(':')
>>> pre_colon_text
'Recipe 5'
>>> post_colon_text
' Rewriting, and the Immutable String'

The partition function returns three things: the part before the target, the target, and the
part after the target. We used multiple assignment to assign each object to a different
variable. We assigned the target to a variable named _ because we're going to ignore that
part of the result. This is a common idiom for places where we must provide a variable, but
we don't care about using the object.

Updating a string with a replacement
We can use replace() to remove punctuation marks. When using replace to switch
punctuation marks, save the results back into the original variable. In this case,
post_colon_text:

>>> post_colon_text = post_colon_text.replace(' ', '_')
>>> post_colon_text = post_colon_text.replace(',', '_')
>>> post_colon_text
'_Rewriting__and_the_Immutable_String'

This has replaced the two kinds of punctuation with the desired _ characters. We can
generalize this to work with all punctuation. This leverages the for statement, which we'll
look at in Chapter 2, Statements and Syntax.

Numbers, Strings, and Tuples

[31]

We can iterate through all punctuation characters:

>>> from string import whitespace, punctuation
>>> for character in whitespace + punctuation:
... post_colon_text = post_colon_text.replace(character, '_')
>>> post_colon_text
'_Rewriting__and_the_Immutable_String'

As each kind of punctuation character is replaced, we assign the latest and greatest version
of the string to the post_colon_text variable.

Making a string all lowercase
Another transformational step is changing a string to all lowercase. As with the previous
examples, we'll assign the results back to the original variable. Use the lower() method,
assigning the result to the original variable:

>>> post_colon_text = post_colon_text.lower()

Removing extra punctuation marks
In many cases, there are some additional steps we might follow. We often want to remove
leading and trailing _ characters. We can use strip() for this:

>>> post_colon_text = post_colon_text.strip('_')

In some cases, we'll have multiple _ characters because we had multiple punctuation marks.
The final step would be something like this to cleanup up multiple _ characters:

>>> while '__' in post_colon_text:
... post_colon_text = post_colon_text.replace('__', '_')

This is yet another example of the same pattern we've been using to modify a string in
place. This depends on the while statement, which we'll look at in Chapter 2, Statements
and Syntax.

How it works…
We can't—technically—modify a string in place. The data structure for a string is
immutable. However, we can assign a new string back to the original variable. This
technique behaves the same as modifying a string in place.

Numbers, Strings, and Tuples

[32]

When a variable's value is replaced, the previous value no longer has any references and is
garbage collected. We can see this by using the id() function to track each individual string
object:

>>> id(post_colon_text)
4346207968
>>> post_colon_text = post_colon_text.replace('_','-')
>>> id(post_colon_text)
4346205488

Your actual id numbers may be different. What's important is that the original string object
assigned to post_colon_text had one id. The new string object assigned to
post_colon_text has a different id. It's a new string object.

When the old string has no more references, it is removed from memory automatically.

We made use of slice notation to decompose a string. A slice has two parts: [start:end].
A slice always includes the starting index. String indices always start with zero as the first
item. It never includes the ending index.

The items in a slice have an index from start to end-1. This is sometimes
called a half-open interval.

Think of a slice like this: all characters where the index, i, are in the range start ≤ i < end.

We noted briefly that we can omit the start or end indices. We can actually omit both. Here
are the various options available:

title[colon_position]: A single item, the : we found using
title.index(':').
title[:colon_position]: A slice with the start omitted. It begins at the first
position, index of zero.
title[colon_position+1:]: A slice with the end omitted. It ends at the end of
the string, as if we said len(title).
title[:]: Since both start and end are omitted, this is the entire string. Actually,
it's a copy of the entire string. This is the quick and easy way to duplicate a string.

Numbers, Strings, and Tuples

[33]

There's more…
There are more features to indexing in Python collections like a string. The normal indices
start with 0 at the left end. We have an alternate set of indices using negative names that
work from the right end of a string.

title[-1] is the last character in the title, g
title[-2] is the next-to-last character, n
title[-6:] is the last six characters, String

We have a lot of ways to pick pieces and parts out of a string.

Python offers dozens of methods for modifying a string. Section 4.7 of the Python Standard
Library describes the different kinds of transformations that are available to us. There are
three broad categories of string methods. We can ask about a string, we can parse a string,
and we can transform a string. Methods such as isnumeric() tell us if a string is all digits.

Here's an example:

>>> 'some word'.isnumeric()
False
>>> '1298'.isnumeric()
True

We've looked at parsing with the partition() method. And we've looked at transforming
with the lower() method.

See also
We'll look at the string as list technique for modifying a string in the Building
complex strings from lists of characters recipe.
Sometimes we have data that's only a stream of bytes. In order to make sense of
it, we need to convert it into characters. That's the subject for the Decoding bytes –
how to get proper characters from some bytes recipe.

Numbers, Strings, and Tuples

[34]

String parsing with regular expressions
How do we decompose a complex string? What if we have complex, tricky punctuation?
Or—worse yet—what if we don't have punctuation, but have to rely on patterns of digits to
locate meaningful information?

Getting ready
The easiest way to decompose a complex string is by generalizing the string into a pattern
and then writing a regular expression that describes that pattern.

There are limits to the patterns that regular expressions can describe. When we're
confronted with deeply-nested documents in a language like HTML, XML, or JSON, we
often run into problems, and can't use regular expressions.

The re module contains all of the various classes and functions we need to create and use
regular expressions.

Let's say that we want to decompose text from a recipe website. Each line looks like this:

>>> ingredient = "Kumquat: 2 cups"

We want to separate the ingredient from the measurements.

How to do it…
To write and use regular expressions, we often do this:

Generalize the example. In our case, we have something that we can generalize1.
as:

 (ingredient words): (amount digits) (unit words)

We've replaced literal text with a two-part summary: what it means and how it's2.
represented. For example, ingredient is represented as words, amount is
represented as digits. Import the re module:

 >>> import re

Numbers, Strings, and Tuples

[35]

Rewrite the pattern into Regular Expression (RE) notation:3.

 >>> pattern_text =
r'(?P<ingredient>\w+):\s+(?P<amount>\d+)\s+(?P<unit>\w+)'

We've replaced representation hints such as words with \w+. We've replaced digits
with \d+. And we've replaced single spaces with \s+ to allow one or more spaces
to be used as punctuation. We've left the colon in place, because in the regular
expression notation, a colon matches itself.

For each of the fields of data, we've used ?P<name> to provide a name that
identifies the data we want to extract. We didn't do this around the colon or the
spaces because we don't want those characters.

REs use a lot of \ characters. To make this work out nicely in Python, we almost
always use raw strings. The r' prefix tells Python not to look at the \ characters
and not to replace them with special characters that aren't on our keyboards.

Compile the pattern:4.

 >>> pattern = re.compile(pattern_text)

Match the pattern against input text. If the input matches the pattern, we'll get a5.
match object that shows details of the matching:

 >>> match = pattern.match(ingredient)
 >>> match is None
 False
 >>> match.groups()
 ('Kumquat', '2', 'cups')

This, by itself, is pretty cool: we have a tuple of the different fields within the
string. We'll return to the use of tuples in a recipe named Using tuples.

Extract the named groups of characters from the match object:6.

 >>> match.group('ingredient')
 'Kumquat'
 >>> match.group('amount')
 '2'
 >>> match.group('unit')
 'cups'

Each group is identified by the name we used in the (?P<name>...) part of the
RE.

Numbers, Strings, and Tuples

[36]

How it works…
There are a lot of different kinds of string patterns that we can describe with RE.

We've shown a number of character classes:

\w matches any alphanumeric character (a to z, A to Z, 0 to 9)
\d matches any decimal digit
\s matches any space or tab character

These classes also have inverses:

\W matches any character that's not a letter or a digit
\D matches any character that's not a digit
\S matches any character that's not some kind of space or tab

Many characters match themselves. Some characters, however, have special meaning, and
we have to use \ to escape from that special meaning:

We saw that + as a suffix means to match one or more of the preceeding patterns.
\d+ matches one or more digits. To match an ordinary +, we need to use \+.
We also have * as a suffix which matches zero or more of the preceding patterns.
\w* matches zero or more characters. To match a *, we need to use *.
We have ? as a suffix which matches zero or one of the preceding expressions.
This character is used in other places, and has a slightly different meaning. We
saw it in (?P<name>...) where it was inside the () to define special properties
for the grouping.
The . matches any single character. To match a . specifically, we need to use \.

We can create our own unique sets of characters using [] to enclose the elements of the set.
We might have something like this:

 (?P<name>\w+)\s*[=:]\s*(?P<value>.*)

This has a \w+ to match any number of alphanumeric characters. This will be collected into
a group with the name of name.

It uses \s* to match an optional sequence of spaces.

It matches any character in the set [=:]. One of the two characters in this set must be
present.

Numbers, Strings, and Tuples

[37]

It uses \s* again to match an optional sequence of spaces.

Finally, it uses .* to match everything else in the string. This is collected into a group
named value.

We can use this to parse strings like this:

 size = 12
 weight: 14

By being flexible with the punctuation, we can make a program easier to use. We'll tolerate
any number of spaces, and either an = or a : as a separator.

There's more…
A long regular expression can be awkward to read. We have a clever Pythonic trick for
presenting an expression in a way that's much easier to read:

>>> ingredient_pattern = re.compile(
... r'(?P<ingredient>\w+):\s+' # name of the ingredient up to the ":"
... r'(?P<amount>\d+)\s+' # amount, all digits up to a space
... r'(?P<unit>\w+)' # units, alphanumeric characters
...)

This leverages three syntax rules:

A statement isn't finished until the () characters match
Adjacent string literals are silently concatenated into a single long string
Anything between # and the end of the line is a comment, and is ignored

We've put Python comments after the important clauses in our regular expression. This can
help us understand what we did, and perhaps help us diagnose problems later.

See also
The Decoding Bytes – How to get proper characters from some bytes recipe
There are many books on Regular Expressions and Python Regular Expressions
in particular like Mastering Python Regular Expressions (h t t p s ://w w w . p a c k t p u b . c

o m /a p p l i c a t i o n - d e v e l o p m e n t /m a s t e r i n g - p y t h o n - r e g u l a r - e x p r e s s i o n s)

https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions

Numbers, Strings, and Tuples

[38]

Building complex strings with
“template”.format()
Creating complex strings is, in many ways, the polar opposite of parsing a complex string.
We generally find that we'll use a template with substitution rules to put data into a more
complex format.

Getting ready
Let's say we have pieces of data that we need to turn into a nicely formatted message. We
might have data including the following:

>>> id = "IAD"
>>> location = "Dulles Intl Airport"
>>> max_temp = 32
>>> min_temp = 13
>>> precipitation = 0.4

And we'd like a line that looks like this:

IAD : Dulles Intl Airport : 32 / 13 / 0.40

How to do it…
Create a template string from the result, replacing all of the data items with {}1.
placeholders. Inside each placeholder, put the name of the data item.

 '{id} : {location} : {max_temp} / {min_temp} / {precipitation}'

For each data item, append :data type information to the placeholders in the2.
template string. The basic data type codes are:

s for string
d for decimal number
f for floating-point number

It would look like this:

 '{id:s} : {location:s} : {max_temp:d} / {min_temp:d} /
{precipitation:f}'

Numbers, Strings, and Tuples

[39]

Add length information where required. Length is not always required, and in3.
some cases, it's not even desirable. In this example, though, the length
information assures that each message has a consistent format. For strings and
decimal numbers, prefix the format with the length like this: 19s or 3d. For
floating-point numbers use a two part prefix like this: 5.2f to specify the total
length of five characters with two to the right of the decimal point. Here's the
whole format:

 '{id:3d} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'

Use the format() method of this string to create the final string:4.

 >>> '{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'.format(
 ... id=id, location=location, max_temp=max_temp,
 ... min_temp=min_temp, precipitation=precipitation
 ...)
 'IAD : Dulles Intl Airport : 32 / 13 / 0.40'

We've provided all of the variables by name in the format() method of the template string.
This can get tedious. In some cases, we might want to build a dictionary object with the
variables. In that case, we can use the format_map() method:

>>> data = dict(
... id=id, location=location, max_temp=max_temp,
... min_temp=min_temp, precipitation=precipitation
...)
>>> '{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'.format_map(data)
'IAD : Dulles Intl Airport : 32 / 13 / 0.40'

We'll return to dictionaries in Chapter 4, Build-in Data Structures – list, set, dict.

The built-in vars() function builds a dictionary of all of the local variables for us:

>>> '{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'.format_map(
... vars()
...)
'IAD : Dulles Intl Airport : 32 / 13 / 0.40'

The vars() function is very handy for building a dictionary automatically.

Numbers, Strings, and Tuples

[40]

How it works…
The string format() and format_map() methods can do a lot of relatively sophisticated
string assembly for us.

The basic feature is to interpolate data into a string based on names of keyword arguments
or keys in a dictionary. Variables can also be interpolated by position—we can provide
position numbers instead of names. We can use a format specification like {0:3s} to use
the first positional argument to format().

We've seen three of the formatting conversions—s, d, f—there are many others. Details are
in Section 6.1.3 of the Python Standard Library. Here are some of the format conversions we
might use:

b is for binary, base 2.
c is for Unicode character. The value must be a number, which is converted to a
character. Often, we use hexadecimal numbers for this so you might want to try
values such as 0x2661 through 0x2666 for fun.
d is for decimal numbers.
E and e are for scientific notations. 6.626E-34 or 6.626e-34 depending on
which E or e character is used.
F and f are for floating-point. For not a number the f format shows lowercase nan;
the F format shows uppercase NAN.
G and g are for general. This switches automatically between E and F (or e and f,)
to keep the output in the given sized field. For a format of 20.5G, up to 20-digit
numbers will be displayed using F formatting. Larger numbers will use E
formatting.
n is for locale-specific decimal numbers. This will insert , or . characters
depending on the current locale settings. The default locale may not have a
thousand separators defined. For more information, see the locale module.
o is for octal, base 8.
s is for string.
X and x is for hexadecimal, base 16. The digits include uppercase A-F and
lowercase a-f, depending on which X or x format character is used.
% is for percentage. The number is multiplied by 100 and includes the %.

Numbers, Strings, and Tuples

[41]

We have a number of prefixes we can use for these different types. The most common one is
the length. We might use {name:5d} to put in a 5-digit number. There are several prefixes
for the preceding types:

Fill and alignment: We can specify a specific filler character (space is the default)
and an alignment. Numbers are generally aligned to the right and strings to the
left. We can change that using <, >, or ^. This forces left alignment, right
alignment, or centering. There's a peculiar = alignment that's used to put padding
after a leading sign.
Sign: The default rule is a leading negative sign where needed. We can use + to
put a sign on all numbers, - to put a sign only on negative numbers, and a space
to use a space instead of a plus for positive numbers. In scientific output, we must
use {value: 5.3f}. The space makes sure that room is left for the sign, assuring
that all the decimal points line up nicely.
Alternate form: We can use the # to get an alternate form. We might have
something like {0:#x}, {0:#o}, {0:#b} to get a prefix on hexadecimal, octal, or
binary values. With a prefix, the numbers will look like 0xnnn, 0onnn, or 0bnnn.
The default is to omit the two character prefix.
Leading zero: We can include 0 to get leading zeros to fill in the front of a
number. Something like {code:08x) will produce a hexadecimal value with
leading zeroes to pad it out to eight characters.
Width and precision: For integer values and strings, we only provide the width.
For floating-point values we often provide width.precision.

There are some times when we won't use a {name:format} specification. Sometimes we'll
need to use a {name!conversion} specification. There are only three conversions
available.

{name!r} shows the representation that would be produced by repr(name)
{name!s} shows the string value that would be produced by str(name)
{name!a} shows the ASCII value that would be produced by ascii(name)

In Chapter 6, Basics of Classes and Objects, we'll leverage the idea of the {name!r} format
specification to simplify displaying information about related objects.

Numbers, Strings, and Tuples

[42]

There's more…
A handy debugging hack this:

print("some_variable={some_variable!r}".format_map(vars()))

The vars() function—with no arguments—collects all of the local variables into a
mapping. We provide that mapping for format_map(). The format template can use lots of
{variable_name!r} to display details about various objects we have in local variables.

Inside a class definition we can use techniques such as vars(self). This looks forward to
Chapter 6, Basics of Classes and Objects:

>>> class Summary:
... def __init__(self, id, location, min_temp, max_temp,
precipitation):
... self.id= id
... self.location= location
... self.min_temp= min_temp
... self.max_temp= max_temp
... self.precipitation= precipitation
... def __str__(self):
... return '{id:3s} : {location:19s} : {max_temp:3d} /
{min_temp:3d} / {precipitation:5.2f}'.format_map(
... vars(self)
...)
>>> s= Summary('IAD', 'Dulles Intl Airport', 13, 32, 0.4)
>>> print(s)
IAD : Dulles Intl Airport : 32 / 13 / 0.40

Our class definition includes a __str__() method. This method relies on vars(self) to
create a useful dictionary of just the attribute of the object.

See also
The Python Standard Library, Section 6.1.3 has all of the details on the format
method of a string

Numbers, Strings, and Tuples

[43]

Building complex strings from lists of
characters
How can we make very complex changes to an immutable string? Can we assemble a string
from individual characters?

In most cases, the recipes we've already seen give us a number of tools for creating and
modifying strings. There are yet more ways in which we can tackle the string manipulation
problem. We'll look at using a list object. This will dovetail with some of the recipes in
Chapter 4, Built-in Data Structures – list, set, dict.

Getting ready
Here's a string that we'd like to rearrange:

>>> title = "Recipe 5: Rewriting an Immutable String"

We'd like to do two transformations:

Remove the part before the :
Replace the punctuation with _, and make all the characters lowercase

We'll make use of the string module:

>>> from string import whitespace, punctuation

This has two important constants:

string.whitespace lists all of the common whitespace characters, including
space and tab
string.punctuation lists the common ASCII punctuation marks. Unicode has
a larger list of punctuation marks; that's also available based on your locale
settings

Numbers, Strings, and Tuples

[44]

How to do it…
We can work with a string exploded into a list. We'll look at lists in more depth in Chapter
4, Built-in Data Structures – list, set, dict.

Explode the string into a list object:1.

 >>> title_list = list(title)

Find the partition character. The index() method for a list has the same2.
semantics as the index() method for a list. It locates the position with the given
value:

 >>> colon_position = title_list.index(':')

Delete the characters no longer needed. The del statement can remove items3.
from a list. Lists are a mutable data structures:

 >>> del title_list[:colon_position+1]

We don't need to carefully work with the useful piece of the original string. We
can remove items from a list.

Replace punctuation by stepping through each position. In this case, we'll use a4.
for statement to visit every index in the string:

 >>> for position in range(len(title_list)):
 ... if title_list[position] in whitespace+punctuation:
 ... title_list[position]= '_'

The expression range(len(title_list)) generates all of the values between 05.
and len(title_list)-1. This assures us that the value of position will be each
value index in the list. Join the list of characters to create a new string. It seems a
little odd to use zero-length string, '', as a separator when concatenating strings
together. However, it works perfectly:

 >>> title = ''.join(title_list)
 >>> title
 '_Rewriting_an_Immutable_String'

We assigned the resulting string back to the original variable. The original string object,
which had been referred to by that variable, is no longer needed: it's removed from
memory. The new string object replaces the value of the variable.

Numbers, Strings, and Tuples

[45]

How it works…
This is a change in representation trick. Since a string is immutable, we can't update it. We
can, however, convert it into a mutable form; in this case, a list. We can do whatever
changes are required to the mutable list object. When we're done, we can change the
representation from a list back to a string.

Strings provide a number of features that lists don't. Conversely, strings provide a number
of features a list doesn't have. We can't convert a list to lowercase the way we can convert a
string.

There's an important trade-off here:

Strings are immutable, that makes them very fast. Strings are focused on Unicode
characters. When we look at mappings and sets, we can use strings as keys for
mappings and items in sets because the value is immutable.
Lists are mutable. Operations are slower. Lists can hold any kind of item. We
can't use a list as a key for a mapping or an item in a set because the value could
change.

Strings and lists are both specialized kinds of sequences. Consequently, they have a number
of common features. The basic item indexing and slicing features are shared. Similarly a list
uses the same kind of negative index values that a string does: list[-1] is the last item in
a list object.

We'll return to mutable data structures in Chapter 4, Built-in Data Structures – list, set, dict.

There's more
Once we've started working with a list of characters instead of a string, we no longer have
the string processing methods. We do have a number of list-processing techniques available
to us. In addition to being able to delete items from a list, we can append an item, extend a
list with another list, and insert a character into the list.

We can also change our viewpoint slightly, and look at a list of strings instead of a list of
characters. The technique of doing ''.join(list) will work when we have a list of
strings as well as a list of characters. For example, we might do this:

>>> title_list.insert(0, 'prefix')
>>> ''.join(title_list)
'prefix_Rewriting_an_Immutable_String'

Numbers, Strings, and Tuples

[46]

Our title_list object will be mutated into a list that contains a six-character string,
prefix, plus 30 individual characters.

See also
We can also work with strings using the internal methods of a string. See the
Rewriting an immutable string recipe for more techniques.
Sometimes, we need to build a string, and then convert it into bytes. See the
Encoding strings – creating ASCII and UTF-8 bytes recipe for how we can do this.
Other times, we'll need to convert bytes into a string. See the Decoding Bytes –
How to get proper characters from some bytes recipe.

Using the Unicode characters that aren't on
our keyboards
A big keyboard might have almost 100 individual keys. Fewer than 50 of these are letters,
numbers and punctuation. At least a dozen are function keys that do things other than
simply insert letters into a document. Some of the keys are different kinds of modifiers that
are meant to be used in conjunction with another key—we might have Shift, Ctrl, Option,
and Command.

Most operating systems will accept simple key combinations that create about 100 or so
characters. More elaborate key combinations may create another 100 or so less popular
characters. This isn't even close to covering the million characters from the world's
alphabets. And there are icons, emoticons, and dingbats galore in our computer fonts. How
do we get to all of those glyphs?

Getting ready
Python works in Unicode. There are millions of individual Unicode characters available.

We can see all the available characters at
https://en.wikipedia.org/wiki/List_of_Unicode_characters and also

http://www.unicode.org/charts/.

https://en.wikipedia.org/wiki/List_of_Unicode_characters%20and%20also%20http://www.unicode.org/charts/
https://en.wikipedia.org/wiki/List_of_Unicode_characters%20and%20also%20http://www.unicode.org/charts/
https://en.wikipedia.org/wiki/List_of_Unicode_characters%20and%20also%20http://www.unicode.org/charts/

Numbers, Strings, and Tuples

[47]

We'll need the Unicode character number. We might also want the Unicode character name.

A given font on our computer may not be designed to provide glyphs for all of those
characters. In particular, Windows computer fonts may have trouble displaying some of
these characters. Using the Windows command to change to code page 65001 is sometimes
necessary:

chcp 65001

Linux and Mac OS X rarely have problems with Unicode characters.

How to do it…
Python uses escape sequences to extend the ordinary characters we can type to cover the
vast space of Unicode characters. The escape sequences start with a \ character. The next
character tells exactly how the Unicode character will be represented. Locate the character
that's needed. Get the name or the number. The numbers are always given as hexadecimal,
base 16. They're often written as U+2680. The name might be DIE FACE-1. Use \unnnn
with up to a four-digit number. Or use \N{name} with the spelled-out name. If the number
is more than four digits, use \Unnnnnnnn with the number padded out to eight digits:

>>> 'You Rolled \u2680'
'You Rolled '
>>> 'You drew \U0001F000'

'You drew '
>>> 'Discard \N{MAHJONG TILE RED DRAGON}'

'Discard '

Yes, we can include a wide variety of characters in Python output. To place a \ character in
the string, we need to use \\. For example, we might need this for Windows filenames.

How it works…
Python uses Unicode internally. The 128 or so characters we can type directly using the
keyboard all have handy internal Unicode numbers.

When we write:

'HELLO'

Python treats it as shorthand for this:

Numbers, Strings, and Tuples

[48]

'\u0048\u0045\u004c\u004c\u004f'

Once we get beyond the characters on our keyboards, the remaining millions of characters
are identified only by their number.

When the string is being compiled by Python, the \uxx, \Uxxxxxxxx, and \N{name} are all
replaced by the proper Unicode character. If we have something syntactically wrong—for
example, \N{name with no closing }—we'll get an immediate error from Python's internal
syntax checking.

Back in the String parsing with regular expressions recipe, we noted that regular expressions
use a lot of \ characters and we specifically do not want Python's normal compiler to touch
them; we used the r' prefix on a regular expression string to prevent the \ from being
treated as an escape and possibly converted to something else.

What if we need to use Unicode in a Regular Expression? We'll need to use \\ all over the
place in the Regular Expression. We might see this
'\\w+[\u2680\u2681\u2682\u2683\u2684\u2685]\\d+'. We skipped the r' prefix on
the string. We doubled up the \ used for Regular Expressions. We used \uxxxx for the
Unicode characters that are part of the pattern. Python's internal compiler will replace the
\uxxxx with Unicode characters and the \\ with a single \ internally.

When we look at a string at the >>> prompt, Python will display the string
in its canonical form. Python prefers to use the ' as a delimiter even
though we can use either ' or " for a string delimiter. Python doesn't
generally display raw strings, instead it puts all of the necessary escape
sequences back into the string:
>>> r"\w+"
'\\w+'

We provided a string in raw form. Python displayed it in canonical form.

See also
In the Encoding strings – creating ASCII and UTF-8 bytes and the Decoding Bytes –
How to get proper characters from some bytes recipes we'll look at how Unicode
characters are converted to sequences of bytes so we can write them to a file.
We'll look at how bytes from a file (or downloaded from a website) are turned
into Unicode characters so they can be processed.
If you're interested in history, you can read up on ASCII and EBCDIC and other
old-fashioned character codes here http://www.unicode.org/charts/.

http://www.unicode.org/charts/

Numbers, Strings, and Tuples

[49]

Encoding strings – creating ASCII and UTF-8
bytes
Our computer files are bytes. When we upload or download from the Internet, the
communication works in bytes. A byte only has 256 distinct values. Our Python characters
are Unicode. There are a lot more than 256 Unicode characters.

How do we map Unicode characters to bytes for writing to a file or transmitting?

Getting ready
Historically, a character occupied 1 byte. Python leverages the old ASCII encoding scheme
for bytes; this sometimes leads to confusion between bytes and proper strings of Unicode
characters.

Unicode characters are encoded into sequences of bytes. We have a number of standardized
encodings and a number of non-standard encodings.

Plus, we also have some encodings that only work for a small subset of Unicode characters.
We try to avoid this, but there are some situations where we'll need to use a subset
encoding scheme.

Unless we have a really good reason, we almost always use the UTF-8 encoding for
Unicode characters. Its main advantage is that it's a compact representation for the Latin
alphabet used for English and a number of European languages.

Sometimes, an Internet protocol requires ASCII characters. This is a special case that
requires some care because the ASCII encoding can only handle a small subset of Unicode
characters.

How to do it…
Python will generally use our OS's default encoding for files and Internet traffic. The details
are unique to each OS:

We can make a general setting using the PYTHONIOENCODING environment1.
variable. We set this outside of Python to assure that a particular encoding is
used everywhere. Set the environment variable as:

 export PYTHONIOENCODING=UTF-8

Numbers, Strings, and Tuples

[50]

Run Python:2.

 python3.5

We sometimes need to make specific settings when we open a file inside our3.
script. We'll return this in Chapter 9, Input/Output, Physical Format, Logical Layout.
Open the file with a given encoding. Read or write Unicode characters to the file:

 >>> with open('some_file.txt', 'w', encoding='utf-8') as output:
 ... print('You drew \U0001F000', file=output)
 >>> with open('some_file.txt', 'r', encoding='utf-8') as input:
 ... text = input.read()
 >>> text
 'You drew �'

We can also manually encode characters, in the rare case that we need to open a file in bytes
mode; if we use a mode of wb, we'll need to use manual encoding:

>>> string_bytes = 'You drew \U0001F000'.encode('utf-8')
>>> string_bytes
b'You drew \xf0\x9f\x80\x80'

We can see that a sequence of bytes (\xf0\x9f\x80\x80) was used to encode a single
Unicode character, U+1F000, .

How it works…
Unicode defines a number of encoding schemes. While UTF-8 is the most popular, there are
also UTF-16 and UTF-32. The number is the typical number of bits per character. A file with
1000 characters encoded in UTF-32 would be 4000 8-bit bytes. A file with 1000 characters
encoded in UTF-8 could be as few as 1000 bytes, depending on the exact mix of characters.
In the UTF-8 encoding, characters with Unicode numbers above U+007F require multiple
bytes.

Various OS's have their own coding schemes. Mac OS X files are often encoded in Mac
Roman or Latin-1. Windows files might use CP1252 encoding.

Numbers, Strings, and Tuples

[51]

The point with all of these schemes is to have a sequence of bytes that can be mapped to a
Unicode character. And—going the other way—a way to map each Unicode character to
one or more bytes. Ideally, all of the Unicode characters are accounted for. Pragmatically,
some of these coding schemes are incomplete. The tricky part is to avoid writing any more
bytes than is necessary.

The historical ASCII encoding can only represent about 250 of the Unicode characters as
bytes. It's easy to create a string which cannot be encoded using the ASCII scheme.

Here's what the error looks like:

>>> 'You drew \U0001F000'.encode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character '\U0001f000' in
position 9: ordinal not in range(128)

We may see this kind of error when we accidentally open a file with a poorly chosen
encoding. When we see this, we'll need to change our processing to select a more useful
encoding; ideally, UTF-8.

Bytes vs Strings
Bytes are often displayed using printable characters.
We'll see b'hello' as a short-hand for a five-byte value. The letters are
chosen using the old ASCII encoding scheme. Many byte values from
about 0x20 to 0xFE will be shown as characters.
This can be confusing. The prefix of b' is our hint that we're looking at
bytes, not proper Unicode characters.

See also
There are a number of ways to build strings of data. See the Building complex
strings with “template”.format() and the Building complex strings from lists of
characters recipes for examples of creating complex strings. The idea is that we
might have an application that builds a complex string, and then we encode it
into bytes.
For more information on the UTF-8 encoding, see h t t p s ://e n . w i k i p e d i a . o r g /w

i k i /U T F - 8.
For general information on Unicode encodings, see
http://unicode.org/faq/utf_bom.html.

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

Numbers, Strings, and Tuples

[52]

Decoding bytes – how to get proper
characters from some bytes
How can we work with files that aren't properly encoded? What do we do with files written
in the ASCII encoding?

A download from the Internet is almost always in bytes—not characters. How do we
decode the characters from that stream of bytes?

Also, when we use the subprocess module, the results of an OS command are in bytes.
How can we recover proper characters?

Much of this is also relevant to the material in Chapter 9, Input/Output, Physical Format,
Logical Layout. We've included the recipe here because it's the inverse of the previous recipe,
Encoding strings – creating ASCII and UTF-8 bytes.

Getting ready
Let's say we're interested in offshore marine weather forecasts. Perhaps because we own a
large sailboat. Or perhaps because good friends of ours have a large sailboat and are
departing the Chesapeake Bay for the Caribbean.

Are there any special warnings coming from the National Weather Services office in
Wakefield, Virginia?

Here's where we can get the warnings: h t t p ://w w w . n w s . n o a a . g o v /v i e w /n a t i o n a l . p h p ?p r

o d =S M W &s i d =A K Q .

We can download this with Python's urllib module:

>>> import urllib.request
>>> warnings_uri=
'http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ'
>>> with urllib.request.urlopen(warnings_uri) as source:
... warnings_text= source.read()

Or, we can use programs like curl or wget to get this. We might do:

curl -O http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
mv national.php\?prod\=SMW AKQ.html

http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ
http://www.nws.noaa.gov/view/national.php?prod=SMW&sid=AKQ

Numbers, Strings, and Tuples

[53]

Since curl left us with an awkward file name, we needed to rename the file.

The forecast_text value is a stream of bytes. It's not a proper string. We can tell because
it starts like this:

>>> warnings_text[:80]
b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.or'

And goes on for a while providing details. Because it starts with b', it's bytes, not proper
Unicode characters. It was probably encoded with UTF-8, which means some characters
could have weird-looking \xnn escape sequences instead of proper characters. We want to
have the proper characters.

Bytes vs Strings
Bytes are often displayed using printable characters.
We'll see b'hello' as a short-hand for a five-byte value. The letters are
chosen using the old ASCII encoding scheme. Many byte values from
about 0x20 to 0xFE will be shown as characters.
This can be confusing. The prefix of b' is our hint that we're looking at
bytes, not proper Unicode characters.

Generally, bytes behave somewhat like strings. Sometimes we can work with bytes directly.
Most of the time, we'll want to decode the bytes and create proper Unicode characters.

How to do it..
.Determine the coding scheme if possible. In order to decode bytes to create1.
proper Unicode characters, we need to know what encoding scheme was used.
When we read XML documents, there's a big hint provided within the document:

 <?xml version="1.0" encoding="UTF-8"?>

When browsing web pages, there's often a header with this information:

 Content-Type: text/html; charset=ISO-8859-4

Sometimes an HTML page may include this as part of the header:

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Numbers, Strings, and Tuples

[54]

In other cases, we're left to guess. In the case of US Weather data, a good first
guess is UTF-8. Other good guesses include ISO-8859-1. In some cases, the guess
will depend on the language.

Section 7.2.3, Python Standard Library lists the standard encodings available.2.
Decode the data:

 >>> document = forecast_text.decode("UTF-8")
 >>> document[:80]
 '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.or'

The b' prefix is gone. We've created a proper string of Unicode characters from
the stream of bytes.

If this step fails with an exception, we guessed wrong about the encoding. We 3.
need to try another encoding. Parse the resulting document.

Since this is an HTML document, we should use Beautiful Soup. See h t t p ://w w w . c r u m m y .

c o m /s o f t w a r e /B e a u t i f u l S o u p /.

We can, however, extract one nugget of information from this document without
completely parsing the HTML:

>>> import re
>>> title_pattern = re.compile(r"\<h3\>(.*?)\</h3\>")
>>> title_pattern.search(document)
<_sre.SRE_Match object; span=(3438, 3489), match='<h3>There are no products
active at this time.</h>

This tells us what we need to know: there are no warnings at this time. That doesn't mean
smooth sailing, but it does mean that there aren't any major weather systems that can cause
catastrophes.

How it works…
See the Encoding strings – creating ASCII and UTF-8 bytes recipe for more information on
Unicode and the different ways that Unicode characters can be encoded into streams of
bytes.

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

Numbers, Strings, and Tuples

[55]

At the foundation of the operating system, files and network connections are built up from
bytes. It's our software that decodes the bytes to discover the content. It might be characters,
or images, or sounds. In some cases, the default assumptions are wrong and we need to do
our own decoding.

See also
Once we've recovered the string data, we have a number of ways of parsing or
rewriting it. See the String parsing with regular expressions recipe for examples of
parsing a complex string.
For more information on encodings, see h t t p s ://e n . w i k i p e d i a . o r g /w i k i /U T F -

8 and http://unicode.org/faq/utf_bom.html.

Using tuples of items
What's the best way to represent simple (x,y) and (r,g,b) groups of values? How can we keep
things which are pairs such as latitude and longitude together?

Getting ready
In the String parsing with regular expressions recipe, we skipped over an interesting data
structure.

We had data that looked like this:

>>> ingredient = "Kumquat: 2 cups"

We parsed this into the meaningful data using a regular expression like this:

>>> import re
>>> ingredient_pattern =
re.compile(r'(?P<ingredient>\w+):\s+(?P<amount>\d+)\s+(?P<unit>\w+)')
>>> match = ingredient_pattern.match(ingredient)
>>> match.groups()
('Kumquat', '2', 'cups')

The result is a tuple object with three pieces of data. There are lots of places where this kind
of grouped data come in handy.

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html

Numbers, Strings, and Tuples

[56]

How to do it…
We'll look at two aspects to this: putting things into tuples and getting things out of tuples.

Creating tuples
There are lots of places where Python creates tuples of data for us. In the Getting ready
section of the String Parsing with Regular Expressions recipe we showed how a regular
expression match object will create a tuple of text that was parsed from a string.

We can create our own tuples, too. Here are the steps:

Enclose the data in ().1.
Separate the items with a ,.2.

 >>> from fractions import Fraction
 >>> my_data = ('Rice', Fraction(1/4), 'cups')

There's an important special case for the one-tuple, or singleton. We have to include
an extra , even when there's only one item in the tuple.

>>> one_tuple = ('item',)
>>> len(one_tuple)
1

The () characters aren't always required. There are a few times where we
can omit them. It's not a good idea to omit them, but we can see funny
things when we have an extra comma:
>>> 355,
(355,)

The extra comma after 355 makes the value into a singleton tuple.

Extracting items from a tuple
The idea of a tuple is to be a container with a number of items that's fixed by the problem
domain: for example, (red, green, blue) color numbers. The number of items is always
three.

Numbers, Strings, and Tuples

[57]

In our example, we've got an ingredient, and amount, and units. This must be a three-item
collection. We can look at the individual items two ways:

By index position: Positions are numbered starting with zero from the left:

 >>> my_data[1]
 Fraction(1, 4)

Using multiple assignment:

 >>> ingredient, amount, unit = my_data
 >>> ingredient
 'Rice'
 >>> unit
 'cups'

Tuples—like strings—are immutable. We can't change the individual items inside a tuple.
We use tuples when we want to keep the data together.

How it works…
Tuples are one example of the more general class of Sequence. We can do a few things with
sequences.

Here's an example tuple that we can work with:

>>> t = ('Kumquat', '2', 'cups')

Here are some operations we can perform on this tuple:

How many items in t?

 >>> len(t)
 3

How many times does a particular value appear in t?

 >>> t.count('2')
 1

Numbers, Strings, and Tuples

[58]

Which position has a particular value?

 >>> t.index('cups')
 2
 >>> t[2]
 'cups'

When an item doesn't exist, we'll get an exception:

 >>> t.index('Rice')
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ValueError: tuple.index(x): x not in tuple

Does a particular value exist?

 >>> 'Rice' in t
 False

There's more
A tuple, like a string, is a sequence of items. In the case of a string, it's a sequence of
characters. In the case of a tuple, it's a sequence of many things. Because they're both
sequences, they have some common features. We've noted that we can pluck out individual
items by their index position. We can use the index() method to locate the position of an
item.

The similarities end there. A string has many methods to create a new string that's a
transformation of a string, plus methods to parse strings, plus methods to determine the
content of the strings. A tuple doesn't have any of these bonus features. It's—perhaps—the
simplest possible data structure.

See also…
We've looked at one other sequence, the list, in the Building complex strings from
lists of characters recipe
We'll also look at sequences in Chapter 4, Built-in Data Structures – list, tuple, set,
dict

2
Statements and Syntax

In this chapter we'll look at the following recipes:

Writing python script and module files
Writing long lines of code
Including descriptions and documentation
Better RST markup in docstrings
Designing complex if…elif chains
Designing a while statement which terminates
Avoiding a potential problem with break statements
Leveraging the exception matching rules
Avoiding a potential problem with an except: clause
Chaining exceptions with the raise from statement
Managing a context using the with statement

Introduction
Python syntax is designed to be very simple. There are a few rules; we'll look at some of the
interesting statements in the language as a way to understand those rules. Just looking at
the rules without concrete examples can be confusing.

We'll cover some basics of creating script files first. Then we'll move on to looking at some
of the more commonly-used statements. Python only has about twenty or so different kinds
of imperative statements in the language. We've already looked at two kinds of statements
in Chapter 1, Numbers, Strings, and Tuples: the assignment statement and the expression
statement.

Statements and Syntax

[60]

When we write something like this:

>>> print("hello world")
hello world

We're actually executing a statement that contains only the evaluation of a function,
print(). This kind of statement—where we evaluate a function or a method of an
object—is common.

The other kind of statement we've already seen is the assignment statement. Python has
many variations on this theme. Most of the time, we're assigning a single value to a single
variable. Sometimes, however, we might be assigning two variables at the same time, like
this:

quotient, remainder = divmod(355, 113)

These recipes will look at some of the more complex statements, including if, while, for,
try, with, and raise. We'll touch on a few others as we explore the different recipes.

Writing Python script and module files –
syntax basics
We'll need to write Python script files in order to do anything truly useful. We can
experiment with the language at the interaction >>> prompt. For real work, however, we'll
need to create files. The whole point of writing software is to create repeatable processing
for our data.

How can we avoid syntax errors and be sure our code matches what's in common use? We
need to look at some common aspects of style—how we use whitespace to clarify our
programming.

We'll also look at a number of more technical considerations. For example, we need to be
sure to save our files in the UTF-8 encoding. While ASCII encoding is still supported by
Python, it's a poor choice for modern programming. We'll also need to be sure to use spaces
instead of tabs. If we use Unix newlines as much as possible, we'll also find things are
slightly simpler.

Most text editing tools will work properly with Unix (newline) line endings as well as
Windows or DOS (return-newline) line endings. Any tool that can't work with both kinds of
line endings should be avoided.

Statements and Syntax

[61]

Getting ready
To edit Python scripts, we'll need a good programming text editor. Python comes with a
handy editor, IDLE. It works pretty well. It lets us jump back and forth between a file and
an interactive >>> prompt, but it's not a great programming editor.

There are dozens and dozens of good programming editors. It's nearly impossible to
suggest just one. So we'll suggest a few.

ActiveState has Komodo IDE, which is very sophisticated. The Komodo Edit version is free,
and does some of the same things as the full Komodo IDE. This runs on all common OS's;
it's a good first choice because it's consistent no matter where we're writing code.

See h t t p ://k o m o d o i d e . c o m /k o m o d o - e d i t /.

Notepad++ is good for Windows developers. See h t t p s ://n o t e p a d - p l u s - p l u s . o r g .

BBEdit is very nice for Mac OS X developers. See
http://www.barebones.com/products/bbedit/.

For Linux developers, there are several built-in editors, including VIM, gedit, or Kate. These
are all good. Since Linux tends to be biased toward developers, the editors available are all
suitable for writing Python.

What's important is that we'll often have two windows open while we're working:

The script or file that we're working on.
Python's >>> prompt (perhaps from a shell or perhaps from IDLE) where we can
try things out to see what works and what doesn't. We may be creating our script
in Notepad++, but using IDLE to experiment with data structures and algorithms.

We actually have two recipes here. First, we need to set some defaults for our editor. Then,
once the editor is set up properly, we can create a generic template for our script files.

How to do it…
First, we'll look at the general setup that we need to do in our editor of choice. We'll use
Komodo examples, but the basic principles apply to all editors. Once we've set the edit
preferences, we can create our script file.

Open the editor of choice. Look at the preferences page.1.

http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
http://www.barebones.com/products/bbedit/

Statements and Syntax

[62]

Find the settings for preferred file encoding. With Komodo Edit Preferences, it's2.
on the Internationalization tab. Set this to UTF-8.
Find the settings for indentation. If there's a way to use spaces instead of tabs,3.
check this option. With Komodo Edit, we actually do this backwards—we
uncheck prefer spaces over tabs.

The rule is this: we want spaces; we do not want tabs.

Also, set the spaces per indent to be four. That's typical for Python code. It allows us to have
several levels of indentation and still keep the code fairly narrow.

Once we're sure that our files will be saved in UTF-8 encoding, and we're also sure we're
using spaces instead of tabs, we can create an example script file:

The first line of most Python script files should look like this:1.

 #!/usr/bin/env python3

This sets an association between the file you're writing and Python.

For Windows, the file name to program association is done through a setting in
one of the Windows control panels. Within the Default Programs control panel,
there's a panel to Set Associations. This control panel shows that .py files are
bound to the Python program. This is normally set by the installer, and we rarely
need to change it or set it manually.

Windows developers can include the preamble line anyway. It will make
Mac OS X and Linux folks happy when they download the project from
GitHub.

After the preamble, there should be a triple-quoted block of text. This is the 2.
documentation string (called a docstring) for the file we're going to create. It's not
technically mandatory, but it's essential for explaining what a file contains.

 '''
 A summary of this script.
 '''

Statements and Syntax

[63]

Because Python triple-quoted strings can be indefinitely long, feel free to write as
much as necessary. This should be the primary vehicle for describing the script or
library module. This can even include examples of how it works.

Now comes the interesting part of the script: the part that really does something.3.
We can write all the statements we need to get the job done. For now, we'll use
this as a placeholder:

 print('hello world')

With this, our script does something. In other recipes we'll look at a number of
other statements for doing things. It's common to create function and class
definitions, as well as write statements to use the functions and classes to do
things.

At the top level of our scripts, all of the statements must begin at the left margin and must
be complete on a single line. There are some complex statements which will have blocks of
statements nested inside them. These internal blocks of statements must be indented.
Generally—because we set indentation to four spaces—we can hit the Tab key to indent.

Our file should look like this:

 #!/usr/bin/env python3
 '''
 My First Script: Calculate an important value.
 '''

 print(355/113)

How it works…
Unlike other languages, there's very little boilerplate in Python. There's only one line of
overhead and even the #!/usr/bin/env python3 line is generally optional.

Why do we set the encoding to UTF-8? The entire language is designed to work using just
the original 128 ASCII characters.

We often find that ASCII is limiting. It's easier to set our editor to use UTF-8 encoding. With
this setting, we can simply use any character that makes sense. We can use characters like µ
as Python variables if we save our programs in UTF-8 encoding.

Statements and Syntax

[64]

This is legal Python if we save our file in UTF-8:

 π=355/113
 print(π)

It's important to be consistent when choosing between spaces and tabs in
Python. They are both more or less invisible, and mixing them can easily
lead to confusion. Spaces are suggested.

When we set up our editor to use a four-space indent, we can then use the button labeled
Tab on our keyboard to insert four spaces. Our code will align properly, and the indentation
will show how our statements nest inside each other.

The initial #! line is a comment: everything between a # and the end of the line is ignored.
OS shell programs like bash and ksh look at the first line of a file to see what the file
contains. The first few bytes are sometimes called magic because the shell is peeking at
them. Shell programs look for the two-character sequence of #! to identify the program
responsible for this data. We prefer to use /usr/bin/env to start the Python program for
us. We can leverage this to make Python-specific environment settings via the env program.

There's more…
The Python Standard Library documents are derived, in part, from the documentation strings
present in the module files. It's common practice to write sophisticated docstrings in
modules. There are tools like Pydoc and Sphinx that can reformat the module docstrings
into elegant documentation. We'll look at this in separate recipes.

Additionally, unit test cases can be included in the docstrings. Tools like doctest can extract
examples from the document string and execute the code to see if the answers in the
documentation match the answers found by running the code. Most of this book is
validated with doctest.

The triple-quoted documentation strings are preferred over the # comments. The text
between # and the end of the line is ignored, and counts as a comment. Since this is limited
to a single line, it is used sparingly. A docstring can be of indefinite size; they are used
widely.

In Python 3.5, we'll sometimes see this kind of thing in a script file:

 color = 355/113 # type: float

Statements and Syntax

[65]

The # type: float comment can be used by a type inferencing system to establish that
the various data types can occur when the program is actually executed. For more
information on this, see Python Enhancement Proposal 484: h t t p s ://w w w . p y t h o n . o r g /d e v

/p e p s /p e p - 0484/.

There's another bit of overhead that's sometimes included in a file. The VIM editor lets us
keep edit preferences in the file. This is called a modeline. We often have to enable
modelines by including the set modeline setting in our ~/.vimrc file.

Once we've enabled modelines, we can include a special # vim comment at the end of our
file to configure VIM.

Here's a typical modeline that's useful for Python:

 # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4

This sets the Unicode u+0009 TAB characters to be transformed to eight spaces when we hit
the Tab key, we'll shift four spaces. This setting is carried in the file; we don't have to do any
VIM setup to apply these settings to our Python script files.

See also
We'll look at how to write useful document strings in the Including descriptions
and documentation and the Writing better RST markup in docstrings recipes
For more information in suggested style, see h t t p s ://w w w . p y t h o n . o r g /d e v /p e p
s /p e p - 0008/

Writing long lines of code
There are many times when we need to write lines of code that are so long that they're very
hard to read. Many people like to limit the length of a line of code to 80 characters or fewer.
It's a well-known principle of graphic design that a narrower line is easier to read; opinions
vary, but 65 characters is often cited as ideal. See h t t p ://w e b t y p o g r a p h y . n e t /2. 1. 2.

While shorter lines are easier on the eyes, our code can refuse to cooperate with this
principle. Long statements are a common problem. How can we break long Python
statements into more manageable pieces?

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2

Statements and Syntax

[66]

Getting ready
Often, we'll have a statement that's awkwardly long and hard to work with. Let's say we've
got something like this:

>>> import math
>>> example_value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))
>>> mantissa_fraction, exponent = math.frexp(example_value)
>>> mantissa_whole = int(mantissa_fraction*2**53)
>>> message_text = 'the internal representation is
{mantissa:d}/2**53*2**{exponent:d}'.format(mantissa=mantissa_whole,
exponent=exponent)
>>> print(message_text)
the internal representation is 7074237752514592/2**53*2**2

This code includes a long formula, and a long format string into which we're injecting
values. This looks bad when typeset in a book. It looks bad on our screen when trying to
edit this script.

We can't simply break Python statements into chunks. The syntax rules are clear that a
statement must be complete on a single logical line.

The term logical line is a hint as to how we can proceed. Python makes a distinction
between logical lines and physical lines; we'll leverage these syntax rules to break up long
statements.

How to do it…
Python gives us several ways to wrap long statements so they're more readable.

We can use \ at the end of a line to continue onto the next line.
We can leverage Python's rule that a statement can span multiple logical lines
because the (), the [], and the {} characters must balance. In addition to using
() and \, we can also exploit the way Python automatically concatenates adjacent
string literals to make a single, longer literal; ("a" "b") is the same as ab.
In some cases, we can decompose a statement by assigning intermediate results
to separate variables.

We'll look at each one of these in separate parts of this recipe.

Statements and Syntax

[67]

Using backslash to break a long statement into logical
lines
Here's the context for this technique:

>>> import math
>>> example_value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))
>>> mantissa_fraction, exponent = math.frexp(example_value)
>>> mantissa_whole = int(mantissa_fraction*2**53)

Python allows us to use \ and break the line.

Write the whole statement on one long line, even if it's confusing:1.

 >>> message_text = 'the internal representation is
{mantissa:d}/2**53*2**{exponent:d}'.format(mantissa=mantissa_whole,
exponent=exponent)

If there's a logical break, insert the \ there. Sometimes, there's no really good2.
break:

 >>> message_text = 'the internal representation is \
 ... {mantissa:d}/2**53*2**{exponent:d}'.\
 ... format(mantissa=mantissa_whole, exponent=exponent)
 >>> message_text
 'the internal representation is 7074237752514592/2**53*2**2'

For this to work, the \ must be the last character on the line. We can't even have a single
space after the \. This is fairly hard to see; for this reason, we don't encourage it.

In spite of this being a little hard to see, the \ can always be used. Think of it as the last
resort in making a line of code more readable.

Using the () characters to break a long statement into
sensible pieces

Write the whole statement on one line, even if it's confusing:1.

 >>> import math
 >>> example_value1 = (63/25) * (17+15*math.sqrt(5)) /
(7+15*math.sqrt(5))

Statements and Syntax

[68]

Add the extra () characters that don't change the value, but allow breaking the2.
expression into multiple lines:

 >>> example_value2 = (63/25) * ((17+15*math.sqrt(5)) /
(7+15*math.sqrt(5)))
 >>> example_value2 == example_value1
 True

Break the line inside the () characters:3.

 >>> example_value3 = (63/25) * (
 ... (17+15*math.sqrt(5))
 ... / (7+15*math.sqrt(5))
 ...)
 >>> example_value3 == example_value1
 True

The matching () character's technique is quite powerful and will work in a wide variety of
cases. This is widely used and highly recommended.

We can almost always find a way to add extra () characters to a statement. In the rare cases
when we can't add () characters, or adding () characters doesn't improve things, we can
fall back on using \ to break the statement into sections.

Using string literal concatenation
We can combine the () characters with another rule that combines string literals. This is
particularly effective for long, complex format strings:

Wrap a long string value in the () characters.1.
Break the string into substrings:2.

 >>> message_text = (
 ... 'the internal representation '
 ... 'is {mantissa:d}/2**53*2**{exponent:d}'
 ...).format(
 ... mantissa=mantissa_whole, exponent=exponent)
 >>> message_text
 'the internal representation is 7074237752514592/2**53*2**2'

Statements and Syntax

[69]

We can always break a long string into adjacent pieces. Generally, this is most effective
when the pieces are surrounded by () characters. We can then use as many physical line
breaks as we need. This is limited to those situations where we have particularly long string
values.

Assigning intermediate results to separate variables
Here's the context for this technique:

>>> import math
>>> example_value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))

We can break this into three intermediate values.

Identify sub-expressions in the overall expression. Assign these to variables:1.

 >>> a = (63/25)
 >>> b = (17+15*math.sqrt(5))
 >>> c = (7+15*math.sqrt(5))

This is generally quite simple. It may require a little care to do the algebra to
locate sensible sub-expressions.

Replace the sub-expressions with the variables which were created:2.

 >>> example_value = a * b / c

This is an essential textual replacement of the original complex sub-expression with a
variable.

We didn't give these variables descriptive names. In some cases, the sub-expressions have
some semantics that we can capture with meaningful names. In this case, we didn't
understand the expression well enough to provide deeply meaningful names. Instead, we
chose short, arbitrary identifiers.

How it works…
The Python Language Manual makes a distinction between logical lines and physical lines.
A logical line contains a complete statement. It can span multiple physical lines through
techniques called line joining. The manual calls the techniques explicit line joining and
implicit line joining.

Statements and Syntax

[70]

The use of \ for explicit line joining is sometimes helpful. Because it's easy to overlook, it's
not generally encouraged. It is the method of last resort.

The use of () for implicit line joining can be used in many cases. It often fits semantically
with the structure of the expressions, so it is encouraged. We may have the () characters as
a required syntax. For example, we already have () characters as part of the syntax for the
print() function. We might do this to break up a long statement:

>>> print(
... 'several values including',
... 'mantissa =', mantissa,
... 'exponent =', exponent
...)

There's more…
Expressions are used widely in a number of Python statements. Any expression can have ()
characters added. This gives us a lot of flexibility.

There are, however, a few places where we may have a long statement that does not
specifically involve an expression. The most notable example of this is the import
statement—it can become long, but doesn't use any expressions that can be parenthesized.

The language designers, however, allow us to use () characters so that a long list of names
can be broken up into multiple logical lines:

>>> from math import (sin, cos, tan,
... sqrt, log, frexp)

In this case, the () characters are emphatically not part of an expression. The () characters
are just extra syntax, included to make the statement consistent with other statements.

See also
Implicit line joining also applies to the matching [] characters and {} characters.
These apply to collection data structures that we'll look at in Chapter 4, Built-in
Data Structures – list, set, dict.

Statements and Syntax

[71]

Including descriptions and documentation
When we have a useful script, we often need to leave notes for ourselves—and others—on
what it does, how it solves some particular problem, and when it should be used.

Because clarity is important, there are some formatting recipes that can help make the
documentation very clear. This recipe also contains a suggested outline so that the
documentation will be reasonably complete.

Getting ready
If we've used the Writing python script and module files – syntax basics recipe to build a script
file, we'll have put a small documentation string in our script file. We'll expand on this
documentation string.

There are other places where documentation strings should be used. We'll look that these
additional locations in Chapter 3, Function Definitions, and Chapter 6, Basics of Classes and
Objects.

We have two general kinds of modules for which we'll be writing summary docstrings:

Library Modules: These files will contain mostly function definitions as well as
class definitions. In this case, the docstring summary can focus on what the
module is more than what it does. The docstring can provide examples of using
the functions and classes that are defined in the module. In Chapter 3, Function
Definitions, and Chapter 6, Basics of Classes and Objects, we'll look more closely at
this idea of a package of functions or classes.
Scripts: These are files that we generally expect will do some real work. In this
case, we want to focus on doing rather than being. The docstring should describe
what it does and how to use it. The options, environment variables, and
configuration files are important parts of this docstring.

We will sometimes create files that contain a little of both. This requires some careful
editing to strike a proper balance between doing and being. In most cases, we'll simply
provide both kinds of documentation.

Statements and Syntax

[72]

How to do it…
The first step in writing documentation is the same for both library modules and scripts:

Write a brief summary of what the script or module is or does. The summary1.
doesn't dig too deeply into how it works. Like a lede in a newspaper article, it
introduces the who, what, when, where, how, and why of the module. Details
will follow in the body of the docstring.

The way the information is displayed by tools like sphinx and pydoc suggests a specific
style hint. In the output from these tools, the context is pretty clear, therefore it's common to
omit a subject in the summary sentence. The sentence often begins with the verb.

For example, a summary like this: This script downloads and decodes the current Special Marine
Warning (SMW) for the area AKQ has a needless This script. We can drop that and begin with
the verb phrase Downloads and decodes….

We might start our module docstring like this:

 '''
 Downloads and decodes the current Special Marine Warning (SMW)
 for the area 'AKQ'.
 '''

We'll separate the other steps based on the general focus of the module.

Writing docstrings for scripts
When we document a script, we need to focus on the needs of a person who will use the
script.

Start as shown earlier, creating a summary sentence.1.
Sketch an outline for the rest of the docstring. We'll be using ReStructuredText2.
(RST) markup. Write the topic on one line, then put a line of = under the topic to
make them a proper section title. Remember to leave a blank line between each
topic.

Statements and Syntax

[73]

Topics may include:

SYNOPSIS: A summary of how to run this script. If the script uses the
argparse module to process command-line arguments, the help text
produced by argparse is the ideal summary text.
DESCRIPTION: A more complete explanation of what this script does.
OPTIONS: If argparse is used, this is a place to put the details of each
argument. Often we'll repeat the argparse help parameter.
ENVIRONMENT:If os.environ is used, this is the place to describe
the environment variables and what they mean.
FILES: Names of files that are created or read by a script are very
important pieces of information.
EXAMPLES: Some examples of using the script are always helpful.
SEE ALSO: Any related scripts or background information.

Other topics that might be interesting include EXIT STATUS, AUTHOR, BUGS,
REPORTING BUGS, HISTORY, or COPYRIGHT. In some cases, advice on
reporting bugs, for instance, doesn't really belong in a module's docstring, but
belongs elsewhere in the project's GitHub or SourceForge pages.

Fill in the details under each topic. It's important to be accurate. Since we're3.
embedding this documentation within the same file as the code, it's easy to check
elsewhere in the module to be sure that the content is correct and complete.
For code samples, there's a cool bit of RST markup we can use. Recall that all4.
elements are separated by blank lines. In one paragraph, use :: by itself. In the
next paragraph, provide the code example indented by four spaces.

Here's an example of a docstring for a script:

 '''
 Downloads and decodes the current Special Marine Warning (SMW)
 for the area 'AKQ'

 SYNOPSIS
 ========

 ::

 python3 akq_weather.py

 DESCRIPTION
 ===========

Statements and Syntax

[74]

 Downloads the Special Marine Warnings

 Files
 =====

 Writes a file, ``AKW.html``.

 EXAMPLES
 ========

 Here's an example::

 slott$ python3 akq_weather.py
 <h3>There are no products active at this time.</h3>
 '''

In the Synopsis section, we used :: as a separate paragraph. In the Examples section, we
used :: at the end of a paragraph. Both versions are hints to the RST processing tools that
the indented section that follows should be typeset as code.

Writing docstrings for library modules
When we document a library module, we need to focus on the needs of a programmer who
will import the module to use it in their code.

Sketch an outline for the rest of the docstring. We'll be using RST markup. Write1.
the topic on one line. Include a line of = under each topic to make the topic into a
proper heading. Remember to leave a blank line between each paragraph.
Start as shown previously, creating a summary sentence.2.

DESCRIPTION: A summary of what the modules contains and why
the module is useful.
MODULE CONTENTS: The classes and functions defined in this
module.
EXAMPLES: Examples of using the module.

Fill in the details for each topic. The module contents may be a long list of class or3.
function definitions. This should be a summary. Within each class or function,
we'll have a separate docstring with the details for that item.
For code examples, see the previous examples. Use :: as a paragraph or the4.
ending of a paragraph. Indent the code example by four spaces.

Statements and Syntax

[75]

How it works…
Over the decades the man page outline has evolved to contain a useful summary of Linux
commands. This general approach to writing documentation has proven useful and
resilient. We can capitalize on this large body of experience, and structure our
documentation to follow the man page model.

These two recipes for describing software are based on summaries of many individual
pages of documentation. The goal is to leverage the well-known set of topics. This makes
our module documentation mirror the common practice.

We want to prepare module docstrings that can be used by the Sphinx Python
Documentation Generator (see h t t p ://w w w . s p h i n x - d o c . o r g /e n /s t a b l e /). This is the tool
used to produce Python's documentation files. The autodoc extension in Sphinx will read
the docstring headers on our modules, classes, and functions, to produce the final
documentation that looks like other modules in the Python ecosystem.

There's more…
RST has a simple syntax rule that paragraphs are separated by blank lines.

This rule makes it easy to write documents that can be examined by the various RST
processing tools and reformatted to look extremely nice.

When we want to include a block of code, we'll have some special paragraphs:

Separate the code from the text by blank lines.
Indent the code by four spaces.
Provide a prefix of ::. We can either do this as its own separate paragraph, or as
a special double-colon at the end of the lead-in paragraph:

 Here's an example::

 more_code()

The :: is used on the lead-in paragraph.

There are places for novelty and art in software development. Documentation is not really
the place to push the envelope. Clever algorithms and sophisticated data structures can be
novel and clever.

http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/

Statements and Syntax

[76]

A unique voice, or quirky presentation isn't fun for users who simply want
to use the software. An amusing style isn't helpful when debugging.
Documentation should be commonplace and conventional.

It can be challenging to write good software documentation. There's a broad chasm between
too little information and documentation which simply recapitulates the code. Somewhere,
there's a good balance. What's important is to focus on the needs of a person who doesn't
know too much about the software or how it works. Provide this semi-knowledgeable user the
information they need to describe what the software does and how to use it.

In many cases, we need to address two parts of the use cases:

The intended use of the software
How to customize or extend the software

These may be two distinct audiences. There may be users who are distinct from developers.
Each has a distinct perspective, and different parts of the documentation need to respect
these two perspectives.

See also
We look at additional techniques in Writing better RST markup in docstrings.
If we've used the Writing python script and module files – syntax basics recipe, we'll
have put a documentation string in our script file. When we build functions in
Chapter 3, Function Definitions, and classes in Chapter 6, Basics of Classes and
Objects, we'll look at other places where documentation strings can be placed.
See http://www.sphinx-doc.org/en/stable/ for more information on Sphinx.
For more background on the man page outline, see h t t p s ://e n . w i k i p e d i a . o r g

/w i k i /M a n _ p a g e .

Writing better RST markup in docstrings
When we have a useful script, we often need to leave notes on what it does, how it works,
and when it should be used. Many tools for producing documentation, including Docutils,
work with RST markup. What RST features can we use to make documentation more
readable?

http://www.sphinx-doc.org/en/stable/
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page

Statements and Syntax

[77]

Getting ready
In the Including descriptions and documentation recipe, we looked at putting a basic set of
documentation into a module. This is the starting point for writing our documentation.
There are a large number of RST formatting rules. We'll look at a few which are important
for creating readable documentation.

How to do it…
Be sure to write an outline of the key points. This may lead to creating RST1.
section titles to organize the material. A section title is a two-line paragraph with
the title followed by an underline using =, -, ^, ~, or one of the other Docutils
characters for underlining.

A heading will look like this.

 Topic
 =====

The heading text is on one line, the underlining characters are on the next line.
This must be surrounded by blank lines. There can be more underline characters
than title characters, but not fewer.

The RST tools will deduce our pattern of using underlining characters. As long as
the underline characters are used consistently, the algorithm for matching
underline character to desired heading will detect the pattern. The keys to this are
consistency and a clear understanding of section and subsection.

When starting out, it can help to make an explicit reminder sticky note like this:

Character Level

= 1

– 2

^ 3

~ 4

Statements and Syntax

[78]

Fill in the various paragraphs. Separate paragraphs (including the section titles)2.
by blank lines. Extra blank lines don't hurt. Omitting blank lines will lead the RST
parsers to see a single, long paragraph, which may not be what we intended.

We can use inline markup for emphasis, strong emphasis, code, hyperlinks, and
inline math, among other things. If we're planning on using Sphinx, then we have
an even larger collection of text roles that we can use. We'll look at these
techniques soon.

If the programming editor has a spell checker, use that. This can be frustrating3.
because we'll often have code samples that may include abbreviations that fail
spell checking.

How it works…
The docutils conversion programs will examine the document, looking for sections and
body elements. A section is identified by a title. The underlines are used to organize the
sections into a properly nested hierarchy. The algorithm for deducing this is relatively
simple and has these rules:

If the underline character has been seen before, the level is known
If the underline character has not been seen before, then it must be indented one
level below the previous outline level
If there is no previous level, this is level one

A properly nested document might have the following sequence of underline characters:

 ====

 ^^^^^^
 ^^^^^^

 ^^^^^^
    ~~~~~~~~
    ^^^^^^

We can see that the first outline character, =, will be level one. The next, -, is unknown, but
appears after a level one, so it must be level two. The third headline has, ^, which is
previously unknown, and must be level three. The next ^ is still level three. The next two, -
and ^, are level two and three respectively.



Statements and Syntax

[ 79 ]

When we encounter the new character, ~, it's beneath a level three and must, therefore, be a
level four heading.

From this overview, we can see that inconsistency will lead to confusion.

If we change our mind part-way through a document, this algorithm can't detect that.
If—for inexplicable reasons—we decide to skip over a level and try to have a level four
heading inside a level two section, that simply can't be done.

There are several different kinds of body element that the RST parser can recognize. We've
shown a few. The more complete list includes:

Paragraphs of text: These might use inline markup for different kinds of
emphasis or highlighting.
Literal blocks: These are introduced with :: and indented for spaces. They may
also be introduced with the .. parsed-literal:: directive. A doctest block is
indented four spaces and includes the Python >>> prompt.
Lists, tables and block quotes: We'll look at these later. These can contain other 
body elements.
Footnotes: These are special paragraphs that can be put on the bottom of a page
or at the end of a section. These can also contain other body elements.
Hyperlink targets, substitution definitions, and RST comments: These are 
specialized text items.

There's more…
For completeness, we'll note here that RST paragraphs are separated by blank lines. There's
quite a bit more to RST than this core rule.

In the Including descriptions and documentation recipe we looked at several different kinds of
body elements we might use:

Paragraphs of Text: This is a block of text surrounded by blank lines. Within
these, we can make use of inline markup to emphasize words, or to use a font to
show that we're referring to elements of our code. We'll look at inline markup in
the Using Inline Markup recipe.



Statements and Syntax

[ 80 ]

Lists: These are paragraphs that begin with something that looks like a number
or a bullet. For bullets, use a simple - or *. Other characters can be used, but
these are common. We might have paragraphs like this.

 It helps to have bullets because:

They can help clarify
They can help organize

Numbered Lists: There are a variety of patterns that are recognized. We might
use something like this.

 Four common kinds of numbered paragraphs:

Numbers followed by punctuation like . or ).
A letter followed by punctuation like . or ).
A roman numeral followed by punctuation.
A special case of # with the same punctuation used on the previous
items. This continues the numbering from the previous paragraphs.  

Literal Blocks: A code sample must be presented literally. The text for this must
be indented. We also need to prefix the code with ::. The :: character must
either be a separate paragraph or the end of a lead-in to the code example.
Directives: A directive is a paragraph that generally looks like .. directive::.
It may have some content that's indented so that it's contained within the
directive. It might look like this:

         ..  important::

            Do not flip the bozo bit.

The .. important:: paragraph is the directive. This is followed by a short
paragraph of text indented within the directive. In this case, it creates a separate
paragraph that includes the admonition of important.



Statements and Syntax

[ 81 ]

Using directives
Docutils has many built-in directives. Sphinx adds a large number of directives with a
variety of features.

Some of the most commonly used directives are the admonition directives: attention, caution,
danger, error, hint, important, note, tip, warning, and the generic admonition. These are
compound body elements because they can have multiple paragraphs and nested directives
within them.

We might have things like this to provide appropriate emphasis:

    ..  note:: Note Title

        We need to indent the content of an admonition.
        This will set the text off from other material.

One of the other common directives is the parsed-literal directive.

    ..  parsed-literal::

        any text
            *almost* any format
        the text is preserved
            but **inline** markup can be used.

This can be handy for providing examples of code where some portion of the code is
highlighted. A literal like this is a simple body element, which can only have text inside. It
can't have lists or other nested structures.

Using inline markup
Within a paragraph, we have several inline markup techniques we can use:

We can surround a word or phrase with * for *emphasis*.
We can surround a word or phrase with ** for **strong**.
We surround references with single back-tick (`). Links are followed by a _. We
might use `section title`_ to refer to a specific section within a document.
We don't generally need to put anything around URL's. The Docutils tools
recognize these. Sometimes we want a word or phrase to be shown and the URL
concealed. We can use this: `the Sphinx documentation
<http://www.sphinx-doc.org/en/stable/>`_.



Statements and Syntax

[ 82 ]

We can surround code-related words with double back-tick (``) to make them
look like ``code``.

There's also a more general technique called a text role. A role is a little more complex-
looking than simply wrapping a word or phrase in the * characters. We use :word: as the
role name followed by the applicable word or phrase in single ` back-ticks. A text role looks
like this :strong:`this`.

There are a number of standard role names including :emphasis:, :literal:, :code:,
:math:, :pep-reference:, :rfc-reference:, :strong:, :subscript:,
:superscript:, and :title-reference:. Some of these are also available with simpler
markup like *emphasis* or **strong**. The rest are only available as explicit roles.

Also, we can define new roles with a simple directive. If we want to do very sophisticated
processing, we can provide docutils with class definitions for handling roles, allowing us to
tweak the way our document is processed. Sphinx adds a large number of roles to support
detailed cross references among functions, methods, exceptions, classes, and modules.

See also
For more information on RST syntax, see http://docutils.sourceforge.net.
This includes a description of the docutils tools.
For information on Sphinx Python Documentation Generator, see
http://www.sphinx-doc.org/en/stable/.
The Sphinx tool adds many additional directives and text roles to the basic
definitions.

Designing complex if…elif chains
In most cases, our scripts will involve a number of choices. Sometimes the choices are
simple, and we can judge the quality of the design with a glance at the code. In other cases,
the choices are more complex, and it's not easy to determine whether or not our if
statements are designed properly to handle all of the conditions.

In the simplest case, we have one condition, C, and its inverse, C . These are the two
conditions for an if...else statement. One condition, ¬C, is stated in the if clause, the
other is implied in the else.

http://docutils.sourceforge.net
http://www.sphinx-doc.org/en/stable/


Statements and Syntax

[ 83 ]

We'll use p ∨ q to mean Python's OR operator in this explanation. We can call these two
conditions complete because:

C ∨ C = ¬T

We call this complete because no other conditions can exist. There's no third choice. This is
the Law of the Excluded Middle. It's also the operating principle behind the else clause.
The if statement body is executed or the else statement is executed. There's no third
choice.

In practical programming, we often have complex choices. We may have a set of conditions,
C = {C1, C2, C3, …, Cn}.

We don't want to simply assume that:

C1 ∨ C2 ∨ C3 ∨ … ∨ Cn = T

We can use  to have a meaning similar to any(C), or perhaps any([C_1, C_2,

C_3, ..., C_n]). We need to prove that ; we can't assume this is true.

Here's what might go wrong—we might miss some condition, Cn+1, that got lost in the tangle
of logic. Missing this will mean that our program will fail to work properly for this case.

How can we be sure we haven't missed something?

Getting ready
Let's look at a concrete example of an if...elif chain. In the casino game of Craps, there
are a number of rules that apply to a roll of two dice. These rules apply on the first roll of
the game, called the come out roll:

2, 3, or 12, is Craps, which is a loss for all bets placed on the pass line
7 or 11 is a winner for all bets placed on the pass line
The remaining numbers establish a point

Many players place their bets on the pass line. There's also a don't pass line, which is less
commonly used. We'll use this set of three conditions as an example for looking at this
recipe because it has a potentially vague clause in it.



Statements and Syntax

[ 84 ]

How to do it…
When we write an if statement, even when it appears trivial, we need to be sure that all
conditions are covered.

Enumerate the alternatives we know. In our example, we have three rules: (2, 3,1.
12), (7, 11), and the vague remaining numbers.
Determine the universe of all possible conditions. For this example, there are 102.
conditions: the numbers from 2 to 12.
Compare the known alternatives with the universe. There are three possible3.
outcomes of this comparison between the set of conditions, C, and the universe of
all possible conditions, U:

The known alternatives have more conditions than the universe; C ⊃ U. This is a huge
design problem. This requires rethinking the design from the foundations.

There's a gap between the known conditions and the universe of possible conditions; U \ C
≠ ∅. In some cases, it's clear that we haven't covered all of the possible conditions. In other
cases, it takes some careful reasoning. We'll need to replace any vague or poorly defined
terms with something much more precise.

In this example, we have a vague term, which we can replace with something more specific.
The term remaining numbers appears to be the list of values (4, 5, 6, 8, 9, 10). Supplying
this list removes any possible gaps and doubts.

The known alternatives match the universe of possible alternatives; U ≡ C. There are two
common cases:

We have something as simple as C ∨ ¬C. We can use a single if and else
clause—we do not need to use this recipe because we can easily deduce ¬C.
We might have something more complex. Since we know the entire universe, we

can show that . We need to use this recipe to write a chain of if and
elif statements, one clause per condition.



Statements and Syntax

[ 85 ]

The distinction is not always crisp. In our example, we don't have a detailed specification
for one of the conditions, but the condition is mostly clear. If we think the missing condition
is obvious, we can use an else clause instead of writing it out explicitly. If we think the
missing condition might be misunderstood, we should treat it as vague and use this recipe.

Write the if...elif...elif chain that covers all of the known conditions. For1.
our example, it will look like this:

        dice = die_1 + die_2
        if dice in (2, 3, 12):
            game.craps()
        elif dice in (7, 11):
            game.winner()
        elif dice in (4, 5, 6, 8, 9, 10):
            game.point(die)

Add an else clause that raises an exception, like this:2.

        else:
            raise Exception('Design Problem Here: not all conditions
accounted for')

This extra else crash condition gives us a way to positively identify when a logic problem
is found. We can be sure that any error we make will lead to a conspicuous problem.

How it works…
Our goal is to be sure that our program always works. While testing helps, we can still have
wrong assumptions in both design and test cases.

While rigorous logic is essential, we can still make errors. Further, someone else could try to
tweak our code and introduce an error. More embarrassingly, we could make a change in
our own code that leads to breakage.

The else crash option forces us to be explicit for each and every condition. Nothing is
assumed. As we noted previously, any error in our logic will be uncovered when an
exception gets raised.

The else crash option doesn't have a significant performance impact. A simple else clause
is slightly faster than an elif clause with a condition. If we think that our application
performance depends in any way on the cost of a single expression, we've got more serious
design problems to solve. The cost of evaluating a single expression is rarely the costliest
part of an algorithm.



Statements and Syntax

[ 86 ]

Crashing with an exception is a sensible behavior in the presence of a design problem. It
doesn't make much sense to follow the design pattern of writing a warning message to a
log. If we have this kind of logic gap, the program is fatally broken and it's important to
find and fix this as soon as it's known.

There's more…
In many cases, we can derive an if...elif...elif chain from an examination of the
desired post-condition at some point in the program's processing. For example, we may
need a statement that establishes something simple like m the larger of a or b.

(For the sake of working through the logic, we'll avoid m = max(a, b).)

We can formalize the final condition like this:

(m = a ∨ m = b) ∧ m > a ∧ m > b

We can work backwards from this final condition, by writing the goal as an assert
statement:

    # do something
    assert (m = a or m = b) and m > a and m > b

Once we have the goal stated, we can identify statements that lead to that goal. Clearly
assignment statements like m = a and m = b will be appropriate, but only under certain
conditions.

Each of these statements is part of the solution, and we can derive a precondition that
shows when the statement should be used. The preconditions for each assignment
statement are the if and elif expressions. We need to use m = a when a >= b; we need
to use m=b when b >= a. Rearranging logic into code gives us this:

    if a >= b:
        m = a
    elif b >= a:
        m = b
    else:     raise Exception( 'Design Problem')
    assert (m = a or m = b) and m > a and m > b



Statements and Syntax

[ 87 ]

Note that our universe of conditions,  U = {a ≥ b, b ≥ a}, is complete; there's no other possible
relationship. Also notice that in the edge case of a = b, we don't actually care which
assignment statement we use. Python will process the decisions in order, and will execute m
= a. The fact that this choice is consistent shouldn't have any impact on our design of
if...elif...elif chains. We should always write the conditions without regard to order
of evaluation of the clauses.

See also
This is similar to the syntactic problem of a dangling else. See
https://en.wikipedia.org/wiki/Dangling_else.
Python's indentation removes the dangling else syntax problem. It doesn't
remove the semantic issue of trying to be sure that all conditions are properly
accounted for in a complex if...elif...elif chain.
Also, see h t t p s ://e n . w i k i p e d i a . o r g /w i k i /P r e d i c a t e _ t r a n s f o r m e r _ s e m a n t i c

s .

Designing a while statement which
terminates properly
Much of the time, the Python for statement provides all of the iteration controls we need.
In many cases, we can use built-in functions like map(), filter(), and reduce() to
process collections of data.

There are a few situations, however, where we need to use a while statement. Some of
those situations involve data structures where we can't create a proper iterator to step
through the items. Other items involve interactions with human users, where we don't have
the data until we get input from the person.

Getting ready
Let's say that we're going to be prompting a user for their password. We'll use the getpass
module so that there's no echo.

https://en.wikipedia.org/wiki/Dangling_else
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics


Statements and Syntax

[ 88 ]

Further, to be sure they've entered it properly, we'll want to prompt them twice and
compare the results. This is a situation where a simple for statement isn't going to work out
well. It can be pressed into service, but the resulting code looks strange: for statements
have an explicit upper bound; prompting a user for input doesn't really have an upper
bound.

How to do it…
We'll look at a six-step process that outlines the core of designing this kind of iterative
algorithm. This is the kind of thing we need to do when a simple for statement doesn't
solve our problem.

Define done. In our case, we'll have two copies of the password, password_text1.
and confirming_password_text. The condition which must be true after the
loop is that password_text == confirming_password_text. Ideally, reading
from people (or files) is a bounded activity. Eventually, people will enter the
matching pair of values. Until they enter the matching pair, we'll iterate
indefinitely.

There are other boundary conditions. For example, end of file. Or we allow the
person to go back to a previous prompt. Generally, we handle these other
conditions with exceptions in Python.

Of course, we can always add these additional conditions to our definition of
done. We may need to have a complex terminating condition like end of file OR
password_text == confirming_password_text.

In this example, we'll opt for exception handling and assume that a try: block
will be used. It greatly simplifies the design to have only a single clause in the
terminating condition.

We can rough out the loop like this:

        # initialize something
        while # not terminated:
            # do something
        assert password_text == confirming_password_text

We've written our definition of done as a final assert statement. We've included
comments for the rest of the iteration that we'll fill in in subsequent steps.



Statements and Syntax

[ 89 ]

Define a condition that's true while the loop is iterating. This is called an2.
invariant because it's always true at the start and end of loop processing. It's
often created by generalizing the post-condition or introducing another variable.

When reading from people (or files) we have an implied state change that is an
important part of the invariant. We can call this the get the next input change in
state. We often have to articulate clearly that our loop will be acquiring some next
value from an input stream.

We have to be sure that our loop properly gets the next item in spite of any
complex logic in the body of the while statement. It's a common bug to have a
condition where a next input is not actually fetched. This leads to programs which
hang—there's no state change in one logic path through the if statements in the
body of the while statement. The invariant wasn't reset properly, or it wasn't
articulated properly when designing the loop.

In our case, the invariant will use a conceptual new-input() condition. This
condition is true when we've read a new value using the getpass() function.
Here's our expanded loop design:

        # initialize something
        # assert the invariant new-input(password_text)
        # and new-input(confirming_password_text)
        while # not terminated:
            # do something
            # assert the invariant new-input(password_text)
            # and new-input(confirming_password_text)
        assert password_text == confirming_password_text

Define the condition for leaving the loop. We need to be sure that this condition3.
depends on the invariant being true. We also need to be sure that, when this
termination condition is finally false, the target state will become true.

In most cases, the loop condition is the logical negation of the target state. Here's
the expanded design:

        # initialize something
        # assert the invariant new-input(password_text)
        # and new-input(confirming_password_text)
        while password_text != confirming_password_text:
            # do something
            # assert the invariant new-input(password_text)
            # and new-input(confirming_password_text)
        assert password_text == confirming_password_text



Statements and Syntax

[ 90 ]

Define the initialization that will make sure that both the invariant will be true4.
and that we can actually test the terminating condition. In this case, we need to
get values for the two variables. The loop now looks like this:

        password_text= getpass()
        confirming_password_text= getpass("Confirm: ")
        # assert new-input(password_text)
        # and new-input(confirming_password_text)
        while password_text != confirming_password_text:
            # do something
            # assert new-input(password_text)
            # and new-input(confirming_password_text)
        assert password_text == confirming_password_text

Write the body of the loop which will reset the invariant to true. We need to5.
write the fewest statements that will do this. For this example loop, the fewest
statements are pretty obvious—they match the initialization. Our updated loop
looks like this:

        password_text= getpass()
        confirming_password_text= getpass("Confirm: ")
        # assert new-input(password_text)
        # and new-input(confirming_password_text)
        while password_text != confirming_password_text:
            password_text= getpass()
            confirming_password_text= getpass("Confirm: ")
            # assert new-input(password_text)
            # and new-input(confirming_password_text)
        assert password_text == confirming_password_text

Identify a clock—a monotonically decreasing function that shows that each6.
iteration of the loop really does make progress toward the terminating condition.

When gathering input from people, we're forced to make an assumption
that—eventually—they'll enter a matching pair. Each trip through the loop brings
us one step closer to that matching pair. To be properly formal, we can assume
that there will be n inputs before they match; we have to show that each trip
through the loop decreases the number which remain.

In complex situations, we may need to treat the user's input as a list of values. For
our example, we'd think of the user input as a sequence of pairs: [(p1, q1),(p2, q2),(p3,
q3),…,(pn, qn)]. With a finite list, we can more easily reason about whether or not
our loop really is making progress towards completion.



Statements and Syntax

[ 91 ]

Because we built the loop based on the target final condition, we can be absolutely sure
that it does what we want it to do. If our logic is sound, the loop will terminate, and will
terminate with the expected results. This is the goal of all programming—to have the
machine reach a desired state given some initial state.

Removing some comments, we have this as our final loop:

    password_text= getpass()
    confirming_password_text= getpass("Confirm: ")
    while password_text != confirming_password_text:
        password_text= getpass()
        confirming_password_text= getpass("Confirm: ")
    assert password_text == confirming_password_text

We left the final post-condition in place as an assert statement. For complex loops it's both
a built-in test, as well as a comment that explains how the loop works.

This design process often produces a loop that looks similar to one we might develop based
on intuition. There's nothing wrong with having a step by step justification for an intuitive
design. Once we've done this a few times, we can be much more confident in using a loop
knowing that we can justify the design.

In this case, the loop body and the initialization happen to be the same code. If this is a
problem, we can define a tiny two-line function to avoid repeating the code. We'll look at
this in Chapter 3, Function Definitions.

How it works…
We start out by articulating the goal for the loop. Everything else that we do will assure that
the code written leads to that goal condition. Indeed, this is the motivation behind all
software design—we're always trying to write the fewest statements that lead to a given
goal state. We're often working backwards from goal to initialization. Each step in the chain
of reasoning is essentially stating the weakest precondition for some statement, S, that leads
to our desired outcome condition.

Given a post-condition, we're trying to solve for a statement and a precondition. We're
always building this pattern:

    assert pre-condition
    S
    assert post-condition



Statements and Syntax

[ 92 ]

The post-condition is our definition of done. We need to hypothesize a statement, S, that
leads to done, and a precondition for that statement. There are always an infinite number of
alternative statements; we focus on the weakest precondition—the one that has the fewest
assumptions.

At some point—usually when writing the initialization statements—we find that the pre-
condition is merely true: any initial state will do as the precondition for a statement. That's
how we know that our program can start from any initial state and complete as expected.
This is ideal.

When designing a while statement, we have a nested context inside the statement's body.
The body should always be in a process of resetting the invariant condition to be true
again. In our example, this means reading more input from the user. In other examples, we
might be processing another character in a string, or another number from a set of numbers.

We need to prove that when the invariant is true and the loop condition is false then our
final goal is achieved. This proof is easier when we start from the final goal and create the
invariant and the loop condition based on that final goal.

What's important is patiently doing each step so that our reasoning is solid. We need to be
able to prove that the loop will work. Then we can run unit tests with confidence.

See also
We look at some other aspects of advanced loop design in the Avoiding a potential
problem with break statements recipe.
We also looked at this concept in the Designing complex if…elif chains recipe.
A classic article on this topic is by David Gries, A note on a standard strategy for
developing loop invariants and loops. See
http://www.sciencedirect.com/science/article/pii/0167642383900151.
Algorithm design is a big subject. A good introduction is by Skiena, Algorithm
Design Manual. See h t t p ://w w w 3. c s . s t o n y b r o o k . e d u /~a l g o r i t h /.

http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/
http://www3.cs.stonybrook.edu/~algorith/


Statements and Syntax

[ 93 ]

Avoiding a potential problem with break
statements
The common way to understand a for statement is that it creates a for all condition. At the
end of the statement, we can assert that, for all items in a collection, some processing has
been done.

This isn't the only meaning for a for statement. When we introduce the break statement
inside the body of a for, we change the semantics to there exists. When the break statement
leaves the for (or while) statement, we can assert only that there exists at least one item
that caused the statement to end.

There's a side issue here. What if the loop ends without executing the break? We are forced
to assert that there does not exist even one item that triggered the break. DeMorgan's Law
tells us that a not exists condition can be restated as a for all condition: ¬∃x B(x) ≡ ∀x ¬B(x). In
this formula, B(x) is the condition on the if statement that includes the break. If we never
found B(x), then for all items ¬B(x) was true. This shows some of the symmetry between a
typical for all loop and a there exists loop which includes a break.

The condition that's true upon leaving a for or while statement can be ambiguous. Did it
end normally? Did it execute the break? We can't easily tell, so we'll provide a recipe that
gives us some design guidance.

This can become an even bigger problem when we have multiple break statements, each
with its own condition. How can we minimize the problems created by having complex
break conditions?

Getting ready
Let's find the first occurrence of a : or = in a string. This is a good example of a there exists
modification to a for statement. We don't want to process all characters, we want to know
where there exists the left-most : or =.

>>> sample_1 = "some_name = the_value"
>>> for position in range(len(sample_1)):
...    if sample_1[position] in '=:':
...        break
>>> print('name=', sample_1[:position],
...     'value=', sample_1[position+1:])
name= some_name  value=  the_value



Statements and Syntax

[ 94 ]

What about this edge case?

>>> sample_2 = "name_only"
>>> for position in range(len(sample_2)):
...    if sample_2[position] in '=:':
...        break
>>> print('name=', sample_2[:position],
...     'value=', sample_2[position+1:])
name= name_onl value=

That's awkwardly wrong. What happened?

How to do it…
As we noted in the Designing a while statement which terminates properly recipe, every
statement establishes a post-condition. When designing a loop, we need to articulate that
condition. In this case, we didn't properly articulate the post-condition.

Ideally, the post-condition would be something simple like text[position] in '=:'.
However, if there's no = or : in the given text, the simple post-condition doesn't make
logical sense. When no character exists which matches the criteria, we can't make any
assertion about the position of a character that's not there.

Write the obvious post-condition. We sometimes call this the happy-path condition1.
because it's the one that's true when nothing unusual has happened.

        text[position] in '=:'

Add post-conditions for the edge cases. In this example, we have two additional2.
conditions:

There's no = or :.
There are no characters at all. The len() is zero, and the loop never
actually does anything. In this case, the position variable will never be
created.

                (len(text) == 0
                or not('=' in text or ':' in text)
                or text[position] in '=:')



Statements and Syntax

[ 95 ]

If a while statement is being used, consider redesigning it to have completion3.
conditions. This can eliminate the need for a break statement.
If a for statement is being used, be sure a proper initialization is done, and add4.
the various terminating conditions to the statements after the loop. It can look
redundant to have x = 0 followed by for x = .... It's necessary in the case of
a loop which doesn't execute the break statement, though.

      >>> position = -1 # If it's zero length
      >>> for position in range(len(sample_2)):
      ...    if sample_2[position] in '=:':
      ...        break
      ...
      >>> if position == -1:
      ...     print("name=", None, "value=", None)
      ... elif not(text[position] == ':' or text[position] == '='):
      ...     print("name=", sample_2, "value=", None)
      ... else:
      ...    print('name=', sample_2[:position],
      ...     'value=', sample_2[position+1:])
      name= name_only value= None

In the statements after the for, we've enumerated all of the terminating conditions
explicitly. The final output, name= name_only value= None, confirms that we've
correctly processed the sample text.

How it works…
This approach forces us to work out the post-condition carefully so that we can be
absolutely sure that we know all the reasons for the loop terminating.

In more complex loops—with multiple break statements—the post-condition can be
difficult to work out fully. The post-condition for a loop must include all of the reasons for
leaving the loop—the normal reasons plus all of the break conditions.

In many cases, we can refactor the loop to push the processing into the body of the loop.
Rather than simply assert that position is the index of the = or : character, we include the
next processing steps of assigning the name and value values. We might have something
like this:

    if len(sample_2) > 0:
        name, value = sample_2, None
    else:
        name, value = None, None



Statements and Syntax

[ 96 ]

    for position in range(len(sample_2)):
        if sample_2[position] in '=:':
            name, value = sample_2[:position], sample2[position:]
    print('name=', name, 'value=', value)

This version pushes some of the processing forward, based on the complete set of post-
conditions evaluated previously. This kind of refactoring is common.

The idea is to forego any assumptions or intuition. With a little bit of discipline, we can be
sure of the post-conditions from any statement.

Indeed, the more we think about post-conditions, the more precise our software can be. It's
imperative to be explicit about the goal for our software and work backwards from the goal
by choosing the simplest statements that will make the goal become true.

There's more…
We can also use an else clause on a for statement to determine if the loop finished
normally or a break statement was executed. We can use something like this:

    for position in range(len(sample_2)):
        if sample_2[position] in '=:':
            name, value = sample_2[:position], sample_2[position+1:]
            break
    else:
        if len(sample_2) > 0:
            name, value = sample_2, None
        else:
            name, value = None, None

The else condition is sometimes confusing, and we don't recommend it. It's not clear that it
is substantially better than any of the alternatives. It's too easy to forget the reason why the
else is executed because it's used so rarely.

See also
A classic article on this topic is by David Gries, A note on a standard strategy for
developing loop invariants and loops. See h t t p ://w w w . s c i e n c e d i r e c t . c o m /s c i e n c e

/a r t i c l e /p i i /0167642383900151.

http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151


Statements and Syntax

[ 97 ]

Leveraging the exception matching rules
The try statement lets us capture an exception. When an exception is raised, we have a
number of choices for handling it:

Ignore it: If we do nothing, the program stops. We can do this in two
ways—don't use a try statement in the first place, or don't have a matching
except clause in the try statement.
Log it: We can write a message and let it propagate; generally this will stop the
program.
Recover from it: We can write an except clause to do some recovery action to
undo the effects of something that was only partially completed in the try clause.
We can take this a step further and wrap the try statement in a while statement
and keep retrying until it succeeds.
Silence it: If we do nothing (that is, pass) then processing is resumed after the
try statement. This silences the exception.
Rewrite it: We can raise a different exception. The original exception becomes a
context for the newly-raised exception.
Chain it: We chain a different exception to the original exception. We'll look at
this in the Chaining exceptions with the raise from statement recipe.

What about nested contexts? In this case, an exception could be ignored by an inner try but
handled by an outer context. The basic set of options for each try context are the same. The
overall behavior of the software depends on the nested definitions.

Our design of a try statement depends on the way that Python exceptions form a class
hierarchy. For details, see Section 5.4, Python Standard Library. For example,
ZeroDivisionError is also an ArithmeticError and an Exception. For another
example, a FileNotFoundError is also an OSError as well as an Exception.

This hierarchy can lead to confusion if we're trying to handle detailed exceptions as well as
generic exceptions.



Statements and Syntax

[ 98 ]

Getting ready
Let's say we're going to make simple use of the shutil to copy a file from one place to
another. Most of the exceptions that might be raised indicate a problem too serious to work
around. However, in the rare event of a FileExistsError, we'd like to attempt a recovery
action.

Here's a rough outline of what we'd like to do:

    from pathlib import Path
    import shutil
    import os
    source_path = Path(os.path.expanduser(
       '~/Documents/Writing/Python Cookbook/source'))
    target_path = Path(os.path.expanduser(
       '~/Dropbox/B05442/demo/'))
    for source_file_path in source_path.glob('*/*.rst'):
        source_file_detail = source_file_path.relative_to(source_path)
        target_file_path = target_path / source_file_detail
        shutil.copy( str(source_file_path), str(target_file_path

We have two paths, source_path and target_path. We've located all of the directories
under the source_path that have *.rst files.

The expression source_file_path.relative_to(source_path) gives us the tail end of
the file name, the portion after the base directory. We use this to build a new path under the
target directory.

While we can use pathlib.Path objects for a lot of ordinary path processing, in Python 3.5
modules like shutil expect string filenames instead of Path objects; we need to explicitly
convert the Path objects. We can only hope that Python 3.6 changes this.

The problems arise with handling exceptions raised by the shutil.copy() function. We
need a try statement so that we can recover from certain kinds of errors. We'll see this kind
of error if we try to run this:

    FileNotFoundError: [Errno 2]
        No such file or directory:
'/Users/slott/Dropbox/B05442/demo/ch_01_numbers_strings_and_tuples/index.rs
t'

How do we create a try statement that handles the exceptions in the proper order?



Statements and Syntax

[ 99 ]

How to do it…
Write the code we want to use indented in the try block:1.

        try:
            shutil.copy( str(source_file_path), str(target_file_path) )

Include the most specific exception classes first. In this case, we have separate2.
responses for the specific FileNotFoundError and the more general OSError.

        try:
            shutil.copy( str(source_file_path), str(target_file_path) )
        except FileNotFoundError:
            os.makedir( target_file_path.parent )
            shutil.copy( str(source_file_path), str(target_file_path) )

Include any more general exceptions later:3.

        try:
            shutil.copy( str(source_file_path), str(target_file_path) )
        except FileNotFoundError:
            os.makedirs( str(target_file_path.parent) )
            shutil.copy( str(source_file_path), str(target_file_path) )
        except OSError as ex:
            print(ex)

We've matched exceptions with the most specific first and the more generic after
that.

We handled the FileNotFoundError by creating the missing directories. Then
we did the copy() again, knowing it would now work properly.

We silenced any other exceptions of the class OSError. For example, if there's a
permission problem, that error will simply be logged. Our objective is to try and
copy all of the files. Any files that cause problems will be logged, but the copying
process will continue.



Statements and Syntax

[ 100 ]

How it works…
Python's matching rules for exceptions are intended to be simple:

Process the except clauses in order
Match the actual exception against the exception class (or tuple of exception
classes). A match means that the actual exception object (or any of the base
classes of the exception object) is of the given class in the except clause.

These rules show why we put the most specific exception classes first and the more general
exception classes last. A generic exception class like the Exception will match almost every
kind of exception. We don't want this first, because no other clauses will be checked. We
must always put generic exceptions last.

There's an even more generic class, the BaseException class. There's no good reason to
ever handle exceptions of this class. If we do, we will be catching SystemExit and
KeyboardInterrupt exceptions, which interferes with the ability to kill a misbehaving
application. We only use the BaseException class as a superclass when defining new
exception classes that exist outside the normal exception hierarchy.

There's more…
Our example includes a nested context in which a second exception can be raised. Consider
this except clause:

    except FileNotFoundError:
        os.makedirs( str(target_file_path.parent) )
        shutil.copy( str(source_file_path), str(target_file_path) )

If the os.makedirs() or shutil.copy() functions raise another exception, it won't be
handled by this try statement. Any exceptions raised here will crash the program as a
whole. We have two ways to handle this, both of which involve nested try statements.

We can rewrite this to include a nested try during recovery:

    try:
        shutil.copy( str(source_file_path), str(target_file_path) )
    except FileNotFoundError:
        try:
            os.makedirs( str(target_file_path.parent) )
            shutil.copy( str(source_file_path), str(target_file_path) )
        except OSError as ex:
            print(ex)



Statements and Syntax

[ 101 ]

    except OSError as ex:
        print(ex)

In this example, we've repeated the OSError processing in two places. In our nested
context, we'll log the exception and let it propagate, which will likely stop the program. In
the outer context, we'll do the same thing.

We say likely stop the program because this code could be used inside a try statement, which
might handle these exceptions. If there's no other try context, then these unhandled
exceptions will stop the program.

We can also rewrite our overall statement to have nested try statements that separate the
two exception handling strategies into more local and more global considerations. It would
look like this:

    try:
        try:
            shutil.copy( str(source_file_path), str(target_file_path) )
        except FileNotFoundError:
            os.makedirs( str(target_file_path.parent) )
            shutil.copy( str(source_file_path), str(target_file_path) )
    except OSError as ex:
        print(ex)

The copy with makedirs processing in the inner try statement handles only the
FileNotFoundError exception. Any other exception will propagate out to the outer try
statement. In this example, we've nested the exception handling so that the generic
processing wraps the specific processing.

See also
In the Avoiding a potential problem with an except: clause recipe we look at some
additional considerations when designing exceptions
In the Chaining exceptions with the raise from statement recipe we look at how we
can chain exceptions so that a single class of exception wraps different detailed
exceptions



Statements and Syntax

[ 102 ]

Avoiding a potential problem with an except:
clause
There are some common mistakes in exception handling. These can cause programs to
become unresponsive.

One of the mistakes we can make is to use the except: clause. There are a few other
mistakes which we can make if we're not cautious about the exceptions we try to handle.

This recipe will show some common exception handling errors that we can avoid.

Getting ready
In the Avoiding a potential problem with an except: clause recipe we looked at some
considerations when designing exception handling. In that recipe, we discouraged the use
of BaseException because we can interfere with stopping a misbehaving Python program.

We'll extend the idea of what not to do in this recipe.

How to do it…
Use except Exception: as the most general kind of exception managing.

Handling too many exceptions can interfere with our ability to stop a misbehaving Python
program. When we hit Ctrl + C, or send a SIGINT signal via kill -2, we generally want
the program to stop. We rarely want the program to write a message and keep running, or
stop responding altogether.

There are a few other classes of exceptions which we should be wary of attempting to
handle:

SystemError
RuntimeError
MemoryError

Generally, these exceptions mean that things are going badly somewhere in Python's
internals. Rather than silence these exceptions, or attempt some recovery, we should allow
the program to fail, find the root cause, and fix it.



Statements and Syntax

[ 103 ]

How it works…
There are two techniques we should avoid:

Don't capture the BaseException class

Don't use except: with no exception class. This matches all exceptions; this will
include exceptions we should avoid trying to handle.

Using except BaseException or except without a specific class can cause a program to
become unresponsive at exactly the time we need to stop it.

Further, if we capture any of these exceptions, we can interfere with the way these internal
exceptions are handled:

SystemExit

KeyboardInterrupt

GeneratorExit

If we silence, wrap, or rewrite any of these, we may have created a problem where none
existed. We may have exacerbated a simple problem into a larger and more mysterious
problem.

It's a noble aspiration to write a program which never crashes. Interfering
with some of Python's internal exceptions doesn't create a more reliable
program. Instead, it creates a program where a clear failure is masked and
made into an obscure mystery.

See also
In the Leveraging the exception matching rules recipe we look at some considerations
when designing exceptions
In the Chaining exceptions with the raise from statement recipe we look at how we
can chain exceptions so that a single class of exception wraps different detailed
exceptions.



Statements and Syntax

[ 104 ]

Chaining exceptions with the raise from
statement
In some cases, we may want to merge some seemingly unrelated exceptions into a single
generic exception. It's common for a complex module to define a single generic Error
exception which applies to many situations that can arise within the module.

Most of the time, the generic exception is all that's required. If the module's Error is raised,
something didn't work.

Less frequently, we want the details for debugging or monitoring purposes. We might want
to write them to a log, or include the details in an e-mail. In this case, we need to provide
supporting details that amplify or extend the generic exception. We can do this by chaining
from the generic exception to the root cause exception.

Getting ready
Assume we're writing some complex string processing. We'd like to treat a number of
different kinds of detailed exceptions as a single generic error so that users of our software
are insulated from the implementation details. We can attach details to the generic error.

How to do it…
To create a new exception, we can do this:1.

        class Error(Exception):
            pass

That's sufficient to define a new class of exception.

When handling exceptions, we can chain them using the raise from statement2.
like this:

        try:
            something
        except (IndexError, NameError) as exception:
            print("Expected", exception)
            raise Error("something went wrong") from exception
       except Exception as exception:
            print("Unexpected", exception)



Statements and Syntax

[ 105 ]

            raise

In the first except clause, we matched two kinds of exception classes. No matter
which kind we get, we'll raise a new exception from the module's generic Error
exception class. The new exception will be chained to the root cause exception.

In the second except clause, we matched the generic Exception class. We wrote
a log message and re-raised the exception. Here, we're not chaining, but simply
continuing exception handling in another context.

How it works…
The Python exception classes all have a place to record the cause of the exception. We can
set this __cause__ attribute using the raise Exception from Exception statement.

Here's how it looks when this exception is raised:

>>> class Error(Exception):
...     pass
>>> try:
...     'hello world'[99]
... except (IndexError, NameError) as exception:
...     raise Error("index problem") from exception
...
Traceback (most recent call last):
  File "<doctest default[0]>", line 2, in <module>
    'hello world'[99]
IndexError: string index out of range

The exception that we just saw was the direct cause of the following exception:

Traceback (most recent call last):
  File
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/doctest.py
", line 1318, in __run
    compileflags, 1), test.globs)
  File "<doctest default[0]>", line 4, in <module>
    raise Error("index problem") from exception
Error: index problem



Statements and Syntax

[ 106 ]

This shows a chained exception. The first exception in the Traceback message is an
IndexError exception. This is the direct cause. The second exception in the Traceback is
our generic Error exception. This is a generic summary exception, which was chained to
the original cause.

An application will see the Error exception in a try: statement. We might have something
like this:

    try:
        some_function()
    except Error as exception:
        print(exception)
        print(exception .__cause__)

Here we've shown a function named some_function() that can raise the generic Error
exception. If this function does raise the exception, the except clause will match the generic
Error exception. We can print the exception's message, exception, as well as the root
cause exception, exception.__cause__. In many applications, the
exception.__cause__ value may get written to a debugging log rather than be displayed
to users.

There's more…
If an exception is raised inside an exception handler, this also creates a kind of chained
exception relationship. This is the context relationship rather than the cause relationship.

The context message looks similar. The message is slightly different. It says During
handling of the above exception, another exception occurred:. The first
Traceback will show the original exception. The second message is the exception raised
without using an explicit from connection.

Generally, the context is something unplanned that indicates an error in the except
processing block. For example, we might have this:

    try:
        something
    except ValueError as exception:
        print("Some message", exceotuib)

This will raise a NameError exception with a context of a ValueError exception. The
NameError exception stems from misspelling the exception variable as exceotuib.



Statements and Syntax

[ 107 ]

See also
In the Leveraging the exception matching rules recipe we look at some considerations
when designing exceptions
In the Avoiding a potential problem with an except: clause recipe we look at some
additional considerations when designing exceptions

Managing a context using the with statement
There are many instances where our scripts will be entangled with external resources. The
most common examples are disk files and network connections to external hosts. A
common bug is retaining these entanglements forever, tying up these resources uselessly.
These are sometimes called memory leaks because the available memory is reduced each
time a new file is opened without closing a previously used file.

We'd like to isolate each entanglement so that we can be sure that the resource is acquired
and released properly. The idea is to create a context in which our script uses an external
resource. At the end of the context, our program is no longer bound to the resource and we
want to be guaranteed that the resource is released.

Getting ready
Let's say we want to write lines of data to a file in CSV format. When we're done, we want
to be sure that the file is closed and the various OS resources—including buffers and file
handles—are released. We can do this in a context manager, which guarantees that the file
will be properly closed.

Since we'll be working with CSV files, we can use the csv module to handle the details of
the formatting:

>>> import csv

We'll also use the pathlib module to locate the files we'll be working with:

>>> import pathlib



Statements and Syntax

[ 108 ]

For the purposes of having something to write, we'll use this silly data source:

>>> some_source = [[2,3,5], [7,11,13], [17,19,23]]

This will give us a context in which to learn about the with statement.

How to do it…
Create the context by opening the file, or creating the network connection with1.
urllib.request.urlopen(). Other common contexts include archives like zip
files and tar files:

        target_path = pathlib.Path('code/test.csv')
        with target_path.open('w', newline='') as target_file:

Include all the processing, indented within the with statement:2.

        target_path = pathlib.Path('code/test.csv')
        with target_path.open('w', newline='') as target_file:
            writer = csv.writer(target_file)
            writer.writerow(['column', 'data', 'headings'])
            for data in some_source:
                writer.writerow(data)

When we use a file as a context manager, the file is automatically closed at the3.
end of the indented context block. Even if an exception is raised, the file is still
closed properly. Outdent the processing that is done after the context is finished
and the resources are released:

        target_path = pathlib.Path('code/test.csv')
        with target_path.open('w', newline='') as target_file:

            writer = csv.writer(target_file)
            writer.writerow(['column', 'headings'])
            for data in some_source:
                writer.writerow(data)

        print('finished writing', target_path)

The statements outside the with context will be executed after the context is closed. The
named resource—the file opened by target_path.open()—will be properly closed.



Statements and Syntax

[ 109 ]

Even if an exception is raised inside the with statement, the file is still properly closed. The
context manager is notified of the exception. It can close the file and allow the exception to
propagate.

How it works…
A context manager is notified of two kinds of exits from the block of code:

Normal exit with no exception
An exception was raised

The context manager will—under all conditions—disentangle our program from external
resources. Files can be closed. Network connections can be dropped. Database transactions
can be committed or rolled back. Locks can be released.

We can experiment with this by including a manual exception inside the with statement.
This can show that the file was properly closed.

    try:
        target_path = pathlib.Path('code/test.csv')
        with target_path.open('w', newline='') as target_file:
            writer = csv.writer(target_file)
            writer.writerow(['column', 'headings'])
            for data in some_source:
                writer.writerow(data)
                raise Exception("Just Testing")
    except Exception as exc:
        print(target_file.closed)
        print(exc)
    print('finished writing', target_path)

In this example, we've wrapped the real work in a try statement. This allows us to raise an
exception after writing the first to the CSV file. When the exception is raised, we can print
the exception. At this point, the file will also be closed. The output is simply this:

    True
    Just Testing
    finished writing code/test.csv

This shows us that the file was properly closed. It also shows us the message associated
with the exception to confirm that it was the exception we raised manually. The output
test.csv file will only have the first row of data from the some_source variable.



Statements and Syntax

[ 110 ]

There's more…
Python offers us a number of context managers. We noted that an open file is a context, as is
an open network connect created by urllib.request.urlopen().

For all file operations, and all network connections, we should use a with statement as a
context manager. It's very difficult to find an exception to this rule.

It turns out that the decimal module makes use of a context manager to allow localized
changes to the way decimal arithmetic is performed. We can use the
decimal.localcontext() function as a context manager to change rounding rules or
precision for calculations isolated by a with statement.

We can define our own context managers, also. The contextlib module contains functions
and decorators that can help us create context managers around resources that don't
explicitly offer them.

When working with locks, the with context is the ideal way to acquire and release a lock.
See h t t p s ://d o c s . p y t h o n . o r g /3/l i b r a r y /t h r e a d i n g . h t m l #w i t h - l o c k s for the
relationship between a lock object created by the threading module and a context
manager.

See also
See h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p - 0343/ for the origins of the with
statement

https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/


3
Function Definitions

In this chapter, we'll look at the following recipes:

Designing functions with optional parameters
Using super flexible keyword parameters
Forcing keyword-only arguments with the * separator
Writing explicit types on function parameters
Picking an order for parameters based on partial functions
Writing clear documentation strings with RST markup
Designing recursive functions around Python's stack limits
Writing reusable scripts with the script library switch

Introduction
Function definitions are a way to decompose a large problem into smaller problems.
Mathematicians have been doing this for centuries. It's also a way to package our Python
programming into intellectually manageable chunks.

We'll look at a number of function definition techniques in these recipes. This will include
ways to handle flexible parameters and ways to organize the parameters based on some
higher-level design principles.

We'll also look at the Python 3.5 typing module and how we can create more formal
annotations for our functions. We can start down the road toward using the mypy project
for making more formal assertions about the data types in use.



Function Definitions

[ 112 ]

Designing functions with optional
parameters
When we define a function, we often have a need for optional parameters. This allows us to
write functions which are more flexible, and can be used in more situations.

We can also think of this as a way to create a family of closely-related functions, each with a
slightly different collection of parameters – called the signature – but all sharing the same
simple name. The idea of many functions sharing the same name can be a bit confusing.
Therefore, we'll focus more on the idea of optional parameters.

An example of optional parameters is the int() function. This has two forms:

int(str): For example, the value of int('355') has a value of 355. In this case,
we didn't provide a value for the optional base parameter; the default value of
10 was used.
int(str, base): For example, the value of int('0x163', 16) is 355. In this
case, we provided a value for the base parameter.

Getting ready
A great many games rely on collections of dice. The casino game of Craps uses two dice. A
game like Zilch (or Greed or Ten Thousand) uses six dice. Variations on the game may use
more.

It's handy to have a dice-rolling function that can handle all of these variations. How can we
write a dice-simulator that works for any number of dice, but will use two as a handy
default value?

How to do it…
We have two approaches to designing a function with optional parameters:

General to Particular: We start by designing the most general solution and
provide handy defaults for the most common case.
Particular to General: We start by designing several related functions. We then
merge them into one general function that covers all of the cases, singling out one
of the original functions to be the default behavior.



Function Definitions

[ 113 ]

Particular to General Design
When following the Particular to General strategy, we'll design several individual functions
and look for common features:

Write one version of the function. We'll start with the Craps game because it1.
seems simplest:

      >>> import random
      >>> def die():
      ...    return random.randint(1,6)
      >>> def craps():
      ...    return (die(), die())

We defined a handy helper function, die(), which encapsulates a basic fact about
what are sometimes called standard dice. There are five platonic solids that can be
pressed into service, yielding four-sided, six-sided, eight-sided, twelve-sided, and
twenty-sided dice. The six-sided die has a long history, starting as Astragali bones,
which were easily trimmed into a six-sided cube.

Here's an example of the underlying die() function:

      >>> random.seed(113)
      >>> die(), die()
      (1, 6)

We've rolled two dice to show how the values combine for rolling larger piles of
dice.

Our function for the game of Craps looks like this:

      >>> craps()
      (6, 3)
      >>> craps()
      (1, 4)

This shows some two-dice rolls for the game of Craps.

Write another version of the function:2.

      >>> def zonk():
      ...    return tuple(die() for x in range(6))



Function Definitions

[ 114 ]

We've used a generator expression to create a tuple object with six dice. We'll look
at generator expressions in depth in Chapter 8, Functional And Reactive
Programming Features.

Our generator expression has a variable, x, which is ignored. It's also common to
see this written as tuple(die() for _ in range(6)). The variable _ is a valid
Python variable name; this name can be used as a hint that we don't ever want to
see the value of this variable.

Here's an example of using the zonk() function:

      >>> zonk()
      (5, 3, 2, 4, 1, 1)

This shows us a roll of six individual dice. There's a short straight (1-5) as well as a
pair of ones. In some versions of the game, this is a good scoring hand.

Locate the common features in the two functions. This may require some3.
rewriting of the various functions to locate a common design. In many cases,
we'll wind up introducing additional variables to replace constants or other
assumptions.
In this case, we can generalize the creation of the two-tuple. Rather than
hardwiring two evaluations of the die() function, we can introduce a generator
expression based on range(2) that will evaluate the die() function twice:

      >>> def craps():
      ...     return tuple(die() for x in range(2))

This seems like more code than required for solving the specific two-dice
problem. In the long run, using a single general function means that we can
eliminate a number of specific functions.

Merge the two functions. This will often involve exposing a variable that had4.
previously been a constant or other hardwired assumption:

      >>> def dice(n):
      ...     return tuple(die() for x in range(n))

This provides a general function that covers the needs of both Craps and Zonk:

      >>> dice(2)
      (3, 2)
      >>> dice(6)
      (5, 3, 4, 3, 3, 4)



Function Definitions

[ 115 ]

Identify the most common use case, and make this the default value for any5.
parameters that were introduced. If our most common simulation was Craps, we
might do this:

      >>> def dice(n=2):
      ...     return tuple(die() for x in range(n))

Now we can simply use dice() for Craps. We'll need to use dice(6) for Zonk.

General to Particular design
When following the General to Particular strategy, we'll identify all of the needs first. We'll
often do this by introducing variables into the requirements:

Summarize the requirements for dice-rolling. We might have a list like this:1.
Craps: two dice.
First roll in Zonk: six dice.
Subsequent rolls in Zonk: one to six dice.

This list of requirements shows a common theme of rolling n dice.

Rewrite the requirements with an explicit parameter in place of any literal value.2.
We'll replace all of our numbers with a parameter, n, and show the values for this
new parameter that we've introduced:

Craps: n dice, where n = 2.
First roll in Zonk: n dice, where n = 6.
Subsequent rolls in Zonk: n dice, where 1 ≤ n ≤ 6.

The goal here is to be absolutely sure that all of the variations really have a
common abstraction. In more complex problems, something that seems similar
may not have a common specification.

We want to be sure, also, that we've properly parameterized each of the various
functions. In more complex cases, we may have values that don't really need to be
parameterized; they can remain as constants.



Function Definitions

[ 116 ]

Write the function that fits the general pattern:3.

      >>> def dice(n):
      ...    return (die() for x in range(n))

In the third case – subsequent rolls in Zonk – we identified a constraint of 1 ≤ n ≤
6. We need to determine if this is a constraint that's part of our dice() function,
or if this constraint is imposed on the dice by the simulation application that uses
the dice function.

In this case, the constraint is incomplete. The rules for Zonk require that the dice
which are not being rolled form some kind of scoring pattern. The constraint isn't
merely that the number of dice is between one and six; the constraint is tied to the
game state. There doesn't seem to be a good reason to tie the dice() function to
the game state.

Provide a default value for the most common use case. If our most common4.
simulation was Craps, we might do this:

      >>> def dice(n=2):
      ...     return tuple(die() for x in range(n))

Now we can simply use dice() for Craps. We'll need to use dice(6) for Zonk.

How it works…
Python's rules for providing parameter values are very flexible. There are several ways to
assure that each parameter has a value. We can think of it working like this:

Set each parameter to any provided default value.1.
For arguments without names, the argument values are assigned to the2.
parameters by position.
For arguments with names – for example, dice(n=2) – the parameter values are3.
assigned using the name. It's an error to assign a parameter both by position and
by name.
If any parameter doesn't have a value, this is an error.4.

These rules allow us to provide defaults as needed. They also allow us to mix positional
values with named values. The presence of a default value is what makes a parameter
optional.



Function Definitions

[ 117 ]

The use of optional parameters stems from two considerations:

Can we parameterize the processing?
What's the most common argument value for that parameter?

Introducing parameters into a process definition can be challenging. In some cases, it helps
to have code so that we can replace literal values (such as 2 or 6) with a parameter.

In some cases, however, the literal value doesn't need to be replaced with a parameter. It
can be left as a literal value. We don't always want to replace every literal with a parameter.
Our die() function, for example, has a literal value of 6 because we're only interested in
standard, cubic dice. This isn't a parameter because we don't see a need to make a more
general kind of die.

There's more…
If we want to be very thorough, we can write functions that are specialized versions of our
more generalized function. These functions can simplify an application:

>>> def craps():
...     return dice(2)
>>> def zonk():
...     return dice(6)

Our application features – craps() and zonk() – depend on a general function, dice().
This, in turn, depends on another function, die(). We'll revisit this idea in the Picking an
order for parameters based on partial functions recipe.

Each layer in this stack of dependencies introduces a handy abstraction that saves us from
having to understand too many details. This idea of layered abstractions is sometimes
called chunking. It's a way of managing complexity by isolating the details.

A common extension to this design pattern is to provide parameters at multiple levels in
this hierarchy of functions. If we want to parameterize the die() function, we'll be
providing parameters to both dice() and die().

For this more complex parameterization, we'll need to introduce more parameters with
default values into our hierarchy. We'll start by adding a parameter to die(). This
parameter must have a default value so that we don't break any of our existing test cases:

>>> def die(sides=6):
...     return random.randint(1,6)



Function Definitions

[ 118 ]

After introducing this parameter at the bottom of the stack of abstractions, we'll need to
provide this parameter to higher-level functions:

>>> def dice(n=2, sides=6):
... return tuple(die(sides) for x in range(n))

We now have many ways of using the dice() function:

All default values: dice() covers Craps nicely.
All positional arguments: dice(6, 6) would cover Zonk.
A mixture of positional and named arguments: The positional values must be
provided first because the order matters. For example, dice(2, sides=8)
would cover a game that uses two eight-sided dice.
All named arguments: dice(sides=4, n=4) this would handle the case where
we needed to emulate rolling four tetrahedral dice. When using all named
arguments, order doesn't matter.

In this example, our stack of functions only has two layers. In a more complex application,
we may have to introduce parameters at many layers in a hierarchy.

See also
We'll extend some of these ideas in the Picking an order for parameters based on
partial functions recipe.
We've made use of optional parameters that involve immutable objects. In this
recipe, we focused on numbers. In Chapter 4, Built-in Data Structures – list, set,
dict, we'll look at mutable objects, which have an internal state that can be
changed. In the Avoiding mutable default values for function parameters recipe, we'll
look at some additional considerations that are important for designing functions
that have optional values that are mutable objects.

Using super flexible keyword parameters
Some design problems involve solving a simple equation for one unknown given enough
known values. For example, rate, time, and distance have a simple linear relationship. We
can solve for any one given the other two. Here are the three rules that we can use as an
example:

d = r × t



Function Definitions

[ 119 ]

r = d / t
t = d / r

When designing electrical circuits, for example, a similar set of equations is used based on
Ohm's Law. In that case, the equations tie together resistance, current, and voltage.

In some cases, we want to provide a simple, high-performance software implementation
that can perform any of the three different calculations based on what's known and what's
unknown. We don't want to use a general algebraic framework; we want to bundle the
three solutions into a simple, efficient function.

Getting ready
We'll build a single function that can solve a Rate-Time-Distance (RTD) calculation by
embodying all three solutions given any two known values. With minor variable name
changes, this applies to a surprising number of real-world problems.

There's a trick here. We don't necessarily want a single value answer. We can slightly
generalize this by creating a small Python dictionary with the three values in it. We'll look
more at dictionaries in Chapter 4, Built-in Data Structures – list, set, dict.

We'll use the warnings module instead of raising an exception when there's a problem:

>>> import warnings

Sometimes it is more helpful to produce a result that is doubtful than to stop processing.

How to do it…
Solve the equation for each of the unknowns. We've shown that previously for d = r * t, the
RTD calculation:

This leads to three separate expressions:1.
distance = rate * time
rate = distance / time
time = distance / rate

Wrap each expression in an if statement based on one of the values being None2.
when it's unknown:

        if distance is None:
            distance = rate * time



Function Definitions

[ 120 ]

        elif rate is None:
            rate = distance / time
        elif time is None:
            time = distance / rate

Refer to the Designing complex if…elif chains recipe from Chapter 2, Statements and3.
Syntax, for guidance on designing these complex if...elif chains. Include a
variation on the else crash option:

        else:
            warnings.warning( "Nothing to solve for" )

Build the resulting dictionary object. In simple cases, we can use the vars()4.
function to simply emit all of the local variables as a resulting dictionary. In some
cases, we may have local variables we don't want to include; in that case, we'll
need to build the dictionary explicitly:

        return dict(distance=distance, rate=rate, time=time)

Wrap all of this as a function using keyword parameters:5.

        def rtd(distance=None, rate=None, time=None):
            if distance is None:
                distance = rate * time
            elif rate is None:
                rate = distance / time
            elif time is None:
                time = distance / rate
            else:
                warnings.warning( "Nothing to solve for" )
            return dict(distance=distance, rate=rate, time=time)

We can use the resulting function like this:

>>> def rtd(distance=None, rate=None, time=None):
...     if distance is None:
...         distance = rate * time
...     elif rate is None:
...         rate = distance / time
...     elif time is None:
...         time = distance / rate
...     else:
...         warnings.warning( "Nothing to solve for" )
...     return dict(distance=distance, rate=rate, time=time)
>>> rtd(distance=31.2, rate=6)
{'distance': 31.2, 'time': 5.2, 'rate': 6}



Function Definitions

[ 121 ]

This shows us that going 31.2 nautical miles at a rate of 6 knots will take 5.2 hours.

For nicely formatted output, we might do this:

>>> result= rtd(distance=31.2, rate=6)
>>> ('At {rate}kt, it takes '
... '{time}hrs to cover {distance}nm').format_map(result)
'At 6kt, it takes 5.2hrs to cover 31.2nm'

To break up the long string, we used the Designing complex if…elif chains recipe from
Chapter 2, Statements and Syntax.

How it works…
Because we've provided default values for all of the parameters, we can provide argument
values for two of the three parameters, and the function can then solve for the third
parameter. This saves us from having to write three separate functions.

Returning a dictionary as the final result isn't essential to this. It's simply handy. It allows us
to have a uniform result no matter which parameter values were provided.

There's more…
We have an alternative formulation for this, one that involves more flexibility. Python
functions have an all other keywords parameter, prefixed with **. It is often shown like this:

    def rtd2(distance, rate, time, **keywords):
        print(keywords)

Any additional keyword arguments are collected into a dictionary that is provided to the
**keywords parameter. We can then call this function with extra parameters. Evaluate this
function like this:

    rtd2(rate=6, time=6.75, something_else=60)

We'll then see that the value of the keywords parameter is a dictionary object with the
value of {'something_else': 60}. We can then use ordinary dictionary processing
techniques on this structure. The keys and values in this dictionary are the names and
values provided when the function was evaluated.



Function Definitions

[ 122 ]

We can leverage this and insist that all arguments be provided with keywords:

    def rtd2(**keywords):
        rate= keywords.get('rate', None)
        time= keywords.get('time', None)
        distance= keywords.get('distance', None)
        etc.

This version uses the dictionary get() method to find a given key in the dictionary. If the
key is not present, a default value of None is provided.

(Returning a default of None is the default behavior of the get() method. Our example
contains some redundancy to clarify the processing. For some very complex situations, we
might have defaults other than None.)

This has the potential advantage of being slightly more flexible. It has the potential
disadvantage of making the actual parameter names very hard to discern.

We can follow the Writing Clear documentation strings with RST markup recipe and provide a
good docstring. It seems somehow better, though, to provide the parameter names
explicitly as part of the Python code rather than implicitly through documentation.

See also
We'll look at documentation of functions in the Writing Clear documentation strings
with RST markup recipe

Forcing keyword-only arguments with the *
separator
There are some situations where we have a large number of positional parameters to a
function. Perhaps we've followed the Designing functions with optional parameters recipe and
this leads us to design a function with so many parameters that it gets confusing.

Pragmatically, a function with more than about three parameters can be confusing. A great
deal of conventional mathematics seems to focus on one and two parameter functions.
There don't seem to be too many common mathematical operators that involve three or
more operands.



Function Definitions

[ 123 ]

When it gets difficult to remember the required order for the parameters, there are too
many parameters.

Getting ready
We'll look at a function that has a large number of parameters. We'll use a function which
prepares a wind-chill table and writes the data to a CSV format output file.

We need to provide a range of temperatures, a range of wind speeds, and information on
the file we'd like to create. This is a lot of parameters.

The basic formula is this:

Twc(Ta, V) = 13.12 + 0.6215Ta– 11.37V0.16 + 0.3965TaV
0.16

The wind chill temperature, Twc, is based on the air temperature, Ta, in degrees C, and the
wind speed, V, in KPH.

For Americans, this requires some conversions:

Convert from °F to °C: C = 5(F-32) / 9
Convert windspeed from MPH, Vm , to KPH, Vk: Vk = Vm × 1.609344
The result needs to be converted from °C back to °F: F = 32 + C(9/5)

We won't fold these into this solution. We'll leave that as an exercise for the reader.

One approach for creating a wind-chill table is to create something like this:

    import pathlib

    def Twc(T, V):
        return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**0.16

    def wind_chill(start_T, stop_T, step_T,
        start_V, stop_V, step_V, path):
        """Wind Chill Table."""
        with path.open('w', newline='') as target:
            writer= csv.writer(target)
            heading = [None]+list(range(start_T, stop_T, step_T))
            writer.writerow(heading)
            for V in range(start_V, stop_V, step_V):
                row = [V] + [Twc(T, V)
                    for T in range(start_T, stop_T, step_T)]
                writer.writerow(row)



Function Definitions

[ 124 ]

We've opened an output file using the with context. This follows the Managing a context
using the with statement recipe in Chapter 2, Statements and Syntax. Within this context,
we've created a write for the CSV output file. We'll look at this in more depth in Chapter 9,
Input/Output, Physical Format, Logical Layout.

We've used an expression, [None]+list(range(start_T, stop_T, step_T)), to create
a heading row. This expression includes a list literal and a generator expression that builds
a list. We'll look at lists in Chapter 4, Built-in Data Structures – list, set, dict. We'll look at the
generator expression in Chapter 8, Functional and Reactive Programming Features.

Similarly, each cell of the table is built by a generator expression, [Twc(T, V) for T in
range(start_T, stop_T, step_T)]. This is a comprehension that builds a list object.
The list consists of values computed by the wind-chill function, Twc(). We provide the
wind velocity based on the row in the table. We provide a temperature based on the column
in the table.

While the details involve forward-looking sections, the def line presents a problem. This
def line is very complex.

The problem with this design is that the wind_chill() function has seven positional
parameters. When we try to use this function, we wind up with code like the following:

    import pathlib
    p=pathlib.Path('code/wc.csv')
    wind_chill(0,-45,-5,0,20,2,p)

What are all those numbers? Is there something we can do to help explain what this line of
code means?

How to do it…
When we have a large number of parameters, it helps to use keyword arguments instead of
positional arguments.

In Python 3, we have a technique that mandates the use of keyword arguments. We can use
the * as a separator between two groups of parameters:

Before the *, we list the argument values that can be either positional or named by1.
keyword. In this example, we don't have any of these parameters.
After the *, we list the argument values that must be given with a keyword. For2.
our example, this is all of the parameters.



Function Definitions

[ 125 ]

For our example, the resulting function looks like this:

    def wind_chill(*, start_T, stop_T, step_T, start_V, stop_V, step_V,
path):

When we try to use the confusing positional parameters, we'll see this:

>>> wind_chill(0,-45,-5,0,20,2,p)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: wind_chill() takes 0 positional arguments but 7 were given

We must use the function as follows:

    wind_chill(start_T=0, stop_T=-45, step_T=-5,
        start_V=0, stop_V=20, step_V=2,
        path=p)

This use of mandatory keyword parameters forces us to write a clear statement each time
we use this complex function.

How it works…
The * character has two meanings in the definition of a function:

It's used as a prefix for a special parameter that receives all the unmatched
positional arguments. We often use *args to collect all of the positional
arguments into a single parameter named args.
It's used by itself, as a separator between parameters that may be applied
positionally and parameters which must be provided by keyword.

The print() function exemplifies this. It has three keyword-only parameters for the output
file, the field separator string, and the line end string.

There's more…
We can, of course, combine this technique with default values for the various parameters.
We might, for example, make a change to this:

    import sys
    def wind_chill(*, start_T, stop_T, step_T, start_V, stop_V, step_V,
output=sys.stdout):



Function Definitions

[ 126 ]

We can now use this function in two ways:

Here's a way to print the table on the console:

            wind_chill(
                start_T=0, stop_T=-45, step_T=-5,
                start_V=0, stop_V=20, step_V=2)

Here's a way to write to a file: 

            path = pathlib.Path("code/wc.csv")
            with path.open('w', newline='') as target:
                wind_chill(output=target,
                    start_T=0, stop_T=-45, step_T=-5,
                    start_V=0, stop_V=20, step_V=2)

We've changed the approach here, to one which is slightly more generalized. This follows
the Designing functions with optional parameters recipe.

See also
See the Picking an order for parameters based on partial functions recipe for another
application of this technique

Writing explicit types on function
parameters
The Python language allows us to write functions (and classes) which are entirely generic
with respect to data type. Consider this function as an example:

    def temperature(*, f_temp=None, c_temp=None):
        if c_temp is None:
            return {'f_temp': f_temp, 'c_temp': 5*(f_temp-32)/9}
        elif f_temp is None:
            return {'f_temp': 32+9*c_temp/5, 'c_temp': c_temp}
        else:
            raise Exception("Logic Design Problem")

This follows three recipes shown earlier: Using super flexible keyword parameters, Forcing
keyword-only arguments with the * separator from this chapter, and Designing complex if…elif
chains from Chapter 2, Statements and Syntax.



Function Definitions

[ 127 ]

This function will work for argument values of any numeric type. Indeed, it will work for
any data structure that implements the +, -, *, and / operators.

There are times when we do not want our functions to be completely generic. In some cases,
we would like to make some stronger assertions about data types. While we sometimes care
about the data type, we do not want to write a lot of code that looks like this:

    from numbers import Number
    def c_temp(f_temp):
        assert isinstance(F, Number)
        return 5*(f_temp-32)/9

This introduces performance overhead of an extra assert statement. It also clutters our
programs with a statement that – generally – should be restating the obvious.

Additionally, we can't rely on docstrings for testing purposes. Here's the recommended
style:

    def temperature(*, f_temp=None, c_temp=None):
        """Convert between Fahrenheit temperature and
        Celsius temperature.

        :key f_temp: Temperature in °F.
        :key c_temp: Temperature in °C.
        :returns: dictionary with two keys:
            :f_temp: Temperature in °F.
            :c_temp: Temperature in °C.
        """

The docstring doesn't allow any automated testing to confirm that the documentation
actually matches the code. The two could disagree with each other.

What we want are hints about the type of data involved that can be used for testing and
confirmation, but don't interfere with performance. How can we provide meaningful type
hints?

Getting ready
We'll implement a version of the temperature() function. We'll need two modules that
will help us provide hints regarding the data types for parameters and return values:

    from typing import *



Function Definitions

[ 128 ]

We've opted to import all of the names from the typing module. If we're going to supply
type hints, we want them to be terse. It's awkward having to write typing.List[str]. We
prefer to omit the module name.

We'll also need to install the latest version of mypy. This project is undergoing rapid
development. Rather than use the pip program to get a copy from PyPI, it's better to
download the latest version directly from the GitHub repository, h t t p s ://g i t h u b . c o m /J u k

k a L /m y p y .

The instructions say that, Currently, the version of mypy on PyPI is not compatible with Python
3.5. If you run Python 3.5 install directly from git.

$ pip3 install git+git://github.com/JukkaL/mypy.git

The mypy tool can be used to analyze our Python programs to determine if the type hints
match the actual code.

How to do it…
Python 3.5 introduces type hints to the language. We can use them in three places: function
parameters, function returns, and type hint comments:

Define a handy type for a variety of numbers:1.

        from decimal import Decimal
        from typing import *
        Number = Union[int, float, complex, Decimal]

Ideally, we'd like to use the abstract Number class in the numbers module.
Currently, this module doesn't have a formal type specification available, so we'll
define our own expectation for Number. This definition is a union of several
numeric types. Ideally, a future release of mypy or Python will include the needed
definitions.

Annotate arguments to functions like this:2.

        def temperature(*,
            f_temp: Optional[Number]=None,
            c_temp: Optional[Number]=None):

https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy


Function Definitions

[ 129 ]

We've added : and a type hint as part of the parameter. In this case, we're using
our own type definition of Number to state that any number is allowed here.
We've wrapped this with the Optional[] type operation to state that the
argument value can be either a Number or None.

Annotate return values from functions like this:3.

        def temperature(*,
            f_temp: Optional[Number]=None,
            c_temp: Optional[Number]=None) -> Dict[str, Number]:

We've added -> and a type hint for the return value of this function. In this case,
we've stated that the result will be a dictionary object with keys that are strings,
str, and values that are numbers using our type definition of Number.

The typing module introduces the type hint names such as Dict that we use to
explain the results of a function. This is different from the dict class which
actually builds objects. The typing.Dict is merely a hint.

If necessary, we can add type hints as comments in assignment and with4.
statements. These are rarely needed, but may clarify a long, complex series of
statements. If we wanted to add them, the annotations could look like this:

        result = {'c_temp': c_temp,
            'f_temp': f_temp} # type: Dict[str, Number]

We've added # type: Dict[str, Number] on the statement that builds the
final dictionary object.

How it works…
The type information we've added are called hints. They're not requirements that are
somehow checked by the Python compiler. They're not checked at runtime either.

The type hints are used by a separate program, mypy. See http://mypy-lang.org for more
information.

The mypy program examines the Python code, including the type hints. It applies some
formal reasoning and inference techniques to determine if the various type hints will be
true for any data that the Python program can process.

http://mypy-lang.org


Function Definitions

[ 130 ]

For larger and more complex programs, the output from mypy will include warnings and
errors that describe potential problems with either the code itself, or the type hints
decorating the code.

For example, here's a mistake that's easy to make. We've assumed that our function returns
a single number. Our return statement, however, doesn't match our expectation:

    def temperature_bad(*,
        f_temp: Optional[Number]=None,
        c_temp: Optional[Number]=None) -> Number:

        if c_temp is None:
            c_temp = 5*(f_temp-32)/9
        elif f_temp is None:
            f_temp = 32+9*c_temp/5
        else:
            raise Exception( "Logic Design Problem" )
        result = {'c_temp': c_temp,
            'f_temp': f_temp} # type: Dict[str, Number]
        return result

When we run mypy, we'll see this:

    ch03_r04.py: note: In function "temperature_bad":
    ch03_r04.py:37: error: Incompatible return value type:
        expected Union[builtins.int, builtins.float, builtins.complex,
decimal.Decimal],
        got builtins.dict[builtins.str,
        Union[builtins.int, builtins.float, builtins.complex,
decimal.Decimal]]

We can see our Number type name was expanded to Union[builtins.int,
builtins.float, builtins.complex, decimal.Decimal] in the error message. More
importantly, we can see that line 37, the return statement, doesn't match the function
definition.

Given this error, we need to either fix the return or the definition to be sure that the
expected type and the actual type match. It's not clear which is right. Either of these could
be the intent:

Compute and return a single value: This means that there would need to be two
return statements depending on which value was computed. In this case, there's
no reason to build the result dictionary object.



Function Definitions

[ 131 ]

Return the dictionary object: This means we need to correct the def statement to
have the proper return type. Changing this may spread ripples of change to other
functions that expect temperature to return a instance of Number.

The extra syntax for parameters and return values has no real impact on runtime, and only
a very small cost when the source code is first compiled into byte code. They are—after
all—merely hints.

There's more…
When using built-in types, we can often create elaborate structures. We might, for example,
have a dictionary that maps tuples of three integers to lists of strings:

    a = {(1, 2, 3): ['Poe', 'E'],
         (3, 4, 5): ['Near', 'a', 'Raven'],
        }

If this is the result of a function, how do we describe this?

We'll be creating a fairly complex type expression that summarizes each layer of the
structure:

Dict[Tuple[int, int, int], List[str]]

We've summarized a dictionary that maps one type, Tuple[int, int, int], as the key to
another type, List[str], as the value. This captures how several built-in types can be
combined to build complex data structures.

In this case, we've treated the tuple of three integers as an otherwise anonymous tuple. In
many cases, it's not merely a generic tuple, it's actually an RGB color which is modeled as a
tuple. Perhaps the list of strings is really a line of text from a longer document that's been
split on spaces into words.

In this case, we should do something like the following:

Color = Tuple[int, int, int]
Line = List[str]
Dict[Color, Line]

Creating our own application-specific type names can greatly clarify the processing that's
being performed using the built-in collection types.



Function Definitions

[ 132 ]

See also
See h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p - 0484/ for more information on 
type hints.
See h t t p s ://g i t h u b . c o m /J u k k a L /m y p y for the current mypy project.
See h t t p ://w w w . m y p y - l a n g . o r g for documentation on how mypy works with
Python 3.

Picking an order for parameters based on
partial functions
When we look at complex functions, we'll sometimes see a pattern to the ways we use the
function. We might, for example, evaluate a function many times with some argument
values that are fixed by context, and other argument values that are changing with the
details of the processing.

It can simplify our programming if our design reflects this concern. We'd like to provide a
way to make the common parameters slightly easier to work with than the uncommon
parameters. We'd also like to avoid having to repeat the parameters that are part of a larger
context.

Getting ready
We'll look at a version of the haversine formula. This computes distances between points on
the surface of the Earth, using the latitude and longitude coordinates of that point:

c = 2arc sin(√a)

The essential calculation yields the central angle, c, between two points. The angle is
measured in radians. We convert it into distance by multiplying by the Earth's mean radius
in some units. If we multiply the angle c by a radius of 3,959 miles, the distance, we'll
convert the angle to miles.

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
https://github.com/JukkaL/mypy
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org
http://www.mypy-lang.org


Function Definitions

[ 133 ]

Here's an implementation of this function. We've included type hints:

    from math import radians, sin, cos, sqrt, asin

    MI= 3959
    NM= 3440
    KM= 6372

    def haversine(lat_1: float, lon_1: float,
        lat_2: float, lon_2: float, R: float) -> float:
        """Distance between points.

        R is Earth's radius.
        R=MI computes in miles. Default is nautical miles.

    >>> round(haversine(36.12, -86.67, 33.94, -118.40, R=6372.8), 5)
    2887.25995
    """
    Δ_lat = radians(lat_2) - radians(lat_1)
    Δ_lon = radians(lon_2) - radians(lon_1)
    lat_1 = radians(lat_1)
    lat_2 = radians(lat_2)

    a = sin(Δ_lat/2)**2 + cos(lat_1)*cos(lat_2)*sin(Δ_lon/2)**2
    c = 2*asin(sqrt(a))

    return R * c

Note on the doctest example:
The doctest example uses an earth radius with an extra decimal point
that's not used elsewhere. This is so that this example matches other
examples online.
The earth isn't spherical. Around the equator, a more accurate radius is
6378.1370 km. Across the poles, the radius is 6356.7523 km. We're using
common approximations in the constants.

The problem we often have is that we're generally working in a single context, and we will
be providing the same value for R all the time. If, for example, we're working in a marine
environment, we'd always be using R = NM to get nautical miles.

There are two common approaches to providing a consistent value for an argument. We'll
look at both.



Function Definitions

[ 134 ]

How to do it…
In some cases, an overall context will establish a variable for a parameter. The value will
rarely change. There are several common approaches to providing a consistent value for an
argument. These involve wrapping the function in another function. There are several
approaches:

Wrap the function in a new function.
Create a partial function. This has two further refinements:

We can provide keyword parameters
Or we can provide positional parameters

We'll look at each of these in separate variations in this recipe.

Wrapping a function
We can provide contextual values by wrapping a general function in a context-specific
wrapper function:

Make some parameters positional and some parameters keywords. We want the1.
contextual features—the ones which change rarely—to be keywords. The
parameters which change more frequently should be left as positional. We can
follow the Forcing keyword-only arguments with the * separator recipe.
We might change the basic haversine function to look like this:

        def haversine(lat_1: float, lon_1: float,
            lat_2: float, lon_2: float, *, R: float) -> float:

We inserted the * to separate parameters into two groups. The first group can
have arguments supplied either by position or by keyword. The second group, –
R, in this case – must be given by keyword.

We can then write a wrapper function the will apply all of the positional2.
arguments unmodified. It will supply the additional keyword argument as part
of the long-running context:

        def nm_haversine(*args):
            return haversine(*args, R=NM)



Function Definitions

[ 135 ]

We've the *args construct in the function declaration to accept all positional
argument values in a single tuple, args. We've also *args when evaluating the
haversine() function to expand the tuple into all of the positional argument
values to this function.

Creating a partial function with keyword parameters
A partial function is a function which has some of the argument values supplied. When we
evaluate a partial function, we're mixing the previously supplied parameters with
additional parameters. One approach is to use keyword parameters, similar to wrapping a
function:

We can follow the Forcing keyword-only arguments with the * separator recipe. We1.
might change the basic haversine function to look like this:

        def haversine(lat_1: float, lon_1: float,
            lat_2: float, lon_2: float, *, R: float) -> float:

Create a partial function using the keyword parameter:2.

        from functools import partial
        nm_haversine = partial(haversine, R=NM)

The partial() function builds a new function from an existing function and a
concrete set of argument values. The nm_haversine() function has a specific
value for R provided when the partial was built.

We can use this like we'd use any other function:

>>> round(nm_haversine(36.12, -86.67, 33.94, -118.40), 2)
1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations without
having to patiently check that each time we used the haversine() function it had R=NM as
an argument.

Creating a partial function with positional parameters
A partial function is a function which has some of the argument values supplied. When we
evaluate a partial function, we're supplying additional parameters. An alternative approach
is to use positional parameters.



Function Definitions

[ 136 ]

If we try to use partial() with positional arguments, we're constrained to providing the
leftmost parameter values in the partial definition. This leads us to think of the first few
arguments to a function as candidates for being hidden by a partial function or a wrapper:

We might change the basic haversine function to look like this:1.

        def haversine(R: float, lat_1: float, lon_1: float,
            lat_2: float, lon_2: float) -> float:

Create a partial function using the positional parameter:2.

        from functools import partial
        nm_haversine = partial(haversine, NM)

The partial() function builds a new function from an existing function and a
concrete set of argument values. The nm_haversine() function has a specific
value for the first parameter, R, provided when the partial was built.

We can use this like we'd use any other function:

>>> round(nm_haversine(36.12, -86.67, 33.94, -118.40), 2)
1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations without
having to patiently check that each time we used the haversine() function it had R=NM as
an argument.

How it works…
The partial function is—essentially—identical to the wrapper function. While it saves us a
line of code, it has a more important purpose. We can build partials freely in the middle of
other, more complex pieces of a program. We don't need to use a def statement for this.

Note that creating partial functions leads to a few additional considerations when looking at
the order for positional parameters:

When we use *args, it must be last. This is a language requirement. It means that
the parameters in front of this can be identified specifically, all the rest become
anonymous and can be passed – en masse – to the wrapped function.
The leftmost positional parameters are easiest to provide a value when creating a
partial function.



Function Definitions

[ 137 ]

These two considerations lead us to look at the leftmost argument as being more of a
context: these are expected to change rarely. The rightmost parameters provide details and
change frequently.

There's more…
There's a third way to wrap a function—we can also build a lambda object. This will also
work:

    nm_haversine = lambda *args: haversine(*args, R=NM)

Notice that a lambda object is a function that's been stripped of name and body. It's reduced
to just two essentials:

The parameter list
A single expression that is the result

A lambda cannot have any statements. If we need statements, we need to use the def
statement to create a definition that includes a name and a body with multiple statements.

See also
We'll also look at further extending this design in the Writing reusable scripts with
the script library switch  recipe

Writing clear documentation strings with
RST markup
How can we clearly document what a function does? Can we provide examples? Of course
we can, and we really should. In the Including descriptions and documentation in Chapter 2,
Statements and Syntax and Writing clear documentation strings with RST markup recipes, we
looked at some essential documentation techniques. Those recipes introduced
ReStructuredText (RST) for module docstrings.

We'll extend those techniques to write RST for function docstrings. When we use a tool such
as Sphinx, the docstrings from our function will become elegant-looking documentation
that describes what our function does.



Function Definitions

[ 138 ]

Getting ready
In the Forcing keyword-only arguments with the * separator recipe, we looked at a function that
had a large number of parameters and another function that had only two parameters.

Here's a slightly different version of one of those functions, Twc():

>>> def Twc(T, V):
...     """Wind Chill Temperature."""
...     if V < 4.8 or T > 10.0:
...         raise ValueError("V must be over 4.8 kph, T must be below
10°C")
...     return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**0.16

We need to annotate this function with some more complete documentation.

Ideally, we've got Sphinx installed to see the fruits of our labor. See h t t p ://w w w . s p h i n x - d o

c . o r g .

How to do it…
We'll generally write the following things for a function description:

Synopsis
Description
Parameters
Returns
Exceptions
Test cases
Anything else that seems meaningful

Here's how we'll create nice documentation for a function. We can apply a similar recipe for
a function, or even a module:

Write the synopsis: A proper subject isn't required—we don't write This function1.
computes…; we start with Computes…. There's no reason to overstate the context:

        def Twc(T, V):
            """Computes the wind chill temperature."""

http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org
http://www.sphinx-doc.org


Function Definitions

[ 139 ]

Write the description with details:2.

        def Twc(T, V):
            """Computes the wind chill temperature

            The wind-chill, :math:`T_{wc}`, is based on
            air temperature, T, and wind speed, V.
            """

In this case, we used a little block of typeset math in our description. The :math:
interpreted text role uses LaTeX math typesetting. If you have LaTeX installed,
Sphinx will use that to prepare a little .png file with the math. If you want, Sphinx
can use MathJax or JSMath to do JavaScript math typesetting instead of creating a
.png file.

Describe the parameters: For positional parameters, it's common to use :param3.
name: description. Sphinx will tolerate a number of variations, but this is
common.
For parameters which must be keywords, it's common to use :key name:
description. The word key instead of param shows that it's a keyword-only
parameter:

        def Twc(T: float, V: float):
            """Computes the wind chill temperature

            The wind-chill, :math:`T_{wc}`, is based on
            air temperature, T, and wind speed, V.

            :param T: Temperature in °C
            :param V: Wind Speed in kph
            """

There are two ways to include type information:

Using Python 3 type hints
Using RST :type name: markup

We generally don't use both techniques. Type hints are a better idea than the RST
:type: markup.



Function Definitions

[ 140 ]

Describe the return value using :returns::4.

        def Twc(T: float, V: float) -> float:
            """Computes the wind chill temperature

            The wind-chill, :math:`T_{wc}`, is based on
            air temperature, T, and wind speed, V.

            :param T: Temperature in °C
            :param V: Wind Speed in kph
            :returns: Wind-Chill temperature in °C
            """

There are two ways to include return type information:

Using Python 3 type hints
Using RST :rtype: markup

We generally don't use both techniques. The RST :rtype: markup has been
superseded by type hints.

Identify the important exceptions that might be raised. Use the :raises5.
exception: reason markup. There are several possible variations, but :raises
exception: seems to be most popular:

        def Twc(T: float, V: float) -> float:
            """Computes the wind chill temperature

            The wind-chill, :math:`T_{wc}`, is based on
            air temperature, T, and wind speed, V.

            :param T: Temperature in °C
            :param V: Wind Speed in kph
            :returns: Wind-Chill temperature in °C
            :raises ValueError: for wind speeds under over 4.8 kph or T
above 10°C
            """

Include a doctest test case, if possible:6.

        def Twc(T: float, V: float) -> float:
            """Computes the wind chill temperature

            The wind-chill, :math:`T_{wc}`, is based on
            air temperature, T, and wind speed, V.



Function Definitions

[ 141 ]

            :param T: Temperature in °C
            :param V: Wind Speed in kph
            :returns: Wind-Chill temperature in °C
            :raises ValueError: for wind speeds under over 4.8 kph or T
above 10°C
            >>> round(Twc(-10, 25), 1)
            -18.8

            """

Write any additional notes and helpful information. We could add the following7.
to the docstring:

            See https://en.wikipedia.org/wiki/Wind_chill

            ..  math::

                T_{wc}(T_a, V) = 13.12 + 0.6215 T_a - 11.37 V^{0.16} +
0.3965 T_a V^{0.16}

We've included a reference to a Wikipedia page that summarizes wind-chill
calculations and has links to more detailed information.

We've also included a .. math:: directive with the LaTeX formula that's used in
the function. This will typeset nicely, providing a very readable version of the
code.

How it works…
For more information on docstrings, see the Including descriptions and documentation recipe in
Chapter 2, Statements and Syntax. While Sphinx is popular, it isn't the only tool that can
create documentation from the docstring comments. The pydoc utility that's part of the
Python Standard Library can also produce good looking documentation from the docstring
comments.

The Sphinx tool relies on the core features of RST processing in the docutils package. See
https://pypi.python.org/pypi/docutils for more information.

The RST rules are relatively simple. Most of the additional features in this recipe leverage
the interpreted text roles of RST. Each of our :param T:, :returns:, and :raises
ValueError: constructs is a text role. The RST processor can use this information to decide
on style and structure for the content. The style usually includes a distinctive font. The
context might be an HTML definition list format.

https://pypi.python.org/pypi/docutils


Function Definitions

[ 142 ]

There's more…
In many cases, we'll also need to include cross-references among functions and classes. For
example, we might have a function that prepares a wind-chill table. This function might
have documentation that includes a reference to the Twc() function.

Sphinx will generate these cross-references using a special :func: text role:

    def wind_chill_table():
        """Uses :func:`Twc` to produce a wind-chill
        table for temperatures from -30°C to 10°C and
        wind speeds from 5kph to 50kph.
        """

We've used the :func:`Twc` to cross-reference one function in the RST documentation for
a different function. Sphinx will turn these into proper hyperlinks.

See also
See the Including descriptions and documentation and Writing better RST markup in
docstrings recipes in Chapter 2, Statements and Syntax, for other recipes that show
how RST works

Designing recursive functions around
Python's stack limits
Some functions can be defined clearly and succinctly using a recursive formula. There are
two common examples:

The factorial function:



Function Definitions

[ 143 ]

The rule for computing Fibonacci numbers:

Each of these involves a case that has a simple defined value and a case that involves
computing the function's value based on other values of the same function.

The problem we have is that Python imposes a limitation on the upper limit for these kinds
of recursive function definitions. While Python's integers can easily represent 1000!, the
stack limit prevents us from doing this casually.

Computing Fn Fibonacci numbers involves an additional problem. If we're not careful, we'll
compute a lot of values more than once:

F5 = F4 + F3

F5 = (F3 + F2) + (F2 + F1)

And so on.

To compute F5, we'll compute F3 twice, and F2 three times. This is extremely costly.

Getting ready
Many recursive function definitions follow the pattern set by the factorial function. This is
sometimes called tail recursion because the recursive case can be written at the tail of the
function body:

def fact(n: int) -> int:
    if n == 0:
        return 1
    return n*fact(n-1)

The last expression in the function refers back to the function with a different argument
value.

We can restate this, avoiding the recursion limits in Python.



Function Definitions

[ 144 ]

How to do it…
A tail recursion can also be described as a reduction. We're going to start with a collection
of values, and then reduce them to a single value:

Expand the rule to show all of the details:1.
n! = n x (n-1) × (n-2) × (n-3)… × 1
Write a loop that enumerates all the values:2.
N = {n, n-1, n-2, …, 1}
In Python, it's simply this: range(1, n+1). In some cases, though, we might
have to apply some transformation function to the base values:
N = {f(i): 1 ≤ i < n+1}
If we had to perform some kind of transformation, it might look like this in
Python:

        N = (f(i) for i in range(1,n+1))

Incorporate the reduction function. In this case, we're computing a large product,3.
using multiplication. We can summarize this using  x notation. For this
example, we're only imposing a simple boundary on the values computed in the
product:

Here's the implementation in Python:

        def prod(int_iter):
            p = 1
            for x in int_iter:
                p *= x
            return p

We can restate this into a solution like this. This uses higher-level functions:

    def fact(n):
        return prod(range(1, n+1))

This works nicely. We've optimized the first solution to combine the prod() and fact()
functions into a single function. It turns out that doing that optimization doesn't actually
shave much time off the operation.



Function Definitions

[ 145 ]

Here are the comparisons, run using the timeit module:

Simple 4.7766

Optimized 4.6901

This is in the order of a 2% performance improvement. Not a significant change.

Note that the Python 3 range object is lazy—it doesn't create a big list object, it returns
values as they are requested by the prod() function. This is different from Python 2, where
the range() function eagerly created a big list object with all of the values, and the
xrange() function was lazy.

How it works…
A tail recursion definition is handy because it's short and easy to remember.
Mathematicians like this because it can help clarify what a function means.

Many static, compiled languages are optimized in a manner similar to the technique we've
shown. There are two parts to this optimization:

Use relatively simple algebraic rules to reorder the statements so that the
recursive clause is actually last. The if clauses can be reorganized into a different
physical order so that the return fact(n-1) * n is last. This rearrangement is
necessary for code organized like this: 

        def ugly_fact(n):
            if n > 0:
                return fact(n-1) * n
            elif n == 0:
                return 1
            else:
                raise Exception("Logic Error")  

Inject a special instruction into the virtual machine's byte code—or the actual
machine code—that re-evaluates the function without creating a new stack frame.
Python doesn't have this feature. In effect, this special instruction transforms the
recursion into a kind of while statement: 

        p = n
        while n != 1:
            n = n-1
            p *= n



Function Definitions

[ 146 ]

This purely mechanical transformation leads to rather ugly code. In Python, it may also be
remarkably slow. In other languages, the presence of the special byte code instruction will
lead to code that runs quickly.

We prefer not to do this kind of mechanical optimization. First, it leads to ugly code. More
importantly – in Python – it tends to create code that's actually slower than the alternative
developed above.

There's more…
The Fibonacci problem involves two recursions. If we write it naively as a recursion, it
might look like this:

    def fibo(n):
        if n <= 1:
            return 1
        else:
            return fibo(n-1)+fibo(n-2)

It's difficult to do a simple mechanical transformation into a tail recursion. A problem with
multiple recursions like this requires some more careful design.

We have two ways to reduce the computation complexity of this:

Use memoization
Restate the problem

The memoization technique is easy to apply in Python. We can use the
functools.lru_cache() as a decorator. This function will cache previously computed
values. This means that we'll only compute a value once; every other time, the lru_cache
will return the previously computed value.

It looks like this:

    from functools import lru_cache

    @lru_cache(128)
    def fibo(n):
        if n <= 1:
            return 1
        else:
            return fibo(n-1)+fibo(n-2)



Function Definitions

[ 147 ]

Adding a decorator is a simple way to optimize a more complex multi-way recursion.

Restating the problem means looking at it from a new perspective. In this case, we can think
of computing all Fibonacci numbers up to and including Fn. We only want the last value in
this sequence. We compute all the intermediates because it's more efficient to do it that way.
Here's a generator function that does this:

    def fibo_iter():
        a = 1
        b = 1
        yield a
        while True:
            yield b
            a, b = b, a+b

This function is an infinite iteration of Fibonacci numbers. It uses Python's yield so that it
emits values in a lazy fashion. When a client function uses this iterator, the next number in
the sequence is computed as each number is consumed.

Here's a function that consumes the values and also imposes an upper limit on the
otherwise infinite iterator:

    def fibo(n):
        """
        >>> fibo(7)
        21
        """
        for i, f_i in enumerate(fibo_iter()):
            if i == n: break
        return f_i

This function consumes each value from the fibo_iter() iterator. When the desired
number has been reached, the break statement ends the for statement.

When we look back at the Designing a while statement which terminates properly recipe in
Chapter 2, Statements and Syntax, we noted that a while statement with a break may have
multiple reasons for terminating. In this example, there is only one way to end the for
statement.

We can always assert that i == n at the end of the loop. This simplifies the design of the
function.



Function Definitions

[ 148 ]

See also
See the Designing a while statement which terminates properly recipe in Chapter 2,
Statements and Syntax

Writing reusable scripts with the script
library switch
It's common to create small scripts which we want to combine into a larger script. We don't
want to copy and paste the code. We want to leave the working code in one file and use it in
multiple places. Often we want to combine elements from multiple files to create more
sophisticated scripts.

The problem we have is that when we import a script it actually starts running. This is
generally not what we expect when we import a script so that we can reuse it.

How can we import the functions (or classes) from a file without having the script start
doing something?

Getting ready
Let's say that we have a handy implementation of the haversine distance function called
haversine(), and it's in a file named ch03_r08.py.

Initially, the file might look like this:

    import csv
    import pathlib
    from math import radians, sin, cos, sqrt, asin
    from functools import partial

    MI= 3959
    NM= 3440
    KM= 6373

    def haversine( lat_1: float, lon_1: float,
        lat_2: float, lon_2: float, *, R: float ) -> float:
        ... and more ...

    nm_haversine = partial(haversine, R=NM)



Function Definitions

[ 149 ]

    source_path = pathlib.Path("waypoints.csv")
    with source_path.open() as source_file:
        reader= csv.DictReader(source_file)
        start = next(reader)
        for point in reader:
            d = nm_haversine(
                float(start['lat']), float(start['lon']),
                float(point['lat']), float(point['lon'])
                )
            print(start, point, d)
            start= point

We've omitted the body of the haversine() function, showing only ... and more...,
since it's shown in the Picking an order for parameters based on partial functions recipe. We've
focused on the context in which the function is in a Python script that also opens a file,
wapypoints.csv, and does some processing on that file.

How can we import this module without it printing a display of distances between
waypoints in our waypoints.csv file?

How to do it…
Python scripts can be simple to write. Indeed, it's often too simple to create a working
script. Here's how we transform a simple script into a reusable library:

Identify the statements that do the work of the script: we'll distinguish between1.
definition and action. Statements such as import, def, and class are clearly
definitional—they support the work but they don't do the work. Almost all other
statements take action.
In our example, we have four assignment statements that are more definition
than action. The distinction is entirely one of intent. All statements, by definition,
take an action. These actions, though, are more like the action of the def
statement than they are like the action of the with statement later in the script.
Here are the generally definitional statements:

        MI= 3959
        NM= 3440
        KM= 6373

        def haversine( lat_1: float, lon_1: float,
            lat_2: float, lon_2: float, *, R: float ) -> float:
            ... and more ...

        nm_haversine = partial(haversine, R=NM)



Function Definitions

[ 150 ]

The rest of the statements clearly take an action toward producing the printed
results.

Wrap the actions into a function:2.

        def analyze():
            source_path = pathlib.Path("waypoints.csv")
            with source_path.open() as source_file:
                reader= csv.DictReader(source_file)
                start = next(reader)
                for point in reader:
                    d = nm_haversine(
                        float(start['lat']), float(start['lon']),
                        float(point['lat']), float(point['lon'])
                        )
                    print(start, point, d)
                    start= point

Where possible, extract literals and make them into parameters. This is often a3.
simple movement of the literal to a parameter with a default value.
From this:

        def analyze():
            source_path = pathlib.Path("waypoints.csv")

To this:

        def analyze(source_name="waypoints.csv"):
            source_path = pathlib.Path(source_name)

This makes the script reusable because the path is now a parameter instead of an
assumption.

Include the following as the only high-level action statements in the script file:4.

        if __name__ == "__main__":
            analyze()

We've packaged the action of the script as a function. The top-level action script is now
wrapped in an if statement so that it isn't executed during import.



Function Definitions

[ 151 ]

How it works…
The most important rule for Python is that an import of a module is essentially the same as
running the module as a script. The statements in the file are executed in order from top to
bottom.

When we import a file, we're generally interested in executing the def and class
statements. We might be interested in some assignment statements.

When Python runs a script, it sets a number of built-in special variables. One of these is
__name__. This variable has two different values, depending on the context in which the
file is being executed:

The top-level script, executed from the command line: In this case, the value of
the built-in special name of __name__ is set to __main__.
A file being executed because of an import statement: In this case, the value of
__name__ is the name of the module being created.

The standard name of __main__ may seem a little odd at first. Why not use the filename in
all cases? This special name is assigned because a Python script can be read from one of
many sources. It can be a file. Python can also be read from the stdin pipeline, or it can be
provided on the Python command line using the -c option.

When a file is being imported, however, the value of __name__ is set to the name of the
module. It will not be __main__. In our example, the value __name__ during import
processing will be ch03_r08.

There's more…
We can now build useful work around a reusable library. We might make several files that
look like this:

File trip_1.py:

    from ch03_r08 import analyze
    analyze('trip_1.csv')



Function Definitions

[ 152 ]

Or perhaps something even more complex:

File all_trips.py:

    from ch03_r08 import analyze
    for trip in 'trip_1.csv', 'trip_2.csv':
        analyze(trip)

The goal is to decompose a practical solution into two collections of features:

The definition of classes and functions
A very small action-oriented script that uses the definitions to do useful work

To get to this goal, we'll often start with a script that conflates both sets of features. This
kind of script can be viewed as a spike solution. Our spike solution should evolve towards
a more refined solution as soon as we're sure that it works.

A spike or piton is a piece of removable mountain-climbing gear that doesn't get us any
higher on the route, but it enables us to climb safely.

See also
In Chapter 6, Basics of Classes and Objects, we'll look at class definitions. These are
another kind of widely used definitional statement.



4
Built-in Data Structures – list,

set, dict
In this chapter we'll look at the following recipes:

Choosing a data structure
Building lists – literals, appending, and comprehensions
Slicing and dicing a list
Deleting from a list – deleting, removing, popping, and filtering
Reversing a copy of a list
Using set methods and operators
Removing items from a set – remove(), pop(), and difference
Creating dictionaries – inserting and updating
Removing from dictionaries – the pop() method and the del statement
Controlling the order of dict keys
Handling dictionaries and sets in doctest examples
Understanding variables, references, and assignment
Making shallow and deep copies of objects
Avoiding mutable default values for function parameters

Introduction
Python has a rich collection of built-in data structures. A great deal of useful programming
is commonly done with these built-in structures. These collections cover a variety of
common situations.



Built-in Data Structures – list, set, dict

[ 154 ]

We'll look at an overview of the various structures that are available and what problems
they solve. From there, we can look at lists, dictionaries, and sets in detail.

Note that we've set the built-in tuple and string aside as being different from the list
structure. There are some important similarities as well as some differences. In Chapter 1,
Numbers, Strings, and Tuples, we emphasized the way strings and tuples behave more like
immutable numbers than mutable collections.

We'll also look at some more advanced topics related to how python handles references to
objects. We'll look at some issues related to the mutability of these data structures, as well.

Choosing a data structure
Python offers a number of built-in data structures to help us work with collections of data.
It can be confusing to determine which is appropriate for a given purpose.

How do we choose which structure to use? What are the features of lists, sets, and
dictionaries? Why do we have tuples and frozen sets?

Getting ready
Before we put data into a collection, we'll need to consider how we'll gather the data, and
what we'll do with the collection once we have it. The big question is always how we'll
identify a particular item within the collection.

We'll look at a few key questions that we need to answer.

How to do it…
Is the programming focused on doing membership tests? An example of this is a1.
collection of valid input values. When the user enters something that's in the
collection, their input is valid, otherwise it's invalid.

Simple membership suggests using a set:

        valid_inputs = {"yes", "y", "no", "n"}
        answer = None
        while answer not in valid_inputs:
            answer = input("Continue? [y, n] ").lower()



Built-in Data Structures – list, set, dict

[ 155 ]

A set holds items in no particular order. Once an item is a member, we can't add
it again:

      >>> valid_inputs = {"yes", "y", "no", "n"}
      >>> valid_inputs.add("y")
      >>> valid_inputs
      {'no', 'y', 'n', 'yes'}

We have created a set, valid_inputs, with four distinct string items. We can't
add another y to a set which already contains y. The contents of the set doesn't
change.

Also note that the order of the items in the set isn't exactly the order in which we
initially provided them. A set can't maintain any particular order to the items, it
can only determine if an item exists in the set.

Are we going to identify items by their position in the collection? An example2.
includes the lines in an input file—the line number is its position in the collection.

   When we must identify an item using an index or position, we must use a list:

      >>> month_name_list = ["Jan", "Feb", "Mar", "Apr",
      ...    "May", "Jun", "Jul", "Aug",
      ...    "Sep", "Oct", "Nov", "Dec"]
      >>> month_name_list[8]
      "Sep"
      >>> month_name_list.index("Feb")
      1

We have created a list, month_name_list, with 12 string items. We can pick an
item by providing its position. We can also use the index() method to locate the
index of an item in the list.

Lists in Python always start with position zero. This is true for tuples and strings,
also.

If the number of items in the collection is fixed—for example RGB colors have
three values—then we might be looking at a tuple instead of a list. If the
number of items will grow and change, then the list collection is a better choice
than the tuple collection.



Built-in Data Structures – list, set, dict

[ 156 ]

Are we going to identify the items in a collection by a key that's not the item's3.
position? An example might include a mapping between strings of
characters—words—and integers which represent the frequencies of those words,
or a mapping between a color name and the RGB tuple for that color.

When we must identify items with a non-positional key, we're using some kind of
mapping. The built-in mapping is dict. There are several extensions that add
more features:

      >>> scheme = {"Crimson": (220, 14, 60),
      ... "DarkCyan": (0, 139, 139),
      ... "Yellow": (255, 255, 00)}
      >>> scheme['Crimson']
      (220, 14, 60)

In this dictionary, scheme, we've created a mapping from color names to the RGB
color tuples. When we use a key, for example "Crimson", we can retrieve the
value bound to that key.

Consider the mutability of items in a set collection and the keys in a dict4.
collection. Each item in a set must be an immutable object. Numbers, strings, and
tuples are all immutable, and can be collected into sets. Since a list, dict, or
set object is mutable, they can't be used as items in a set. It's impossible to build
a set of list items, for example.

Rather than create a set of list items, we can transform each list item into a
tuple. We can create a set of immutable tuple items.

Similarly, dictionary keys must be immutable. We can use a number, or a string,
or a tuple as a dictionary key. We can't use a list, or a set, or another mutable
mapping as a dictionary key.

How it works…
Each of Python's built-in collections offers a specific set of unique features. The collections
also offer a large number of overlapping features. The challenge for programmers new to
Python is to identify the unique features of each collection.



Built-in Data Structures – list, set, dict

[ 157 ]

It turns out that the collections.abc module provides a kind of road map through the
built-in collections. The collections.abc module defines the Abstract Base Classes
(ABCs) that support the concrete classes we use. We'll use the names from this set of
definitions to guide us through the features.

From the ABCs, we can see that there are actually places for a total of six kinds of
collections:

Set: The unique feature is that items are either members or not. This means
duplicates can't be handled:

Mutable set: The set collection
Immutable set: The frozenset collection

Sequence: The unique feature is that items are provided with an index position:
Mutable sequence: The list collection
Immutable sequence: The tuple collection

Mapping: The unique feature is that each item has a key that refers to a value:
Mutable mapping: The dict collection
Immutable mapping: Interestingly, there's no built-in frozen
mapping

Python's libraries offer a large number of additional implementations of these core
collection types. We can see many of these in the Python Standard Library.

The collections module contains a number of variations on the built-in collections. These
include:

namedtuple: A tuple that offers names for each item in a tuple. It's slightly
more clear to use rgb_color.red than rgb_color[0].
deque: A double-ended queue. It's a mutable sequence with optimizations for 
pushing and popping from each end. We can do similar things with a list, but
the deque is more efficient.
defaultdict: A dict that can provide a default value for a missing key.
Counter: A dict which is designed to count occurrences of a key. This is
sometimes called a multiset or a bag.
OrderedDict: A dict which retains the order in which keys were created.
ChainMap: A dict which combines several dictionaries into a single mapping.



Built-in Data Structures – list, set, dict

[ 158 ]

There's more in the Python Standard Library. We can also use the heapq module which
defines a priority queue implementation. The bisect module includes methods for
searching a sorted list very quickly. This allows a list to have performance that is a little
closer to the fast lookups of a dictionary.

There's more…
We can look at a list of data structures like this: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /L i s t _ o f

_ d a t a _ s t r u c t u r e s .

There are some important summaries that are part of this giant index of data structures.
Different parts of the article provide slightly different summaries of data structures. We'll
take a quick look at four classifications.

Arrays: There are variant implementations that offer similar features. Python's
list structure is typical, and offers performance similar to a linked-list
implementation of an array.
Trees: Generally, tree structures can be used to create sets, sequential lists, or key-
value mappings. We can look at a tree as an implementation technique, rather
than a data structure with a unique feature set.
Hashes: Python uses hashes to implement dictionaries and sets. This leads to
good speed but large memory consumption.
Graphs: Python doesn't have a built-in graph data structure. However, we can
easily represent a graph structure with a dictionary where each node has a list of
adjacent nodes.

We can—with a little cleverness—implement almost any kind of data structure in Python.
Either the built-in structures have the essential features, or we can locate a built-in structure
that can be pressed into service.

See also
For advanced graph manipulation, see h t t p s ://n e t w o r k x . g i t h u b . i o .

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io
https://networkx.github.io


Built-in Data Structures – list, set, dict

[ 159 ]

Building lists – literals, appending, and
comprehensions
If we've decided to create a collection that uses an item's position—a list—we have
several ways of building this structure. We'll look at a number of ways we can build a list
object from individual items.

In some cases, we'll need a list because it allows duplicate values. A great many statistical
operations don't require knowing the position of an item. A multiset would be useful for
this, but we don't have this as a built-in structure; it's very common to use a list instead of
a multiset.

Getting ready
Let's say we need to do some statistical analyses on some file sizes. Here's a short script that
will provide us with the sizes of some files:

>>> import pathlib
>>> home = pathlib.Path('source')
>>> for path in home.glob('*/index.rst'):
...     print(path.stat().st_size, path.parent)
2353 source/ch_01_numbers_strings_and_tuples
2889 source/ch_02_statements_and_syntax
2195 source/ch_03_functions
3094 source/ch_04_built_in_data_structures_list_tuple_set_dict
725 source/ch_05_user_inputs_and_outputs
1099 source/ch_06_basics_of_classes_and_objects
690 source/ch_07_more_advanced_class_design
1207 source/ch_08_functional_programming_features
926 source/ch_09_input_output_physical_format_logical_layout
758 source/ch_10_statistical_programming_and_linear_regression
615 source/ch_11_testing
521 source/ch_12_web_services
1320 source/ch_13_application_integration

We've used a pathlib.Path object to represent a directory in our file system. The glob()
method expands all names that match a given pattern. In this case, we used a pattern of
'*/index.rst'. We can use the for statement to display the size from the file's OS stat
data.



Built-in Data Structures – list, set, dict

[ 160 ]

We'd like to accumulate a list object that has the various file sizes. From that we can
compute total size, and average size. We can look for files which seem too large or too
small.

We have four ways to createlist objects:

We can create literal display of a list using a sequence of values surrounded by
[] characters. It looks like this: [value, ... ]. Python needs to match the [
and ] to see a complete logical line, so the literal can span physical lines. For
more information see the Writing long lines of code recipe in Chapter 2, Statements
and Syntax.

       [2353, 2889, 2195, 3094, 725,
      1099, 690, 1207, 926, 758,
      615, 521, 1320]

We can convert some other data collection into a list using the list() function.
We can convert a set, or the keys of a dict, or the values of a dict. We'll look at
a more sophisticated example of this in the Slicing and dicing a list recipe.
We have list methods that allow us to build a list one item a time. These
methods include append(), extend() and insert(). We'll look at append() in
the Building a list with the append() method section of this recipe. We'll look at the
other methods in the There's More… section of this recipe.
We have generator expressions which can be used to build list objects. One
kind of generator is a list comprehension.

How to do it…

Building a list with the append() method
Create an empty list, []:1.

      >>> file_sizes = []

Iterate through some source of data. Append the items to the list using the2.
append() method:

      >>> home = pathlib.Path('source')
      >>> for path in home.glob('*/index.rst'):
      ...     file_sizes.append(path.stat().st_size)



Built-in Data Structures – list, set, dict

[ 161 ]

      >>> print(file_sizes)
      [2353, 2889, 2195, 3094, 725, 1099, 690,
      1207, 926, 758, 615, 521, 1320]
      >>> print(sum(file_sizes))
      18392

We used the path's glob() method to find all files that match the given pattern. The
stat() method of a path provides the OS stat data structure, which includes the size,
st_size, in bytes.

When we print the list, Python displays it in literal notation. This is handy if we ever need
to copy and paste the list into another script.

It's very important to note that the append() method does not return a value. The
append() method mutates the list object, and does not return anything.

Generally, any method that mutates an object has no return value.
Methods like append(), extend(), sort(), and reverse() have no
return value. They adjust the structure of the list object itself.
The append() method does not return a value.
It mutates the list object.
It's surprisingly common to see wrong code like this:
a = ['some', 'data']
a = a.append('more data')

This is emphatically wrong. This will set a to None.
The correct approach is a statement like this, without any additional
assignment:
a.append('more data')

Writing a list comprehension
The goal of a list comprehension is to create an object that occupies a syntax role similar to a
list literal:

Write the wrapping [] brackets that surround the list object.1.
Write the source of the data. This will include the target variable. Note that2.
there's no : at the end because we're not writing a complete statement:

        for path in home.glob('*/index.rst')



Built-in Data Structures – list, set, dict

[ 162 ]

Prefix this with the expression to evaluate for each value of the target variable.3.
Again, since this is a simple expression we cannot use complex statements here:

        path.stat().st_size
            for path in home.glob('*/index.rst')

In some cases, we'll need to add a filter. This is an if clause after the for clause.
We can make the generator expression quite sophisticated.

Here's the entire list object:

>>> [path.stat().st_size
...    for path in home.glob('*/index.rst')]
[2353, 2889, 2195, 3094, 725, 1099, 690, 1207, 926, 758, 615, 521, 1320]

Now that we've created a list object, we can assign it to a variable and do other
calculations and summaries on the data.

The list comprehension includes a generator expression, called a comprehension in the
language manual. The generator expression is a data expression attached to a for clause.
Since this generator is an expression, not a complete statement, there are some limitations
on what it can do. The data expression is evaluated repeatedly, and is controlled by the for
clause.

Using the list function on a generator expression
We'll create a list function that uses the generator expression:

Write the wrapping list() function that surrounds the generator expression.1.
We'll reuse steps two and three from the list comprehension version to create a2.
generator expression. Here's the generator expression:

        path.stat().st_size
            for path in home.glob('*/index.rst')

Here's the entire list object:

>>> list(path.stat().st_size
...    for path in home.glob('*/index.rst'))
[2353, 2889, 2195, 3094, 725, 1099, 690, 1207, 926, 758, 615, 521, 1320]



Built-in Data Structures – list, set, dict

[ 163 ]

How it works…
A Python list object has a dynamic size. The bounds of the array are adjusted when items
are appended or inserted, or the list is extended with another list. Similarly, the bounds
shrink when items are popped or deleted. We can access any item very quickly, and the
speed of access doesn't depend on the size of the list.

In rare cases, we might want to create a list with a given initial size, and then set the
values of the items separately. We can do this with a list comprehension like this:

    some_list = [None for i in range(100)]

This will create a list with an initial size of 100 items, each of which is None. It's rare to need
this, though, because lists can grow in size as needed.

The list comprehension syntax and the list() function both consume items from a
generator and append them to create a new list object.

There's more…
Our goal in creating a list object was to be able to summarize it. We can use a variety of
Python functions for this. Here are some examples:

>>> sizes = list(path.stat().st_size
...    for path in home.glob('*/index.rst'))
>>> sum(sizes)
18392
>>> max(sizes)
3094
>>> min(sizes)
521
>>> from statistics import mean
>>> round(mean(sizes), 3)
1414.769

We've used the built-in sum(), min(), and max() to produce some descriptive statistics of
these document sizes. Which of these index files is the smallest? We want to know the
position of the minimum in the list of values. We can use the index() method for this:

>>> sizes.index(min(sizes))
11



Built-in Data Structures – list, set, dict

[ 164 ]

We've found the minimum, and then used the index() method to locate the position of
that minimal value. Recall that the index values start at zero, so the smallest file is for the
twelfth chapter.

Other ways to extend a list
We can extend a list, as well as insert into the middle or beginning of a list. We have two
ways to extend a list: we can use the + operator or we can use the extend() method. Here's
an example of creating two lists and putting them together with +:

>>> ch1 = list(path.stat().st_size
...    for path in home.glob('ch_01*/*.rst'))
>>> ch2 = list(path.stat().st_size
...    for path in home.glob('ch_02*/*.rst'))
>>> len(ch1)
13
>>> len(ch2)
12
>>> final = ch1 + ch2
>>> len(final)
25
>>> sum(final)
104898

We have created a list of sizes of documents with names like ch_01*/*.rst. We then
created a second list of sizes of documents with a slightly different name pattern,
ch_02*/*.rst. We then combined the two lists into a final list.

We can do this using the extend() method, also. We'll reuse the two lists and build a new
list from them:

>>> final_ex = []
>>> final_ex.extend(ch1)
>>> final_ex.extend(ch2)
>>> len(final_ex)
25
>>> sum(final_ex)
104898



Built-in Data Structures – list, set, dict

[ 165 ]

We noted that append() does not return a value. Note that extend() does not return a
value, either. The extend() method mutates the list object.

We can insert a value prior to any particular position in a list, also. The insert() method
accepts the position of an item; the new value will be before the given position:

>>> p = [3, 5, 11, 13]
>>> p.insert(0, 2)
>>> p
[2, 3, 5, 11, 13]
>>> p.insert(3, 7)
>>> p
[2, 3, 5, 7, 11, 13]

We've inserted two new values into a list object. As with append() and extend(),
insert() does not return a value. It mutates the list object.

See also
See the Slicing and dicing a list recipe for ways to copy lists and pick sublists from
a list.
See the Deleting from a list – deleting, removing, popping, and filtering recipe for other
ways to remove items from a list.
In the Reversing a copy of a list recipe we'll look at reversing a list.
This article provides some insights into how Python collections work internally:
https://wiki.python.org/moin/TimeComplexity. When looking at the tables, it's
important to note that O(1) means that the cost is essentially constant, and O(n)
means the cost varies with the index of the item we're trying to process. This
means that the cost grows as the size of the collection grows.

Slicing and dicing a list
There are many times when we want to pick items from a list. One of the most common
kinds of processing is to treat the first item of a list as a special case. This leads to a kind of
head-tail processing where we treat the head of a list differently from the items in the tail of
a list.

We can use these techniques to make a copy of a list, also.

https://wiki.python.org/moin/TimeComplexity


Built-in Data Structures – list, set, dict

[ 166 ]

Getting ready
We have a spreadsheet that was used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height

engine off

Other notes

10/25/2013 08:24 29

13:15 27

calm seas—anchor solomon's island

10/26/2013 09:12 27

18:25 22

choppy—anchor in jackson's creek

Fuel height? Yes. There's no float sensor to estimate the level of fuel in the tanks. Instead
there's a sight-gauge that allows direct observation of the fuel. It's calibrated in inches of
depth. For all practical purposes the tank is rectangular, so the depth shown can be
converted to volume pretty easily—31 inches of depth is about 75 gallons.

What's important is that the spreadsheet data is not properly normalized. Ideally, each row
follows the first normal form for data with each row having identical content, and each cell
having only atomic values.

Our data is not properly normalized. We have four rows of headings. This is something the
csv module can't deal with directly. We need to do some slicing to remove the rows from
other notes. We'd like to combine the two rows of each day's travel to make it easier to
compute an elapsed time and the number of inches used.

We can read the data like this:

>>> from pathlib import Path
>>> import csv
>>> with Path('code/fuel.csv').open() as source_file:
...    reader = csv.reader(source_file)
...    log_rows = list(reader)
>>> log_rows[0]
['date', 'engine on', 'fuel height']
>>> log_rows[-1]
['', "choppy -- anchor in jackson's creek", '']



Built-in Data Structures – list, set, dict

[ 167 ]

We've used the csv module to read the log details. A csv.reader() is an iterable object. In
order to collect the items into a single list, we applied the list() function. We looked at
the first and last item in the list to confirm that we really have a list of lists structure.

Each row of the original CSV file is a list. Each of those lists is a three item sublist.

For this recipe, we'll use an extension of a list index expression to slice items from a list. The
slice, like the index, follows the list object in [] characters. Python offers us several
variations on the slice expression. A slice can include two or three values in the slice,
separated by : characters. We can write :stop, start:, start:stop, start:stop:step,
or any of several other variations. The default step value is one. The default start value is
the beginning of the list and the default stop value is the end of the list.

Here's how we can slice and dice the raw list of rows to pick out the rows we need:

How to do it…
The first thing we need to do is remove the four lines of heading from the list of1.
rows. We'll use two partial slice expressions to divide the list at row four:

      >>> head, tail = log_rows[:4], log_rows[4:]
      >>> head[0]
      ['date', 'engine on', 'fuel height']
      >>> head[-1]
      ['', '', '']
      >>> tail[0]
      ['10/25/13', '08:24:00 AM', '29']
      >>> tail[-1]
      ['', "choppy -- anchor in jackson's creek", '']

We've sliced the list into two sections using log_rows[:4] and log_rows[4:].
The head variable will have the four lines of headings. We don't really want to do
any processing with the head, so we ignore that variable. The tail variable,
however, has the rows of the sheet we care about.

We'll use slices with steps to pick the interesting rows. The [start::step]2.
version of a slice will pick rows in groups based on the step value. In our case,
we'll take two slices. One slice starts on row zero and the other slice starts on row
one.



Built-in Data Structures – list, set, dict

[ 168 ]

Here's a slice of every third row, starting with row zero:

      >>> tail[0::3]
      [['10/25/13', '08:24:00 AM', '29'],
       ['10/26/13', '09:12:00 AM', '27']]

We'll also want every third row, starting with row one:

      >>> tail[1::3]
      [['', '01:15:00 PM', '27'], ['', '06:25:00 PM', '22']]

These two slices can then be zipped together:3.

      >>> list( zip(tail[0::3], tail[1::3]) )
      [(['10/25/13', '08:24:00 AM', '29'], ['', '01:15:00 PM', '27']),
       (['10/26/13', '09:12:00 AM', '27'], ['', '06:25:00 PM', '22'])]

We've sliced the list into two parallel groups:

The [0::3] slice starts with the first row, and includes every third
row. This will be rows zero, three, six, nine, and so on.
The [1::3] slice starts with the second row, and includes every third
row. This will be rows one, four, seven, ten, and so on.

We've used the zip() function to interleave these two sequences from the list.
This gives us a sequence of three tuples that's very close to something we can
work with.

Flatten the results:4.

      >>> paired_rows = list( zip(tail[0::3], tail[1::3]) )
      >>> [a+b for a,b in paired_rows]
      [['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27'],
       ['10/26/13', '09:12:00 AM', '27', '', '06:25:00 PM', '22']]

We've used a list comprehension from the Building lists – literals, appending, and
comprehensions recipe to combine the two elements in each pair of rows to create a
single row. Now we're in a position to convert the date and time into a single
datetime value. We can then compute the difference in times to get the running
time for the boat, and the difference in heights to estimate the fuel burned.



Built-in Data Structures – list, set, dict

[ 169 ]

How it works…
The slice operator has several different common forms:

[:]: The start and stop are implied. The expression S[:] will copy the sequence,
S.
[:stop]: This makes a new list from the beginning to just before the stop value.
[start:]: This makes a new list from the given start to the end of the sequence.
[start:stop]: This picks a sublist starting from the start index and stopping
just before the stop index. Python works with half-open intervals. The start is
included, the end is not included.
[::step]: The start and stop are implied and include the entire sequence. The
step—generally not equal to one—means we'll skip through the list from the start
using the step. For a given step, s, and a list of size |L|, the index values are

.
[start::step]: The start is given, but the stop is implied. The idea is that the
start is an offset, and the step applies to that offset. For a given start, a, step, s, and

a list of size |L|, the index values are .
[:stop:step]: This is used to prevent processing the last few items in a list.
Since the step is given, processing begins with element zero.
[start:stop:step]: This will pick elements from a subset of the sequence.
Items prior to start and after stop will not be used.

The slicing technique works for lists, tuples, strings, and any other kind of sequence. This
does not cause the object to be mutated; this will make a copy of the items.

There's more…
In the Reversing a copy of a list recipe, we'll look at an even more sophisticated use of slice
expressions.

The copy is called a shallow copy because we'll have two collections that contain references
to the same underlying objects. We'll look at this in detail in the Making shallow and deep
copies of objects recipe.



Built-in Data Structures – list, set, dict

[ 170 ]

For this specific example, we have another way of restructuring multiple rows of data into
single rows of data. We can use a generator function. We'll look at functional programming
techniques in Chapter 8, Functional and Reactive Programming Features.

See also
See the Building lists – literals, appending, and comprehensions recipe for ways to
create lists
See the Deleting from a list – deleting, removing, popping, and filtering recipe for other
ways to remove items from a list
In the Reversing a copy of a list recipe we'll look at reversing a list

Deleting from a list – deleting, removing,
popping, and filtering
There are many times when we want to remove items from a list collection. We might
delete items from a list, and then process the items which are left over.

Removing unneeded items has a similar effect as using the filter() to create a copy
which has only the needed items. The distinction is that a filtered copy will use more
memory than deleting items from a list. We'll show both techniques for removing unwanted
items from a list.

Getting ready
We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height

engine off

Other notes

10/25/2013 08:24 29

13:15 27



Built-in Data Structures – list, set, dict

[ 171 ]

calm seas—anchor solomon's island

10/26/2013 09:12 27

18:25 22

choppy—anchor in jackson's creek

For more background on this data, see the Slicing and dicing a list recipe.

We can read the data like this:

>>> from pathlib import Path
>>> import csv
>>> with Path('code/fuel.csv').open() as source_file:
...    reader = csv.reader(source_file)
...    log_rows = list(reader)
>>> log_rows[0]
['date', 'engine on', 'fuel height']
>>> log_rows[-1]
['', "choppy -- anchor in jackson's creek", '']

We've used the csv module to read the log details. A csv.reader() is an iterable object. In
order to collect the items into a single list, we applied the list() function. We looked at
the first and last item in the list to confirm that we really have a list-of-lists structure.

Each row of the original CSV file is a list. Each of those lists has three items.

How to do it…
We'll look at four ways to remove things from a list:

The del statement
The remove() method
The pop() method
Using the filter() function to create a copy that rejects selected rows

Deleting items from a list
We can remove items from a list using the del statement.



Built-in Data Structures – list, set, dict

[ 172 ]

To make it easy to follow the examples at the interactive prompt, we'll make a copy of the
list. If we deleted rows from the original log_rows list, subsequent examples might be hard
to follow. In a practical program, we would not make this extra copy. We could also have
used log_rows[:] to copy the original list.

>>> tail = log_rows.copy()

Here's how the del statement looks:

>>> del tail[:4]
>>> tail[0]
['10/25/13', '08:24:00 AM', '29']
>>> tail[-1]
['', "choppy -- anchor in jackson's creek", '']

The del statement removed the header rows from the tail, leaving behind the rows that we
really need to process. We can then combine these and summarize them using the Slicing
and dicing a list recipe.

The remove() method
We can remove items from a list using the remove() method. This removes matching items
from a list.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

This has a useless '' string in it:

>>> row.remove('')
>>> row
['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the remove() method does not return a value. It mutates the list in place. This is
an important distinction that applies to mutable objects.

The remove() method does not return a value.
It mutates the list object.
It's surprisingly common to see wrong code like this:
a = ['some', 'data']
a = a.remove('data')

This is emphatically wrong. This will set a to None.



Built-in Data Structures – list, set, dict

[ 173 ]

The pop() method
We can remove items from a list using the pop() method. This removes items from a list
based on their index.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

This has a useless '' string in it:

>>> target_position = row.index('')
>>> target_position
3
>>> row.pop(target_position)
''
>>> row
['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the pop() method does two things:

It mutates the list object
It returns the value which was removed

The filter() function
We can also remove items by building a copy that passes the desirable items and rejects the
undesirable items. Here's how we can do this with the filter() function.

Identify the features of the items we wish to pass or reject. The filter()1.
function expects a rule for passing data. The logical inverse of that function will
reject data.

In our case, the rows we want have a numeric value in column two. We can best
detect this with a little helper function.

Write the filter test function. If it's trivial, use a lambda object. Otherwise, write a2.
separate function:

      >>> def number_column(row, column=2):
      ...    try:
      ...        float(row[column])
      ...        return True
      ...    except ValueError:
      ...        return False



Built-in Data Structures – list, set, dict

[ 174 ]

We've used the built-in float() function to see if a given string is a proper
number. If the float() function does not raise an exception, the data is a valid
number, and we want to pass this row. If an exception is raised, the data was not
numeric, and we'll reject the row.

Use the filter test function (or lambda) with the data in the filter() function:3.

      >>> tail_rows = list(filter(number_column, log_rows))
      >>> len(tail_rows)
      4
      >>> tail_rows[0]
      ['10/25/13', '08:24:00 AM', '29']
      >>> tail_rows[-1]
      ['', '06:25:00 PM', '22']

We provided our test, number_column() and the original data, log_rows. The
output from the filter() function is an iterable. To create a list from the iterable
result, we'll use the list() function. The result has just the four rows we want;
the remaining rows were rejected.

We haven't really deleted the rows. We've created a copy which omits those rows.
The end result is the same.

How it works…
Because a list is a mutable object, we can remove items from the list. This technique doesn't
work for tuples or strings. All three collections are sequences, but only the list is mutable.

We can only remove items with an index that's present in the list. If we attempt to remove
an item with an index outside the allowed range, we'll get an IndexError exception.

For example:

>>> row = ['', '06:25:00 PM', '22']
>>> del row[3]
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    del row[3]
IndexError: list assignment index out of range



Built-in Data Structures – list, set, dict

[ 175 ]

There's more…
There are some times where this doesn't work. If we use a list in a for statement, we can't
delete items from the list.

Let's say we want to remove all even items from a list. Here's an example that does not
work properly:

>>> data_items = [1, 1, 2, 3, 5, 8, 10,
...    13, 21, 34, 36, 55]
>>> for f in data_items:
...    if f%2 == 0: data_items.remove(f)
>>> data_items
[1, 1, 3, 5, 10, 13, 21, 36, 55]

The result is clearly not right. Why are some even-valued items left in the list?

Let's look at what happens when processing the item with a value of eight. We'll execute the
remove() method. The value will be removed, and all the subsequent values will be slid
forward one position. The 10 will be moved into the position formerly occupied by the 8.
The list's internal index will move forward to the next position, which will have a 13 in it.
The 10 will never be processed.

Bad things also happen if we insert into the middle of a list, the driving iterable in a for
loop. In that case, items will be processed twice.

We have two ways to avoid the skip-when-delete problem:

Make a copy of the list:

        for f in data_items[:]:

Use a while loop with a manual index:

      >>> data_items = [1, 1, 2, 3, 5, 8, 10,
      ...    13, 21, 34, 36, 55]
      >>> position = 0
      >>> while position != len(data_items):
      ...    f= data_items[position]
      ...    if f%2 == 0:
      ...        data_items.remove(f)
      ...    else:
      ...        position += 1
      >>> data_items
      [1, 1, 3, 5, 13, 21, 55]  



Built-in Data Structures – list, set, dict

[ 176 ]

We've designed a loop which only increments the position if the item is odd. If an item is
even it's removed, and the other items are moved forward one position in the list.

See also
See the Building lists – literals, appending, and comprehensions recipe for ways to
create lists
See the Slicing and dicing a list recipe for ways to copy lists and pick sublists from
a list
In the Reversing a copy of a list recipe we'll look at reversing a list

Reversing a copy of a list
Once in a while, we need to reverse the order of the items in a list collection. Some
algorithms, for example, produce results in a reversed order. We'll look at the way numbers
converted to a specific base are often generated from least-significant to most-significant
digit. We generally want to display the values with the most-significant digit first. This
leads to a need to reverse the sequence of digits in a list.

We have two ways to reverse a list. First, there's the reverse() method. Then there's this
handy trick.

Getting ready
Let's say we're doing a conversion among number bases. We'll look at how a number is
represented in a base, and how we can compute that representation from a number.

Any value, v, can be defined as a polynomial function of the various digits, dn, in a given
base, b:

v = dn × bn + dn-1 × bn-1 + dn-2 × bn-2 + … + d1 × b + d0

A rational number has a finite number of digits. An irrational number would have an
infinite series of digits.



Built-in Data Structures – list, set, dict

[ 177 ]

For example, the number 0xBEEF is a base 16 value. The digits are {B = 11, E = 14, F = 15},
the base b = 16.

48879 = 11 × 163 + 14 × 162 + 14 × 16 + 15

We can restate this in a form that's slightly more efficient to compute:

v = (…((dn × b + dn-1) × b + dn-2) × b + … + d1) × b + d0

There are many cases where the base isn't a consistent power of some number. The ISO date
format, for example, has a mixed base that involves 7 days per week, 24 hours per day, 60
minutes per hour, and 60 seconds per minute.

Given a week number, a day of the week, an hour, a minute, and a second, we can compute
a timestamp of seconds, ts, within the given year.

ts = (((w × 7 + d) × 24 + h) × 60 + m) × 60 + s

For example:

>>> week = 13
>>> day = 2
>>> hour = 7
>>> minute = 53
>>> second = 19
>>> t_s = (((week*7+day)*24+hour)*60+minute)*60+second
>>> t_s
8063599

How do we invert this calculation? How do we get the various fields from the overall
timestamp?

We'll need to use divmod style division. For some background, see the Choosing
between True Division and Floor Division recipe.

The algorithm for converting a timestamp in seconds, ts, to individual week, day, and time
fields looks like this:

tm, s ← ts/60, ts mod 60

th, m ← tm/60, tm mod 60

td, h ← th/60, th mod 24



Built-in Data Structures – list, set, dict

[ 178 ]

w, d ← td/60, td mod 7

This has a handy pattern that leads to a very simple implementation. It has a consequence
of producing the values in reverse order:

>>> t_s = 8063599
>>> fields = []
>>> for b in 60, 60, 24, 7:
...    t_s, f = divmod(t_s, b)
...    fields.append(f)
>>> fields.append(t_s)
>>> fields
[19, 53, 7, 2, 13]

We've applied the divmod() function four times to extract seconds, minutes, hours, days,
and weeks from a timestamp given in seconds. These are in the wrong order. How can we
reverse them?

How to do it…
We have two approaches: we can use the reverse() method or we can use a [::-1] slice
expression. Here's the reverse() method:

>>> fields_copy1 = fields.copy()
>>> fields_copy1.reverse()
>>> fields_copy1
[13, 2, 7, 53, 19]

We made a copy of the original list, so that we could keep an unmutated copy to compare
with the mutated copy. This makes it easier to follow the examples. We applied the
reverse() method to reverse a copy of the list.

This will mutate the list. As with other mutating methods, it does not return a useful value.
It's an error to use a statement like this: a = b.reverse(). The value of a will always be
None.

Here's a slice expression with a negative step:

>>> fields_copy2 = fields[::-1]
>>> fields_copy2
[13, 2, 7, 53, 19]



Built-in Data Structures – list, set, dict

[ 179 ]

In this example, we made a slice [::-1] which uses an implied start and stop, and the step
was -1. This picks all of the items in the list in reverse order to create a new list.

The original list is emphatically not mutated by this slice operation. This creates a copy.
Check the value of the fields variable to see that it's unchanged.

How it works…
As we noted in the Slicing and dicing a list recipe, the slice notation is quite sophisticated.
Using a slice with a negative step size will create a copy (or a subset) with items processed
in right to left order instead of the default left to right order.

It's important to distinguish between these two methods:

The reverse() function modifies the list object itself. As with methods like
append() and remove() there is no return value from this method. Because it
changes the list, it doesn't return a value.
The [::-1] slice expression creates a new list. This is a shallow copy of the
original list, with the order reversed.

See also
See the Making shallow and deep copies of objects recipe for more information on
what a shallow copy is and why we might want to make a deep copy
See the Building lists – literals, appending, and comprehensions recipe for ways to
create lists
See the Slicing and dicing a list recipe for ways to copy lists and pick sublists from
a list
See the Deleting from a list – deleting, removing, popping, and filtering recipe for other
ways to remove items from a list

Using set methods and operators
We have several ways to build a set collection. We can use the set() function to convert
an existing collection to a set. We can use the add() method to put items into a set. We can
also use the update() method and the union operator, |, to create a larger set from other
sets.



Built-in Data Structures – list, set, dict

[ 180 ]

We'll show a recipe that uses a set to show whether or not we've seen a complete domain
of values from a pool of statistical data. The recipe will build a set collection as the samples
are being scanned.

When doing exploratory data analysis, we need to answer the question: Is this data random?
Many data collections have variances in the data that are ordinary noise. It's important not
to waste time doing complex modeling and analysis of random numbers.

For discrete or continuous numeric data, like the depth of water in meters, or the size of a
file in bytes, we can use averages and standard deviations to see if a given collection of data
is random. We expect a sample's mean to match the population mean within boundaries
that are measured by the standard deviation.

For categorical data, like customer ID numbers or phone numbers, we can't compute
averages or standard deviations. These values have to be evaluated in a different way.

One technique for determining the randomness of categorical data is the Coupon
Collector's Test. With this test, we will see how many items have to be examined before we
have found a complete set of coupons. Is a sequence of customer visits random? Or is there
some other distribution in the sequence of visits? If the data is not random, then we can
invest in more research into the causes.

The Python set collection is central to how this works. We'll add items to a set until we've
seen each customer once.

If customers arrive randomly, we can predict an expected number of visits before the
business has seen each customer at least once. The overall expected arrival time for the
entire domain is the sum of the arrival times for each customer in the domain. This is equal
to the number of customers, n, times the nth Harmonic Number, Hn:

E = n × Hn = n × ((1/1) + (1/2) + (1/3) + (1/n))

This is the expected average number of visits before all customers have been seen. If the
actual average arrival time matches this expectation that means all customers are visiting;
we don't need to waste any more time on studying data that fits our expectations. If the
actual average doesn't match expectations, then some customers are not visiting as
frequently as others, and we need to pursue a deeper study of why.



Built-in Data Structures – list, set, dict

[ 181 ]

Getting ready
We'll use a Python set to represent the collection of coupons. We'll need a population of
data that may (or may not) have a proper distribution of coupons. We'll look at a set of eight
customers.

Here's a function that simulates customers arriving in a random order. The customers are
represented as numbers in the half-open interval [0, n], we can say that all customers, c, fit
the rule 0 ≤ c < n.

>>> import random
>>> def arrival1(n=8):
...     while True:
...         yield random.randrange(n)

The arrival1() function will yield an endless sequence of values. We've called this
arrival with a 1 on the end. It may look like a spelling mistake, but we've used the 1
suffix so that we can create alternative implementations.

We need to put an upper bound on the number of values generated. Here's a function that
has an upper limit on the number of samples produced:

>>> def samples(limit, generator):
...     for n, value in enumerate(generator):
...         if n == limit: break
...         yield value

This generator function uses another generator as a source of items. The idea is that we'll
use the arrival1() function. The samples() function enumerates the items from a larger
collection and stops when enough items have been seen. Since the arrival1() function is
infinite, this boundary is essential.

Here's how we use these functions to simulate the arrival of customers. We'll produce a
sequence of customer ID numbers:

>>> random.seed(1)
>>> list(samples(10, arrival1()))
[2, 1, 4, 1, 7, 7, 7, 6, 3, 1]

We forced the random number generator to have a specific seed value so that we would
produce a known test sequence. We applied the samples() function to the arrival1()
function to produce a sequence of 10 customer visits. Customer seven seemed to have a lot
of repeat business. Customers zero and five never showed up at all.



Built-in Data Structures – list, set, dict

[ 182 ]

This is just a simulation of data. A business would use sales receipts to determine customer
visits. A web site might record visits in a database, or might scrape the web logs to
determine the sequence of actual values.

What's the expected number of visits before we've seen all eight customers?

>>> from fractions import Fraction
>>> def expected(n=8):
...     return n * sum(Fraction(1,(i+1)) for i in range(n))

This function creates the series of fractions 1/1, 1/2, up to 1/n. These are summed and
multiplied by n.

>>> expected(8)
Fraction(761, 35)
>>> round(float(expected(8)))
22

On an average, it will take 22 customer visits before we'll see all eight of our customers
once.

How do we use the set collection to create statistics on the actual number of visits before
we've seen all eight customers?

How to do it…
As we step through each customer visit, we'll put the customer ID into a set collection.
Duplicates aren't saved in a set. Once a customer ID is a member of the set, adding the value
again doesn't change the set. We'll summarize the steps in this recipe and then show the
complete function:

Start with an empty set and a zero counter.1.
Begin a for loop to visit all of the data items.2.
Add the next item to the set. Add one to the counter.3.
If the set is complete, the count can be yielded. This is the number of customers4.
required to see a complete set. After yielding, empty the set and initialize the
counter to zero in preparation for the next customer.



Built-in Data Structures – list, set, dict

[ 183 ]

Here's the function:

    def coupon_collector(n, data):
        count, collection = 0, set()
        for item in data:
            count += 1
            collection.add(item)
            if len(collection) == n:
                yield count
                count, collection = 0, set()

This will start a count at zero and create an empty set, collection, in which we'll collect
customer ID's. We'll step through each item in the sequence of source data values, data.
The value of count shows how many visitors there are. The value of the variable
collection is the set of distinct visitors.

The add() method of a set will mutate the set to add a distinct value. If the value is
already in the set, there's no change to the content.

When the size of the collection is the size of our target population, we've got a complete set
of coupons. We can yield the value of the count. We also reset the count of visits and create
a new empty set for our collection of coupons.

How it works…
Since this is a generator, we'll need to capture the data by creating a list object from the
results. Here's how we'd use the coupon_collector() function:

    from statistics import mean
    expected_time = float(expected(n))
    data = samples(100, arrival1())
    wait_times = list(coupon_collector(n, data))
    average_time = mean(wait_times)

We've computed the expected time to see all n customers. We've used samples(100,
arrival1()) as a simulation to create the data variable which has a sequence of visits. In
real life, we'd analyze sales receipts to gather this sequence of visits.

We applied the Coupon Collector's Test to the data. This emitted a sequence of values that
showed how many customers had to arrive to create a complete set of coupons or customer
ID's. This sequence of counts should be close to the expected number of visits. We've
assigned this sequence to the variable wait_times because we've measured the time we
need to wait before seeing all of the customers in our sample set.



Built-in Data Structures – list, set, dict

[ 184 ]

This lets us easily compare the actual data with the expected data. The function that we just
saw, arrival1(), produces averages that are quite close to the expected values. Since the
input data is random, the simulation won't produce values that precisely match the
expectation.

The Coupon Collector's Test relies on collecting a set of coupons. In this case, the term set is
used in exact mathematical formalism that best represents the data.

A given item either is a member of a set or it is not. We can't add it to the set more than
once. For example, we can create a set manually and add an item to it:

>>> collection = set()
>>> collection.add(1)
>>> collection
{1}

When we attempt to add this item again, the value of the set doesn't change.

>>> collection.add(1)
>>> collection
{1}
>>> 1 in collection
True

This is the perfect data representation for collecting coupons.

Note that the add() method does not return a value. It mutates the set object. This is 
similar to the way methods of the list collection work. Generally, a method that mutates
the collection does not return a value. The only exception to this pattern is the pop()
method, which both mutates the set object and returns the popped value.

There's more…
We have several ways to add items to a set:

The example used the add() method. This works with a single item.
We can use the union() method. This is like an operator—it creates a new result
set. It does not mutate either of the operand sets.
We can use the | union operator to compute the union of two sets.
We can use the update() method to update one set with items from another set.
This mutates a set, and does not return a value.



Built-in Data Structures – list, set, dict

[ 185 ]

For most of these, we'll need to create a singleton set from the item we're going to add.
Here's an example of adding a single item, 3, to a set by turning it into a singleton set:

>>> collection
{1}
>>> item = 3
>>> collection.union( {item} )
{1, 3}
>>> collection
{1}

Here, we've created a singleton set, {item} from the value of the item variable. We then
used the union() method to compute a new set that is the union of collection and
{item}.

Note that union() returns a resulting object and leaves the original collection set
untouched. We would need to use this as collection = collection.union({item}) to
update the collection object.

This is yet another alternative that uses the union operator, |:

>>> collection = collection | {item}
>>> collection
{1, 3}

This parallels common mathematical notation for {1, 3} ∪ {3} ≡ {1, 3}.

We can also use the update() method:

>>> collection.update( {4} )
>>> collection
{1, 3, 4}

This method mutates the set object. Because it mutates the set, it does not return a value.

Python has a number of set operators. These are ordinary operator symbols that we can use
in complex expressions:

| for union, often typeset as A ∪ B
& for intersection, often typeset as A ∩ B
^ for symmetric difference, often typeset as A Δ B
- for subtraction, often typeset as A – B



Built-in Data Structures – list, set, dict

[ 186 ]

See also
In the Removing items from a set – remove, pop, and difference recipe we'll look at
how we can update a set by removing or replacing items

Removing items from a set – remove(),
pop(), and difference
Python gives us several ways to remove items from a set collection. We can use the
remove() method to remove a specific item. We can use the pop() method to remove an
arbitrary item.

Additionally, we can compute a new set using set intersection, difference, and symmetric
difference operators: &, -, and ^. These will produce a new set which is a subset of a given
input set.

Getting ready
Sometimes we'll have log files that contain lines with complex and varied formats. Here's a
small snippet from a long, complex log:

>>> log = '''
... [2016-03-05T09:29:31-05:00] INFO: Processing ruby_block[print IP]
action run (@recipe_files::/home/slott/ch4/deploy.rb line 9)
... [2016-03-05T09:29:31-05:00] INFO: Installed IP: 111.222.111.222
... [2016-03-05T09:29:31-05:00] INFO: ruby_block[print IP] called
...
...  - execute the ruby block print IP
... [2016-03-05T09:29:31-05:00] INFO: Chef Run complete in 23.233811181
seconds
...
... Running handlers:
... [2016-03-05T09:29:31-05:00] INFO: Running report handlers
... Running handlers complete
... [2016-03-05T09:29:31-05:00] INFO: Report handlers complete
... Chef Client finished, 2/2 resources updated in 29.233811181 seconds
... '''



Built-in Data Structures – list, set, dict

[ 187 ]

We need to find the IP: 111.222.111.222 lines in the log.

Here's how we'd do that:

>>> import re
>>> pattern = re.compile(r"IP: \d+\.\d+\.\d+\.\d+")
>>> matches = set( pattern.findall(log) )
>>> matches
{'IP: 111.222.111.222'}

The problem with the larger log file is that there are places where the target line has real
information. These are mingled with lines that look similar, but are just examples. We'll also
find lines like IP: 1.2.3.4, which is irrelevant output. It turns out that there are several of
these irrelevant kinds of lines that we'd like to ignore.

This is a place where set intersection and set subtraction can be very helpful.

How to do it…
Create a set of items we'd like to ignore:1.

      >>> to_be_ignored = {'IP: 0.0.0.0', 'IP: 1.2.3.4'}

Collect all entries from the log. We'll use the re module for this, as shown earlier.2.
Assume we have data that includes good addresses plus dummy and placeholder
addresses from other parts of the log:

      >>> matches = {'IP: 111.222.111.222', 'IP: 1.2.3.4'}

Remove items from the set of matches using a form of set subtraction. Here are3.
two examples:

      >>> matches - to_be_ignored
      {'IP: 111.222.111.222'}
      >>> matches.difference(to_be_ignored)
      {'IP: 111.222.111.222'}

Note that both of these are operators which return new sets as their results.
Neither of these will mutate the underlying set objects.



Built-in Data Structures – list, set, dict

[ 188 ]

We'll often use these in statements like this:

>>> valid_matches = matches - to_be_ignored
>>> valid_matches
{'IP: 111.222.111.222'}

This will assign the resulting set to a new variable, valid_matches, so that we can do the
required processing on this new set.

In this case, if the item is not present in the set, it does not raise a KeyError exception.

How it works…
A set object only tracks membership. An item is either in the set or it's not in the set. We
specify the item we want to remove. Removing an item doesn't depend on an index position
or a key value.

Because we have set operators, we can remove any of the items in one set from a target
set. We don't need to process the items individually.

There's more…
We have several ways to remove items from a set:

In the example, we used the difference() method and the - operator. The
difference() method behaves like an operator and creates a new set.
We can also use the difference_update() method. This will mutate a set in
place. It does not return a value.
We can remove an individual item with the remove() method.
We can also remove an arbitrary item with the pop() method. This doesn't apply
to this example very well because we can't control which item is popped.

Here's how the difference_update() method looks:

>>> valid_matches = matches.copy()
>>> valid_matches.difference_update( to_be_ignored )
>>> valid_matches
{'IP: 111.222.111.222'}



Built-in Data Structures – list, set, dict

[ 189 ]

First, we made a copy of the original matches set. This created a new set that we assigned
the valid_matches set. We then applied the difference_update() method to remove
the undesirable items from this set.

Since the set was mutated, no value is returned. Also, since the set is a copy, this doesn't
modify the original matches set.

We could do something like this to use the remove() method. Note that remove() will
raise an exception if an item is not present in the set.

>>> valid_matches = matches.copy()
>>> for item in to_be_ignored:
...    if item in valid_matches:
...        valid_matches.remove(item)
>>> valid_matches
{'IP: 111.222.111.222'}

We tested to see if the item was in the valid_matches set before attempting to remove it.
This is one way to avoid the raising a KeyError exception. The alternative is to use a try:
statement to silence the exception.

The pop() method removes an arbitrary item. It both mutates the set and returns the item
which was removed. If we try to pop items from an empty set, we'll raise a KeyError
exception.

See also
In the Using set methods and operators recipe we'll look at other ways to create sets

Creating dictionaries – inserting and
updating
A dictionary is one kind of Python mapping. The built-in type dict class provides a
number of common features. There are some common variations on these features defined
in the collections module.



Built-in Data Structures – list, set, dict

[ 190 ]

As we noted in the Choosing a data structure recipe, we'll use a dictionary when we have
some key that we need to map to a given value. For example, we might want to map a
single word to a long, complex definition of the word. Or perhaps some value to a count of
the number of times that value has occurred in a dataset.

The key and count dictionary is very common. We'll look at a detailed recipe that shows how
to initialize the dictionary and update the counter.

In the Using set methods and operators recipe we looked at the arrival of customers at a
business. In that recipe, we used a set to determine how many visits were required before
the business had collected a complete set of visits.

Getting ready
In this recipe, we'll look at creating a histogram that shows how many times each customer
visited. In order to create some interesting data, we'll modify the sample generator that was
used in the other recipe.

In the earlier example, we used a simple, uniform random number generator to pick the
sequence of customers. This is an alternative way to pick customers that generates random
numbers with a slightly different distribution:

>>> def arrival2(n=8):
...     p = 0
...     while True:
...         step = random.choice([-1,0,+1])
...         p += step
...         yield abs(p) % n

This uses a technique called random walk to generate the next customer ID number. It will
start with zero and then make one of three changes. It may use the same customer or one of
the two adjacent customer numbers. Using the expression abs(p) % n allows us to
compute any integer value and map the number, p, to the range 0 ≤ p < n.

Here's a tool to generate some data that we can use to simulate the arrival of customers:

>>> import random
>>> from ch04_r06 import samples, arrival2
>>> random.seed(1)
>>> list( samples(10, arrival2(8)) )
[1, 0, 1, 1, 2, 2, 2, 2, 1, 1]



Built-in Data Structures – list, set, dict

[ 191 ]

This shows us how the arrival2() function simulates customers who tend to cluster
around the starting value of customer zero. If we use this for the Coupon Collector's Test in
the Using set methods and operators recipe, we'll see that this generator creates sample data
that fails that test spectacularly. The clumpy arrival times mean we have to see an
extraordinary number of customers before we've collected all eight distinct customers.

A histogram counts the number of occurrences of each customer. We'll use a dictionary to
map from customer ID to the number of times we've seen the customer.

How to do it…
Create an empty dictionary with {}. We can also use dict() to create an empty1.
dictionary. Since we're going to create a histogram that counts the number of
times each customer arrived, we'll call it histogram:

        histogram = {}

For each customer number, if it's new, add an empty list to the dictionary. We can2.
do this with an if statement or we can use the setdefault() method of the
dictionary. We'll show the if statement version first. Later, we'll look at the
setdefault() optimization.
Increment the value in the dictionary.3.

Here's the resulting loop to count occurrences in a dictionary. It works by creating and
updating items:

    for customer in source:
        if customer not in histogram:
            histogram[customer]= 0
        histogram[customer] += 1

When this is done, we'll have a count of the total number of simulated visits from each
customer.

We can turn this into a handy bar chart to compare the frequencies. We can compute some
basic descriptive statistics including the mean and standard deviation to see if any customer
is over-represented or under-represented.



Built-in Data Structures – list, set, dict

[ 192 ]

How it works…
The core feature of a dictionary is a mapping from an immutable value to an object of any
kind. In this case, we've used an immutable number as the key, and another number as the
value. As we count, we replace the value associated with the key.

It can seem a little unusual to write:

    histogram[customer] += 1

Or to write:

    histogram[customer] = histogram[customer] + 1

and think of the value in the dictionary as being replaced. When we write an expression like
histogram[customer] + 1 we're computing a new integer object from two other integer
objects. This new object replaces the old value in the dictionary.

It's essential that dictionary key objects be immutable. We cannot use a list, set, or dict
as the key in a dictionary mapping. We can, however, transform a list into an immutable
tuple, or make a set into a frozenset so that we can use one of these more complex
objects as a key.

There's more…
We don't have to use an if statement to add missing keys. We can use the setdefault()
method of a dictionary, instead. Our loop would look like this:

    histogram = {}
    for customer in source:
        histogram.setdefault(customer, 0)
        histogram[customer] += 1

If the key value, customer, doesn't exist, a default value is provided. If the key does exist,
the setdefault() method does nothing.

The collections module provides a number of alternative mappings that we can use
instead of the default dict mapping.

defaultdict: This collection saves us from having to write step two explicitly.
We provide an initialization function as part of creating a defaultdict. We'll
look at an example soon.



Built-in Data Structures – list, set, dict

[ 193 ]

OrderedDict: This collection retains the keys in the order they were initially
created. We'll save this for the Controlling the order of dict keys recipe.
Counter: This collection does the entire key-and-count algorithm as it is being
created. We'll look at this soon too.

Here's the version using the defaultdict class:

    from collections import defaultdict
    def summarize_3(source):
        histogram = defaultdict(int)
        for item in source:
            histogram[item] += 1
        return histogram

We've created a defaultdict instance that will initialize any unknown key values using
the int() function. We provide int—the function object—to the defaultdict
constructor. The defaultdict will evaluate the given function object to create default
values.

This allows us to simply use histogram[item] += 1. If the value of the item attribute
was previous in the dictionary, it will be incremented. If the value of the item attribute was
not already in the dictionary, the int function is evaluated and that becomes the default
value.

The other way we can do this is by creating a Counter object. We need to import the
Counter class so that we can build the Counter object from the raw data.

>>> from collections import Counter
>>> def summarize_4(source):
...    histogram = Counter(source)
...    return histogram

When we create a Counter from a source of data, the class will scan the data and count the
distinct occurrences. This class implements the entire recipe.

Here's how the result looks:

>>> import random
>>> from pprint import pprint
>>> random.seed(1)
>>> histogram = summarize_4(samples(1000, arrival2(8)))
>>> pprint(histogram)
Counter({1: 150, 0: 130, 2: 129, 4: 128, 5: 127, 6: 118, 3: 117, 7: 101})



Built-in Data Structures – list, set, dict

[ 194 ]

Note that a Counter object displays the values in descending order of count value. An
OrderedDict object will display the values in the order in which the keys were created. A
dict maintains no order.

If we want to impose an order on the keys, we can use:

>>> for key in sorted(histogram):
...    print(key, histogram[key])
0 130
1 150
2 129
3 117
4 128
5 127
6 118
7 101

See also
In the Removing from dictionaries – the pop() method and the del statement recipe we'll
look at how dictionaries can be modified by removing items
In the Controlling the order of dict keys recipe we'll look at how we can control the
order of keys in a dictionary

Removing from dictionaries – the pop()
method and the del statement
A common use case for a dictionary is as an associative store: we can keep an association
between key and value objects. This means that we may be doing any of the CRUD
operations on an item in the dictionary.

Create a new key and value pair
Retrieve the value associated with a key
Update the value associated with a key
Delete the key (and value) from the dictionary



Built-in Data Structures – list, set, dict

[ 195 ]

We have two common variations on this theme:

We have the in-memory dictionary, dict, and the variations on this theme in the
collections module. The collection only exists while our program is running.
We also have persistent storage in the shelve and dbm modules. The data
collection is a persistent file in the file system.

These are very similar, the distinctions between a shelf.Shelf and dict object are minor.
This allows us to experiment with a dict and switch to a Shelf without making dramatic
changes to a program.

A server process will often have multiple, concurrent sessions. When sessions are created,
they can be placed into dict or shelf. When the session exits, the item can be deleted or
perhaps archived.

We'll simulate this concept of a service that handles multiple requests. We'll define a service
that works in a simulated environment with a single processing thread. We'll avoid
concurrency and multi-processing considerations.

Getting ready
In the casino game of Craps, a player can (and often does) create and remove multiple bets
during a game. The rules can be bafflingly complex, but the core concepts include four
kinds of bets a player might make:

A pass line bet: For our purposes, this is how one buys in at the start of a game.
A pass line odds bet: This is not marked on the playing surface in a casino, but
it's a real bet. This bet pays off at different odds than the pass line bet, and has
some statistical advantages. It can be removed, also.
A come line bet: This can be placed during a game.
A come line odds bet: This, too, is placed during a game. This can be taken down,
also.

The best way to understand all of these betting choices is to simulate the game and a player.
The game will need to track all of the bets a player places. This can be done using a
dictionary where bets are inserted, and removed when they pay off, the player takes them
down, or the game ends.



Built-in Data Structures – list, set, dict

[ 196 ]

We'll simplify parts of the simulation so that we can focus on using a dictionary properly.
This is handled best as a class definition so that we can properly isolate bets and game rules
from player rules. For more information on class design, see Chapter 6, Basics of Classes and
Objects.

How to do it…
Create the overall dictionary object:1.

        working_bets = {}

Define the key and value for each object we're inserting into the dictionary. For2.
example, the key might be a description of the bet: come, pass, come odds, or
pass odds. The value might be the amount of the bet. It's common to avoid
working in currency, and instead work in units of the table minimum bet.
Usually these are simple integer multiples, most often just the integer value one
to represent the minimum bet.

Enter values as the bets are being placed:3.

        working_bets[bet_name] = bet_amount

For a concrete example, we'd have working_bets["pass"] = 1.

Remove values as bets are paid off or taken down. We can use the del statement4.
or the dictionary pop() method:

        del working_bets['come odds']

If the key is not present, this will raise a KeyError exception.

The pop() method both mutates the dictionary and returns a value associated with the key.
If the key doesn't exist, this will raise an KeyError exception.

    amount = working_bets.pop('come odds')

It turns out that pop() can be given a default value. If the key is not present, it will not raise
an exception, but will return the default value instead.



Built-in Data Structures – list, set, dict

[ 197 ]

How it works…
Because a dictionary is a mutable object, we can remove keys from a dictionary. This will 
delete both the key and the value object associated with the key.

If we try to delete a key which does not exist, we'll raise a KeyError exception.

We can replace an object in a dictionary with statements like this:

    working_bets["come"] = 1
    working_bets["come"] = None

The key—come—remains in the dictionary. The old value, 1, is no longer required and will
be replaced by the new value, None. This is not the same as deleting an item.

There's more…
We can only remove the keys of a dictionary. As we noted earlier, we can set the value to
None to remove the value, leaving the key in the dictionary.

When we use a dictionary in a for statement, the target variable will be assigned key
values. For example:

    for bet_name in working_bets:
        print(bet_name, working_bets[bet_name])

This will print all of the key values, bet_name, and the bet amount associated with that bet
in the working_bets dictionary.

See also
In the Creating dictionaries – inserting and updating recipe we'll look at how we
create dictionaries and fill them with keys and values
In the Controlling the order of dict keys recipe we'll look at how we can control the
order of keys in a dictionary



Built-in Data Structures – list, set, dict

[ 198 ]

Controlling the order of dict keys
In the Creating dictionaries – inserting and updating recipe we looked at the basics of creating a
dictionary object. In many cases, we'll put items into a dictionary and fetch items from a
dictionary individually. The idea of an order to the keys doesn't even enter into the
problem.

There are some cases where we might want to display the contents of a dictionary. In this
case, we often want to impose some order on the keys. For example, when we work with
web services, the messages are often dictionaries encoded in JSON notation. In many cases
we'd like to keep the keys in a particular order so that the message is easier to understand
when it's displayed in a debugging log.

As another example, when we read data with the csv module each row from a spreadsheet
can be represented as a dictionary. In this case, we almost always want to keep the keys in a
given order so that the dictionary follows the structure of the source file.

Getting ready
A dictionary is a good model for a row from a spreadsheet. This works particularly well
when the spreadsheet has a heading row with column titles. Let's say we have some data
collected in a spreadsheet that looks like this:

final least most

5 0 6

-3 -4 0

-1 -3 1

3 0 4

This shows the final outcome, the lowest amount the player had, and the highest amount
the player had. We can use the csv module to read this data for further analysis:

>>> from pathlib import Path
>>> import csv
>>> data_path = Path('code/craps.csv')
>>> with data_path.open() as data_file:
...     reader = csv.DictReader(data_file)
...     data = list(reader)
>>> for row in data:
...    print(row)
{'most': '6', 'least': '0', 'final': '5'}



Built-in Data Structures – list, set, dict

[ 199 ]

{'most': '0', 'least': '-4', 'final': '-3'}
{'most': '1', 'least': '-3', 'final': '-1'}
{'most': '4', 'least': '0', 'final': '3'}

Each row of the spreadsheet is a dictionary. However, there's something peculiar about
each row. It's not obvious, but the order of the keys in the row doesn't match the order of
the keys in the original .csv file.

Why is that? The default dict structure does not guarantee any ordering for the keys. What
if we want to show the keys in a specific order?

How to do it…
We have two common ways to force an ordering on the keys of a dictionary:

Create an OrderedDict: This keeps keys in the order they are created
Use sorted() on the keys: This puts the keys into a sorted order

Most of the time, we can simply use OrderedDict instead of dict() or {} to create an
empty dictionary. This will allow us to create keys in the required order.

Sometimes, however, we can't easily replace a dict instance with an OrderedDict
instance. We've chosen this example because we can't trivially replace the dict class that is
created by csv.

Here's how we can force the row's dict keys to follow the order of the columns in the
original .csv file:

Get the preferred order of keys. In the case of a DictReader the fieldnames1.
attribute of the reader object has the proper order information.
Use a generator expression to create the fields in the proper order. We'll have2.
something like this:

        ((name, raw_row[name]) for name in reader.fieldnames)

Create an OrderedDict from the generator. Here's the whole sequence:3.

      >>> from collections import OrderedDict
      >>> with data_path.open() as data_file:
      ...     reader = csv.DictReader(data_file)
      ...     for raw_row in reader:
      ...         column_sequence = ((name, raw_row[name])
      ...            for name in reader.fieldnames)



Built-in Data Structures – list, set, dict

[ 200 ]

      ...         good_row = OrderedDict(column_sequence)
      ...         print(good_row)
      OrderedDict([('final', '5'), ('least', '0'), ('most', '6')])
      OrderedDict([('final', '-3'), ('least', '-4'), ('most', '0')])
      OrderedDict([('final', '-1'), ('least', '-3'), ('most', '1')])
      OrderedDict([('final', '3'), ('least', '0'), ('most', '4')])

This builds dictionaries with keys in a specific order.

As an optimization, we can combine the two steps into a single step:

    OrderedDict((name, raw_row[name]) for name in reader.fieldnames)

This will build an ordered version of the raw_row object.

How it works…
The OrderedDict class keeps the keys in the order they are created. This class is very
handy for assuring a structure remains in an order that's easier to understand.

There's a small performance cost to this, of course. The default dict class computes a hash
for each key, and the hash values are used to locate a space in the dictionary. This tends to
use more memory, but performs extremely quickly.

The OrderedDict uses some additional storage to retain the ordering for the keys. This
requires some additional time when a key is created. If key creation tends to dominate the
algorithm, we'll notice the slowdown. If key retrieval tends to dominate the design, then we
won't see much change when using an OrderedDict.

There's more…
In some packages—like pymongo—there are some alternative ordered dictionary
implementations.

See h t t p s ://a p i . m o n g o d b . o r g /p y t h o n /c u r r e n t /a p i /b s o n /s o n . h t m l .

The bson.son module includes the SON class which is a very handy ordered dictionary.
This is focused on the needs of the Mongo database, but it works very nicely for other
applications, also.

https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html
https://api.mongodb.org/python/current/api/bson/son.html


Built-in Data Structures – list, set, dict

[ 201 ]

See also
In the Creating dictionaries – inserting and updating recipe we'll look at how we can
create dictionaries.
In the Removing from dictionaries – the pop() method and the del statement recipe we'll
look at how dictionaries can be modified by removing items.

Handling dictionaries and sets in doctest
examples
We will look at one small aspect of writing a proper test in this recipe. We'll look at testing 
overall in Chapter 11, Testing. The data structures in this chapter—dict and set—both
include some complexity when it comes to writing proper tests.

Since dict keys (and set members) have no order, our test results will have a problem. We
need to have a repeatable result, but there's no way to guarantee the order of the collection.
This can lead to test results which don't properly match our expectations.

Assume that our test expects the set {"Poe", "E", "Near", "A", "Raven"}. Since
there's no defined order to a set, Python can display this set in any order:

>>> {"Poe", "E", "Near", "A", "Raven"}
{'E', 'Poe', 'Raven', 'Near', 'A'}

The elements are the same, but the overall line of output from Python isn't the same. The
doctest package relies on the literal output from the example being identical to the output
produced by Python's REPL.

How can we be sure our doctest examples really work?

Getting ready
Let's look at an example that involves a set object:

>>> words = set(
... '''Beautiful is better than ugly.
... Explicit is better than implicit.
... Simple is better than complex.
... Complex is better than complicated.
... '''.replace('.', ' ').split())



Built-in Data Structures – list, set, dict

[ 202 ]

>>> words
{'complicated', 'Simple', 'ugly', 'implicit', 'Beautiful',
'complex', 'is', 'Explicit', 'better', 'Complex', 'than'}

This example is simple. The results, however, will often vary each time we process this
example. Indeed, when working on secure algorithms, it's considered important to have the
order vary. This is called the hash randomization problem—when the hashed values are
predictable, it can become a security vulnerability.

When we use the doctest module, we need to have examples that are perfectly consistent.
As we'll see in Chapter 11, Testing, the doctest module is clever about locating examples,
but it's not a genius about assuring that actual results match expected results.

And the problem is—mostly—confined to sets and dictionaries. These are two collections
where key ordering cannot be guaranteed because of hash randomization.

How to do it…
When we need to be sure that items in a set or dictionary have a particular order, we can
convert the collection to a sorted sequence.

We have two choices:

Convert a set to a sorted sequence
Convert a dictionary to a sorted sequence of (key, value) two-tuples

Both of these recipes are similar. Here's what we need to do to force a set into a normalized
structure:

>>> list(sorted(words))
['Beautiful', 'Complex', 'Explicit', 'Simple', 'better',
'complex', 'complicated', 'implicit', 'is', 'than', 'ugly']

For a dictionary, we'll often use this:

    list(sorted(some_dictionary.items()))

This will extract each item in the dictionary as a (key, value) two-tuple. The tuples will
be sorted into order by the key. The resulting sequence will be turned into a list so that it
can be compared with the expected results.



Built-in Data Structures – list, set, dict

[ 203 ]

How it works…
When confronted with a collection that fails to impose an order, we have to locate a
collection with two properties:

The same content
Some kind of consistent order

Python's built-in structures are variations on three themes:

Sequence
Set
Mapping

Since the only one with a guaranteed order is the sequence, we can convert sets and
mappings into sequences. This, it turns out, is easy to do with the sorted() function.

For sets, we'll sort the items. For mappings, we'll sort the (key, value) two-tuples. This
assures us that the output from our example is precisely what is required.

There's more…
We'll look at several other kinds of data that has minor variations in Chapter 11, Testing:

Floating-point numbers
Dates
Object ID's and Tracebacks
Random sequences

All of these need to be put into a context with a predictable output so that tests will work
repeatedly. The two data structures, set and dict, are the subjects of this chapter. We'll
cover other variations in the relevant chapters.



Built-in Data Structures – list, set, dict

[ 204 ]

Understanding variables, references, and
assignment
How do variables really work? What happens when we assign a mutable object to two
variables? We can easily have two variables that share references to a common object; this
can lead to potentially confusing results when the shared object is mutable. The rules are
simple and the consequences are generally obvious.

We'll focus on this rule: Python shares references. It doesn't copy data.

We need to look at what this rule on reference sharing means.

We'll create two data structures, one is mutable and one is immutable. We'll use two kinds
of sequences, although we could do something similar with two kinds of sets:
Getting ready We'll create two data structures, one is mutable and one is immutable. We'll
use two kinds of sequences, although we could do something similar with two kinds of sets:

>>> mutable = [1, 1, 2, 3, 5, 8]
>>> immutable = (5, 8, 13, 21)

The mutable data structure can be changed and shared. The immutable data structure is
also shared, but it's much harder to tell that it's being shared.

We can't easily do this with a mapping because Python doesn't offer a handy immutable
mapping.

How to do it…
Assign each collection to an additional variable. This will create two references to1.
the structure:

      >>> mutable_b = mutable
      >>> immutable_b = immutable

we now have two references to the list [1, 1, 2, 3, 5, 8] and two references
to the tuple (5, 8, 13, 21).



Built-in Data Structures – list, set, dict

[ 205 ]

We can confirm this using the is operator. This determines if two variables refer
to the same underlying object:

      >>> mutable_b is mutable
      True
      >>> immutable_b is immutable
      True

Make a change to one of the two references to the collection. For mutable2.
structures, we have methods like append() or add():

      >>> mutable += [mutable[-2] + mutable[-1]]

For a list structure, the += assignment is really an internal use of the extend()
method.

We can do a similar thing with an immutable structure:

      >>> immutable += (immutable[-2] + immutable[-1],)

Since a tuple has no method like extend(), the += will build a new tuple object
and replace the value of immutable with that new object.

Look at the other reference to the structure:3.

      >>> mutable_b
      [1, 1, 2, 3, 5, 8, 13]
      >>> mutable is mutable_b
      True
      >>> immutable_b
      (5, 8, 13, 21)
      >>> immutable
      (5, 8, 13, 21, 34)

The two variables mutable and mutable_b refer to the same underlying object. Because of
that, we can use either variable to change the object and see the change reflected in the other
variable's value.

The two variables, immutable_b and immutable, started out referring to the same object.
Because the object cannot be mutated in place, a change to one variable means that a new
object is assigned to that variable. The other variable remains firmly attached to the original
object.



Built-in Data Structures – list, set, dict

[ 206 ]

How it works…
In Python, a variable is a label that's attached to an object. We can think of them like
adhesive notes in bright colors that we stick on the object temporarily.

A variable is a reference to the underlying object. When we assign an object to a variable,
we're giving a name to a reference to the underlying object. When we use a variable in an
expression, Python locates the object to which the variable refers.

For mutable objects, a method of an object can modify the object's state. All variables that
refer to the object will reflect the state change because a variable is just a reference, not a
complete copy.

When we use a variable on an assignment statement there are two possible actions:

For mutable objects that provide definitions for appropriate assignment operators
like +=, the assignment is transformed into a special method; in this case,
__iadd__. The special method will mutate the object's internal state.
For immutable objects that do not provide definitions for assignment like +=, the
assignment is transformed into = and +. A new object is built by the + operator
and the variable name is attached to that new object. Other variables which
previously referred to the object being replaced are not affected, they continue to
refer to old objects.

Python tracks the number of places that an object is referenced. When the number of
references becomes zero, the object is no longer used anywhere, and can be removed from
memory.

There's more…
Languages like C++ or Java have primitive types in addition to objects. In these languages, a
+= statement leverages a feature of the hardware instructions or the Java Virtual Machine to
tweak the value of a primitive type.

Python doesn't have this kind of optimization. Numbers are immutable objects. When we
do something like this:

>>> a = 355
>>> a += 113



Built-in Data Structures – list, set, dict

[ 207 ]

We're not tweaking the internal state of the object 355. This does not rely on the internal
__iadd__ special method. This behaves as if we had written:

>>> a = a + 113

The expression a + 113 is evaluated, and a new immutable integer object is created. This
new object is given the label a. The old value previously assigned to a is no longer needed.

See also
In the Making shallow and deep copies of objects recipe we'll look at ways we can
copy mutable structures

Making shallow and deep copies of objects
Throughout this chapter, we've talked about how assignment statements share references to
objects. Objects are not normally copied. When we write:

    a = b

we now have two references to the same underlying object. If b is a list, both a and b are
references to the same, mutable list.

As we saw in the Understanding variables, references, and assignment recipe, a change to the a
variable changes the list object that both a and b refer to.

Most of the time, this is the behavior we want. There are rare situations in which we want to
actually have two independent objects created from one original object.

There are two ways to break the connection that exists when two variables are references to
the same underlying object:

Making a shallow copy of the structure
Making a deep copy of the structure



Built-in Data Structures – list, set, dict

[ 208 ]

Getting ready
We have to make special arrangements to make a copy of an object. We've seen several
kinds of syntax for doing that.

Sequences – list and tuple: We can use sequence[:] to copy a sequence by
using an empty slice expression. We can also use sequence.copy() to make a
copy of a variable named sequence.
Mappings – dict: We can use mapping.copy() to copy a dictionary named
mapping.
Sets – set and frozenset: We can use someset.copy() to clone a set named
someset.

What's important is that these are all shallow copies.

Shallow means that two collections will contain references to the same underlying objects. If
the underlying objects are immutable numbers or strings, this distinction doesn't matter.
When we can't mutate items inside the collection, the items are simply replaced.

If we have a = [1, 1, 2, 3], we can't perform any mutation on a[0]. The number 1 in
a[0] has no internal state. We can only replace the object.

Questions arise, however, when we have a collection that involves mutable objects. First,
we'll create an object, then we'll create a copy:

>>> some_dict = {'a': [1, 1, 2, 3]}
>>> another_dict = some_dict.copy()

We have to make a shallow copy of the dictionary. The two copies look alike because they
both contain references to the same objects. There's a shared reference to the immutable
string a. And a shared reference to the mutable list [1, 1, 2, 3]. We can display the
value of another_dict to see that it looks like some_dict.

>>> another_dict
{'a': [1, 1, 2, 3]}

Here's what happens when we update the shared list that's inside the copy of the
dictionary:

>>> some_dict['a'].append(5)
>>> another_dict
{'a': [1, 1, 2, 3, 5]}



Built-in Data Structures – list, set, dict

[ 209 ]

We made a change to a mutable list object that's shared between two dict objects,
some_dict and another_dict.

We can see that the item is shared by using the id() function:

>>> id(some_dict['a']) == id(another_dict['a'])
True

Because the two id() values are the same, these are the same underlying object. The value
associated with the key a is the same mutable list in both some_dict and another_dict.
We can also use the is operator to see that they're the same object.

This mutation effect works for list collections that contain other list objects as items,
also:

>>> some_list = [[2, 3, 5], [7, 11, 13]]
>>> another_list = some_list.copy()
>>> some_list is another_list
False
>>> some_list[0] is another_list[0]
True

We've made a copy of an object, some_list, and assigned it to the variable another_list.
The top-level list object is distinct, but the items within the list are shared references.
We used the is operator to show that item zero in each list are both references to the same
underlying objects.

Because we can't make a set of mutable objects, we don't really have to consider making
shallow copies of sets which share items.

What if we want to completely disconnect two copies? How do we make a deep copy
instead of a shallow copy?

How to do it…
Python generally works by sharing references. It only makes copies of objects reluctantly.
The default behavior is to make a shallow copy, sharing references to the items within a
collection. Here's how we make deep copies:

Import the copy library:1.

      >>> import copy



Built-in Data Structures – list, set, dict

[ 210 ]

Use the copy.deepcopy() function to duplicate an object and all of the mutable2.
items contained within that object:

      >>> some_dict = {'a': [1, 1, 2, 3]}
      >>> another_dict = copy.deepcopy(some_dict)

This will create copies that have no shared references. A change to one copy's mutable
internal items won't have any effect anywhere else:

>>> some_dict['a'].append(5)
>>> some_dict
{'a': [1, 1, 2, 3, 5]}
>>> another_dict
{'a': [1, 1, 2, 3]}

We updated an item in some_dict and it had no effect on the copy in another_dict. We
can see that the objects are distinct with the id() function:

>>> id(some_dict['a']) == id(another_dict['a'])
False

Since the id() values are different, these are distinct objects. We can also use the is
operator too see that they're distinct objects.

How it works…
Making a shallow copy is relatively easy. We can write our own version of the algorithm
using generator expressions:

>>> copy_of_list = [item for item in some_list]
>>> copy_of_dict = {key:value for key, value in some_dict.items()}

In the list case, the items for the new list are references to the items in the source list.
Similarly, in the dict case, the keys and values are references to the keys and values of the
source dictionary.

The deepcopy() function uses a recursive algorithm to look inside each mutable collection.

For a list the conceptual algorithm is something like this:

    immutable = (numbers.Number, tuple, str, bytes)
    def deepcopy_list(some_list:
        copy = []
        for item in some_list:
            if isinstance(item, immutable):



Built-in Data Structures – list, set, dict

[ 211 ]

                copy.append(item)
            else:
                copy.append(deepcopy(item))

The actual code doesn't look like this, of course. It's a bit more clever in the way it handles
each distinct Python type. This does, however, provide some hints as to how the
deepcopy() function works.

It turns out that there are some additional considerations. The most import consideration is
an object which contains a reference to itself.

We could do this:

    a = [1, 2, 3]
    a.append(a)

This is a confusing, but technically valid, Python construct. It will lead to problems when
attempting to write a naïve recursive operation to visit all items in the list. In order to
overcome this, an internal cache is used so that items are only copied once. After that, an
internal reference can be found in the cache.

See also
In the Understanding variables, references, and assignment recipe we'll look at how
Python prefers to create references to objects.

Avoiding mutable default values for function
parameters
In Chapter 3, Function Definitions, we looked at many aspects of Python function
definitions. In the Designing functions with optional parameters recipe we showed a recipe for
handling optional parameters. At the time, we didn't dwell on the issue of providing a
reference to a mutable structure as a default. We'll take a close look at the consequences of a
mutable default value for a function parameter.



Built-in Data Structures – list, set, dict

[ 212 ]

Getting ready
Let's imagine a function that either creates or updates a mutable Counter object. We'll call
it gather_stats().

Ideally, it could look like this:

>>> from collections import Counter
>>> from random import randint, seed
>>> def gather_stats(n, samples=1000, summary=Counter()):
...     summary.update(
...         sum(randint(1,6) for d in range(n))
...             for _ in range(samples))
...     return summary

This shows a bad design for a function with two stories. The first story offers no argument
collection. The function creates and returns a collection of statistics. Here's the example of
this story:

>>> seed(1)
>>> s1 = gather_stats(2)
>>> s1
Counter({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70, 3:
52, 12: 29, 2: 26})

The second story allows us to provide an explicit parameter value so that the statistics
update a given object. Here's an example of this story:

>>> seed(1)
>>> mc = Counter()
>>> gather_stats(2, summary=mc)
Counter...
>>> mc
Counter({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70, 3:
52, 12: 29, 2: 26})

We've set the random number seed to be sure that the two sequences of random values are
identical. This makes it easy to confirm that the results are the same if we provide a
Counter object or use the default Counter object. In the second example, we provided an
explicit Counter object, named mc to the function.

The gather_stats() function returns a value. When writing a script, we'd simply ignore
the returned value. When working Python's interactive REPL the output is printed. We've
shown Counter... instead of the lengthy output.



Built-in Data Structures – list, set, dict

[ 213 ]

The problem arises when we do the following operation after doing the preceding two
operations:

>>> seed(1)
>>> s3 = gather_stats(2)
>>> s3
Counter({7: 336, 6: 294, 8: 272, 9: 228, 5: 220, 10: 154, 11: 142, 4: 140,
3: 104, 12: 58, 2: 52})

Note that the counts are doubled. Something has gone wrong. Since this only happens
when we use the default story more than once, it may pass a unit test suite and appear
correct.

As we saw in the Making shallow and deep copies of objects recipe, Python prefers to share
references. A consequence of that sharing is the following:

>>> s1 is s3
True

This means that two variables, s1 and s2, are both references to the same underlying object.
It appears that we've updated some shared collection.

Does that mean the value of s1 changed?

>>> s1
Counter({7: 336, 6: 294, 8: 272, 9: 228, 5: 220, 10: 154, 11: 142, 4: 140,
3: 104, 12: 58, 2: 52})

Yes, the default use of this gather_stats() function seems to be sharing a single object.
How can we avoid this?

How to do it…
There are two approaches to solving this problem:

Provide an immutable default
Change the design

We'll look at the immutable default first. Changing the design is generally a better idea. In
order to see why it's better to change the design, we'll show the purely technical solution.



Built-in Data Structures – list, set, dict

[ 214 ]

When we provide default values for functions, the default object is created exactly once and
shared forever after. Here's the alternative:

Replace any mutable default parameter value with None:1.

        def gather_stats(n, samples=1000, summary=None):

Add an if statement to check for an argument value of None and replace it with2.
a fresh, new mutable object:

        if summary is None: summary = Counter()

This will assure us that every time the function is evaluated with no argument value for a
parameter, we create a fresh, new mutable object. We will avoid sharing a single mutable
object over and over again.

There are very few good reasons for providing a mutable object as a default value to a
function. In most cases, we should consider changing the design, and not using a mutable
object as a default value for a parameter. In the rare case where we really do have a complex
algorithm which can update an object or create a fresh new object, we should consider
defining two separate functions.

We'd refactor this function to look like this:

    def create_stats(n, samples=1000):
        return update_stats(n, samples, Counter())
    def update_stats(n, samples=1000, summary):
        summary.update(
            sum(randint(1,6) for d in range(n))
                for _ in range(samples))

We've created two separate functions. This will separate the two stories so that there's no
confusion. The idea of optional mutable arguments is not a good idea in the first place.

How it works…
As we noted earlier, Python prefers to share references. It rarely creates copies of objects.
Therefore, default values for function parameter values will be shared objects. Python
doesn't easily create fresh, new objects.



Built-in Data Structures – list, set, dict

[ 215 ]

The rule is very important and often confuses programmers new to Python.

Don't use mutable defaults for functions.
A mutable object (set, list, dict) should not be a default value for a
function parameter.

This rule applies to the core language. It doesn't apply throughout the standard library,
however. There are cases where there are some clever alternative approaches.

There's more…
In the standard library, there are some examples of a cool technique that shows how we can
create fresh default objects. One widely-used example is in the defaultdict collection.
When we create a defaultdict we provide a no-argument function that will be used to
create new dictionary entries.

When a key is missing from the dictionary, the given function is evaluated to compute a
fresh default value. In the case of defaultdict(int) we're using the int() function to
create an immutable object. As we've seen, a default value of an immutable object doesn't
cause any problems because the immutable object has no internal state.

When we do defaultdict(list) or defaultdict(set) we see the real power of this
design pattern. When a key is missing, a fresh, empty list (or set) is created.

The evaluate-a-function pattern used by defaultdict does not apply to the way functions
themselves operate. Most of the time the default values we provide for function parameters
are immutable objects like numbers, strings, or tuples. Having to wrap an immutable object
with a lambda is certainly possible, but irksome because it's such a common case.

In order to leverage this technique, we need to modify the design of our example function.
We will no longer update an existing counter object in the function. We'll always create a
fresh, new object. We can modify what class of object is created.

Here's a function that allows us to plug in a different class in the case where we don't want
the default Counter class to be used.

>>> def gather_stats(n, samples=1000, summary_func=lambda x:Counter(x)):
...     summary = summary_func(
...         sum(randint(1,6) for d in range(n))
...             for _ in range(samples))
...     return summary



Built-in Data Structures – list, set, dict

[ 216 ]

For this version, we've defined an initialization value to be a function of one argument. The
default will apply this one-argument function to a generator function for the random
samples. We can override this function with another one-argument function that will collect
data. This will build a fresh object using any kind of object that can gather data.

Here's an example using list():

>>> seed(1)
>>> gather_stats(2, 12, summary_func=list)
[7, 4, 5, 8, 10, 3, 5, 8, 6, 10, 9, 7]

In this case, we provided the list() function to create a list with the individual random
samples in it.

Here's an example without an argument value. It will create a Counter object:

>>> seed(1)
>>> gather_stats(2, 12)
Counter({5: 2, 7: 2, 8: 2, 10: 2, 3: 1, 4: 1, 6: 1, 9: 1})

In this case, we've used the default value. The function created a Counter() object from the
random samples.

See also
See the Creating dictionaries – inserting and updating recipe, which shows how
defaultdict works



5
User Inputs and Outputs

In this chapter, we'll look at the following recipes:

Using features of the print() function
Using input() and getpass() for user input
Debugging with “format”.format_map(vars())
Using argparse to get command-line input
Using cmd for creating command-line applications
Using the OS environment settings

Introduction
The core value of software is to produce useful output. One simple type of output is a text
display of some useful result. Python supports this with the print() function.

The input() function has a clear parallel with the print() function. The input()
function reads text from a console, allowing us to provide distinct values to our programs.

There are a number of other common ways to provide input. Parsing the command-line is
also helpful for many applications. We sometimes need to use configuration files to provide
useful input. Data files and network connections are yet more ways to provide input. Each
of these is distinct and needs to be looked at separately. In this chapter, we'll focus on the
fundamentals of input() and print().



User Inputs and Outputs

[ 218 ]

Using features of the print() function
In many cases, the print() function is the first function we learn. The first script is often a
variation on the following:

print("Hello world.")

We quickly learn that the print() function can display multiple values, including a helpful
space between items.

When we write this:

>>> count = 9973
>>> print("Final count", count)
Final count 9973

We see that a space is included to separate the two values. Additionally, a line break,
usually represented by the \n character, is printed after the values provided in the function.

Can we control this formatting? Can we change the extra characters that are supplied?

It turns out that there are some more things we can do with print().

Getting ready
We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows that look like this:

Date 10/25/13 10/26/13 10/28/13

Engine on 08:24:00 09:12:00 13:21:00

Fuel height on 29 27 22

Engine off 13:15:00 18:25:00 06:25:00

Fuel height off 27 22 14

For more information on this data, refer to the Removing items from a set – remove(), pop(), and
difference and Slicing and dicing a list recipes in Chapter 4, Built-in Data Structures – list, set,
dict. There's no level gauge inside the tank. The depth of fuel has to be read through a sight
glass on the side of the tank, which is why the volume of fuel is stated as a depth. The full
depth of the tank is about 31 inches, and the volume is about 72 gallons; it's possible to
convert depth to volume.



User Inputs and Outputs

[ 219 ]

Here's an example of using the CSV data. This function reads the file and returns a list of
fields built from each row:

>>> from pathlib import Path
>>> import csv
>>> from collections import OrderedDict
>>> def get_fuel_use(source_path):
...     with source_path.open() as source_file:
...         rdr= csv.DictReader(source_file)
...         od = (OrderedDict(
...             [(column, row[column]) for column in rdr.fieldnames])
...             for row in rdr)
...         data = list(od)
...     return data
>>> source_path = Path("code/fuel2.csv")
>>> fuel_use= get_fuel_use(source_path)
>>> fuel_use
[OrderedDict([('date', '10/25/13'), ('engine on', '08:24:00'),
    ('fuel height on', '29'), ('engine off', '13:15:00'),
    ('fuel height off', '27')]),
OrderedDict([('date', '10/26/13'), ('engine on', '09:12:00'),
    ('fuel height on', '27'), ('engine off', '18:25:00'),
    ('fuel height off', '22')]),
OrderedDict([('date', '10/28/13'), ('engine on', '13:21:00'),
    ('fuel height on', '22'), ('engine off', '06:25:00'),
    ('fuel height off', '14')])]

We used a pathlib.Path object to define the location of the raw data. We defined a
function, get_fuel_use(), that will open and read the file at a given path. This function
creates a list of rows from the source spreadsheet. Each line of data is represented as an
OrderedDict object.

The function starts by creating a csv.DictReader object to parse the raw data. The reader
normally returns a built-in dict object, which doesn't force a particular ordering on the
keys. To force a particular key order, this function uses a generator expression to create an
OrderedDict object for each row. The fieldnames attribute of the reader, rdr, is used to
force the columns into a specific order. The generator expression uses a nested pair of loops:
one loop processes each field of a row and the outer loop processes each row of the data.

The result is a list object that contains the OrderedDict objects. This is a consistent source
of data that we can use for printing. Each row has five fields based on the column names in
the first row.



User Inputs and Outputs

[ 220 ]

How to do it…
We have two ways to control the print() formatting:

Set the inter-field separator character, sep, which has a space as its default value
Set the end-of-line character, end, which has the \n character as its default value

We'll show several examples of changing sep and end. Each is a kind of one-step recipe.

The default case looks like this. This example has no change to sep or end:

>>> for leg in fuel_use:
...    start = float(leg['fuel height on'])
...    finish = float(leg['fuel height off'])
...    print("On", leg['date'],
...    'from', leg['engine on'],
...    'to', leg['engine off'],
...    'change', start-finish, 'in.')
On 10/25/13 from 08:24:00 to 13:15:00 change 2.0 in.
On 10/26/13 from 09:12:00 to 18:25:00 change 5.0 in.
On 10/28/13 from 13:21:00 to 06:25:00 change 8.0 in.

When we look at the output, we can see where a space was inserted between each item. The
\n character at the end of each collection of data items means that each print() function
produces a separate line.

When preparing data, we might want to use a format that's similar to comma-separated
values, perhaps using a column separator that's not a simple comma. Here's an example
using  | :

>>> print("date", "start", "end", "depth", sep=" | ")
date | start | end | depth
>>> for leg in fuel_use:
...    start = float(leg['fuel height on'])
...    finish = float(leg['fuel height off'])
...    print(leg['date'], leg['engine on'],
...    leg['engine off'], start-finish, sep=" | ")
10/25/13 | 08:24:00 | 13:15:00 | 2.0
10/26/13 | 09:12:00 | 18:25:00 | 5.0
10/28/13 | 13:21:00 | 06:25:00 | 8.0

In this case, we can see that each column has the given separator string. Since there were no
changes to the end setting, each print() function produces a distinct line of output.



User Inputs and Outputs

[ 221 ]

The most common case seems to be where we want to suppress the separators entirely. This
gives us a fine degree of control over the output.

Here's how we might change the default punctuation to emphasize the field name and
value. In this case, we've changed the end setting:

>>> for leg in fuel_use:
...    start = float(leg['fuel height on'])
...    finish = float(leg['fuel height off'])
...    print('date', leg['date'], sep='=', end=', ')
...    print('on', leg['engine on'], sep='=', end=', ')
...    print('off', leg['engine off'], sep='=', end=', ')
...    print('change', start-finish, sep="=")
date=10/25/13, on=08:24:00, off=13:15:00, change=2.0
date=10/26/13, on=09:12:00, off=18:25:00, change=5.0
date=10/28/13, on=13:21:00, off=06:25:00, change=8.0

Since the end string was changed to , , each use of the print() function did not produce a
separate line. We didn't get a proper end of line until the final print() function, which had
the default value for end.

Clearly, this technique can get quite complex for anything more sophisticated than these
simple examples. For something simple, we can tweak the separator or ending. For
anything more complex, we need to use the format() method of a string.

How it works…
In the general case, the print() function is a handy wrapper around stdout.write().
This relationship can be changed, as we'll see next.

We can imagine that print() has a definition something like this:

    def print(*args, *, sep=None, end=None, file=sys.stdout):
        if sep is None: sep = ' '
        if end is None: end = '\n'
        arg_iter= iter(args)
        first = next(arg_iter)
        sys.stdout.write(repr(first))
        for value in arg_iter:
            sys.stdout.write(sep)
            sys.stdout.write(repr(value())
        sys.stdout.write(end)



User Inputs and Outputs

[ 222 ]

This provides a hint as to how the the separator string and end string are included in the
output from the print() function. If no value is provided, the default values are space and
new line. The function iterates through the argument values, treating the first value as
special because it does not have a separator. This approach assures that the separator string,
sep, appears between values.

The end of line string, end, appears after all of the values. It is always written. We can
effectively turn it off by setting it to a zero-length string.

There's more…
The sys module defines the two standard output files that are always available:
sys.stdout and sys.stderr.

We can use the file= keyword argument to write to the standard error file in addition to
the standard output file:

    import sys
    print("Red Alert!", file=sys.stderr)

We've imported the sys module so that we have access to the standard error file. We used
this to write a message that would not be part of the standard output stream.

Generally, we need to be cautious of opening too many output files in a single program.
The OS limits are usually more than adequate to open many files. However, it can become
confusing when a program creates a large number of files.

It often works out nicely to use OS file redirection techniques. A program's primary output
can be written to sys.stdout; this is easily redirected at the OS level. A user might enter a
command line like this:

python3 myapp.py <input.dat >output.dat

This will provide the input.dat file as the input on sys.stdin. When the Python
program writes to sys.stdout, the output will be redirected by the OS to the output.dat
object.



User Inputs and Outputs

[ 223 ]

In some cases, we need to open additional files. In that case, we might see programming
like this:

    from pathlib import Path
    target_path = Path("somefile.dat")
    with target_path.open('w', encoding='utf-8') as target_file:
        print("Some output", file=target_file)
        print("Ordinary log")

In this example, we've opened a specific path for output and assigned the open file to
target_file using the with statement. We can then use this as the file= value in a
print() function to write to this file. Because a file is a context manager, leaving the with
statement means that the file will be closed properly and all of the OS resources will be
released from the application. All file operations should be wrapped in a with statement
context to ensure that the resources are properly released.

See also
Refer to the Debugging with “format”.format_map(vars()) recipe
For more information on the input data in this example, refer to the Removing
items from a set – remove(), pop(), and difference and Slicing and dicing a list recipes
in Chapter 4, Built-in Data Structures – list, set, dict
For more information on file operations in general, refer to Chapter 9,
Input/Output, Physical Format, Logical Layout

Using input() and getpass() for user input
Some Python scripts depend on gathering input from a user. There are several ways to do
this. One popular technique is to use the console to prompt the user for input.

There are two relatively common situations:

Ordinary input: We use the input() function for this. This will provide a
helpful echo of the characters being entered.
No echo input: This is often used for passwords. The characters entered aren't
displayed, providing a degree of privacy. We use the getpass() function in the
getpass module for this.



User Inputs and Outputs

[ 224 ]

The input() and getpass() functions are just two implementation choices for reading
from the console. It turns out that getting the string of characters is only the first step in
processing. We actually have separate tiers of considerations:

The initial interaction with the console. This is the basics of writing a prompt and1.
reading input. This must correctly handle data as well as keyboard events, such
as backspace for editing. This may also mean handling end-of-file appropriately.
Validating the input to see that it belongs in the expected domain of values. We2.
might be looking for digits, yes/no values, or days of the week. In most cases,
there are two parts to the validation tier:

We check whether the input fits some general domain, for example,
numbers.
We check whether the input fits some more specific subdomain. For
example, this might include a check to see if the number is greater than
or equal to zero.

Validating the input in some larger context to ensure that it's consistent with3.
other inputs. For example, we can check whether the user's birth date is prior to
today.

Above and beyond these techniques, we'll look at some other approaches in the Using
argparse to get command-line input recipe.

Getting ready
We'll look at a technique for reading a complex structure from a person. In this case, we'll
use the year, month, and day as separate items to create a complete date.

Here's a quick example that omits all of the validation issues:

    from datetime import date

    def get_date():
        year = int(input("year: "))
        month = int(input("month [1-12]: "))
        day = int(input("day [1-31]: "))
        result = date(year, month, day)
        return result

This illustrates how easy it is to use the input() function. We often need to wrap this in
additional processing to make it more useful. The calendar is complex, and we'd hate to
accept February 32 without warning a user that this is not a proper date.



User Inputs and Outputs

[ 225 ]

How to do it…
Check whether the input is a password or something equally subject to redaction.1.
If so, then use the getpass.getpass() function. This means we need to import
the following function:

        from getpass import getpass

Otherwise, if the redacted input is not required, use the input() function.

Determine which prompt will be used. This might be as simple as >>> or2.
something more complex. In some cases, we might provide a great deal of
contextual information.
In our example, we provided a field name and a hint about the type of data
expected as a prompt string. The prompt string is the argument to the input()
or getpass() function:

        year = int(input("year: "))

Determine how to validate each item in isolation. The simplest case is a single3.
value with a single rule that covers everything. In more complex cases—like this
one—each individual element is a number with a range constraint. In a later step,
we'll look at validating the composite item.
We might want to restructure our input to look like this:4.

        month = None
        while month is None:
            month_text = input("month [1-12]: ")
            try:
                month = int(month_text)
                if 1 <= month <= 12:
                    pass
                else:
                    raise ValueError("Month of range 1-12")
            except ValueError as ex:
                print(ex)
                month = None



User Inputs and Outputs

[ 226 ]

This applies two validation rules to the input:

It checks whether the month is a valid integer using the int() function
It checks whether the integer is in the range [1, 12] using an if statement that
raises a ValueError exception

Raising an exception for faulty input is generally the simplest approach. It allows us the
most flexibility. There are other exception classes we might use, including defining a
customized data validation exception.

Since we'll use nearly identical loops for each field of a complex object, we need to
restructure this input and validate the sequence into a separate function. We'll call it
get_integer(). We'll look at the details here:

Validate the composite object. In this case, it also means that our overall input1.
needs to be restructured to allow for a retry in the event of bad input:

        input_date = None
        while input_date is None:
            year = get_integer("year: ", 1900, 2100)
            month = get_integer("month [1-12]: ", 1, 12)
            day = get_integer("day [1-31]: ", 1, 31)
            try:
                result = date(year, month, day)
            except ValueError as ex:
                print(ex)
                input_date = None
        # assert input_date is the valid date entered by the user

This overall loop implements the higher level validation of the composite date
object.

Given a year and a month, we can actually determine a slightly more narrow
range for the number of days. The complexity is that not only do months have
different numbers of days, varying from 28 to 31, but February has a number of
days that varies with the type of year.

Rather than mimicing the rules, it's easier to use the datetime module to2.
compute the first days of two adjacent months, as follows:

        day_1_date = date(year, month, 1)
        if month == 12:
            next_year, next_month = year+1, 1
        else:
            next_year, next_month = year, month+1



User Inputs and Outputs

[ 227 ]

        day_end_date = date(next_year, next_month, 1)

This will properly compute the last day of any given month. The algorithm works
by computing the first day of a given year and month. It then computes the first
day of the next month. It properly changes the year so that January of year+1
follows December of year.

The number of days between these dates is the number of days in the given
month. We can use the expression (day_end_date - day_1_date).days to
extract the number of days from the timedelta object.

How it works…
We need to decompose the input problem into several separate, but closely related
problems. At the bottom layer is the initial interaction with the user. We identified two of
the common ways to handle this:

input(): This prompts and reads simply
getpass.getpass(): This prompts and reads passwords without an echo

We expect to be able to edit the current line of input using the Backspace character. In some
environments, there is a more sophisticated editor available. It's embodied in the Python
readline module. This module, if present, can add a great deal of editing while preparing
a line of input. The principle feature of this module is an OS-level input history—we can
use the up arrow key to recover any previous input.

We've decomposed the input validation into several tiers to reflect the kind of
programming required to confirm that the input is valid:

A general domain validation should use the simple conversion functions such as
int() or float(). These tend to raise exceptions for invalid data. It's far simpler
to use these conversion functions and handle the exceptions than to attempt to
write a regular expression that matches valid numeric values.
Our subdomain validation must use an if statement to determine whether
values fit any additional constraints, such as ranges, that are imposed. For
consistency, this should also raise an exception if the data is invalid.



User Inputs and Outputs

[ 228 ]

There are a lot of potential kinds of constraints that might be imposed on values. For
example, we might want only valid OS process IDs, called PIDs. This requires checking the
/proc/<pid> path on Nanny Linux systems.

For BSD-based systems such as Mac OS X, the /proc file system doesn't exist. Instead,
something like the following needs to be done to determine if a PID is valid:

    import subprocess
    status = subprocess.check_output(
        ['ps',PID])

For Windows, the command would look like this:

    status = subprocess.check_output(
        ['tasklist', '/fi', '"PID eq {PID}"'.format(PID=PID)])

Either of these two functions would need to be part of input validation to ensure that the
user is entering a proper PID value. This can only be applied if the primary domain of
integers was assured.

Finally, our overall input function should also raise an exception for invalid input. This can
vary quite a bit in complexity. We created a simple date object in the example. In other
cases, we might have to do considerably more processing to determine whether a complex
input is valid.

There's more…
We have several alternatives for user input that involve slightly different approaches. We'll
look at these two topics in detail:

Input string parsing: This will involve simple use of input() with clever parsing
Interaction via cmd module: This involves a more complex class, and somewhat
simpler parsing

Input string parsing
A simple date value requires three separate fields. A more complex date-time that includes
a timezone offset from UTC will involve seven separate fields. The user experience might be
improved by reading and parsing a string rather than individual fields.



User Inputs and Outputs

[ 229 ]

For a simple date input, we might use the following:

raw_date_str = input("date [yyyy-mm-dd]: ")
input_date = datetime.strptime(raw_date_str, '%Y-%m-%d').date()

We've used the strptime() function to parse a time string in a given format. We've
emphasized the expected date format in the prompt that's provided in the input()
function.

This style of input requires the user to enter a more complex string. Since it's a single string
that includes all of the details for a date, many people find it as easier and more friendly.

Note that both techniques—gathering individual fields and processing a complex
string—depend on the underlying input() function.

Interaction via the cmd module
The cmd module includes the Cmd class that can be used to build an interactive interface.
This takes a dramatically different approach to the notion of user interaction. It does not
rely on using input() explicitly.

We'll look at this closely in the Using cmd for creating command-line applications recipe.

See also
In the reference material for the SunOS operating system, which is now owned by Oracle,
there is a collection of commands that prompt for different kinds of user inputs:

h t t p s ://d o c s . o r a c l e . c o m /c d /E 19683- 01/816- 0210/6m 6n b 7m 5d /i n d e x . h t m l

Specifically, all of these commands that begin with ck are for gathering and validating user
input. This could be used to define a module of input validation rules:

ckdate: This prompts for and validates a date
ckgid: This prompts for and validates a group ID
ckint: This displays a prompt, verifies, and returns an integer value
ckitem: This builds a menu, prompts for, and returns a menu item
ckkeywd: This prompts for and validates a keyword
ckpath: This displays a prompt, verifies, and returns a pathname
ckrange: This prompts for and validates an integer

https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html


User Inputs and Outputs

[ 230 ]

ckstr: This displays a prompt, verifies, and returns a string answer
cktime: This displays a prompt, verifies, and returns a time of day
ckuid: This prompts for and validates a user ID
ckyorn: This prompts for and validates yes/no

Debugging with “format”.format_map(vars())
One of the most important debugging and design tools available in Python is the print()
function. There are some kinds of formatting options available; we looked at these in the
Using features of the print() function recipe.

What if we want more flexible output? We have more flexibility with the
"string".format_map() method. This isn't all. We can couple this with the vars()
function to create something that often leads to a wow!

Getting ready
Let's look at a multistep process that involves some moderately complex calculations. We'll
compute the mean and standard deviation of some sample data. Given these values, we'll
locate all items that are more than one standard deviation above the mean:

>>> import statistics
>>> size = [2353, 2889, 2195, 3094,
... 725, 1099, 690, 1207, 926,
... 758, 615, 521, 1320]
>>> mean_size = statistics.mean(size)
>>> std_size = statistics.stdev(size)
>>> sig1 = round(mean_size + std_size, 1)
>>> [x for x in size if x > sig1]
[2353, 2889, 3094]

This calculation has several working variables. The mean_size, std_size, and sig1
variables all show elements of the final list comprehension that filters the size list. If the
result is confusing or even incorrect, it's helpful to know the intermediate steps in the
calculation. In this case, because they're floating-point values, we often want to round the
results so that they're more meaningful.



User Inputs and Outputs

[ 231 ]

How to do it…
The vars() function builds a dictionary structure from a variety of sources.1.
If no arguments are given, then by default, the vars() function will expand all2.
the local variables. This creates a mapping that can be used with the
format_map() method of a template string.
Using a mapping allows us to inject variables using the variable's name into the3.
format template. It looks as follows:

      >>> print(
      ...     "mean={mean_size:.2f}, std={std_size:.2f}"
      ...     .format_map(vars())
      ... )
      mean=1414.77, std=901.10

We can put any local variable into the format string. Using format_map(vars()), we don't
need to have a more complex way to pick which variables are going to be displayed.

How it works…
The vars() function builds a dictionary structure from a variety of sources:

The vars() expression will expand all local variables to create a mapping that
can be used with the format_map() method.
The vars(object) expression will expand all of the items in an object's internal
__dict__ attribute. This allows us to expose attributes of class definitions and
objects. When we look at objects in Chapter 6, Basics of Classes and Objects, we'll
see how we can leverage this.

The format_map() method expects a single argument, which is a mapping. The format
string uses {name} to refer to keys in the mapping. We can use {name:format} to provide
a format specification. We can also use {name!conversion} to provide a conversion
function using the repr(), str(), or ascii() functions.

For more background on the formatting options, refer to the Building complex strings with
“template”.format() recipe in Chapter 1, Numbers, Strings, and Tuples.



User Inputs and Outputs

[ 232 ]

There's more…
The format_map(vars()) technique is a simple way to display the values of variables. An
alternative is to use format(**vars()). This alternative can give us some additional
flexibility.

For example, we can use this more flexible format to include additional calculations that
aren't simply local variables:

>>> print(
...     "mean={mean_size:.2f}, std={std_size:.2f},"
...     " limit2={sig2:.2f}"
...     .format(sig2=mean_size+2*std_size, **vars())
... )
mean=1414.77, std=901.10, limit2=3216.97

We've computed a new value, sig2, that appears only inside the formatted output.

See also
Refer to the Building complex strings with “template”.format() recipe in Chapter 1,
Numbers, Strings, and Tuples, for more of the things that can be done with the
format() method
Refer to the Using features of the print() function recipe for other formatting options

Using argparse to get command-line input
In some cases, we want to get the user input from the OS command line without a lot of
interaction. We'd prefer to parse the command-line argument values and either perform the
processing or report an error.

For example, at the OS level, we might want to run a program like this:

slott$ python3 ch05_r04.py -r KM 36.12,-86.67 33.94,-118.40
From (36.12, -86.67) to (33.94, -118.4) in KM = 2887.35

The OS prompt is slott$. We entered a command of python3 ch05_r04.py. This
command had an optional argument, -r KM, and two positional arguments of
36.12,-86.67 and 33.94,-118.40.



User Inputs and Outputs

[ 233 ]

The program parses the command-line arguments and writes the result back to the console.
This allows for a very simple kind of user interaction. It keeps the program very simple. It
allows the user to write a shell script to invoke the program or merge the program with
other Python programs to create a higher level program.

If the user enters something incorrect, the interaction might look like this:

slott$ python3 ch05_r04.py -r KM 36.12,-86.67 33.94,-118asd
usage: ch05_r04.py [-h] [-r {NM,MI,KM}] p1 p2
ch05_r04.py: error: argument p2: could not convert string to float:
'-118asd'

An invalid argument value of -118asd leads to an error message. The program stopped
with an error status code. For the most part, the user can hit the up arrow key to get the
previous command line back, make a change, and run the program again. The interaction is
delegated to the OS command line.

The name of the program—ch05_r04—isn't too informative. We could perhaps do better.
The positional arguments are two (latitude, longitude) pairs. The output shows the distance
between the two in the given units.

How do we parse argument values from the command line?

Getting ready
The first thing we need to do is to refactor our code to create two separate functions:

A function to get the arguments from the command line. Owing to the way in
which the argparse module works, this function will almost always return an
argparse.Namespace object.
A function which does the real work. This function should be designed so that it
makes no reference to the command-line options in any way. This means it can be
reused in a variety of contexts.

Here's our real work function, display():

    from ch03_r05 import haversine, MI, NM, KM
    def display(lat1, lon1, lat2, lon2, r):
        r_float = {'NM': NM, 'KM': KM, 'MI': MI}[r]
        d = haversine( lat1, lon1, lat2, lon2, r_float )
        print( "From {lat1},{lon1} to {lat2},{lon2}"
              "in {r} = {d:.2f}".format_map(vars()))



User Inputs and Outputs

[ 234 ]

We've imported the core calculation, haversine(), from another module. We've provided
argument values to this function and used format() to display the final result message.

We've based this on the calculations shown in the examples in the Picking an order for
parameters based on partial functions recipe in Chapter 3, Function Definitions:

The essential calculation yields the central angle, c, between two points, given as (lat1, lon1)
and (lat2, lon2). The angle is measured in radians. We convert it into distance by multiplying
it by the Earth's mean radius in some units. If we multiply the angle c by a radius of 3,959
miles, we'll get the distance represented by the angle in miles.

Note that we expect the distance conversion factor, r, to be provided as a string. This
function will then map the string to an actual floating-point value.

For details on the format() method, note that we're using a variation on the Debugging
with “format”.format_map(vars()) recipe.

Here's how the function looks when it's used inside Python:

>>> from ch05_r04 import display
>>> display(36.12, -86.67, 33.94, -118.4, 'NM')
From 36.12,-86.67 to 33.94,-118.4 in NM = 1558.53

This function has two important design features. The first feature is that it avoids references
to features of the argparse.Namespace object that's created by argument parsing. Our
goal is to have a function that we can reuse in a number of alternative contexts. We need to
keep the input and output elements of the user interface separate.

The second design feature is that this function displays a value computed by another
function. This is a helpful feature because it lets us decompose the problem. We've
separated the user experience from the essential calculation.



User Inputs and Outputs

[ 235 ]

How to do it…
Define the overall argument parsing function:1.

        def get_options():

Create the parser object:2.

        parser = argparse.ArgumentParser()

Add the various types of arguments to the parser object. Sometimes this is3.
difficult because we're still refining the user experience. It's difficult to imagine all
the ways in which people will use a program and all of the questions they might
have.

For our example, we have two mandatory, positional arguments, and an optional
argument:

Point 1 latitude and longitude
Point 2 latitude and longitude
Optional distance

We can use Nautical Miles as a handy default so that sailors get the answers they
need:

        parser.add_argument('-r', action='store',
                choices=('NM', 'MI', 'KM'), default='NM')
        parser.add_argument('p1', action='store', type=point_type)
        parser.add_argument('p2', action='store', type=point_type)

We've added two kinds of arguments. The first is the -r, argument, which starts
with - to mark it as optional. Sometimes, a -- is used with a longer name. In some
cases, we'll provide both alternatives, as follows:

        add_argument('--radius', '-r'....)

The action is to store the value which follows the -r on the command-line. We've
listed the three possible choices and provided a default. The parser will validate
the input and write appropriate errors if the input isn't one of these three values.



User Inputs and Outputs

[ 236 ]

The mandatory arguments are provided without a - prefix. We used an action of
store; this is the default action and doesn't really need to be stated. The function
provided as the type argument is used to convert the source string to an
appropriate Python object. This is also the ideal way to validate complex input
values. We'll look at the point_type() validation function int this section.

Evaluate the parse_args() method of the parser object created in step 2:4.

        options = parser.parse_args()

By default, this uses the values from sys.argv, which are the command-line
argument values entered by the user. We can provide an explicit argument if we
need to modify the user-supplied command-line in some way.

Here's the final function:

    def get_options():
        parser = argparse.ArgumentParser()
        parser.add_argument('-r', action='store',
                choices=('NM', 'MI', 'KM'), default='NM')
        parser.add_argument('p1', action='store', type=point_type)
        parser.add_argument('p2', action='store', type=point_type)
        options = parser.parse_args()
        return options

This relies on the point_type() validation function. This is needed because the default
input type is defined by the str() function. This assures that the values of arguments will
be string objects. We've provided the type argument so that we can inject a type
conversion. We might use type = int or type = float to convert to a number.

In our example, we used point_type() to convert a string to a (latitude, longitude) two-
tuple:

    def point_type(string):
        try:
            lat_str, lon_str = string.split(',')
            lat = float(lat_str)
            lon = float(lon_str)
            return lat, lon
        except Exception as ex:
            raise argparse.ArgumentTypeError from ex



User Inputs and Outputs

[ 237 ]

This function parses the input values. First, it separates the two values at the , character. It
attempts a floating-point conversion on each part. If the float() functions both work, we
have a valid latitude and longitude that we can return as a pair of floating-point values.

If anything goes wrong, an exception will be raised. From this exception, we'll raise an
ArgumentTypeError exception. This is used by the argparse module to report the error
to the user.

Here's the main script that combines the option parser and the output display functions:

    if __name__ == "__main__":
        options = get_options()
        lat_1, lon_1 = options.p1
        lat_2, lon_2 = options.p2
        r = {'NM': NM, 'KM': KM, "MI": MI}[options.r]
        display(lat_1, lon_1, lat_2, lon_2, r)

This main script does a few things to connect the user inputs to the displayed output:

Parse the command-line options. These are all present in the options object.1.
Expand the p1 and p2 (latitude, longitude) two-tuples into four individual2.
variables.
Evaluate the display() function.3.

How it works…
The argument parser works in three stages:

Define the overall context by creating a parser object as an instance of1.
ArgumentParser. We can provide information such as the overall program
description. We can also provide a formatter and other options here.
Add individual arguments with the add_argument() method. These can include2.
optional arguments as well as required arguments. Each argument can have a
number of features to provide different kinds of syntax. We'll look at a number of
the alternatives in the There's more… section.
Parse the actual command-line inputs. The parser's parse() method will use3.
sys.argv automatically. We can provide an explicit value instead of the
sys.argv values. The most common reason for providing an override value is to
allow for more complete unit testing.



User Inputs and Outputs

[ 238 ]

Some simple programs will have a few optional arguments. A more complex program may
have many optional arguments.

It's common to have a filename as a positional argument. When a program reads one or
more files, the filenames are provided on the command line, as follows:

python3 some_program.py *.rst

We've used the Linux shell's globbing feature—the *.rst string is expanded into a list of
all files that match the naming rule. This list of files can be processed using an argument
defined as follows:

    parser.add_argument('file', nargs='*')

All of the names on the command line that do not start with the - character will be collected
into the file value in the object built by the parser.

We can then use the following:

    for filename in options.file:
        process(filename)

This will process each file given on the command line.

For Windows programs, the shell doesn't glob, and the application must deal with
filenames that have wild card patterns in them. The Python glob module can help with
this. Also, the pathlib module can create Path objects, which include globbing features.

We may have to make even more complex argument parsing options. Very complex
applications may have dozens of individual commands. As an example, look at the git
version-control program; this application uses dozens of separate commands such as git
clone, git commit, or git push. Each of these commands has unique argument parsing
requirements. We can use argparse to create a complex hierarchy of these commands and
their distinct sets of arguments.

There's more…
What kinds of arguments can we process? There are a lot of argument styles in common
use. All of these variations are defined using the add_argument() method of a parser:

Simple options: The -o or --option arguments are often used to enable or
disable features of a program. These are often implemented with
add_argument() parameters of action='store_true', default=False.



User Inputs and Outputs

[ 239 ]

Sometimes the implementation is simpler if the application uses
action='store_false', default=True. The choice of default value and
stored value may simplify the programming, but it won't change the user's
experience.
Simple options with non-trivial objects: The user sees this is as simple -o or --
option arguments. We may want to implement this using a more complex object
that's not a simple Boolean constant. We can use action='store_const',
const=some_object, default=another_object. As modules, classes, and
functions are also objects, a great deal of sophistication is available here.
Options with values: We showed -r unit as an argument that accepted the
string name for the units to use. We implemented this with an action='store'
assignment to store the supplied string value. We can also use the
type=function option to provide a function that validates or converts the input
into a useful form.
Options that increment a counter: One common technique is to have a
debugging log that has multiple levels of detail. We can use action='count',
default=0 to count the number of times a given argument is present. The user
can provide -v for verbose output and -vv for very verbose output. The
argument parser treats -vv as two instances of the -v argument, which means
that the value will increase from the initial value of 0 to 2.
Options that accumulate a list: We might have an option for which the user
might want to provide more than one value. We could, for example, use a list of
distance values. We could have an argument definition with action='append',
default=[]. This would allow the user to say -r NM -r KM to get a display in
both nautical miles and kilometers. This would require a significant change to the
display() function, of course, to handle multiple units in a collection.
Show the help text: If we do nothing, then -h and --help will display a help
message and exit. This will provide the user with useful information. We can
disable this or change the argument string, if we need to. This is a widely used
convention, so it seems best to do nothing so that it's a feature of our program.
Show the version number: It's common to have --Version as an argument to
display the version number and exit. We implement this with add_argument("-
-Version", action="version", version="v 3.14"). We provide an
action of version and an additional keyword argument that sets the version to
display.



User Inputs and Outputs

[ 240 ]

This covers most of the common cases for command-line argument processing. Generally,
we'll try to leverage these common styles of arguments when we write our own
applications. If we strive to use simple, widely used argument styles, our users are
somewhat more likely to understand how our application works.

There are a few Linux commands, which have even more complex command-line syntax.
Some Linux programs, such as find or expr, have arguments that can't easily be processed
by argparse. For these edge cases, we would need to write our own parser using the
values of sys.argv directly.

See also
We looked at how to get interactive user input in the Using input() and getpass() for
user input recipe
We'll look at a way to add even more flexibility to this in the Using the OS
environment settings recipe

Using cmd for creating command-line
applications
There are several ways of creating interactive applications. The Using input() and getpass() for
user input recipe looked at functions such as input() and getpass.getpass(). The Using
argparse to get command-line input recipe showed how to use argparse to create applications
with which a user can interact from the OS command line.

We have a third way to create interactive applications using the cmd module. This module
will prompt the user for input, and then invoke a specific method of the class we provide.

This is related to material in Chapter 7, More Advanced Class Design. We'll add features to a
class definition to create a unique subclass.



User Inputs and Outputs

[ 241 ]

Here's how the interaction will look, we've marked user input like this: “help“:

Starting with 100

Roulette> help

Documented commands (type help <topic>):
========================================
bet  help

Undocumented commands:
======================
done  spin  stake

Roulette> help bet
Bet <name> <amount>
        Name is one of even, odd, red, black, high, or low

Roulette> bet black 1
Roulette> bet even 1
Roulette> spin
Spin ('21', {'red', 'high', 'odd'})
Lose even
Lose black
... more interaction ...

Roulette> done
Ending with 93

There's an introductory message from the application. It shows the player's starting stake,
that is, how much they have to bet. The application displays a prompt, Roulette>. The
user can then enter any of the five available commands.

When we enter help as a command, we see a display of the available commands. Only two
have any documentation. The other three have no further details available.

When we enter help bet, we see the detailed documentation for the bet command. The
description tells us to provide a bet name from the available six choices and a bet amount.

We create two bets—one on black and one on even. We then enter the spin command to
spin the wheel. This displays the outcome—the number 21—which is red, high, and odd.
Both of our bets are losses.

We've omitted a few more interactions that didn't win very much, either. When we entered
the done command, the final stake was shown. If the simulation was more detailed, it might
also show some aggregate statistics on spins, wins, and losses.



User Inputs and Outputs

[ 242 ]

Getting ready
The core feature of the cmd.Cmd application is a read-evaluate-print loop (REPL). This kind
of application works well when there are a large number of individual state changes and a
large number of commands to make those state changes.

We'll use a simple simulation of a subset of the bets in Roulette as an example. The idea is to
allow the user to create one or more bets and then spin a simulated Roulette wheel. While
proper casino Roulette has a dizzying array of possible bets, we'll focus on just six:

red, black
even, odd
high, low

An American Roulette wheel has 38 bins. The numbers 1 to 36 are colored red and black.
There are two other bins, zero and double zero, which are green. These two extra bins are
defined as neither even nor odd and neither high nor low. There are only a few ways to bet
on the zeroes, but numerous ways to bet on numbers.

We'll represent the Roulette wheel using some helper functions that build a collection of
bins. Each bin will have a string that shows the number and a set of bet names that are
winners.

We can define a generic bin with some simple rules to determine which bets are in the
winning set:

    red_bins = (1, 3, 5, 7, 9, 12, 14, 16, 18,
        21, 23, 25, 27, 28, 30, 32, 34, 36)

    def roulette_bin(i):
        return str(i), {
            'even' if i%2 == 0 else 'odd',
            'low'  if 1 <= i < 19 else 'high',
            'red'  if i in red_bins else 'black'
        }

The roulette_bin() function returns a two-tuple with the string representation for the
bin number and a set of three winning propositions.



User Inputs and Outputs

[ 243 ]

For 0 and 00, we'll need something a little different:

    def zero_bin():
        return '0', set()

    def zerozero_bin():
        return '00', set()

The zero_bin() function returns a string bin number and an empty set. The
zerozero_bin() function returns a special string to show that it's 00, plus the empty set to
show that none of the defined bets are winners.

We can combine the results of these three functions to create a complete Roulette wheel. The
whole wheel will be modeled as a list of bin tuples:

    def wheel():
        b0 = [zero_bin()]
        b00 = [zerozero_bin()]
        b1_36 = [
            roulette_bin(i) for i in range(1,37)
        ]
        return b0+b00+b1_36

We've built a simple list that contains the complete set of bins: a zero, a double zero, and the
numbers 1 through 36. We can now use the random.choice() function to select a bin at
random. This will tell us which bets win and which bets lose.

How to do it…
Import the cmd module:1.

        import cmd

Define an extension to cmd.Cmd:2.

        class Roulette(cmd.Cmd):

Define any initialization required in the preloop() method:3.

            def preloop(self):
                self.bets = {}
                self.stake = 100
                self.wheel = wheel()



User Inputs and Outputs

[ 244 ]

This preloop() method is evaluated just once when the processing starts. We've
used this to initialize a dictionary for bets and the player's stake. We also created
an instance of the wheel collection. The self argument is a requirement for
methods within a class. For now, it's a simply required syntax. In Chapter 6,
Basics of Classes and Objects, we'll look at this more closely.

Note that this is indented within the class statement.

Initialization can also be done in the __init__() method. This is a bit more
complex, though, because we have to use super() to ensure that the Cmd class
initialization is done first.

For each command, create a do_command() method. The name of the method4.
will be the command, prefixed by do_. The user's input text after the command
will be provided as an argument value to the method. Here are two examples for
the bet command and the spin command:

            def do_bet(self, arg_string):
                pass
            def do_spin(self, arg_string):
                pass

Parse and validate the arguments to each command. The user's input after the5.
command will be provided as the value of the first positional argument to the
method.

If the arguments are invalid, the method should print a message and return. If the
arguments are valid, the method can continue past the validation step.

For our example, the spin command doesn't require any input. We can ignore the
argument string. To be more complete, we might want to display an error if the
string is non-empty.

The bet command, however, does have a bet, which must be one of the six valid
bet names. We might want to check for duplicate bets. We might also want to
check for abbreviated bet names. Each of six bets has a unique first letter.

As an extension, a bet can also have an amount. We looked at parsing strings in
the String parsing with regular expressions recipe in Chapter 1, Numbers, Strings, and
Tuples. For this example, we'll simply handle the name of the bet:

            def do_spin(self, arg_string):
                if len(self.bets) == 0:
                    print("No bets have been placed")



User Inputs and Outputs

[ 245 ]

                    return
                # Happy path: more goes here.

            BET_NAMES = set(['even', 'odd', 'high', 'low', 'red', 'black'])

            def do_bet(self, arg_string):
                if arg_string not in BET_NAMES:
                    print("{0} is not a valid bet".format(arg_string))
                    return
                # Happy path: more goes here.

Write the happy path processing for each command. For our example, the spin6.
command will resolve the bets. The bet command will accumulate another bet.
Here's the do_bet() happy path:

        self.bets[arg_string] = 1

We've added the user's bet to the self.bets mapping with the amount. For this
example, we'll treat all bets as having the same minimal amount.

Here's the do_spin() happy path that resolves all of the bets:7.

        self.spin = random.choice(self.wheel)
        print("Spin", self.spin)
        label, winners = self.spin
        for b in self.bets:
            if b in winners:
                self.stake += self.bets[b]
                print("Win", b)
            else:
                self.stake -= self.bets[b]
                print("Lose", b)
        self.bets= {}

First, we spun the wheel to get a winning bet. Then, we examined each of the
player's bets to see which of those match the set of winning bets. If the player's
bet, b, is in the set of winning bets, we'll increase their stake. Otherwise, we'll
reduce their stake.

All of the bets in this example pay 1:1. If we want to extend the example to other
kinds of bets, we have to provide proper odds for the various bets.



User Inputs and Outputs

[ 246 ]

Write the main script. This will create an instance of this class and execute the8.
cmdloop() method:

        if __name__ == "__main__":
            r = Roulette()
            r.cmdloop()

We've created an instance of our Roulette subclass of Cmd. When we execute the
cmdloop() method, the class will write any introductory messages that have been
provided, write the prompt, and read a command.

How it works…
The Cmd module contains a large number of built-in features for displaying a prompt,
reading input from a user, and then locating the proper method based on the user's input.

For example, when we enter bet black, the built-in methods of the Cmd superclass will
strip the first word from the input, bet, prefix this with do_, and then evaluate the method
that implements the command.

If there's no do_bet() method, the command processor writes an error message. This is
done automatically, we don't need to write any code at all.

Since we wrote a do_bet() method, this will be invoked. The text after the command,
black in this case, will be provided as the positional argument value.

Some methods, such as do_help(), are already part of the application. These methods will
summarize the other do_* methods. When one of our methods has a docstring, this can be
displayed by the built-in help feature.

The Cmd class relies on Python's facilities for introspection. An instance of the class can
examine the method names to locate all of the methods that start with do_. They're
available in a class-level __dict__ attribute. Introspection is an advanced topic, one that
will be touched on in Chapter 7, More Advanced Class Design.



User Inputs and Outputs

[ 247 ]

There's more…
The Cmd class has a number of additional places where we can add interactive features:

We can define help_*() methods that become part of the miscellaneous help
topics.
When any of the do_* methods return a value, the loop will end. We might want
to add a do_quit() method that has return True as it's body. This will end the
command-processing loop.
We might provide a method named emptyline() to respond to blank lines. One
choice is to do nothing quietly. Another common choice is to have a default
action that's taken when the user doesn't enter a command.
The default() method is evaluated when the user's input does not match any of
the do_* methods. This might be used for more advanced parsing of the input.
The postloop() method can be used to do some processing just after the loop
finishes. This would be a good place to write a summary. This also requires a
do_* method that returns a value—any non-False value—to end the command
loop.

Also, there are a number of attributes we can set. These are class-level variables that would
be peers to the method definitions:

The prompt attribute is the prompt string to write. For our example, we can do
the following:

        class Roulette(cmd.Cmd):
            prompt="Roulette> "

The intro attribute is the introductory message.
We can tailor the help output by setting doc_header, undoc_header,
misc_header, and ruler attributes. These will all alter how the help output
looks.

The goal is to be able to create a tidy class that handles user interaction in a way that's
simple and flexible. This class creates an application that has a lot of features in common
with Python's REPL. It also has features in common with many command-line programs
that prompt for user input.

One example of these interactive applications is the command-line FTP client in Linux. It
has a prompt of ftp>, and it parses dozens of individual FTP commands. Entering help
will show all of the various internal commands that are part of FTP interaction.



User Inputs and Outputs

[ 248 ]

See also
We'll look at class definitions in Chapter 6, Basics of Classes and Objects, and
Chapter 7, More Advanced Class Design

Using the OS environment settings
There are several ways to look at the span of time for user inputs:

Interactive data: This is provided by the user in a kind of right now time span.
Command-line arguments provided when the program is started: These values
often span one full execution of a program.
Environment variables set at the OS level: These can be set at the command line,
making them almost as interactive as the command that starts an application:

They can be configured for a user in a .bashrc file or .profile
file. This makes them more persistent and slightly less interactive
than the command-line.
In Windows, there's the Advanced Settings option that allows
someone to set a long-term configuration. These are often inputs to
multiple executions of a program.

Configuration file settings: These vary widely by application. The idea is to edit a
file and make these options or arguments available for long periods of time.
These might apply to multiple users or even to all users. Configuration files often
have the longest time span.

In the Using input() and getpass() for user input and Using cmd for creating command-line
applications recipes, we looked at interaction with the user. In the Using argparse to get
command-line input recipe, we looked at how to handle command-line arguments. We'll look
at configuration files in Chapter 13, Application integration.

The environment variables are available through the os module. How can we have an
application's configuration based on these OS-level settings?



User Inputs and Outputs

[ 249 ]

Getting ready
We may want to provide information of various types to a program via OS settings. There's
a profound limitation here: the OS settings can only be string values. This means that many
kinds of settings will require some code to parse the value and create proper Python objects
from the string.

When we work with argparse to parse command-line arguments, this module can do
some data conversions for us. When we use os to process environment variables; we'll have
to implement the conversion ourselves.

In the Using argparse to get command-line input recipe, we wrapped the haversine()
function in a simple application that parsed command-line arguments.

At the OS level, we created a program that worked like this:

slott$ python3 ch05_r04.py -r KM 36.12,-86.67 33.94,-118.40
From (36.12, -86.67) to (33.94, -118.4) in KM = 2887.35

After using this for a while, we've found that we're often using nautical miles to compute
distances from where our boat is anchored. We'd really like to have default values for one
of the input points as well as the -r argument.

Since a boat can be anchored in a variety of places, we need to change the default without
having to tweak the actual code.

We'll set set an OS environment variable, UNITS, with the distance units. We can set another
variable, HOME_PORT, with the home point. We want to be able to do the following:

slott$ UNITS=NM
slott$ HOME_PORT=36.842952,-76.300171
slott$ python3 ch05_r06.py 36.12,-86.67
From 36.12,-86.67 to 36.842952,-76.300171 in NM = 502.23

The units and the home point values are provided to the application via the OS
environment. This can be set in a configuration file so that we can make easy changes. It can
also be set manually, as shown in the example.



User Inputs and Outputs

[ 250 ]

How to do it…
Import the os module. The OS environment is available through this module:1.

        import os

Import any other classes or object needed for the application:2.

        from ch03_r05 import haversine, MI, NM, KM

Define a function that will use the environment values as defaults for optional3.
command-line arguments. The default set of arguments to parse come from
sys.argv, so it's important to also import the sys module:

        def get_options(argv=sys.argv):

Gather default values from the OS environment settings. This includes any4.
validation required:

        default_units = os.environ.get('UNITS', 'KM')
        if default_units not in ('KM', 'NM', 'MI'):
            sys.exit("Invalid value for UNITS, not KM, NM, or MI")
        default_home_port = os.environ.get('HOME_PORT')

The sys.exit() function handles the error processing nicely. It will print the
message and exit with a non-zero status code.

Create the parser attribute. Provide any default values for the relevant5.
arguments. This depends on the argparse module, which must also be
imported:

                  parser = argparse.ArgumentParser()
        parser.add_argument('-r', action='store',
            choices=('NM', 'MI', 'KM'), default=default_units)
        parser.add_argument('p1', action='store', type=point_type)
        parser.add_argument('p2', nargs='?', action='store',
type=point_type,
            default=default_home_port)
        options = parser.parse_args(argv[1:])



User Inputs and Outputs

[ 251 ]

Do any additional validation to ensure that arguments are set properly. In this6.
example, it's possible to have no value for HOME_PORT and no value provided for
the second command-line argument. This requires an if statement and a call to
sys.exit():

                if options.p2 is None:
                sys.exit("Neither HOME_PORT nor p2 argument provided.")

Return the options object with the set of valid arguments:7.

        return options

This will allow the -r argument and the second point to be completely optional. The
argument parser will use the configuration information to supply default values if these are
omitted from the command line.

Use the Using argparse to get command-line input recipe for ways to process the options
created by the get_options() function.

How it works…
We've used the OS environment variables to create default values that can be overridden by
command-line arguments. If the environment variable is set, that string is provided as the
default to the argument definition. If the environment variable is not set, then an
application-level default value is used.

In the instance of the UNITS variable, the application uses kilometers as the default if not,
then the OS environment variable is set.

This gives us three tiers of interaction:

We can define a setting in a .bashrc file. Alternatively, we can use the Windows
Advanced Settings option to make a change that is persistent. This value will be
used each time we log in or create a new command window.
We can set the OS environment interactively at the command line. This will last
as long as our session lasts. When we logout, or close the command window, this
value will be lost.
We can provide a unique value through the command-line arguments each time
the program is run.



User Inputs and Outputs

[ 252 ]

Note that there's no built-in or automatic validation of the values retrieved from
environment variables. We'll need to validate these strings to ensure that they're
meaningful.

Also note that we've repeated the list of valid units in several places. This violates the Don't
Repeat Yourself (DRY) principle. A global variable with this list is a good improvement to
make.

There's more…
The Using argparse to get command-line input recipe shows a slightly different way to handle
the default command-line arguments available from sys.argv. The first of the arguments
is the name of the Python application being executed and is not often relevant to argument
parsing.

The value of sys.argv will be a list of strings as follows:

    ['ch05_r06.py', '-r', 'NM', '36.12,-86.67']

We have to skip the initial value in sys.argv[0] at some point in the processing. We have
two choices:

In this recipe, we discard the extra item as late as possible in the parsing process.
The first item is skipped when providing sys.argv[1:] to the parser.
In the previous example, we discarded the value earlier in the processing. The
main() function used options = get_options(sys.argv[1:]) to provide
the shorter list to the parser.

Generally, the only relevant distinction between the two approaches depends on the
number and complexity of the unit tests. This recipe will require a unit test that includes an
initial argument string, which will be discarded during parsing.

See also
We'll look at numerous ways to handle configuration files in Chapter 13,
Application integration



6
Basics of Classes and Objects

In this chapter, we will look at the following recipes:

Using a class to encapsulate data and processing
Designing classes with lots of processing
Designing classes with little unique processing
Optimizing small objects with __slots__
Using more sophisticated collections
Extending a collection – a list that does statistics
Using properties for lazy attributes
Using settable properties to update eager attributes

Introduction
The point of computing is to process data. Even when building something like an
interactive game, both the game state and the player's actions are the data; the processing
computes the next game state and the display update.

Some games can have a relatively complex internal state. When we think of console games
with multiple players and sophisticated graphics, there are complex, real-time state
changes.

On the other hand, when we think of a casino game, such as Craps, the game state is very
simple. There may be no point established, or one of the numbers 4, 5, 6, 8, 9, or 10 may be
the established point. The transitions are relatively simple, and are often denoted by
moving markers and chips around on the casino table. The data includes the current state,
player actions, and rolls of the dice. The processing is the rules of the game.



Basics of Classes and Objects

[ 254 ]

A game such as Blackjack has a somewhat more complex internal state change as each card
is accepted. In games where the hands can be split, the state of play can become quite
complex. The data includes the current game state, the player's commands, and the cards
drawn from the deck. Processing is defined by the rules of the game as modified by any
house rules.

In the case of craps, the player may place bets. Interestingly, the player's input has no effect
on the game state. The internal state of the game object is determined entirely by the next
throw of the dice. This leads to a class design that's relatively easy to visualize.

In this chapter, we will create classes that implement a number of statistical formulae. The
math can be a little daunting at first. Almost everything will be based on the summation of
a sequence of values, often shown as ∑ x . In many cases, this can be implemented using
Python's sum() function.

Using a class to encapsulate data and
processing
The essential idea of computing is to process data. This is exemplified when we write
functions that process data. We looked at this in Chapter 3, Function Definitions.

Often, we'd like to have a number of closely related functions that work with a common
data structure. This concept is the heart of object-oriented programming. A class definition
will contain a number of methods that all control the internal state of an object.

The unifying concept behind a class definition is often captured as a summary of the
responsibilities allocated to the class. How can we do this effectively? What's a good way to
design a class?

Getting ready
Let's look at a simple, stateful object—a pair of dice. The context for this is an application
that simulates the casino game of Craps. The goal is to use a simulation of results to help
invent a better playing strategy. This will save us from losing real money while we try to
beat the house edge.



Basics of Classes and Objects

[ 255 ]

There's an important distinction between the class definition and an instance of the class,
called an object. We call this idea object-oriented programming as a whole. Our focus is on
writing class definitions. Our overall application will create instances of the classes. The
behavior that emerges from the collaboration of the instances is the overall goal of the
design process.

Most of the design effort is on class definitions. Because of this, the name object-oriented
programming can be misleading.

The idea of emergent behavior is an essential ingredient in object-oriented programming.
We don't specify every behavior of a program. Instead, we decompose the program into
objects, and define the object's state and behavior via the object's classes. The programming
decomposes into class definitions based on their responsibilities and collaborations.

An object should be viewed as a thing—a noun. The behaviors of the class should be
viewed as verbs. This gives us a hint as to how we can proceed to design classes that work
effectively.

Object-oriented design is often easiest to understand when it relates to tangible real-world
things. It's often easier to write software to simulate a playing card than to create software
that implements an Abstract Data Type.

For this example, we'll simulate the rolling of dice. For some games, such as the casino
game of Craps, two dice are used. We'll define a class that models the pair of dice. To be
sure that the example is tangible, we'll model the pair of dice in the context of simulating a
casino game.

How to do it…
Write down simple sentences that describe what an instance of the class does. We1.
can call these the problem statements. It's essential to focus on short sentences,
and emphasize the nouns and verbs:

The game of Craps has two standard dice.
Each die has six faces, with point values from one to six.
Dice are rolled by a player.
The total of the dice changes the state of the craps game. Those rules are
separate from the dice, however.
If the two dice match, the number was rolled the hard way. If the two
dice do not match, the number was easy. Some bets depend on this
hard-easy distinction.



Basics of Classes and Objects

[ 256 ]

Identify all of the nouns in the sentences. Nouns may identify different classes of2.
objects. These are collaborators. Examples include player and game. Nouns may
also identify attributes of objects in questions. Examples include face and point
value.
Identify all the verbs in the sentences. Verbs are generally methods of the class in3.
question. Examples include rolled and match. Sometimes, they are methods of
other classes. One example is change the state, which applies to Craps.
Identify any adjectives. Adjectives are words or phrases that clarify a noun. In4.
many cases, some adjectives will clearly be properties of an object. In other cases,
the adjectives will describe relationships among objects. In our example, a phrase
such as the total of the dice is an example of a prepositional phrase taking the role
of an adjective. The the total of phrase modifies the noun the dice. The total is a
property of the pair of dice.
Start writing the class with the class statement: 5.

        class Dice:

Initialize the object's attributes in the __init__ method: 6.

        def __init__(self):
            self.faces = None

We'll model the internal state of the dice with the self.faces attribute. The self
variable is required to be sure that we're referencing an attribute of a given
instance of a class. The object is identified by the value of the instance variable,
self. 

We could also put some other properties here. The alternative is to implement the
properties as separate methods. The details of this design decision are the subject
of the Using properties for lazy attributes recipe later on in this chapter.

Define the object's methods based on the various verbs. In our case, we have7.
several methods that must be defined:

Here's how we can implement dice are rolled by a player:

                def roll(self):
                    self.faces = (random.randint(1,6), random.randint(1,6))

We've updated the internal state of the dice by setting the self.faces
attribute. Again, the self variable is essential for identifying the object
to be updated. 



Basics of Classes and Objects

[ 257 ]

Note that this method mutates the internal state of the object. We've
elected to not return a value. This makes our approach somewhat like
the approach of Python's built-in collection classes. Any method that
mutates the object does not return a value.

This method helps implement the total of the dice changes the state of
the craps game. The game is a separate object, but this method provides
a total that fits the sentence. 

                def total(self):
                    return sum(self.faces)

These two methods help answer the hardways and easyways questions. 

                def hardway(self):
                    return self.faces[0] == self.faces[1]
                def easyway(self):
                    return self.faces[0] != self.faces[1]

It's rare in a casino game to have a rule that has a simple logical inverse. It's more common
to have a rare third alternative that has a remarkably bad payoff rule. In this case, we could
have defined easyway as return not self.hardway().

Here's an example of using the class:

First, we'll seed the random number generator with a fixed value so that we can1.
get a fixed sequence of results. This is a way of creating a unit test for this class:

      >>> import random
      >>> random.seed(1)

We'll create a Dice object, d1. We can then set its state with the roll() method.2.
We'll then look at the total() method to see what was rolled. We'll examine the
state by looking at the faces attribute:

      >>> from ch06_r01 import Dice
      >>> d1 = Dice()
      >>> d1.roll()
      >>> d1.total()
      7
      >>> d1.faces
      (2, 5)



Basics of Classes and Objects

[ 258 ]

We'll create a second Dice object, d2. We can then set its state with the roll()3.
method. We'll look at the result of the total() method, as well as the
hardway() method. We'll examine the state by looking at the faces attribute:

      >>> d2 = Dice()
      >>> d2.roll()
      >>> d2.total()
      4
      >>> d2.hardway()
      False
      >>> d2.faces
      (1, 3)

Since the two objects are independent instances of the Dice class, a change to d24.
has no effect on d1:

      >>> d1.total()
      7

How it works…
The core idea here is to use ordinary rules of grammar—nouns, verbs, and adjectives—as a
way to identify basic features of a class. Nouns represent things. A good descriptive
sentence should focus on tangible, real-world things more than ideas or abstractions.

In our example, dice are real things. We try to avoid using abstract terms such as
randomizers or event generators. It's easier to describe the tangible features of real things,
and then locate an abstract implementation that offers some of the tangible features.

The idea of rolling the dice is an example physical action that we can model with a method
definition. Clearly, this action changes the state of the object. In rare cases—one time in
36—the next state will happen to match the previous state.

Adjectives often hold the potential for confusion. The following are descriptions of the most
common ways in which adjectives operate:

Some adjectives, such as first, last, least, most, next, previous, and so on, will
have a simple interpretation. These can have a lazy implementation as a method,
or an eager implementation as an attribute value.
Some adjectives are a more complex phrase, such as the total of the dice. This is an
adjective phrase built from a noun (total) and a preposition (of). This, too, can be
seen as a method or an attribute.



Basics of Classes and Objects

[ 259 ]

Some adjectives involve nouns that appear elsewhere in our software. We might
have a phrase such as the state of the Craps game, where state of modifies another
object, the Craps game. This is clearly only tangentially related to the dice
themselves. This may reflect a relationship between dice and game. 
We might add a sentence to the problem statement such as the dice are part of the
game. This can help clarify the presence of a relationship between game and dice.
Prepositional phrases, such as are part of, can always be reversed to create the
statement from the other object's point of view: for example, The game contains
dice. This can help clarify the relationships among objects.

In Python, the attributes of an object are by default dynamic. We don't specify a fixed list of
attributes. We can initialize some (or all) of the attributes in the __init__() method of a
class definition. Since attributes aren't static, we have considerable flexibility in our design.

There's more…
Capturing the essential internal state and methods that cause state change is the first step in
good class design. We can summarize some helpful design principles using the acronym
S.O.L.I.D.:

Single Responsibility Principle: A class should have one clearly defined
responsibility.
Open/Closed Principle: A class should be open to extension-generally via
inheritance, but closed to modification. We should design our classes so that we
don't need to tweak the code to add or change features.
Liskov Substitution Principle: We need to design inheritance so that a subclass
can be used in place of the superclass.
Interface Segregation Principle: When writing a problem statement, we want to
be sure that collaborating classes have as few dependencies as possible. In many
cases, this principle will lead us to decompose large problems into many small
class definitions.
Dependency Inversion Principle: It's less than ideal for a class to depend directly
on other classes. It's better if a class depends on an abstraction, and a concrete
implementation class is substituted for the abstract class.

The goal is to create classes that have the proper behavior and also adhere to the design
principles.



Basics of Classes and Objects

[ 260 ]

See also
See the Using properties for lazy attributes recipe, where we'll look at the choice
between an eager attribute and a lazy property
In Chapter 7, More Advanced Class Design, we'll look in more depth at class
design techniques
See Chapter 11, Testing, for recipes on how to write appropriate unit tests for the
class

Designing classes with lots of processing
Most of the time, an object will contain all of the data that defines its internal state.
However, this isn't always true. There are cases where a class doesn't really need to hold the
data, but instead can hold the processing.

Some prime examples of this design are statistical processing algorithms, which are often
outside the data being analyzed. The data might be in a list or Counter object. The
processing might be a separate class.

In Python, of course, this kind of processing is often implemented using functions. See
Chapter 3, Function Definitions for more information on this. In some languages, all code
must take the form of a class, leading to some extra complexity.

How can we design a class that makes use of Python's array of sophisticated built-in
collections?

Getting ready
In Chapter 4, Built-in Data Structures – list, set, dict, specifically the Using set methods and
operators recipe, we looked at a statistical process called the Coupon Collector's Test. The
concept is that each time we perform some process, we save a coupon that describes some
aspect or parameter for the process. The question is, how many times do I have to perform
the process before I collect a complete set of coupons?



Basics of Classes and Objects

[ 261 ]

If we have customers assigned to different demographic groups based on their purchasing
habits, we might ask how many online sales we have to make before we've seen someone
from each of the groups. If the groups are all about the same size, it's trivial to predict the
average number of customers we encounter before we get a complete set of coupons. If the
groups are different sizes, it's a little more complex to compute the expected time before
collecting a full set of coupons.

Let's say we've collected data using a Counter object. For more information on the various
collections, see Chapter 4, Built-in Data Structures – list, set, dict, specifically the Using set
methods and operators and Avoiding mutable default values for function parameters recipes. In this
case, the customers fall into eight categories with approximately equal numbers.

The data looks like this:

    Counter({15: 7, 17: 5, 20: 4, 16: 3, ... etc., 45: 1})

The key is the number of visits needed to get a full set of coupons. The value is the number
of times that it took the given number of visits. In the preceding line of code 15 visits were
required seven different times. 17 visits were required five times. This has a long tail. At
one point, there were 45 individual visits before a full set of eight coupons was collected.

We want to compute some statistics on this Counter. We have two overall strategies for
doing this:

Extend: We can extend the Counter class definition to add statistical processing.
The complexity of this varies with the kind of processing that we want to
introduce. We'll cover this in detail in the Extending a collection – a list that does
statistics recipe, as well as Chapter 7, More Advanced Class Design.
Wrap: We can wrap the Counter object in another class that provides just the
features we need. When we do this, though, we'll often have to expose some
additional methods that are an important part of Python, but which don't matter
much for our application. We'll look at this in Chapter 7, More Advanced Class
Design. 

There's a variation on wrapping where we use a statistical computation object to wrap an
object from a built-in collection. This often leads to an elegant solution.



Basics of Classes and Objects

[ 262 ]

We have two ways to design the processing. These two design alternatives apply to both
overall architectural choices:

Eager: This means that we'll compute the statistics as soon as possible. The values
can then be attributes of the class. While this can improve performance, it also
means that any change to the data collection will invalidate the eagerly computed
values. We have to examine the overall context to see if this can happen.
Lazy: This means we won't compute anything until it's required via a method
function or property. We'll look at this in the Using properties for lazy attributes
recipe.

The essential math for both designs is the same. The only question is when the computation
is done.

We compute the mean using a sum of the expected values. The expected value is the
frequency of a value multiplied by the value. The mean, μ, is this:

Here, k is the key from the Counter, C, and fk is the frequency value for the given key from
the Counter.

The standard deviation, σ, depends on the mean, μ. This also involves computing a sum of
values, each of which is weighted by frequency. The following is the formula:

Here, k is the key from the Counter, C, and fk is the frequency value for the given key from

the Counter. The total number of items in the Counter is . This is the sum of the
frequencies.



Basics of Classes and Objects

[ 263 ]

How to do it…
Define the class with a descriptive name: 1.

        class CounterStatistics:

Write the __init__ method to include the object to which this object will be2.
connected: 

        def __init__(self, raw_counter:Counter):
            self.raw_counter = raw_counter 

We've defined a method function that takes a Counter object as an argument
value. This Counter object is saved as part of the Counter_Statistics instance.

Initialize any other local variables that might be useful. Since we're going to3.
calculate values eagerly, the most eager possible time is when the object is
created. We'll write references to some yet to be defined functions: 

        self.mean = self.compute_mean()
        self.stddev = self.compute_stddev()

We've eagerly computed the mean and standard deviation from the Counter
object, and saved them in two instance variables.

Define the required methods for the various values. Here's the calculation of the4.
mean: 

        def compute_mean(self):
            total, count = 0, 0
            for value, frequency in self.raw_counter.items():
                total += value*frequency
                count += frequency
            return total/count

Here's how we can calculate the standard deviation: 5.

        def compute_stddev(self):
            total, count = 0, 0
            for value, frequency in self.raw_counter.items():
                total += frequency*(value-self.mean)**2
                count += frequency
            return math.sqrt(total/(count-1))  



Basics of Classes and Objects

[ 264 ]

Note that this calculation requires that the mean is computed first and the
self.mean instance variable has been created.

Also, this uses math.sqrt(). Be sure to add the needed import math statement
in the Python file.

Here's how we can create some sample data:

>>> from ch04_r06 import *
>>> from collections import Counter
>>> def raw_data(n=8, limit=1000, arrival_function=arrival1):
...    expected_time = float(expected(n))
...    data = samples(limit, arrival_function(n))
...    wait_times = Counter(coupon_collector(n, data))
...    return wait_times

We've imported functions such as expected(), arrival1(), and coupon_collector()
from the ch04_r06 module. We've also imported the Counter collection from the standard
library collections module.

We defined a function, raw_data(), that will generate a number of customer visits. By
default, it will be 1,000 visits. The domain will be eight different classes of customers; each 
class will have an equal number of members. We'll use the coupon_collector() function
to step through the data, emitting the number of visits required to collect a full set of eight
coupons.

This data is then used to assemble a Counter object. This will have the number of
customers required to get a full set of coupons. Each number of customers will also have a
frequency showing how often that number of visits occurred.

Here's how we can analyze the Counter object:

>>> import random
>>> from ch06_r02 import CounterStatistics
>>> random.seed(1)
>>> data = raw_data()
>>> stats = CounterStatistics(data)
>>> print("Mean: {0:.2f}".format(stats.mean))
Mean: 20.81
>>> print("Standard Deviation: {0:.3f}".format(stats.stddev))
Standard Deviation: 7.025



Basics of Classes and Objects

[ 265 ]

First, we imported the random module so that we could pick a known seed value. This
makes it easier to test and demonstrate an application because the random numbers are
consistent. We also imported the CounterStatistics class from the ch06_r02 module.

Once we have all of the items defined, we can force the seed to a known value, and
generate the coupon collector test results. The raw_data() function will emit a Counter
object, which we called data.

We'll use the Counter object to create an instance of the CounterStatistics class. We'll 
assign this to the stats variable. Creating this instance will also compute some summary
statistics. These values are available as the stats.mean attribute and the stats.stddev
attribute.

For a set of eight coupons, the theoretical average is 21.7 visits to collect all coupons. It
looks like the results from raw_data() show behavior that matches the expectation of
random visits. This is sometimes called the null hypothesis—the data is random.

How it works…
This class encapsulates two complex algorithms, but doesn't include any data that changes
state. This kind of class doesn't need to retain a lot of data. Instead, the design performs all
of the computations as soon as possible.

We wrote a high-level specification for the processing and placed it in the __init__()
method. Then we wrote methods to implement the processing steps that were specified. We
can set as many attributes as are needed, making this a very flexible approach.

The advantage of this design is that the attribute values can be used repeatedly. The cost of
computation is paid once; each time an attribute value is used, no further calculating is
required.

The disadvantage of this design is that a change to the underlying Counter object makes
the CounterStatistics object obsolete. Generally, we use this kind of design when the
Counter isn't going to change. The example creates a single, static Counter, which is used
to create CounterStatistics.



Basics of Classes and Objects

[ 266 ]

There's more…
If we need to have stateful objects, we can add update methods that can change the
Counter object. For example, we can introduce a method to add another value by
delegating the work to the associated Counter. This switches the design pattern from a
simple connection between computation and collection to a proper wrapper around the
collection.

The method might look like this:

    def add(self, value):
        self.raw_counter[value] += 1
        self.mean = self.compute_mean()
        self.stddev = self.compute_stddev()

First, we've updated the state of the Counter. Then, we recomputed all of the derived
values. This kind of processing might create tremendous computation overheads. There
needs to be a compelling reason to recompute the mean and standard deviation after every
value is changed.

There are considerably more efficient solutions. For example, if we save two intermediate
sums and an intermediate count, we can update the sums and counts by computing the
mean and standard deviation efficiently.

For this, we might have an __init__() method that looks like this:

    def __init__(self, counter:Counter=None):
        if counter:
            self.raw_counter = counter
            self.count = sum(self.raw_counter[k] for k in self.raw_counter)
            self.sum = sum(self.raw_counter[k]*k for k in self.raw_counter)
            self.sum2 = sum(self.raw_counter[k]*k**2 for k in
self.raw_counter)
            self.mean = self.sum/self.count
            self.stddev = math.sqrt((self.sum2-
self.sum**2/self.count)/(self.count-1))
        else:
            self.raw_counter = Counter()
            self.count = 0
            self.sum = 0
            self.sum2 = 0
            self.mean = None
            self.stddev = None



Basics of Classes and Objects

[ 267 ]

We've written this method to work either with a Counter or without a Counter. If no data
is provided, it will start with an empty collection, and zero values for the various sums.
When the count is zero, the mean and standard deviation have no meaningful value, so
None is provided.

If a Counter is provided, then a count, sum, and sum of squares are computed. These can
be incrementally adjusted easily, quickly recomputing the mean and standard deviation.

When a single new value is added, the following method will incrementally recompute the
various derived values:

    def add(self, value):
        self.raw_counter[value] += 1
        self.count += 1
        self.sum += value
        self.sum2 += value**2
        self.mean = self.sum/self.count
        if self.count > 1:
            self.stddev = math.sqrt(
                (self.sum2-self.sum**2/self.count)/(self.count-1))

Updating the Counter object, the count, the sum, and the sum of squares is clearly
necessary to be sure that the count, sum, and sum of squares values match the
self.raw_counter collection at all times. Since we know the count must be at least 1, the
mean is easy to compute. The standard deviation requires at least two values, and is
computed from the sum and sum of squares.

Here's the formula for this variation on standard deviation:

This involves computing two sums. One sum involves frequency times the value squared.
The other sum involves the frequency and the value, with the overall sum being squared.
We've used C to represent the total number of values; this is the sum of the frequencies.



Basics of Classes and Objects

[ 268 ]

See also
In the Extending a collection – a list that does statistics recipe, we'll look at a different
design approach where these functions are used to extend a class definition.
We'll look at different approach in the Using properties for lazy attributes recipe.
This alternative recipe will use properties and compute the attributes as needed.
In the Designing classes with little unique processing recipe we'll look at a class with
no real processing. It acts as a polar opposite of this class.

Designing classes with little unique
processing
In some cases, an object is a container of rather complex data, but doesn't really do very
much processing on that data. Indeed, in many cases, a class can be designed that depends
only on built-in Python features and doesn't require any unique method functions.

In many cases, Python's built-in container classes can cover almost all of the various use
cases for us. The small problem is that the syntax for a dictionary or a list isn't quite so
elegant as the syntax for attributes of an object.

How can we create a class that allows us to use object.attribute syntax instead of
object['attribute']?

Getting ready
There are really only two cases for any kind of class design:

Is it stateless? Does it embody a number of attributes, but never changes?
Is it stateful? Will there be state changes for the various attributes?

A stateful design is slightly more general. We can always use a stateful implementation and
avoid making any changes to the object to support stateless objects. However, there are
some significant storage and performance advantages of using truly stateless objects.



Basics of Classes and Objects

[ 269 ]

We'll use two kinds of class to illustrate both kinds of design:

Stateless: We'll define a class to describe simple playing cards that have a rank
and a suit. Since a card's rank and suit don't change, we'll create a small stateless
class for this.
Stateful: We'll define a class to describe a player's current state in a game of
Blackjack where there is a dealer's hand, the player's hand(s), plus an optional
insurance bet. There are a number of aspects of play that grow during each hand.

How to do it…
We'll look at stateless objects and then stateful objects. For stateful objects that have no
methods, we have two more choices: We can use a new class or we can leverage an existing
class. These choices lead to three small recipes.

Stateless objects
We'll base stateless objects on collections.namedtuple.:1.

        from collections import namedtuple

Define the class name, which will be used twice:2.

        Card = namedtuple('Card',

Define the attributes of the object:3.

        Card = namedtuple('Card', ('rank', 'suit'))

Here's how we can use this class definition to create Card objects:

>>> from collections import namedtuple
>>> Card = namedtuple('Card', ('rank', 'suit'))
>>> eight_hearts = Card(rank=8, suit='\N{White Heart Suit}')
>>> eight_hearts
Card(rank=8, suit='♡')
>>> eight_hearts.rank
8
>>> eight_hearts.suit
'♡'
>>> eight_hearts[0]
8



Basics of Classes and Objects

[ 270 ]

We've created a new class, named Card, which has two attribute names: rank and suit.
After defining the class, we can create an instance of the class. We built a single card object,
eight_hearts, with a rank of eight and a suit of ♡.

We can refer to attributes of this object with their name or their position within the tuple.
When we use eight_hearts.rank or eight_hearts[0], we'll see the rank attribute
because it's defined first in the sequence of attribute names.

This kind of class definition is relatively rare. It has a fixed, defined set of attributes.
Generally, Python class definitions have dynamic attributes. Also, the object is immutable.
Here's an example of attempting to change the instance attributes:

>>> eight_hearts.suit = '\N{Black Spade Suit}'
Traceback (most recent call last):
  File
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/doctest.py
", line 1318, in __run
    compileflags, 1), test.globs)
  File "<doctest default[0]>", line 1, in <module>
    eight_hearts.suit = '\N{Black Spade Suit}'
AttributeError: can't set attribute

We attempted to change the suit attribute of the object. This raised an AttributeError
exception.

Stateful objects with a new class
Define the new class:1.

        class Player:
            pass

We've written an empty class definition. An instance of this class is created easily2.
with something like the following:

        p = Player()

We can then add attributes to the object with statements such as the following:

    p.stake = 100

While this can work out well, it's often helpful to add a few more features to a class
definition. Generally, we'll add methods, including the __init__() method, to initialize
the instance variables of the object.



Basics of Classes and Objects

[ 271 ]

Stateful objects using an existing class
Rather than defining an empty class, we can also use modules in the standard library. We
can use the argparse module or the types module for this:

Import the module.1.

The argparse module includes the class Namespace, which can be used instead
of an empty class definition:

        from argparse import Namespace

We can also use the SimpleNamespace from the types module. It looks like this:

        from types import SimpleNamespace

Create the class as a reference to the SimpleNamespace or Namespace:2.

        Player = SimpleNamespace

How it works…
Any of these techniques will define a class that can have an indefinite number of attributes.
However, the SimpleNamespace has a more flexible constructor than defining our own
class:

>>> from types import SimpleNamespace
>>> Player = SimpleNamespace
>>> player_1 = Player(stake=100, hand=[], insurance=None, bet=None)
>>> player_1.bet = 10
>>> player_1.stake -= player_1.bet
>>> player_1.hand.append( eight_hearts )
>>> player_1
namespace(bet=10, hand=[Card(rank=8, suit='♡')], insurance=None, stake=90)

We've created a new class named Player. We don't provide a list of attributes, since they're
dynamic.

When we constructed the player_1 object, we provided a list of attributes that we'd like to
create as part of that object. After creating the object, we can then make state changes to it;
we set the player_1.bet value, updated the player_1.stake, and also updated the
player_1.hand.



Basics of Classes and Objects

[ 272 ]

When we display the object, all of the attributes are shown. Typically, they're provided in
alphabetical order, making it slightly easier to write unit test examples.

When we use a namedtuple() function, we're creating a class object. We provide a class
name as a string, as well as attribute names that will parallel the positional values for a
tuple. The resulting object needs to be assigned to a variable, and it's best practice to make
sure that the class name provided as an argument to the nametuple() function and the
variable name are the same.

The class object created by namedtuple() is the same kind of class object that would be
created by the class statement. Indeed, if you want to see the source, you can use
print(Card._source) to see exactly what was used to create the class.

A namedtuple class is essentially a tuple with the added feature of named attributes. Like
all other tuple objects, it's immutable—once built, it cannot be changed.

When we use the SimpleNamespace, we're using a very simple class definition that has
(almost) no methods. Because attributes are generally dynamic, this class allows us to set,
get, and delete attributes freely.

Classes that are not subclasses of tuple or that use __slots__ (a topic we'll look at in the
Optimizing small objects with __slots__ recipe) are very flexible. There are also some very
advanced techniques for altering the way attributes behave. These rely on deeper
knowledge of how Python's special method names work.

There's more…
In many cases, we'll decompose our application processing into two broad categories of
class definitions:

Data – collections and items: We'll use built-in collection classes, collections from
the standard library, and perhaps even items based on namedtuple(), or
SimpleNamespace, or other class definitions that seem to focus on generic
collections of data.
Processing: We'll define classes in a way similar to the example shown in the
Designing classes with lots of processing recipe. These processing classes generally
depend on data objects.



Basics of Classes and Objects

[ 273 ]

The idea of cleanly separating the data from the processing fits with several of the S.O.L.I.D.
design principles. In particular, it aligns our classes with the Single Responsibility Principle,
the Open/Closed Principle, and the Interface Segregation Principle. We can create classes
with the kind of narrow focus that makes change (via subclass extension) relatively simple.

See also
In the Designing classes with lots of processing recipe we'll look at a class that is
entirely processing and almost no data. It acts as the polar opposite of this class.

Optimizing small objects with __slots__
The general case for an object allows a dynamic collection of attributes, each of which has a
dynamic value. There's a special case for an immutable object that's based on the tuple
class. We looked at both of these in the Designing classes with little unique processing recipe.

There's a middle ground—an object with a fixed number of attributes, but the values of the
attributes can be changed. By changing the class from an unlimited collection of attributes
to a fixed set of attributes, it turns out that we can also save memory and processing time.

How can we create optimized classes with a fixed set of attributes?

Getting ready
Let's look at the idea of a hand of playing cards in the casino game of Blackjack. There are
two parts to a hand:

The cards
The bet

Both have dynamic values. But there are only these two things. It's common to get more
cards. It's also possible to raise the bet via a double down play.

The idea of a split will create additional hands. Each split hand is a separate object, with a
distinct collection of cards and a unique bet.



Basics of Classes and Objects

[ 274 ]

How to do it…
We'll leverage the __slots__ special name when creating the class:

Define the class with a descriptive name:1.

         class Hand:

Define the list of attribute names: 2.

            __slots__ = ('hand', 'bet')

This identifies the only two attributes that are allowed for instances of this class.
Any attempt to add another attribute will raise an AttributeError exception.

Add an initialization method: 3.

        def __init__(self, bet, hand=None):
            self.hand= hand or []
            self.bet= bet 

Generally, each hand starts as a bet. The dealer then deals two initial cards to the
hand. Under some circumstances, though, we might want to rebuild a Hand object
from a sequence of Card instances. We've used a feature of the or operator. If the
left side operand is not a false-like value (that is, None,) then that's the value of an
or expression. If the left side operand is false-like, then the right side operand is
evaluated. For more information on why this is necessary, see the Designing
functions with optional parameters recipe in Chapter 3, Function Definitions.

Add a method to update the collection. We've called it deal because it's used to4.
deal a new card to the Hand:

        def deal(self, card):
            self.hand.append(card)

Add a __repr__() method so that it can be printed easily: 5.

        def __repr__(self):
            return "{class_}({bet}, {hand})".format(
                class_= self.__class__.__name__,
                **vars(self)
            )



Basics of Classes and Objects

[ 275 ]

Here's how we can use this class to build a hand of cards. We'll need the definition of the
Card class based on the example in the Designing classes with little unique processing recipe:

>>> from ch06_r04 import Card, Hand
>>> h1 = Hand(2)
>>> h1.deal(Card(rank=4, suit='♣'))
>>> h1.deal(Card(rank=8, suit='♡'))
>>> h1
Hand(2, [Card(rank=4, suit='♣'), Card(rank=8, suit='♡')])

We've imported the Card and Hand class definitions. We built an instance of a Hand, h1,
with a bet of twice the table minimum. We then added two cards to the hand via the
deal() method of the Hand class. This shows how the h1.hand value can be mutated.

This example also displays the instance of h1 to show the bet and the sequence of cards. The
__repr__() method produces output that's in Python syntax.

We can also replace the h1.bet value when the player doubles down (yes, this is a crazy
thing to do when showing 12):

>>> h1.bet *= 2
>>> h1
Hand(4, [Card(rank=4, suit='♣'), Card(rank=8, suit='♡')])

When we displayed the Hand object, h1, it showed that the bet attribute was changed.

Here's what happens when we try to create a new attribute:

>>> h1.some_other_attribute = True
Traceback (most recent call last):
  File
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/doctest.py
", line 1318, in __run
    compileflags, 1), test.globs)
  File "<doctest default[0]>", line 1, in <module>
    h1.some_other_attribute = True
AttributeError: 'Hand' object has no attribute 'some_other_attribute'

We attempted to create an attribute named some_other_attribute on the Hand object,
h1. This raised an AttributeError exception. Using __slots__ means that new
attributes cannot be added to the object.



Basics of Classes and Objects

[ 276 ]

How it works…
When we create a class definition, the behavior is defined in part by the object class and the
type() function. Implicitly, a class is assigned a special __new__() method that handles
the internal house-keeping required to create a new object.

Python has three essential paths:

The default behavior, which builds a __dict__ attribute in each object. Because
the object's attributes are kept in a dictionary, we can add, change, and delete
attributes freely. This flexibility requires the use of a relatively large amount of
memory for the dictionary object.
The __slots__ behavior, which avoids the __dict__ attribute. Because the
object has only the attributes named in the __slots__ sequence, we can't add or
delete attributes. We can change the values of only the defined attributes. This
lack of flexibility means that less memory is used for each object.
The subclass of tuple behavior. These are immutable objects. The easiest way to
create these is with namedtuple(). Once built, they cannot be changed. When
measuring memory use, these are the thriftiest of all classes of objects.

The __slots__ optimization is used infrequently in Python. The default class behavior
provides the most flexibility and makes altering a class easy. In some cases, however, a
large application might be constrained by the amount of memory used, and switching just
one class to __slots__ can have a dramatic improvement in performance.

There's more…
It's possible to tailor the way the __new__() method works to replace the default
__dict__ attribute with a different kind of dictionary. This is a rather advanced technique
because it exposes some more of the inner workings of classes and objects.

Python relies on a metaclass to create instances of a class. The default metaclass is the type
class. The idea is that the metaclass provides a few pieces of functionality that are used to
create the object. Once the empty object has been created, then the class __init__()
method will initialize the empty object.

Generally, a metaclass will provide a definition of __new__(), and perhaps
__prepare__(), if there's a need to customize the namespace object. There's a widely used
example in the Python Language Reference document that tweaks the namespace used to
create a class.



Basics of Classes and Objects

[ 277 ]

For more details, see h t t p s ://d o c s . p y t h o n . o r g /3/r e f e r e n c e /d a t a m o d e l . h t m l #m e t a c l a s

s - e x a m p l e .

See also
The more common cases of an immutable object or a completely flexible object
are covered in the Designing classes with little unique processing recipe.

Using more sophisticated collections
Python has a wide variety of built-in collections. In Chapter 4, Built-in Data Structures – list,
set, dict, we looked at them closely. In the Choosing a data structure recipe we provided a kind
of decision tree to help locate the appropriate data structure from the available choices.

When we fold in the standard library, we have more choices, and more decisions to make.
How can we choose the right data structure for our problem?

Getting ready
Before we put data into a collection, we'll need to consider how we'll gather the data, and
what we'll do with the collection once we have it. The big question is always how we'll
identify a particular item within the collection. We'll look at a few key questions that we
need to answer to help select a proper collection for our needs.

Here's the overview of the alternative collections. They're in three modules.

The collections module contains a number of variations on the built-in collections. These
include the following:

deque: A double-ended queue. It's a mutable sequence with optimizations for
pushing and popping from each end. Note that the class name starts with a
lower-case letter; this is atypical for Python.
defaultdict: A mapping that can provide a default value for a missing key.
Note that the class name starts with a lower-case letter; this is atypical for Python.
Counter: A mapping that is designed to count occurrences of a key. This is
sometimes called a multiset or a bag.
OrderedDict: A mapping that retains the order in which keys where created.

https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example


Basics of Classes and Objects

[ 278 ]

ChainMap: A mapping that combines several dictionaries into a single mapping.

The heapq module includes a priority queue implementation. This is a specialized sequence
that maintains items in a sorted order.

The bisect module includes methods for searching a sorted list. This creates some overlap
between the dictionary features and the list features.

How to do it…
There are a number of questions we need to answer to decide if we need a library data
collection instead of one of the built-in collections:

Is the structure a buffer between the producer and the consumer? Does some part1.
of the algorithm produce data items and another part consume the data items? 

A common naive approach is for the producer to accumulate items in a list, and
then the consumer processes the items from the list. This approach will tend to
build a large intermediate data structure. A change in focus can interleave
production and consumption, reducing the amount of memory used:

A queue is used for First-In-First-Out (FIFO) processing. Items are
inserted at one end and consumed from the other end. We can use
list.append() and list.pop(0) to simulate this, though
collections.deque will be more efficient; we can use
deque.append() and deque.popleft().
A stack is used for Last-In-First-Out (LIFO) processing. Items are
inserted and consumed from the same end. We can use
list.append() and list.pop() to simulate this, though
collections.deque will be more efficient; we can use
deque.append() and deque.pop().
A priority queue (or heap queue) keeps the queue sorted in some
order, distinct from the arrival order. This is often used for optimizing
work, including graph search algorithms. We can simulate this by
using list.append(), list.sort(key=lambda x:x.priority),
and list.pop(-1). Since this involves a sort after each insert, it's
terribly inefficient. Using the heapq module is considerably more
efficient.



Basics of Classes and Objects

[ 279 ]

How do we want to deal with missing keys from a dictionary?2.

Raise an exception. This is the way the built-in dict class works.
Create a default item. This is how a defaultdict works. We must
provide a function that returns the default value. Common examples
include defaultdict(int) and defaultdict(float) to use a
default value of zero. We can also use defauldict(list) and
defauldict(set) to create dictionary-of-list or dictionary-of-set
structures.
In some cases, we'll need to to provide a different literal value as the
default: 

                lookup = defaultdict(lambda:"N/A") 

This uses a lambda object to define a very small function that has no name and
always returns the string N/A. This will create a default item of N/A for missing
keys. 

The defaultdict(int) used to count items is so common that the Counter
class does exactly this.

How do we want to handle the order of keys in a dictionary?3.
Order doesn't matter; we always set and get items by key. This is the
behavior of a built-in dict class. Key ordering depends on hash
randomization, and is, therefore, unpredictable.
We want to preserve the insert order as well as rapidly find items
using their key. The OrderedDict class provides this unique
combination of features. It has the same interface as the built-in dict
class, but preserves the insert order of the keys.
We want the keys sorted into their proper order. While a sorted list
does this, the lookup time for a given key is quite slow. We can use the
bisect module to provide rapid access to items within a sorted list. This
requires a three step algorithm:

Build the list, perhaps via append() or extend().1.
Sort the list. list.sort() is all we need for this.2.
Do retrievals from the sorted list, using the bisect module.3.

How will we build the dictionary?4.
We have a simple algorithm to create items. In this case, a built-in dict
may be sufficient.
We have multiple dictionaries that will need to be merged. This can



Basics of Classes and Objects

[ 280 ]

happen when reading configuration files. We might have an individual
configuration, a system-wide configuration, and a default application
configuration that all need to be merged. 

                import json
                user = json.load('~/app.json')
                system = json.load('/etc/app.json')
                application = json.load('/opt/app/default.json')

How can we combine these?5.

             from collections import ChainMap
            config = ChainMap(user, system, application)

The resulting config object will do a sequential search through the various
dictionaries. It will look in the user, system, and application dictionaries for a
given key.

How it works…
There are two principle resource constraints on data processing:

Storage
Time

All of our programming must respect these constraints. In most cases, the two are in
opposition: anything we do to reduce storage use tends to increase processing time, and
anything we do to reduce processing time increases storage use.

The time aspect is formalized via a complexity metric. There's considerable analysis of the
complexity of an algorithm:

Operations that are described as O(1) happen in constant time. In this case, the
complexity doesn't change with the volume of data. For some collections, the
actual overall long-term average is nearly O(1) with minor exceptions. List
append operations are an example: they're all about the same complexity. Once
in a while, though, a behind the scenes memory management operation will add
some time.
Operations that are described as O(n) happen in linear time. The cost grows as
the volume of data grows. Finding an item in a list has this complexity. Finding
an item in a dictionary is closer to O(1) because it's (nearly) the same low
complexity, no matter how large the dictionary is.



Basics of Classes and Objects

[ 281 ]

Operations that are O(n log n) grow more quickly than the volume of data. The
bisect module includes search algorithms that have this complexity.
There are even worse cases: some algorithms have a complexity of O(n2) or even
O(n!). We'd like to avoid these through clever design and smarter data structures.

The various data structures reflect unique time and storage trade-offs.

There's more…
As a concrete and extreme example, let's look at searching a web log file for a particular
sequence of events. We have two overall design strategies:

Read all of the events into a list structure with something like
file.read().splitlines(). We can then use a for statement to iterate
through the list looking for the combination of events. While the initial read may
take some time, the search will be very fast because the log is all in memory.
Read each event from a log file. If the event is part of the pattern, save just this
event. We might use a defaultdict with the IP address as the key and a list of
events as the value. This will take longer to read the logs, but the resulting
structure in memory will be much smaller.

The first algorithm, read everything into memory, is often wildly impractical. On a large
web server, the logs might involve hundreds of gigabytes, or perhaps even terabytes, of
data. This won't fit into any computer's memory.

The second approach has a number of alternative implementations:

Single process: The general approach to most of the Python recipes here assumes
that we're creating an application that runs as a single process.
Multiple processes: We might expand the row-by-row search into a multi-
processing application using the multiprocessing or concurrent package. We
will create a collection of worker processes, each of which can process a subset of
the available data and return the results to a consumer that combines the results.
On a modern multiprocessor, multi-core computer, this can be a very effective
use of resources.
Multiple hosts: The extreme case requires multiple servers, each of which
handles a subset of the data. This requires more elaborate coordination among
the hosts to share result sets. Generally, a framework such as Hadoop is required
for this kind of processing.



Basics of Classes and Objects

[ 282 ]

We'll often decompose a large search into map and reduce processing. The map phase
applies some processing or filtering to every item in the collection. The reduce phase
combines map results into summary or aggregate objects. In many cases, there is a complex
hierarchy of MapReduce operations applied to the results of previous MapReduce
operations.

See also
See the Choosing a data structure recipe in Chapter 4, Built-in Data Structures – list,
set, dict, for a foundational set of decisions for selecting data structures

Extending a collection – a list that does
statistics
In the Designing classes with lots of processing recipe we looked at a way to distinguish
between a complex algorithm and a collection. We showed how to encapsulate the
algorithm and the data into separate classes.

The alternative design strategy is to extend the collection to incorporate a useful algorithm.

How can we extend Python's built-in collections?

Getting ready
We'll create a sophisticated list that can compute the sums and averages of the items in the
list. This will require that our application only puts numbers in the list; otherwise, there will
be ValueError exceptions.

How to do it…
Pick a name for the list that also does simple statistics. Define the class as an1.
extension to the built-in list class: 

        class StatsList(list): 



Basics of Classes and Objects

[ 283 ]

This shows the syntax for defining an extension to a built-in class. If we provide a
body that consists only of the pass statement, then the new StatsList class can
be used anywhere the list class is used.

When we write this, the list class is called the superclass of StatsList.

Define the additional processing as new methods. The self variable will be an2.
object that has inherited all of the attributes and methods from the superclass.
Here's a sum() method:

         def sum(self):
            return sum(v for v in self)

We've used a generator expression to make it perfectly clear that the sum()
function is applied to every item in the list. Using a generator expression allows
us to do calculations or introduce filters very easily.

Here's another method that we often apply to a list. This counts items:3.

         def count(self):
            return sum(1 for v in self) 

This will count the items in the list. Rather than use the len() function, we opted
to use a generator expression in case we want to add filtering features in the
future.

Here's the mean function: 4.

            def mean(self):
                return self.sum() / self.count()

Here are some additional methods: 5.

        def sum2(self):
            return sum(v**2 for v in self)
        def variance(self):
            return (self.sum2() -
self.sum()**2/self.count())/(self.count()-1)
        def stddev(self):
            return math.sqrt(self.variance()) 

The sum2() method computes the sum of the squares of values in the list. This is
used to compute variance. The variance is then used to compute the standard
deviation of the values in the list.



Basics of Classes and Objects

[ 284 ]

The StatsList object inherits all the features of a list object. It is extended by the
methods that we added. Here's an example of using this collection:

>>> from ch06_r06 import StatsList
>>> subset1 = StatsList([10, 8, 13, 9, 11])
>>> data = StatsList([14, 6, 4, 12, 7, 5])
>>> data.extend(subset1)

We've created two StatsList objects from a literal list of objects. We used the extend()
method to combine the two objects. Here's the resulting object:

>>> data
[14, 6, 4, 12, 7, 5, 10, 8, 13, 9, 11]

Here's how we can use the additional methods which we defined on this object:

>>> data.mean()
9.0
>>> data.variance()
11.0

We've displayed the results of the mean() and variance() methods. Of course, all the
features of the built-in list class are all present in our extension:

>>> data.sort()
>>> data[len(data)//2]
9

We used the built-in sort() method and used the index feature to extract an item from the
list. Because there are an odd number of values, this is the median value. Note that this
mutates the list object, changing the order of the items. This isn't the best possible
implementation for this algorithm.

How it works…
One of the essential features of class definition is the concept of inheritance. When we create
a superclass-subclass relationship, the subclass inherits all of the features of the superclass.
This is sometimes called the generalization-specialization relationship. The superclass is a
more generalized class; the subclass is more specialized because it adds or modifies
features.

All of the built-in classes can be extended to add features. In this example, we added some
statistical processing which created a subclass that's a specialized kind of list.



Basics of Classes and Objects

[ 285 ]

There's an important tension between the two design strategies:

Extending: In this case, we extended a class to add features. The features are
deeply entrenched with this single data structure, and we can't easily use them
for a different kind of sequence.
Wrapping: In designing classes with lots of processing, we kept the processing
separate from the collection. This leads to some more complexity in juggling two
objects.

It's difficult to suggest that one of these is inherently superior to the other. In many cases,
we'll find that wrapping may have an advantage because it seems to be a better fit the
S.O.L.I.D. design principles. However, there will always be cases where it's clearly
appropriate to extend a built-in collection.

There's more…
The idea of generalization can lead to superclasses that are abstractions. An abstract class is
incomplete, and requires a subclass to extend it and provide missing implementation
details. We can't make an instance of an abstract class because it would be missing features
that make it useful.

As we noted in the Choosing a data structure recipe in Chapter 4, Built-in Data Structures –
list, set, dict, there are abstract superclasses for all of the built-in collections. Rather than start
from a concrete class, we can also start our design from an abstract base class.

We could, for example, start a class definition like this:

    from collections.abc import Mapping
    class MyFancyMapping(Mapping):
    etc.

In order to finish this class, we'll need to provide an implementation for a number of special
methods:

__getitem__()

__setitem__()

__delitem__()

__iter__()

__len__()



Basics of Classes and Objects

[ 286 ]

Each of these methods is missing from the abstract class; they have no concrete
implementation in the Mapping class. Once we've provided workable implementations for
each method, we can then make instances of the new subclass.

See also
In the Designing classes with lots of processing recipe we took a different approach.
In that recipe, we left the complex algorithms in a separate class.

Using properties for lazy attributes
In the Designing classes with lots of processing recipe we defined a class that eagerly computed
a number of attributes of the data in a collection. The idea there was to compute the values
as soon as possible, so that the attributes would have no further computational cost.

We described this as eager processing, since the work was done as soon as possible. The
other approach is lazy processing, where the work is done as late as possible.

What if we have values that are used rarely, and are very expensive to compute? What can
we do to minimize the up-front computation, and only compute values when they are truly
needed?

Getting ready…
Let's say we've collected data using a Counter object. For more information on the various
collections, see Chapter 4, Built-in Data Structures – list, set, dict, specifically the Using set
methods and operators and Avoiding mutable default values for function parameters recipes. In this
case, the customers fall into eight categories with approximately equal numbers.

The data looks like this:

    Counter({15: 7, 17: 5, 20: 4, 16: 3, ... etc., 45: 1})

In this collection, each key is the number of visits needed to get a full set of coupons. The
values are the numbers of times that the visits occurred. In the preceding data that we saw,
there were seven occasions where 15 visits were needed to get a full set of coupons. We can
see from the sample data that there were five occasions where 17 visits were needed. This
has a long tail. At only one point, there were 45 individual visits before a full set of eight
coupons was collected.



Basics of Classes and Objects

[ 287 ]

We want to compute some statistics on this Counter. We have two overall strategies for
doing this:

Extend: We covered this in detail in the Extending a collection – a list that does
statistics recipe, and we will cover this in Chapter 7, More Advanced Class Design.
Wrap: We can wrap the Counter object in another class that provides just the
features we need. We'll look at this in Chapter 7, More Advanced Class Design.

A common variation on wrapping uses a statistical computation object with a
separate data collection object. This variation on wrapping often leads to an
elegant solution.

No matter which class architecture we choose, we have two ways to design the processing:

Eager: This means that we'll compute the statistics as soon as possible. This was
the approach followed in the Designing classes with lots of processing recipe.
Lazy: This means we won't compute anything until it's required via a method
function or property. In the Extending a collection – a list that does statistics recipe,
we added methods to a collection class. These additional methods are examples
of lazy calculation. The statistical values are computed only when required.

The essential math for both designs is the same. The only question is when the computation
is done.

The mean, μ, is this:

Here, k is the key from the Counter, C, and fk is the frequency value for the given key from
the Counter.

The standard deviation, σ, depends on the mean, μ. The formula is this:



Basics of Classes and Objects

[ 288 ]

Here, k is the key from the Counter, C, and fk is the frequency value for the given key from

the Counter. The total number of items in the counter is .

How to do it…
Define the class with a descriptive name: 1.

        class LazyCounterStatistics:

Write the initialization method to include the object to which this object will be2.
connected:

         def __init__(self, raw_counter:Counter):
            self.raw_counter = raw_counter 

We've defined a method function that takes a Counter object as an argument
value. This counter object is saved as part of the Counter_Statistics instance.

Define some useful helper methods. Each of these is decorated with @property3.
to make it behave like a simple attribute: 

        @property
        def sum(self):
            return sum(f*v for v, f in self.raw_counter.items())
        @property
        def count(self):
            return sum(f for v, f in self.raw_counter.items())

Define the required methods for the various values. Here's the calculation of the4.
mean. This too is decorated with @property. The other methods can be
referenced as if they are attributes, even though they are proper method
functions: 

        @property
        def mean(self):
            return self.sum / self.count

Here's how we can calculate the standard deviation: 5.

        @property
        def sum2(self):
            return sum(f*v**2 for v, f in self.raw_counter.items())



Basics of Classes and Objects

[ 289 ]

        @property
        def variance(self):
            return (self.sum2 - self.sum**2/self.count)/(self.count-1)
        @property
        def stddev(self):
            return math.sqrt(self.variance)  

Note that we've been using math.sqrt(). Be sure to add the required import
math statement in the Python file.

Here's how we can create some sample data:6.

      >>> from ch04_r06 import *
      >>> from collections import Counter
      >>> def raw_data(n=8, limit=1000, arrival_function=arrival1):
      ...    expected_time = float(expected(n))
      ...    data = samples(limit, arrival_function(n))
      ...    wait_times = Counter(coupon_collector(n, data))
      ...    return wait_times

We've imported functions such as expected(), arrival1(), and
coupon_collector() from the ch04_r06 module. We've imported the Counter
collection from the standard library collections module.

We defined a function, raw_data(), that will generate a number of customer
visits. By default, it will be 1,000 visits. The domain will be eight different classes
of customers; each class will have an equal number of members. We'll use the
coupon_collector() function to step through the data, emitting the number of
visits required to collect a full set of eight coupons.

This data is then used to assemble a Counter object. This will have the number of
customers required to get a full set of coupons. Each number of customers will
also have a frequency showing how often that number of visits occurred.

Here's how we can analyze the Counter object:7.

      >>> import random
      >>> from ch06_r07 import LazyCounterStatistics
      >>> random.seed(1)
      >>> data = raw_data()
      >>> stats = LazyCounterStatistics(data)
      >>> print("Mean: {0:.2f}".format(stats.mean))
      Mean: 20.81
      >>> print("Standard Deviation: {0:.3f}".format(stats.stddev))
      Standard Deviation: 7.025



Basics of Classes and Objects

[ 290 ]

First, we imported the random module so that we could pick a known seed value.
This makes it easier to test and demonstrate an application because the random
numbers are consistent. We also imported the LazyCounterStatistics class
from the ch06_r07 module.

Once we have all of the items defined, we can force the seed to a known value,
and generate the coupon collector test results. The raw_data() function will emit
a Counter object, which we called data.

We'll use the Counter object to create an instance of the
LazyCounterStatistics class. We'll assign this to the stats variable. When we
print the value for the stats.mean property and the stats.stddev property,
the methods are invoked to do the appropriate calculations of the various values.

For a set of eight coupons, the theoretical average is 21.7 visits to collect all
coupons. It looks like the results from raw_data() show behavior that matches
the expectation of random visits. This is sometimes called the null
hypothesis—the data is random.

In this case, the data really was random. We've validated our approach. We can now use
this software on real-world data with some confidence that it behaves correctly.

How it works…
The idea of lazy calculation works out well when the value is used rarely. In this example,
the count is computed twice as part of computing the variance and standard deviation.

This shows that being naive about a lazy design may not be optimal in some cases. This is
an easy problem to fix, in general. We can always create additional local variables to save
intermediate results.

To make this class look like the class that performs eager calculations, we used the
@property decorator. This makes a method function appear to be an attribute. This can
only work for method functions that have no argument values.

In all cases, an attribute that's computed eagerly can be replaced by a lazy property. The
principle reason for creating eager attribute variables is to optimize computation costs. In
the case where a value is used rarely, a lazy property can avoid an expensive calculation.



Basics of Classes and Objects

[ 291 ]

There's more…
There are some situations in which we can further optimize a property to limit the amount
of recomputation that's done. This requires a careful analysis of the use cases in order to
understand the pattern of updates to the underlying data.

In the situation where a collection is loaded with data and an analysis is performed, we can
cache results to save computing them a second time.

We might do something like this:

    def __init__(self, raw_counter:Counter):
        self.raw_counter = raw_counter
        self._count = None
    @property
    def count(self):
        if self._count is None:
            self._count = sum(f for v, f in self.raw_counter.items())
        return self._count

This technique uses an attribute to save a copy of the count calculation. This value can be
computed once and returned as often as needed with no cost for recalculation.

This optimization is only helpful if the state of the raw_counter object never changes. In an
application that updates the underlying Counter, this cached value would become out of
date. That kind of application would need to recreate the LazyCounterStatistics every
time the Counter was updated.

See also…
In the Designing classes with lots of processing recipe, we defined a class that eagerly
computed a number of attributes. This represents a different strategy for
managing the cost of the computation.



Basics of Classes and Objects

[ 292 ]

Using settable properties to update eager
attributes
In several of the previous recipes, we've looked at the important distinction between eager
and lazy computation. See the Designing classes with lots of processing recipe for an example
of eagerly computing a result and setting object attributes. See the Using properties for lazy
attributes recipe for a way to use properties to lazily compute a result.

When an object is stateful, then attribute values must be changed throughout the object's
life. It's common to use methods to eagerly compute attribute changes, but this isn't really
necessary.

We have the following choices for stateful objects:

Set attribute values via methods:
Compute results eagerly, putting results in attributes
Compute results lazily, using properties that have syntax that looks
like a simple attribute

Set values via attributes:
If results are computed lazily via properties, then the new state can
be reflected in these calculations

What can we do if we want to use attribute-like syntax for setting a value, but we also want
to perform eager calculations?

This gives us another variation: we can use a property setter to have attribute-like syntax.
This method can also perform eager calculations of the results.

For example, we'll use a fairly complex looking object that has several attributes that are
derived from other attributes. How can we eagerly compute values from attribute changes?

Getting ready
Consider a class that represents a leg of a voyage. It has three principle features—rate, time,
and distance. Looking at this in general, it's possible to eagerly compute any one value from
a change in the other two.

We can add features to make this quite a bit more complex. For example, if the distance is
computed from latitude and longitude, the general approach has to be modified somewhat.
If we're using specific points instead of a more flexible distance, then a distance calculation



Basics of Classes and Objects

[ 293 ]

may involve something like rate, time, starting point, and bearing. This involves two
interlocked calculations. We won't go quite so far in this example; we'll stick to a simpler
rate-time-distance calculation.

Since two attributes must be set to compute the third, the object will have a fairly complex
set of internal states:

No attributes have been set: everything is unknown.
One item has been set: nothing can be computed yet.
Two distinct items have been set: now the third can be computed.

After this, it's ideal to support additional attribute changes. The essential rule is to compute
appropriate new values based on the most recent two distinct changes:

If rate, r, and time, t, are the last two things that were changed, compute the
distance, d. Use d = r * t.
If rate, r, and distance, d, are the last two things that were changed, compute the
time, t. Use t = d/r.
If time, t, and distance, d, are the last two things that were changed, compute the
rate, r. Use r = d/t.

We'd like the object to behave like this:

    leg_1 = Leg()
    leg_1.rate = 6.0 # knots
    leg_1.distance = 35.6 # nautical miles
    print("Cover {leg.distance:.1f}nm at {leg.rate:.2f}kt =
{leg.time:.2f}hr".
        format(leg=leg_1))

This has the distinct advantage of offering a very simple interface to the leg object. An
application merely sets any two attributes and the calculation is performed eagerly to
provide a value for the remaining attribute.

How to do it…
We'll break this into two parts. First, the general overview of defining settable properties,
then the details of how to track state changes:

Define a class with a meaningful name.1.



Basics of Classes and Objects

[ 294 ]

Provide hidden attributes. These will be exposed as properties: 2.

        class Leg:
        def __init__(self):
            self._rate= rate
            self._time= time
            self._distance= distance.

For each gettable property, provide a method to compute the property value. In3.
many cases, these will parallel the hidden attributes: 

        @property
        def rate(self):
            return self._rate

For each settable property, provide a method to set the property value: 4.

        @rate.setter
        def rate(self, value):
            self._rate = value
            self._calculate('rate') 

The setter method has a special property decorator based on the getter method
name. In this example, the @property decorator on the rate() method also
creates a rate.setter decorator that can be used to define the setter method for
this attribute. 

Note that the method names for the getter and setter are identical. The @property
and @rate.setter decorations distinguish the two methods from each other. 

In this example, we've saved the value into the hidden attribute, self._rate.
Then, the _calculate() method is used to eagerly calculate all of the hidden
attributes, if possible.

This can be repeated for all other properties. In our case, the code for time and5.
distance are similar:

         @property
        def time(self):
            return self._time
        @time.setter
        def time(self, value):
            self._time = value
            self._calculate('time')
        @property
        def distance(self):



Basics of Classes and Objects

[ 295 ]

            return self._distance
        @distance.setter
        def distance(self, value):
            self._distance = value
            self._calculate('distance')

The details of tracking the state change rely on a feature of the collections.deque class.
The rule for calculation can be implemented as a two-element bounded queue of distinct
changes. As each distinct field is changed, we can enqueue the field name. The two distinct
names in the queue are the last two fields changed; the third can be determined from this by
set subtraction:

Import the deque class:1.

        from collections import deque

Initialize the queue in the __init__() method: 2.

        self._changes= deque(maxlen=2)

Enqueue each distinct change. Determine what's missing from the queue, and3.
compute this: 

            def _calculate(self, change):
            if change not in self._changes:
                self._changes.append(change)
            compute = {'rate', 'time', 'distance'} - set(self._changes)
            if compute == {'distance'}:
                self._distance = self._time * self._rate
            elif compute == {'time'}:
                self._time = self._distance / self._rate
            elif compute == {'rate'}:
                self._rate = self._distance / self._time 

If the latest change is not already in the queue, it's appended. Since the queue has a
bounded size, the oldest item, the one least recently changed, is silently popped to keep the
queue size fixed. 

The difference between the set of available properties, and the set of properties recently
changed is a single property name. This is the name least recently set; the value for this can
be computed from the other two that were set more recently.



Basics of Classes and Objects

[ 296 ]

How it works…
This works because Python implements a property with a kind of class called a Descriptor.
A descriptor class can have methods for getting a value, setting a value, and deleting a
value. Depending on the context, one of these methods is used implicitly:

When a descriptor object is used in an expression, the __get__ method is used
When a descriptor is on the left side of an assignment statement, the __set__
method is used
When a descriptor appears in a del statement, the __delete__ method is used

The @property decorator does three things:

Modifies the following method to be wrapped up in a descriptor object. The
method that follows is modified to be the descriptor's __get__ method. It will
compute values when used in an expression.
Adds a method.setter decorator. This decorator will modify the method that
follows to be the descriptor's __set__ method. When the name is used on the left
side of an assignment statement, the given method is executed.

Adds a method.deleter decorator. This decorator will modify the method that
follows to be the descriptor's __delete__ method. When the name is used in a
del statement, the given method is executed.

This allows the building of an attribute name that can be used to provide values, set values,
and even delete values.

There's more…
There are a few more refinements we could make to this class. We'll look at two more
advanced techniques for initialization and calculation.

Initialization
We can provide a way to properly initialize an instance with some values. This change
makes it possible to do the following:

>>> from ch06_r08 import Leg
>>> leg_2 = Leg(distance=38.2, time=7)
>>> round(leg_2.rate, 2)



Basics of Classes and Objects

[ 297 ]

5.46
>>> leg_2.time=6.5
>>> round(leg_2.rate, 2)
5.88

The example shows how this helps in planning a voyage by a sailboat. If the distance to
cover is 38.2 nautical miles, and the goal is to finish in 7 hours, the boat must reach a speed
of 5.46 knots. To shave a half hour off the trip requires a speed of 5.88 knots.

For this to work, the __init__() method needs to be changed. The internal dequeue
object must be built right away. As each attribute is set, the internal _calculate() method
must be used to track the setting:

    class Leg:
        def __init__(self, rate=None, time=None, distance=None):
            self._changes= deque(maxlen=2)
            self._rate= rate
            if rate: self._calculate('rate')
            self._time= time
            if time: self._calculate('time')
            self._distance= distance
            if distance: self._calculate('distance')

The dequeue function is created first. As each individual field value is set, the change is
logged in the queue of changed attributes. If two fields are set, the third will be computed.

If all three fields are set, then the last two changes—time and distance, in this case—will
compute a value for rate. This will overwrite the provided value.

Calculation
Currently, the various calculations are buried inside an if statement. This makes changes
difficult because a subclass would be forced to supply the entire method rather than simply
supplying a calculation change.

We can remove the if statement using an introspection technique. The overall design
would be better with explicit calculation methods:

    def calc_distance(self):
        self._distance = self._time * self._rate
    def calc_time(self):
        self._time = self._distance / self._rate
    def calc_rate(self):
        self._rate = self._distance / self._time



Basics of Classes and Objects

[ 298 ]

The following version of _calculate() makes use of these methods:

    def _calculate(self, change):
        if change not in self._changes:
            self._changes.append(change)
        compute = {'rate', 'time', 'distance'} - set(self._changes)
        if len(compute) == 1:
            name = compute.pop()
            method = getattr(self, 'calc_'+name)
            method()

When the value of compute is a singleton set, using the pop() method extracts that one
value from the set. Prepending calc_ to this string gives the name of a method that will
compute the desired value.

The getattr() function does a lookup to find the requested method of the object, self.
This is then evaluated as a bound function. It can update attributes with the desired result.

Refactoring the calculations into separate methods makes the class more open to extension.
We can now create a subclass that includes revised calculations, but preserves the overall
features of the class.

See also
For more information on working with sets, see the Using set methods and operators
recipe in Chapter 4, Built-in Data Structures – list, set, dict.
A dequeue, effectively, is a list that's highly optimized for append and pop
operations. See the Deleting from a list – deleting, removing, popping, and filtering
recipe in Chapter 4, Built-in Data Structures – list, set, dict.



7
More Advanced Class Design

In this chapter, we'll look at the following recipes:

Choosing between inheritance and extension – the is-a question
Separating concerns via multiple inheritance
Leveraging Python's duck typing
Managing global and singleton objects
Using more complex structures – maps of lists
Creating a class that has orderable objects
Defining an ordered collection
Deleting from a list of mappings

Introduction
In Chapter 6, Basics of Classes and Objects, we looked at some recipes that cover the basics of
class design. In this chapter, we'll dive a little more deeply into Python classes.

In the Designing classes with lots of processing and Using properties for lazy attributes recipes in
Chapter 6, Basics of Classes and Objects, we identified a design choice that's central to object-
oriented programming, the wrap versus extend choice. It's possible to add features to a
class via extension and it's also possible to create a new class that wraps an existing class to
add new features. There are a number of extension techniques available in Python,
providing a lot of alternatives.



More Advanced Class Design

[ 300 ]

A Python class can inherit features from more than one superclass. This can lead to
confusion, but a simple design pattern, the mixin, can prevent problems.

A larger application may require some global data that's widely shared by many classes or
modules. This can be challenging to manage. We can, however, use a module to manage a
global object and create a simple solution.

In Chapter 4, Built-in Data Structures – list, set, dict, we looked at the core built-in data
structures. It's time to combine some features to create more sophisticated objects. This can
also include extending built-in data structures to add sophistication.

Choosing between inheritance and
extension – the is-a question
In the Using cmd for creating command-line applications recipe in Chapter 5, User Inputs and
Outputs, and the Extending a collection – a list that does statistics recipe in Chapter 6, Basics of
Classes and Objects, we looked at extending a class. In both cases, our class was a subclass of
a built-in class.

The idea of extension is sometimes called the generalization-specialization relationship. It's
sometimes also called the is-a relationship.

There's an important semantic issue here that we can also summarize as the wrap versus
extend problem:

Do we really mean that the subclass is an example of the superclass? This is the
is-a relationship. An example in Python is the built-in Counter, which extends
the base class dict.
Or do we mean something else? Perhaps there's an association, sometimes called
the has-a relationship. An example of this is in the Designing classes with lots of
processing recipe in Chapter 6, Basics of Classes and Objects, where
CounterStatistics wraps a Counter object.

What's a good way to distinguish between these two techniques?



More Advanced Class Design

[ 301 ]

Getting ready
The question is a bit of metaphysical philosophy, specifically focused on the ideas of an
ontology. An ontology is a way to define categories of being.

When we extend an object, we have to ask the following:

“Is this a new class of objects, or a mixture of existing classes of objects?”

We'll look at two ways to model a deck of playing cards:

As a new class of objects that extends the built-in list class
As a wrapper that combines the built-in list class with some other features

A deck is a collection of cards. The core ingredient, then, is the underlying Card object.
We'll define this very simply using namedtuple():

>>> from collections import namedtuple
>>> Card = namedtuple('Card', ('rank', 'suit'))
>>> SUITS = '\u2660\u2661\u2662\u2663'
>>> Spades, Hearts, Diamonds, Clubs = SUITS
>>> Card(2, Spades)
Card(rank=2, suit='♠')

We've created the class definition, Card, using namedtuple(). This creates a simple class
with two attributes—rank and suit.

We also defined the various suits, SUITS, as a string of Unicode characters. To make it
easier, to create cards of a specific suit, we also decomposed the string into four individual
one character substrings. If your interactive environment doesn't properly display Unicode
characters, you may have trouble with this. It might be necessary to change the OS
environment variable, PYTHONIOENCODING, to UTF-8, so that proper encoding is done.

The \u2660 string is a single Unicode character. You can confirm this with len(SUITS) ==
4. If the length isn't 4, check for extraneous spaces.

We'll use this Card class in the rest of this recipe. In some card games, a single 52-card deck
is used. In other games, a dealing shoe is used. A shoe is a box that allows a dealer to
shuffle together multiple decks and deal conveniently.

What's important is that the various kinds of collection—deck, shoe, and the built-in list all
have considerable overlaps in the kinds of features they support. Are they all more or less
related? Or are they fundamentally distinct?



More Advanced Class Design

[ 302 ]

How to do it…
We'll wrap the Using a class to encapsulate data and processing recipe in Chapter 6, Basics of
Classes and Objects, with this recipe:

Use the nouns and verbs from the original story or problem statement to identify1.
all of the classes.
Look for overlaps in the feature sets of various classes. In many cases, the2.
relationships will come directly from the problem statement itself. In our
preceding example, a game can deal cards from a deck, or deal cards from a shoe.
In this case, we might state one of these two views:

A shoe is a specialized deck that starts with multiple copies of the 52-
card domain
A deck is a specialized shoe with only one copy of the 52-card domain

Create a small ontology that clarifies the relationships among the classes. There3.
are several kinds of relationships.

Some classes are independent of each other. They're linked for the purposes of
implementing a user story. In our example a Card refers to a string for the suit.
The two objects are independent of each other. Many cards will share a common
suit string. These are ordinary references between objects and there are no special
design considerations:

Aggregation: Some objects are bound into collections, but the objects
have a properly independent existence. Our Card objects might be
aggregated into a Hand collection. When the game ends, the Hand
objects can be deleted, but the Card objects continue to exist. We might
create a Deck that refers to a built-in list.
Composition: Some objects are bound into collections, but do not have
an independent existence. When looking at card games, a Hand of
cards cannot exist without a Player. We might say that a Player
object is composed—in part—of a Hand. If a Player is eliminated from
a game, then the Hand objects must also be removed. While this is
important for understanding the relationships among objects, there are
some practical considerations that we'll look at in the next section.
Is-a or inheritance: This is the idea that a Shoe is a Deck with an extra
feature (or two). This may be central to our design. We'll look into this
in detail in the Extending – inheritance section of this recipe.



More Advanced Class Design

[ 303 ]

We've identified several paths for implementing the associations. The aggregation and
composition cases are both wrap techniques. The inheritance case is the extend technique.
We'll look at aggregation and composition—both wrapping techniques and extending
techniques—separately.

Wrapping – aggregation and composition
Wrapping is a way to understand a collection. It can be a class that is an aggregate of
independent objects. It's also a composition that wraps an existing list, meaning that the
underlying Card objects will be shared by a list collection and a Deck collection.

Define the independent collection. It might be a built-in collection, for example, a1.
set, list, or dict. For this example, it will be a list that contains the cards:

         domain = [Card(r+1,s) for r in range(13) for s in SUITS]

Define the aggregate class. For this example, the name has a _W suffix. This is not2.
a recommended practice; it's only used here to make the distinctions between
class definitions more clear.  Later, we'll see a slightly different variation on this
design:

        class Deck_W:

Use the __init__() method of this class as one way to provide the underlying3.
collection object. This will also initialize any stateful variables. We might create
an iterator for dealing: 

        def __init__(self, cards:List[Card]):
            self.cards = cards.copy()
            self.deal_iter = iter(cards) 

This uses a type hint, List[Card]. The typing module provides the necessary
definition of List.

If needed, provide other methods to either replace the collection, or update the4.
collection. This is rare in Python, since the underlying attribute, cards, can be
accessed directly. However, it might be helpful to provide a method that replaces
the self.cards value.



More Advanced Class Design

[ 304 ]

Provide the methods appropriate to the aggregate object: 5.

        def shuffle(self):
            random.shuffle(self.cards)
            self.deal_iter = iter(self.cards)
        def deal(self) -> Card:
            return next(self.deal_iter)

The shuffle() method randomizes the internal list object, self.cards. The
deal() object creates an iterator that can be used to step through the self.cards
list. We've provided a type hint on deal() to clarify that it returns a Card
instance.

Here's how we can use this class. We'll be sharing a list of Card objects. In this case, the
domain variable was created from a list comprehension that generated all 52 combinations
of 13 ranks and four suits:

>>> domain = list(Card(r+1,s) for r in range(13) for s in SUITS)
>>> len(domain)
52

We can use the items in this collection, domain, to create a second aggregate object that
shares the same underlying Card objects. We'll build the Deck_W object from the list of
objects in the domain variable:

>>> import random
>>> from ch07_r01 import Deck_W
>>> d = Deck_W(domain)

Once the Deck_W object is available, it's possible to use the unique features:

>>> random.seed(1)
>>> d.shuffle()
>>> [d.deal() for _ in range(5)]
[Card(rank=13, suit='♡'),
Card(rank=3, suit='♡'),
Card(rank=10, suit='♡'),
Card(rank=6, suit='♢'),
Card(rank=1, suit='♢')]

We've seeded the random number generator to force the cards to have a defined order. That
makes unit testing possible. After that, we shuffled the deck into an order based on the
random seed. Once the seed is sown, the results are consistent, making unit testing easy. We
can deal five cards from the deck. This shows how the Deck_W object, d, shares the same
pool of objects as the domain list.



More Advanced Class Design

[ 305 ]

We can delete the Deck_W object, d, and create a new deck from the domain list. This is
because the Card objects are not part of a composition. The cards have an independent
existence from the Deck_W collection.

Extending – inheritance
Here's an approach to defining a class that extends a collection of objects. We'll define a
Deck as an aggregate that wraps an existing list. The underlying Card objects will be shared
by a list and a Deck:

Define the extension class as a subclass of a built-in collection. For this example,1.
the name has a _X suffix. This not a recommended practice; it's only used here to
make the distinctions between two class definitions in this recipe more clear: 

        class Deck_X(list):

   This is a clear and formal statement—a Deck is a list.

Use the __init__() method inherited from the list class. No code is needed.2.
Use other methods of the list class for adding, changing, or removing items3.
from the Deck. No code is needed.
Provide the appropriate methods to the extended object: 4.

        def shuffle(self):
            random.shuffle(self)
            self.deal_iter = iter(self)
        def deal(self) -> Card:
            return next(self.deal_iter)

The shuffle() method randomizes the object as a whole, self, because it is an
extension of the list. The deal() object creates an iterator that can be used to step
through the self.cards list. We've provided a type hint on deal() to clarify
that it returns a Card instance.

Here's how we can use this class. First, we'll build a deck of cards:

>>> from ch07_r01 import Deck_X
>>> d2 = Deck_X(Card(r+1,s) for r in range(13) for s in SUITS)
>>> len(d2)
52



More Advanced Class Design

[ 306 ]

We used a generator expression to build individual Card objects. We can use the Deck_X()
class function exactly the way we'd use the list() class function. In this case, we built a
Deck_X object from the generator expression. We could build a list similarly.

We did not provide an implementation for the built-in __len__() method. This was
inherited from the list class, and works nicely.

Using the deck-specific features for this implementation looks exactly like the other
implementation, Deck_W:

>>> random.seed(1)
>>> d2.shuffle()
>>> [d2.deal() for _ in range(5)]
[Card(rank=13, suit='♡'),
Card(rank=3, suit='♡'),
Card(rank=10, suit='♡'),
Card(rank=6, suit='♢'),
Card(rank=1, suit='♢')]

We've seeded the random number generator, shuffled the deck, and dealt five cards. The
extension methods work as well for Deck_X as they do for Deck_W. The shuffle() and
deal() methods do their jobs.

How it works…
Python's mechanism for finding a method (or attribute) works like this:

Search in the class for the method or attribute.1.
If the name is not defined in the immediate class, then search in all of the parent2.
classes for the method or attribute.

This is how Python implements the idea of inheritance. Searching through the parent
classes assures two things:

Any method defined in any superclass is available to all subclasses
Any subclass can override a method to replace a superclass method

Because of this, a subclass of the list class inherits all the features of the parent class. It is
a specialized variation of the built-in list class.



More Advanced Class Design

[ 307 ]

This also means that all methods have the potential to be overridden by a subclass. Some
languages have ways to lock a method against extension. The word private is used by
languages such as C++ and Java. Python doesn't have this, a subclass can override any
method.

To explicitly refer to methods from a superclass, we can use the super() function to force a
search through the superclasses. This allows a subclass to add features by wrapping the
superclass version of a method. We use it like this:

    def some_method(self):
        # do something extra
        super().some_method()

In this case, the some_method() object will do something extra and then do the superclass
version of the method. This allows us a handy way to extend selected methods of a class.
We can preserve the superclass features while adding features unique to the subclass.

There's more…
When designing a class, we must choose between the several essential techniques:

Wrapping: This technique creates a new class. All of the required methods must
be defined. This can be a lot of code to provide the required methods. Wrapping
can be decomposed into two broad implementation choices:

Aggregation: The objects being wrapped have an independent
existence from the wrapper. The Deck_W example showed how the
Card objects and even the list of cards were independent from the
class. When any Deck_W object is deleted, the underlying list will
continue to exist.
Composition: The objects being wrapped don't have any
independent existence; they're an essential part of the composition.
This involves a subtle difficulty because of Python's reference
counting. We'll look at this shortly in some detail.

Extension via inheritance: This is the is-a relationship. When extending a built-in
class, then a great many methods are available from the superclass. The Deck_X
example showed this technique by creating a deck as an extension to the built-in
list class.



More Advanced Class Design

[ 308 ]

When looking at independent existence of objects, there's an important consideration. We
don't really remove objects from memory. Instead, Python uses a technique called reference
counting to track how many times an object is used. A statement such as del deck doesn't
really remove the deck object, it removes the deck variable, which decrements the
reference count for the underlying object. If the reference count is zero, the object is not
used and can be removed.

Consider the following example:

>>> c_2s = Card(2, Spades)
>>> c_2s
Card(rank=2, suit='♠')
>>> another = c_2s
>>> another
Card(rank=2, suit='♠')

At this point, we have an object, Card(2, Spades), and two variables that refer to the
object—c_2s and another.

If we remove one of those variables with the del statement, the other variable still has a
reference to the underlying object. The object can't be removed from memory until both
variables are removed.

This consideration makes the distinction between aggregation and composition mostly
irrelevant for Python programmers. In languages that don't use automatic garbage
collection or reference counters, then composition becomes important because objects may
vanish. In Python, objects can't vanish unexpectedly. We generally focus on aggregation
because removal of unused objects is entirely automatic.

See also
We've looked at the built-in collections in Chapter 4, Built-in Data Structures –
list, set, dict. Also, in Chapter 6, Basics of Classes and Objects, we looked at how to
define simple collections.
In the Designing classes with lots of processing recipe, we looked at wrapping a class
with a separate class that handles the processing details. We can contrast this
with the Using properties for lazy attributes recipe of Chapter 6, Basics of Classes and
Objects, where we put the complex computations into the class as properties; this
design relies on extension.



More Advanced Class Design

[ 309 ]

Separating concerns via multiple inheritance
In the Choosing between inheritance and extension – the is-a question recipe,we looked at the
idea of defining a Deck class that was a composition of playing card objects. For the
purposes of that example, we treated each Card object as simply having a rank and a suit.
This created a number of small problems:

The display for the card always showed a numeric rank. We didn't see J, Q, or K.
Instead we saw 11, 12, and 13. Similarly, an Ace was shown as 1 instead of A.
Many games, such as, Blackjack and Cribbage assign a point value to each rank.
Generally, the face cards have 10 points. For Blackjack, an Ace has two different
point values; depending on the total of other cards in the hand, it can be worth
one point or ten points.

How can we handle all of the variations in card game rules?

Getting ready
The Card class is really a mixture of two feature sets:

Some essential features, such as rank and suit.1.
Some game-specific features, such as the number of points. For a game such as2.
Cribbage, the points are consistent regardless of any context. For Blackjack,
however, there's a relationship between a Hand and the Card objects within a
Hand.

Python lets us define a class that has multiple parents. A class can have both a Card
superclass and a GameRules superclass.

In order to make sense of this kind of design, we'll often partition the various class
hierarchies into two sets of features:

Essential features: This includes rank and suit
Mixin features: These features are mixed into the class definition

The idea is that a working class definition will have both essential and mixin features.



More Advanced Class Design

[ 310 ]

How to do it…
Define the essential class: 1.

        class Card:
            __slots__ = ('rank', 'suit')
            def __init__(self, rank, suit):
                super().__init__()
                self.rank = rank
                self.suit = suit
            def __repr__(self):
                return "{rank:2d} {suit}".format(
                    rank=self.rank, suit=self.suit
                )

We've defined a generic Card class that is suitable for ranks two to ten. We've
included an explicit call to any superclass initialization via
super().__init__().

Define any subclasses to handle specializations: 2.

        class AceCard(Card):
            def __repr__(self):
                return " A {suit}".format(
                    rank=self.rank, suit=self.suit
                )
        class FaceCard(Card):
            def __repr__(self):
                names = {11: 'J', 12: 'Q', 13: 'K'}
                return " {name} {suit}".format(
                    rank=self.rank, suit=self.suit,
                    name=names[self.rank]
                )

We've defined two subclasses of the Card class. The AceCard class handles the
special formatting rules for an Ace. The FaceCard class handles other formatting
rules for Jack, Queen, and King.

Define a mixin superclass that identifies the additional features that will be3.
added. In some cases, the mixins will all inherit features from a common abstract
class. In this example, we'll use a concrete class that handles the rules for Ace
through 10:

         class CribbagePoints:
            def points(self):



More Advanced Class Design

[ 311 ]

                return self.rank 

For the game of Cribbage, the points for most cards are equal to the rank of the
card.

Define concrete mixin subclasses for the various kinds of features: 4.

        class CribbageFacePoints(CribbagePoints):
            def points(self):
                return 10

For the three ranks of face cards, the points are always 10.

Create the class definitions that combine the essential classes and the mixin5.
classes. While it's technically possible to add unique method definitions here, that
often leads to confusion. The goal is to have two separate sets of features that are
simply merged to create the resulting class definition. 

        class CribbageAce(AceCard, CribbagePoints):
            pass

        class CribbageCard(Card, CribbagePoints):
            pass

        class CribbageFace(FaceCard, CribbageFacePoints):
            pass

Create a factory function (or factory class) to create the appropriate objects based6.
the on input parameters: 

        def make_card(rank, suit):
            if rank == 1: return CribbageAce(rank, suit)
            if 2 <= rank < 11: return CribbageCard(rank, suit)
            if 11 <= rank: return CribbageFace(rank, suit)  

We can use this function to create a deck of cards like this:7.

      >>> from ch07_r02 import make_card, SUITS
      >>> import random
      >>> random.seed(1)
      >>> deck = [make_card(rank+1, suit) for rank in range(13) for suit in
SUITS]
      >>> random.shuffle(deck)
      >>> len(deck)
      52
      >>> deck[:5]
      [ K ♡,  3 ♡, 10 ♡,  6 ♢,  A ♢]



More Advanced Class Design

[ 312 ]

We've seeded the random number generator to assure that the results are the
same each time we evaluate the shuffle() function. This makes unit testing
possible.

We use a list comprehension to generate a list of cards that include all 13 ranks
and four suits. This is a collection of 52 individual objects. The objects belong to
two class hierarchies. Each object is a subclass of Card as well as being a subclass
of CribbagePoints. This means that both collections of features are available for
all of the objects.

For example, we can evaluate the points() method of each Card object:

      >>> sum(c.points() for c in deck[:5])
      30

The hand has two face cards, plus three, six, and Ace, so the total points are 30.

How it works…
Python's mechanism for finding a method (or attribute) works like this:

Search in the class for the method or attribute.1.
If the name is not defined in the immediate class, then search in all of the parent2.
classes for the method or attribute. The parent classes are searched in a sequence 
called appropriately, the Method Resolution Order (MRO).

The method resolution order is computed when the class is created. The algorithm used is
called C3. More information is available at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C 3_ l i n e a r i z

a t i o n . This algorithm assures that each parent class is searched once. It also assures that the
relative ordering of superclasses is preserved so that all subclasses tend to be searched
before any of their parent classes.

We can see the method resolution order using the mro() method of a class. Here's an
example:

>>> c = deck[5]
>>> c
10 ♢
>>> c.__class__.__name__
'CribbageCard'
>>> c.__class__.mro()
[<class 'ch07_r02.CribbageCard'>, <class 'ch07_r02.Card'>,
<class 'ch07_r02.CribbagePoints'>, <class 'object'>]

https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization


More Advanced Class Design

[ 313 ]

We picked a card from the deck, c. The card's __class__ attribute is a reference to the
class. In this case, the class name is CribbageCard. The mro() method of this class shows
us the order that's used to resolve names:

First search the class itself, CribbageCard.1.
If it's not there, search Card.2.
Try to find it in CribbagePoints next.3.
Use object last.4.

Class definitions generally use internal dict objects to store the method definitions. This
means that the search is a hash lookup that is extremely fast. The overhead difference is
about 3% more time to search object (when something's not found in any of the previous
classes) than to search Card.

If we do one million operations, we see numbers such as the following:

    Card.__repr__ 1.4413
    object.__str__ 1.4789

We compared the time to find __repr__(), defined in Card, against the time to find
__str__(), defined in object. The extra time summed over a million repetitions is 0.03
seconds.

Since the cost is negligible, this capability is an important way to structure the design of a
class hierarchy.

There's more…
There are several kinds of concerns, that we can separate like this:

Persistence and representation of state: We might add methods to manage
conversion to a consistent external representation.
Security: This may involve a mixin class that performs a consistent authorization
check that becomes part of each object.
Logging: A mixin class that creates a logger that's consistent across a variety of
classes might be defined.
Event signaling and change notification: In this case, we might have objects that
produce state change notifications and objects that will subscribe to those
notifications. These are sometimes called the observable and observer design
patterns. A GUI widget might observe the state of an object; when the object
changes, it notifies the GUI widget so that the display is refreshed.



More Advanced Class Design

[ 314 ]

As a small example, we could add a mixin to introduce logging. We'll define this class so
that it must be provided first in the list of superclasses. Since it's early in the MRO list, the
super() function will find methods defined later in the list of classes.

This class will add the logger attribute to each class:

    class Logged:
        def __init__(self, *args, **kw):
            self.logger = logging.getLogger(self.__class__.__name__)
            super().__init__(*args, **kw)
        def points(self):
            p = super().points()
            self.logger.debug("points {0}".format(p))
            return p

Note that we've used super().__init__() to perform the __init__() method of any
other classes defined in the MRO. As we just noted, it's generally the simplest approach to
have one class that defines the essential features of an object, and all other mixins simply
add features to that object.

We've provided a definition for points(). This will search other classes in the MRO list for
an implementation of points(). Then it will log the results computed by the method from
another class.

Here are some classes that include the Logged mixin features:

    class LoggedCribbageAce(Logged, AceCard, CribbagePoints):
        pass
    class LoggedCribbageCard(Logged, Card, CribbagePoints):
        pass
    class LoggedCribbageFace(Logged, FaceCard, CribbageFacePoints):
        pass

Each of these classes are built from a three separate class definitions. Since the Logged class
is provided first, we're assured that all classes have consistent logging. We're also assured
that any method in Logged can use super() to locate an implementation in the superclass
list that follows it in the class definition.

To make use of these classes, we'd need to make one more small change to an application:

    def make_logged_card(rank, suit):
        if rank == 1: return LoggedCribbageAce(rank, suit)
        if 2 <= rank < 11: return LoggedCribbageCard(rank, suit)
        if 11 <= rank: return LoggedCribbageFace(rank, suit)



More Advanced Class Design

[ 315 ]

We need to use this function instead of make_card(). This function will use the other set of
class definitions.

Here's how we use this function to build a deck of card instances:

    deck = [make_logged_card(rank+1, suit)
        for rank in range(13)
            for suit in SUITS]

We've replaced make_card() with make_logged_card() when creating a deck. Once we
do this, we now have detailed debugging information available from a number of classes in
a consistent fashion.

See also
When considering multiple inheritance, it's always essential to also consider
whether or not a wrapper is a better design. See the Choosing between inheritance
and extension – the is-a question recipe.

Leveraging Python's duck typing
Most of the time that a design involves inheritance, there's a clear relationship from a
superclass to one or more subclasses. In the Choosing between inheritance and extension – the
is-a question recipe of this chapter as well as the Extending a collection – a list that does
statistics recipe in Chapter 6, Basics of Classes and Objects, we've looked at extensions that
involve a proper subclass-superclass relationship.

Python doesn't have a formal mechanism for abstract superclasses. The standard library,
however, has the abc module that supports the creation of abstract classes.

This isn't always necessary, however. Python relies on duck typing to locate methods
within a class. This name comes from the quote:

“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I
call that bird a duck.”



More Advanced Class Design

[ 316 ]

The quote is originally from James Whitcomb Riley. It's sometimes taken as a summary of
abductive reasoning: we go from an observation to a more complete theory that includes
that observation. In the case of Python class relationships, if two objects have the same
methods, and the same attributes, this has the same effect as having a common superclass.
It works even if there's no common superclass definition other than the object class.

We can call the collection of methods and attributes the signature of a class. The signature
uniquely identifies the class's properties and behaviors. In Python, the signature is dynamic,
and the matching is simply a matter of doing a lookup for a name within an object's
namespace.

Can we exploit this?

Getting ready
It's often easy to create a superclass and be sure that all subclasses extend this class. In some
cases, though, this can be awkward. For example, if an application is spread across several
modules, it might be challenging to factor out a common superclass and put this by itself in
a separate module so that it can be included widely.

Instead, it's sometimes easier to avoid a common superclass and simply check that two
classes are both equivalent using the duck test—the two classes have the same methods and
attributes, therefore, they are effectively members of some superclass that has no formal
realization as Python code.

We'll use a simple pair of classes to show how this works. These classes will both simulate
rolling a pair of dice. While the problem is simple, we can easily create a variety of
implementations.

How to do it…
Define a class with the required methods and attributes. In this example, we'll1.
have one attribute, dice, that retains the result of the last roll, and one method,
roll(), that changes the state of the dice:

         class Dice1:
            def __init__(self, seed=None):
                self._rng = random.Random(seed)
                self.roll()
            def roll(self):
                self.dice = (self._rng.randint(1,6),



More Advanced Class Design

[ 317 ]

                    self._rng.randint(1,6))
                return self.dice

Define other classes that have the same methods and attributes. Here's a2.
somewhat more complex definition that creates a class that has the same
signature as the Dice1 class:

        class Die:
            def __init__(self, rng):
                self._rng= rng
            def roll(self):
                return self._rng.randint(1, 6)
        class Dice2:
            def __init__(self, seed=None):
                self._rng = random.Random(seed)
                self._dice = [Die(self._rng) for _ in range(2)]
                self.roll()
            def roll(self):
                self.dice = tuple(d.roll() for d in self._dice)
                return self.dice

This class introduces an additional attribute, _dice. This change in
implementation doesn't change the advertised interface of a single attribute, dice,
and method, roll().

At this point, the two classes can be interchanged freely:

    def roller(dice_class, seed=None, *, samples=10):
        dice = dice_class(seed)
        for _ in range(samples):
            yield dice.roll()

We can use this function as follows:

>>> from ch07_r03 import roller, Dice1, Dice2
>>> list(roller(Dice1, 1, samples=5))
[(1, 3), (1, 4), (4, 4), (6, 4), (2, 1)]
>>> list(roller(Dice2, 1, samples=5))
[(1, 3), (1, 4), (4, 4), (6, 4), (2, 1)]

The objects built from Dice1 and Dice2 have enough similarities that they're
indistinguishable.

We can, of course, push the envelope and look for the _dice attribute as a way to
distinguish between the two classes. We can also use __class__ to distinguish between the
classes.



More Advanced Class Design

[ 318 ]

How it works…
When we write an expression of the form namespace.name, Python will look up the name
within the given namespace. The algorithm works like this:

Search the object's self.__dict__ collection for the name. Some class1.
definitions will save space, using __slots__. See the Optimizing small objects with
__slots__ recipe in Chapter 6, Basics of Classes and Objects, for more on this
optimization. This is generally how attribute values are found.
Search the object's self.__class__.__dict__ collection for the name. This is2.
generally how methods are found.
As we noted in the Choosing between inheritance and extension – the is-a question and3.
Separating concerns via multiple inheritance recipes, the search can continue through
all of the superclasses of the class. This search is done in the defined method
resolution order.

There are two essential outcomes:

The value is an object that's not callable. This is the value. This is typical of
attributes.
The value of the attribute is a bound method of a class. This is true for both
ordinary methods and properties. See the Using properties for lazy attributes recipe
in Chapter 6, Basics of Classes and Objects, for more information on properties. The
bound method must be evaluated. For simple methods, the arguments are in ()
after the method name. For properties, there are no () with method argument
values.

We've elided some details about how descriptors are used. For the most
common use cases, the presence of the descriptor isn't important.

The essence of this is the search through __dict__ (or __slots__) collections of names. If
objects have a common superclass, then we can guarantee that a matching name will be
found. If objects do not have a common superclass, then we don't have the same kind of
guarantee. We have to rely on disciplined design and good test coverage.



More Advanced Class Design

[ 319 ]

There's more…
When we look at the decimal module we see an example of a numeric type that is distinct
from all of the other numeric types. In order to make this work out well, the numbers
module includes a concept of registering a class as a part of the Number class hierarchy. This
injects a new class into the hierarchy without using inheritance.

A similar technique is used by the codecs module to add new data encodings. We can
define a new encoding and register it without using any of the classes defined in the
codecs module.

Previously, we noted that the search for a method of a class involves the concept of a
descriptor. Internally, Python uses descriptor objects to create gettable and settable
properties of an object.

A descriptor object must implement some combination of the special methods __get__,
__set__, and __delete__. When the attribute appears in an expression, then __get__
will be used to locate the value. When the attribute appears on the left side of an
assignment, then __set__ is used. In a del statement, the __delete__ method is used.

The descriptor object acts as an intermediary so that a simple attribute can be used in a
variety of contexts. It's rare to use descriptors directly. We can use the @property decorator
to build descriptors for us.

See also
The duck type question is implicit in the Choosing between inheritance and extension
– the is-a question recipe; if we leverage duck typing, we're also making a claim
that two classes are not the same thing. When we bypass inheritance, we are
implicitly claiming that the is-a relationship doesn't hold.
When looking at the Separating concerns via multiple inheritance recipe, we're also
able to leverage duck typing to create composite classes that may not have a
simple inheritance hierarchy. Since it's very simple to use the mixin design
pattern, duck typing is rarely needed.



More Advanced Class Design

[ 320 ]

Managing global and singleton objects
The Python environment contains a number of implicit global objects. These objects provide
a convenient way to work with a collection of other objects. Because the collection is
implicit, we're saved from the annoyance of an explicit initialization code.

One example of this is an implicit random number generating object that's part of the
random module. When we evaluate random.random(), we're actually making use of an
instance of the random.Random class that's an implicit part of the random module.

Other examples of this include the following:

The collection of numeric types available. By default, we only have int, float,
and complex. We can, however, add more numeric types, and they will work
seamlessly with existing types. There's a global registry of available numeric
types.
The collection of data code/decode methods (codecs) available. The codecs
module lists the available encoders and decoders. This also involves an implicit
registry. We can add encodings and decodings to this registry.
The webbrowser module has a registry of known browsers. For the most part,
the operating system default browser is the one preferred by the user and the
right one to use, but it's possible for an application to launch a browser other than
the user's preferred browser. It's also possible to register a new browser that's
unique to an application.

How can we work with this kind of implicit global object?

Getting ready
Generally, an implicit object can cause some confusion. The idea is to provide a suite of
features as separate functions rather than methods of an object. The benefit, however, is to
allow independent modules to share a common object without having to write any code
that explicitly coordinates between the modules.

For a simple example, we'll define a module that will have a global singleton object. We'll
look more at modules in Chapter 13, Application integration.



More Advanced Class Design

[ 321 ]

Our global object will be a counter that we can use to accumulate centralized data from
several independent modules or objects. We'll provide an interface to this object using
simple functions.

The goal is to be able to write something like this:

    for row in source:
        count('input')
        some_processing()
    print(counts())

This implies two functions that will refer to a global counter:

count(): It will increment the counter and return the current value
counts(): It will provide all of the various counter values

How to do it…
There are two ways to do handle global state information. One technique uses a module
global variable because modules are singleton objects. The other uses a class level (static)
variable because a class definition is a singleton object, also we'll show both techniques.

Module global variable
Create a module file. This will be a .py file with the definitions in it. We'll call it1.
counter.py.
If necessary, define a class for the global singleton. In our case, we can use this2.
definition:

         from collections import Counter

In some cases, a types.SimpleNamespace might be used. In other cases, a more
complex class with methods as well as attributes may be necessary.

Define the one and only instance of the global singleton object: 3.

        _global_counter = Counter()

We've used a leading _ in the name to make it slightly less visible. It's
not—technically—private. It is, however, gracefully ignored by many Python
tools and utilities.



More Advanced Class Design

[ 322 ]

Define any wrapper functions:4.

         def count(key, increment=1):
            _global_counter[key] += increment
        def counts():
            return _global_counter.most_common()

We've defined two functions that use the global object, _global_counter. These
functions encapsulate a detail of how the counter is implemented.

Now we can write applications that use the count() function in a variety of places. The
counted events, however, are fully centralized into this single object.

We might have code that looks like this:

>>> from ch07_r04 import count, counts
>>> from ch07_r03 import Dice1
>>> d = Dice1(1)
>>> for _ in range(1000):
...     if sum(d.roll()) == 7: count('seven')
...     else: count('other')
>>> print(counts())
[('other', 833), ('seven', 167)]

We've imported the count() and counts() functions from a central module. We've also
imported the Dice1 object as a handy object that we can use to create a sequence of events.
When we create an instance of Dice1, we provide an initialization to force a particular
random seed. This gives repeatable results.

We can then use the object, d, to create random events. For this demonstration, we've
categorized the events into two simple buckets, labeled seven and other. The count()
function uses an implied global object.

When the simulation is done, we can dump the results using the counts() function. This
will access the global object defined in the module.

The benefit of this technique is that several modules can all share the global object within
the ch07_r04 module. All that's required is an import statement. No further coordination
or overheads are necessary.



More Advanced Class Design

[ 323 ]

Class-level static variable
Define a class and provide a variable outside the __init__ method. This variable1.
is part of the class, not part of each individual instance. It's shared by all instances
of the class: 

        from collections import Counter
        class EventCounter:
            _counts = Counter()

We've given the class-level variable a leading underscore to make it less public.
This is a note to anyone using the class that the attribute is an implementation
detail that might change. It's not part of the visible interface to the class.

Add methods to update and extract data from this variable: 2.

        def count(self, key, increment=1):
            EventCounter._counts[key] += increment
        def counts(self):
            return EventCounter._counts.most_common()

We didn't use self in this example to make a point about variable assignment
and instance variables. When we use self.name on the right side of an
assignment statement, the name may be resolved by the object, or the class, or any
superclass. This is the ordinary rule for searching a class. 

When we use self.name on the left side of assignment, that will create an
instance variable. We must use Class.name to be sure that a class-level variable
is updated instead of creating an instance variable.

The various application components can create objects, but the objects all share a common
class level value:

>>> from ch07_r04 import EventCounter
>>> c1 = EventCounter()
>>> c1.count('input')
>>> c2 = EventCounter()
>>> c2.count('input')
>>> c3 = EventCounter()
>>> c3.counts()
[('input', 2)]



More Advanced Class Design

[ 324 ]

In this example, we've created three separate objects, c1, c2, and c3. Since all three share a
common variable, defined in the EventCounter class, each can be used to increment that
shared variable. These objects could be part of separate modules, separate classes, or
separate functions, yet still share a common global state.

How it works…
The Python import mechanism uses sys.modules to track which modules are loaded.
Once a module is in this mapping, it is not loaded again. This means that any variable
defined within a module will be a singleton: there will only be one instance.

We have two ways to share these kinds of global singleton variables:

Using the module name, explicitly. We could have simply created an instance of
Counter in the module and shared this via counter.counter. This can work,
but it exposes an implementation detail.
Using wrapper functions, as shown in this recipe. This requires a little more code,
but it permits a change in implementation without breaking other parts of the
application.

The functions provide a way to identify relevant features of the global variable, while
encapsulating details of how it's implemented. This gives us the freedom to consider
changing the implementation details. As long as the wrapper functions have the same
semantics, the implementation can be changed freely.

Since we generally provide only one definition of a class, the Python import mechanism
tends to assure us that the class definition is a proper singleton object. If we make the
mistake of copying a class definition, and pasting it into two or more modules used by a
single application, we would not share a single global object among these class definitions.
This is an easy mistake to avoid.

How can we choose between these two mechanisms? The choice is based on the degree of
confusion created by having multiple classes sharing a global state. As shown in the
previous example, three variables share a common Counter object. The presence of an
implicitly shared global state can be confusing.



More Advanced Class Design

[ 325 ]

There's more…
A shared global state is in a way the opposite of object-oriented programming. One ideal of
object-oriented programming is to encapsulate all state changes in individual objects. When
we have a shared global state, we have strayed from this ideal:

Using wrapper functions makes the shared object implicit
Using a class-level variable conceals the fact that an object is shared

The alternative, of course, is to create a global object explicitly, and make it part of the
application in some more obvious way. This might mean providing the object as an
initialization parameter to objects throughout the application. This can be a fairly large
burden in a complex application.

Having a few shared global objects is more appealing because the application becomes
simpler. When these objects are used for pervasive features such as audits, logging, and
security, they can be helpful.

This is a technique that is open for abuse. A design that relies on too many global objects
can be confusing. It can also harbor subtle bugs because the encapsulation of objects in
classes may be difficult to discern. It may also make unit test cases hard to write because of
the implicit relationships among objects.

Using more complex structures – maps of
lists
In Chapter 4, Built-in Data Structures – list, set, dict, we looked at the basic data structures
available in Python. The recipes generally looked at the various structures in isolation.

We'll look at a common combination structure—the mapping from a key to a list. This is
used to accumulate detailed information about an object identified by a given key. This
recipe will transform a flat list of details into a structure that for one column contains values
taken from other columns.



More Advanced Class Design

[ 326 ]

Getting ready
We'll work with an imaginary web log that's been transformed from the raw web format to
a CSV (comma-separated value) format. This kind of transformation is often done with a
regular expression that picks out the various syntactic groups. See the String parsing with
regular expressions recipe in Chapter 1, Numbers, Strings, and Tuples, for information on how
the parsing might work.

The raw data looks like the following:

[2016-04-24 11:05:01,462] INFO in module1: Sample Message One
[2016-04-24 11:06:02,624] DEBUG in module2: Debugging
[2016-04-24 11:07:03,246] WARNING in module1: Something might have gone
wrong

Each line in the file has a timestamp, a severity level, a module name, and some text. After
parsing, the data is effectively a flat list of events. It looks like this:

>>> data = [
    ('2016-04-24 11:05:01,462', 'INFO', 'module1', 'Sample Message One'),
    ('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging'),
    ('2016-04-24 11:07:03,246', 'WARNING', 'module1', 'Something might have
gone wrong')
]

We'd like to examine the log, creating a list of all the messages organized by module,
instead of sequentially through time. This kind of restructuring can make analysis simpler.

How to do it…
Import defaultdict from collections:1.

         from collections import defaultdict  

Use the list function as the default value for defaultdict: 2.

        module_details = defaultdict(list)



More Advanced Class Design

[ 327 ]

Iterate through the data, appending to the list associated with each key. The3.
defaultdict object will use the list() function to build an empty list for each
new key:

         for row in data:
            module_details[row[2]].append(row)  

The result of this will be a dictionary that maps from a module to a list of all log rows for
that module name. The data will look like the following:

    {
        'module1': [
            ('2016-04-24 11:05:01,462', 'INFO', 'module1', 'Sample Message
One'),
            ('2016-04-24 11:07:03,246', 'WARNING', 'module1', 'Something
might have gone wrong')
            ],
        'module2': [
            ('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging')
        ]
    }

The key for this mapping is the module name and the value in the mapping is the list of
rows for that module name. We can now focus the analysis on a specific module.

How it works…
There are two choices for how a mapping behaves when a key is not found:

The built-in dict class raises an exception when a key is missing.
The class defaultdict evaluates a function that creates a default value when a
key is missing. In many cases, the function is int or float to create a default
numeric value. In this case, the function is list to create an empty list.

We can imagine using the set function to create an empty set object for a missing key.
This would be suitable for a mapping from a key to a set of objects that share that key.



More Advanced Class Design

[ 328 ]

There's more…
When we think about Python 3.5 and the ability to do type inferencing, we need to have a
way to describe this structure:

    from typing import *
    def summarize(data) -> Mapping[str, List]:
        the body of the function.

This uses the notation Mapping[str, List] to show that the result is a mapping from
string keys to a list of string data items.

We can also build a version of this as an extension to the built-in dict class:

    class ModuleEvents(dict):
        def add_event(self, event):
            if event[2] not in self:
                self[event[2]] = list()
            self[event[2]].append(row)

We've defined a method that's unique to this class, add_event(). This will add the empty
list if the key, the module name in event[2], is not currently present in the dictionary.
After the if statement, a postcondition could be added to assert that the key is now in the
dictionary.

This allows us to use code such as the following:

    module_details = ModuleEvents()
    for row in data:
        module_details.add_event(row)

The resulting structure is very similar to defaultdict.

See also
In the Creating dictionaries – inserting and updating recipe in Chapter 4, Built-in
Data Structure – list, set, dict, we looked at the basics of using a mapping
In the Avoiding mutable default values for function parameters recipe of Chapter 4,
Built-in Data Structure – list, set, dict, we looked at other places where default
values are used
In the Using more sophisticated collections recipe of Chapter 6, Basics of Classes and
Objects, we looked at other examples of using the defaultdict class



More Advanced Class Design

[ 329 ]

Creating a class that has orderable objects
When simulating card games, it's often essential to be able to sort the Card objects into a
defined order. When cards form a sequence, sometimes called a straight, this can be an
important way to score the hand. This is part of games such as Poker, Cribbage, and even
Pinochle.

Most of our class definitions have not included the features necessary for sorting objects
into order. Many of the recipes have kept objects in mappings or sets based on the internal
hash value computed by __hash__().

In order to keep items in a sorted collection, we'll need the comparison methods that
implement <, >, <=, >=, ==, and !=. These comparisons are based on the attribute values of
each object.

How do we create comparable objects?

Getting ready
The game of Pinochle generally involves a deck with 48 cards. There are six ranks—9, 10,
Jack, Queen, King, and Ace. There are the standard four suits. Each of these 24 cards
appears twice in the deck. We have to be careful of using a structure such as a dict or set
because cards are not unique in Pinochle; there can be duplicates.

In the Separating concerns via multiple inheritance recipe, we defined playing cards using two
class definitions. The Card class hierarchy defined essential features of each card. A second
set of mixin classes provided game specific features for each card.

We'll need to add features to those cards to create objects that can be ordered properly. In
order to support the Defining an ordered collection recipe, we'll look at cards for the game of
Pinochle.

Here are the first two elements of the design:

    from ch07_r02 import AceCard, Card, FaceCard, SUITS
    class PinochlePoints:
        _points = {9: 0, 10:10, 11:2, 12:3, 13:4, 14:11}
        def points(self):
            return self._points[self.rank]

We've imported the existing Card hierarchy. We've also defined a rule for computing the
points for each card taken in a trick during play, the PinochlePoints class. This has a
mapping from card ranks to the potentially confusing points for each card.



More Advanced Class Design

[ 330 ]

A 10 is worth 10 points, and an Ace is worth 11 points, but the King, Jack, and Queen are
worth four, three, and two points respectively. This can be confusing for new players.

Because an Ace ranks above a King for purposes of identifying a straight, we've made the
rank of the Ace 14. This slightly simplifies the processing.

In order to use a sorted collection of cards, we need to add yet another feature to the cards.
We'll need to define the comparison operations. There are six special methods used for
object comparison.

How to do it…
We're using a mixin design. Therefore, we'll create a new class to hold the1.
comparison features:

         class SortedCard:

This class will join a member of the Card hierarchy plus the PinochlePoints to
create the final composite class definition.

Define the six comparison methods: 2.

        def __lt__(self, other):
            return (self.rank, self.suit) < (other.rank, other.suit)

        def __le__(self, other):
            return (self.rank, self.suit) <= (other.rank, other.suit)

        def __gt__(self, other):
            return (self.rank, self.suit) > (other.rank, other.suit)

        def __ge__(self, other):
            return (self.rank, self.suit) >= (other.rank, other.suit)

        def __eq__(self, other):
            return (self.rank, self.suit) == (other.rank, other.suit)

        def __ne__(self, other):
            return (self.rank, self.suit) != (other.rank, other.suit)

We've written all six comparisons out in full. We've converted the relevant
attributes of a Card into a tuple, and relied on Python's built-in tuple comparison
to handle the details.



More Advanced Class Design

[ 331 ]

Write the composite class definitions, built from an essential class and two mixin3.
classes to provide additional features:

         class PinochleAce(AceCard, SortedCard, PinochlePoints):
            pass

        class PinochleFace(FaceCard, SortedCard, PinochlePoints):
            pass

        class PinochleNumber(Card, SortedCard, PinochlePoints):
            pass

The final class contains elements with three separate, and largely independent
feature sets: the essential Card features, the mixin comparison features, and the
mixin Pinochle specific features.

Create a function that will create individual card objects from the classes defined4.
previously: 

        def make_card(rank, suit):
            if rank in (9, 10):
                return PinochleNumber(rank, suit)
            elif rank in (11, 12, 13):
                return PinochleFace(rank, suit)
            else:
                return PinochleAce(rank, suit)

Even though the point rules are dauntingly complex, the complexity is hidden in
the PinochlePoints class. Building composite classes as a base subclass of Card
plus PinochlePoints leads to an accurate model of the cards without too much
overt complexity.

We can now make cards that respond to comparison operators:

>>> from ch07_r06a import make_card
>>> c1 = make_card(9, '♡')
>>> c2 = make_card(10, '♡')
>>> c1 < c2
True
>>> c1 == c1
True
>>> c1 == c2
False
>>> c1 > c2
False



More Advanced Class Design

[ 332 ]

Here's a function that builds the 48-card deck:

    SUITS = '\u2660\u2661\u2662\u2663'
    Spades, Hearts, Diamonds, Clubs = SUITS
    def make_deck():
        return [make_card(r, s) for _ in range(2)
            for r in range(9, 15)
            for s in SUITS]

The value of SUITS is four Unicode characters. We could have set each suit string
separately, but this seems slightly simpler. The generator expression inside the
make_deck() function builds two copies of each card. There are only six ranks and four
suits.

How it works…
Python uses special methods for a vast number of things. Almost every visible behavior in
the language is due to some special method name. In this recipe, we've leveraged the six
comparison operators.

Write the following:

    c1 <= c2

The preceding code is evaluated as if we'd written the following:

    c1.__le__(c2)

This kind of transformation happens for all of the expression operators.

Careful study of Section 3.3 of the Python Language Reference shows that the special methods
can be organized into several distinct groups:

Basic customization
Customizing attribute access
Customizing class creation
Customizing instance and subclass checks
Emulating callable objects
Emulating container types
Emulating numeric types
With statement context managers



More Advanced Class Design

[ 333 ]

In this recipe, we've looked at only the first of these categories. The others follow some
similar design patterns.

Here's how it looks when we create instances of this class hierarchy. The first example will
create a 48-card Pinochle deck:

>>> from ch07_r06a import make_deck
>>> deck = make_deck()
>>> len(deck)
48

If we look at the first eight cards, we can see how they're built from all the combinations of
rank and suit:

>>> deck[:8]
[ 9 ♠,  9 ♡,  9 ♢,  9 ♣, 10 ♠, 10 ♡, 10 ♢, 10 ♣]

If we look at the second half of the deck, we can see that it has the same cards as the first
half of the deck:

>>> deck[24:32]
[ 9 ♠,  9 ♡,  9 ♢,  9 ♣, 10 ♠, 10 ♡, 10 ♢, 10 ♣]

Since the deck variable is a simple list, we can shuffle the list object and pick a dozen cards.

>>> import random
>>> random.seed(4)
>>> random.shuffle(deck)
>>> sorted(deck[:12])
[ 9 ♣, 10 ♣,  J ♠,  J ♢,  J ♢,  Q ♠,  Q ♣,  K ♠,  K ♠,  K ♣, A ♡,  A ♣]

The important part is the use of the sorted() function. Because we've defined proper
comparison operators, we can sort the Card instances, and they are presented in the
expected order.

There's more…
A little formal logic suggests that we really only need to implement two of the comparisons.
With any two, all the others can be derived. For example, if we could only do the operations
for less than (__lt__()) and equal to (__eq__()), we could compute the missing three
fairly easily:

a ≤ b ≡ a < b ∨ a = b

a ≥ b ≡ a > b ∨ a = b



More Advanced Class Design

[ 334 ]

a ≠ b ≡ ¬(a = b)

Python emphatically does not do any of this kind of advanced algebra for us. We need to do
the algebra carefully, or if we're unsure of the logic, we can write out all six comparisons in
full.

We've assumed that each Card is compared against another card. Try this:

>>> c1 = make_card(9, '♡')
>>> c1 == 9

We'll get an AttributeError exception.

If we need this feature, we'll have to modify the comparison operators to handle two kinds
of comparison:

Card against Card
Card against int

This is done by using the isinstance() function to discriminate between the argument
types.

Each of our comparison methods would be changed to look like this:

    def __lt__(self, other):
        if isinstance(other, Card):
            return (self.rank, self.suit) < (other.rank, other.suit)
        else:
            return self.rank < other

This handles the Card against the Card case using rank and suit comparisons. For all other
cases, Python's ordinary rules are used to compare the rank against the other value. If, for
some obscure reason, the value of the other was float, then a float() conversion would
be used on self.rank.

See also
See the Defining an ordered collection recipe that relies on sorting these cards into
order



More Advanced Class Design

[ 335 ]

Defining an ordered collection
When simulating card games, the player's hand can be modeled as a set of cards or a list of
cards. With most conventional single-deck games, a set works out nicely because there's
only one instance of any given card, and the set class can do very fast operations to confirm
that a given card is (or is not) in the set.

When modeling Pinochle, however, we have a challenging problem. The Pinochle deck is 48
cards; it has two of 9, 10, Jack, Queen, King, and Ace. A simple set won't work well for this;
we would need a multiset or bag. This is a set that permits duplicate items.

The operations are still limited to membership tests. For example, we can add the object
Card(9,'♢') object more than once, and then also remove it more than one time.

We have a number of ways to create a multiset:

We can use a list. Appending an item has a nearly fixed cost, characterized as
O(1). Searching for an item has a bad performance problem. The complexity of
testing for membership tends to grow with the size of the collection. It becomes
O(n).
We can use a mapping; the value can be an integer count of the number of times a
duplicated element shows up. This only requires that the default __hash__()
method is available for each object in the mapping. We have three ways of
implementing this:

Define our own subclass of dict.
Use a defaultdict. See the Using more complex structures – maps of
lists recipe, which uses defaultdict(list) to create a list of
values for each key. The len() of this list is the number of times
the key occurred. In effect, this is a kind of multiset.
Use a Counter. This can be very simple. We've looked at Counter
in a number of recipes. See the Avoiding mutable default values for
function parameters recipe in Chapter 4, Built-in Data Structures –
list, set, dict, also the Designing classes with lots of processing and
Using properties for lazy attributes recipes in Chapter 6, Basics of
Classes and Objects, and the Managing global and singleton objects
recipe of this chapter for other examples.

We can use a sorted list. Inserting an item that maintains this sort sequence is
slightly more expensive than inserting into a list, O(n log2n). Searching, however,
is less expensive than an unsorted list; it's O(log2n). The bisect module provides
a set of functions that do this nicely. This, however, requires objects with a full set
of comparison methods.



More Advanced Class Design

[ 336 ]

How can we build a sorted collection of objects? How can we build a multiset or bag using
a sorted collection?

Getting ready
In the Creating a class that has orderable objects recipe, we defined cards that could be sorted.
This is essential for using bisect. The algorithms in this module require a full set of
comparisons among objects.

We'll define a multiset to keep 12-card Pinochle hands. Because of the duplication, there
will be more than one card of a given rank and suit.

In order to view a hand as a kind of set, we'll also need to define some set operators on
hand objects. The idea is to define set membership and subset operators.

We'd like to have Python code that's equivalent to the following:

c ∈ H

This is for a card, c, and a hand of cards, H = {c1, c2, c3,…}

We'd also like code equivalent to this:

{J, Q} ⊂ H

This is for a specific pair of cards, called the Pinochle, and a hand of cards, H.

We'll need to import two things:

    from ch07_r06a import *
    import bisect

The first import brings in our orderable card definitions from the Creating a class that has
orderable objects recipe. The second import brings in the various bisect functions that we'll
use to maintain an ordered set with duplicates.



More Advanced Class Design

[ 337 ]

How to do it…
Define a class with an initialization that can load the collection from any iterable1.
source of data:

         class Hand:
            def __init__(self, card_iter):
                self.cards = list(card_iter)
                self.cards.sort()

We can use this to build a Hand from a list or possibly a generator expression. If
the list is non-empty, we'll need to sort the items into order. The sort() method
of the self.cards list will rely on the various comparison operators
implemented by the Card objects.

Technically, we only care about objects that are subclasses of SortedCard, since
that is where the comparison methods are defined.

Define a method to add cards to a hand: 2.

        def add(self, aCard: Card):
            bisect.insort(self.cards, aCard)

We've used the bisect algorithm to assure that the card is properly inserted into
the self.cards list.

Define a method to find the position of a given card in a hand: 3.

        def index(self, aCard: Card):
            i = bisect.bisect_left(self.cards, aCard)
            if i != len(self.cards) and self.cards[i] == aCard:
                return i
            raise ValueError

We've used the bisect algorithm for locating a given card. The additional if test
is recommended in the documentation for bisect.bisect_left() to properly
handle an edge case in the processing.

Define the special method that implements the in operator: 4.

        def __contains__(self, aCard: Card):
            try:
                self.index(aCard)
                return True
            except ValueError:



More Advanced Class Design

[ 338 ]

                return False

When we write card in some_hand in Python, it's evaluated as if we had
written some_hand.__contains__(card). We've used the index() method to
either find the card or raise an exception. The exception is transformed into a
return value of False.

Define an iterator over the hand. This is a simple delegation to the self.cards5.
collection: 

        def __iter__(self):
            return iter(self.cards)

When we write iter(some_hand) in Python, it's evaluated as if we had written
some_hand.__iter__().

Define a subset operation between two hand instances: 6.

        def __le__(self, other):
            for card in self:
                if card not in other:
                    return False
            return True

Python doesn't have the a ⊂ b or a ⊆ b symbols, so < and <= are pressed into service
for comparing sets. When we write pinochle <= some_hand to see if the hand
contains a specific combination of cards, it's evaluated as if we'd written
pinochle.__le__(some_hand). The subset is the self instance variable, and
the target Hand is the other parameter value.

The in operator is implemented by the __contains__() method. This shows
how the simple Python syntax is implemented by the special methods.

We can use this Hand class like this:

>>> from ch07_r06b import make_deck, make_card, Hand
>>> import random
>>> random.seed(4)
>>> deck = make_deck()
>>> random.shuffle(deck)
>>> h = Hand(deck[:12])
>>> h.cards
[ 9 ♣, 10 ♣,  J ♠,  J ♢,  J ♢,  Q ♠,  Q ♣,  K ♠,  K ♠,  K ♣, A ♡,  A ♣]



More Advanced Class Design

[ 339 ]

The cards are properly sorted in the hand. This is a consequence of the way the hand was
created.

Here's an example of using the subset operator, <=, to compare a specific pattern to the
hand as a whole:

>>> pinochle = Hand([make_card(11,'♢'), make_card(12,'♠')])
>>> pinochle <= h
True

A Hand is a collection, and supports iteration. We can use generator expressions that
reference the Card objects within the overall Hand:

>>> sum(c.points() for c in h)
56

How it works…
Our Hand collection works by wrapping an internal list object and applying an important
constraint to that object. The items are kept in sorted order. This increases the cost to insert
a new item, but reduces the cost to search for an item.

The core algorithms for locating the position for an item are part of the bisect module,
saving us from having to write (and debug) them. The algorithms aren't really very
complex. But it seems more efficient to leverage existing code.

The module's name comes from the idea of bisecting the sorted list to look for an item. The
essence is this:

    while lo < hi:
        mid = (lo+hi)//2
        if x < a[mid]: hi = mid
        else: lo = mid+1

This searches a list, a, for a given value, x. The value of lo is initially zero and the value of
hi is initially the size of the list, len(a).

First, the midpoint is identified. If the target value, x, is less than the midpoint value,
a[mid], then it must be in the first half of the list: the value of hi is shifted so that only the
first half is considered.



More Advanced Class Design

[ 340 ]

If the target value, x, is greater than or equal to the midpoint value, a[mid], then x must be
in the second half of the list: the value of lo is shifted so that only the second half is
considered.

Since the list is chopped in half at each operation, it requires O(log2n) steps to have the
values of lo and hi converge on the position that should have the target value.

If we have a hand with 12 cards, then the first comparison discards six. The next
comparison discards three more. The next comparison discards one of the final three. The
fourth comparison will locate the position the card should occupy.

If we use an ordinary list, with cards stored in the random order of arrival, then finding a
card will take an average of six comparisons. The worst possible case means it's the last of
12 cards, requiring all 12 to be examined.

With bisect the number of comparisons is always O(log2n). That's the average as well as
the worst case.

There's more…
The collections.abc module defines abstract base classes for various collections. If we
want our Hand to behave more like other kinds of sets, we can leverage these definitions.

We can add numerous set operators to this class definition to make it behave more like the
built-in MutableSet abstract class definition.

A MutableSet is an extension to Set. The Set class is a composite built from three class
definitions: Sized, Iterable, and Container. This means that it must define the
following methods:

__contains__()

__iter__()

__len__()

add()

discard()



More Advanced Class Design

[ 341 ]

We'll also need to provide some other methods that are part of being a mutable set:

clear(), pop(): These will remove items from the set.
remove(): Unlike discard(), this will raise an exception when attempting to
remove a missing item.

In order to have unique set-like features, it also needs a number of additional methods. We
provided an example of a subset, based on __le__(). We also need to provide the
following subset comparisons:

__le__()

__lt__()

__eq__()

__ne__()

__gt__()

__ge__()

isdisjoint()

These are generally not trivial one-line definitions. In order to implement the core set of
comparisons, we'll often write two and then use logic to build the remainder based on those
two.

Since __eq__() is simple, let's assume we have definitions for the == and <= operators. The
others would be defined as follows:

x ≠ y ≡ ¬(x = y)

x < y ≡ (x ≤ y) ∧ ¬(x = y)

x > y ≡ ¬(x ≤ y)

x ≥ y ≡ ¬(x < y) ≡ ¬(x ≤ y) ∨ (x = y)

In order to do set operations, we'll need to provide the following:

__and__() and __iand__(). These methods implement the Python & operator
and the &= assignment statement. Between two sets, this is a set intersection, or a
∩ b.
__or__() and __ior__(). These methods implement the Python | operator and
the |= assignment statement. Between two sets, this is a set union, or a ∪ b.



More Advanced Class Design

[ 342 ]

__sub__() and __isub__(). These methods implement the Python - operator
and the -= assignment statement. Between sets, this is a set difference, often
written as a – b.
__xor__() and __ixor__(). These methods implement the Python ^ operator
and the ^= assignment statement. When applied between two sets, this is the
symmetric difference, often written as a ∆ b.

The abstract class permits two versions of each operator. There are two cases:

If we provide __iand__(), for example, then the statement A &= B will be
evaluated as A.__iand__(B). This might permit an efficient implementation.
If we do not provide __iand__(), then the statement A &= B will be evaluated
as A = A.__and__(B). This might be somewhat less efficient because we'll
create a new object. The new object is given the label A, and the old object will be
removed from memory.

There are almost two dozen methods that would be required to provide a proper
replacement for the built-in set class. On one the hand, it's a lot of code. On the other hand,
Python lets us extend the built-in classes in a way that's transparent and uses the same
operators with the same semantics.

See also
See the Creating a class that has orderable objects recipe for the companion recipe
that defines Pinochle cards

Deleting from a list of mappings
Removing items from a list has an interesting consequence. Specifically, when item
list[x] is removed, one of two other things will happen:

Item list[x+1] takes the place of list[x]
Item x+1 == len(list) takes the place of list[x] because x was the last
index in the list

These are side-effects that happen in addition to removing an item. Because things can
move around in a list, it makes deleting more than one item at a time challenging.



More Advanced Class Design

[ 343 ]

When the list contains items that have a definition for the __eq__() special method, then
the list remove() method can remove each item. When the list items don't have a simple
__eq__() test, then it becomes more challenging to remove multiple items from the list.

How can we delete multiple items from a list?

Getting ready
We'll work with a list-of-dict structure. In this case, we've got some data that includes a
song name, the writers, and a duration. The data looks like this:

>>> source = [
...    {'title': 'Eruption', 'writer': ['Emerson'], 'time': '2:43'},
...    {'title': 'Stones of Years', 'writer': ['Emerson', 'Lake'], 'time':
'3:43'},
...    {'title': 'Iconoclast', 'writer': ['Emerson'], 'time': '1:16'},
...    {'title': 'Mass', 'writer': ['Emerson', 'Lake'], 'time': '3:09'},
...    {'title': 'Manticore', 'writer': ['Emerson'], 'time': '1:49'},
...    {'title': 'Battlefield', 'writer': ['Lake'], 'time': '3:57'},
...    {'title': 'Aquatarkus', 'writer': ['Emerson'], 'time': '3:54'}
... ]

To work with this kind of data structure, we'll need the pprint function:

>>> from pprint import pprint

We can easily traverse the list of values with the for statement. The problem is, how do we
delete selected items?

>>> data = source.copy()
>>> for item in data:
...     if 'Lake' in item['writer']:
...        print("remove", item['title'])
remove Stones of Years
remove Mass
remove Battlefield

We can't simply use the statement del item here, because it has no effect on the source
collection, data. This statement would only delete the local variable copy of the item in the
original list by deleting the item variable and the associated object.



More Advanced Class Design

[ 344 ]

To properly delete items from a list, we must work with index positions in the list. Here's a
naïve approach that emphatically does not work:

>>> data = source.copy()
>>> for index in range(len(data)):
...    if 'Lake' in data[index]['writer']:
...       del data[index]
Traceback (most recent call last):
  File
"/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/doctest.py
", line 1320, in __run
    compileflags, 1), test.globs)
  File "<doctest __main__.__test__.chapter[5]>", line 2, in <module>
    if 'Lake' in data[index]['writer']:
IndexError: list index out of range

We can't simply use range(len(data)) based on the original size of the list. As items are
removed, the list gets smaller. The value of the index will be set to a value that's too large.

When removing simple items that have simple equality tests, we would use something like
this:

    while x in list:
        list.remove(x)

The problem is that we don't have an implementation of __contains__() that identifies
items with Lake in item['writer']. We could use a subclass of dict that implements
__eq__() as a string parameter value in self['writer']. This clearly violates the
semantics of equality because it only checks a single field.

We can't extend the built-in features of these classes. The use case here is very specific to the
problem domain, not a general feature of the list of dict structure.

To parallel the basic while in...remove loop, we need to write something like this:

>>> def index(data):
...    for i in range(len(data)):
...        if 'Lake' in data[i]['writer']:
...            return i
>>> data = source.copy()
>>> position = index(data)
>>> while position:
...    del data[position] # or data.pop(position)
...    position = index(data)



More Advanced Class Design

[ 345 ]

We've written a function, index(), that locates the first instance of the target value. The
result of this function is a single value that provides two kinds of information:

When the value returned is not None, the item exists in the list
The return value is the proper index for the item within the list

The index() function is wordy and inflexible. If we have alternate rules, we need to either
write multiple index() functions or we need to make the test more flexible.

More importantly, consider when a target value occurs x times in a list of n items. There will
be x trips through this loop. Each trip through the loop examines an average of O(x × n/2)
trips through the list. The worst case is that the items are all at the end of the list, leading to
just under O(x × n) processing iterations.

We can do better. Our preferred solution builds on the ideas in the Designing a while
statement which terminates properly recipe in Chapter 2, Statements and Syntax, to design a
proper loop for removing complex items from a list structure.

How to do it…
Initialize an index value to zero. This establishes a variable that will traverse the1.
data collection:

         i = 0  

The terminating condition must show that every item in the list has been2.
examined. Additionally, the body of the loop needs to remove all of the items
that match the target criteria. This leads to an invariant condition that item[i]
has not yet been examined. After the item is examined, it may be preserved,
which means the index, i, must be incremented to reset the not yet examined
invariant. If the item is removed, then items will shift forward and item[i] will
automatically meet the not yet examined invariant: 

        if 'Lake' in data[i]['writer']:
            del data[i] # Remove
        else:
            i += 1 # Preserve

When removing an item, the list becomes one shorter, and the index value, i, will
point to a new, unexamined item. When preserving an item, the index value, i, is
advanced to the next unexamined item.



More Advanced Class Design

[ 346 ]

The terminating condition is used to wrap the processing body: 3.

        while i != len(data):

At the end of the while statement, the value of i will indicate that all items have
been examined.

This leads to the following:

      >>> i = 0
      >>> while i != len(data):
      ...    if 'Lake' in data[i]['writer']:
      ...        del data[i]
      ...    else:
      ...        i += 1
      >>> pprint(data)
      [{'time': '2:43', 'title': 'Eruption', 'writer': ['Emerson']},
       {'time': '1:16', 'title': 'Iconoclast', 'writer': ['Emerson']},
       {'time': '1:49', 'title': 'Manticore', 'writer': ['Emerson']},
       {'time': '3:54', 'title': 'Aquatarkus', 'writer': ['Emerson']}]

This makes exactly one pass through the data and removes the requested items without
raising index errors, or skipping items that should have been deleted.

How it works…
The goal is to examine each item exactly once and either remove it or step over it. The loop
design reflects the way that the Python list item removal works. When an item is removed,
all of the subsequent items are shuffled forward in the list.

A naïve process based on the range() and len() functions will have two problems:

Items will be skipped when the items shift forward and the next value is
produced by the range object
The index can go beyond the end of the list structure after items are removed
because the len() was used once to get the original size, not the current size



More Advanced Class Design

[ 347 ]

Because of these two problems, the design of the invariant condition in the body of the loop
is important. This reflects the two possible state changes:

If an item is removed, the index must not change. The list itself will change.
If an item is preserved, the index must change.

We can argue that the loop makes one trip through the data, and has a complexity of O(n).
What's not considered in this is the relative cost of each deletion. Deleting item 0 from a list
means that each remaining item is shuffled forward one position. The cost of each deletion
is effectively O(n). Therefore the complexity is more like O(n × x), where x items are
removed from a list of n items.

Even this algorithm isn't the fastest way to remove items from a list.

There's more…
If we give up on the idea of deleting, we can do even better. Making a shallow copy of items
is much faster than removing items from a list, but uses more storage. This is a common
time versus memory tradeoff.

We can use a generator expression like the following:

>>> data = [item for item in source if not('Lake' in item['writer'])]

This will create a shallow copy of the items in the list that we want to keep. The items we
don't want to keep will be ignored. For more information on the idea of a shallow copy, see
the Making shallow and deep copies of objects recipe in Chapter 4, Built-in Data Structures – list,
set, dict.

We can also use a higher-order function such as this:

>>> data = list(filter(lambda item: not('Lake' in item['writer']), source))

The filter() function has two arguments: a lambda object, and the original set of data.
The lambda object is a kind of degenerate case for a function: it has arguments and a single
expression. In this case, the single expression is used to decide which items to pass. Items
for which the lambda is False are rejected.

The filter() function is a generator. This means that we need to collect all of the items to
create a final list object. A for statement is one way to process all results from a generator.
The list() and tuple() functions will also consume all items from a generator.



More Advanced Class Design

[ 348 ]

The third way we can implement this is to write our own generator function that embodies
the filter concept. This will use more statements than the generator or the filter()
function, but it might be more clear.

Here's a generator function definition:

    def writer_rule(iterable):
        for item in iterable:
            if 'Lake' in item['writer']:
                continue
            yield item

We've used a for statement to examine each item in the source list. If the item has 'Lake'
in the list of writers, we'll continue the for statement process effectively rejecting this item.
If 'Lake' is not in the list of writers, we'll yield the item.

When we call this function, it will yield the interesting list. We can use the function
writer_rule() like this:

>>> from ch07_r07 import writer_rule
>>> data = list(writer_rule(source))
>>> pprint(data)
[{'time': '2:43', 'title': 'Eruption', 'writer': ['Emerson']},
 {'time': '1:16', 'title': 'Iconoclast', 'writer': ['Emerson']},
 {'time': '1:49', 'title': 'Manticore', 'writer': ['Emerson']},
 {'time': '3:54', 'title': 'Aquatarkus', 'writer': ['Emerson']}]

This will accumulate the interesting rows into a new structure. Since it's a shallow copy, it
doesn't waste vast amounts of storage.

See also
This is based on the Designing a while statement which terminates properly recipe in
Chapter 2, Statements and Syntax
We've also leveraged two other recipes: Making shallow and deep copies of objects
and Slicing and dicing a list in Chapter 4, Built-in Data Structures – list, set, dict



8
Functional and Reactive
Programming Features

In this chapter, we'll look at the following recipes:

Writing generator functions with the yield statement
Using stacked generator expressions
Applying transformations to a collection
Picking a subset – three ways to filter
Summarizing a collection – how to reduce
Combining map and reduce transformations
Implementing “there exists” processing
Creating a partial function
Simplifying complex algorithms with immutable data structures
Writing recursive generator functions with the yield from statement

Introduction
The idea of functional programming is to focus on writing small, expressive functions that
perform the required data transformations. Combining functions can often create code
which is more succinct and expressive than long strings of procedural statements or the
methods of complex, stateful objects. Python allows all three kinds of programming.



Functional and Reactive Programming Features

[ 350 ]

Conventional mathematics defines many things as functions. Multiple functions are
combined to build up a complex result from previous transformations. For example, we
might have two functions, f(x) and g(y), that need to be combined to create a useful result:

y = f(x)

z = g(y)

Ideally, we can create a composite function from these two functions:

z = (g ∘ f)(x)

Using a composite function, (g ∘ f), can help to clarify how a program works. It allows us to
take a number of small details and combine them into a larger knowledge chunk.

Since programming often works with collections of data, we'll often be applying a function
to a whole collection. This fits nicely with the mathematical idea of a set builder or set
comprehension.

There are three common patterns for applying one function to a set of data:

Mapping: This applies a function to all elements of a collection {M(x): x ∈ C}. We
apply some function, M, to each item, x, of a larger collection, C.
Filtering: This uses a function to select elements from a collection. {x:c ∈ C if F(x)}.
We use a function, F, to determine whether to pass or reject an item, x, from a
larger collection, C.
Reducing: This summarizes a collection. The details vary, but one of the most

common reductions is creating a sum of all items, x, in a collection, C: .

We'll often combine these patterns to create more complex applications. What's important
here is that small functions, such as M(x) and F(x), are combined via higher-order functions
such as mapping and filtering. The combined operation can be sophisticated even though
the individual pieces are quite simple.

The idea of reactive programming is to have processing rules that are evaluated when the
inputs become available or change. This fits with the idea of lazy programming. When we
define lazy properties of a class definition, we've created reactive programs.



Functional and Reactive Programming Features

[ 351 ]

Reactive programming fits with functional programming because there may be multiple
transformations required to react to a change in the input values. Often, this is most clearly
expressed as functions that are combined or stacked into a composite function that
responds to change. See the Using properties for lazy attributes recipe in Chapter 6, Basics of
Classes and Objects, for some examples of reactive class design.

Writing generator functions with the yield
statement
Most of the recipes we've looked at have been designed to work with all of the items in a
single collection. The approach has been to use a for statement to step through each item
within the collection, either mapping the value to a new item, or reducing the collection to
some kind of summary value.

Producing a single result from a collection is one of two ways to work with a collection. The
alternative is to produce incremental results instead of a single result.

This approach is very helpful in the cases where we can't fit an entire collection in memory.
For example, analyzing gigantic web log files is best done in small doses rather than by
creating an in-memory collection.

Is there some way to disentangle the collection structure from the processing function? Can
we yield results from processing as soon as each individual item is available?

Getting ready
We'll look at some web log data that has date-time string values. We need to parse these to
create proper datetime objects. To keep things focused in this recipe, we'll use a simplified
log produced by Flask.

The entries start out as lines of text that look like this:

[2016-05-08 11:08:18,651] INFO in ch09_r09: Sample Message One
[2016-05-08 11:08:18,651] DEBUG in ch09_r09: Debugging
[2016-05-08 11:08:18,652] WARNING in ch09_r09: Something might have gone
wrong



Functional and Reactive Programming Features

[ 352 ]

We've seen other examples of working with this kind of log in the Using more complex
structures – maps of lists recipe in Chapter 7, More Advanced Class Design. Using REs from the
String parsing with regular expressions recipe in Chapter 1, Numbers, Strings, and Tuples, we
can decompose each line to look like the following collection of rows:

>>> data = [
...    ('2016-04-24 11:05:01,462', 'INFO', 'module1', 'Sample Message
One'),
...    ('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging'),
...    ('2016-04-24 11:07:03,246', 'WARNING', 'module1', 'Something might
have gone wrong')
... ]

We can't use ordinary string parsing to convert the complex date-time stamp into
something more useful. We can, however, write a generator function which can process
each row of the log, producing a more useful intermediate data structure.

A generator function is a function that uses a yield statement. When a function has a yield,
it builds the results incrementally, yielding each individual value in a way that can be
consumed by a client. The consumer might be a for statement or it might be another
function that needs a sequence of values.

How to do it…
This requires the datetime module:1.

        import datetime

Define a function that processes a source collection:2.

        def parse_date_iter(source):

We've included the suffix _iter as a reminder that this function will be an
iterable object, not a simple collection.

Include a for statement that visits each item in the source collection:3.

         for item in source:  



Functional and Reactive Programming Features

[ 353 ]

The body of the for statement can map the item to a new item:4.

        date = datetime.datetime.strptime(
            item[0],
            "%Y-%m-%d %H:%M:%S,%f")
        new_item = (date,)+item[1:]

In this case, we mapped a single field from string to datetime object. The
variable date is built from the string in item[0].

Then we mapped the log message three-tuple to a new tuple, replacing the date
string with the proper datetime object. Since the value of the item is a tuple, we
created a singleton tuple with (date,) and then concatenated this with the
item[1:] tuple.

Yield the new item with a yield statement:5.

         yield new_item  

The whole construct looks like this, properly indented:

    import datetime
    def parse_date_iter(source):
        for item in source:
            date = datetime.datetime.strptime(
                item[0],
                "%Y-%m-%d %H:%M:%S,%f")
            new_item = (date,)+item[1:]
            yield new_item

The parse_date_iter() function expects an iterable input object. A collection is an
example of an iterable object. More importantly, though, other generators are also iterable.
We can leverage this to build stacks of generators which process data from other generators.

This function doesn't create a collection. It yields each item, so that the items can be
processed individually. The source collection is consumed in small pieces, allowing huge
amounts of data to be processed. In some recipes, the data will start out from an in-memory
collection. In later recipes, we'll work with data from external files—processing external
files benefits the most from this technique.



Functional and Reactive Programming Features

[ 354 ]

Here's how we can use this function:

>>> from pprint import pprint
>>> from ch08_r01 import parse_date_iter
>>> for item in parse_date_iter(data):
...     pprint(item)
(datetime.datetime(2016, 4, 24, 11, 5, 1, 462000),
 'INFO',
 'module1',
 'Sample Message One')
(datetime.datetime(2016, 4, 24, 11, 6, 2, 624000),
 'DEBUG',
 'module2',
 'Debugging')
(datetime.datetime(2016, 4, 24, 11, 7, 3, 246000),
 'WARNING',
 'module1',
 'Something might have gone wrong')

We've used a for statement to iterate through the results of the parse_date_iter()
function, one item at a time. We've used the pprint() function to display each item.

We could also collect the items into a proper list using something like this:

>>> details = list(parse_date_iter(data))

In this example, the list() function consumes all of the items produced by the
parse_date_iter() function. It's essential to use a function such as list() or a for
statement to consume all of the items from the generator. A generator is a relatively passive
construct – until data is demanded, it doesn't do any work.

If we don't actively consume the data, we'll see something like this:

>>> parse_date_iter(data)
<generator object parse_date_iter at 0x10167ddb0>

The value of the parse_date_iter() function is a generator. It's not a collection of items,
but a function that will produce items on demand.



Functional and Reactive Programming Features

[ 355 ]

How it works…
Writing generator functions can change the way we perceive an algorithm. There are two
common patterns: mappings and reductions. A mapping transforms each item to a new
item, perhaps computing some derived value. A reduction accumulates a summary such as
a sum, mean, variance, or hash from the source collection. These can be decomposed into
the item-by-item transformation or filter, separate from the overall loop that handles the
collection.

Python has a sophisticated construct called an iterator which lies at the heart of generators
and collections. An iterator will provide each value from a collection while doing all of the
internal bookkeeping required to maintain the state of the process. A generator function
behaves like an iterator – it provides a sequence of values and maintains its own internal
state.

Consider the following common piece of Python code:

    for i in some_collection:
        process(i)

Behind the scenes, something like the following is going on:

    the_iterator = iter(some_collection)
    try:
        while True:
            i = next(the_iterator)
            process(i)
    except StopIteration:
        pass

Python evaluates the iter() function on a collection to create an iterator object for that
collection. The iterator is bound to the collection and maintains some internal state
information. The code uses next() on the iterator to get each value. When there are no
more values, the iterator raises the StopIteration exception.

Each of Python's collections can produce an iterator. The iterator produced by a Sequence
or Set will visit each item in the collection. The iterator produced by a Mapping will visit
each key for the mapping. We can use the values() method of a mapping to iterate over
the values instead of the keys. We can use the items() method of a mapping to visit a
sequence of (key, value) two-tuples. The iterator for a file will visit each line in the file.



Functional and Reactive Programming Features

[ 356 ]

The iterator concept can also be applied to functions. A function with a yield statement is
called a generator function. It fits the template for an iterator. To do this, the generator
returns itself in response to the iter() function. In response to the next() function, it
yields the next value.

When we apply list() to a collection or a generator function, the same essential
mechanism used by the for statement gets the individual values. The iter() and next()
functions are used by list() to get the items. The items are then turned into a sequence.

Evaluating next() on a generator function is interesting. The generator function is
evaluated until it reaches a yield statement. This value is the result of next(). Each time
next() is evaluated, the function resumes processing after the yield statement and
continues to the next yield statement.

Here's a small function which yields two objects:

>>> def gen_func():
...     print("pre-yield")
...     yield 1
...     print("post-yield")
...     yield 2

Here's what happens when we evaluate next(). On the generator this function produces:

>>> y = gen_func()
>>> next(y)
pre-yield
1
>>> next(y)
post-yield
2

The first time we evaluated next(), the first print() function was evaluated, then the
yield statement produced a value. The function's processing was suspended and the >>>
prompt was given. The second time we evaluated the next() function, the statements
between the two yield statements were evaluated. The function was again suspended and
a >>> prompt will be displayed.



Functional and Reactive Programming Features

[ 357 ]

What happens next? We're out of yield statements:

>>> next(y)
Traceback (most recent call last):
  File "<pyshell...>", line 1, in <module>
    next(y)
StopIteration

The StopIteration exception is raised at the end of a generator function.

There's more…
The core value of generator functions comes from being able to break complex processing
into two parts:

The transformation or filter to apply
The source set of data with which to work

Here's an example of using a generator to filter data. In this case, we'll filter the input values
and keep only the prime numbers, rejecting all composite numbers.

We can write the processing out as a Python function like this:

    def primeset(source):
        for i in source:
            if prime(i):
                yield prime

For each value in the source, we'll evaluate the prime() function. If the result is true, we'll
yield the source value. If the result is false, the source value will be rejected. We can use
primeset() like this:

    p_10 = set(primeset(range(2,2000000)))

The primeset() function will yield individual prime values from a source collection. The
source collection will be the integers in the range of 2 to 2 million. The result is a set object
built from the values provided.

All that's missing from this is the prime() function to determine whether a number is
prime. We'll leave that as an exercise for the reader.



Functional and Reactive Programming Features

[ 358 ]

Mathematically, it's common to see set builder or set comprehension notation to specify a rule
for building one set from another.

We might see something like this:

P10 = {i: i ∈ ℕ ∧ 2 ≤ 1 < 2,000,000 if P(i)}

This tells us that P10 is the set of all numbers, i, in the set of natural numbers, ℕ, and between
2 and 2 million if P(i) is true. This defines a rule for building a set.

We can write this in Python too:

    p_10 = {i for i in range(2,2000000) if prime(i)}

This is Python notation for the subset of prime numbers. The clauses are rearranged slightly
from the mathematical abstraction, but all of the same essential parts of the expression are
present.

When we start looking at generator expressions like this, we can see that a great deal of
programming fits some common overall patterns:

Map: {m(x): x ∈ S} becomes (m(x) for x in S).
Filter: {x: x ∈ S if f(x)} becomes (x for x in S if f(x)).
Reduce: This is a bit more complex, but common reductions include sums and

counts.  is sum(x for x in S). Other common reductions include finding
the maximum or the minimum of a set of data.

We can also write these various higher-level functions using the yield statement. Here's
the definition of a generic mapping:

    def map(m, S):
        for s in S:
            yield m(s)

This function applies some other function, m(), to each data element in the source
collection, S. The result of the mapping function is yielded as a sequence of result values.

We can write a similar definition for a generic filter function:

    def filter(f, S):
        for s in S:
            if f(s):
                yield s



Functional and Reactive Programming Features

[ 359 ]

As with the generic mapping, we apply a function, f(), to each element in the source
collection, S. Where the function is true, the values are yielded. Where the function is
false, the values are rejected.

We can use this to create a set of primes like this:

    p_10 = set(filter(prime, range(2,2000000)))

This will apply the prime() function to the source range of data. Note that we write just
prime—without () characters—because we're naming the function, not evaluating it. Each
individual value will be checked by the prime() function. Those that pass will be yielded
to be assembled into the final set. Those values which are composite will be rejected and
won't wind up in the final set.

See also
In the Using stacked generator expressions recipe, we'll combine generator functions
to build complex processing stacks from simple components.
In the Applying transformations to a collection recipe, we'll see how the built-in
map() function can be used to create complex processing from a simple function
and an iterable source of data.
In the Picking a subset – three ways to filter recipe, we'll see how the built-in
filter() function can also be used to build complex processing from a simple
function and an iterable source of data.
See h t t p s ://p r o j e c t e u l e r . n e t /p r o b l e m =10 for a challenging problem related
to prime numbers less than 2 million. Parts of the problem seem obvious. It can
be difficult, however, to test all of those numbers for being prime.

Using stacked generator expressions
In the Writing generator functions with the yield statement recipe, we created a simple
generator function that performed a single transformation on a piece of data. As a practical
matter, we often have several functions that we'd like to apply to incoming data.

How can we stack or combine multiple generator functions to create a composite function?

https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10


Functional and Reactive Programming Features

[ 360 ]

Getting ready
We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height

engine off fuel height

Other notes

10/25/2013 08:24 29

13:15 27

calm seas – anchor solomon's island

10/26/2013 09:12 27

18:25 22

choppy – anchor in jackson's creek

For more background on this data, see the Slicing and dicing a list recipe in Chapter 4, Built-
in Data Structures – list, set, dict.

As a sidebar, we can take the data like this. We'll look at this in detail in the Reading
delimited files with the csv module recipe in Chapter 9, Input/Output, Physical Format, and
Logical Layout:

>>> from pathlib import Path
>>> import csv
>>> with Path('code/fuel.csv').open() as source_file:
...    reader = csv.reader(source_file)
...    log_rows = list(reader)
>>> log_rows[0]
['date', 'engine on', 'fuel height']
>>> log_rows[-1]
['', "choppy -- anchor in jackson's creek", '']

We've used the csv module to read the log details. A csv.reader() is an iterable object. In
order to collect the items into a single list, we applied the list() function to the generator
function. We printed at the first and last item in the list to confirm that we really have a list-
of-lists structure.

We'd like to apply two transformations to this list-of-lists:

Convert the date and two times into two date-time values



Functional and Reactive Programming Features

[ 361 ]

Merge three rows into one row so that we have a simple organization to the data

If we create a useful pair of generator functions, we can have software that looks like this:

    total_time = datetime.timedelta(0)
    total_fuel = 0
    for row in date_conversion(row_merge(source_data)):
        total_time += row['end_time']-row['start_time']
        total_fuel += row['end_fuel']-row['start_fuel']

The combined generator functions, date_conversion(row_merge(...)), will yield a
sequence of single rows with starting information, ending information, and notes. This
structure can easily be summarized or analyzed to create simple statistical correlations and
trends.

How to do it…
Define an initial reduce operation that combines rows. We have several ways to1.
tackle this. One is to always group three rows together.

An alternative is to note that column zero has data at the start of a group; it's
empty for the next two lines of a group. This gives us a slightly more general
approach to creating groups of rows. This is a kind of head-tail merge algorithm.
We'll collect data and yield the data each time we get to the head of the next
group:

        def row_merge(source_iter):
            group = []
            for row in source_iter:
                if len(row[0]) != 0:
                    if group:
                        yield group
                    group = row.copy()
                else:
                    group.extend(row)
            if group:
                yield group 

This algorithm uses len(row[0]) to determine whether this is the head of a
group or a row in the tail of the group. In the case of a head row, any previous
group is yielded. After that has been consumed, the value of the group collection
is reset to be the column data from the head row.



Functional and Reactive Programming Features

[ 362 ]

The rows in the tail of the group are simply appended to the group collection.
When the data is exhausted, there will—generally—be one final group in the
group variable. If there's no data at all, then the final value of group will also be a
zero-length list, which should be ignored.

We'll address the copy() method later. It's essential because we're working with a
list of lists data structure and lists are mutable objects. We can write processing
which changes the data structures, making some processing awkward to explain.

Define the various mapping operations that will be performed on the merged2.
data. These apply to the data in the original row. We'll use separate functions to
convert each of the two time columns and merge the times with the date column:

        import datetime
        def start_datetime(row):
            travel_date = datetime.datetime.strptime(row[0],
"%m/%d/%y").date()
            start_time = datetime.datetime.strptime(row[1], "%I:%M:%S
%p").time()
            start_datetime = datetime.datetime.combine(travel_date,
start_time)
            new_row = row+[start_datetime]
            return new_row

        def end_datetime(row):
            travel_date = datetime.datetime.strptime(row[0],
"%m/%d/%y").date()
            end_time = datetime.datetime.strptime(row[4], "%I:%M:%S
%p").time()
            end_datetime = datetime.datetime.combine(travel_date, end_time)
            new_row = row+[end_datetime]
            return new_row

We'll combine the date in column zero with the time in column one to create a
starting datetime object. Similarly, we'll combine the date in column zero with
the time in column four to create an ending datetime object.

These two functions have a lot of overlaps and could be refactored into a single
function with the column number as an argument value. For now, however, our
goal is to write something that simply works. Refactoring for efficiency can come
later.



Functional and Reactive Programming Features

[ 363 ]

Define mapping operations that apply to the derived data. Columns eight and3.
nine contain the date-time stamps:

        for starting and ending. def duration(row):
            travel_hours = round((row[10]-row[9]).total_seconds()/60/60, 1)
            new_row = row+[travel_hours]
            return new_row

We've used the values created by start_datetime and end_datetime as
inputs. We've computed the delta time, which provides a result in seconds. We
converted seconds to hours, which is a more useful unit of time for this set of data.

Fold in any filters required to reject or exclude bad data. In this case, we have a4.
header row that must be excluded:

        def skip_header_date(rows):
            for row in rows:
                if row[0] == 'date':
                    continue
                yield row

This function will reject any row that has date in the first column. The continue
statement resumes the for statement, skipping all other statements in the body; it
skips the yield statement. All other rows will be passed through this process.
The input is an iterable and this generator will yield rows that have not been
transformed in any way.

Combine the operations. We can either write a sequence of generator expressions5.
or use the built-in map() function. Here's how it might look using generator
expressions:

        def date_conversion(source):
            tail_gen = skip_header_date(source)
            start_gen = (start_datetime(row) for row in tail_gen)
            end_gen = (end_datetime(row) for row in start_gen)
            duration_gen = (duration(row) for row in end_gen)
            return duration_gen

This operation consists of a series of transformations. Each one does a small
transformation on one value from the original collection of data. It's relatively
simple to add operations or change operations, since each one is defined
independently:

The tail_gen generator yields rows after skipping the first row of the
source



Functional and Reactive Programming Features

[ 364 ]

The start_gen generator appends a datetime object to the end of
each row with the start time built from strings into source columns
The end_gen generator appends a datetime object to each row that
has the end time built from strings
The duration_gen generator appends a float object with the
duration of the leg

The output from this overall date_conversion() function is a generator. It can
be consumed with a for statement or a list can be built from the items.

How it works…
When we write a generator function, the argument value can be a collection, or it can be
another kind of iterable. Since generator functions are iterables, it becomes possible to create
a kind of pipeline of generator functions.

Each function can embody a small transformation that changes one feature of the input to
create the output. We've then wrapped each of these small transformations in generator
expressions. Because each transformation is reasonably well isolated from the others, we
can make changes to one without breaking the entire processing pipeline.

The processing works incrementally. Each function is evaluated until it yields a single
value. Consider this statement:

    for row in date_conversion(row_merge(data)):
        print(row[11])

We've defined a composition of several generators. This composition uses a variety of
techniques:

The row_merge() function is a generator which will yield rows of data. In order
to yield one row, it will read four lines from the source, assemble a merged row,
and yield it. Each time another row is required, it will read three more rows of
input to assemble the output row.
The date_conversion() function is a complex generator built from multiple
generators.



Functional and Reactive Programming Features

[ 365 ]

skip_header_date() is designed to yield a single value. Sometimes it will have
to read two values from the source iterator. If an input row has date in column
zero, the row is skipped. In that case, it will read the second value, getting
another row from row_merge(); which must, in turn, read three more lines of
input to produce a merged line of output. We've assigned the generator to the
tail_gen variable.
The start_gen, end_gen, and duration_gen generator expressions will apply
relatively simple functions such as start_datetime() and end_datetime() to
each row of its input, yielding rows with more useful data.

The final for statement shown in the example will be gathering values from the
date_conversion() iterator by evaluating the next() function repeatedly. Here's the
step by step view of what will happen to create the needed result. Note that this works on a
very small bit of data—each step makes one small change:

The date_conversion() function result was the duration_gen object. For this1.
to return a value, it needs a row from its source, end_gen. Once it has the data, it
can apply the duration() function and yield the row.
The end_gen expression needs a row from its source, start_gen. It can then2.
apply the end_datetime() function and yield the row.
The start_gen expression needs a row from its source, tail_gen. It can then3.
apply the start_datetime() function and yield the row.
The tail_gen expression is simply the generator skip_header_date(). This4.
function will read as many rows as required from its source until it finds a row
where column zero is not the column header date. It yields one non-date row.
The source for this is the output from the row_merge() function.
The row_merge() function will read multiple rows from its source until it can5.
assemble a collection of rows that fits the required pattern. It will yield a
combined row that has some text in column zero, followed by rows that have no
text in column zero. The source for this is a list-of-lists collection of the raw data.
The collection of rows will be processed by a for statement inside the6.
row_merge() function. This processing will implicitly create an iterator for the
collection so that each individual row is yielded as needed by the body of the
row_merge() function.

Each individual row of data will pass through this pipeline of steps. Some stages of the
pipeline will consume multiple source rows for a single result row, restructuring the data as
it is processed. Other stages consume a single value.



Functional and Reactive Programming Features

[ 366 ]

This example relies on concatenating items into a long sequence of values. Items are
identified by position. A small change to the order of the stages in the pipeline will alter the
positions of the items. There are a number of ways to improve on this that we'll look at next.

What's central to this is that only individual rows are being processed. If the source is a
gigantic collection of data, the processing can proceed very quickly. This technique allows a
small Python program to process vast volumes of data quickly and simply.

There's more…
In effect, a set of interrelated generators is a kind of composite function. We might have
several functions, defined separately like this:

y = f(x)

z = g(y)

We can combine them by applying the results of the first function to the second function:

z = g(f(x))

This can become awkward as the number of functions grows. When we use this pair of
functions in multiple places, we break the Don't Repeat Yourself (DRY) principle. Having
multiple copies of this complex expression isn't ideal.

What we'd like to have is a way to create a composite function—something like this:

z = (g ∘ f)(x)

Here, we've defined a new function, (g ∘ f), that combines the two original functions into a
new, single, composite function. We can now modify this composite to add or change
features.

This concept drives the definition of the composite date_conversion() function. This
function is composed of a number of functions, each of which can be applied to items of
collections. If we need to make changes, we can easily write more simple functions and
drop them into the pipeline defined by the date_conversion() function.



Functional and Reactive Programming Features

[ 367 ]

We can see some slight differences among the functions in the pipeline. We have some type
conversions. However, the duration calculation isn't really a type conversion. It's a separate
computation that's based on the results of the date conversions. If we want to compute fuel
use per hour, we'd need to add several more calculations. None of these additional
summaries is properly part of date conversion.

We should really break the high-level data_conversion() into two parts. We should
write another function that does duration and fuel use calculations, named fuel_use().
This other function can then wrap date_conversion().

We might aim for something like this:

    for row in fuel_use(date_conversion(row_merge(data))):
        print(row[11])

We now have a very sophisticated computation that's defined in a number of very small
and (almost) completely independent chunks. We can modify one piece without having to
think deeply about how the other pieces work.

Namespace instead of list
An important change is to stop avoiding the use of a simple list for the data values. Doing
computations on row[10] is a potential disaster in the making. We should properly convert
the input data into some kind of namespace.

A namedtuple can be used. We'll look at that in the Simplifying complex algorithms with
immutable data structures recipe.

A SimpleNamespace can, in some ways, further simplify this processing. A
SimpleNamespace is a mutable object, and can be updated. It's not always the best idea to
mutate an object. It has the advantage of being simple, but it can also be slightly more
difficult to write tests for state changes in mutable objects.

A function such as make_namespace() can provide a set of names instead of positions.
This is a generator that must be used after the rows are merged, but before any of the other
processing:

    from types import SimpleNamespace

    def make_namespace(merge_iter):
        for row in merge_iter:
            ns = SimpleNamespace(
                date = row[0],
                start_time = row[1],



Functional and Reactive Programming Features

[ 368 ]

                start_fuel_height = row[2],
                end_time = row[4],
                end_fuel_height = row[5],
                other_notes = row[7]
            )
            yield ns

This will produce an object that allows us to write row.date instead of row[0]. This, of
course, will change the definitions for the other functions, including start_datetime(),
end_datetime(), and duration().

Each of these functions can emit a new SimpleNamespace object instead of updating the
list of values that represents each row. We can then write functions that look like this:

    def duration(row_ns):
        travel_time = row_ns.end_timestamp - row_ns.start_timestamp
        travel_hours = round(travel_time.total_seconds()/60/60, 1)
        return SimpleNamespace(
            **vars(row_ns),
            travel_hours=travel_hours
        )

Instead of processing a row as a list object, this function processes a row as a
SimpleNamespace object. The columns have clear and meaningful names such as
row_ns.end_timestamp instead of the cryptic row[10].

There's a three-part process to building a new SimpleNamespace from an old namespace:

Use the vars() function to extract the dictionary inside the SimpleNamespace1.
instance.
Use the **vars(row_ns) object to build a new namespace based on the old2.
namespace.
Any additional keyword parameters such as travel_hours = travel_hours3.
provides additional values that will load the new object.

The alternative is to update the namespace and return the updated object:

    def duration(row_ns):
        travel_time = row_ns.end_timestamp - row_ns.start_timestamp
        row_ns.travel_hours = round(travel_time.total_seconds()/60/60, 1)
        return row_ns



Functional and Reactive Programming Features

[ 369 ]

This has the advantage of being slightly simpler. The disadvantage is the small
consideration that stateful objects can sometimes be confusing. When modifying an
algorithm, it's possible to fail to set attributes in the proper order so that lazy (or reactive)
programming operates properly.

While stateful objects are common, they should always be viewed as one of two
alternatives. An immutable namedtuple might be a better choice than a mutable
SimpleNamespace.

See also
See the Writing generator functions with the yield statement recipe for an
introduction to generator functions
See the Slicing and dicing a list recipe in Chapter 4, Built-in Data Structures – list,
set, dict, for more information on the fuel consumption dataset
See the Combining map and reduce transformations recipe for another way to
combine operations

Applying transformations to a collection
In the Writing generator functions with the yield statement recipe, we looked at writing a
generator function. The examples we saw combined two elements: a transformation and a
source of data. They generally look like this:

    for item in source:
        new_item = some transformation of item
        yield new_item

This template for writing a generator function isn't a requirement. It's merely a common
pattern. There's a transformation process buried inside a for statement. The for statement
is largely boilerplate code. We can refactor this to make the transformation function explicit
and separate from the for statement.

In the Using stacked generator expressions recipe, we defined a start_datetime() function
which computed a new datetime object from the string values in two separate columns of
the source collection of data.



Functional and Reactive Programming Features

[ 370 ]

We could use this function in a generator function's body like this:

    def start_gen(tail_gen):
        for row in tail_gen:
            new_row = start_datetime(row)
            yield new_row

This function applies the start_datetime() function to each item in a source of data,
tail_gen. Each resulting row is yielded so that another function or a for statement can
consume it.

In the Using stacked generator expressions recipe, we looked at another way to apply these
transformation functions to a larger collection of data. In this example, we used a generator
expression. The code looks like this:

    start_gen = (start_datetime(row) for row in tail_gen)

This applies the start_datetime() function to each item in a source of data, tail_gen.
Another function or for statement can consume the values available in the start_gen
iterable.

Both the complete generator function and the shorter generator expression are essentially
the same thing with slightly different syntax. Both of these are parallel to the mathematical
notion of a set builder or set comprehension. We could describe this operation mathematically
as:

s = [S(r): r ∈ T]

In this expression, S is the start_datetime() function and T is the sequence of values
called tail_gen. The resulting sequence is the value of S(r), where each value for r is an
element of the set T.

Both generator functions and generator expressions have similar boilerplate code. Can we
simplify these?

Getting ready…
We'll look at the web log data from the Writing generator functions with the yield statement
recipe. This had date as a string that we would like to transform into a proper timestamp.



Functional and Reactive Programming Features

[ 371 ]

Here's the example data:

>>> data = [
...    ('2016-04-24 11:05:01,462', 'INFO', 'module1', 'Sample Message
One'),
...    ('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging'),
...    ('2016-04-24 11:07:03,246', 'WARNING', 'module1', 'Something might
have gone wrong')
... ]

We can write a function like this to transform the data:

    import datetime
    def parse_date_iter(source):
        for item in source:
            date = datetime.datetime.strptime(
                item[0],
                "%Y-%m-%d %H:%M:%S,%f")
            new_item = (date,)+item[1:]
            yield new_item

This function will examine each item in the source using a for statement. The value in
column zero is a date string, which can be transformed into a proper datetime object. A
new item, new_item, is built from the datetime object and the remaining items starting
with column one.

Because the function uses the yield statement to produce results, it's a generator function.
We use it with a for statement like this:

    for row in parse_date_iter(data):
        print(row[0], row[3])

This statement will gather each value as it's produced by the generator function and print
two of the selected values.

The parse_date_iter() function has two essential elements combined into a single
function. The outline looks like this:

    for item in source:
        new_item = transformation(item)
        yield new_item

The for and yield statements are largely boilerplate code. The transformation()
function is a really useful and interesting part of this.



Functional and Reactive Programming Features

[ 372 ]

How to do it…
Write the transformation function that applies to a single row of the data. This is1.
not a generator, and doesn't use the yield statement. It simply revises a single
item from a collection:

         def parse_date(item):
            date = datetime.datetime.strptime(
                item[0],
                "%Y-%m-%d %H:%M:%S,%f")
            new_item = (date,)+item[1:]
            return new_item

This can be used in three ways: statements, expressions, and the map() function.
Here's the explicit for...yield pattern of statements:

        for item in collection:
            new_item = parse_date(item)
            yield new_item

This uses a for statement to process each item in the collection using the isolated
parse_date() function. The second choice is a generator expression that looks
like this:

        (parse_date(item) for item in data)

This is a generator expression that applies the parse_date() function to each
item. The third choice is the map() function.

Use the map() function to apply the transformation to the source data.2.

        map(parse_date, data)

We provide the name of the function, parse_date, without any () after the
name. We aren't applying the function at this time. We're providing the name of
the object to the map() function to apply the parse_date() function to the
iterable source of data, data.

We can use this as follows:

        for row in map(parse_date, data):
            print(row[0], row[3])



Functional and Reactive Programming Features

[ 373 ]

The map() function creates an iterable object that applies the parse_date()
function to each item in the data iterable. It yields each individual item. It saves us
from having to write a generator expression or a generator function.

How it works…
The map() function replaces some common boilerplate code. We can imagine that the
definition looks something like this:

    def map(f, iterable):
        for item in iterable:
            yield f(item)

Or, we can imagine that it looks like this:

    def map(f, iterable):
        return (f(item) for item in iterable)

Both of these definitions summarize the core feature of the map() function. It's handy
shorthand that eliminates some boilerplate code for applying a function to an iterable
source of data.

There's more…
In this example, we've used the map() function to apply a function that takes a single
parameter to each individual item of a single iterable. It turns out that the map() function
can do a bit more than this.

Consider this function:

>>> def mul(a, b):
...    return a*b

And these two sources of data:

>>> list_1 = [2, 3, 5, 7]
>>> list_2 = [11, 13, 17, 23]



Functional and Reactive Programming Features

[ 374 ]

We can apply the mul() function to pairs drawn from each source of data:

>>> list(map(mul, list_1, list_2))
[22, 39, 85, 161]

This allows us to merge two sequences of values using different kinds of operators. We can,
for example, build a mapping that behaves like the built-in zip() function.

Here's a mapping:

>>> def bundle(*args):
...     return args
>>> list(map(bundle, list_1, list_2))
[(2, 11), (3, 13), (5, 17), (7, 23)]

We needed to define a small helper function, bundle(), that takes any number of
arguments, and creates a tuple out of them.

Here's the zip function for comparison:

>>> list(zip(list_1, list_2))
[(2, 11), (3, 13), (5, 17), (7, 23)]

See also…
In the Using stacked generator expressions recipe, we looked at stacked generators.
We built a composite function from a number of individual mapping operations
written as generator functions. We also included a single filter in the stack.

Picking a subset – three ways to filter
In the Using stacked generator expressions recipe, we wrote a generator function that excluded
some rows from a set of data. We defined a function like this:

    def skip_header_date(rows):
        for row in rows:
            if row[0] == 'date':
                continue
            yield row



Functional and Reactive Programming Features

[ 375 ]

When the condition is true—row[0] is date—the continue statement will skip the rest of
the statements in the body of the for statement. In this case, there's only a single statement,
yield row.

There are two conditions:

row[0] == 'date': The yield statement is skipped; the row is rejected from
further processing
row[0] != 'date': The yield statement means that the row will be passed on
to the function or statement that's consuming the data

At four lines of code, this seems long-winded. The for...if...yield pattern is clearly
boilerplate, and only the condition is really material in this kind of construct.

Can we express this more succinctly?

Getting ready…
We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height

engine off fuel height

Other notes

10/25/2013 08:24 29

13:15 27

calm seas – anchor solomon's island

10/26/2013 09:12 27

18:25 22

choppy – anchor in jackson's creek

For more background on this data, see the Slicing and dicing a list recipe.



Functional and Reactive Programming Features

[ 376 ]

In the Using stacked generator expressions recipe, we defined two functions to reorganize this
data. The first combined each three-row group into a single row with a total of eight
columns of data:

    def row_merge(source_iter):
        group = []
        for row in source_iter:
            if len(row[0]) != 0:
                if group:
                    yield group
                group = row.copy()
            else:
                group.extend(row)
        if group:
            yield group

This is a variation on the head-tail algorithm. When len(row[0]) != 0 , this is the header
row for a new group—any previously complete group is yielded, and then the working
value of the group variable is reset to a fresh, new list based on this header row. A copy()
is made so that we can avoid mutating the list object later on. When len(row[0]) == 0,
this is the tail of the group; the row is appended to the working value of the group variable.
At the end of the source of data, there's generally a complete group that needs to be
processed. There's an edge case where there's no data at all; in which case, there's no final
group to yield, either.

We can use this function to transform the data from many confusing rows to single rows of
useful information:

>>> from ch08_r02 import row_merge, log_rows
>>> pprint(list(row_merge(log_rows)))

[['date',
  'engine on',
  'fuel height',
  '',
  'engine off',
  'fuel height',
  '',
  'Other notes',
  ''],
 ['10/25/13',
  '08:24:00 AM',
  '29',
  '',
  '01:15:00 PM',
  '27',



Functional and Reactive Programming Features

[ 377 ]

  '',
  "calm seas -- anchor solomon's island",
  ''],
 ['10/26/13',
  '09:12:00 AM',
  '27',
  '',
  '06:25:00 PM',
  '22',
  '',
  "choppy -- anchor in jackson's creek",
  '']]

We see that the first row is just the spreadsheet headers. We'd like to skip this row. We'll
create a generator expression to handle the filtering and reject this extra row.

How to do it…
Write the predicate function that tests an item to see whether it should be passed1.
through the filter for further processing. In some cases, we'll have to start with a
reject rule and then write the inverse to make it into a pass rule:

        def pass_non_date(row):
            return row[0] != 'date'

This can be used in three ways: statements, expressions, and the filter()
function. Here is an example of an explicit for...if...yield pattern of
statements for passing rows:

        for item in collection:
            if pass_non_date(item):
                yield item

This uses a for statement to process each item in the collection using the filter
function. Selected items are yielded. Other items are rejected.

The second way to use this function is in a generator expression like this:

        (item for item in data if pass_non_date(item))

This generator expressions applies the filter function, pass_non_date(), to
each item. The third choice is the filter() function.



Functional and Reactive Programming Features

[ 378 ]

Use the filter() function to apply the function to the source data:2.

        filter(pass_non_date, data)

We've provided the name of the function, pass_non_date. We don't use ()
characters after the function name because this expression doesn't evaluate the
function. The filter() function will apply the given function to the iterable
source of data, data. In this case, data is a collection, but it can be any iterable,
including the results of a previous generator expression. Each item for which the
pass_non_date() function is true will be passed by the filter; all other values
are rejected.

We can use this as follows:

        for row in filter(pass_non_date, row_merge(data)):
            print(row[0], row[1], row[4])

The filter() function creates an iterable object that applies the
pass_non_date() function as a rule to pass or reject each item in the
row_merge(data) iterable. It yields the rows that don't have date in column
zero.

How it works…
The filter() function replaces some common boilerplate code. We can imagine that the
definition looks something like this:

    def filter(f, iterable):
        for item in iterable:
            if f(item):
                yield f(item)

Or, we can imagine that it looks like this:

    def filter(f, iterable):
        return (item for item in iterable if f(item))

Both of these definitions summarize the core feature of the filter() function: some data is
passed and some data is rejected. This is a handy shorthand that eliminates some
boilerplate code for applying a function to an iterable source of data.



Functional and Reactive Programming Features

[ 379 ]

There's more…
Sometimes it's difficult to write a simple rule to pass data. It may be clearer if we write a
rule to reject data. For example, this might make more sense:

    def reject_date(row):
        return row[0] == 'date'

We can use a reject rule in a number of ways. Here's a for...if...continue...yield
pattern of statements. This will use continue to skip the rejected rows, and yield the
remaining rows:

    for item in collection:
        if reject_date(item):
            continue
        yield item

We can also use this variation. For some programmers, the not reject concept can become
confusing. It might seem like a double negative:

    for item in collection:
        if not reject_date(item):
            yield item

We can also use a generator expression like this:

    (item for item in data if not reject_date(item))

We can't, however, easily use the filter() function with a rule that's designed to reject
data. The filter() function is designed to work with pass rules only.

We have two essential choices for dealing with this kind of logic. We can wrap the logic in
another expression, or we use a function from the itertools module. When it comes to
wrapping, we have two further choices. We can wrap a reject function to create a pass
function from it. We can use something like this:

    def pass_date(row):
        return not reject_date(row)

This makes it possible to create a simple reject rule and use it in the filter() function.
Another way to wrap the logic is to create a lambda object:

     filter(lambda item: not reject_date(item), data)



Functional and Reactive Programming Features

[ 380 ]

The lambda function is a small, anonymous function. It's a function that's been reduced to
just two elements: the parameter list and a single expression. We've wrapped the
reject_date() function to create a kind of not_reject_date function via the lambda
object.

In the itertools module, we use the filterfalse() function. We can import
filterfalse() and use this instead of the built-in filter() function.

See also…
In the Using stacked generator expressions recipe, we placed a function like this in a
stack of generators. We built a composite function from a number of individual
mapping and filtering operations written as generator functions.

Summarizing a collection – how to reduce
In the introduction to this chapter, we noted that there are three common processing
patterns: map, filter, and reduce. We've seen examples of mapping in the Applying
transformations to a collection recipe, and examples of filtering in the Picking a subset – three
ways to filter recipe. It's relatively easy to see how these become very generic operations.

Mapping applies a simple function to all elements of a collection. {M(x): x ∈ C} applies a
function, M, to each item, x, of a larger collection, C. In Python, it can look like this:

    (M(x) for x in C)

Or, we can use the built-in map() function to remove the boilerplate and simplify it to this:

    map(M, c)

Similarly, filtering uses a function to select elements from a collection. {x: x ∈ C if F(x)} uses
a function, F, to determine whether to pass or reject an item, x, from a larger collection, C.
We can express this in a variety of ways in Python, one of which is like this:

    filter(F, c)



Functional and Reactive Programming Features

[ 381 ]

This applies a predicate function, F(), to a collection, c.

The third common pattern is reduction. In the Designing classes with lots of processing and
Extending a collection: a list that does statistics recipes, we looked at class definitions that
computed a number of statistical values. These definitions relied—almost exclusively—on
the built-in sum() function. This is one of the more common reductions.

Can we generalize summation in a way that allows us to write a number of different kinds
of reductions? How can we define the concept of reduction in a more general way?

Getting ready
One of the most common reductions is the sum. Other reductions include a product,
minimum, maximum, average, variance, and even a simple count of values.

Here's a way to think of the mathematical definition of the sum function, +, applied to
values in a collection, C:

We've expanded the definition of sum by inserting the + operator into the sequence of
values, C = c0, c1, c2, …, cn. This idea of folding in the + operator captures the meaning of the
built-in sum() function.

Similarly, the definition of product looks like this:

Here, too, we've performed a different fold on a sequence of values. Expanding a reduction
by folding involves two items: a binary operator and a base value. For sum, the operator
was + and the base value is zero. For product, the operator is × and the base value is one.



Functional and Reactive Programming Features

[ 382 ]

We could define a generic higher-level function, F(⋄, ⊥), that captures the ideal of a fold. The
fold function definition includes a placeholder for an operator, ⋄, and a placeholder for a
base value, ⊥. The function's value for a given collection, C, can be defined with this
recursive rule:

If the collection, C, is empty, the value is the base value, ⊥. When defining sum(), the base
value would be zero. If C is not empty, then we'll first compute the fold of everything but
the last value in the collection, F◊, ⊥(C0..n-1). Then we'll apply the operator—for example,
addition—between the previous fold result and the final value in the collection, Cn-1. For
sum(), the operator is +.

We've used the notation C0..n in the Pythonic sense of an open-ended range. The values at
indices 0 to n-1 are included, but the value of index n is not included. This means that C0..0=
∅: there are no elements in this range C0..0.

This definition is called a fold left operation because the net effect of this definition is to
perform the underlying operations from left to right in the collection. This could be changed
to also define a fold right operation. Since Python's reduce() function is a fold left, we'll
stick with that.

We'll define a prod() function that can be used to compute factorial values:

The value of n factorial is the product of all of the numbers between 1 and n inclusive. Since
Python uses half-open ranges, it's a little more Pythonic to use or define a range using 1 ≤ x
< n + 1. This definition fits the built-in range() function better.

Using the fold operator that we defined earlier, we have this. We've defined a fold (or
reduce) using an operator of multiplication, *, and a base value of one:



Functional and Reactive Programming Features

[ 383 ]

The idea of folding is the generic concept that underlies Python's concept of reduce(). We
can apply this to many algorithms, potentially simplifying the definition.

How to do it…
Import the reduce() function from the functools module:1.

      >>> from functools import reduce

Pick the operator. For sum, it's +. For product, it's *. These can be defined in a2.
variety of ways. Here's the long version. Other ways to define the necessary
binary operator will be shown later:

      >>> def mul(a, b):
      ...     return a * b

Pick the base value required. For sum, it's zero. For product, it's one. This allows3.
us to define a prod() function that computes a generic product:

      >>> def prod(values):
      ...    return reduce(mul, values, 1)

For factorial, we need to define the sequence of values that will be reduced:4.

      range(1, n+1)

Here's how this works with the prod() function:

      >>> prod(range(1, 5+1))
      120  

Here's the whole factorial function:

>>> def factorial(n):
...    return prod(range(1, n+1))

Here's the number of ways that a 52-card deck can be arranged. This is the value 52!:

>>> factorial(52)
80658175170943878571660636856403766975289505440883277824000000000000



Functional and Reactive Programming Features

[ 384 ]

There are a lot of a ways a deck can be shuffled.

How many 5-card hands are possible? The binomial calculation uses factorial:

>>> factorial(52)//(factorial(5)*factorial(52-5))
2598960

For any given shuffle, there are about 2.6 million different possible poker hands. (And yes,
this is a terribly inefficient way to compute the binomial.)

How it works…
The reduce() function behaves as though it had this definition:

    def reduce(function, iterable, base):
        result = base
        for item in iterable:
            result = function(result, item)
        return result

This will iterate through the values from left to right. It will apply the given binary function
between the previous set of values and the next item from the iterable collection.

When we look at the Recursive functions and Python's stack limits recipe, we can see that the
recursive definition of fold can be optimized to this for statement.

There's more…
When designing a reduce() function, we need to provide a binary operator. There are
three ways to define the necessary binary operator. We used a complete function definition
like this:

    def mul(a, b):
        return a * b



Functional and Reactive Programming Features

[ 385 ]

There are two other choices. We can use a lambda object instead of a complete function:

>>> add = lambda a, b: a + b
>>> mul = lambda a, b: a * b

A lambda function is an anonymous function boiled down to just two essential elements:
the parameters and the return expression. There are no statements inside a lambda, only a
single expression. In this case, the expression simply uses the desired operator.

We can use it like this:

>>> def prod2(values):
...     return reduce(lambda a, b: a*b, values, 1)

This provides the multiplication function as a lambda object without the overhead of a
separate function definition.

We can also import the definition from the operator module:

    from operator import add, mul

This works nicely for all of the built-in arithmetic operators.

Note that logical reductions using the logic operators AND and OR are a little different
from other arithmetic reductions. These operators short-circuit: once the value is false, an
and-reduce can stop processing. Similarly, once the value is True, an or-reduce can stop
processing. The built-in functions any() and all() embody this nicely. The short-circuit
feature is difficult to capture using the built-in reduce().

Maxima and minima
How can we use reduce() to compute a maximum or minimum? This is a little more
complex because there's no trivial base value that can be used. We cannot start with zero or
one because these values might be outside the range of values being minimized or
maximized.

Also, the built-in max() and min() must raise an exception for an empty sequence. These
functions can't fit perfectly with the way the sum() function and reduce() functions work.

We have to use something like this to provide the expected feature set:

    def mymax(sequence):
        try:
            base = sequence[0]
            max_rule = lambda a, b: a if a > b else b



Functional and Reactive Programming Features

[ 386 ]

            reduce(max_rule, sequence, base)
        except IndexError:
            raise ValueError

This function will pick the first value from the sequence as a base value. It creates a lambda
object, named max_rule, which selects the larger of the two argument values. We can then
use this base value located in the data, and the lambda object. The reduce() function will
then locate the largest value in a non-empty collection. We've captured the IndexError
exception so that an empty collection will raise a ValueError exception.

This example shows how we can invent a more complex or sophisticated minimum or
maximum function that is still based on the built-in reduce() function. The advantage of
this is replacing the boilerplate for statement when reducing a collection to a single value.

Potential for abuse
Note that a fold (or reduce() as it's called in Python) can be abused, leading to poor
performance. We have to be cautious about simply using a reduce() function without
thinking carefully about what the resulting algorithm might look like. In particular, the
operator being folded into the collection should be a simple process such as adding or
multiplying. Using reduce() changes the complexity of an O(1) operation into O(n).

Imagine what would happen if the operator being applied during the reduction involved a
sort over a collection. A complex operator—with O(n log n) complexity—being used in a
reduce() would change the complexity of the overall reduce() to O(n2log n).

Combining map and reduce transformations
In the other recipes in this chapter, we've been looking at map, filter, and reduce operations.
We've looked at each of these in isolation:

The Applying transformations to a collection recipe shows the map() function
The Picking a subset – three ways to filter recipe shows the filter() function
The Summarizing a collection – how to reduce recipe shows the reduce() function



Functional and Reactive Programming Features

[ 387 ]

Many algorithms will involve combinations of functions. We'll often use mapping, filtering,
and a reduction to produce a summary of available data. Additionally, we'll need to look at
a profound limitation of working with iterators and generator functions. Namely this
limitation:

An iterator can only produce values once.

If we create an iterator from a generator function and a collection data, the iterator will only
produce the data one time. After that, it will appear to be an empty sequence.

Here's an example:

>>> typical_iterator = iter([0, 1, 2, 3, 4])
>>> sum(typical_iterator)
10
>>> sum(typical_iterator)
0

We created an iterator over a sequence of values by manually applying the iter() function
to a literal list object. The first time that the sum() function used the value of
typical_iterator, it consumed all five values. The next time we tried to apply any
function to the typical_iterator, there will be no more values to be consumed – the
iterator appears empty.

This basic one-time-only restriction drives some of the design considerations when working
with multiple kinds of generator functions in conjunction with map, filter, and reduce. We'll
often need to cache intermediate results so that we can perform multiple reductions on the
data.

Getting ready
In the Using stacked generator expressions recipe, we looked at data that required a number of
processing steps. We merged rows with a generator function. We filtered some rows to
remove them from the resulting data. Additionally, we applied a number of mappings to
the data to convert dates and times to more useful information.



Functional and Reactive Programming Features

[ 388 ]

We'd like to supplement this with two more reductions to get some average and variance
information. These statistics will help us understand the data more fully.

We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height

engine off fuel height

Other notes

10/25/2013 08:24 29

13:15 27

calm seas – anchor solomon's island

10/26/2013 09:12 27

18:25 22

choppy – anchor in jackson's creek

The initial processing was a sequence of operations to change the organization of the data,
filter out the headings, and compute some useful values.

How to do it…
Start with the goal. In this case, we'd like a function we can use like this:1.

      >>> round(sum_fuel(clean_data(row_merge(log_rows))), 3)
      7.0

This shows a three-step pattern for this kind of processing. These three steps will
define our approach to creating the various parts of this reduction:

First, transform the data organization. This is sometimes called1.
normalizing the data. In this case, we'll use a function called
row_merge(). See the Using stacked generator expressions recipe for more
information on this.
Second, use mapping and filtering to clean and enrich the data. This is2.
defined as a single function, clean_data().



Functional and Reactive Programming Features

[ 389 ]

Finally, reduce the data to a sum with sum_fuel(). There are a variety of3.
other reductions that make sense. We might compute averages, or sums of
other values. There are a lot of reductions we might want to apply.

If needed, define the data structure normalization function. This almost always2.
has to be a generator function. A structural change can't be applied via map():

        from ch08_r02 import row_merge

As shown in the Using stacked generator expressions recipe, this generator function
will restructure the data from three rows per each leg of the voyage to one row
per leg. When all of the columns are in a single row, the data is much easier to
work with.

Define the overall data cleansing and enrichment data function. This is a3.
generator function that's built from simpler functions. It's a stack of map() and
filter() operations that will derive data from the source fields:

         def clean_data(source):
            namespace_iter = map(make_namespace, source)
            fitered_source = filter(remove_date, namespace_iter)
            start_iter = map(start_datetime, fitered_source)
            end_iter = map(end_datetime, start_iter)
            delta_iter = map(duration, end_iter)
            fuel_iter = map(fuel_use, delta_iter)
            per_hour_iter = map(fuel_per_hour, fuel_iter)
            return per_hour_iter

Each of the map() and filter() operations involves a small function to do a
single conversion or computation on the data.

Define the individual functions that are used for cleansing and deriving4.
additional data.
Convert the merged rows of data into a SimpleNamespace. This will allow us to5.
use names such as start_time instead of row[1]:

        from types import SimpleNamespace
        def make_namespace(row):
            ns = SimpleNamespace(
                date = row[0],
                start_time = row[1],
                start_fuel_height = row[2],
                end_time = row[4],
                end_fuel_height = row[5],
                other_notes = row[7]



Functional and Reactive Programming Features

[ 390 ]

            )
            return ns

This function builds a SimpleNamspace from selected columns of the source data.
Columns three and six were omitted because they were always zero-length
strings, ''.

Here's the function used by the filter() to remove the heading rows. If needed,6.
this can be expanded to remove blank lines or other bad data from the source.
The idea is to remove bad data as soon as possible in the processing:

        def remove_date(row_ns):
            return not(row_ns.date == 'date')

Convert data to a usable form. First, we'll convert strings to dates. The next two7.
functions depend on this timestamp() function that converts a date string from
one column plus a time string from another column into a proper datetime
instance:

        import datetime
        def timestamp(date_text, time_text):
            date = datetime.datetime.strptime(date_text, "%m/%d/%y").date()
            time = datetime.datetime.strptime(time_text, "%I:%M:%S
%p").time()
            timestamp = datetime.datetime.combine(date, time)
            return timestamp

This allows us to do simple date calculations based on the datetime library. In
particular, subtracting two timestamps will create a timedelta object that has the
exact number of seconds between any two dates.

Here's how we'll use this function to create a proper timestamp for the start of the
leg and the end of the leg:

         def start_datetime(row_ns):
            row_ns.start_timestamp = timestamp(row_ns.date,
row_ns.start_time)
            return row_ns

        def end_datetime(row_ns):
            row_ns.end_timestamp = timestamp(row_ns.date, row_ns.end_time)
            return row_ns



Functional and Reactive Programming Features

[ 391 ]

Both of these functions will add a new attribute to the SimpleNamespace and
also return the namespace object. This allows these functions to be used in a stack
of map() operations. We can also rewrite these functions to replace the mutable
SimpleNamespace with an immutable namedtuple() and still preserve the stack
of map() operations.

Compute derived time data. In this case, we can compute a duration too. Here's a8.
function which must be performed after the previous two:

         def duration(row_ns):
            travel_time = row_ns.end_timestamp - row_ns.start_timestamp
            row_ns.travel_hours = round(travel_time.total_seconds()/60/60,
1)
            return row_ns

This will convert the difference in seconds into a value in hours. It will also round
to the nearest tenth of an hour. Any more accuracy than this is largely noise. The
departure and arrival times are (generally) off by at least a minute; they depend
on when the skipper remembered to look at her watch. In some cases, she may
have estimated the time.

Compute other metrics that are needed for the analyses. This includes creating9.
the height values that are converted to float numbers. The final calculation is
based on two other calculated results:

        def fuel_use(row_ns):
            end_height = float(row_ns.end_fuel_height)
            start_height = float(row_ns.start_fuel_height)
            row_ns.fuel_change = start_height - end_height
            return row_ns

        def fuel_per_hour(row_ns):
            row_ns.fuel_per_hour = row_ns.fuel_change/row_ns.travel_hours
            return row_ns

The fuel per hour calculation depends on the entire preceding stack of
calculations. The travel hours comes from the start and end timestamps which are
computed separately.



Functional and Reactive Programming Features

[ 392 ]

How it works…
The idea is to create a composite operation that follows a common template:

Normalize the structure: This often requires a generator function to read data in1.
one structure and yield data in a different structure.
Filter and cleanse: This may involve a simple filter as shown in this example.2.
We'll look at more complex filters later.
Derive data via mappings or via lazy properties of class definitions: A class with3.
lazy properties is a reactive object. Any change to the source property should
cause changes to the computed properties.

In some cases, we may want to combine the basic facts with other dimensional descriptions.
For example, we might need to look up reference data, or decode coded fields.

Once we've done the preliminary steps, we have data which is usable for a variety of
analyses. Many times, this is a reduce operation. The initial example computes a sum of fuel
use. Here are two other examples:

    from statistics import *
    def avg_fuel_per_hour(iterable):
        return mean(row.fuel_per_hour for row in iterable)
    def stdev_fuel_per_hour(iterable):
        return stdev(row.fuel_per_hour for row in iterable)

These functions apply the mean() and stdev() functions to the fuel_per_hour attribute
of each row of the enriched data.

We might use this as follows:

>>> round(avg_fuel_per_hour(
...    clean_data(row_merge(log_rows))), 3)
0.48

We've used the clean_data(row_merge(log_rows)) mapping pipeline to cleanse and
enrich the raw data. Then we applied a reduction to this data to get the value we're
interested in.

We now know that our 30″ tall tank is good for about 60 hours of motoring. At 6 knots, we
can go about 360 nautical miles on a full tank of fuel.



Functional and Reactive Programming Features

[ 393 ]

There's more…
As we noted, we can only perform one reduction on an iterable source of data. If we want to
compute several averages, or the average and the variance, we'll need to use a slightly
different pattern.

In order to compute multiple summaries of the data, we'll need to create a sequence object
of some kind that can be summarized repeatedly:

    data = tuple(clean_data(row_merge(log_rows)))
    m = avg_fuel_per_hour(data)
    s = 2*stdev_fuel_per_hour(data)
    print("Fuel use {m:.2f} ±{s:.2f}".format(m=m, s=s))

Here, we've created a tuple from the cleaned and enriched data. This tuple will produce
an iterable, but unlike a generator function, it can produce this iterable many times. We can
compute two summaries by using the tuple object.

This design involves a large number of transformations of source data. We've built it using
a stack of map, filter, and reduce operations. This provides a great deal of flexibility.

The alternative approach is to create a class definition. A class can be designed with lazy
properties. This would create a kind of reactive design embodied in a single block of code.
See the Using properties for lazy attributes recipe for examples of this.

We can also use the tee() function in the itertools module for this kind of processing:

    from itertools import tee
    data1, data2 = tee(clean_data(row_merge(log_rows)), 2)
    m = avg_fuel_per_hour(data1)
    s = 2*stdev_fuel_per_hour(data2)

We've used tee() to create two clones of the iterable output from
clean_data(row_merge(log_rows)). We can use these two clones to compute a mean
and a standard deviation.

See also
We looked at how to combine mapping and filtering in the Using stacked generator
expressions recipe.
We looked at lazy properties in the Using properties for lazy attributes recipe. Also,
this recipe looks at some important variations on map-reduce processing.



Functional and Reactive Programming Features

[ 394 ]

Implementing “there exists” processing
The processing patterns we've been looking at can all be summarized with the quantifier for
all. It's been an implicit part of all of the processing definitions:

Map: For all items in the source, apply the map function. We can use the
quantifier to make this explicit: {M(x) ∀ x: x ∈ C}
Filter: For all items in the source, pass those for which the filter function is true.
Here also, we've used the quantifier to make this explicit. We want all values, x,
from a set, C, if some function, F(x), is true: {x ∀ x: x ∈ C if F(x)}
Reduce: For all items in the source, use the given operator and base value to
compute a summary. The rule for this is a recursion that clearly works for all

values of the source collection or iterable:  .

We've used the notation C0..n in the Pythonic sense of an open-ended range. Values with
index positions of 0 and n-1 are included, but the value at index position n is not included.
This means that there are no elements in this range.

What's more important is that C0..n-1 ∪ Cn-1= C. That is, when we take the last item from the
range, no items are lost—we're always processing all the items in the collection. Also, we
aren't processing item Cn-1 twice. It's not part of the C0..n-1 range, but it is a standalone item
Cn-1.

How can we write a process using generator functions that stops when the first value
matches some predicate? How do we avoid for all and quantify our logic with there exists?

Getting ready
There's another quantifier that we might need—there exists, ∃. Let's look at an example of an
existence test.

We might want to know whether a number is prime or composite. We don't need all of the
factors of a number to know it's not prime. It's sufficient to show that a factor exists to know
that a number is not prime.



Functional and Reactive Programming Features

[ 395 ]

We can define a prime predicate, P(n), like this:

P(n) = ¬∃i: 2 ≤ i < n if n mod i = 0

A number, n, is prime if there does not exist a value of i (between 2 and the number) that
divides the number evenly. We can move the negation around and rephrase this as follows:

¬P(n) = ∃i: 2 ≤ i < n if n mod i = 0

A number, n, is composite (non-prime) if there exists a value, i, between 2 and the number
itself, that divides the number evenly. We don't need to know all such values. The existence
of one value that satisfies the predicate is sufficient.

Once we've found such a number, we can break early from any iteration. This requires the
break statement inside for and if statements. Because we're not processing all values, we
can't easily use a higher-order function such as map(), filter(), or reduce().

How to do it…
Define a generator function template that will skip items until the required one is1.
found. This will yield only one value that passes the predicate test:

        def find_first(predicate, iterable):
            for item in iterable:
                if predicate(item):
                    yield item
                    break  

Define a predicate function. For our purposes, a simple lambda object will do.2.
Also, a lambda allows us to work with a variable bound to the iteration and a
variable that's free from the iteration. Here's the expression:

         lambda i: n % i == 0

We're relying on a non-local value, n, in this lambda. This will be global to the
lambda, but still local to the overall function. If n % i is 0, then i is a factor of n,
and n is not prime.



Functional and Reactive Programming Features

[ 396 ]

Apply the function with the given range and predicate:3.

         import math
        def prime(n):
            factors = find_first(
                lambda i: n % i == 0,
                range(2, int(math.sqrt(n)+1)) )
            return len(list(factors)) == 0

If the factors iterable has an item, then n is composite. Otherwise, there are no
values in the factors iterable, which means n is a prime number.

As a practical matter, we don't need to test every single number between two and
n to see whether n is prime. It's only necessary to test values, i, such that 2 ≤ i <
√n.

How it works…
In the find_first() function, we introduce a break statement to stop processing the
source iterable. When the for statement stops, the generator will reach the end of the
function, and return normally.

The process which is consuming values from this generator will be given the
StopIteration exception. This exception means the generator will produce no more
values. The find_first() function raises as an exception, but it's not an error. It's the
normal way to signal that an iterable has finished processing the input values.

In this case, the signal means one of two things:

If a value has been yielded, the value is a factor of n
If no value was yielded, then n is prime

This small change of breaking early from the for statement makes a dramatic difference in
the meaning of the generator function. Instead of processing all values from the source, the
find_first() generator will stop processing as soon as the predicate is true.

This is different from a filter, where all of the source values will be consumed. When using
the break statement to leave the for statement early, some of the source values may not be
processed.



Functional and Reactive Programming Features

[ 397 ]

There's more…
In the itertools module, there is an alternative to this find_first() function. The
takewhile() function uses a predicate function to keep taking values from the input.
When the predicate becomes false, then the function stops processing values.

We can easily change the lambda from lambda i: n % i == 0 to lambda i: n % i !=
0. This will allow the function to take values while they are not factors. Any value that is a
factor will stop the processing by ending the takewhile() process.

Let's look at two examples. We'll test 13 for being prime. We need to check numbers in the
range. We'll also test 15 for being prime:

>>> from itertools import takewhile
>>> n = 13
>>> list(takewhile(lambda i: n % i != 0, range(2, 4)))
[2, 3]
>>> n = 15
>>> list(takewhile(lambda i: n % i != 0, range(2, 4)))
[2]

For a prime number, all of the test values pass the takewhile() predicate. The result is a
list of non-factors of the given number, n. If the set of non-factors is the same as the set of
values being tested, then n is prime. In the case of 13, both collections of values are [2, 3].

For a composite number, some values pass the takewhile() predicate. In this example, 2
is not a factor of 15. However, 3 is a factor; this does not pass the predicate. The collection
of non-factors, [2], is not the same as the set of values collection that was tested, [2, 3].

We wind up with a function that looks like this:

    def prime_t(n):
        tests = set(range(2, int(math.sqrt(n)+1)))
        non_factors = set(
            takewhile(
                lambda i: n % i != 0,
                tests
            )
        )
        return tests == non_factors



Functional and Reactive Programming Features

[ 398 ]

This creates two intermediate set objects, tests and non_factors. If all of the tested
values are not factors, the number is prime. The function shown previously, based on
find_first() only creates one intermediate list object. That list will have at most one
member, making the data structure much smaller.

The itertools module
There are a number of additional functions in the itertools module that we can use to
simplify complex map-reduce applications:

filterfalse(): It is the companion to the built-in filter() function. It inverts
the predicate logic of the filter() function; it rejects items for which the
predicate is true.
zip_longest(): It is the companion to the built-in zip() function. The built-in
zip() function stops merging items when the shortest iterable is exhausted. The
zip_longest() function will supply a given fill value to pad short iterables to
match the longest.
starmap(): It is a modification to the essential map() algorithm. When we
perform map(function, iter1, iter2), then an item from each iterable is
provided as two positional arguments to the given function. The starmap()
expects an iterable to provide a tuple that contains the argument values. In effect:

        map = starmap(function, zip(iter1, iter2))

There are still others that we might use, too:

accumulate(): This function is a variation on the built-in sum() function. This
will yield each partial total that's produced before reaching the final sum.
chain(): This function will combine iterables in order.
compress(): This function uses one iterable as a source of data and the other as a
source of selectors. When the item from the selector is true, the corresponding
data item is passed. Otherwise, the data item is rejected. This is an item-by-item
filter based on true-false values.
dropwhile(): While the predicate to this function is true, it will reject values.
Once the predicate becomes false, it will pass all remaining values. See
takewhile().
groupby(): This function uses a key function to control the definition of groups.
Items with the same key value are grouped into separate iterators. For the results
to be useful, the original data should be sorted into order by the keys.



Functional and Reactive Programming Features

[ 399 ]

islice(): This function is like a slice expression, except it applies to an iterable,
not a list. Where we use list[1:] to discard the first row of a list, we can use
islice(iterable, 1) to discard the first item from an iterable.
takewhile(): While the predicate is true, this function will pass values. Once
the predicate becomes false, stop processing any remaining values. See
dropwhile().
tee(): This splits a single iterable into a number of clones. Each clone can then
be consumed separately. This is a way to perform multiple reductions on a single
iterable source of data.

Creating a partial function
When we look at functions such as reduce(), sorted(), min(), and max(), we see that
we'll often have some permanent argument values. For example, we might find a need to
write something like this in several places:

    reduce(operator.mul, ..., 1)

Of the three parameters to reduce(), only one – the iterable to process – actually changes.
The operator and the base value arguments are essentially fixed at operator.mul and 1.

Clearly, we can define a whole new function for this:

    def prod(iterable):
        return reduce(operator.mul, iterable, 1)

However, Python has a few ways to simplify this pattern so that we don't have to repeat the
boilerplate def and return statements.

How can we define a function that has some parameters provided in advance?

Note that the goal here is different from providing default values. A partial function doesn't
provide a way to override the defaults. Instead, we want to create as many partial functions
as we need, each with specific parameters bound in advance.



Functional and Reactive Programming Features

[ 400 ]

Getting ready
Some statistical modeling is done with standard scores, sometimes called z-scores. The idea
is to standardize a raw measurement onto a value that can be easily compared to a normal
distribution, and easily compared to related numbers that are measured in different units.

The calculation is this:

z = (x – μ)/σ

Here, x is the raw value, μ is the population mean, and σ is the population standard
deviation. The value z will have a mean of 0 and a standard deviation of 1. This makes it
particularly easy to work with.

We can use this value to spot outliers – values which are suspiciously far from the mean.
We expect that (about) 99.7% of our z values will be between -3 and +3.

We could define a function like this:

    def standarize(mean, stdev, x):
        return (x-mean)/stdev

This standardize() function will compute a z-score from a raw score, x. This function has
two kinds of parameters:

The values for mean and stdev are essentially fixed. Once we've computed the
population values, we'll have to provide them to the standardize() function
over and over again.
The value for x is more variable.

Let's say we've got a collection of data samples in big blocks of text:

    text_1 = '''10  8.04
    8       6.95
    13      7.58
    ...
    5       5.68
    '''



Functional and Reactive Programming Features

[ 401 ]

We've defined two small functions to convert this data to pairs of numbers. The first simply
breaks each block of text to a sequence of lines, and then breaks each line into a pair of text
items:

    text_parse = lambda text: (r.split() for r in text.splitlines())

We've used the splitlines() method of the text block to create a sequence of lines. We
put this into a generator function so that each individual line could be assigned to r. Using
r.split() separates the two blocks of text in each row.

If we use list(text_parse(text_1)), we'll see data like this:

    [['10', '8.04'],
     ['8', '6.95'],
     ['13', '7.58'],
     ...
     ['5', '5.68']]

We need to further enrich this data to make it more usable. We need to convert the strings
to proper float values. While doing that, we'll create SimpleNamespace instances from each
item:

    from types import SimpleNamespace
    row_build = lambda rows: (SimpleNamespace(x=float(x), y=float(y)) for
x,y in rows)

The lambda object creates a SimpleNamespace instance by applying the float() function
to each string item in each row. This gives us data we can work with.

We can apply these two lambda objects to the data to create some usable datasets. Earlier,
we showed text_1. We'll assume that we have a second, similar set of data assigned to
text_2:

    data_1 = list(row_build(text_parse(text_1)))
    data_2 = list(row_build(text_parse(text_2)))

This creates data from two blocks of similar text. Each has pairs of data points. The
SimpleNamespace object has two attributes, x and y, assigned to each row of the data.

Note that this process creates instances of types.SimpleNamespace. When we print them,
they will be displayed using the class namespace. These are mutable objects, so that we can
update each one with the standardized z-score.



Functional and Reactive Programming Features

[ 402 ]

Printing data_1 looks like this:

    [namespace(x=10.0, y=8.04), namespace(x=8.0, y=6.95),
namespace(x=13.0, y=7.58),
    ...,
    namespace(x=5.0, y=5.68)]

As an example, we'll compute a standardized value for the x attribute. This means getting
mean and standard deviation. Then we'll need to apply these values to standardize data in
both of our collections. It looks like this:

    import statistics
    mean_x = statistics.mean(item.x for item in data_1)
    stdev_x = statistics.stdev(item.x for item in data_1)

    for row in data_1:
        z_x = standardize(mean_x, stdev_x, row.x)
        print(row, z_x)

    for row in data_2:
        z_x = standardize(mean_x, stdev_x, row.x)
        print(row, z_x)

Providing the mean_v1, stdev_v1 values each time we evaluate standardize() can
clutter an algorithm with details that aren't deeply important. In some rather complex
algorithms, the clutter can lead to more confusion than clarity.

How to do it…
In addition to simply using the def statement to create a function that has a partial set of
argument values, we have two other ways to create a partial function:

Using the partial() function from the functools module
Creating a lambda object



Functional and Reactive Programming Features

[ 403 ]

Using functools.partial()
Import the partial function from functools:1.

        from functools import partial

Create an object using partial(). We provide the base function, plus the2.
positional arguments that need to be included. Any parameters which are not
supplied when the partial is defined must be supplied when the partial is
evaluated:

        z = partial(standardize, mean_x, stdev_x)

We've provided values for the first two positional parameters, mean and stdev.3.
The third positional parameter, x, must be supplied in order to compute a value.

Creating a lambda object
Define a lambda object that binds the fixed parameters:1.

        lambda x: standardize(mean_v1, stdev_v1, x)

Create an object using lambda:2.

        z = lambda x: standardize(mean_v1, stdev_v1, x)

How it works…
Both techniques create a callable object – a function – named z() that has the values for
mean_v1 and stdev_v1 already bound to the first two positional parameters. With either
approach, we have processing that can look like this:

    for row in data_1:
        print(row, z(row.x))

    for row in data_2:
        print(row, z(row.x))

We've applied the z() function to each set of data. Because the function has some
parameters already applied, its use here looks very simple.



Functional and Reactive Programming Features

[ 404 ]

We can also do the following because each row is a mutable object:

    for row in data_1:
        row.z = z(row.v1)

    for row in data_2:
        row.z = z(row.v1)

We've updated the row to include a new attribute, z, with the value of the z() function. In
a complex algorithm, tweaking the row objects like this may be a helpful simplification.

There's a significant difference between the two techniques for creating the z() function:

The partial() function binds the actual values of the parameters. Any
subsequent change to the variables that were used doesn't change the definition
of the partial function that's created. After creating z =
partial(standardize(mean_v1, stdev_v1)), changing the value of
mean_v1 or stdev_v1 doesn't have an impact on the partial function, z().
The lambda object binds the variable name, not the value. Any subsequent
change to the variable's value will change the way the lambda behaves. After
creating z = lambda x: standardize(mean_v1, stdev_v1, x), changing
the value of mean_v1 or stdev_v1 changes the values used by the lambda object,
z().

We can modify the lambda slightly to bind values instead of names:

    z = lambda x, m=mean_v1, s=stdev_v1: standardize(m, s, x)

This extracts the values of mean_v1 and stdev_v1 to create default values for the lambda
object. The values of mean_v1 and stdev_v1 are now irrelevant to proper operation of the
lambda object, z().

There's more…
We can provide keyword argument values as well as positional argument values when
creating a partial function. In many cases, this works nicely. There are a few cases where it
doesn't work.



Functional and Reactive Programming Features

[ 405 ]

The reduce() function, specifically, can't be trivially turned into a partial function. The
parameters aren't in the ideal order for creating a partial. The reduce() function has the
following notional definition. This is not how it's defined – this is how it appears to be
defined:

    def reduce(function, iterable, initializer=None)

If this was the actual definition, we could do this:

    prod = partial(reduce(mul, initializer=1))

Practically, we can't do this because the definition of reduce() is a bit more complex than it
might appear. The reduce() function doesn't permit named argument values. This means
that we're forced to use the lambda technique:

>>> from operator import mul
>>> from functools import reduce
>>> prod = lambda x: reduce(mul, x, 1)

We've used a lambda object to define a function, prod(), with only one parameter. This
function uses reduce() with two fixed parameters, and one variable parameter.

Given this definition for prod(), we can define other functions that rely on computing
products. Here's a definition of the factorial function:

>>> factorial = lambda x: prod(range(2,x+1))
>>> factorial(5)
120

The definition of factorial() depends on prod(). The definition of prod() is a kind of
partial function that uses reduce() with two fixed parameter values. We've managed to
use a few definitions to create a fairly sophisticated function.

In Python, a function is an object. We've seen numerous ways that functions can be an
argument to a function. A function that accepts another function as an argument is
sometimes called a higher-order function.

Similarly, functions can also return a function object as a result. This means that we can
create a function like this:

    def prepare_z(data):
        mean_x = statistics.mean(item.x for item in data_1)
        stdev_x = statistics.stdev(item.x for item in data_1)
        return partial(standardize, mean_x, stdev_x)



Functional and Reactive Programming Features

[ 406 ]

We've defined a function over a set of (x,y) samples. We've computed the mean and
standard deviation of the x attribute of each sample. We've then created a partial function
which can standardize scores based on the computed statistics. The result of this function is
a function we can use for data analysis:

    z = prepare_z(data_1)
    for row in data_2:
        print(row, z(row.x))

When we evaluated the prepare_z() function, it returned a function. We assigned this
function to a variable, z. This variable is a callable object; it's the function z() that will
standardize a score based on the sample mean and standard deviation.

Simplifying complex algorithms with
immutable data structures
The concept of a stateful object is a common feature of object-oriented programming. We
looked at a number of techniques related to objects and state in Chapter 6, Basics of Classes
and Objects, and Chapter 7, More Advanced Class Design. A great deal of the emphasis of
object-oriented design is creating methods that mutate an object's state.

We've also looked at some stateful functional programming techniques in the Using stacked
generator expressions, Combining map and reduce transformations, and Creating a partial function
recipes. We've used types.SimpleNamespace because it creates a simple, stateful object
with easy to use attribute names.

In most of these cases, we've been working with objects that have a Python dict object that
defines the attributes. The one exception is the Optimizing small objects with __slots__ recipe,
where the attributes are fixed by the __slots__ attribute definition.

Using a dict object to store an object's attributes has several consequences:

We can trivially add and remove attributes. We're not limited to simply setting
and getting defined attributes; we can create new attributes too.
Each object uses a somewhat larger amount of memory than is minimally
necessary. This is because dictionaries use a hashing algorithm to locate keys and
values. The hash processing generally requires more memory than other
structures such as a list or a tuple. For very large amounts of data, this can
become a problem.



Functional and Reactive Programming Features

[ 407 ]

The most significant issue with stateful object-oriented programming is that it can
sometimes be challenging to write clear assertions about state change of an object. Rather
than defining assertions about state change, it's much easier to create entirely new objects
with a state that can be simply mapped to the object's type. This, coupled with Python type
hints, can sometimes create more reliable, and easier to test, software.

When we create new objects, the relationships between data items and computations can be
captured explicitly. The mypy project provides tools that can analyze those type hints to
provide some confirmation that the objects used in a complex algorithm are used properly.

In some cases, we can also reduce the amount of memory by avoiding stateful objects in the
first place. We have two techniques for doing this:

Using class definitions with __slots__: See the Optimizing small objects with
__slots__ recipe for this. These objects are mutable, so we can update attributes
with new values.
Using immutable tuples or namedtuples: See the Designing classes with little
unique processing recipe for some background on this. These objects are
immutable. We can create new objects, but we can't change the state of an object.
The cost savings from less memory overall have to be balanced against the
additional costs of creating new objects.

Immutable objects can be somewhat faster that mutable objects. The more important benefit
is to algorithm design. In some cases, writing functions that create new immutable objects
from old immutable objects can be simpler, and easier to test and debug, than algorithms
that work with stateful objects. Writing type hints can help this process.

Getting ready
As we noted in the Using stacked generator expressions and Implementing “there exists”
processing recipes, we can only process a generator once. If we need to process it more than
one time, the iterable sequence of objects must be transformed into a complete collection
like a list or tuple.



Functional and Reactive Programming Features

[ 408 ]

This often leads to a multi-phase process:

Initial extract of the data: This might involve a database query, or reading a .csv
file. This phase can be implemented as a function that yields rows or even returns
a generator function.
Cleansing and filtering the data: This may involve a stack of generator
expressions that can process the source just once. This phase is often
implemented as a function that includes several map and filter operations.
Enriching the data: This, too, may involve a stack of generator expressions that
can process the data one row at a time. This is typically a series of map operations
to create new, derived data from existing data.
Reducing or summarizing the data: This may involve multiple summaries. In
order for this to work, the output from the enrichment phase needs to be a
collection object that can be processed more than one time.

In some cases, the enrichment and summary processes may be interleaved. As we saw in
the Creating a partial function recipe, we might do some summarization followed by more
enrichment.

There are two common strategies for handling the enriching phase:

Mutable objects: This means that enrichment processing adds or sets values of
attributes. This can be done with eager calculations as attributes are set. See the
Using settable properties to update eager attributes recipe. It can also be done with
lazy properties. See the Using properties for lazy attributes recipe. We've shown
examples using types.SimpleNamespace where the computation is done in
functions separate from the class definition.
Immutable objects: This means that the enrichment process creates new objects
from old objects. Immutable objects are derived from tuple or are a type created
by namedtuple(). These objects have the advantage of being very small and
very fast. Also, the lack of any internal state change can make them very simple.

Let's say we've got a collection of data samples in big blocks of text:

    text_1 = '''10  8.04
    8       6.95
    13      7.58
    ...
    5       5.68
    '''



Functional and Reactive Programming Features

[ 409 ]

Our goal is a three-step process that includes the get, cleanse, and enrich operations:

    data = list(enrich(cleanse(get(text))))

The get() function acquires the data from a source; in this case, it would parse the big
block of text. The cleanse() function would remove blank lines and other unusable data.
The enrich() function would do the final calculation on the cleaned data. We'll look at
each phase of this pipeline separately.

The get() function is limited to pure text processing, doing as little filtering as possible:

    from typing import *

    def get(text: str) -> Iterator[List[str]]:
        for line in text.splitlines():
            if len(line) == 0:
                continue
            yield line.split()

In order to write type hints, we've imported the typing module. This allows us to make an
explicit declaration about the inputs and outputs of this function. The get() function
accepts a string, str. It yields a List[str] structure. Each line of input is decomposed to a
sequence of values.

This function will generate all non-empty lines of data. There is a small filtering feature to
this, but it's related to a small technical issue around data serialization, not an application-
specific filtering rule.

The cleanse() function will generate named tuples of data. This will apply a number of
rules to assure that the data is valid:

    from collections import namedtuple

    DataPair = namedtuple('DataPair', ['x', 'y'])

    def cleanse(iterable: Iterable[List[str]]) -> Iterator[DataPair]:
        for text_items in iterable:
            try:
                x_amount = float(text_items[0])
                y_amount = float(text_items[1])
                yield DataPair(x_amount, y_amount)
            except Exception as ex:
                print(ex, repr(text_items))



Functional and Reactive Programming Features

[ 410 ]

We've defined a namedtuple with the uninformative name of DataPair. This item has two
attributes, x, and y. If the two text values can be properly converted to float, then this
generator will yield a useful DataPair instance. If the two text values cannot be converted,
this will display an error for the offending pair.

Note the technical subtlety that's part of the mypy project's type hints. A function with a
yield statement is an iterator. We can use it as if it's an iterable object because of a formal
relationship that says iterators are a kind of iterable.

Additional cleansing rules could be applied here. For example, assert statements could be
added inside the try statement. Any exception raised by unexpected or invalid data will
stop processing the given row of input.

Here's the result of this initial cleanse() and get() processing:

    list(cleanse(get(text)))
    The output looks like this:
    [DataPair(x=10.0, y=8.04),
     DataPair(x=8.0, y=6.95),
     DataPair(x=13.0, y=7.58),
     ...,
     DataPair(x=5.0, y=5.68)]

In this example, we'll rank order by the y value of each pair. This requires sorting the data
first, and then yielding the sorted values with an additional attribute value, the y rank
order.

How to do it…
Define the enriched namedtuple:1.

        RankYDataPair = namedtuple('RankYDataPair', ['y_rank', 'pair'])

Note that we've specifically included the original pair as a data item in this new
data structure. We don't want to copy the individual fields; instead, we've
incorporated the original object as a whole.

Define the enrichment function:2.

        PairIter = Iterable[DataPair]
        RankPairIter = Iterator[RankYDataPair]

        def rank_by_y(iterable:PairIter) -> RankPairIter:



Functional and Reactive Programming Features

[ 411 ]

We've included type hints on this function to make it clear precisely what types
are expected and returned by this enrichment function. We defined the type hints
separately so that they're shorter and so that they can be reused in other functions.

Write the body of the enrichment. In this case, we're going to be rank ordering, so3.
we'll need sorted data, using the original y attribute. We're creating new objects
from the old objects, so the function yields instances of RankYDataPair:

        all_data = sorted(iterable, key=lambda pair:pair.y)
        for y_rank, pair in enumerate(all_data, start=1):
            yield RankYDataPair(y_rank, pair)

We've used enumerate() to create the rank order numbers to each value. The
starting value of 1 is sometimes handy for some statistical processing. In other
cases, the default starting value of 0 will work out well.

Here's the whole function:

    def rank_by_y(iterable: PairIter) -> RankPairIter:
        all_data = sorted(iterable, key=lambda pair:pair.y)
        for y_rank, pair in enumerate(all_data, start=1):
            yield RankYDataPair(y_rank, pair)

We can use this in a longer expression to get, cleanse, and then rank. The use of type hints
can make this clearer than an alternative involving stateful objects. In some cases, there can
be a very helpful improvement in the clarity of the code.

How it works…
The result of the rank_by_y() function is a new object which contains the original object,
plus the result of the enrichment. Here's how we'd use this stacked sequence of generators:
rank_by_y(), cleanse(), and get():

>>> data = rank_by_y(cleanse(get(text_1)))
>>> pprint(list(data))
[RankYDataPair(y_rank=1, pair=DataPair(x=4.0, y=4.26)),
 RankYDataPair(y_rank=2, pair=DataPair(x=7.0, y=4.82)),
 RankYDataPair(y_rank=3, pair=DataPair(x=5.0, y=5.68)),
 ...,
 RankYDataPair(y_rank=11, pair=DataPair(x=12.0, y=10.84))]



Functional and Reactive Programming Features

[ 412 ]

The data is in ascending order by the y value. We can now use these enriched data values
for further analysis and calculation.

Creating new objects can – in many cases – be more expressive of the algorithm than
changing the state of objects. This is often a subjective judgement.

The Python type hints work best with the creation of new objects. Consequently, this
technique can provide strong evidence that a complex algorithm is correct. Using mypy
makes immutable objects more appealing.

Finally, we may sometimes see a small speed-up when we use immutable objects. This
relies on a balance between three features of Python to be effective:

Tuples are small data structures. Using these can improve performance.
Any relationship between objects in Python involves creating an object reference,
a data structure that's also very small. A number of related immutable objects
might be smaller than a mutable object.
Object creation can be costly. Creating too many immutable objects outweighs the
benefits.

The memory savings from the first two features must be balanced against the processing
cost from the third feature. Memory savings can lead to better performance when there's a
huge volume of data that constrains processing speeds.

For small examples like this one, the volume of data is so tiny that the object creation cost is
large compared with any cost savings from reducing the volume of memory in use. For
larger sets of data, the object creation cost may be less than the cost of running low on
memory.

There's more…
The get() and cleanse() functions in this recipe both refer to a similar data structure:
Iterable[List[str]] and Iterator[List[str]]. In the collections.abc module,
we see that Iterable is the generic definition, and Iterator is a special case of Iterable.

The mypy release used for this book—mypy 0.2.0-dev—is very particular about functions
with the yield statement being defined as an Iterator. A future release may relax this
strict check of the subclass relationship, allowing us to use one definition for both cases.



Functional and Reactive Programming Features

[ 413 ]

The typing module includes an alternative to the namedtuple() function: NamedTuple().
This allows specification of a data type for the various items within the tuple.

It looks like this:

    DataPair = NamedTuple('DataPair', [
            ('x', float),
            ('y', float)
        ]
    )

We use typing.NamedTuple() almost exactly the same way we use
collection.namedtuple(). The definition of the attributes uses a list of two-tuples
instead of a list of names. The two-tuples have a name and a type definition.

This supplemental type definition is used by mypy to determine whether the NamedTuple
objects are being populated correctly. It can also be used by other people to understand the
code and make proper modifications or extensions.

In Python, we can replace some stateful objects with immutable objects. There are a number
of limitations, though. The collections such as list, set, and dict, must remain as mutable
objects. Replacing these collections with immutable monads can work out well in other
programming languages, but it's not a part of Python.

Writing recursive generator functions with
the yield from statement
There are a number of algorithms that can be expressed neatly as recursions. In the
Designing recursive functions around Python's stack limits recipe, we looked at some recursive
functions that could be optimized to reduce the number of function calls.

When we look at some data structures, we see that they involve recursion. In particular,
JSON documents (as well as XML and HTML documents) can have a recursive structure. A
JSON document might include a complex object that contains other complex objects within
it.

In many cases, there are advantages to using generators for processing these kinds of
structures. How can we write generators that work with recursion? How does the yield
from statement save us from writing an extra loop?



Functional and Reactive Programming Features

[ 414 ]

Getting ready
We'll look at a way to search an ordered collection for all matching values in a complex data
structure. When working with complex JSON documents, we'll often model them as dict-of-
dict, and dict-of-list structures. Of course, a JSON document is not a two-level thing; dict-of-
dict really means dict-of-dict-of…. Similarly, dict-of-list really means dict-of-list-of… These
are recursive structures, which means a search must descend through the entire structure
looking for a particular key or value.

A document with this complex structure might look like this:

    document = {
        "field": "value1",
        "field2": "value",
        "array": [
            {"array_item_key1": "value"},
            {"array_item_key2": "array_item_value2"}
        ],
        "object": {
            "attribute1": "value",
            "attribute2": "value2"
        }
    }

This shows a document that has four keys, field, field2, array, and object. Each of
these keys has a distinct data structure as its associated value. Some of the values are
unique, and some are duplicated. This duplication is the reason why our search must find
all instances inside the overall document.

The core algorithm is a depth-first search. The output from this function will be a list of
paths that identify the target value. Each path will be a sequence of field names or field
names mixed with index positions.

In the previous example, the value value can be found in three places:

["array", 0, "array_item_key1"]: This path starts with the top-level field
named array, then visits item zero of a list, then a field named
array_item_key1

["field2"]: This path has just a single field name where the value is found
["object", "attribute1"]: This path starts with the top-level field named
object, then the child attribute1 of that field



Functional and Reactive Programming Features

[ 415 ]

The find_value() function yield both of these paths when it searches the overall
document for the target value. Here's the conceptual overview of this search function:

    def find_path(value, node, path=[]):
        if isinstance(node, dict):
            for key in node.keys():
                # find_value(value, node[key], path+[key])
                # This must yield multiple values
        elif isinstance(node, list):
            for index in range(len(node)):
                # find_value(value, node[index], path+[index])
                # This will yield multiple values
        else:
            # a primitive type
            if node == value:
                yield path

There are three alternatives in the find_path() process:

When the node is a dictionary, the value of each key must be examined. The
values may be any kind of data, so we'll use the find_path() function
recursively on each value. This will yield a sequence of matches.
If node is a list, the items for each index position must be examined. The items
may be any kind of data, so we'll use the find_path() function recursively on
each value. This will yield a sequence of matches.
The other choice is for the node to be a primitive value. The JSON specification
lists a number of primitives that may be present in a valid document. If the node
value is the target value, we've found one instance, and can yield this single
match.

There are two ways to handle the recursion. One is like this:

    for match in find_value(value, node[key], path+[key]):
        yield match

This seems to have too much boilerplate for such a simple idea. The other way is simpler
and a bit clearer.



Functional and Reactive Programming Features

[ 416 ]

How to do it…
Write out the complete for statement:1.

        for match in find_value(value, node[key], path+[key]):
            yield match

For debugging purposes, we might insert a print() function inside the body of
the for statement.

Replace this with a yield from statement once we're sure things work:2.

        yield from find_value(value, node[key], path+[key])

The complete depth-first find_value() search function will look like this:

    def find_path(value, node, path=[]):
        if isinstance(node, dict):
            for key in node.keys():
                yield from find_path(value, node[key], path+[key])
        elif isinstance(node, list):
            for index in range(len(node)):
                yield from find_path(value, node[index], path+[index])
        else:
            if node == value:
                yield path

When we use the find_path() function, it looks like this:

>>> list(find_path('array_item_value2', document))
[['array', 1, 'array_item_key2']]

The find_path() function is iterable. It can yield a number of values. We consumed all of
the results to create a list. In this example, the list had one item, ['array', 1,
'array_item_key2']. This item has the path to the matching item.

We can then evaluate document['array'][1]['array_item_key2'] to find the
referenced value.



Functional and Reactive Programming Features

[ 417 ]

When we look for a non-unique value, we might see a list like this:

>>> list(find_value('value', document))
[['array', 0, 'array_item_key1'],
 ['field2'],
 ['object', 'attribute1']]

The resulting list has three items. Each of these provides the path to an item with the target
value of value.

How it works…
The yield from X statement is shorthand for:

    for item in X:
        yield item

This lets us write a succinct recursive algorithm that will behave as an iterator and properly
yield multiple values.

This can also be used in contexts that don't involve a recursive function. It's entirely sensible
to use a yield from statement anywhere that an iterable result is involved. It's a big
simplification for recursive functions, however, because it preserves a clearly recursive
structure.

There's more…
Another common style of definition assembles a list using append operations. We can
rewrite this into an iterator and avoid the overhead of building a list object.

When factoring a number, we can define the set of prime factors like this:

If the value, x, is prime, it has only itself in the set of prime factors. Otherwise, there must be
some prime number, n, which is the least factor of x. We can assemble a set of factors
starting with n and including all factors of x/n. In order to be sure that only prime factors
are found, then n must be prime. If we search in ascending order, we'll find prime factors
before finding composite factors.



Functional and Reactive Programming Features

[ 418 ]

We have two ways to implement this in Python: one builds a list, the other generates
factors. Here's a list-building function:

    import math
    def factor_list(x):
        limit = int(math.sqrt(x)+1)
        for n in range(2, limit):
            q, r = divmod(x, n)
            if r == 0:
                return [n] + factor_list(q)
        return [x]

This factor_list() function will search all numbers, n, such that 2 ≤ n < √x. The first
number that's a factor of x will be the least factor. It will also be prime. We'll—of
course—search a number of composite values, wasting time. For example, after testing two
and three, we'll also test values for line four and six, even though they're composite and all
of their factors have already been tested.

This function builds a list object. If a factor, n, is found, it will start a list with that factor.
It will append factors from x // n. If there are no factors of x, then the value is prime, and
we return a list with just that value.

We can rewrite this to be an iterator by replacing the recursive calls with yield from. The
function will look like this:

    def factor_iter(x):
        limit = int(math.sqrt(x)+1)
        for n in range(2, limit):
            q, r = divmod(x, n)
            if r == 0:
                yield n
                yield from factor_iter(q)
                return
        yield x

As with the list-building version, this will search numbers, n, such that . When a factor is
found, then the function will yield the factor, followed by any other factors found by a
recursive call to factor_iter(). If no factors are found, the function will yield just the
prime number and nothing more.



Functional and Reactive Programming Features

[ 419 ]

Using an iterator allows us to build any kind of collection from the factors. Instead of being
limited to always creating a list, we can create a multiset using the collection.Counter
class. It would look like this:

>>> from collections import Counter
>>> Counter(factor_iter(384))
Counter({2: 7, 3: 1})

This shows us that:

384 = 27 × 3

In some cases, this kind of multiset is easier to work with than the list of factors.

See also
In the Designing recursive functions around Python's stack limits recipe, we cover the
core design patterns for recursive functions. This recipe provides an alternative
way to create the results.



9
Input/Output, Physical Format,

and Logical Layout
In this chapter, we'll look at the following recipes:

Using pathlib to work with filenames
Reading and writing files with context managers
Replacing a file while preserving the previous version
Reading delimited files with the CSV module
Reading complex formats using regular expressions
Reading JSON documents
Reading XML documents
Reading HTML documents
Upgrading CSV from DictReader to namedtuple reader
Upgrading CSV from DictReader to namespace reader
Using multiple contexts for reading and writing files

Introduction
The term file is overloaded with many meanings:

The operating system (OS) uses a file as a way to organize bytes of data. The
bytes might represent an image, some sound samples, words, or even an
executable program. All of the wildly different kinds of content are reduced to a
collection of bytes. Application software makes sense of the bytes.



Input/Output, Physical Format, and Logical Layout

[ 421 ]

There are two common kinds of OS files:

Block files exist on devices such as disks or solid state drives (SSD).
These files can be read in blocks of bytes. The OS can seek any specific
byte within the file at any time.
Character files are a way to manage a device like a network connection,
or a keyboard attached to a computer. The file is viewed as a stream of
individual bytes, which arrive at seemingly random points of time.
There's no way to seek forward or backwards in the stream of bytes.

The word file also defines a data structure used by the Python runtime. The
Python file abstraction wraps the various OS file implementations. When we
open a file, there is a binding between a Python abstraction, an OS
implementation, and the underlying collection of bytes on a disk or other device.
A file can also be interpreted as a collection of Python objects. From this
viewpoint, the bytes of the file represent Python objects such as strings or
numbers. Files of text strings are very common and easy to work with. The
Unicode characters are often encoded to bytes using the UTF-8 encoding scheme,
but there are are many alternatives. Python provides modules such as shelve
and pickle to encode more complex Python objects as bytes.

Often, we'll talk about how an object is serialized. When an object is written to a file, the
Python object state information is transformed to a series of bytes. Deserialization is the
reverse process of recovering a Python object from the bytes. We can also call this idea the
representation of state because we generally serialize the state of each individual object
separate from the class definition.

When we process data from files, we'll often need to make two distinctions:

The physical format of the data: This answers the fundamental question of what
Python data structure is encoded by the bytes in a file. The bytes might be
Unicode text. The text could represent comma-separated values (CSV) or JSON
documents. The physical format is commonly handled by Python libraries.
The logical layout of the data: The layout looks at the details of the various CSV
columns, or JSON fields within the data. In some cases, the columns may be
labeled, or there may be data that must be interpreted by position. This is
something that is often the responsibility of our application.

Both the physical format and logical layout are essential to interpreting the data on a file.
We'll look at a number of recipes for working with different physical formats. We'll also
look at ways to divorce our program from some aspects of logical layout.



Input/Output, Physical Format, and Logical Layout

[ 422 ]

Using pathlib to work with filenames
Most operating systems use a hierarchical path to identify a file. Here's an example
filename:

/Users/slott/Documents/Writing/Python Cookbook/code

This full pathname has the following elements:

The leading / means the name is absolute. It starts from the root of the filesystem.
In Windows, there can be an extra letter in front of the name, such as C:, to
distinguish the filesystems on each individual storage device. Linux and Mac OS
X treat all of the devices as a single, large filesystem.
The names such as Users, slott, Documents, Writing, Python Cookbook, and
code represent the directories (or folders) of the filesystem. There must be a top-
level Users directory. It must contain the slott subdirectory. This is true for
each name in the path.

In Windows, the OS uses \ to separate items on the path. Python uses /. Python's
standard / is converted to the Windows path separator character gracefully; we
can generally ignore the Windows \.

There is no way to tell what kind of object the name code represents. There are many kinds
of filesystem objects. The name code might be a directory that names other files. It could be
an ordinary data file, or a link to a stream-oriented device. There is additional directory
information that shows what kind of filesystem object this is.

A path without the leading / is relative to the current working directory. In Mac OS X and
Linux, the cd command sets the current working directory. In Windows, the chdir
command does this job. The current working directory is a feature of the login session with
the OS. It's made visible by the shell.

How can we work with pathnames in a way that's independent of the specific operating
system? How can we simplify common operations to make them as uniform as possible?



Input/Output, Physical Format, and Logical Layout

[ 423 ]

Getting ready
It's important to separate two concepts:

The path that identifies a file
The contents of the file

The path provides an optional sequence of directory names and the final filename. It may
provide some information about the file contents via the filename extension. The directory
includes the files name, information about when the file was created, who owns it, what the
permissions are, how big it is, and other details. The contents of the file are separate from
the directory information and the name.

Often, a filename has a suffix that can provide a hint as to what the physical format is. A file
ending in .csv is likely a text file that can be interpreted as rows and columns of data. This
binding between name and physical format is not absolute. File suffixes are only a hint, and
can be wrong.

It's possible for the contents of a file to have more than one name. Multiple paths can link to
a single file. The directory entries that provide additional names for the file's content are
created with the link (ln) command. Windows uses mklink. This is called a hard link
because it's a low-level connection between names and content.

In addition to hard links, we can also have soft links or symbolic links (or junction points).
A soft link is a different kind of file, the link is easily seen as a reference to another file. The
GUI presentation of the OS may show these as a different icon and call it an alias or shortcut
to make it clear.

In Python, the pathlib module handles all of the path-related processing. The module
makes several distinctions among paths:

Pure paths that may or may not refer to an actual file
Concrete paths that are resolved and refer to an actual file

This distinction allows us to create pure paths for files that our application will likely create
or refer to. We can also create concrete paths for those files that actually exist on the OS. An
application can resolve a pure path to create a concrete path.

The pathlib module also makes a distinction between Linux path objects and Windows
path objects. This distinction is rarely needed; most of the time, we don't want to care about
the OS-level details of the path. An important reason for using pathlib is because we want
processing that is identical irrespective of the underlying OS. The cases where we might
want to work with a PureLinuxPath object are rare.



Input/Output, Physical Format, and Logical Layout

[ 424 ]

All of the mini recipes in this section will leverage the following:

>>> from pathlib import Path

We rarely need any of the other class definitions from pathlib.

We'll presume that argparse is used to gather the file or directory names. For more
information on argparse, see the Using argparse to get command line input recipe in Chapter
5, User Inputs and Outputs. We'll use the options variable, which has the input filename or
directory name that the recipe works with.

For demonstration purposes, a mock argument parsing is shown by providing the
following Namespace object:

>>> from argparse import Namespace
>>> options = Namespace(
...     input='/path/to/some/file.csv',
...     file1='/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r09.py',
...     file2='/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r10.py',
... )

This options object has three mock argument values. The input value is a pure path: it
doesn't necessarily reflect an actual file. The file1 and file2 values reflect concrete paths
that exist on the author's computer. This object behaves the same as the options created by
the argparse module.

How to do it…
We'll show a number of common pathname manipulations as separate mini recipes. This
will include the following manipulations:

Making the output filename from the input filename
Making a number of sibling output files
Creating a directory and a number of files
Comparing file dates to see which is newer
Removing a file
Finding all files that match a given pattern



Input/Output, Physical Format, and Logical Layout

[ 425 ]

Making the output filename by changing the input suffix
Perform the following steps to make the output filename by changing the input suffix:

Create the Path object from the input filename string. The Path class will1.
properly parse the string to determine the elements of the path:

       >>> input_path = Path(options.input)
      >>> input_path
      PosixPath('/path/to/some/file.csv')

In this example, the PosixPath class is displayed because the author is using Mac
OS X. On a Windows machine, the class would be WindowsPath.

Create the output Path object using the with_suffix() method: 2.

      >>> output_path = input_path.with_suffix('.out')
      >>> output_path
      PosixPath('/path/to/some/file.out')

All of the filename parsing is handled seamlessly by the Path class. The
with_suffix() method saves us from manually parsing the text of the filename.

Making a number of sibling output files with distinct
names
Perform the following steps for making a number of sibling output files with distinct
names:

Create a Path object from the input filename string. The Path class will properly1.
parse the string to determine the elements of the path:

       >>> input_path = Path(options.input)
      >>> input_path
      PosixPath('/path/to/some/file.csv')

In this example, the PosixPath class is displayed because the author uses Linux.
On a Windows machine, the class would be WindowsPath.



Input/Output, Physical Format, and Logical Layout

[ 426 ]

Extract the parent directory and the stem from the filename. The stem is the name2.
without the suffix: 

      >>> input_directory = input_path.parent
      >>> input_stem = input_path.stem

Build the desired output name. For this example, we'll append _pass to the3.
filename. An input file of file.csv will produce an output of file_pass.csv: 

      >>> output_stem_pass = input_stem+"_pass"
      >>> output_stem_pass
      'file_pass'

Build the complete Path object:4.

      >>> output_path = (input_directory /
output_stem_pass).with_suffix('.csv')
      >>> output_path
      PosixPath('/path/to/some/file_pass.csv')

The / operator assembles a new path from path components. We need to put this
in parentheses to be sure that it's performed first and creates a new Path object.
The input_directory variable has the parent Path object, and the
output_stem_pass is a simple string. After assembling a new path with the /
operator, the with_suffix() method is used to assure a specific suffix is used.

Creating a directory and a number of files
The following steps are for creating a directory and a number of files:

Create the Path object from the input filename string. The Path class will1.
properly parse the string to determine the elements of the path: 

      >>> input_path = Path(options.input)
      >>> input_path
      PosixPath('/path/to/some/file.csv')

In this example, the PosixPath class is displayed because the author uses Linux.
On a Windows machine, the class would be WindowsPath.



Input/Output, Physical Format, and Logical Layout

[ 427 ]

Create the Path object for the output directory. In this case, we'll create an2.
output directory as a subdirectory with the same parent directory as the source
file: 

      >>> output_parent = input_path.parent / "output"
      >>> output_parent
      PosixPath('/path/to/some/output')  

Create the output filename using the output Path object. In this example, the3.
output directory will contain a file that has the same name as the input with a
different suffix: 

      >>> input_stem = input_path.stem
      >>> output_path = (output_parent / input_stem).with_suffix('.src')

We've used the / operator to assemble a new Path object from the parent Path
and a string based on the stem of a filename. Once a Path object has been created,
we can use the with_suffix() method to set the desired suffix for the file.

Comparing file dates to see which is newer
The following are the steps to see newer file dates by comparing them:

Create the Path objects from the input filename strings. The Path class will1.
properly parse the string to determine the elements of the path:

      >>> file1_path = Path(options.file1)
      >>> file1_path
      PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r09.py')
      >>> file2_path = Path(options.file2)
      >>> file2_path
      PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r10.py')

Use the stat() method of each Path object to get timestamps for the file. This2.
method returns a stat object, within that stat object, the st_mtime attribute of
that object provides the most recent modification time for the file:

      >>> file1_path.stat().st_mtime
      1464460057.0
      >>> file2_path.stat().st_mtime
      1464527877.0



Input/Output, Physical Format, and Logical Layout

[ 428 ]

The values are timestamps measured in seconds. We can easily compare the two values to
see which is newer.

If we want a timestamp that's sensible to people, we can use the datetime module to create
a proper datetime object from this:

>>> import datetime
>>> mtime_1 = file1_path.stat().st_mtime
>>> datetime.datetime.fromtimestamp(mtime_1)
datetime.datetime(2016, 5, 28, 14, 27, 37)

We can use the strftime() method to format the datetime object or we can use the
isoformat() method to provide a standardized display. Note that the time will have the
local time zone offset implicitly applied to the OS timestamp; depending on the OS
configuration(s) a laptop may not show the same time as the server that created it because
they're in different time zones.

Removing a file
The Linux term for removing a file is unlinking. Since a file may have many links, the
actual data isn't removed until all links are removed:

Create the Path object from the input filename string. The Path class will1.
properly parse the string to determine the elements of the path:

       >>> input_path = Path(options.input)
      >>> input_path
      PosixPath('/path/to/some/file.csv')

Use the unlink() method of this Path object to remove the directory entry. If2.
this was the last directory entry for the data, then the space can be reclaimed by
the OS:

      >>> try:
      ...     input_path.unlink()
      ... except FileNotFoundError as ex:
      ...     print("File already deleted")
      File already deleted

If the file does not exist, a FileNotFoundError is raised. In some cases, this exception
needs to be silenced with the pass statement. In other cases, a warning message might be
important. It's also possible that a missing file represents a serious error.



Input/Output, Physical Format, and Logical Layout

[ 429 ]

Additionally, we can rename a file using the rename() method of a Path object. We can
create new soft links using the symlink_to() method. To create OS-level hard links, we
need to use the os.link() function.

Finding all files that match a given pattern
The following are steps to find all files that match a given pattern:

Create the Path object from the input directory name. The Path class will1.
properly parse the string to determine the elements of the path:

       >>> directory_path = Path(options.file1).parent
      >>> directory_path
      PosixPath('/Users/slott/Documents/Writing/Python Cookbook/code')

Use the glob() method of the Path object to locate all files that match a given2.
pattern. By default, this will not recursively walk the entire directory tree:

      >>> list(directory_path.glob("ch08_r*.py"))
      [PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r01.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r02.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r06.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r07.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r08.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r09.py'),
       PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/ch08_r10.py')]

How it works…
Inside the OS, a path is a sequence of directories (a folder is a depiction of a directory). In a
name such as /Users/slott/Documents/writing, the root directory, /, contains a
directory named Users. This contains a subdirectory slott, which contains Documents,
which contains writing.



Input/Output, Physical Format, and Logical Layout

[ 430 ]

In some cases, a simple string representation is used to summarize the navigation from root
to directory through to the final target directory. The string representation; however, makes
many kinds of path operations into complex string parsing problems.

The Path class definition simplifies many operations on pure paths. A pure Path may or
may not reflect actual filesystem resources. Operations on Path include the following
examples:

Extract the parent directory, as well as a sequence of all enclosing directory
names.
Extract the final name, the stem of the final name, and the suffix of the final name.
Replace the suffix with a new suffix or replace the entire name with a new name.
Convert a string to a Path. And also convert a Path to a string. Many OS
functions and parts of Python prefer to use filename strings.
Build a new Path object from an existing Path joined with a string using the /
operator.

A concrete Path represents an actual filesystem resource. For concrete Paths, we can do a
number of additional manipulations of the directory information:

Determine what kind of directory entry this is: an ordinary file, a directory, a link,
a socket, a named pipe (or fifo), a block device, or a character device.
Get the directory details, this includes information such as timestamps,
permissions, ownership, size, and so on. We can also modify these things.
We can unlink (or remove) the directory entry.

Just about anything we might want to do with directory entries for files can be done with
the pathlib module. The few exceptions are part of the os or os.path module.

There's more…
When we look at other file-related recipes in the rest of this chapter, we'll use Path objects
to name the files. The objective is to avoid trying to use strings to represent paths.

The pathlib module makes a small distinction between Linux pure Path objects, and
Windows pure Path objects. Most of the time, we don't care about the OS-level details of
the path.



Input/Output, Physical Format, and Logical Layout

[ 431 ]

There are two cases where it can help to produce pure paths for a specific operating system:

If we do development on a Windows laptop, but deploy web services on a Linux
server, it may be necessary to use PureLinuxPath. This allows us to write test
cases on the Windows development machine that reflects actual intended use on
a Linux server.
If we do development on a Mac OS X (or Linux) laptop, but deploy exclusively to
Windows servers, it may be necessary to use PureWindowsPath.

We might have something like this:

>>> from pathlib import PureWindowsPath
>>> home_path = PureWindowsPath(r'C:\Users\slott')
>>> name_path = home_path / 'filename.ini'
>>> name_path
PureWindowsPath('C:/Users/slott/filename.ini')
>>> str(name_path)
'C:\\Users\\slott\\filename.ini'

Note that the / characters are normalized from Windows to Python notation when
displaying the WindowsPath object. Using the str() function retrieves a path string
appropriate for the Windows OS.

If we try this using the generic Path class, we'll get an implementation appropriate to the
user's environment, which may not be Windows. By using PureWindowsPath, we've
bypassed the mapping to the user's actual OS.

See also
In the Replacing a file while preserving the previous version recipe, we'll look at how
to leverage the features of a Path to create a temporary file and then rename the
temporary file to replace the original file
In the Using argparse to get command-line input recipe in Chapter 5, User Inputs and
Outputs, we'll look at one very common way to get the initial string that will be
used to create a Path object



Input/Output, Physical Format, and Logical Layout

[ 432 ]

Reading and writing files with context
managers
Many programs will access external resources such as database connections, network
connections, and OS files. It's important for a reliable, well-behaved program to release all
external entanglements reliably and cleanly.

A program that raises an exception and eventually crashes can still properly release
resources. This includes closing a file and being sure that any buffered data is properly
written to the file.

This is particularly important for long-running servers. A web server may open and close
many files. If the server did not close each file properly, then data objects might be left in
memory, reducing the amount of room that can be used for ongoing web services. The loss
of working memory appears like a slow leak. Eventually the server needs to be restarted,
reducing availability.

How can we be sure that resources are acquired and released properly? How can we avoid
resource leaks?

Getting ready
One common example of expensive and important resources is an external file. A file that
has been opened for writing is also a precious resource; after all, we run programs to create
useful output in the form of files. It's essential that the OS-level resources associated with a
file be cleanly released by the Python application. We want to be sure that buffers are
flushed and the file is properly closed no matter what happens inside the application.

When we use a context manager, we can be sure that the files being used by our application
are handled properly. Specifically, the file will always be closed even when exceptions are
raised during processing.

As an example, we'll use a script to collect some basic information about files in a directory.
This can be used to detect file changes, the technique is often used to trigger processing
when a file has been replaced.



Input/Output, Physical Format, and Logical Layout

[ 433 ]

We'll write a summary file that has the filename, modification date, size, and a checksum
computed from the bytes in the file. We can then examine the directory and compare it with
the previous state from the summary file. The description of a single file's details can be
prepared by this function:

    from types import SimpleNamespace
    import datetime
    from hashlib import md5

    def file_facts(path):
        return SimpleNamespace(
            name = str(path),
            modified = datetime.datetime.fromtimestamp(
                path.stat().st_mtime).isoformat(),
            size = path.stat().st_size,
            checksum = md5(path.read_bytes()).hexdigest()
        )

This function gets a relative filename from the given Path object in the path parameter. We
could also use the resolve() method to get the absolute pathname. The stat() method of
a Path object returns a number of OS status values. The st_mtime value of the status is the
last modified time. The expression path.stat().st_mtime gets the modification time for
the file. This is used to create a complete datetime object. The isoformat() method then
provides a standardized display of the modification time.

The value of path.stat().st_size is the file's current size. The value of
path.read_bytes() is all of the bytes in the file, these are passed to the md5 class to create
a checksum using the MD5 algorithm. The hexdigest() function of the resulting md5
object gives us a value that is sensitive enough to detect any single-byte change in the file.

We want to apply this to a number of files in a directory. If the directory is being used for
example, files are being written frequently then it's possible that our analysis program
might crash with an I/O exception while trying to read a file that's being written by a
separate process.

We'll use a context manager to make sure the program provides good output even in the
rare case that it crashes.



Input/Output, Physical Format, and Logical Layout

[ 434 ]

How to do it…
We'll be working with file paths, so it's important to import the Path class: 1.

        from pathlib import Path  

Create a Path that identifies the output file: 2.

        summary_path = Path('summary.dat')  

The with statement creates the file object, and assigns it to a variable,3.
summary_file. It also uses this file object as the context manager:

        with summary_path.open('w') as summary_file:

We can now use the summary_file variable as an output file. No matter what
exceptions are raised inside the with statement, the file will be properly closed,
and all OS resources released.

The following statements will write information about files in the current working directory
to the open summary file. These are indented inside the with statement:

     base = Path(".")
    for member in base.glob("*.py"):
        print(file_facts(member), file=summary_file)

This creates a Path for the current working directory and saves the object in the base
variable. The glob() method of a Path object will generate all filenames that match the
given pattern. The file_facts() function shown previously produces a namespace object
that has useful information. We can print each summary to the summary_file.

We've omitted converting the facts to a more useful notation. It can slightly simplify
subsequent processing if the data is serialized in JSON notation.

When the with statement finishes, the file will be closed. This will happen irrespective of
any exception that might have been raised.



Input/Output, Physical Format, and Logical Layout

[ 435 ]

How it works…
The context manager object and the with statement work together to manage valuable
resources. In this case, the file connection is a relatively expensive resource because it binds
OS resources with our application. It's also precious because it's the useful output from the
script.

When we write with x:, the object x is the context manager. A context manager object
responds to two methods. These two methods are invoked by the with statement on the
object provided. The significant events are as follows:

x.__enter__() is evaluated at the beginning of the context.
x.__exit__(*details) is evaluated at the end of the context. The __exit__()
is guaranteed irrespective of any exceptions that might have been raised within
the context. The exception details are provided to the __exit__() method. The
context manager might want to behave differently if there was an exception.

File objects and several other kinds of objects are designed to work with this object manager
protocol.

Here's the sequence of events that describe how the context manager is used:

Evaluate summary_path.open('w') to create a file object. This is saved to1.
summary_file.
Evaluate summary_file.__enter__() as the with context starts.2.
Do the processing inside the with statement context. This will write several lines3.
to the given file.
At the end of the with statement, evaluate summary_file.__exit__(). This4.
will close the output file, and release all OS resources.
If an exception was raised inside the with statement and not handled, then5.
reraise that exception now that the file is properly closed.

The file close operations are handled automatically by the with statement. They're always
performed, even if there's an exception raised. This guarantee is essential to preventing
resource leaks.



Input/Output, Physical Format, and Logical Layout

[ 436 ]

Some people like to quibble about the word always: they like to search for the very few
situations where the context manager will not work properly. For example, there is a
remote possibility that the entire Python runtime environment crashes; this will invalidate
all of the language guarantees. If the Python context manager doesn't close the file properly,
the OS will close the file, but the final buffer of data may be lost. There's an even more
remote possibility that the entire OS crashes, or the hardware stops, or the computer is
destroyed during a zombie apocalypse; the context manager won't close the files in these
situations, either.

There's more…
Many database connections and network connections also work as context managers. The
context manager guarantees that the connection is closed properly and the resources
released.

We can use context managers for input files, also. The best practice is to use a context
manager for all file operations. Most of the recipes in this chapter will use files and context
managers.

In rare cases, we'll need to add context management capabilities to an object. The
contextlib includes a function, closing(), which will call an object's close() method.

We can use this to wrap a database connection that lacks appropriate context manager
capabilities:

    from contextlib import closing
    with closing(some_database()) as database:
        process(database)

This assumes that the some_database() function creates a connection to a database. This
connection can't be directly used as a context manager. By wrapping the connection in the
closing() function, we've added the necessary features to make this into a proper
connection manager object so that we can be assured that the database is properly closed.

See also
For more information on multiple contexts, see the Using multiple contexts for
reading and writing files recipe



Input/Output, Physical Format, and Logical Layout

[ 437 ]

Replacing a file while preserving the
previous version
We can leverage the power of pathlib to support a variety of filename manipulations. In
the Using pathlib to work with filenames recipe, we looked at a few of the most common
techniques of managing directories, filenames, and file suffixes.

One common file processing requirement is to create output files in a fail-safe manner. That
is, the application should preserve any previous output file no matter how or where the
application fails.

Consider the following scenario:

At time t0 there's a valid output.csv file from yesterday's use of the1.
long_complex.py application.
At time t1 we start running the long_complex.py application. It begins2.
overwriting the output.csv file. It is expected to finish normally at time t3.
At time t2, the application crashes. The partial output.csv file is useless. Worse,3.
the valid file from time t0 is not available either, since it was overwritten.

Clearly, we can make backup copies of files. This introduces an extra processing step. We
can do better. What's a good approach to creating files that are fail-safe?

Getting ready
Fail-safe file output generally means that we don't overwrite the previous file. Instead, the
application will create a new file using a temporary name. If the file was created
successfully, then the old file can be replaced using a rename operation.

The goal is to create files in such a way that at any time prior to the rename, a crash will
leave the original file in place. At any time subsequent to the rename, the new file is in place
and is valid.



Input/Output, Physical Format, and Logical Layout

[ 438 ]

There are several ways to approach this. We'll show a variation that uses three separate
files:

The output file that will be overwritten eventually: output.csv.
A temporary version of the file: output.csv.tmp. There are a variety of
conventions for naming this file. Sometimes extra characters such as ~ or # are
placed on the filename to indicate that it's a temporary, working file. Sometimes
it will be in the /tmp filesystem.
The previous version of the file: name.out.old. Any previous .old file will be
removed as part of finalizing the output.

How to do it…
Import the Path class:1.

      >>> from pathlib import Path

For demonstration purposes, we'll mock the argument parsing by providing the2.
following Namespace object:

      >>> from argparse import Namespace
      >>> options = Namespace(
      ...     target='/Users/slott/Documents/Writing/Python
Cookbook/code/output.csv'
      ... )

We've provided a mock value for the target command-line argument. This
options object behaves like the options created by the argparse module.

Create the pure Path for the desired output file. This file doesn't exist yet, which3.
is why this is a pure path:

      >>> output_path = Path(options.target)
      >>> output_path
      PosixPath('/Users/slott/Documents/Writing/Python
Cookbook/code/output.csv')

Create the pure Path for a temporary output file. This will be used to create4.
output:

      >>> output_temp_path = output_path.with_suffix('.csv.tmp')



Input/Output, Physical Format, and Logical Layout

[ 439 ]

Write content to the temporary file. This is of course the heart of the application.5.
It's often quite complex. For this example, we've shortened it to writing just one
literal string:

      >>> output_temp_path.write_text("Heading1,Heading2\r\n355,113\r\n")

Any failure here has no impact on the original output file; the original file
hasn't been touched.

Remove any prior .old file:6.

      >>> output_old_path = output_path.with_suffix('.csv.old')
      >>> try:
      ...     output_old_path.unlink()
      ... except FileNotFoundError as ex:
      ...     pass # No previous file

Any failure at this point has no impact on the original output file.

If there's an existing file, rename it to become the .old file:7.

      >>> output_path.rename(output_old_path)

Any failure after this will leave the .old file in place. This extra file can be
renamed as part of a recovery process.

Rename the temporary file to be the new output file:8.

      >>> output_temp_path.rename(output_path)

At this point, the file has been overwritten by renaming the temporary file. An9.
.old file will be left around in case there's a need to roll back the processing to
the previous state.



Input/Output, Physical Format, and Logical Layout

[ 440 ]

How it works…
This process involves three separate OS operations, an unlink, and two renames. This leads
to a situation in which the .old file needs to be used to recover the previously good state.

Here's a timeline that shows the state of the various files. We've labeled the content as
version 1 (the previous contents) and version 2 (the revised contents):

Time Operation .csv.old .csv .csv.tmp

t0 version 0 version 1

t1 writing version 0 version 1 in-process

t2 close version 0 version 1 version 2

t3 unlink .csv.old version 1 version 2

t4 rename .csv to .csv.old version 1 version 2

t5 rename .csv.tmp to .csv version 1 version 2

While there are several opportunities for failure, there's no ambiguity about which file is
valid:

If there's a .csv file, it's the current, valid file
If there's no .csv file, then the .csv.old file is a backup copy, which can be
used for recovery

Since none of these operations involved actually copying the files, they're all extremely fast
and very reliable.

There's more…
In many cases, the output files involve optionally creating a directory based on timestamps.
This can be handled gracefully by the pathlib module, also. We might, for example, have
an archive directory that we'll put old files in:

    archive_path = Path("/path/to/archive")

We may want to create date-stamped subdirectories for keeping temporary or working files:

    import datetime
    today = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")



Input/Output, Physical Format, and Logical Layout

[ 441 ]

We can then do the following to define a working directory:

    working_path = archive_path / today
    working_path.mkdir(parents=True, exists_ok=True)

The mkdir() method will create the expected directory. Including the parents=True
argument that assures that all parent directories will also be created. This can be handy the
very first time an application is executed. The exists_ok=True is handy so that the
existing directory can be reused without raising an exception.

The parents=True is not the default. With the default of parents=False, when a parent
directory doesn't exist, the application will crash because the required file doesn't exist.

Similarly, the exists_ok=True is not the default. By default, if the directory exists, a
FileExistsError exception is raised. Including options that make the operation silent
when the directory exists.

Also, it's sometimes appropriate to use the tempfile module to create temporary files. This
module can create filenames that are guaranteed to be unique. This allows a complex server
process to create temporary files without regard to filename conflicts.

See also
In the Using pathlib to work with filenames recipe, we looked at the fundamentals of
the Path class
In Chapter 11, Testing, we'll look at some techniques for writing unit tests that
can assure that parts of this will behave properly

Reading delimited files with the CSV module
One commonly used data format is CSV. We can easily generalize this to think of the
comma as simply one of many candidate separator characters. We might have a CSV file
that uses the | character as the separator between columns of data. This generalization
makes CSV files particularly powerful.

How can we process data in one of the wide varieties of CSV formatting?



Input/Output, Physical Format, and Logical Layout

[ 442 ]

Getting ready
A summary of a file's content is called a schema. It's essential to distinguish between two
aspects of the schema:

The Physical Format of the file: For CSV, this means the file contains text. The
text is organized into rows and columns. There will be a row separator character
(or characters); there will also be a column separator character. Many spreadsheet
products will use , as the column separator and the \r\n sequence of characters
as the row separator. Other formats are possible, though, and it's easy to change
the punctuation that separates columns and rows. The specific combination of
punctuation is called the CSV dialect.
The Logical Layout of the data in the file: This is the sequence of data columns
that are present. There are several common cases for handling the logical layout
in CSV files:

The file has one line of headings. This is ideal, and fits nicely with
the way the CSV module works. The best headings are proper
Python variable names.
The file has no headings, but the column positions are fixed. In this
case, we can impose headings on the file when we open it.
If the file has no headings and the column positions aren't fixed,
this is generally a serious problem. It can't easily be solved.
Additional schema information is required; a separate list of
column definitions, for example, can make the file useable.
The file has multiple lines of headings. In this case, we have to
write special processing to skip past these lines. We will also have
to replace complex headings with something more useful in
Python.
An even more difficult case is where the file is not in proper First
Normal Form (1NF). In 1NF, each row is independent of all other
rows. When a file is not in this normal form, we'll need to add a
generator function to rearrange the data into 1NF. See the Slicing
and dicing a list recipe in Chapter 4, Built-in Data Structures – list,
set, dict, and Using stacked generator expressions recipe in Chapter 8,
Functional And Reactive Programming Features for other recipes that
work on normalizing data structures.



Input/Output, Physical Format, and Logical Layout

[ 443 ]

We'll look at a relatively simple CSV file that has some real-time data recorded from the log
of a sailboat. This is the waypoints.csv file. The data looks as follows:

    lat,lon,date,time
    32.8321666666667,-79.9338333333333,2012-11-27,09:15:00
    31.6714833333333,-80.93325,2012-11-28,00:00:00
    30.7171666666667,-81.5525,2012-11-28,11:35:00

This data has four columns that need to be reformatted to create more useful information.

How to do it…
Import the csv module and the Path class:1.

         import csv

From pathlib import PathExamine from the data to confirm the following2.
features:

The column separator characters: ',' are the default.
The row separator characters: '\r\n' are widely used in both
Windows and Linux. This may be a feature of Excel, but it's quite
common. Python's universal newlines feature means that the Linux
standard '\n' will work just as well as a row separator.
The presence of a single-row heading. If not present, this information
can be provided separately.

Create a Path object that identifies the file: 3.

        data_path = Path('waypoints.csv')  

Use the Path object to open the file in a with statement: 4.

        with data_path.open() as data_file:

For more information on the with statement, see the Reading and writing files with
context managers recipe.

Create the CSV reader from the open file object. This is indented inside the with5.
statement:

        data_reader = csv.DictReader(data_file)  



Input/Output, Physical Format, and Logical Layout

[ 444 ]

Read (and process) the various rows of data. This is properly indented inside the6.
with statement. For this example, we'll just print them: 

        for row in data_reader:
            print(row)  

The output is a series of dictionaries that looks as follows:

    {'date': '2012-11-27',
     'lat': '32.8321666666667',
     'lon': '-79.9338333333333',
     'time': '09:15:00'}

Since the row was transformed into a dictionary, the column keys are not in the original
order. If we use pprint() from the pprint module the keys tend to get sorted into
alphabetical order. We can now process the data by referring to row['date']. Using the
column names is more descriptive than referring to the column by position: row[0] is hard
to understand.

How it works…
The csv module handles physical format work of separating the rows from each other, and
separating the columns within each row. The default rules assure that each input line is
treated as a separate row, and the columns are separated by ",".

What happens when we need to use the column separator character as part of data? We
might have data like this:

    lan,lon,date,time,notes
    32.832,-79.934,2012-11-27,09:15:00,"breezy, rainy"
    31.671,-80.933,2012-11-28,00:00:00,"blowing ""like stink"""

The notes column has data in the first row which includes the "," column separator
character. The rules for CSV allow a column's value to be surrounded by quotes. By default,
the quoting characters are ". Within these quoting characters, the column and row separator
characters are ignored.

In order to embed the quote character within a quoted string, it is doubled. The second
example row shows how the value "blowing "like stink"" is encoded by doubling the
quote characters when they are used inside a quoted column. These quoting rules mean that
a CSV file can represent any combination of characters, including the row and column
separator characters.



Input/Output, Physical Format, and Logical Layout

[ 445 ]

The values in a CSV file are always strings. A string value like 7331 may look like a number
to us, but it's merely text when processed by the csv module. This makes the processing
simple and uniform, but it can be awkward for a human user.

Some CSV data is exported from software such as databases or web servers. This data tends
to be the easiest to work with because the various rows tend to be organized consistently.

When data is saved from a manually prepared spreadsheet, the data may reveal quirks of
the desktop software's internal rules for data display. It's surprisingly common, for
example, to have a column of data that is displayed as a date on the desktop software, but
shows up as a simple floating-point number in the CSV file.

There are two solutions to the date-as-number problem. One is to add a column in the
source spreadsheet to properly format the date as a string. Ideally, this is done using ISO
rules so that the date is represented in YYYY-MM-DD format. The other solution is to
recognize the spreadsheet date as a number of seconds past some epochal date. The epochal
dates vary slightly, but they're generally either Jan 1, 1900 or Jan 1, 1904.

There's more…
As we saw in the Combining map and reduce transformations recipe, there's often a pipeline of
processing that includes cleansing and transformation of the source data. In this specific
example, there are no extra rows that need to be eliminated. However, each column needs
to be converted into something more useful.

To transform the data into a more useful form, we'll use a two-part design. First, we'll
define a row-level cleansing function. In this case, we'll update the row-level dictionary
object by adding additional column-like values:

    import datetime
    def clean_row(source_row):
        source_row['lat_n']= float(source_row['lat'])
        source_row['lon_n']= float(source_row['lon'])
        source_row['ts_date']= datetime.datetime.strptime(
            source_row['date'],'%Y-%m-%d').date()
        source_row['ts_time']= datetime.datetime.strptime(
            source_row['time'],'%H:%M:%S').time()
        source_row['timestamp']= datetime.datetime.combine(
            source_row['ts_date'],
            source_row['ts_time']
            )
        return source_row



Input/Output, Physical Format, and Logical Layout

[ 446 ]

We've created new column values, lat_n and lon_n, which have proper floating-point
values instead of strings. We've also parsed the date and time values to create
datetime.date and datetime.time objects. We've also combined the date and time into
a single, useful value, which is the value of the timestamp column.

Once we have a row-level function for cleaning and enriching our data, we can map this
function to each row in the source of data. We can use map(clean_row, reader) or we
can write a function that embodies this processing loop:

    def cleanse(reader):
        for row in reader:
             yield clean_row(row)

This can be used to provide more useful data from each row:

    with data_path.open() as data_file:
        data_reader = csv.DictReader(data_file)
        clean_data_reader = cleanse(data_reader)
        for row in clean_data_reader:
            pprint(row)

We've injected the cleanse() function to create a very small stack of transformation rules.
The stack starts with the data_reader, and only has one other item in it. This is a good
beginning. As the application software is expanded to do more computations, the stack will
expand.

These cleansed and enriched rows look as follows:

    {'date': '2012-11-27',
     'lat': '32.8321666666667',
     'lat_n': 32.8321666666667,
     'lon': '-79.9338333333333',
     'lon_n': -79.9338333333333,
     'time': '09:15:00',
     'timestamp': datetime.datetime(2012, 11, 27, 9, 15),
     'ts_date': datetime.date(2012, 11, 27),
     'ts_time': datetime.time(9, 15)}

We've added columns such as lat_n and lon_n, which have proper numeric values
instead of strings. We've also added timestamp, which has a full date-time value that can
be used for simple computations of elapsed time between waypoints.



Input/Output, Physical Format, and Logical Layout

[ 447 ]

See also
See the Combining map and reduce transformations recipe for more information on
the idea of a processing pipeline or stack
See the Slicing and dicing a list recipe in Chapter 4, Built-in Data Structures – list,
set, dict and Using stacked generator expressions recipe in Chapter 8, Functional And
Reactive Programming Features for more information on processing a CSV file that
isn't in a proper 1NF

Reading complex formats using regular
expressions
There are many file formats that lack the elegant regularity of a CSV file. One common file
format that's rather difficult to parse is a web server log file. These files tend to have
complex data without a single separator character or consistent quoting rules.

When we looked at a simplified log file in the Writing generator functions with the yield
statement recipe in  Chapter 8, Functional And Reactive Programming Features, we saw that
the rows look as follows:

[2016-05-08 11:08:18,651] INFO in ch09_r09: Sample Message One
[2016-05-08 11:08:18,651] DEBUG in ch09_r09: Debugging
[2016-05-08 11:08:18,652] WARNING in ch09_r09: Something might have gone
wrong

There are a variety of punctuation marks used in this file. The csv module can't handle this
complexity.

How can we process this kind of data with the elegant simplicity of a CSV file? Can we
transform these irregular rows to a more regular data structure?

Getting ready
Parsing a file with a complex structure generally involves writing a function that behaves
somewhat like the reader() function in the csv module. In some cases, it's slightly easier
to create a small class that behaves like the DictReader class.

The core feature of the reader is a function that will transform one line of text into a dict or
tuple of individual field values. This job can often be done by the re package.



Input/Output, Physical Format, and Logical Layout

[ 448 ]

Before we can start, we'll need to develop (and debug) the regular expression that properly
parses each line of the input file. For more information on this, see the String parsing with
regular expressions recipe in Chapter 1, Numbers, Strings, and Tuples.

For this example, we'll use the following code. We'll define a pattern string with a series of
regular expressions for the various elements of the line:

>>> import re
>>> pattern_text = (r'\[(\d+-\d+-\d+ \d+:\d+:\d+,\d+)\]'
...     '\s+(\w+)'
...     '\s+in'
...     '\s+([\w_\.]+):'
...     '\s+(.*)')
>>> pattern = re.compile(pattern_text)

The date-time stamp is various kinds of digits, hyphens, colons, and a comma; it's
surrounded by [ and ]. We've had to use \[ and \] to escape the normal meaning of [ and
] in a regular expression. The date stamp is followed by a severity level, which is a single
run of characters. The characters in can be ignored; there are no ()'s to capture the
matching data. The module name is a sequence of letter characters, summarized by the
character class \w, and also including _ and .. There's an extra : character after the module
name that can also be ignored. Finally, there's a message that extends to the end of the line.
We've wrapped the interesting data strings in () to capture each of these as part of the
regular expression processing.

Note that we've also included the \s+ sequence to quietly skip any number of space-like
characters. It appears that the sample data all use a single space as the separator. However,
when absorbing whitespace, using \s+ seems to be a slightly more general approach
because it permits extra spaces.

Here's how this pattern works:

>>> sample_data = '[2016-05-08 11:08:18,651] INFO in ch09_r09: Sample
Message One'
>>> match = pattern.match(sample_data)
>>> match.groups()
('2016-05-08 11:08:18,651', 'INFO', 'ch09_r09', 'Sample Message One')

We've provided a line of sample data. The match object, match, has a groups() method
that returns each of the interesting fields. We can make this into a dictionary with named
fields by using (?P<name>...) for each capture instead of simply (...).



Input/Output, Physical Format, and Logical Layout

[ 449 ]

How to do it…
This recipe has two parts-defining a parse function for a single line, and using the parse
function for each line of input.

Defining the parse function
Perform the following steps for defining the parse function:

Define the compiled regular expression object:1.

         import re
        pattern_text = (r'\[(?P<date>\d+-\d+-\d+ \d+:\d+:\d+,\d+)\]'
            '\s+(?P<level>\w+)'
            '\s+in\s+(?P<module>[\w_\.]+):'
            '\s+(?P<message>.*)')
        pattern = re.compile(pattern_text)

We've used the (?P<name>...) regular expression construct to provide names
for each group that's captured. The resulting dictionary will be identical with the
results of csv.DictReader.

Define a function that accepts a line of text as an argument:2.

        def log_parser(source_line):  

Apply the regular expression to create a match object. We've assigned it to the3.
match variable:

        match = pattern.match(source_line)  

If the match object is None, the line did not match the pattern. This line may be4.
skipped silently. In some applications, it should be logged in some way to
provide information useful for debugging or enhancing the application. It may
also make sense to raise an exception for an input line that cannot be parsed:

        if match is None:
            raise ValueError(
                "Unexpected input {0!r}".format(source_line))



Input/Output, Physical Format, and Logical Layout

[ 450 ]

Return a useful data structure with the various pieces of data from this input line: 5.

        return match.groupdict()  

This function can be used to parse each line of input. The text is transformed into
a dictionary with field names and values.

Using the parse function
Import the csv module and the Path class:1.

        import csv

From pathlib import PathCreate, the Path object that identifies the file:2.

        data_path = Path('sample.log')  

Use the Path object to open the file in a with statement: 3.

        with data_path.open() as data_file:

For more information on the with statement, see the Reading and writing
files with context managers recipe.

Create the log file parser from the open file object, data_file. In this case, we'll4.
use map() to apply the parser to each line from the source file:

        data_reader = map(log_parser, data_file)

Read (and process) the various rows of data. For this example, we'll just print5.
them:

        for row in data_reader:
            pprint(row)  

The output is a series of dictionaries that looks as follows:

    {'date': '2016-05-08 11:08:18,651',
     'level': 'INFO',
     'message': 'Sample Message One',
     'module': 'ch09_r09'}
    {'date': '2016-05-08 11:08:18,651',



Input/Output, Physical Format, and Logical Layout

[ 451 ]

     'level': 'DEBUG',
     'message': 'Debugging',
     'module': 'ch09_r09'}
    {'date': '2016-05-08 11:08:18,652',
     'level': 'WARNING',
     'message': 'Something might have gone wrong',
     'module': 'ch09_r09'}

We can do more meaningful processing on these dictionaries than we can on a line of raw
text. These allow us to filter the data by severity level, or create a Counter based on the
module providing the message.

How it works…
This log file is typical of files that are in First Normal Form. The data is organized into lines
that represent independent entities or events. Each row has a consistent number of
attributes or columns, and each column has data that is atomic or can't be meaningfully
decomposed further. Unlike CSV files, the format requires a complex regular expression to
parse.

In our log file example, the timestamp has a number of individual elements—year, month,
day, hour, minute, second, and millisecond, but there's little value in further decomposing
the timestamp. It's more helpful to use it as a single datetime object, and derive details
(like hour of the day) from this object rather than assembling individual fields into a new
piece of composite data.

In a complex log processing application, there may be several varieties of message fields. It
may be necessary to parse these message types using separate patterns. When we need to
do this, it reveals that the various lines in the log aren't consistent in the format and number
of attributes, breaking one of the First Normal Form assumptions.

In the case of inconsistent data, we'll have to create more sophisticated parsers. This may
include complex filtering rules to separate out the various kinds of information that may
appear in a web server log file. It may involve parsing part of the line to determine which
regular expression must be used to parse the rest of the line.

We've relied on using the map() higher-order function. This applies the log_parse()
function to each line of the source file. The direct simplicity of this provides some assurance
that the number of data objects created will precisely match the number of lines in the log
file.



Input/Output, Physical Format, and Logical Layout

[ 452 ]

We've generally followed the design pattern from the Reading delimited files with the cvs
module recipe, so that reading a complex log is nearly identical with reading a simple CSV
file. Indeed, we can see that the primary difference lies in one line of code:

    data_reader = csv.DictReader(data_file)

As compared to:

    data_reader = map(log_parser, data_file)

This parallel construct allows us to reuse analysis functions across many input file formats.
This allows us to create a library of tools that can be used on a number of data sources.

There's more…
One of the most common operations when reading very complex files is to rewrite them
into an easier-to-process format. We'll often want to save the data in CSV format for later
processing.

Some of this is similar to the Using multiple contexts for reading and writing files recipe, which
also shows multiple open contexts. We'll read from one file and write to another file.

The file writing process looks as follows:

    import csv
    data_path = Path('sample.log')
    target_path = data_path.with_suffix('.csv')
    with target_path.open('w', newline='') as target_file:
        writer = csv.DictWriter(
            target_file,
            ['date', 'level', 'module', 'message']
            )
        writer.writeheader()

        with data_path.open() as data_file:
            reader = map(log_parser, data_file)
            writer.writerows(reader)

The first portion of this script defines a CSV writer for a given file. The path for the output
file, target_path, is based on the input name, data_path. The suffix changed from the
original filename's suffix to .csv.

This file is opened with the newline character turned off by the newline='' option. This
allows the csv.DictWriter class to insert newline characters appropriate for the desired
CSV dialect.



Input/Output, Physical Format, and Logical Layout

[ 453 ]

A DictWriter object is created to write to the given file. A sequence of column headings is
provided. These must match the keys used to write each row to the file. We can see that
these headings match the (?P<name>...) parts of the regular expression that produces the
data.

The writeheader() method writes the column names as the first line of output. This
makes reading the file slightly easier because the column names are provided. The first row
of a CSV file can be a kind of explicit schema definition that shows what data is present.

The source file is opened as shown in the preceding recipe. Because of the way the csv
module writers work, we can provide the reader() generator function to the
writerows() method of the writer. The writerows() method will consume all of the data
produced by the reader() function. This will, in turn, consume all of the rows produced
by the open file.

We don't need to write any explicit for statements to assure that all of the input rows are
processed. The writerows() function makes this guarantee.

The output file looks as follows:

    date,level,module,message
    "2016-05-08 11:08:18,651",INFO,ch09_r09,Sample Message One
    "2016-05-08 11:08:18,651",DEBUG,ch09_r09,Debugging
    "2016-05-08 11:08:18,652",WARNING,ch09_r09,Something might have gone
wrong

The file has been transformed from the rather complex input format to a simpler CSV
format.

See also
The Writing generator functions with the yield statement recipe in Chapter 8,
Functional And Reactive Programming Features shows other processing of this log
format
In the Reading delimited files with the CSV module recipe, we look at other
applications of this general design pattern
In the Upgrading CSV from Dictreader to namedtuple reader and Upgrading CSV from
Dictreader to namespace reader recipes we'll look at even more sophisticated
processing techniques



Input/Output, Physical Format, and Logical Layout

[ 454 ]

Reading JSON documents
The JSON notation for serializing data is very popular. For details, see h t t p ://j s o n . o r g .
Python includes the json module to serialize and deserialize data in this notation.

JSON documents are used widely by JavaScript applications. It's common to exchange data
between Python-based servers and JavaScript-based clients using documents in JSON
notation. These two tiers of the application stack communicate via JSON documents sent via
the HTTP protocol. Interestingly, a data persistence layer may also use HTTP protocol and
JSON notation.

How do we use the json module to parse JSON data in Python?

Getting ready
We've gathered some sailboat racing results in race_result.json. This file has
information on teams, legs, and the orders in which the various teams finish the legs of the
race.

In many cases, there are null values when a boat did not start, did not finish, or was
disqualified from the race. In those cases, the finish position is assigned a score of one more
than the last position. If there are seven boats, then the team is given eight points. This is a
hefty penalty.

The data has the following schema. There are two fields within the overall document:

legs: Array of strings that show starting port and ending port.
teams: Array of objects with details about each team. Within each team object,
there are several fields of data:

name: String team name.
position: Array of integers and nulls with position. The order of
items in this array matches the order of items in the legs array.

The data looks as follows:

    {
      "teams": [
        {
          "name": "Abu Dhabi Ocean Racing",
          "position": [
            1,
            3,

http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org


Input/Output, Physical Format, and Logical Layout

[ 455 ]

            2,
            2,
            1,
            2,
            5,
            3,
            5
          ]
        },
        ...
      ],
      "legs": [
        "ALICANTE - CAPE TOWN",
        "CAPE TOWN - ABU DHABI",
        "ABU DHABI - SANYA",
        "SANYA - AUCKLAND",
        "AUCKLAND - ITAJA\u00cd",
        "ITAJA\u00cd - NEWPORT",
        "NEWPORT - LISBON",
        "LISBON - LORIENT",
        "LORIENT - GOTHENBURG"
      ]
    }

We've only shown the first team. There were a total of seven teams in this particular race.

The JSON-formatted data looks like a Python dictionary that contains lists within it. This
overlap between Python syntax and JSON syntax can be thought of as a happy coincidence:
it makes it easier to visualize the Python data structure that will be built from the JSON
source document.

Not all JSON structures are simply Python objects. Interestingly, the JSON document has a
null item, which maps to Python's None object. The meaning is similar, but the syntax is
different.

Also, one of the strings contains a Unicode escape sequence, \u00cd, instead of the actual
Unicode character, Í. This is a common technique used to encode characters beyond the 128
ASCII characters.



Input/Output, Physical Format, and Logical Layout

[ 456 ]

How to do it…
Import the json module:1.

      >>> import json

Define a Path object that identifies the file to be processed:2.

       >>> from pathlib import Path
      >>> source_path = Path("code/race_result.json")

The json module doesn't currently work directly with Path objects.
Consequently, we'll read the content as a big block of text and process that text
object.

Create a Python object by parsing the JSON document:3.

      >>> document = json.loads(source_path.read_text())

We've used source_path.read_text() to read the file named by the Path. We provided
this string to the json.loads() function for parsing.

Once we've parsed the document to create a Python dictionary, we can see the various
pieces. For example, the field teams has all of the results for each team. It's an array, and
item 0 in that array is the first team.

The data for each team will be a dictionary with two keys: name and position. We can
combine the various keys to get the name of the first team:

>>> document['teams'][0]['name']
'Abu Dhabi Ocean Racing'

We can look inside the legs field to see the names of each leg of the race:

>>> document['legs'][5]
'ITAJAÍ - NEWPORT'

Note that the JSON source file included a '\u00cd' Unicode escape sequence. This was
parsed properly and the Unicode output shows the proper Í character.



Input/Output, Physical Format, and Logical Layout

[ 457 ]

How it works…
A JSON document is a data structure in JavaScript Object Notation. JavaScript programs
can parse the document trivially. Other languages must do a little more work to translate
the JSON to a native data structure.

A JSON document contains three kinds of structures:

Objects that map to Python dictionaries: JSON has a syntax similar to Python:
{"key": "value"}. Unlike Python, JSON only uses " for string quotation
marks. JSON notation is intolerant of an extra , at the end of the dictionary value.
Other than this, the two notations are similar.
Arrays that map to Python lists: JSON syntax uses [item, ...], which looks
like Python. JSON is intolerant of extra , at the end of the array value.
Primitive values: There are five classes of values: string, number, true, false,
and null. Strings are enclosed in " and use a variety of \escape sequences,
which are similar to Python's. Numbers follow the rules for floating-point values.
The other three values are simple literals; these parallel Python's True, False,
and None literals.

There is no provision for any other kinds of data. This means that Python programs must
convert complex Python objects to a simpler representation so that they can be serialized in
JSON notation.

Conversely, we often apply additional conversions to reconstruct complex Python objects
from the simplified JSON representation. The json module has places where we can apply
additional processing to the simple structures to create more sophisticated Python objects.

There's more…
A file, generally, contains a single JSON document. The standard doesn't provide an easy
way to encode multiple documents in a single file. If we want to analyze a web log, for
example, JSON may not be the best notation for preserving a huge volume of information.

There are two additional problems that we often have to tackle:

Serializing complex objects so that we can write them to files
Deserializing complex objects from the text that's read from a file



Input/Output, Physical Format, and Logical Layout

[ 458 ]

When we represent a Python object's state as a string of text characters, we've serialized the
object. Many Python objects need to be saved in a file or transmitted to another process.
These kinds of transfers require a representation of object state. We'll look at serializing and
deserializing separately.

Serializing a complex data structure
We can also create JSON documents from Python data structures. Because Python is
extremely sophisticated and flexible, we can easily create Python data structures that cannot
possibly be represented in JSON.

The serialization to JSON works out the best if we create Python objects that are limited to
simple dict, list, str, int, float, bool, and None values. If we're careful, we can build
objects that serialize rapidly and can be used widely by a number of programs written in
different languages.

None of these types of values involve Python sets, or other class definitions. This means
that we're often forced to convert complex Python objects into dictionaries to represent
them in a JSON document.

As an example, let's assume we've analyzed some data and created a resulting Counter
object:

>>> import random
>>> random.seed(1)
>>> from collections import Counter
>>> colors = (["red"]*18)+(["black"]*18)+(["green"]*2)
>>> data = Counter(random.choice(colors) for _ in range(100))
Because this data is - effectively - a dict, we can serialie this very
easily into JSON:
>>> print(json.dumps(data, sort_keys=True, indent=2))
{
  "black": 53,
  "green": 7,
  "red": 40
}

We've dumped the data in JSON notation, with the keys sorted into order. This assures
consistent output. The indent of two will show each {} object and each [] array indented
visually to make it easier to see the document's structure.



Input/Output, Physical Format, and Logical Layout

[ 459 ]

We can write this to a file with a relatively simple operation:

    output_path = Path("some_path.json")
    output_path.write_text(
        json.dumps(data, sort_keys=True, indent=2))

When we reread this document, we will not get a Counter object from the JSON load
operation. We'll only get a dictionary instance. This is a consequence of JSON's reduction to
very simple values.

One commonly-used data structure that doesn't serialize easily is a datetime.datetime
object. Here's what happens when we try:

>>> import datetime
>>> example_date = datetime.datetime(2014, 6, 7, 8, 9, 10)
>>> document = {'date': example_date}

We've created a simple document that has a single field. The value of the field is a
datetime instance. What happens when we try to serialize this in JSON?

>>> json.dumps(document)
Traceback (most recent call last):
  ...
TypeError: datetime.datetime(2014, 6, 7, 8, 9, 10) is not JSON serializable

This shows that objects that cannot be serialized will raise a TypeError exception.
Avoiding this exception can done in one of two ways. We can either convert the data before
building the document, or we can add a hook to the JSON serialization process.

One technique is to convert the datetime object into a string prior to serializing it as JSON:

>>> document_converted = {'date': example_date.isoformat()}
>>> json.dumps(document_converted)
'{"date": "2014-06-07T08:09:10"}'

This uses the ISO format for dates to create a string that can be serialized. An application
that reads this data can then convert the string back into a datetime object.

The other technique for serializing complex data is to provide a default function that's used
automatically during serialization. This function must convert a complex object to
something that can be safely serialized. Often it will create a simple dictionary with string
and numeric values. It might also create a simple string value:

>>> def default_date(object):
...     if isinstance(object, datetime.datetime):
...         return example_date.isoformat()
...     return object



Input/Output, Physical Format, and Logical Layout

[ 460 ]

We've defined a function, default_date(), which will apply special conversion rules to
datetime objects. These will be massaged into string objects that can be serialized by the
json.dumps() function.

We provide this function to the dumps() function using the default parameter, as follows:

>>> document = {'date': example_date}
>>> print(
...     json.dumps(document, default=default_date, indent=2))
{
  "date": "2014-06-07T08:09:10"
}

In any given application, we'll need to expand this function to handle any of the more
complex Python objects that we might want to serialize in JSON notation. If there are a large
number of very complex data structures, we often want a somewhat more general solution
than meticulously converting each object to something serializable. There are a number of
design patterns for including type information along with serialized details of an object's
state.

Deserializing a complex data structure
When deserializing JSON to create Python objects, there's another hook that can be used to
convert data from a JSON dictionary into a more complex Python object. This is called the
object_hook and it is used during json.loads() processing to examine each complex
object to see if something else should be created from that dict.

The function we provide will either create a more complex Python object, or it will simply
leave the dict alone:

>>> def as_date(object):
...     if 'date' in object:
...         return datetime.datetime.strptime(
...            object['date'], '%Y-%m-%dT%H:%M:%S')
...     return object

This function will check each object that's decoded to see if the object has a field named
date. If it does, the value of the entire object is replaced with a datetime object.



Input/Output, Physical Format, and Logical Layout

[ 461 ]

We provide a function to the json.loads() function as follows:

>>> source= '''{"date": "2014-06-07T08:09:10"}'''
>>> json.loads(source, object_hook=as_date)
datetime.datetime(2014, 6, 7, 8, 9, 10)

This parses a very small JSON document that meets the criteria for containing a date. The
resulting Python object is built from the string value found in the JSON serialization.

In a larger context, this particular example of handling dates isn't ideal. The presence of a
single 'date' field to indicate a date object could lead to problems with more complex
objects being de-serialized using this as_date() function.

A more general approach would either look for something unique and non-Python like,
such as '$date'. An additional feature would confirm that the special indicator was the
only key for the object. When these two criteria were met, then the object could be
processed specially.

We may also want to design our application classes to provide additional methods to help
with serialization. A class might include a to_json() method that will serialize the objects
in a uniform way. This method might provide class information. It can avoid serializing any
derived attributes or computed properties. Similarly, we might need to provide a static
from_json() method that can be used to determine if a given dictionary object is actually
an instance of the given class.

See also
The Reading HTML documents recipe will show how we prepared this data from
an HTML source

Reading XML documents
The XML markup language is widely used to organize data. For details, see
http://www.w3.org/TR/REC-xml/. Python includes a number of libraries for parsing XML
documents.

XML is called a markup language because the content of interest is marked with <tag> and
</tag> constructs that define the structure of the data. The overall file includes the content
plus the XML markup text.

http://www.w3.org/TR/REC-xml/


Input/Output, Physical Format, and Logical Layout

[ 462 ]

Because the markup is intermingled with our text, there are some additional syntax rules
that must be used. In order to include the < character in our data, we'll use XML character
entity references to avoid confusion. We use &lt; to be able to include < in our text.
Similarly, &gt; is used instead of >, &amp; is used instead of &, and &quot; is also used to
embed a " in an attribute value.

A document, then, will have items as follows:

    <team><name>Team SCA</name><position>...</position></team>

Most XML processing allows additional \n and space characters in the XML to make the
structure more obvious:

    <team>
        <name>Team SCA</name>
        <position>...</position>
    </team>

In general, content is surrounded by the tags. The overall document forms a large, nested
collection of containers. Viewed another way, the document forms a tree with a root tag that
contains all of the other tags and their embedded content. Between tags, there is additional
content entirely whitespace in this example that will be ignored.

It's very, very difficult to parse this with regular expressions. We need more sophisticated
parsers to handle the nested syntax.

There are two binary libraries that are available for parsing XML-SAX and Expat. Python
includes xml.sax and xml.parsers.expat to exploit these two modules.

In addition to these, there's a very sophisticated set of tools in the xml.etree package.
We'll focus on using the ElementTree module to parse and analyze XML documents.

How do we use the xml.etree module to parse XML data in Python?

Getting ready
We've gathered some sailboat racing results in race_result.xml. This file has information
on teams, legs, and the orders in which the various teams finished each leg.

In many cases, there are empty values when a boat did not start, did not finish, or was
disqualified from the race. In those cases, the score will be one more than the number of
boats. If there are seven boats, then the team is given eight points. This is a hefty penalty.



Input/Output, Physical Format, and Logical Layout

[ 463 ]

The root tag is the <results> document. This has the following schema:

The <legs> tag contains individual <leg> tags that name each leg of the race.
The leg names contain both a starting port and an ending port in the text.
The <teams> tag contains a number of <team> tags with details of each team.
Each team has data structured with internal tags:

The <name> tag contains the team name.
The <position> tag contains a number of <leg> tags with the
finish position for the given leg. Each leg is numbered and the
numbering matches the leg definitions in the <legs> tag.

The data looks as follows:

    <?xml version="1.0"?>
    <results>
        <teams>
                <team>
                        <name>
                                Abu Dhabi Ocean Racing
                        </name>
                        <position>
                                <leg n="1">
                                        1
                                </leg>
                                <leg n="2">
                                        3
                                </leg>
                                <leg n="3">
                                        2
                                </leg>
                                <leg n="4">
                                        2
                                </leg>
                                <leg n="5">
                                        1
                                </leg>
                                <leg n="6">
                                        2
                                </leg>
                                <leg n="7">
                                        5
                                </leg>
                                <leg n="8">
                                        3
                                </leg>
                                <leg n="9">



Input/Output, Physical Format, and Logical Layout

[ 464 ]

                                        5
                                </leg>
                        </position>
                </team>
                ...
        </teams>
        <legs>
        ...
        </legs>
    </results>

We've only shown the first team. There were a total of seven teams in this particular race.

In XML notation, the application data shows up in two kinds of places. Between tags; for
example, <name>Abu Dhabi Ocean Racing</name>. The tag is <name>, the text between
<name> and </name> is the value of this tag.

Also, data shows up as an attribute of a tag. For example, in <leg n="1">. The tag is
<leg>; the tag has an attribute, n, with a value of 1. A tag can have an indefinite number of
attributes.

The <leg> tags include the leg number given as an attribute, n, and the position in the leg
given as the text inside the tag. The general approach is to put important data inside the
tags, and supplemental, or clarifying data in the attributes. The line between the two is very
blurry.

XML permits a mixed content model. This reflects the case where XML is mixed in with
text, there will be text inside and outside XML tags. Here's an example of mixed content:

    <p>This has <strong>mixed</strong> content.</p>

Some of the text is inside the <p> tag, and some of the text is inside the <strong> tag. The
content of the <p> tag is a mixture of text and tags with more text.

We'll use the xml.etree module to parse the data. This involves reading the data from a
file and providing it to the parser. The resulting document will be rather complex.

We have not provided a formal schema definition for our sample data, nor have we
provided a Document Type Definition (DTD). This means that the XML defaults to mixed
content mode. Furthermore, the XML structure can't be validated against the schema or
DTD.



Input/Output, Physical Format, and Logical Layout

[ 465 ]

How to do it…
We'll need two modules—xml.etree and pathlib:1.

      >>> import xml.etree.ElementTree as XML
      >>> from pathlib import Path

We've changed the ElementTree module name name to XML to make it slightly
easier to type. It's also common to rename this to something like ET.

Define a Path object that locates the source document:2.

      >>> source_path = Path("code/race_result.xml")

Create the internal ElementTree version of the document by parsing the source3.
file:

      >>> source_text = source_path.read_text(encoding='UTF-8')
      >>> document = XML.fromstring(source_text)

The XML parser doesn't readily work with Path objects. We've elected to read the text from
the Path object and then parse that text.

Once we have the document, we can then search it for the relevant pieces of data. In this
example, we'll use the find() method to locate the first instance of a given tag:

>>> teams = document.find('teams')
>>> name = teams.find('team').find('name')
>>> name.text.strip()
'Abu Dhabi Ocean Racing'

In this case, we located the <teams> tag, and then found the first instance of the <team> tag
inside that list. Within the <team> tag, we located the first <name> tag to get the value of
the team's name.

Because XML is a mixed content model, all of the \n, \t, and space characters in the content
are perfectly preserved in the data. We rarely want any of this whitespace, and it makes
sense to use the strip() method to remove all extraneous characters before and after the
meaningful content.



Input/Output, Physical Format, and Logical Layout

[ 466 ]

How it works…
The XML parser modules transform XML documents into fairly complex objects based on
the document object model. In the case of the etree module, the document will be built
from Element objects that generally represent tags and text.

XML also includes processing instructions and comments. These are commonly ignored by
many XML processing applications.

Parsers for XML often have two levels of operation. At the bottom level, they recognize
events. The events that are found by the parser include element starts, element ends,
comment starts, comment ends, runs of text, and similar lexical objects. At the higher level,
the events are used to build the various Elements of the document.

Each Element instance has a tag, text, attributes, and a tail. The tag is the name inside the
<tag>. The attributes are the fields that follow the tag name. For example, the <leg
n="1"> tag has a tag name of leg and an attribute named n. Values are always strings in
XML.

The text is contained between the start and end of a tag. Therefore, a tag such
as <name>Team SCA</name> has "Team SCA" for the value of the text attribute of the
Element that represents the <name> tag.

Note that a tag also has a tail attribute:

    <name>Team SCA</name>
    <position>...</position>

There's a \n character after the closing </name> tag and before the opening of the
<position> tag. This is the tail of the <name> tag. The tail values can be important when
working with a mixed content model. The tail values are generally whitespace when
working in a non-mixed content model.

There's more…
Because we can't trivially translate an XML document to a Python dictionary, we need a
handy way to search through the document content. The ElementTree module provides a
search technique that's a partial implementation of the XML Path Language (XPath) for
specifying a location in an XML document. The XPath notation gives us considerable
flexibility.



Input/Output, Physical Format, and Logical Layout

[ 467 ]

The XPath queries are used with the find() and findall() methods. Here's how we can
find all of the names:

>>> for tag in document.findall('teams/team/name'):
...      print(tag.text.strip())
Abu Dhabi Ocean Racing
Team Brunel
Dongfeng Race Team
MAPFRE
Team Alvimedica
Team SCA
Team Vestas Wind

We've looked for the top-level <teams> tags. Within that tag, we want <team> tags. Within
those tags, we want the <name> tags. This will search for all instances of this nested tag
structure.

We can search for attribute values, also. This can make it handy to find how all teams did
on a particular leg of the race. The data is found in the <leg> tag within the <position>
tag for each team.

Furthermore, each <leg> has an attribute value of n that shows which of the race legs it
represents. Here's how we can use this to extract specific data from the XML document:

>>> for tag in document.findall("teams/team/position/leg[@n='8']"):
...     print(tag.text.strip())
3
5
7
4
6
1
2

This shows us the finish position of each team on leg 8 of the race. We're looking for all tags
with <leg n="8"> and displaying the text within that tag. We have to match these values
with the team names to see that Team SCA finished first, and Dongfeng Race Team finished
last on this leg.



Input/Output, Physical Format, and Logical Layout

[ 468 ]

See also
The Reading HTML documents recipe shows how we prepared this data from an
HTML source

Reading HTML documents
A great deal of content on the Web is presented using HTML markup. A browser renders
the data very nicely. How can we parse this data to extract the meaningful content from the
displayed web page?

We can use the standard library html.parser module, but it's not helpful. It only provides
low-level lexical scanning information, but doesn't provide a high-level data structure that
describes the original web page.

We'll use the Beautiful Soup module to parse HTML pages. This is available from the
Python Package Index (PyPI). See h t t p s ://p y p i . p y t h o n . o r g /p y p i /b e a u t i f u l s o u p 4.

This must be downloaded and installed to be useful. Generally, the pip command does this
job very nicely.

Often, this is as simple as the following:

pip install beautifulsoup4

For Mac OS X and Linux users, the sudo command is required to escalate the user's
privileges:

sudo pip install beautifulsoup4

This will prompt for the user's password. The user must be able to elevate themselves to
have root privileges.

In the rare case that you have multiple versions of Python, be sure to use the matching
version of pip. In some cases, we might have to use the following:

sudo pip3.5 install beautifulsoup4

Use the pip that goes with Python 3.5.

https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4
https://pypi.python.org/pypi/beautifulsoup4


Input/Output, Physical Format, and Logical Layout

[ 469 ]

Getting ready
We've gathered some sailboat racing results in Volvo Ocean Race.html. This file has
information on teams, legs, and the order in which the various teams finished each leg. It's
scraped from the Volvo Ocean Race website, and it looks wonderful when opened in a
browser.

HTML notation is very similar to XML. The content is surrounded by <tag> marks that
show the structure and presentation of the data. HTML predates XML, and the XHTML
standard reconciles the two Browsers; however, must be tolerant of older HTML and even
improperly structured HTML. The presence of damaged HTML can make it difficult to
analyze data from the World Wide Web.

HTML pages include a great deal of overhead. There are often vast code and style sheet
sections, as well as invisible metadata. The content may be surrounded by advertising and
other information. Generally, an HTML page has the following overall structure:

    <html>
        <head>...</head>
        <body>...</body>
    </html>

Within the <head> tag there will be links to JavaScript libraries, and links to Cascading
Style Sheet (CSS) documents. These are generally used to provide interactive features and
define the presentation of the content.

The bulk of the content is in the <body> tag. Many web pages are very busy and provide a
tremendously complex mix of content. The design of web pages is a sophisticated art, and
the content is designed to look good on most browsers. It can be difficult to track down the
relevant data on a web page, because the focus is on how people see it more than how
automated tools can process it.

In this case, the race results are in an HTML <table> tag, making them easy to find. What
we see is the following overall structure to the relevant content in the page:

    <table>
        <thead>
            <tr>
                <th>...</th>
                ...
            </tr>
        </thead>
        <tbody>
            <tr>
                <td>...</td>



Input/Output, Physical Format, and Logical Layout

[ 470 ]

                ...
            </tr>
            ...
        </tbody>
    </table>

The <thead> tag includes the column titles for the table. There's a single table row tag,
<tr>, with table heading, <th>, tags that include the content. The content has two parts; the
essential display is a number for each leg of the race. This is the content of the tag. In
addition to the displayed content, there's also an attribute value that's used by a JavaScript
function. This attribute value is displayed when the cursor hovers over a column heading.
The JavaScript function pops up the leg name.

The <tbody> tag includes the team name and the results for each race. The table row (<tr>)
contains the details for each team. The team name (and graphic and overall finish rank) is
shown in the first three columns of table data, <td>. The remaining columns of table data
contain the finish position for a given leg of the race.

Because of the relative complexity of sailboat racing, there are additional notes in some of
the table data cells. These are included as attributes that are used to provide supplemental
data on the reason for the cell's value. In some cases, teams did not start a leg, or did not
finish a leg, or retired from a leg.

Here's a typical <tr> row from the HTML:

    <tr class="ranking-item">
        <td class="ranking-position">3</td>
        <td class="ranking-avatar">
            <img src="..."> </td>
        <td class="ranking-team">Dongfeng Race Team</td>
        <td class="ranking-number">2</td>
        <td class="ranking-number">2</td>
        <td class="ranking-number">1</td>
        <td class="ranking-number">3</td>
        <td class="ranking-number" tooltipster data-></td>
        <td class="ranking-number">1</td>
        <td class="ranking-number">4</td>
        <td class="ranking-number">7</td>
        <td class="ranking-number">4</td>
        <td class="ranking-number total">33<span
class="asterix">*</span></td>
    </tr>



Input/Output, Physical Format, and Logical Layout

[ 471 ]

The <tr> tag has a class attribute that defines the style for this row. The CSS provides the
style rules for this class of data. The class attribute on this tag helps our data gathering
application locate the relevant content.

The <td> tags also have class attributes that define the style for the individual cells of data.
In this case, class information clarifies what the content of the cell means.

One of the cells has no content. That cell has an attribute of data-title. This is used by a
JavaScript function to display additional information in the cell.

How to do it…
We'll need two modules: bs4 and pathlib: 1.

      >>> from bs4 import BeautifulSoup
      >>> from pathlib import Path

We've only imported the BeautifulSoup class from the bs4 module. This class
will provide all of the features required to parse and analyze HTML documents.

Define a Path object that names the source document:2.

      >>> source_path = Path("code/Volvo Ocean Race.html")

Create the soup structure from the HTML content. We'll assign it to a variable,3.
soup:

      >>> with source_path.open(encoding='utf8') as source_file:
      ...     soup = BeautifulSoup(source_file, 'html.parser')

We've used a context manager to access the file. As an alternative we could simply read the
content with source_path.read_text(encodig='utf8'). This works as well as
providing an open file to the BeautifulSoup class.

The soup structure in the variable soup can then be processed to locate the various pieces of
content. For example, we can extract the leg details as follows:

    def get_legs(soup)
        legs = []
        thead = soup.table.thead.tr
        for tag in thead.find_all('th'):
            if 'data-title' in tag.attrs:
                leg_description_text = clean_leg(tag.attrs['data-title'])



Input/Output, Physical Format, and Logical Layout

[ 472 ]

                legs.append(leg_description_text)
        return legs

The expression soup.table.thead.tr will find the first <table> tag. Within that, the
first <thead> tag; and within that, the first <tr> tag. We assigned this <tr> tag to a
variable named, perhaps misleadingly, thead. We can then do a findall() to locate all
<th> tags within this container.

We'll check each tag's attributes to locate the data-title attribute values. This will have
the leg name information. The leg name content looks as follows:

    <th tooltipster data->LEG 1</th>

The data-title attribute value includes some additional HTML markup within the value.
This is not a standard part of HTML and the BeautifulSoup parser doesn't look for this
HTML within an attribute value.

We have a small bit of HTML to parse, so we can create a small soup object just to parse
that piece of text:

    def clean_leg(text):
        leg_soup = BeautifulSoup(text, 'html.parser')
        return leg_soup.text

We create a small BeautifulSoup object from just the value of the data-title attribute.
This soup will have information about the tag, <strong>, and the text. We used the text
attribute to get all of the text without any tag information.

How it works…
The BeautifulSoup class transforms HTML documents into fairly complex objects based
on a document object model (DOM). The resulting structure will be built from instances of
the Tag, NavigableString, and Comment classes.

Generally, we're interested in the tags that contain the string content of the web page. These
are objects of the Tag and NavigableString classes.



Input/Output, Physical Format, and Logical Layout

[ 473 ]

Each Tag instance has a name, string, and attributes. The name is the word inside the < and
>. The attributes are the fields that follow the tag name. For example, <td
class="ranking-number">1</td> has a tag name of td and an attribute named class.
Values are often strings, but in a few cases, the value can be a list of strings. The string
attribute of the Tag object is the content enclosed by the tag; in this case, it's a very short
string, 1.

HTML is a mixed content model. This means that a tag can contain child tags in addition to
navigable text. The text is mixed, it can be inside as well as outside any of the child tags.
When looking at the children of a given tag, there will be a sequence of tags and text freely
intermixed.

One of the most common features of HTML are small blocks of navigable text that contain
only newline characters. When we have a soup like this:

    <tr>
        <td>Data</td>
    </tr>

There are three children within the <tr> tag. Here's a display of the children of this tag:

>>> example = BeautifulSoup('''
...     <tr>
...         <td>data</td>
...     </tr>
... ''', 'html.parser')
>>> list(example.tr.children)
['\n', <td>data</td>, '\n']

The two newline characters are peers to the <td> tag, and are preserved by the parser. This
is navigable text that surrounds the child tag.

The BeautifulSoup parser depends on another, lower-level process. The lower-level
process can be the built-in html.parser module. There are alternatives that can be
installed, also. The html.parser is easiest to use and covers the most common use cases.
There are alternatives available, the Beautiful Soup documentation lists the other low-level
parsers that can be used to solve particular web parsing problems.

The lower-level parser recognizes events; these include element starts, element ends,
comment starts, comment ends, runs of text, and similar lexical objects. At the higher level,
the events are used to build the various objects of the Beautiful Soup document.



Input/Output, Physical Format, and Logical Layout

[ 474 ]

There's more…
The Tag objects of Beautiful Soup represent the hierarchy of the document's structure.
There are several kinds of navigation among tags:

All tags except a special root [document] container will have a parent. The top
<html> tag will often be the only child of the root document container.
The parents attribute is a generator for all parents of a tag. It's a path through
the hierarchy to a given tag.
All Tag objects can have children. A few tags such as <img/> and <hr/> have no
children. The children attribute is a generator that yields the children of a tag.
A tag with children may have multiple levels of tags under it. The overall <html>
tag, for example, has the entire document as descendants. The children
attribute has the immediate children; the descendants attribute generates all
children of children.
A tag can also have siblings, which are other tags within the same container.
Since the tags have a defined order, there's a next_sibling and
previous_sibling attribute to help step through the peers of a tag.

In some cases, a document will have a generally straight-forward organization and a simple
search by the id attribute or class attribute will find the relevant data. Here's a typical
search for a given structure:

>>> ranking_table = soup.find('table', class_="ranking-list")

Note that we have to use class_ in our Python query to search for the attribute named
class. Given the overall document, we're searching for any <table class="ranking-
list"> tag. This will find the first such table in a web page. Since we know there will only
be one of these, this attribute-based search helps distinguish between any other tabular data
on a web page.

Here's the parents of this <table> tag:

>>> list(tag.name for tag in ranking_table.parents)
['section', 'div', 'div', 'div', 'div', 'body', 'html', '[document]']

We've displayed just the tag name for each parent above the given <table>. Note that there
are four nested <div> tags that wrap the <section> that contains the <table>. Each of
these <div> tags likely has a different class attribute to properly define the content and the
style for the content.



Input/Output, Physical Format, and Logical Layout

[ 475 ]

The [document] is the overall BeautifulSoup container that holds the various tags that
were parsed. This is displayed distinctively to emphasize that it's not a real tag, but a
container for the top-level <html> tag.

See also
The Reading JSON documents and Reading XML documents recipes both use similar
data. The example data was created for them by scraping the HTML page using
these techniques.

Upgrading CSV from DictReader to
namedtuple reader
When we read data from a CSV format file, we have two general choices for the resulting
data structure:

When we use csv.reader(), each row becomes a simple list of column values.
When we use csv.DictReader, each row becomes a dictionary. By default, the
contents of the first row become the keys for the row dictionary. The alternative is
to provide a list of values that will be used as the keys.

In both cases, referring to data within the row is awkward because it involves rather
complex-looking syntax. When we use a csv reader, we must use row[2]: the semantics of
this are completely obscure. When we use a DictReader, we can use row['date'], which
is less obscure, but is still a lot of typing.

In some real-world spreadsheets the column names are impossibly long strings. It's hard to
work with row['Total of all locations excluding franchisees'].

What can we do to replace complex syntax with something simpler?

Getting ready
One way to improve the readability of programs that work with spreadsheets is to replace a
list of columns with a namedtuple object. This provides easy-to-use names defined by the
namedtuple instead of the possibly haphazard column names in the .csv file.



Input/Output, Physical Format, and Logical Layout

[ 476 ]

More importantly, it permits much nicer syntax for referring to the various columns. In
addition to row[0], we can also use row.date to refer to a column named date.

The column names (and the data types for each column) are part of the schema for a given
file of data. In some CSV files the first line of the column titles is a schema for the file. This
schema is limited, it provides only attribute names; the data types aren't known and have to
be treated as strings.

This points to two reasons for imposing an external schema on the rows of a spreadsheet:

We can supply meaningful names
We can perform data conversions where necessary

We'll look at a relatively simple CSV file that has some real-time data recorded from the log
of a sailboat. This is the waypoints.csv file, and the data looks as follows:

    lat,lon,date,time
    32.8321666666667,-79.9338333333333,2012-11-27,09:15:00
    31.6714833333333,-80.93325,2012-11-28,00:00:00
    30.7171666666667,-81.5525,2012-11-28,11:35:00

The data has four columns. Two of the columns are the latitude and longitude of the
waypoint. It has a column with the date and the time as separate values. This isn't ideal, and
we'll look at various data cleansing steps separately.

In this case, the column titles happen to be valid Python variable names. This is rare, but it
can lead to a slight simplification. We'll look at the alternatives in the following section.

The most important step is to gather the data as namedtuples.

How to do it…
Import the modules and definitions required. In this case, they will be from1.
collections, csv, and pathlib:

        from collections import namedtuple
        from pathlib import Path
        import csv



Input/Output, Physical Format, and Logical Layout

[ 477 ]

Define the namedtuple that matches the actual data. In this case, we've called it2.
Waypoint and provided names for the four columns of data. In this example, the
attributes happen to match the column names; it's not a requirement that the
names match:

        Waypoint = namedtuple('Waypoint', ['lat', 'lon', 'date', 'time'])

Define the Path object that refers to the data:3.

         waypoints_path = Path('waypoints.csv')

Create the processing context for the open file:4.

        with waypoints_path.open() as waypoints_file:  

Define a CSV reader for the data. We'll call this a raw reader. In the long run,5.
we'll follow the Using stacked generator expressions recipe in Chapter 8, Functional
And Reactive Programming Features and Use a stack of generator expressions recipe in
Chapter 8, Functional And Reactive Programming Features to cleanse and filter the
data:

        raw_reader = csv.reader(waypoints_file)  

Define a generator that builds Waypoint objects from tuples of input data:6.

        waypoints_reader = (Waypoint(*row) for row in raw_reader)  

We can now process rows using the waypoints_reader generator expression:

    for row in waypoints_reader:
        print(row.lat, row.lon, row.date, row.time)

The waypoints_reader object will also provide the heading row, which we want to
ignore. We'll look at filtering and conversion in the following section.

The expression (Waypoint(*row) for row in raw_reader) expands each value of the
row tuple to be a positional argument value for the Waypoint function. This works because
the column order in the CSV file matches the column order in the namedtuple definition.

This construction can also be performed using the itertools module, also. The
starmap() function can be used as starmap(Waypoint, raw_reader). This will also
expand each tuple from the raw_reader to be a positional argument to the Waypoint
function. Note that we can't use the built-in map() function for this. The map() function
assumes that the function takes a single argument value. We don't want each four-item row



Input/Output, Physical Format, and Logical Layout

[ 478 ]

tuple to be used as the only argument to the Waypoint function. We need to split the four
items into four positional argument values.

How it works…
There are several parts to this recipe. Firstly, we've used the csv module for the essential
parsing of rows and columns of data. We've leveraged the Reading delimited files with the cvs
module recipe to process the physical format of the data.

Secondly, we've defined a namedtuple() that provides a minimal schema for our data.
This is not very rich or detailed. It provides a sequence of column names. It also simplifies
the syntax for accessing a particular column.

Finally, we've wrapped the csv reader in a generator function to build namedtuple objects
for each row. This is a tiny change to the default processing, but it leads to a nicer style for
the subsequent programming.

Instead of row[2] or row['date'], we can now use row.date to refer to a specific
column. This is a small change that can simplify the presentation of complex algorithms.

There's more…
The initial example of processing the input has two additional problems. Firstly, the header
row is mixed in with the useful rows of data; this header row needs to be rejected by a filter
of some kind. Secondly, the data is all strings, and some conversion is necessary. We'll solve
each of these by extending the recipe.

There are two common techniques for discarding the unneeded header row:

We can use an explicit iterator and discard the first item. The general idea is as
follows:

         with waypoints_path.open() as waypoints_file:
            raw_reader = csv.reader(waypoints_file)
            waypoints_iter = iter(waypoints_reader)
            next(waypoints_iter)  # The header
            for row in waypoints_iter:
                print(row)



Input/Output, Physical Format, and Logical Layout

[ 479 ]

This snippet shows how to create an iterator object, waypoints_iter, from the
raw CSV reader. We can use the next() function to skip a single item from this
reader. The remaining items can be used to build useful rows of data. We can also
use the itertools.islice() function for this.

We can write a generator or use the filter() function to exclude selected rows:

         with waypoints_path.open() as waypoints_file:
            raw_reader = csv.reader(waypoints_file)
            skip_header = filter(lambda row: row[0] != 'lat', raw_reader)
            waypoints_reader = (Waypoint(*row) for row in skip_header)
            for row in waypoints_reader:
                print(row)

This example shows how to create filtered generator, skip_header, from the raw CSV
reader. The filter uses a simple expression, row[0] != 'lat', to determine if a row is a
header or has useful data. Only the useful rows are passed by this filter. The header row is
rejected.

The other thing we'll need to do is to convert the various data items to more useful values.
We'll follow the example of the Simplifying complex algorithms with immutable data structures
recipe in Chapter 8, Functional And Reactive Programming Features and build a new
namedtuple from the raw input data:

    Waypoint_Data = namedtuple('Waypoint_Data', ['lat', 'lon',
'timestamp'])

At this point in most projects, it becomes clear that the original name of the Waypoint
namedtuple was poorly chosen. The code will need to be refactored to change the names to
clarify the role of the original Waypoint tuple. This renaming and refactoring will occur
several times as the design evolves. It's important to rename things as needed. We won't do
the renaming here: we'll leave it for the reader to redesign the names.

To do the conversions, we need a function to handle the individual fields of a single
Waypoint. This will create more useful values. It will involve using float() on the
latitude and longitude values. It also requires some careful parsing of the date values.

Here's the first part of working with the separate date and time. These are two lambda
objects-small functions with only a single expression that convert date or time strings to
date or time values:

    import datetime
    parse_date = lambda txt: datetime.datetime.strptime(txt, '%Y-%m-
%d').date()
    parse_time = lambda txt: datetime.datetime.strptime(txt,



Input/Output, Physical Format, and Logical Layout

[ 480 ]

'%H:%M:%S').time()

We can use these to build a new Waypoint_data object from the original Waypoint object:

    def convert_waypoint(waypoint):
        return Waypoint_Data(
            lat = float(waypoint.lat),
            lon = float(waypoint.lon),
            timestamp = datetime.datetime.combine(
                parse_date(waypoint.date),
                parse_time(waypoint.time)
            )
        )

We've applied a series of functions that build a new data structure from an existing data
structure. The latitude and longitude values were converted with the float() function.
The date and time values were converted to a datetime object using the parse_date and
parse_time lambdas with the combine() method of the datetime class.

This function allows us to build a more complete stack of processing steps for the source
data:

    with waypoints_path.open() as waypoints_file:
        raw_reader = csv.reader(waypoints_file)
        skip_header = filter(lambda row: row[0] != 'lat', raw_reader)
        waypoints_reader = (Waypoint(*row) for row in skip_header)
        waypoints_data_reader = (convert_waypoint(wp) for wp in
waypoints_reader)
        for row in waypoints_data_reader:
            print(row.lat, row.lon, row.timestamp)

The original reader has been supplemented with a filter function to skip the header, a
generator to create Waypoint objects, and another generator to create Waypoint_Data
objects. Within the body of the for statement, we have a simple and easy-to-use data
structure with pleasant names. We can refer to row.lat instead of row[0] or row['lat'].

Note that each generator function is lazy, it doesn't fetch any more input than is minimally
required to produce some output. This stack of generator functions uses very little memory
and can process files of unlimited size.

See also
The Upgrading CSV from dict reader to namespace reader recipe does this with
mutable SimpleNamespace data structure



Input/Output, Physical Format, and Logical Layout

[ 481 ]

Upgrading CSV from a DictReader to a
namespace reader
When we read data from a CSV format file, we have two general choices for the resulting
data structure:

When we use csv.reader(), each row becomes a simple list of column values.
When we use csv.DictReader, each row becomes a dictionary. By default, the
contents of the first row become the keys for the row dictionary. We can also
provide a list of values that will be used as the keys.

In both cases, referring to data within the row is awkward because it involves rather
complex-looking syntax. When we use a reader, we must use row[0], the semantics of this
are completely obscure. When we use a DictReader, we can use row['date'], which is
less obscure, but is a lot of typing.

In some real-world spreadsheets, the column names are impossibly long strings. It's hard to
work with row['Total of all locations excluding franchisees'].

What can we do to replace complex syntax with something simpler?

Getting ready
The column names (and the data types for each column) are a schema for our data. The
column titles are a schema that's embedded in the first row of the CSV data. This schema
provides only attribute names; the data types aren't known and have to be treated as
strings.

This points up two reasons for imposing an external schema on the rows of a spreadsheet:

We can supply meaningful names.
We can perform data conversions where necessary.

We can also use a schema to define data quality and cleansing processing. This can become
quite sophisticated (and complicated). We'll limit our use of schema to providing column
names and data conversions.

We'll look at a relatively simple CSV file that has some real-time data recorded from the log
of a sailboat. This is the waypoints.csv file. The data looks like the following:

    lat,lon,date,time



Input/Output, Physical Format, and Logical Layout

[ 482 ]

    32.8321666666667,-79.9338333333333,2012-11-27,09:15:00
    31.6714833333333,-80.93325,2012-11-28,00:00:00
    30.7171666666667,-81.5525,2012-11-28,11:35:00

This spreadsheet has four columns. Two of them are the latitude and longitude of the
waypoint. It has a column with the date and the time as separate values. This isn't ideal, and
we'll look at various data cleansing steps separately.

In this case, the column titles are valid Python variable names. This leads to an important
simplification in the processing. In the cases where there are no column names, or the
column names aren't Python variables, we'll have to apply a mapping from column name to
preferred attribute name.

How to do it…
Import the modules and definitions required. In this case, it will be from types,1.
csv, and pathlib:

        from types import SimpleNamespace
        from pathlib import Path

Import csv and define a Path object that refers to the data:2.

        waypoints_path = Path('waypoints.csv')  

Create the processing context for the open file:3.

        with waypoints_path.open() as waypoints_file:  

Define a CSV reader for the data. We'll call this a raw reader. In the long run,4.
we'll follow the Using stacked generator expressions recipe in Chapter 8, Functional
And Reactive Programming Features and use multiple generator expressions to
cleanse and filter the data:

        raw_reader = csv.DictReader(waypoints_file)  

Define a generator that will convert these dictionaries into SimpleNamespace5.
objects:

        ns_reader = (SimpleNamespace(**row) for row in raw_reader)



Input/Output, Physical Format, and Logical Layout

[ 483 ]

This uses the generic SimpleNamespace class. When we need to use a more
specific class, we can replace the SimpleNamespace with an application-specific
class name. That class __init__ must use keyword parameters that match the
spreadsheet column names.

We can now process rows from this generator expression:

    for row in ns_reader:
        print(row.lat, row.lon, row.date, row.time)

How it works…
There are several parts to this recipe. Firstly, we've used the csv module for the essential
parsing of rows and columns of data. We've leveraged the Reading delimited files with the cvs
module recipe to process the physical format of the data. The idea of the CSV format is to
have columns of text that are comma separated in each row. There are rules for using
quotes to allow the data within a column to contain a comma. The rules are all implemented
within the csv module, saving us from writing a parser for this.

Secondly, we've wrapped the csv reader in a generator function to build a
SimpleNamespace object for each row. This is a tiny extension to the default processing,
but it leads to a nicer style for the subsequent programming. Instead of row[2] or
row['date'], we can now use row.date to refer to a specific column. This is a small
change that can simplify the presentation of complex algorithms.

There's more…
We may have two additional problems to solve. Whether or not these are needed depends
on the data and the use for the data:

How do we handle spreadsheet names that aren't proper Python variables?
How can we convert data from text to a Python object?

It turns out that both of these needs can be handled elegantly with a function that does row
by row conversion of data, and also handles any necessary renaming of columns:

    def make_row(source):
        return SimpleNamespace(
            lat = float(source['lat']),
            lon = float(source['lon']),
            timestamp = make_timestamp(source['date'], source['time']),



Input/Output, Physical Format, and Logical Layout

[ 484 ]

        )

This function is in effect the schema definition for the original spreadsheet. Each line in this
function provides several important pieces of information:

The attribute name in the SimpleNamespace
The conversion from the source data
The source column names that were mapped to the final result

The goal is to define any helper or support functions required to be sure that each line of the
conversion function is similar to the ones shown. Each line of this function is complete
specification for a result column. As a bonus benefit, each line is written in Python notation.

This function can replace SimpleNamespace in the ns_reader statement. All of the
conversion work is now focused into a single place:

    ns_reader = (make_row(row) for row in raw_reader)

This row transformation function relies on a make_timestamp() function. This function
converts two source columns to one resulting datetime object. The function looks like the
following:

    import datetime
    make_date = lambda txt: datetime.datetime.strptime(
        txt, '%Y-%m-%d').date()
    make_time = lambda txt: datetime.datetime.strptime(
        txt, '%H:%M:%S').time()

    def make_timestamp(date, time):
        return datetime.datetime.combine(
                make_date(date),
                make_time(time)
             )

The make_timestamp() function breaks the timestamp creation into three parts. The first
two parts are so simple that a lambda object was all that was needed. These are conversions
from text to make datetime.date or datetime.time objects. Each conversion use the
strptime() method to parse the date or time strings and return the appropriate class of
object.

The third part could also have been a lambda, since it's also a single expression. However,
it's a long expression, and it seemed slightly more clear to wrap it as a def statement. This
expression uses the combine() method of datetime to combine a date and time into a
single object.



Input/Output, Physical Format, and Logical Layout

[ 485 ]

See also
The Upgrading CSV from dict reader to namedtuple reader recipe does this with an
immutable namedtuple data structure instead of a SimpleNamespace

Using multiple contexts for reading and
writing files
It's common to need to convert data from one format to another. For example, we might
have a complex web log that we'd like to convert to a simpler format.

See the Reading complex formats using regular expressions recipe for a complex web log format.
We'd like to do this parsing just one time.

After that, we'd like to work with a simpler file format, more like the format shown in the
Upgrading CSV from dict reader to namedtuple reader or Upgrading CSV from dict reader to
namespace reader recipe. A file that's in CSV notation can be read and parsed with the csv
module, simplifying the physical format considerations.

How can we convert from one format to another?

Getting ready
Converting a file of data from one format to another means that the program will need to
have two open contexts: one for reading and one for writing. Python makes this easy. The
use of with statement contexts assures that the files are properly closed and all of the
related OS resources are completely released.

We'll look at a common problem of summarizing many web log files. The source is in a
format that we've seen in the Writing generator functions with the yield statement recipe in
Chapter 8, Functional And Reactive Programming Features and also Reading complex formats
using regular expressions recipe in this chapter. The rows look like the following:

    [2016-05-08 11:08:18,651] INFO in ch09_r09: Sample Message One
    [2016-05-08 11:08:18,651] DEBUG in ch09_r09: Debugging
    [2016-05-08 11:08:18,652] WARNING in ch09_r09: Something might have
gone wrong



Input/Output, Physical Format, and Logical Layout

[ 486 ]

These are difficult to process. The regular expression required to parse them is complex. For
large volumes of data, it's also rather slow.

Here's the regular expression pattern for the various elements of the line:

    import re
    pattern_text = (r'\[(?P<date>\d+-\d+-\d+ \d+:\d+:\d+,\d+)\]'
        '\s+(?P<level>\w+)'
        '\s+in\s+(?P<module>[\w_\.]+):'
        '\s+(?P<message>.*)')
    pattern = re.compile(pattern_text)

There are four parts to this complex regular expression:

The date-time stamp is surrounded with [ ] and has a variety of digits, hyphens,
colons, and a comma. It will be captured and assigned the name date by the
?P<date> prefix on the () group.
The severity level, which is a run of characters. This is captured and given the
name level by the ?P<level> prefix on the next () group.
The module is a sequence of characters including _ and .. It's sandwiched
between in and a :. The is assigned the name module.
Finally, there's a message that extends to the end of the line. This is assigned to
the message by the ?P<message> inside the final ().

The pattern also includes runs of whitespace, \s+, which are not captured in any () groups.
They're quietly ignored.

When we create a match object using this regular expression, the groupdict() method of
that match object will produce a dictionary with the names and values from each line. This
matches the way the csv reader works. It provides a common framework for processing
complex data.

We'll use this in a function that iterates through rows of log data. The function will apply
the regular expression, and yield the group dictionaries:

    def extract_row_iter(source_log_file):
        for line in source_log_file:
            match = log_pattern.match(line)
            if match is None:
                # Might want to write a warning
                continue
            yield match.groupdict()



Input/Output, Physical Format, and Logical Layout

[ 487 ]

This function looks at each line in the given input file. It applies the regular expression to
the line. If the line matches, this will capture the relevant fields of data. If there is no match,
the line didn't follow the expected format; this may deserve an error message. There's no
useful data to yield, so the continue statement skips the rest of the body of the for
statement.

The yield statement produces the dictionaries of matches. Each dictionary will have the
four named fields and the captured data from the log. The data will be text only, so
additional conversions will have to be applied separately.

We can use the DictWriter class from the csv module to emit a CSV file with these
various data elements neatly separated. Once we've created a CSV file, we can process the
data simply and much more quickly than the raw log rows.

How to do it…
This recipe will need three components:1.

         import re
        from pathlib import Path
        import csv  

Here's the pattern that matches the simple Flask logs. For other kinds of logs, or2.
other formats configured into Flask, a different pattern will be required:

        log_pattern = re.compile(
            r"\[(?P<timestamp>.*?)\]"
            r"\s(?P<levelname>\w+)"
            r"\sin\s(?P<module>[\w\._]+):"
            r"\s(?P<message>.*)")  

Here's the function that yields dictionaries for the matching rows. This applies3.
the regular expression pattern. Non-matches are silently skipped. The matches
will yield a dictionary of item names and their values:

        def extract_row_iter(source_log_file):
            for line in source_log_file:
                match = log_pattern.match(line)
                if match is None: continue
                yield match.groupdict()  



Input/Output, Physical Format, and Logical Layout

[ 488 ]

We'll define the Path object for the resulting log summary file:4.

        summary_path = Path('summary_log.csv')  

We can then open the results context. Because we're using a with statement,5.
we're assured that the file will be properly closed no matter what else happens in
this script:

        with summary_path.open('w') as summary_file:  

Since we're writing a CSV file based on a dictionary, we'll define a6.
csv.DictWriter. This is indented four spaces inside the with statement. We
must provide the expected keys from the input dictionary. This will define the
order for the columns in the resulting file:

        writer = csv.DictWriter(summary_file,
            ['timestamp', 'levelname', 'module', 'message'])
        writer.writeheader()  

We'll define a Path object for the source directory with log files. In this case, the7.
log files happen to be in the directory with the script. This is rare, and using an
environment variable might be a lot more useful:

        source_log_dir = Path('.')

We can imagine using os.environ.get('LOG_PATH', '/var/log') as a more
general solution than a hard-coded path.

We'll use the glob() method of a Path object to find all files that match the8.
required name:

        for source_log_path in source_log_dir.glob('*.log'):

This, too, could benefit from having the pattern string fetched from an
environment variable or command-line parameter.

We'll define a context for reading each source file. This context manager will9.
guarantee that the input files are properly closed and the resources released. Note
that this is indented inside the previous with and for statements, a total of eight
spaces. This is particularly important when processing a large number of files:

         with source_log_path.open() as source_log_file:  



Input/Output, Physical Format, and Logical Layout

[ 489 ]

We'll use the writer's writerows() method to write all valid rows from the10.
extract_row_iter() function. This is indented inside both with statements, as
well as the for statement. This is the core of the process:

         writer.writerows( extract_row_iter(source_log_file) )    

We can also write a summary. This is indented inside the outer with and for11.
statements. It summarizes the processing of the preceding with statement:

        print('Converted', source_log_path, 'to', summary_path)  

How it works…
Python works nicely with multiple context managers. We can easily have deeply-nested
with statements. Each with statement can manage a different context object.

Since open files are context objects, it makes the most sense to wrap every open file in a
with statement to be sure that the file is properly closed and all OS resources are released
from the file.

We've used Path objects to represent the filesystem locations. This gives us the ability to
easily create output names based on input names, or rename the files after they've been
processed. For more information on this, see the Using pathlib to work with filenames recipe.

We've used a generator function to combine two operations. Firstly, there's a mapping from
source text to individual fields. Secondly, there's a filter that excludes source text that
doesn't match the expected pattern. In many cases, we can use the map() and filter()
functions to make this a little more clear.

When using regular expression matching; however, it's not as easy to separate the mapping
and filter parts of the operation. The regular expression may not match some input lines,
which becomes a kind of filtering that's bundled in to the mapping. Because of this, a
generator function works out very nicely.

The csv writers have a writerows() method. This method accepts an iterator as it's
parameter value. This makes it easy to provide a generator function to the writer. The
writer will consume objects as they're produced by the generator. Very large files can be
handled this way because the entire file isn't read into memory, just enough of the file is
read to create a complete line of data.



Input/Output, Physical Format, and Logical Layout

[ 490 ]

There's more…
It's often essential to have a summary count of the number of lines of log file read from each
source, the number of lines discarded because they didn't match, and the number of lines
finally written to the summary file.

This is challenging when using generators. The generator produces lots of rows of data.
How can it also produce a summary?

The answer is that we can provide a mutable object as a parameter to the generator. The
ideal kind of mutable object is an instance of collections.Counter. We can use this to
count events including a valid record, an invalid record, or even occurrences of specific data
values. The mutable object can be shared by the generator and the overall main program so
that the main program can print the count information to a log.

Here's the map-filter function that converts text to useful dictionary objects. We've written a
second version called counting_extract_row_iter() to emphasize the additional
feature:

    def counting_extract_row_iter(counts, source_log_file):
        for line in source_log_file:
            match = log_pattern.match(line)
            if match is None:
                counts['non-match'] += 1
                continue
            counts['valid'] += 1
            yield match.groupdict()

We've provided an additional argument, counts. When we find rows that don't match the
regular expression, we can increment the non-match key in the Counter. When we find
rows that do match properly, we can increment the valid key in the Counter. This
provides a summary that shows how may rows were processed from the given file.

The overall processing script looks like the following:

    summary_path = Path('summary_log.csv')
    with summary_path.open('w') as summary_file:

        writer = csv.DictWriter(summary_file,
            ['timestamp', 'levelname', 'module', 'message'])
        writer.writeheader()

        source_log_dir = Path('.')
        for source_log_path in source_log_dir.glob('*.log'):
            counts = Counter()
            with source_log_path.open() as source_log_file:



Input/Output, Physical Format, and Logical Layout

[ 491 ]

                writer.writerows(
                    counting_extract_row_iter(counts, source_log_file)
                    )

            print('Converted', source_log_path, 'to', summary_path)
            print(counts)

We've made three small changes:

Create an empty Counter object just before processing a source log file.
Provide the Counter object to the counting_extract_row_iter() function.
The function will update the counter as it processes rows.
Print the value of the counter after processing the files. The unadorned output
isn't very pretty, but it tells an important story. 

We might see output like the following:

Converted 20160612.log to summary_log.csv
Counter({'valid': 86400})
Converted 20160613.log to summary_log.csv
Counter({'valid': 86399, 'non-match': 1)

This kind of output shows us how large the summary_log.csv will be, and it also shows
that something was wrong in the 20160613.log file.

We can easily extend this to combine all of the individual source file counters to produce a
single large output at the end of the process. We can combine multiple Counter objects
using the + operator to create a grand sum of all of the data. Details are left as an exercise
for the reader.

See also
For the basics of a context, see the Reading and writing files with context managers
recipe



10
Statistical Programming and

Linear Regression
In this chapter, we'll look at the following recipes:

Using the built-in statistics library
Average of values in a Counter
Computing the coefficient of a correlation
Computing regression parameters
Computing an autocorrelation
Confirming that the data is random – the null hypothesis
Locating outliers
Analyzing many variables in one pass

Introduction
Data analysis and statistical processing are very import applications for sophisticated,
modern programming languages. The subject area is vast. The Python ecosystem includes a
number of add-on packages that provide sophisticated data exploration, analysis, and
decision-making features.

We'll look at some basic statistical calculations that we can do with Python's built-in
libraries and data structures. We'll look at the question of correlation and how to create a
regression model.



Statistical Programming and Linear Regression

[ 493 ]

We'll also look at questions of randomness and the null hypothesis. It's essential to be sure
that there really is a measurable statistical effect in a set of data. We can waste a lot of
compute cycles analyzing insignificant noise if we're not careful.

We'll look at a common optimization technique, as well. It helps to produce results quickly.
A poorly designed algorithm applied to a very large set of data can be an unproductive
waste of time.

Using the built-in statistics library
A great deal of exploratory data analysis (EDA) involves getting a summary of the data.
There are several kinds of summary that might be interesting:

Central Tendency: Values such as the mean, mode, and median can characterize
the center of a set of data.
Extrema: The minimum and maximum are as important as the central measures
of some data.
Variance: The variance and standard deviation are used to describe the dispersal
of the data. A large variance means the data is widely distributed; a small
variance means the data clusters tightly around the central value.

How can we get basic descriptive statistics in Python?

Getting ready
We'll look at some simple data that can be used for statistical analysis. We've been given a
file of raw data, called anscombe.json. It's a JSON document that has four series of (x,y)
pairs.

We can read this data with the following:

>>> from pathlib import Path
>>> import json
>>> from collections import OrderedDict
>>> source_path = Path('code/anscombe.json')
>>> data = json.loads(source_path.read_text(),
object_pairs_hook=OrderedDict)



Statistical Programming and Linear Regression

[ 494 ]

We've defined the Path to the data file. We can then use the Path object to read the text
from this file. This text is used by json.loads() to build a Python object from the JSON
data.

We've included an object_pairs_hook so that this function will build the JSON using the
OrderedDict class instead of the default dict class. This will preserve the original order of
items in the source document.

We can examine the data like this:

>>> [item['series'] for item in data]
['I', 'II', 'III', 'IV']
>>> [len(item['data']) for item in data]
[11, 11, 11, 11]

The overall JSON document is a sequence of subdocuments with keys such as I and II.
Each subdocument has two fields—series and data. Within the data value, there's a list
of observations that we want to characterize. Each observation has a pair of values.

The data looks like this:

    [
      {
        "series": "I",
        "data": [
          {
            "x": 10.0,
            "y": 8.04
          },
          {
            "x": 8.0,
            "y": 6.95
          },
          ...
        ]
      },
      ...
    ]

This is a list of dict structure, typical of JSON documents. Each dict has a series name, with
a key series, and a sequence of data values, with a key data. The list within data is a
sequence of items, and each item has an x and a y value.



Statistical Programming and Linear Regression

[ 495 ]

To find a specific series in this data structure, we have a number of choices:

A for...if...return statement sequence: 

      >>> def get_series(data, series_name):
      for s in data:
          if s['series'] == series_name:
              return s

This for statement examines each series in the sequence of values. The series is a
dictionary with a key of 'series' that has the series name. The if statement
compares the series name with the target name, and returns the first match.  This
will return None for an unknown series name.

We can access the data like this: 

      >>> series_1 = get_series(data, 'I')
      >>> series_1['series']
      'I'
      >>> len(series_1['data'])
      11

  We can use a filter that finds all matches, from which the first is selected:

      >>> def get_series(data, series_name):
      ...     name_match = lambda series: series['series'] == series_name
      ...     series = list(filter(name_match, data))[0]
      ...     return series

This filter() function examines each series in the sequence of values. The series
is a dictionary with a key of 'series' that has the series name. The name_match
lambda object will compare the name key of the series with the target name, and
return all of the matches. This is used to build a list object. If each key is unique,
the first item is the only item. This will raise an IndexError exception for an
unknown series name.

Now we can access the data like this: 

      >>> series_2 = get_series(data, 'II')
      >>> series_2['series']
      'II'
      >>> len(series_2['data'])
      11



Statistical Programming and Linear Regression

[ 496 ]

We can use a generator expression that, similar to the filter, finds all matches. We
pick the first from the resulting sequence: 

      >>> def get_series(data, series_name):
      ...     series = list(
      ...         s for s in data
      ...            if s['series'] == series_name
      ...         )[0]
      ...     return series

This generator expression examines each series in the sequence of values. The
series is a dictionary with a key of 'series' that has the series name. Instead of
a lambda object, or function, the expression s['series'] == series_name will
compare the name key of the series with the target name, and pass all of the
matches. This is used to build a list object, and the first item from the list is
returned. This will raise an IndexError exception for an unknown series name.

Now we can access the data like this: 

      >>> series_3 = get_series(data, 'III')
      >>> series_3['series']
      'III'
      >>> len(series_3['data'])
      11  

There are some examples of this kind of processing in the Implementing “there
exists” Processing recipe in Chapter 8, Functional and Reactive Programming Features

Once we've picked a series from the data, we'll also need to pick a variable from
the series. This can be done with a generator function or a generator expression:

      >>> def data_iter(series, variable_name):
      ...     return (item[variable_name] for item in series['data'])

A series dictionary has a data key with the sequence of data values. Each data value is a
dictionary with two keys, x, and y. This data_iter() function will pick one of those
variables from each dictionary in the data. This function will generate a sequence of values
that can be used for detailed analysis:

>>> s_4 = get_series(data, 'IV')
>>> s_4_x = list(data_iter(s_4, 'x'))
>>> len(s_4_x)
11



Statistical Programming and Linear Regression

[ 497 ]

In this case, we picked the series IV. From that series, we picked the x variable from each
observation. The length of the resulting list shows us that there were 11 observations in this
series.

How to do it…
To compute the mean and median, use the statistics module: 1.

      >>> import statistics
      >>> for series_name in 'I', 'II', 'III', 'IV':
      ...     series = get_series(data, series_name)
      ...     for variable_name in 'x', 'y':
      ...         samples = list(data_iter(series, variable_name))
      ...         mean = statistics.mean(samples)
      ...         median = statistics.median(samples)
      ...         print(series_name, variable_name, round(mean,2), median)
      I x 9.0 9.0
      I y 7.5 7.58
      II x 9.0 9.0
      II y 7.5 8.14
      III x 9.0 9.0
      III y 7.5 7.11
      IV x 9.0 8.0
      IV y 7.5 7.04

This uses get_series() and data_iter() to select sample values from one
variable of a given series. The mean() and median() functions handle this task
nicely. There are several variations on the median calculation that are available.

To compute mode, use the collections module:2.

       >>> import collections
      >>> for series_name in 'I', 'II', 'III', 'IV':
      ...     series = get_series(data, series_name)
      ...     for variable_name in 'x', 'y':
      ...         samples = data_iter(series, variable_name)
      ...         mode = collections.Counter(samples).most_common(1)
      ...         print(series_name, variable_name, mode)
      I x [(4.0, 1)]
      I y [(8.81, 1)]
      II x [(4.0, 1)]
      II y [(8.74, 1)]
      III x [(4.0, 1)]
      III y [(8.84, 1)]



Statistical Programming and Linear Regression

[ 498 ]

      IV x [(8.0, 10)]
      IV y [(7.91, 1)]

This uses get_series() and data_iter() to select sample values from one
variable of a given series. The Counter object does this job very elegantly. We
actually get a complete frequency histogram from this operation. The result of the
most_common() method shows both the value and the number of times it
occurred.

We can also use the mode() function in the statistics module. This function
has the advantage of raising an exception when there is no obvious mode. This
has the disadvantage of not providing any additional information to help locate
multimodal data.

The extrema are computed with the built-in min() and max() functions: 3.

      >>> for series_name in 'I', 'II', 'III', 'IV':
      ...     series = get_series(data, series_name)
      ...     for variable_name in 'x', 'y':
      ...         samples = list(data_iter(series, variable_name))
      ...         least = min(samples)
      ...         most = max(samples)
      ...         print(series_name, variable_name, least, most)
      I x 4.0 14.0
      I y 4.26 10.84
      II x 4.0 14.0
      II y 3.1 9.26
      III x 4.0 14.0
      III y 5.39 12.74
      IV x 8.0 19.0
      IV y 5.25 12.5

This uses get_series() and data_iter() to select sample values from one
variable of a given series. The built-in max() and min() functions provide the
values for the extrema.

To compute variance (and standard deviation), we can also use the statistics4.
module: 

      >>> import statistics
      >>> for series_name in 'I', 'II', 'III', 'IV':
      ...     series = get_series(data, series_name)
      ...     for variable_name in 'x', 'y':
      ...         samples = list(data_iter(series, variable_name))
      ...         mean = statistics.mean(samples)
      ...         variance = statistics.variance(samples, mean)



Statistical Programming and Linear Regression

[ 499 ]

      ...         stdev = statistics.stdev(samples, mean)
      ...         print(series_name, variable_name,
      ...            round(variance,2), round(stdev,2))
      I x 11.0 3.32
      I y 4.13 2.03
      II x 11.0 3.32
      II y 4.13 2.03
      III x 11.0 3.32
      III y 4.12 2.03
      IV x 11.0 3.32
      IV y 4.12 2.03

This uses get_series() and data_iter() to select sample values from one
variable of a given series. The statistics module provides the variance() and
stdev() functions that compute the statistical measures of interest.

How it works…
These functions are generally first class parts of the Python standard library. We've looked
in three places for useful functions:

The min() and max() functions are built-in.
The collections module has the Counter class, which can create a frequency
histogram. We can get the mode from this.
The statistics module has mean(), median(), mode(), variance(), and
stdev(), which provide a variety of statistical measures.

Note that data_iter() is a generator function. We can only use the results of this
generator once. If we only want to compute a single statistical summary value, that will
work nicely.

When we want to compute more than one value, we need to capture the result of the
generator in a collection object. In these examples, we've used data_iter() to build a
list object so that we can process it more than once.



Statistical Programming and Linear Regression

[ 500 ]

There's more…
Our original data structure, data, is a sequence of mutable dictionaries. Each dictionary has
two keys—series and data. We can update this dictionary with the statistical summaries.
The resulting object can be saved for later analysis or display.

Here's a starting point for this kind of processing:

    def set_mean(data):
        for series in data:
            for variable_name in 'x', 'y':
                samples = data_iter(series, variable_name)
                series['mean_'+variable_name] = statistics.mean(samples)

For each one one the data series, we've used the data_iter() function to extract the
individual samples. We've applied the mean() function to those samples. The result is
saved back into the series object, using a string key made from the function name, mean,
the _ character, and the variable_name.

Note that a great deal of this function is boilerplate code. The overall structure would have
to be repeated for median, mode, minimum, maximum, and so on. Looking at changing the
function from mean() to something else shows that there are two things that change in this
boilerplate code:

The key that is used to update the series data
The function that's evaluated for the selected sequence of samples

We don't need to supply the function's name; we can extract the name from a function
object as follows:

>>> statistics.mean.__name__
'mean'

This means that we can write a higher-order function that applies a number of functions to
a set of samples:

    def set_summary(data, function):
      for series in data:
        for variable_name in 'x', 'y':
          samples = data_iter(series, variable_name)
          series[function.__name__+'_'+variable_name] = function(samples)



Statistical Programming and Linear Regression

[ 501 ]

We've replaced the specific function, mean(), with a parameter name, function, that can
be bound to any Python function. The processing will apply the given function to the
results of data_iter(). This summary is then used to update the series dictionary using
the function's name, the _ character, and the variable_name.

This higher-level set_summary() function looks like this:

    for function in statistics.mean, statistics.median, min, max:
        set_summary(data, function)

This will update our document with four summaries based on mean(), median(), max(),
and min(). We can use any Python function, so functions such as sum() can be used in
addition to functions like those shown earlier.

Because statistics.mode() will raise an exception for cases where there's no single
modal value, this function may need a try: block to catch the exception and put some
useful result into the series object. It may also be appropriate to allow the exception to
propagate to notify the collaborating function that the data is suspicious.

Our revised document will look like this:

    [
      {
        "series": "I",
        "data": [
          {
            "x": 10.0,
            "y": 8.04
          },
          {
            "x": 8.0,
            "y": 6.95
          },
          ...
        ],
        "mean_x": 9.0,
        "mean_y": 7.500909090909091,
        "median_x": 9.0,
        "median_y": 7.58,
        "min_x": 4.0,
        "min_y": 4.26,
        "max_x": 14.0,
        "max_y": 10.84
      },
      ...
    ]



Statistical Programming and Linear Regression

[ 502 ]

We can save this to a file and use it for further analysis. Using pathlib to work with file
names, we might do something like this:

    target_path = source_path.parent / (source_path.stem+'_stats.json')
    target_path.write_text(json.dumps(data, indent=2))

This will create a second file adjacent to the source file. The name will have the same stem
as the source file, but the stem will be extended with the string _stats and a suffix of
.json.

Average of values in a Counter
The statistics module has a number of useful functions. These are based on having each
individual data sample available for processing. In some cases, however, the data has been
grouped into bins. We might have a collections.Counter object instead of a simple list.
Rather than values, we now have (value, frequency) pairs.

How can we do statistical processing on (value, frequency) pairs?

Getting ready
The general definition of the mean is the sum of all of the values divided by the number of
values. It's often written like this:

We've defined some set of data, C, as a sequence of individual values, C = {c0, c1, c2, … ,cn },
and so on. The mean of this collection, μC, is the sum of the values over the number of
values, n.



Statistical Programming and Linear Regression

[ 503 ]

There's a tiny change that helps to generalize this definition:

The value of S(C) is the sum of the values. The value of n(C) is the sum using one instead of
each value. In effect, S(C) is the sum of ci

1 and n(C) is the sum of ci
0. We can easily

implement these as simple Python generator expressions.

We can reuse these definition in a number of places. Specifically, we can now define the
mean, μC, like this:

μC = S(C)/n(C)

We will use this general idea to provide statistical calculations on data that's already been
collected into bins. When we have a Counter object, we have values and frequencies. The
data structure can be described like this:

F = {c0: f0, c1: f1, c2: f2, … cm: fm}

The values, ci, are paired with a frequency, fi. This makes two small changes to perform

similar calculations for  and :

We've defined  to use the product of frequency and value. Similarly, we've defined 

 to use the frequencies. We've included the hat, ^, on each name to make it clear that
these functions don't work for simple lists of values; these functions work for lists of (value,
frequency) pairs.



Statistical Programming and Linear Regression

[ 504 ]

These need to be implemented in Python. As an example, we'll use the following Counter
object:

>>> from collections import Counter
>>> raw_data = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]
>>> series_4_x = Counter(raw_data)

This data is from the Using the built-in statistics library recipe. The Counter object looks like
this:

>>> series_4_x
Counter({8: 10, 19: 1})

This shows the various values in a set of samples as well as the frequencies for each distinct
value.

How to do it…
Define the sum of a Counter: 1.

      >>> def counter_sum(counter):
      ...     return sum(f*c for c,f in counter.items())

   We can use this as follows:

       >>> counter_sum(series_4_x)
      99

Define the total number of values in a Counter:2.

      >>> def counter_len(counter):
      ...     return sum(f for c,f in counter.items())

 We can use this as follows: 

      >>> counter_len(series_4_x)
      11

We can now combine these to compute a mean of data that has been put into3.
bins: 

      >>> def counter_mean(counter):
      ...    return counter_sum(counter)/counter_len(counter)
         >>> counter_mean(series_4_x)
      9.0  



Statistical Programming and Linear Regression

[ 505 ]

How it works…
A Counter is a dictionary. The keys of this dictionary are the actual values being counted.
The values in the dictionary are the frequencies for each item. This means that the items()
method will produce value and frequency information that can be used by our calculations.

We've transformed each of the definitions for  and  into generator expressions.
Because Python is designed to follow the mathematical formalisms closely, the code follows
the math in a relatively direct way.

There's more…
To compute the variance (and standard deviation) we'll need two more variations on this
theme. We can define an overall mean of a frequency distribution, μF:

Where ci is the key from the Counter object, F, and fi is the frequency value for the given
key from the Counter object.

The variance, VARF, can be defined in a way that depends on the mean, μF. The formula is
this:

This computes the difference between a value, ci, and the mean μF. This is weighted by the
number of times this value occurs, fi. The sum of these weighted differences is divided by

the count, , minus one.



Statistical Programming and Linear Regression

[ 506 ]

The standard deviation, σF, is the square root of the variance:

σF = √VARF

This version of the standard deviation is quite stable mathematically, and therefore is
preferred. It requires two passes through the data, but for some edge cases, the cost of
making multiple passes is better than an erroneous result.

Another variation on the calculation does not depend on the mean, μF. This isn't as
mathematically stable as the previous version. This variation separately computes the sum
of squares of values, the sum of the values, and the count of the values:

This requires one extra sum computation. We'll need to compute the sum of the values

squared, :

>>> def counter_sum_2(counter):
...     return sum(f*c**2 for c,f in counter.items())

Given these three sum functions, , , and , we can define the variance for a
binned summary, F:

>>> def counter_variance(counter):
...    n = counter_len(counter)
...    return (counter_sum_2(counter)-(counter_sum(counter)**2)/n)/(n-1)

The counter_variance() function fits the mathematical definition very closely. The
Python version moves the 1/(n – 1) term around as a minor optimization.



Statistical Programming and Linear Regression

[ 507 ]

Using the counter_variance() function, we can compute the standard deviation:

>>> import math
>>> def counter_stdev(counter):
...    return math.sqrt(counter_variance(counter))

This allows us to see the following:

>>> counter_variance(series_4_x)
11.0
>>> round(counter_stdev(series_4_x), 2)
3.32

We can also make use of the elements() method of a Counter object. While simple, this
will create a potentially large intermediate data structure:

>>> import statistics
>>> statistics.variance(series_4_x.elements())
11.0

We've used the elements() method of a Counter object to create an expanded list of all of
the elements in the counter. We can compute statistical summaries of these elements. For a
large Counter, this can become a very large intermediate data structure.

See also
In the Designing classes with lots of processing recipe in Chapter 6, Basics of Classes
and Objects, we looked at this from a slightly different perspective. In that recipe,
our objective was simply to conceal a complex data structure.
The Analyzing many variables in one pass recipe, in this chapter will address some
efficiency considerations. In that recipe, we'll look at ways to compute multiple
sums in a single pass through the data elements.

Computing the coefficient of a correlation
In the Using the built-in statistics library and Average of values in a Counter recipes, we looked
at ways to summarize data. These recipes showed how to compute a central value, as well
as variance and extrema.

Another common statistical summary involves the degree of correlation between two sets of
data. This is not directly supported by Python's standard library.



Statistical Programming and Linear Regression

[ 508 ]

One commonly used metric for correlation is called Pearson's r. The r-value is number
between -1 and +1 that expresses the probability that the data values will correlate with
each other.

A value of zero says the data is random. A value of 0.95 suggests that 95% of the values
correlate, and 5% don't correlate well. A value of -.95 says that 95% of the values have an
inverse correlation: when one variable increases, the other decreases.

How can we determine if two sets of data correlate?

Getting ready
One expression for Pearson's r is this:

This relies on a large number of individual summations of various parts of a dataset. Each
of the ∑ z operators can be implemented via the Python sum() function.

We'll use data from the Using the built-in statistics library recipe. We can read this data with
the following:

>>> from pathlib import Path
>>> import json
>>> from collections import OrderedDict
>>> source_path = Path('code/anscombe.json')
>>> data = json.loads(source_path.read_text(),
...     object_pairs_hook=OrderedDict)

We've defined the Path to the data file. We can then use the Path object to read the text
from this file. This text is used by json.loads() to build a Python object from the JSON
data.

We've included an object_pairs_hook so that this function will build the JSON using the
OrderedDict class instead of the default dict class. This will preserve the original order of
items in the source document.



Statistical Programming and Linear Regression

[ 509 ]

We can examine the data like this:

>>> [item['series'] for item in data]
['I', 'II', 'III', 'IV']
>>> [len(item['data']) for item in data]
[11, 11, 11, 11]

The overall JSON document is a sequence of subdocuments with keys like I. Each
subdocument has two fields—series and data. Within the data value there's a list of
observations that we want to characterize. Each observation has a pair of values.

The data looks like this:

    [
      {
        "series": "I",
        "data": [
          {
            "x": 10.0,
            "y": 8.04
          },
          {
            "x": 8.0,
            "y": 6.95
          },
          ...
        ]
      },
      ...
    ]

This set of data has four series, each of which is represented as a list-of-dict structures.
Within each series, the individual items are a dictionary with x and y keys.

How to do it…
Identify the various kinds of sums required. For this expression, we see the1.
following:

∑ xi, yi

∑ xi

∑ yi

∑ xi
2

∑ yi
2



Statistical Programming and Linear Regression

[ 510 ]

The count, n, can be defined really as the sum of one for each data in the source
dataset. This can also be thought of as xi

∘ or yi
∘.

Import the sqrt() function from the math module: 2.

        from math import sqrt  

Define a function that wraps the calculation: 3.

        def correlation(data):  

Write the various sums using the built-in sum() function. This is indented within4.
the function definition. We'll use the value of the data parameter: a sequence of
values from a given series. The input data must have two keys, x and y:

         sumxy = sum(i['x']*i['y'] for i in data)
        sumx = sum(i['x'] for i in data)
        sumy = sum(i['y'] for i in data)
        sumx2 = sum(i['x']**2 for i in data)
        sumy2 = sum(i['y']**2 for i in data)
        n = sum(1 for i in data)  

Write the final calculation of r based on the various sums. Be sure the indentation5.
matches properly. For more help, see Chapter 3, Function Definitions:

         r = (
            (n*sumxy - sumx*sumy)
            / (sqrt(n*sumx2-sumx**2)*sqrt(n*sumy2-sumy**2))
            )
        return r  

We can now use this to determine the degree of correlation between the various series:

    for series in data:
        r = correlation(series['data'])
        print(series['series'], 'r=', round(r, 2))



Statistical Programming and Linear Regression

[ 511 ]

The output looks like this:

    I r= 0.82
    II r= 0.82
    III r= 0.82
    IV r= 0.82

All four series have approximately the same coefficient of correlation. This doesn't mean the
series are related to each other. It means that within each series, 82% of the x values predict
a y value. This is almost exactly nine of the 11 values in each series.

How it works…
The overall formula looks rather complex. However, it decomposes into a number of
separate sums and a final calculation that combines the sums. Each of the sums operations
can be expressed very succinctly in Python.

Conventionally, the mathematical notation might look like the following:

This translates to Python in a very direct way:

    sum(item['x'] for item in data)

The final correlation ratio can be simplified somewhat. When we replace the more complex

looking  with the slightly more Pythonic S(x), we can better see the overall form of the
equation:

While simple, the implementation shown isn't optimal. It makes six separate passes over the
data to compute each of the various reductions. As a kind of proof of concept this
implementation works well. This implementation has the advantage of demonstrating that
the programming works. It also serves as a starting point for creating unit tests and
refactoring the algorithm to optimize the processing.



Statistical Programming and Linear Regression

[ 512 ]

There's more…
The algorithm, while clear, is inefficient. A more efficient version would process the data
once. To do this, we'll have to write an explicit for statement that makes a single pass
through the data. Within the body of the for statement, the various sums are computed.

An optimized algorithm looks like this:

    sumx = sumy = sumxy = sumx2 = sumy2 = n = 0
    for item in data:
        x, y = item['x'], item['y']
        n += 1
        sumx += x
        sumy += y
        sumxy += x * y
        sumx2 += x**2
        sumy2 += y**2

We've initialized a number of results to zero, then accumulated values into these results
from a source of data items, data. Since this uses the data value once only, this will work
with any iterable data source.

The calculation of r from these sums doesn't change.

What's important is the parallel structure between the initial version of the algorithm and
the revised version that has been optimized to compute all of the summaries in one pass.
The clear symmetry of the two versions helps validate two things:

The initial implementation matches the rather complex formula
The optimized implementation matches the initial implementation and the
complex formula

This symmetry coupled with proper test cases provides confidence that the implementation
is correct.

Computing regression parameters
Once we've determined that two variables have some kind of relationship, the next step is
to determine a way to estimate the dependent variable from the value of the independent
variable. With most real-world data, there are a number of small factors that will lead to
random variation around a central trend. We'll be estimating a relationship that minimizes
these errors.



Statistical Programming and Linear Regression

[ 513 ]

In the simplest cases, the relationship between variables is linear. When we plot the data
points, they will tend to cluster around a line. In other cases, we can adjust one of the
variables by computing a logarithm or raising it to a power to create a linear model. In more
extreme cases, a polynomial is required.

How can we compute the linear regression parameters between two variables?

Getting ready
The equation for an estimated line is this:

Given the independent variable, x, the estimated or predicted value of the dependent

variable, , is computed from the α and β parameters.

The goal is to find values of α and β that produce the minimal overall error between the

estimated values, , and the actual values for y. Here's the computation of β:

β = rxy(σx/σy)

Where rxy is the correlation coefficient. See the Computing the coefficient of correlation recipe.
The definition of σx is the standard deviation of x. This value is given directly by the
statistics module.

Here's the computation of α:

α = μy– βμx

Where μx is the mean of of x. This, also, is given directly by the statistics module.

We'll use data from the Using the built-in statistics library recipe. We can read this data with
the following:

>>> from pathlib import Path
>>> import json
>>> from collections import OrderedDict
>>> source_path = Path('code/anscombe.json')
>>> data = json.loads(source_path.read_text(),
...     object_pairs_hook=OrderedDict)



Statistical Programming and Linear Regression

[ 514 ]

We've defined the Path to the data file. We can then use the Path object to read the text
from this file. This text is used by json.loads() to build a Python object from the JSON
data.

We've included an object_pairs_hook so that this function will build the JSON using the
OrderedDict class instead of the default dict class. This will preserve the original order of
items in the source document.

We can examine the data like the following:

>>> [item['series'] for item in data]
['I', 'II', 'III', 'IV']
>>> [len(item['data']) for item in data]
[11, 11, 11, 11]

The overall JSON document is a sequence of subdocuments with keys such as I. Each
subdocument has two fields: series and data. Within the data value there's a list of
observations that we want to characterize. Each observation has a pair of values.

The data looks like this:

    [
      {
        "series": "I",
        "data": [
          {
            "x": 10.0,
            "y": 8.04
          },
          {
            "x": 8.0,
            "y": 6.95
          },
          ...
        ]
      },
      ...
    ]

This set of data has four series, each of which is represented as a list-of-dict structures.
Within each series, the individual items are a dictionary with x and y keys.



Statistical Programming and Linear Regression

[ 515 ]

How to do it…
Import the correlation() function and the statistics module: 1.

        from ch10_r03 import correlation
        import statistics  

Define a function that will produce the regression model, regression():2.

        def regression(data):  

Compute the various values required: 3.

        m_x = statistics.mean(i['x'] for i in data)
        m_y = statistics.mean(i['y'] for i in data)
        s_x = statistics.stdev(i['x'] for i in data)
        s_y = statistics.stdev(i['y'] for i in data)
        r_xy = correlation(data)  

Compute the β and α values: 4.

        b = r_xy * s_y/s_x
        a = m_y - b * m_x
        return a, b  

We can use this regression() function to compute the regression parameters like the
following:

    for series in data:
        a, b = regression(series['data'])
        print(series['series'], 'y=', round(a, 2), '+', round(b,2), '*x')

The output shows the formula that predicts an expected y from a given x value. The output
looks like this:

    I y= 3.0 + 0.5 *x
    II y= 3.0 + 0.5 *x
    III y= 3.0 + 0.5 *x
    IV y= 3.0 + 0.5 *x

In all cases, the equations are . This estimation appears to be a pretty good
predictor of the the actual values of y.



Statistical Programming and Linear Regression

[ 516 ]

How it works…
The two target formulae for α and β are not complex. The formula for β decomposes into
the correlation value used with two standard deviations. The formula for α uses the β value
and two means. Each of these is part of a previous recipe. The correlation calculation
contains the actual complexity.

The core design technique is to build new features using as many existing features as
possible. This spreads the test cases around so that the foundational algorithms are used
(and tested) widely.

The analysis of the performance of Computing the coefficient of a correlation is important, and
applies here, as well. This process makes five separate passes over the data to get the
correlation as well as the various means and standard deviations.

As a kind of proof of concept, this implementation demonstrates that the algorithm will
work. It also serves as a starting point for creating unit tests. Given a working algorithm,
then, it makes sense to refactor the code to optimize the processing.

There's more…
The algorithm shown earlier, while clear, is inefficient. In order to process the data once,
we'll have to write an explicit for statement that makes a single pass through the data.
Within the body of the for statement, we'll need to compute the various sums. We'll also
need to compute some values derived from the sums, including the mean and standard
deviation:

    sumx = sumy = sumxy = sumx2 = sumy2 = n = 0
    for item in data:
        x, y = item['x'], item['y']
        n += 1
        sumx += x
        sumy += y
        sumxy += x * y
        sumx2 += x**2
        sumy2 += y**2
    m_x = sumx / n
    m_y = sumy / n
    s_x = sqrt((n*sumx2 - sumx**2)/(n*(n-1)))
    s_y = sqrt((n*sumy2 - sumy**2)/(n*(n-1)))
    r_xy = (n*sumxy - sumx*sumy) / (sqrt(n*sumx2-sumx**2)*sqrt(n*sumy2-
sumy**2))
    b = r_xy * s_y/s_x
    a = m_y - b * m_x



Statistical Programming and Linear Regression

[ 517 ]

We've initialized a number of results to zero, then accumulated values into these results
from a source of data items, data. Since this uses the data value once only, this will work
with any iterable data source.

The calculation of r_xy from these sums doesn't change from the previous examples. Nor
does the calculation of the α or β values, a and b. Since these final results are the same as
the previous version, we have confidence that this optimization will compute the same
answer but do it with only one pass over the data.

Computing an autocorrelation
In many cases, events occur in a repeating cycle. If the data correlates with itself, this is
called an autocorrelation. With some data, the interval may be obvious because there's some
visible external influence, such as seasons or tides. With some data, the interval may be
difficult to discern.

In the Computing the coefficient of a correlation recipe, we looked at a way to measure
correlation between two sets of data.

If we suspect we have cyclic data, can we leverage the previous correlation function to
compute an autocorrelation?

Getting ready
The core concept behind autocorrelation is the idea of a correlation through a shift in time,
T. The measurement for this is sometimes expressed as rxx(T): the correlation between x and
x with a time shift of T.

Assume we have a handy correlation function, R(x, y). It compares two sequences, [x0, x1, x2,
…] and [y0, y1, y2, …], and returns the coefficient of correlation between the two sequences:

rxy = R([x0, x1, x2, …], [y0, y1, y2, …])

We can apply this to autocorrelation by using as a time-shift in the index values:

rxx(T) = R([x0, x1, x2, …], [x0+T, x1+T, x2+T, …])



Statistical Programming and Linear Regression

[ 518 ]

We've computed the correlation between values of x that are offset from each other by T. If
T = 0, we're comparing each item with itself, the correlation is rxx(0) = 1.

We'll use some data that we suspect has a seasonal signal in it. This is data from
http://www.esrl.noaa.gov/gmd/ccgg/trends/. We can visit f t p ://f t p . c m d l . n o a a . g o v /c

c g /c o 2/t r e n d s /c o 2_ m m _ m l o . t x t to download the file of the raw data.

The file has a preamble with lines that start with #. These must be filtered out of the data.
We'll use the Picking a subset – three ways to filter recipe in Chapter 8, Functional and Reactive
Programming Features, that will remove the lines that aren't useful.

The remaining lines are in seven columns with space as the separator between values. We'll
use the Reading delimited files with the CSV module recipe in the Chapter 9, Input/Output,
Physical Format, and Logical Layout to read CSV data. In this case, the comma in CSV will be a
space character. The result will be a little awkward to use, so we'll use the Upgrading CSV
from Dictreader to namespace reader recipe in Chapter 9, Input/Output, Physical Format, and
Logical Layout to create a more useful namespace with properly converted values. In that
recipe, we imported the CSV module:

    import csv

Here are two functions to handle the essential aspects of the physical format of the file. The
first is a filter to reject comment lines; or, viewed the other way, pass non-comment lines:

    def non_comment_iter(source):
        for line in source:
            if line[0] == '#':
                continue
            yield line

The non_comment_iter() function will iterate through the given source and reject lines
that start with #. All other lines will be passed untouched.

The non_comment_iter() function can be used to build a CSV reader that handles the
lines of valid data. The reader needs some additional configuration to define the data
columns and the details of the CSV dialect involved:

    def raw_data_iter(source):
        header = ['year', 'month', 'decimal_date', 'average',
                  'interpolated', 'trend', 'days']
        rdr = csv.DictReader(source,
            header, delimiter=' ', skipinitialspace=True)
        return rdr

http://www.esrl.noaa.gov/gmd/ccgg/trends/
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt


Statistical Programming and Linear Regression

[ 519 ]

The raw_data_iter() function defines the seven column headers. It also specifies that the
column delimiter is a space, and the additional spaces at the front of each column of data
can be skipped. The input to this function must be stripped of comment lines, generally by
using a filter function such as non_comment_iter().

The results of this function are rows of data in the form of dictionaries with seven keys.
These rows look like this:

    [{'average': '315.71', 'days': '-1', 'year': '1958', 'trend': '314.62',
        'decimal_date': '1958.208', 'interpolated': '315.71', 'month':
'3'},
     {'average': '317.45', 'days': '-1', 'year': '1958', 'trend': '315.29',
        'decimal_date': '1958.292', 'interpolated': '317.45', 'month':
'4'},
    etc.

Since the values are all strings, a pass of cleansing and conversion is required. Here's a row
cleansing function that can be used in a generator expression. This will build a
SimpleNamespace object, so we'll need to import that definition:

    from types import SimpleNamespace
    def cleanse(row):
        return SimpleNamespace(
            year= int(row['year']),
            month= int(row['month']),
            decimal_date= float(row['decimal_date']),
            average= float(row['average']),
            interpolated= float(row['interpolated']),
            trend= float(row['trend']),
            days= int(row['days'])
        )

This function will convert each dictionary row to a SimpleNamespace by applying a
conversion function to the values in the dictionary. Most of the items are floating-point
numbers, so the float() function is used. A few of the items are integers, and the int()
function is used for those.

We can write the following kind of generator expression to apply this cleansing function to
each row of raw data:

    cleansed_data = (cleanse(row) for row in raw_data)

This will apply the cleanse() function to each row of data. Generally, the expectation is
that the rows will come from the raw_data_iter().



Statistical Programming and Linear Regression

[ 520 ]

Applying the cleanse() function to each row will create data that looks like this:

    [namespace(average=315.71, days=-1, decimal_date=1958.208,
        interpolated=315.71, month=3, trend=314.62, year=1958),
     namespace(average=317.45, days=-1, decimal_date=1958.292,
        interpolated=317.45, month=4, trend=315.29, year=1958),
    etc.

This data is very easy to work with. The individual fields can be identified by a simple
name, and the data values have been converted to Python internal data structures.

These functions can be combined into a stack as follows:

    def get_data(source_file):
        non_comment_data = non_comment_iter(source_file)
        raw_data = raw_data_iter(non_comment_data)
        cleansed_data = (cleanse(row) for row in raw_data)
        return cleansed_data

The get_data() generator function is a stack of generator functions and generator
expressions. It returns an iterator which will yield individual rows of the source data. The
non_comment_iter() function will read enough lines to be able to yield a single non-
comment line. The raw_data_iter() function will parse a line of CSV and yield a
dictionary with a single row of data.

The cleansed_data generator expression will apply the cleanse() function to each
dictionary of raw data. The individual rows are handy SimpleNamespace data structures
that can be used elsewhere.

This generator binds all of the individual steps into a transformation pipeline. When steps
need to be changed, this becomes the focus of the change. We can add filters, or replace
parsing or cleansing functions here.

The context for using the get_data() function will look like this:

    source_path = Path('co2_mm_mlo.txt')
    with source_path.open() as source_file:
        for row in get_data(source_file):
            print(row.year, row.month, row.average)

We'll need to open a source file. We can provide the file to the get_data() function. This
function will emit each row in a form that can easily be used for statistical processing.



Statistical Programming and Linear Regression

[ 521 ]

How to do it…
Import the correlation() function from the ch10_r03 module:1.

        from ch10_r03 import correlation  

Get the relevant time series data item from the source data: 2.

        co2_ppm = list(row.interpolated
            for row in get_data(source_file))

In this case, we'll use the interpolated data. If we try to use the average data, there
are reporting gaps that would force us to locate periods without the gaps. The
interpolated data has values to fill in the gaps.

We've created a list object from the generator expression because we'll be doing
more than one summary operation on it.

For a number of time offsets, T, compute the correlation. We'll use time offsets3.
from 1 to 20 periods. Since the data is collected monthly, we suspect that T = 12
will have the highest correlation:

        for tau in range(1,20):
            data = [{'x':x, 'y':y}
                for x,y in zip(co2_ppm[:-tau], co2_ppm[tau:])]
            r_tau_0 = correlation(data[:60])
            print(tau, r_tau_0)  

The correlation() function from the Computing the coefficient of correlation
recipe expects a small dictionary with two keys: x and y. The first step is to build
an array of these dictionaries. We've used the zip() function to combine two
sequences of data:

co2_ppm[:-tau]

co2_ppm[tau:]

The zip() function will combine values from each slice of the data. The first slice
starts at the beginning. The second starts tau positions into the sequence.
Generally, the second sequence will be shorter, and the zip() function will stop
processing when the sequence is exhausted.



Statistical Programming and Linear Regression

[ 522 ]

We've used co2_ppm[:-tau] as one of the argument values to the zip()
function to make it perfectly clear that we're skipping some items at the end of the
sequence. We're skipping the same number of items that are omitted from the
beginning of the second sequence.

We've taken just the first 60 values to compute the autocorrelation with various time offset
values. The data is provided monthly. We can see a very strong annual correlation. We've
highlighted this row of output:

    r_{xx}(τ= 1) =  0.862
    r_{xx}(τ= 2) =  0.558
    r_{xx}(τ= 3) =  0.215
    r_{xx}(τ= 4) = -0.057
    r_{xx}(τ= 5) = -0.235
    r_{xx}(τ= 6) = -0.319
    r_{xx}(τ= 7) = -0.305
    r_{xx}(τ= 8) = -0.157
    r_{xx}(τ= 9) =  0.141
    r_{xx}(τ=10) =  0.529
    r_{xx}(τ=11) =  0.857
    r_{xx}(τ=12) =  0.981
    r_{xx}(τ=13) =  0.847
    r_{xx}(τ=14) =  0.531
    r_{xx}(τ=15) =  0.179
    r_{xx}(τ=16) = -0.100
    r_{xx}(τ=17) = -0.279
    r_{xx}(τ=18) = -0.363
    r_{xx}(τ=19) = -0.349

When the time shift is 12, the rxx(12) = .981. A similarly striking autocorrelation is available
for almost any subset of the data. This high correlation confirms an annual cycle to the data.

The overall dataset contains almost 700 samples spanning over 58 years. It turns out that the
seasonal variation signal is not as clear over the entire span of time. This means that there is
another, longer period signal that is drowning out the annual variation signal.

The presence of this other signal suggests that something more complex is going on. This
effect is on a timescale longer than five years. Further analysis is required.



Statistical Programming and Linear Regression

[ 523 ]

How it works…
One of the elegant features of Python is the array slicing concept. In the Slicing and dicing a
list recipe in Chapter 4, Built-in Data Structures – list, set, dict, we looked at the basics of
slicing a list. When doing autocorrelation calculations, array slicing gives us a wonderful
tool for comparing two subsets of the data with very little complexity.

The essential elements of the algorithm amounted to this:

    data = [{'x':x, 'y':y}
        for x,y in zip(co2_ppm[:-tau], co2_ppm[tau:])]

The pairs are built from A=a zip() of two slices of the co2_ppm sequence. These two slices
build the expected (x,y) pairs that are used to create a temporary object, data. Given this
data object, an existing correlation() function computed the correlation metric.

There's more…
We can observe the 12-month seasonal cycle repeatedly throughout the dataset using a
similar array slicing technique. In the example, we used this:

    r_tau_0 = correlation(data[:60])

The preceding code uses the first 60 samples of the available 699. We could begin the slice
at various places and use various sizes of the slice to confirm that the cycle is present
throughout the data.

We can create a model that shows how the 12 months of data behave. Because there's a
repeating cycle, the sine function is the most likely candidate for a model. We'd be doing a
fit using this:

 = A sin(f(x–φ)) + K

The mean of the sine function itself is zero, so the K factor is the mean of a given 12-month
period. The function, f(x – φ), will convert month numbers to proper values in the range -2π
≤ f(x – φ) ≤ 2π. A function such as f(x) = 2π((x-6)/12) might be appropriate. Finally, the
scaling factor, A, scales the data to match the minimum and maximum for a given month.



Statistical Programming and Linear Regression

[ 524 ]

Long-term model
While interesting, this analysis doesn't locate the long-term trend that was obscuring the
annual oscillation. To locate that trend, it is necessary to reduce each 12-month sequence of
samples to a single, annual, central value. The median or the mean will work well for this.

We can create a sequence of monthly average values using the following generator
expression:

    from statistics import mean, median
    monthly_mean = [
        {'x': x, 'y': mean(co2_ppm[x:x+12])}
            for x in range(0,len(co2_ppm),12)
    ]

This generator will build a sequence of dictionaries. Each dictionary has the required x and
y items that are used by the regression function. The x value is a value that is a simple
surrogate for the year and month: it's a number that grows from zero to 696. The y value is
the average of 12 monthly values.

The regression calculation is done as follows:

    from ch10_r04 import regression
    alpha, beta = regression(monthly_mean)
    print('y=', alpha, '+x*', beta)

This shows a pronounced line, with the following equation:

The x value is a month number offset from the first month in the dataset, which is March,
1958. For example, March of 1968 would have an x value of 120. The yearly average CO2

parts per million would be y = 323.1. The actual average for this year was 323.27. As you can
see, these are very similar values.

The r2 value for this correlational model, which shows how the equation fits the data, is
0.98. This rising slope is the signal, which in the long run dominates the seasonal
fluctuations.



Statistical Programming and Linear Regression

[ 525 ]

See also
The Computing the coefficient of a correlation recipe shows the core function for the
computing correlation between a series of values
The Computing regression parameters recipe shows additional background for
determining the detailed regression parameters

Confirming that the data is random – the null
hypothesis
One of the important statistical questions is framed as the null hypothesis and an alternate
hypothesis about sets of data. Let's assume we have two sets of data, S1 and S2. We can
form two kinds of hypothesis about the data:

Null: Any differences are minor random effects and there are no significant
differences.
Alternate: The differences are statistically significant. Generally, the likelihood of
this is less than 5%.

How can we evaluate data to see if it's truly random of if there's some meaningful
variation?

Getting ready
If we have a strong background in statistics, we can leverage statistical theory to evaluate
the standard deviations of samples and determine if there is a significant difference
between two distributions. If we are weak in statistics, but have a strong background in
programming, we can do a little coding and achieve similar results without the theory.

There are a variety of ways that we can compare sets of data to see if they're significantly
different or the differences are random variations. In some cases, we might be able to
provide a detailed simulation of the phenomena. If we use Python's built-in random
number generator, we'll get data that's essentially the same as truly random real-world
events. We can compare a simulation against measured data to see if they're the same or
not.



Statistical Programming and Linear Regression

[ 526 ]

The simulation technique only works when a simulation is reasonably complete. Discrete
events in casino gambling, for example, are easy to simulate. Some kinds of discrete events
in web transactions, such as the items in a shopping cart, are easy to simulate. But some
phenomena are hard to simulate precisely.

In the cases where we can't do a simulation, we have a number of resampling techniques
that are available. We can shuffle the data, use bootstrapping, or use cross-validation. In
these cases, we'll use the data that's available to look for random effects.

We'll compare three subsets of the data in the Computing an autocorrelation recipe. These are
data values from two adjacent years and a third year that is widely separated from the other
two. Each year has 12 samples, and we can easily compute the means of these groups:

>>> from ch10_r05 import get_data
>>> from pathlib import Path
>>> source_path = Path('code/co2_mm_mlo.txt')
>>> with source_path.open() as source_file:
...     all_data = list(get_data(source_file))
>>> y1959 = [r.interpolated for r in all_data if r.year == 1959]
>>> y1960 = [r.interpolated for r in all_data if r.year == 1960]
>>> y2014 = [r.interpolated for r in all_data if r.year == 2014]

We've created three subsets for three of the available years of data. Each subset is created
with a simple filter that creates a list of values for which the year matches a target value. We
can compute statistics on these subsets as follows:

>>> from statistics import mean
>>> round(mean(y1959), 2)
315.97
>>> round(mean(y1960), 2)
316.91
>>> round(mean(y2014), 2)
398.61

The three averages are different. Our hypothesis is that the differences between 1959 and
1960 means are just ordinary random variation with no significance. The differences
between the 1959 and 2014 means, however, are statistically significant.

The permutation or shuffling technique works as follows:

For each permutation of the pooled data:1.
The observed difference between the means of 1959 data and 1960 data is2.
316.91-315.97 = 0.94. We can call this Tobs, the observed test measurement.

Create two subsets, A, and B
Compute the difference between the means, T



Statistical Programming and Linear Regression

[ 527 ]

Count the number of differences, T, larger than Tobs and smaller
than Tobs

The two counts show us how our observed difference compares with all possible
differences. For largish sets of data, there can be a large number of permutations. In our
case, we know that the number of combinations of 24 samples taken 12 at a time is given by
this formula:

We can compute the value for n = 24 and k = 12:

>>> from ch03_r07 import fact_s
>>> def binom(n, k):
...     return fact_s(n)//(fact_s(k)*fact_s(n-k))
>>> binom(24, 12)
2704156

There are a hair more than 2.7 million permutations. We can use functions in the
itertools module to generate these. The combinations() function will emit the various
subsets. Processing takes over 5 minutes (320 seconds).

An alternative plan is to use randomized subsets. Using 270,156 randomized samples can be
done in about 35 seconds. Using just 10% of the combinations provides an answer that's
accurate enough to determine if the two samples are statistically similar and the null
hypothesis is true, or if the two samples are different.

How to do it…
We'll be using the random and statistics modules. The shuffle() function is1.
central to randomizing the samples. We'll also be using the mean() function:

         import random
        from statistics import mean  



Statistical Programming and Linear Regression

[ 528 ]

We could simply count values above and below the observed difference between
the samples. Instead, we'll create a Counter and collect differences in 2,000 steps
from -0.001 to +0.001. This will provide some confidence that the differences are
normally distributed: 

        from collections import Counter  

Define a function that accepts two separate sets of samples. These will be2.
combined, and random subsets drawn from the collection: 

        def randomized(s1, s2, limit=270415):  

Compute the observed difference between the means, Tobs: 3.

        T_obs = mean(s2)-mean(s1)
        print( "T_obs = m_2-m_1 = {:.2f}-{:.2f} = {:.2f}".format(
            mean(s2), mean(s1), T_obs)
        )  

Initialize a Counter to collect details:4.

         counts = Counter()  

Create the combined universe of samples. We can concatenate the two lists: 5.

        universe = s1+s2  

Use a for statement to do a large number of resamples; 270,415 can take 356.
seconds. It's easy to expand or contract the subset to balance a need for accuracy
and the speed of calculation.  The bulk of the processing will be nested inside this
loop:

        for resample in range(limit):  

Shuffle the data: 7.

            random.shuffle(universe)  

Pick two subsets that match the original sets of data in size: 8.

            a = universe[:len(s2)]
            b = universe[len(s2):]



Statistical Programming and Linear Regression

[ 529 ]

Because of the way Python list indices work, we are assured that the two lists
completely separate the values in the universe. Since the ending index value,
len(s2), is not included in the first list, this kind of slice clearly separates all
items.

Compute the difference between the means. In this case, we'll scale this by 10009.
and convert to an integer so that we can accumulate a frequency distribution: 

            delta = int(1000*(mean(a) - mean(b)))
            counts[delta] += 1

An alternative to creating a histogram of delta values is to count values above and
below Tobs. Using the full histogram provides confidence that the data is
statistically normal.

After the for loop, we can summarize the counts showing how many are above10.
the observed difference and how many are below. If either value is less than 5%,
this is a statistically significant difference: 

        T = int(1000*T_obs)
        below = sum(v for k,v in counts.items() if k < T)
        above = sum(v for k,v in counts.items() if k >= T)

        print( "below {:,} {:.1%}, above {:,} {:.1%}".format(
            below, below/(below+above),
            above, above/(below+above)))

When we run the randomized() function for the data from 1959 and 1960, we see the
following:

    print("1959 v. 1960")
    randomized(y1959, y1960)

The output looks like the following:

    1959 v. 1960
    T_obs = m_2-m_1 = 316.91-315.97 = 0.93
    below 239,457 88.6%, above 30,958 11.4%

This shows that 11% of the data was above the observed difference and 88% of the data was
below. This is well within the realm of normal statistical noise.



Statistical Programming and Linear Regression

[ 530 ]

When we run this for data from 1959 and 2014, we see the following output:

    1959 v. 2014
    T_obs = m_2-m_1 = 398.61-315.97 = 82.64
    below 270,414 100.0%, above 1 0.0%

The data involved only one example out of 270,415 that was above the observed difference
in means, Tobs. The change from 1959 to 2014 is statistically significant, with a probability of
3.7 x 10-6.

How it works…
Computing all 2.7 million permutations gives the exact answer. It's faster to use
randomized subsets instead of computing all possible permutations. The Python random
number generator is excellent, and it assures us that the randomized subsets will be fairly
distributed.

We've used two techniques to compute randomized subsets of the data:

Shuffle the entire universe with random.shuffle(u)1.
Partition the universe with code similar to a, b = u[x:], u[:x]2.

Computing means of the two partitions is done with the statistics module. We could
define somewhat more efficient algorithms which did the shuffling, partitioning, and mean
computation all in a single pass through the data. This more efficient algorithm will omit
the creation of a complete histogram for the permuted differences.

The preceding algorithm turned each difference into a value between -1000 and +1000 using
this:

    delta = int(1000*(mean(a) - mean(b)))

This allows us to compute a frequency distribution with a Counter. This will show that
most of the differences really are zero; something to be expected for normally distributed
data. Seeing the distribution assures us that there isn't some hidden bias in the random
number generation and shuffling algorithm.

Instead of populating a Counter, we can simply count the above and below values. The
simplest form of this comparison between a permutation's difference and the observed
difference, Tobs, is as follows:

    if mean(a) - mean(b) > T_obs:
        above += 1



Statistical Programming and Linear Regression

[ 531 ]

This counts the number of resampling differences that are larger than the observed
difference. From this, we can compute the number below the observation via below =
limit-above. This will give us a simple percentage value.

There's more…
We can speed processing up a tiny bit more by changing the way we compute the mean of
each random subset.

Given a pool of numbers, P, we're creating two disjoint subsets, A, and B, such that:

A ∪ B = P ∧ A ∩ B = ∅

The union of the A and B subsets covers the entire universe, P. There are no missing values
because the intersection between A and B is an empty set.

The overall sum, Sp, can be computed just once:

SP = ∑ P

We only need to compute a sum for one subset, SA:

SA = ∑ A

This means that the other subset sum is simply a subtraction. We don't need a costly process
to compute a second sum.

The sizes of the sets, NA, and NB, similarly, are constant. The means, μA and μB, can be
calculated quickly:

μA = (SA/NA)

μB = (SP – SA)/NB

This leads to a slight change in the resample loop:

    a_size = len(s1)
    b_size = len(s2)
    s_u = sum(universe)
    for resample in range(limit):
        random.shuffle(universe)
        a = universe[:len(s1)]



Statistical Programming and Linear Regression

[ 532 ]

        s_a = sum(a)
        m_a = s_a/a_size
        m_b = (s_u-s_a)/b_size
        delta = int(1000*(m_a-m_b))
        counts[delta] += 1

By computing just one sum, s_a, we shave processing time off of the random resampling
procedure. We don't need to compute the sum of the other subset, since we can compute
this as a difference between the sum of the entire universe of values. We can then avoid
using the mean() function, and compute the means directly from the sums and the fixed
counts.

This kind of optimization makes it quite easy to reach a statistical decision quickly. Using
resampling means that we don't need to rely on a complex theoretical knowledge of
statistics; we can resample the existing data to show that a given sample meets the null
hypothesis or is outside of the expectations, and some alternative hypothesis is called for.

See also
This process can be applied to other statistical decision procedures. This includes
the Computing regression parameters and Computing an autocorrelation recipes.

Locating outliers
When we have statistical data, we often find data points which can be described as outliers.
An outlier deviates from other samples, and may indicate bad data or a new discovery.
Outliers are, by definition, rare events.

Outliers may be simple mistakes in data gathering. They might represent a software bug, or
perhaps a measuring device that isn't calibrated properly. Perhaps a log entry is unreadable
because a server crashed or a timestamp is wrong because a user entered data improperly.

Outliers may also be of interest because there is some other signal that is difficult to detect.
It might be novel, or rare, or outside the accurate calibration of our devices. In a web log it
might suggest a new use case for an application or signal the start of a new kind of hacking
attempt.

How do we locate and label potential outliers?



Statistical Programming and Linear Regression

[ 533 ]

Getting ready
An easy way to locate outliers is to normalize the values to make them Z-scores. A Z- score
converts the measured value to a ratio between the measured value and the mean measured
in units of standard deviation:

Zi = (xi – μx)/σx

Where μx is the mean of a given variable, x, and σx is the standard deviation of that variable.
We can compute these values using the statistics module.

This, however, can be somewhat misleading because the Z-scores are limited by the number
of samples involved. Consequently, the NIST Engineering and Statistics Handbook, section
1.3.5.17, suggests using the following rule for detecting outliers:

Mi = 0.6745(xi – )/MAD

MAD (Median Absolute Deviation) is used instead of the standard deviation. The MAD is
the median of the absolute values of the deviations between each sample, xi, and the
population median, x:

MAD = median(xi - : xi ∈ X)

The scaling factor of 0.6745 is used to scale these scores so that a Mi value greater than 3.5
can be identified as an outlier. Note that this is parallel to the calculation of the sample
variance. The variance measure uses a mean, this measure uses a median. The value, 0.6745,
is widely-used in the literature as the appropriate value to locate outliers.

We'll use some data from the Using the built-in statistics library recipe that includes some
relatively smooth datasets and some datasets that have egregious outliers. The data is in a
JSON document that has four series of (x,y) pairs.

We can read this data with the following:

>>> from pathlib import Path
>>> import json
>>> from collections import OrderedDict
>>> source_path = Path('code/anscombe.json')
>>> data = json.loads(source_path.read_text(),
...     object_pairs_hook=OrderedDict)



Statistical Programming and Linear Regression

[ 534 ]

We've defined the Path to the data file. We can then use the Path object to read the text
from this file. This text is used by json.loads() to build a Python object from the JSON
data.

We've included an object_pairs_hook so that this function will build the JSON using the
OrderedDict class instead of the default dict class. This will preserve the original order of
items in the source document.

We can examine the data such as following:

>>> [item['series'] for item in data]
['I', 'II', 'III', 'IV']
>>> [len(item['data']) for item in data]
[11, 11, 11, 11]

The overall JSON document is a sequence of subdocuments with keys such as I and II.
Each subdocument has two fields: series and data. The data value is a list of
observations that we want to characterize. Each observation is a pairs measurements.

How to do it…
Import the statistics module. We'll be doing a number of median1.
calculations. In addition, we can use some of the features of itertools, such
as compress() and filterfalse().

         import statistics
        import itertools

Define the absdev() mapping. This will either use a given median or compute2.
the actual median of the samples. It will then return a generator that provides all
of the absolute deviations from the median: 

        def absdev(data, median=None):
            if median is None:
                median = statistics.median(data)
            return (
                abs(x-median) for x in data
            )



Statistical Programming and Linear Regression

[ 535 ]

Define the median_absdev() reduction. This will locate the median of a3.
sequence of absolute deviation values. This computes the MAD value used to
detect outliers. This can compute a median or it can be given a median already
computed:

        def median_absdev(data, median=None):
            if median is None:
                median = statistics.median(data)
            return statistics.median(absdev(data, median=median))

Define the modified Z-score mapping, z_mod(). This will compute the median4.
for the dataset, and use this to compute the MAD. The deviation value is then
used to compute modified Z-scores based on this deviation value. The returned
value is an iterator over the modified Z-scores. Because multiple passes are made
over the data, the input can't be an iterable collection, so it must be a sequence
object:

        def z_mod(data):
            median = statistics.median(data)
            mad = median_absdev(data, median)
            return (
                0.6745*(x - median)/mad for x in data
            )

In this implementation, we've used a constant, 0.6745. In some vases, we might
want to make this a parameter. We might use def z_mod(data,
threshold=0.6745) to allow changing this value.

Interestingly, there's a possibility that the MAD value is zero. This can happen
when the majority of the values don't deviate from the median. When more than
half of the points have the same value, the median absolute deviation will be zero.

Define the outlier filter based on the modified Z mapping, z_mod(). Any value5.
over 3.5 can be labeled as an outlier. The statistical summaries can then be
computed with and without the outlier values. The itertools module has a
compress() function which can use a sequence of Boolean selector values to
choose items from the original data sequence based on the results of the z_mod()
computation: 

        def pass_outliers(data):
            return itertools.compress(data, (z >= 3.5 for z in
z_mod(data)))

        def reject_outliers(data):



Statistical Programming and Linear Regression

[ 536 ]

            return itertools.compress(data, (z < 3.5 for z in z_mod(data)))

The pass_outliers() function passes only the outliers. The reject_outliers()
function passes the non-outlier values. Often, we'll display two results—the whole set of
data, and the whole set with outliers rejected.

Most of these functions make multiple references to the input data parameter—an iterable
cannot be used. These functions must be given a Sequence object. A list or a tuple are
examples of a Sequence.

We can use the pass_outliers() to locate the outlier values. This can be handy to identify
the suspicious data values. We can use the reject_outliers() to provide data with the
outliers removed from consideration.

How it works…
The stack of transformations can be summarized like this:

Reduce the population to compute a population median.1.
Map each value to an absolute deviation from the population median.2.
Reduce the absolute deviations to create a median absolute deviation, MAD.3.
Map each value to the modified Z-score using the population median and the4.
MAD.
Filter the results based on the modified Z-scores.5.

We've defined each transformation function in this stack separately. We can use recipes
from Chapter 8, Functional and Reactive Programming Features, to create smaller functions
and use the built-in map() and filter() functions to implement this process.

We can't easily use the built-in reduce() function to define a median computation. To
compute a median, we have to use a recursive median finding algorithm that partitions the
data into smaller and smaller subsets, one of which has the median value.

Here's how we can apply this to the given sample data:

    for series_name in 'I', 'II', 'III', 'IV':
        print(series_name)
        series_data = [series['data']
            for series in data
                if series['series'] == series_name][0]

        for variable_name in 'x', 'y':



Statistical Programming and Linear Regression

[ 537 ]

            variable = [float(item[variable_name]) for item in series_data]
            print(variable_name, variable, end=' ')
            try:
                print( "outliers", list(pass_outliers(variable)))
            except ZeroDivisionError:
                print( "Data Appears Linear")
        print()

We've iterated through each of the series in the source data. The computation of
series_data extracts one of the series from the source data. Each of the series has two
variables, x and y. Within the set of samples, we can use the pass_outliers() function to
locate outliers in the data.

The except clause handles a ZeroDivisionError exception. This exception is raised by
the z_mod() function for a particularly pathological set of data. Here's the line of output
that shows this odd-looking data:

    x [8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 19.0, 8.0, 8.0, 8.0] Data Appears
Linear

In this case, at least half the values are the same. That single majority value will be taken as
the median. The absolute deviations from the median will be zero for this subset.
Consequently, the MAD will be zero. In this case, the idea of outliers is suspicious because
the data don't seem to reflect ordinary statistical noise, either.

This data does not fit the general model, and a different kind of analysis must be applied to
this variable. The very idea of outliers may have to be rejected because of the peculiar
nature of the data.

There's more…
We've used itertools.compress() to pass or reject outliers. We can also use the
filter() and itertools.filterfalse() functions in a similar way. We'll look at some
optimizations of compress() as well as ways to use filter() instead of compress().

We used two similar looking function definitions to pass_outliers and
reject_outliers. This design suffers from an unpleasant duplication of critical program
logic; it breaks the DRY principle. Here are the two functions:

    def pass_outliers(data):
        return itertools.compress(data, (z >= 3.5 for z in z_mod(data)))

    def reject_outliers(data):
        return itertools.compress(data, (z < 3.5 for z in z_mod(data)))



Statistical Programming and Linear Regression

[ 538 ]

The difference between pass_outliers() and reject_outliers() is tiny, and amounts
to a logical negation of an expression. We have >= in one version and < in another. This
kind of code difference is is not always trivial to validate. If the logic was more complex,
performing the logical negation is a place where a design error can creep into the code.

We can extract one version of the filter rule to create something like the following:

    outlier = lambda z: z >= 3.5

We can then modify the two uses of the compress() function to make the logical negation
explicit:

    def pass_outliers(data):
        return itertools.compress(data, (outlier(z) for z in z_mod(data)))

    def reject_outliers(data):
        return itertools.compress(data, (not outlier(z) for z in
z_mod(data)))

Exposing the filter rule as a separate lambda object or function definition helps reduce the
code duplication. The negation is made more obvious. Now the two versions can be
compared easily to be sure that they have appropriate semantics.

If we want to use the filter() function, we have to make a radical transformation to the
processing pipeline. The filter() higher-order function requires a decision function that
creates a true/false result for each raw value. Processing this will combine a modified Z-
score calculation with the decision threshold. The decision function must compute this:

It must compute this in order to determine the outlier status for each xi value. This decision

function requires two additional inputs—the population median, , and the MAD value.
This makes the filter decision function rather complex. It would look like this:

    def outlier(mad, median_x, x):
        return 0.6745*(x - median_x)/mad >= 3.5



Statistical Programming and Linear Regression

[ 539 ]

This outlier() function can be used with the filter() to pass outliers. It can be used
with itertools.filterfalse() to reject outliers and create a subset that is free from
erroneous values.

In order to use this outlier() function, we'll need to create a function like this:

    def pass_outliers2(data):
        population_median = median(data)
        mad = median_absdev(data, population_median)
        outlier_partial = partial(outlier, mad, population_median)
        return filter(outlier_partial, data)

This computes the two overall reductions: population_median, and mad. Given these two
values, we can create a partial function, outlier_partial(). This function has values
bound for the the first two positional parameter values, mad, and population_median.
The resulting partial function requires only the individual data value for processing.

The outlier_partial() and filter() processing are equivalent to this generator
expression:

    return (
        x for x in data if outlier(mad, population_median, x)
    )

It's not clear that this expression has a distinct advantage over using the compress()
function in the itertools module. It can, however, be somewhat more clear for
programmers who are more comfortable with filter().

See also
See h t t p ://w w w . i t l . n i s t . g o v /d i v 898/h a n d b o o k /e d a /s e c t i o n 3/e d a 35h . h t m

for detection of outliers

Analyzing many variables in one pass
In many cases, we'll have data with multiple variables that we'd like to analyze. The data
can be visualized as filling in a grid, with each row containing a specific outcome. Each
outcome row has multiple variables in columns.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm


Statistical Programming and Linear Regression

[ 540 ]

We can follow the pattern of column-major order and process each variable (from a column
of data) independently. This will lead to visiting each row of data multiple times. Or, we
can use the pattern of row-major order and process all the variables at once for each row of
data.

The advantage of a focus on each variable is that we can write a relatively simple processing
stack. We'll have multiple stacks, one per variable, but each stack can reuse common
functions from the statistics module.

The disadvantage of this kind of focus is that processing each variable for a very large
dataset requires reading the raw data from OS files. This part of the process can be the most
time-consuming. Indeed, the time required to read the data often dominates the time
required to do statistical analyses. The I/O cost is so high that specialized systems such as
Hadoop have been invented to try and speed up access to extremely large datasets.

How can we make one pass through a set of data and collect a number of descriptive
statistics?

Getting ready
The variables that we might want to analyze will fall into a number of categories. For
example, statisticians often segregate variables into categories such as the following:

Continuous real-valued data: These variables are often measured by floating-
point values, they have a well defined unit of measure, and they can take on
values with a precision limited by the accuracy of the measurement.
Discrete or categorical data: These variables take on a value selected from a finite
domain. In some cases, we can enumerate the domain in advance. In other cases,
the domain's values must be discovered.
Ordinal data: This provides a ranking or ordering. Generally, the ordinal value is
a number, but no other statistical summaries apply to this number, since it's not
really a measurement; it has no units.
Count data: This variable is a summary of individual discrete outcomes. It can be
treated as if it were continuous by computing a real-valued mean of an otherwise
discrete count.

Variables may be independent of each other or they may depend on other variables. In the
initial phases of a study, the dependence may not be known. In later phases, one objective
of the software is to discover the dependencies. Later, software may be used to model the
dependencies.



Statistical Programming and Linear Regression

[ 541 ]

Because of the varieties of data, we need to treat each variable as a distinct item. We can't
treat them all as simple floating-point values. Properly acknowledging the differences will
lead to a hierarchy of class definitions. Each subclass will contain the unique features for a
variable.

We have two overall design patterns:

Eager: We can compute the various summaries as early as possible. In some
cases, we don't have to accumulate very much data for this.
Lazy: We compute the summaries as late as possible. This means we'll be
accumulating data, and using properties to compute the summaries.

For very large sets of data, we want to have a hybrid solution. We'll compute some
summaries eagerly, and also use properties to compute the final results from those
summaries.

We'll use some data from the Using the built-in statistics library recipe that includes just two
variables in a number of similar data series. The variables are named x and y and are both
real-valued variables. The y variable should depend on the x variable, so correlation and
regression models apply there.

We can read this data with the following commands:

>>> from pathlib import Path
>>> import json
>>> from collections import OrderedDict
>>> source_path = Path('code/anscombe.json')
>>> data = json.loads(source_path.read_text(),
...     object_pairs_hook=OrderedDict)

We've defined the Path to the data file. We can then use the Path object to read the text
from this file. This text is used by json.loads() to build a Python object from the JSON
data.

We've included an object_pairs_hook so that this function will build the JSON using the
OrderedDict class instead of the default dict class. This will preserve the original order of
items in the source document.

We can examine the data as follows:

>>> [item['series'] for item in data]
['I', 'II', 'III', 'IV']
>>> [len(item['data']) for item in data]
[11, 11, 11, 11]



Statistical Programming and Linear Regression

[ 542 ]

The overall JSON document is a sequence of subdocuments with keys such as 'I'. Each
subdocument has two fields: "series" and "data". Within the "data" array there's a list
of observations that we want to characterize. Each observation has a pair of values.

How to do it…
Define a class to handle the analysis of the variable. This should handle all1.
conversions and cleansing. We'll use the hybrid process approach: we'll update
the sums and counts as each data element arrives. We won't compute the final
mean or standard deviation until these attributes are requested:

         import math
        class SimpleStats:
            def __init__(self, name):
                self.name = name
                self.count = 0
                self.sum = 0
                self.sum_2 = 0
            def cleanse(self, value):
                return float(value)
            def add(self, value):
                value = self.cleanse(value)
                self.count += 1
                self.sum += value
                self.sum_2 += value*value
            @property
            def mean(self):
                return self.sum / self.count
            @property
            def stdev(self):
                return math.sqrt(
                    (self.count*self.sum_2-
self.sum**2)/(self.count*(self.count-1))
                    )

In this example, we've defined summaries for count, sum, and sum of squares.
We can extend this class to add more computations. For the median or mode, we
will have to accumulate the individual values, and change the design to be
entirely lazy.



Statistical Programming and Linear Regression

[ 543 ]

Define instances to handle the input columns. We'll create two instances of our2.
SimpleStats class. In this recipe, we've chosen two variables that are so much
alike that a single class covers both cases: 

        x_stats = SimpleStats('x')
        y_stats = SimpleStats('y')

Define a mapping from actual column titles to the statistics-computing objects. In3.
some cases, the columns may not be identified by names: we might be using
column indexes. In this case, a sequence of objects will match the sequence of
columns in each row: 

        column_stats = {
            'x': x_stats,
            'y': y_stats
        }

Define a function to process all rows, using the statistics-computing objects for4.
each column within each row:

         def analyze(series_data):
            x_stats = SimpleStats('x')
            y_stats = SimpleStats('y')
            column_stats = {
                'x': x_stats,
                'y': y_stats
            }
            for item in series_data:
                for column_name in column_stats:
                    column_stats[column_name].add(item[column_name])
            return column_stats

The outer for statement processes each row of data. The inner for statement
processes each column of each row. The processing is clearly in row-major order.

Display results or summaries from the various objects: 5.

        column_stats = analyze(series_data)
        for column_key in column_stats:
            print(' ', column_key,
                  column_stats[column_key].mean,
                  column_stats[column_key].stdev)

We can apply the analysis function to a series of data values. This will return the dictionary
that has the statistical summaries.



Statistical Programming and Linear Regression

[ 544 ]

How it works…
We've created a class that handles cleansing, filtering, and statistics processing for a specific
kind of column. When confronted with various kinds of columns, we'll need multiple class
definitions. The idea is to be able to easily create a hierarchy of related classes.

We create an instance of this class for each specific column that we're going to analyze. In
this example, the SimpleStats was designed for a column of simple floating-point values.
Other designs would be appropriate for discrete or ordinal data.

The externally-facing features of this class are an add() method. Each individual data value
is provided to this method. The mean and stdev properties compute summary statistics.

The class also defines a cleanse() method that handles the data conversion needs. This
can be extended to handle the possibility of invalid data. It might filter the values instead of
raising an exception. This method must be overridden to handle more complex data
conversions.

We've created a collection of individual statistics-processing objects. In this example, both
items in the collection are instances of SimpleStats. In most cases, there will be multiple
classes involved, and the collection of statistics processing objects might be rather complex.

This collection of SimpleStats objects is applied to each row of data. A for statement uses
the keys of the mapping, which are also column names to associate each column's data with
the appropriate statistics-processing object.

In some cases, the statistical summaries must be computed lazily. To spot outliers, for
instance, we need all of the data. One common approach to locating outliers required
computing a median, computing the absolute deviations from the median, and then a
median of these absolute deviations. See the Locating outliers recipe. To compute the mode,
we would accumulate all of the data values into a Counter object.

There's more…
In this design, we've tacitly assumed that all columns are completely independent. In some
cases, we'll need to combine columns to derive additional data items. This will lead to a
more complex class definition that may include a reference to other instances of
SimpleStats. This can become rather involved to be sure that columns are handled in
dependency order.



Statistical Programming and Linear Regression

[ 545 ]

As we saw in the Using stacked generator expressions recipe in Chapter 8, Functional And
Reactive Programming Features, we may have a multistage processing that involves
enrichment and computing derived values. This further constrains the ordering among the
column processing rules. One way to handle this is to provide each analyzer with a
reference to the relevant other analyzers. We might have something like the following
rather complex set of class definitions.

First, we'll define two classes to handle date columns and time columns in isolation. Then
we'll combine these to create a timestamp column based on the two input columns.

Here's the class to handle a date column in isolation:

    class DateStats:
        def cleanse(self, value):
            return datetime.datetime.strptime(date, '%Y-%m-%d').date()
        def add(self, value):
            self.current = self.cleanse(value)

The DateStats class only implements the add() method. It cleanses the data and retains a
current value. We can define something similar for processing the time column:

    class TimeStats:
        def cleanse(self, value):
            return datetime.datetime.strptime(date, '%H:%M:%S').time()
        def add(self, value):
            self.current = self.cleanse(value)

The TimeStats class is similar to DateStats; it only implements the add() method. Both
classes focus on cleaning the source data and retaining the current value.

Here's a class that depends on the results of the previous two classes. This will use the
current attribute of the DateStats and TimeStats objects to get the currently available
value from each of these:

    class DateTimeStats:
        def __init__(self, date_column, time_column):
            self.date_column = date_column
            self.time_column = time_column
        def add(self, value=None):
            date = self.date_column.current
            time = self.time_column.current
            self.current = datetime.datetime.combine(date, time)



Statistical Programming and Linear Regression

[ 546 ]

The DateTimeStats class combines the results of two objects. It requires an instance of the
DateStats class and an instance of the TimeStats class. From these other two objects, the
current cleansed value is available as the current attribute.

Note that the value parameter is not used for the DateTimeStats implementation of the
add() method. Instead of accepting value as an argument, a value is collected from the
two other cleansing objects. This requires that the other two columns were processed before
this derived column is processed.

In order to be sure that the values are available, some additional processing is required for
each row. The basic date and time processing maps to specific columns:

    date_stats = DateStats()
    time_stats = TimeStats()
    column_stats = {
        'date': date_stats,
        'time': time_stats
    }

This column_stats mapping can be used to apply two foundational data cleansing
operations against each row of data. However, we also have derived data that must be
computed after the foundational data is done.

We might have something like this:

    datetime_stats = DateTimeStats(date_stats, time_stats)
    derived_stats = {
        'datetime': datetime_stats
    }

We've built an instance of DateTimeStats that depends on two other statistical process
objects: date_stats and time_stats. The add() method of this object will fetch the
current values from each of the other two objects. If we had other derived columns, we
could collect them into this mapping.

This derived_stats mapping can be used to apply statistical processing operations to
create and analyze derived data. The overall processing loop now has two phases:

    for item in series_data:
        for column_name in column_stats:
            column_stats[column_name].add(item[column_name])
        for column_name in derived_stats:
            derived_stats[column_name].add()



Statistical Programming and Linear Regression

[ 547 ]

We've computed statistics for the columns that are present in the source data. Then we
computed statistics for the derived columns. This has the pleasant feature of being
configured using just two mappings. We can change the classes that are used by updating
the column_stats and derived_stats mappings.

Using map()
We've used explicit for statements to apply each statistics object to the appropriate column
data. We can also use a generator expression. We can even try to use the map() function.
See the Combining map and reduce transformations recipe in Chapter 8, Functional and Reactive
Programming Features, for some additional background on this technique.

An alternative data gathering collection could look like this:

    data_gathering = {
        'x': lambda value: x_stats.add(value),
        'y': lambda value: y_stats.add(value)
    }

Instead of the object, we've provided a function that applies the object's add() method to
the given data value.

With this collection, we can use a generator expression:

    [data_gathering[k](row[k]) for k in data_gathering)]

This will apply the data_gathering[k] function to each value, k, that's available in the
row.

See also
See the Designing classes with lots of processing and Using properties for lazy attributes
recipes in Chapter 6, Basics of Classes and Objects, for some additional design
alternatives that fit into this overall approach



11
Testing

In this chapter, we'll look at the following recipes:

Using docstrings for testing
Testing functions that raise exceptions
Handling common doctest issues
Creating separate test modules and packages
Combining unittest and doctest tests
Testing things that involve dates or times
Testing things that involve randomness
Mocking external resources

Introduction
Testing is central to creating working software. Here's the canonical statement in the
importance of testing:

Any program feature without an automated test simply doesn't exist.

This is from Kent Beck's book, Extreme Programming Explained: Embrace Change.

We can distinguish several kinds of testing:

Unit testing: This applies to independent units of software: functions, classes, or
modules. The unit is tested in isolation to confirm that it works correctly.
Integration testing: This combines units to be sure they integrate properly.



Testing

[ 549 ]

System testing: This tests an entire application or a system of interrelated
applications to be sure that the aggregated suite of software components works
properly. This is often used for overall acceptance of software as fit for use.
Performance testing: This assures that a unit meets performance objectives. In
some cases, performance testing includes the study of resources such as memory,
threads, or file descriptors. The goal is to be sure that software makes appropriate
use of system resources.

Python has two built-in testing frameworks. One examines the docstrings for examples that
include the >>> prompt. This is the doctest tool. While this is widely used for unit testing,
it can also be used for simple integration testing.

The other testing framework uses classes built with definitions from the unittest module.
This module defines a TestCase class. This, too, is designed primarily for unit testing, but
can also be applied to integration and performance testing.

Of course, we'll want to combine these tools. Both modules have features to allow
coexistence. We'll often leverage the test loading protocol from the unittest package to
merge all of our tests.

Additionally, we might use the tools nose2 or py.test to further automate test discovery
and add additional features such as test case coverage. These projects are often helpful for
particularly complex applications.

It's sometimes helpful to summarize a test using the GIVEN-WHEN-THEN style of test case
naming:

GIVEN some initial state or context
WHEN a behavior is requested
THEN the component under test has some expected result or state change

Using docstrings for testing
Good Python includes docstrings inside every module, class, function, and method. Many
tools can create useful, informative documentation from the docstrings.



Testing

[ 550 ]

One important element of a docstring is an example. The example becomes a kind of unit
test case. An example often fits the GIVEN-WHEN-THEN model of testing because it shows
a unit, a request, and a response.

How can we turn examples into proper test cases?

Getting ready
We'll look at a simple function definition as well as a simple class definition. Each of these
will include docstrings that include examples which can be used as formal tests.

Here's a simple function that computes the binomial coefficient of two numbers. It shows
the number of combinations of n things taken in groups of size k. For example, how many
ways a 52-card deck can be dealt into 5-card hands is computed like this:

This defines a small Python function that we can write like this:

    from math import factorial
    def binom(n: int, k: int) -> int:
        return factorial(n) // (factorial(k) * factorial(n-k))

This function does a simple calculation and returns a value. Since it has no internal state, it's
relatively easy to test. This will be one of the examples used for showing the unit testing
tools available.

We'll also look at a simple class which has a lazy calculation of mean and median. It uses an
internal Counter object which can be interrogated to determine the mode:

    from statistics import median
    from collections import Counter

    class Summary:

        def __init__(self):
            self.counts = Counter()

        def __str__(self):
            return "mean = {:.2f}\nmedian = {:d}".format(
            self.mean, self.median)



Testing

[ 551 ]

        def add(self, value):
            self.counts[value] += 1

        @property
        def mean(self):
            s0 = sum(f for v,f in self.counts.items())
            s1 = sum(v*f for v,f in self.counts.items())
            return s1/s0

        @property
        def median(self):
            return median(self.counts.elements())

The add() method changes the state of this object. Because of this state change, we'll need
to provide more sophisticated examples that show how an instance of the Summary class
behaves.

How to do it…
We'll show two variations in this recipe. The first is for largely stateless operations, such as
the computation of the binom() function. The second is for stateful operations, such as the
Summary class.

Put examples into the docstrings.1.
Run the doctest module as a program. This is done in one of two ways:2.

At the command prompt:

            $ python3.5 -m doctest code/ch11_r01.py

If all of the examples pass, there's no output. Using the -v option
produces verbose output summarizing the tests.

By including a __name__ == '__main__' section. This can import
the doctest module and execute the testmod() function:

                if __name__ == '__main__':
                    import doctest
                    doctest.testmod()

If all of the examples pass, there's no output. To see some output, use the
verbose=1 parameter for the testmod() function to create more 
verbose output.



Testing

[ 552 ]

Writing examples for stateless functions
Start the docstring with a summary:1.

        '''Computes the binomial coefficient.
        This shows how many combinations of
        *n* things taken in groups of size *k*.

Include the parameter definitions:2.

         :param n: size of the universe
        :param k: size of each subset

Include the return value definition:3.

        :returns: the number of combinations

Mock up an example of using the function at Python's >>> prompt:4.

      >>> binom(52, 5)
      2598960

Close the long docstring with the appropriate quotation marks:5.

        '''

Writing examples for stateful objects
Write a class-level docstring with a summary:1.

        '''Computes summary statistics.

        '''

We've left space to fill in examples.

Write the method-level docstring with a summary. Here's the add() method:2.

        def add(self, value):
            '''Adds a value to be summarized.

            :param value: Adds a new value to the collection.
            '''
            self.counts[value] += 1



Testing

[ 553 ]

Here's the mean() method:3.

        @property
        def mean(self):
            '''Computes the mean of the collection.
            :return: mean value as a float
            '''
            s0 = sum(f for v,f in self.counts.items())
            s1 = sum(v*f for v,f in self.counts.items())
            return s1/s0

A similar string is required for the median() method, and any others that are
written.

Extend the class-level docstring concrete examples. In this case, we'll write two.4.
The first example shows that the add() method has no return value, but changes
the state of the object. The mean() method reveals this state:

       >>> s = Summary()
      >>> s.add(8)
      >>> s.add(9)
      >>> s.add(9)
      >>> round(s.mean, 2)
      8.67
      >>> s.median
      9

We've rounded the result of the mean to avoid displaying a long floating-point
value that might not have the exact same text representation on all platforms.
When we run doctest, we'll generally get a silent response because the test passed.

The second example shows a multiline result from the __str__() method:

 >>> print(str(s))
mean = 8.67
median = 9

What happens when something doesn't work? Imagine that we changed the expected
output to have a wrong answer. When we run doctest, we'll see output like this:

*********************************************************************
File "__main__", line ?, in __main__.Summary
Failed example:    s.medianExpected:
    10
Got:
    9
*********************************************************************1



Testing

[ 554 ]

items had failures:
   1 of   6 in __main__.Summary
***Test Failed*** 1 failures.TestResults(failed=1, attempted=9)

This shows where the error is. It shows an expected value from the test example, and the
actual answer.

How it works…
The doctest module includes a main program—as well as several functions—that will
scan a Python file for >>> examples. We can leverage the module scanning function,
testmod(), to scan the current module. We can use this to scan any imported module.

The scanning operation looks for blocks of text that have a characteristic pattern of a >>>
line followed by lines that show the response from the command.

The doctest parser creates a small test case object from the prompt line and the block of
response text. There are three common cases:

No expected response text: We saw this pattern when we defined the tests for the
add() method of the Summary class.
Single line of response text: This was exemplified by the binom() function and
the mean() method.
Multiple lines of response: Responses are bounded by either the next >>> prompt
or a blank line. This was exemplified by the str() example of the Summary class.

The doctest module will execute each line of code shown with a >>> prompt. It compares
the actual results with the expected results. The comparison is a very simple text matching.
Unless special annotations are used, the output must precisely match the expectations.

The simplicity of this testing protocol imposes some software design requirements.
Functions and classes must be designed to work from the >>> prompt. Because it can
become awkward to create very complex objects as part of a docstring example, the design
must be kept simple enough that it can be demonstrated interactively. Keeping software
simple enough to demonstrate at the >>> prompt is often beneficial.



Testing

[ 555 ]

The simplicity of the comparison of the results can impose some complications on the
output that's being displayed. Note, for example, that we rounded the value of the mean to
two decimal places. This is because the display of floating-point values may vary slightly
from platform to platform.

Python 3.5.1 (on Mac OS X) shows 8.666666666666666 where Python 2.6.9 (also on Mac
OS X) shows 8.6666666666666661. The values are equal for 16 of the decimal digits. This
is about 48 bits of data, which is the practical limit of floating-point values.

We'll address the exact comparison issue in detail in the Handling common doctest issues
recipe.

There's more…
One of the important test considerations is edge cases. An edge case generally focuses on
the limits for which a calculation is designed. There are, for example, two edges to the
binomial function:

We can easily add these to the examples to be sure that our implementation is sound; this
leads to a function that looks like the following:

    def binom(n: int, k: int) -> int:
        '''Computes the binomial coefficient.
        This shows how many combinations of
        *n* things taken in groups of size *k*.

        :param n: size of the universe
        :param k: size of each subset

        :returns: the number of combinations

        >>> binom(52, 5)
        2598960
        >>> binom(52, 0)
        1
        >>> binom(52, 52)
        1
        '''
        return factorial(n) // (factorial(k) * factorial(n-k))



Testing

[ 556 ]

In some cases, we might need to test values that are outside the valid range of values. These
cases aren't really ideal for putting into the docstring, because they clutter an explanation of
what is supposed to happen with an explanation of other things that should never normally
happen.

We can include additional docstring test cases in a global variable named __test__. This
variable must be a mapping. The keys to the mapping are test case names, and the values of
the mapping are doctest examples. These will need to be triple-quoted strings.

Because the examples are not inside the docstrings, they don't show up when using the
built-in help() function. Nor do they show up when using other tools to create
documentation from source code.

We might add something like this:

    __test__ = {
    'GIVEN_binom_WHEN_0_0_THEN_1':
    '''
    >>> binom(0, 0)
    1
    ''',

    }

We've written the mapping with the keys with no indent. The values have been indented
four spaces so that they stand out from the keys and are slightly easier to spot.

These test cases are found by the doctest program and included in the overall suite of tests.
We can use this for tests that are important, but aren't really helpful as documentation.

See also
In the Testing functions that raise exceptions and Handling common doctest issues
recipes, we'll look at two additional doctest techniques. These are important
because exceptions can often include a traceback which may include object IDs
that can vary each time the program is run.



Testing

[ 557 ]

Testing functions that raise exceptions
Good Python includes docstrings inside every module, class, function, and method. Many
tools can create useful, informative documentation from these docstrings.

One important element of a docstring is an example. The example becomes a kind of unit
test case. Doctest does simple, literal matching of the expected output against the actual
output.

When an example raises an exception, though, the traceback messages from Python are not
always identical. It may include object ID values that change or module line numbers which
may vary slightly depending on the context in which the test is executed. The literal
matching rules for doctest aren't appropriate when exceptions are involved.

How can we turn exception processing and the resulting traceback messages into proper
test cases?

Getting ready
We'll look at a simple function definition as well as a simple class definition. Each of these
will include docstrings that include examples which can be used as formal tests.

Here's a simple function that computes the binomial coefficient of two numbers. It shows
the number of combinations of n things taken in groups of k. For example, how many ways
a 52-card deck can be dealt into 5-card hands:

This defines a small Python function that we can write like this:

    from math import factorial
    def binom(n: int, k: int) -> int:
        '''
        Computes the binomial coefficient.
        This shows how many combinations of
        *n* things taken in groups of size *k*.

        :param n: size of the universe
        :param k: size of each subset

        :returns: the number of combinations



Testing

[ 558 ]

        >>> binom(52, 5)
        2598960
        '''
        return factorial(n) // (factorial(k) * factorial(n-k))

This function does a simple calculation and returns a value. We'd like to include some
additional test cases in the __test__ variable to show what this does when given values
outside the expected ranges.

How to do it…
Create a global __test__ variable in the module:1.

         __test__ = {

        }

We've left space to insert one or more test cases.

For each test case, provide a name and a placeholder for the example:2.

        __test__ = {
        'GIVEN_binom_WHEN_wrong_relationship_THEN_error':
        '''
            example goes here.
        ''',
        }  

Include the invocation with a doctest directive comment,3.
IGNORE_EXCEPTION_DETAIL. This replaces the “example goes here”:

      >>> binom(5, 52)  # doctest: +IGNORE_EXCEPTION_DETAIL

The directive starts with # doctest:. Directives are enabled with + and disabled
with -.

Include an actual traceback message. This is part of the example goes here; it goes4.
after the >>> statement to show the expected response:

        Traceback (most recent call last):
          File
"/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/doctest.py
", line 1320, in __run
            compileflags, 1), test.globs)



Testing

[ 559 ]

          File "<doctest
__main__.__test__.GIVEN_binom_WHEN_wrong_relationship_THEN_error[0]>", line
1, in <module>
            binom(5, 52)
          File "/Users/slott/Documents/Writing/Python
Cookbook/code/ch11_r01.py", line 24, in binom
            return factorial(n) // (factorial(k) * factorial(n-k))
        ValueError: factorial() not defined for negative values

The three lines that start with File... will be ignored. The ValueError: line5.
will be checked to be sure that the test produces the expected exception.

The overall statement looks like this:

    __test__ = {
    'GIVEN_binom_WHEN_wrong_relationship_THEN_error': '''
        >>> binom(5, 52)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
          File
"/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/doctest.py
", line 1320, in __run
            compileflags, 1), test.globs)
          File "<doctest
__main__.__test__.GIVEN_binom_WHEN_wrong_relationship_THEN_error[0]>", line
1, in <module>
            binom(5, 52)
          File "/Users/slott/Documents/Writing/Python
Cookbook/code/ch11_r01.py", line 24, in binom
            return factorial(n) // (factorial(k) * factorial(n-k))
        ValueError: factorial() not defined for negative values
    '''
    }

We can now use a command like this to test the entire module's features:

python3.5 -R -m doctest ch11_r01.py

How it works…
The doctest parser has several directives that can be used to modify the testing behavior.
The directives are included as special comments with the line of code that performs the test
action.



Testing

[ 560 ]

We have two ways to handle tests that include an exception:

We can use # doctest: +IGNORE_EXCEPTION_DETAIL and provide a full
traceback error message. The details of the traceback are ignored, and only the
final exception line is matched against the expected value. This makes it very
easy to copy an actual error and paste it into the documentation.
We can use # doctest: +ELLIPSIS and replace parts of the traceback message
with .... This, too, allows an expected output to elide details and focus on the
last line that has the actual error.

For this second kind of exception example, we might include a test case like this:

    'GIVEN_binom_WHEN_negative_THEN_exception':
    '''
        >>> binom(52, -5)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
        ...
        ValueError: factorial() not defined for negative values
    ''',

The test case uses the +ELLIPSIS directive. The details of the error traceback have had
irrelevant material replaced with .... The relevant material has been left intact so that the
actual exception message will match the expected exception message precisely.

Doctest will ignore everything between the first Traceback... line and the final
ValueError: ... line. Generally, the final line is all that matters for proper execution of
the test. The intermediate text depends on the context in which the test was run.

There's more…
There are several more comparison directives that can be provided to individual tests.

+ELLIPSIS: This allows an expected result to be generalized by replacing details
with ....
+IGNORE_EXCEPTION_DETAIL: This allows an expected value to include a
complete traceback message. The bulk of the traceback will be ignored, and only
the final exception line is checked.
+NORMALIZE_WHITESPACE: In some cases, the expected value might be wrapped
onto multiple lines to make it easier to read. Or, it might have spacing that varies
slightly from standard Python values. Using this flag allows some flexibility in
the whitespace for the expected value.



Testing

[ 561 ]

+SKIP: The test is skipped. This is sometimes done for tests that are designed for
a future release. Tests may be included prior to the feature being completed. The
test can be left in place for future development work, but skipped in order to
release a version on time.
+DONT_ACCEPT_TRUE_FOR_1: This covers a special case that was common in
Python 2. Before True and False were added to the language, values 1 and 0
were used instead. The doctest algorithm for comparing expected results to
actual results will honor this older scheme by matching True and 1. This
directive can be provided at the command line using -o
DONT_ACCEPT_TRUE_FOR_1. This change would then be globally true for all
tests.
+DONT_ACCEPT_BLANKLINE: Normally, a blank line ends an example. In the case
where the example output includes a blank line, the expected results must use the
special syntax <blankline>. Using this shows where a blank line is expected,
and the example doesn't end at this blank line. In very rare cases, the expected
output will actually include the string <blankline>. This directive assures that
<blankline> is not used to mean a blank line but stands for itself. This would
make sense when writing tests for the doctest module itself.

These can also be provided as the optionsflags parameter when evaluating the
testmod() or testfile() functions.

See also
See the Using docstrings for testing recipe for the basics of doctest
See the Handling common doctest issues recipe for other special cases that require
doctest directives

Handling common doctest issues
Good Python includes docstrings inside every module, class, function, and method. Many
tools can create useful, informative documentation from minimally complete docstrings.

One important element of a docstring is an example. The example becomes a kind of unit
test case. Doctest does simple, literal matching of the expected output against the actual
output. There are some Python objects, however, that are not consistent every time they're
referred to.



Testing

[ 562 ]

For example, all object hash values are randomized. This means that the order of elements
in a set or the order of keys in a dictionary can vary. We have several choices for creating
test case example output:

Write tests that can tolerate randomization. Often by converting to a sorted
structure.
Stipulate a value for the PYTHONHASHSEED environment variable.
Require that Python be run with the -R option to disable hash randomization
entirely.

There are several other considerations beyond simple variability in the location of keys or
items in a set. Here are some other concerns:

The id() and repr() functions may expose an internal object ID. No guarantees
can be made about these values.
Floating-point values may vary across platforms.
The current date and time cannot meaningfully be used in a test case.
Random numbers using the default seed are difficult to predict.
OS resources may not exist, or may not be in the proper state.

We'll focus on the first two issues with some doctest techniques in this recipe. We'll look at
datetime and random in the Testing things that involve dates or times and Testing things that
involve randomness recipes. We'll look at how to work with external resources in the Mocking
external resources recipe.

Doctest examples require an exact match with the text. How can we write doctest examples
that handle hash randomization or floating-point implementation details appropriately?

Getting ready
In the Reading delimited files with the CSV module recipe, we looked at how the csv module
will read data, creating a mapping for each row of input. In that recipe, we saw a CSV file
that has some real-time data recorded from the log of a sailboat. This is the waypoints.csv
file.



Testing

[ 563 ]

The DictReader class produces rows that look like this:

    {'date': '2012-11-27',
     'lat': '32.8321666666667',
     'lon': '-79.9338333333333',
     'time': '09:15:00'}

This is a doctest nightmare because the hash randomization assures that the order of the
keys in this dictionary is likely to be different.

When we try to write doctest examples that involve a dictionary, we'll often see problems
like this:

    Failed example:
        next(row_iter)
    Expected:
        {'date': '2012-11-27', 'lat': '32.8321666666667',
        'lon': '-79.9338333333333', 'time': '09:15:00'}
    Got:
        {'lon': '-79.9338333333333', 'time': '09:15:00',
        'date': '2012-11-27', 'lat': '32.8321666666667'}

The data in the expected and actual rows clearly matches. However, the string displays of
the dictionary values aren't exactly identical. The keys are not shown in a consistent order.

We'll also look at a small real-valued function so that we can work with floating-point
values:

This function is the cumulative probability density function for standard z-scores. After
normalizing a variable, the mean of the Z-score values for that variable will be zero, and the
standard deviation will be one. See the Creating a partial function recipe in Chapter 8,
Functional and Reactive Programming Features, for more information on the idea of
normalized scores.

This function, Φ(n), tells us exactly what fraction of the population is below a given z-score.
For example, Φ(0) = 0.5: half the population has a z-score below zero.

This function involves some rather complex processing. The unit tests have to reflect the
floating-point precision issues.



Testing

[ 564 ]

How to do it…
We'll look at mapping (and set) ordering in one recipe. We'll look at the floating point
separately.

Writing doctest examples for mapping or set values
Import the necessary libraries and define the function:1.

        import csv
        def raw_reader(data_file):
            """
            Read from a given, open file.

            :param data_file: Open file, ready to be processed.
            :returns: iterator over individual rows as dictionaries.

            Example:

            """
            data_reader = csv.DictReader(data_file)
            for row in data_reader:
                yield row

We've included the example heading in the document string.

We can replace actual data files with instances of the StringIO class from the io2.
package. This can be used inside the example to provide fixed sample data:

      >>> from io import StringIO
      >>> mock_file = StringIO('''lat,lon,date,time
      ... 32.8321,-79.9338,2012-11-27,09:15:00
      ... ''')
      >>> row_iter = iter(raw_reader(mock_file))  

Conceptually, the test case is this. This code will not work properly because the3.
keys will be scrambled. However, it can be refactored easily:

      >>> row = next(row_iter)
      >>> row
      {'time': '09:15:00', 'lat': '32.8321', etc. }



Testing

[ 565 ]

We've omitted the rest of the output, since it varies each time the test is run:

The code must be written like this to force the keys into a fixed order:

      >>> sorted(row.items())  # doctest: +NORMALIZE_WHITESPACE
      [('date', '2012-11-27'), ('lat', '32.8321'),
      ('lon', '-79.9338'), ('time', '09:15:00')]

The sorted items are in a consistent order.

Writing doctest examples for floating-point values
Import the necessary libraries and define the function:1.

        from math import *
        def phi(n):
            """
            The cumulative distribution function for the standard normal
            distribution.

            :param n: number of standard deviations
            :returns: cumulative fraction of values below n.

            Examples:
            """
            return (1+erf(n/sqrt(2)))/2

We've left a space for examples in the document string.

For each example, include an explicit use of round():2.

      >>> round(phi(0), 3)
      0.399
      >>> round(phi(-1), 3)
      0.242
      >>> round(phi(+1), 3)
      0.242

The float values are rounded so that differences in floating-point implementation details
don't lead to seemingly incorrect results.



Testing

[ 566 ]

How it works…
Because of hash randomization, the hash keys used for dictionaries are unpredictable. This
is an important security feature, and defeats a subtle denial-of-service attack. For details, see
h t t p ://w w w . o c e r t . o r g /a d v i s o r i e s /o c e r t - 2011- 003. h t m l .

We have two ways to work with dictionary keys that have no defined order:

We can write test cases that are specific to each key:

      >>> row['date']
      '2012-11-27'
      >>> row['lat']
      '32.8321'
      >>> row['lon']
      '-79.9338'
      >>> row['time']
      '09:15:00'

We can convert to a data structure with a fixed order. The value of row.items()
is an iterable sequence of pairs with each key and value. The order is not set in
advance, but we can use the following to force an order:

      >>> sorted(row.items())

This returns a list with the keys sorted into order. This allows us to create a consistent literal
value that will always be the same every time the test is evaluated.

Most floating-point implementations are reasonably consistent. However, there are few
formal guarantees about the last few bits of any given floating-point number. Rather than
trust that all 53 bits have exactly the right value, it's often much easier to round the value to
a value that's a good fit with the problem domain.

For most modern processors, floating-point values are often either 32 or 64-bit values. A 32-
bit value has about seven decimal digits. Rounding the value so that there are no more than
six digits in the value is generally the simplest approach.

Rounding to six digits does not mean using round(x, 6). The round() function doesn't
preserve a number of digits. This function rounds to a number of digits to the right of the
decimal point; it doesn't account for digits to the left of the decimal point. Rounding a
number on the order of 1012 to six positions to the right of the decimal point leads to 18
digits—too many for a 32-bit value. Rounding a number on the order of 10-7 to six positions
to the right of the decimal place leads to zero.

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html


Testing

[ 567 ]

There's more…
When working with set objects, we must also be careful of the order of the items. We can
generally use sorted() to convert a set to a list and impose a specific order.

Python dict objects show up in a surprising number of places:

When we write a function that uses the ** to collect a dictionary of argument
values. There's no guarantee for the order of the arguments.
When we use a function such as vars() to create a dictionary from local
variables, or from the attributes of an object, the dictionary has no guaranteed
order.
When we write programs that rely on introspection of a class definition, the
methods are defined in a class-level dictionary object. We can't predict their
order.

This becomes apparent when there are unreliable test cases. A test case which passes or fails
seemingly randomly may have a result which is based on a hash randomization. Extract the
keys and sort them to overcome this problem.

We can run the tests using this command-line option too:

python3.5 -R -m doctest ch11_r03.py

This will turn off hash randomization while running doctest on a specific file,
ch11_r03.py.

See also
The Testing things that involve dates or times recipe, in particular the now() method
of datetime requires some care.
The Testing things that involve randomness recipe will show how to test processing
that involves random.



Testing

[ 568 ]

Creating separate test modules and
packages
We can do any kind of unit testing in docstring examples. There are some things, however,
which can become extremely tedious when done this way.

The unittest module allows us to step beyond simple examples. These tests rely on test
case class definitions. A subclass of TestCase can be used to write very complex and
sophisticated tests; these can be simpler than the same test done as doctest examples.

The unittest module also allows us to package tests outside the docstrings. This can be
helpful for particularly complex tests of corner cases that aren't as helpful when placed in
the documentation. Ideally, doctest cases illustrate the happy path – the most common use
cases. It's common to use unittest for test cases which are off the happy path.

How can we create more sophisticated tests?

Getting ready
A test can often be summarized by a three-part Given-When-Then story:

GIVEN: Some unit in an initial state or context
WHEN: A behavior is requested
THEN: The component under test has some expected result or state change

The TestCase class doesn't precisely follow this three-part structure. It has two parts; some
design choices must be made regarding where the three parts of a test are allocated:

A setUp() method that implements the Given aspect of the test case. It can also
handle the When aspect.
A runTest() method that must handle the Then aspects. This can also handle the
When aspect. The Then conditions are confirmed by a series of assertions. These
generally use the sophisticated assertion methods of the TestCase class.

The choice of where to implement the When aspect is tied to the question of reuse. In most
cases, there are many alternative When conditions, each with a unique Then to confirm
correct operation. The Given might be common to the setUp() method, and shared by a
number of TestCase subclasses. Each subclass would have a unique runTest() method to
implement the When and Then aspects.



Testing

[ 569 ]

In some cases, the When aspect is split into some common parts and some test-case-specific
parts. In this case, the When aspect may be partly defined in the setUp() method and partly
defined in runTest() method.

We'll create some tests for a class that is designed to compute some basic descriptive
statistics. We'd like to provide sample data that's far larger than anything we'd ever enter as
doctest examples. We'd like to use thousands of data points rather than two or three.

Here's an outline of the class definition that we'd like to test. We'll only provide the
methods and some summaries. The bulk of the code was shown in the Using docstrings for
testing recipe. We've omitted all of the implementation details. This is just an outline of the
class, provided as a reminder of what the method names are:

    from statistics import median
    from collections import Counter

    class Summary:
        def __init__(self):
           pass

        def __str__(self):
            '''Returns a multi-line text summary.'''

        def add(self, value):
            '''Adds a value to be summarized.'''

        @property
        def count(self):
            '''Number of samples.'''

        @property
        def mean(self):
            '''Mean of the collection.'''

        @property
        def median(self):
            '''Median of the collection.'''
            return median(self.counts.elements())

        @property
        def mode(self):
            '''Returns the items in the collection in decreasing
            order by frequency.
            '''



Testing

[ 570 ]

Because we're not looking at the implementation details, this is a kind of black box testing.
The code is a black box—the internals are opaque. To emphasize that, we omitted the
implementation details from the preceding code.

We'd like to be sure that when we use thousands of samples, the class performs correctly.
We'd also like to ensure that it works quickly; we'll use this as part of an overall
performance test, as well as a unit test.

How to do it…
We'll include the test code in the same module as the working code. This will1.
follow the pattern of doctest that bundles tests and code together. We'll use the
unittest module for creating test classes:

        import unittest
        import random

We'll also be using random to scramble the input data.

Create a subclass of unittest.TestCase. Provide this class with a name that2.
shows the intent of the test:

        class GIVEN_Summary_WHEN_1k_samples_THEN_mean(unittest.TestCase):

The GIVEN-WHEN-THEN names are very long. We'll rely on unittest to
discover all subclasses of TestCase so we don't have to type this class name more
than once.

Define a setUp() method in this class which handles the Given aspect of the test.3.
This creates a context for test processing:

        def setUp(self):
            self.summary = Summary()
            self.data = list(range(1001))
            random.shuffle(self.data)

We've created a collection of 1,001 samples ranging in value from 0 to 1,000.
The mean is 500 exactly, so is the median. We've shuffled the data into a random
order.



Testing

[ 571 ]

Define a runTest() method which handles the When aspect of the test. This4.
performs the state change:

        def runTest(self):
            for sample in self.data:
                self.summary.add(sample)

Add assertions to implement the Then aspect of the test. This confirms that the5.
state changes worked properly:

        self.assertEqual(500, self.summary.mean)
        self.assertEqual(500, self.summary.median)  

To make it very easy to run, add a main program section:6.

        if __name__ == "__main__":
            unittest.main()

With this, the test can be run at Command Prompt. It can also be run from the
command line.

How it works…
We're using several parts of the unittest module:

The TestCase class is used to define one test case. This can have a setUp()
method to create the unit and possibly the request . This must have at least a
runTest() to make the request and check the response.

We can have as many of these class definitions in a file as we need to build up an
appropriate set of tests. For simple classes, there may be only a few test cases. For
complex modules, there may be dozens or even hundreds of cases.

The unittest.main() function does several things:
It creates an empty TestSuite that will contain all the TestCase
objects.
It uses a default loader to examine a module and find all of the
TestCase instances. These are loaded into the TestSuite. This
process is something that we might want to modify or extend.
It then runs the TestSuite and displays a summary of the results.



Testing

[ 572 ]

When we run this module, we'll see output that looks like this:

.----------------------------------------------------------------------
Ran 1 test in 0.005s

OK

As each test is passed, a . is displayed. This shows that the test suite is making progress.
After the line of - is a summary of the tests run, and the time. If there are failures, or
exceptions, the counts will reflect this.

Finally, there's a summary of OK to show whether all tests passed or any tests have failed.

If we change the test slightly to be sure that it fails, we'll see the following output:

F
======================================================================
FAIL: runTest (__main__.GIVEN_Summary_WHEN_1k_samples_THEN_mean)
----------------------------------------------------------------------
Traceback (most recent call last):
 File "/Users/slott/Documents/Writing/Python Cookbook/code/ch11_r04.py",
line 24, in runTest
 self.assertEqual(501, self.summary.mean)
AssertionError: 501 != 500.0
----------------------------------------------------------------------
Ran 1 test in 0.004s
FAILED (failures=1)

Instead of a . for a passing test, a failing test displays an F. This is followed by the traceback
from the assertion which failed. To force the test to fail, we changed the expected mean to
501, which is not the computed mean value of 500.0.

There's a final summary of FAILED. This includes the reason why the suite as a whole is a
failure: (failures=1).

There's more…
In this example, we have two Then conditions inside the runTest() method. If one fails,
the test stops as a failure, and the other condition is not exercised.



Testing

[ 573 ]

This is a weakness in the design of this test. If the first test fails, we won't get all of the
diagnostic information we might want. We should avoid independent collections of
assertions in the runTest() method. In many cases, a test case may involve multiple
dependent assertions; a single failure provides all the diagnostic information that's
required. The clustering of assertions is a design trade-off between simplicity and
diagnostic detail.

When we want more diagnostic details, we have two general choices:

Use multiple test methods instead of runTest(). Write multiple methods with
names that start with test_. Remove any method named runTest(). The
default test loader will execute each test_ method separately, after rerunning
the common setUp() method.

Use multiple subclasses of the GIVEN_Summary_WHEN_1k_samples_THEN_mean
class, each with a separate condition. Since the setUp() is common, this can be
inherited.

Following the first alternative, the test class would look like this:

    class
GIVEN_Summary_WHEN_1k_samples_THEN_mean_median(unittest.TestCase):

        def setUp(self):
            self.summary = Summary()
            self.data = list(range(1001))
            random.shuffle(self.data)
            for sample in self.data:
                self.summary.add(sample)

        def test_mean(self):
            self.assertEqual(500, self.summary.mean)

        def test_median(self):
            self.assertEqual(500, self.summary.median)

We've refactored the setUp() method to include the Given and When conditions of the test.
The two independent Then conditions are refactored into their own separate test_mean()
and test_median() methods. There is no runTest() method.

Since each test is run separately, we'll see separate error reports for problems with
computing mean or computing median.



Testing

[ 574 ]

Some other assertions
The TestCase class defines numerous assertions that can be used as part of the Then
condition; here are a few of the most commonly used:

assertEqual() and assertNotEqual() compare actual and expected values
using the default == operator.
assertTrue() and assertFalse() require a single boolean expression.
assertIs() and assertIsNot() use the is comparison to determine whether
the two arguments are references to the same object.
assertIsNone() and assertIsNotNone() use is to compare a given value
with None.
assertIsInstance() and assertNotIsInstance() use the isinstance()
function to determine whether a given value is a member of a given class (or
tuple of classes).
assertAlmostEquals() and assertNotAlmostEquals() round the given
values to seven decimal places to see whether most of the digits are equal.
assertRegex() and assertNotRegex() compare a given string using a regular
expression. This uses the search() method of the regular expression to match
the string.
assertCountEqual() compares two sequences to see whether they have the
same elements, irrespective of order. This can be handy for comparing dictionary
keys and sets too.

There are still more assertion methods. A number of them provide ways to detect
exceptions, warnings, and log messages. Another group provides more type-specific
comparison capabilities.

For example, the mode feature of the Summary class produces a list. We can use a specific
assertListEqual() assertion to compare the results:

    class GIVEN_Summary_WHEN_1k_samples_THEN_mode(unittest.TestCase):

        def setUp(self):
            self.summary = Summary()
            self.data = [500]*97
            # Build 993 more elements each item n occurs n times.
            for i in range(1,43):
                self.data += [i]*i
            random.shuffle(self.data)
            for sample in self.data:
                self.summary.add(sample)



Testing

[ 575 ]

        def test_mode(self):
            top_3 = self.summary.mode[:3]
            self.assertListEqual([(500,97), (42,42), (41,41)], top_3)

First, we built a collection of 1,000 values. Of those, 97 are copies of the number 500. The
remaining 903 elements are copies of numbers between 1 and 42. These numbers have a
simple rule—the frequency is the value. This rule makes it easier to confirm the results.

The setUp() method shuffled the data into a random order. Then the Summary object is
built using the add() method.

We've used a test_mode() method. This allows for expansion to include other Then
conditions on this test. In this case, we examined the first three values from the mode to be
sure it had the expected distribution of values. The assertListEqual() compares two
list objects; if either argument is not a list, we'll get a more specific error message showing
that the argument wasn't of the expected type.

Separate tests directory
We've shown the TestCase class definitions in the same module as the code being tested.
For small classes, this can be helpful. Everything related to the class can be found in one
module file.

In larger projects, it's common practice to sequester the test files into a separate directory.
The tests can be (and often are) extremely large. It's not unreasonable to have more test code
than application code.

When this is done, we can rely on the discovery application that's part of the unittest
framework. This application can search all of the files of a given directory for test files.
Generally, these will be files with names that match the pattern test*.py. If we use a
simple, consistent name for all test modules, then they can be located and run with a simple
command.

The unittest loader will search each module in the directory for all classes that are
derived from the TestCase class. This collection of classes within the larger collection of
modules becomes the complete TestSuite. We can do this with the os command:

$ python3 -m unittest discover -s tests

This will locate all tests in the tests directory of a project.



Testing

[ 576 ]

See also
We'll combine unittest and doctest in the Combining unittest and
doctest tests recipe. We'll look at mocking external objects in the Mocking external
resources recipe.

Combining unittest and doctest tests
In most cases, we'll have a combination of unittest and doctest test cases. For examples
of doctest, see the Using docstrings for testing recipe. For examples of unittest, see the
Creating separate test modules and packages recipe.

The doctest examples are an essential element of the documentation strings on modules,
classes, methods, and functions. The unittest cases will often be in a separate tests
directory in files with names that match the pattern test_*.py.

How can we combine all of these various tests into one tidy package?

Getting ready
We'll refer back to the example from the Using docstrings for testing recipe. This recipe
created tests for a class, Summary, that does some statistical calculations. In that recipe, we
included examples in the docstrings.

The class started like this:

    class Summary:
        '''Computes summary statistics.

        >>> s = Summary()
        >>> s.add(8)
        >>> s.add(9)
        >>> s.add(9)
        >>> round(s.mean, 2)
        8.67
        >>> s.median
        9
        >>> print(str(s))
        mean = 8.67
        median = 9
        '''



Testing

[ 577 ]

The methods have been omitted here so that we can focus on the example provided in the
docstring.

In the Creating separate test modules and packages recipe, we wrote some
unittest.TestCase classes to provide additional tests for this class. We created class
definitions like this:

    class
GIVEN_Summary_WHEN_1k_samples_THEN_mean_median(unittest.TestCase):

        def setUp(self):
            self.summary = Summary()
            self.data = list(range(1001))
            random.shuffle(self.data)
            for sample in self.data:
                    self.summary.add(sample)

        def test_mean(self):
            self.assertEqual(500, self.summary.mean)

        def test_median(self):
            self.assertEqual(500, self.summary.median)

This test creates a Summary object; this is the Given aspect. It then adds a number of values
to that Summary object. This is the When aspect of the test. The two test_ methods
implement two Then aspects of this test.

It's common to see a project folder structure that looks like this:

    git-project-name/
        statstools/
            summary.py
        tests/
            test_summary.py

We have a top-level folder, git-project-name, that matches the project name in the
source code repository. We've assumed that Git is being used, but other tools are possible.

Within the top-level directory, we would have some overheads that are common to large
Python projects. This would include files such as README.rst with a description of the
project, requirements.txt, which can be used with pip to install extra packages, and
perhaps setup.py to install the package into the standard library.



Testing

[ 578 ]

The directory statstools contains a module file, summary.py. This has our module that
provides interesting and useful features. This module has docstring comments scattered
around the code.

The directory tests contains another module file, test_summary.py. This has the
unittest test cases in it. We've chosen the names tests and test_*.py so that they fit well
with automated test discovery.

We need to combine all of the tests into a single, comprehensive test suite.

The example we'll show uses ch11_r01 instead of some cooler name such as summary. A
real project often has clever, meaningful names. The book content is quite large, and the
names are designed to match the overall chapter and recipe outline.

How to do it…
For this example, we'll assume that the unittest test cases are in a file separate1.
from the code being tested. We'll have ch11_r01 and test_ch11_r01.

To use doctest tests, import the doctest module. We'll be combining doctest
examples with TestCase classes to create a comprehensive test suite:

         import unittest
        import doctest

We'll assume that the unittestTestCase classes are already in place and we're
adding more tests to the test suite.

Import the module which is being tested. This module will have strings with2.
doctests in it:

        import ch11_r01

To implement the load_tests protocol, include the following function in the3.
test module:

        def load_tests(loader, standard_tests, pattern):
            return standard_tests

The function must have this name to be found by the test loader.



Testing

[ 579 ]

To incorporate doctest tests, an additional loader is required. We'll use the4.
doctest.DocTestSuite class to create a suite. These tests will be added to the
suite of tests provided as the standard_tests parameter value:

        def load_tests(loader, standard_tests, pattern):
            dt = doctest.DocTestSuite(ch11_r01)
            standard_tests.addTests(dt)
            return standard_tests

The loader argument is the test case loader currently being used. The
standard_tests value will be all of the tests loaded by default. Generally, this is
the suite of all subclasses of TestCase. The pattern value was the value provided
to the loader.

We can now add TestCase classes and the overall unittest.main() function to create a
comprehensive test module that includes the unittest TestCase plus all of the doctest
examples.

This can be done by including the following code:

    if __name__ == "__main__":
        unittest.main()

This allows us to run the module and execute the tests.

How it works…
When we evaluate unittest.main() inside this module, then the test loader process is
limited to the current module. The loader will find all classes that extend TestCase. These
are the standard tests that are provided to the load_tests() function.

We will supplement the standard tests with tests created by the doctest module.
Generally, we'll be able to import the module under test and use the DocTestSuite to
build a test suite from the imported module.

The load_tests() function is used automatically by the unittest module. This function
can do a variety of things to the test suite that it's given. In this example, we've
supplemented the test suite with additional tests.



Testing

[ 580 ]

There's more…
In some cases, a module may be quite complex; this can lead to multiple test modules.
There might be several test modules with names such as
tests/test_module_feature.py or something similar to show that there are multiple
tests for separate features of a complex module.

In other cases, we might have a test module which has tests for several different but closely
related modules. A package may be decomposed into multiple modules. A single test
module, however, may cover all of the modules in the package being tested.

When combining many smaller modules, there may be multiple suites built in the
load_tests() function. The body might look like this:

    def load_tests(loader, standard_tests, pattern):
        for module in ch11_r01, ch11_r02, ch11_r03:
            dt = doctest.DocTestSuite(module)
            standard_tests.addTests(dt)
        return standard_tests

This will incorporate doctests from multiple modules.

See also
For examples of doctest, see the Using docstrings for testing recipe. For examples of
unittest, see the Creating separate test modules and packages recipe.

Testing things that involve dates or times
Many applications rely on datetime.datetime.now() to create a timestamp. When we
use this with a unit test, the results are essentially impossible to predict. We have a
dependency injection problem here, our application depends on a class that we would like
to replace only when we're testing.

One option is to avoid now() and utcnow(). Instead of using these directly, we can create a
factory function that emits timestamps. For test purposes, this function can be replaced with
one that produces known results. It seems awkward to avoid using the now() method in a
complex application.



Testing

[ 581 ]

Another option is to avoid direct use of the datetime class entirely. This requires designing
classes and modules that wrap the datetime class. A wrapper class that produces known
values for now() can then be used for testing. This, too, seems needlessly complex.

How can we work with datetime stamps?

Getting ready
We'll work with a small function that creates a CSV file. This file's name will include the
date and time. We'll create files with names that look like this:

    extract_20160704010203.json

This kind of file-naming convention might be used by a long-running server application.
The name helps match a file and related log events. It can help to trace the work being done
by the server.

We'll use a function like this to create these files:

    import datetime
    import json
    from pathlib import Path

    def save_data(some_payload):
        now_date = datetime.datetime.utcnow()
        now_text = now_date.strftime('extract_%Y%m%d%H%M%S')
        file_path = Path(now_text).with_suffix('.json')
        with file_path.open('w') as target_file:
            json.dump(some_payload, target_file, indent=2)

This function has a use of utcnow(). It is technically possible to redesign the function and
provide the timestamp as an argument. There are situations where this kind of redesign
might be helpful. There's also a handy alternative to a redesign.

We will create a mock version of the datetime module, and patch the test context to use
mock version instead of the actual version. This test will contain a mock class definition for
the datetime class. Within that class, we'll provide a mock utcnow() method that will
provide the expected response.



Testing

[ 582 ]

Since the function being tested creates a file, we need to think about the OS consequences of
this. What should happen when a file with the same name already exists? Should an
exception be raised? Should a suffix be added to the file name? Depending on our design
decision, we may need to have two additional test cases:

Given a directory empty of conflicts. In this case, a setUp() method to remove
any previous test output. We may also want to create a tearDown() method to
remove the file after a test.
Given a directory with a conflicting name. In this case, a setUp() method will
create a conflicting file. We may also want to create a tearDown() method to
remove the file after a test.

For this recipe, we'll assume that duplicate file names don't matter. The new file should
simply overwrite any previous file with no warning or notice. This is easy to implement,
and often fits the real-world scenario where there's no reason to create multiple files less
than 1 second apart in time.

How to do it…
For this example, we'll assume that the unittest test cases are the same module1.
as the code being tested. Import the unittest and unittest.mock modules:

        import unittest
        from unittest.mock import *

The unittest module is simply imported. To use the features of this module,
we'll have to qualify the names with unittest.. The various names from
unittest.mock were all imported so the names can be used without any
qualifier. We'll use a number of features of the mock module, and the long
qualifying name is awkward.

Include the code to be tested. This is shown previously.2.
Create the following skeleton for testing. We've provided one class definition,3.
plus a main script that can be used to execute the tests:

        class GIVEN_data_WHEN_save_data_THEN_file(unittest.TestCase):
            def setUp(self):
                '''GIVEN conditions for the test.'''

            def runTest(self):
                '''WHEN and THEN conditions for this test.''''



Testing

[ 583 ]

        if __name__ == "__main__":
            unittest.main()

We didn't define a load_tests() function because we don't have any docstring
tests to include.

The setUp() method will have several parts:4.

The sample data to be processed:

            self.data = {'primes': [2, 3, 5, 7, 11, 13, 17, 19]}

A mock object for the datetime module. This object provides precisely
the features used by the unit under test. The Mock module contains a
single Mock class definition for the datetime class. Within that class, it
provides a single mock method, utcnow(), which always provides the
same response:

            self.mock_datetime = Mock(
                datetime = Mock(
                    utcnow = Mock(
                        return_value = datetime.datetime(2017, 7, 4, 1, 2,
3)
                    )
                )
            )  

Here's the expected file name given the datetime object shown above:

            self.expected_name = 'extract_20170704010203.json'

Some additional configuration processing is required to establish the
Given condition. We'll remove any previous edition of the file to be
completely sure that the test assertions aren't using a file from a
previous test run:

            self.expected_path = Path(self.expected_name)
            if self.expected_path.exists():
                self.expected_path.unlink()



Testing

[ 584 ]

The runTest() method will have two parts:5.

The When processing. This will patch the current module, __main__,
so that a reference to datetime will be replaced with the
self.mock_datetime object. It will then execute the request in that
patched context:

            with patch('__main__.datetime', self.mock_datetime):
                save_data(self.data)

The Then processing. In this case, we'll open the expected file, load the
content, and confirm that the result matches the source data. This
finishes with the necessary assertion. If the file doesn't exist, this will
raise an IOError exception:

            with self.expected_path.open() as result_file:
                result_data = json.load(result_file)
            self.assertDictEqual(self.data, result_data)

How it works…
The unittest.mock module has two valuable components that we're using here—the
Mock object definition and the patch() function.

When we create an instance of the Mock class, we must provide the methods and attributes
of the resulting object. When we provide a named argument value, this will be saved as an
attribute of the resulting object. Simple values become attributes of the object. Values which
are based on a Mock object become method functions.

When we create an instance of Mock that provides the return_value (or side_effect)
named argument value, we're creating a callable object. Here's an example of a mock object
that behaves like a very dumb function:

>>> from unittest.mock import *
>>> dumb_function = Mock(return_value=12)
>>> dumb_function(9)
12
>>> dumb_function(18)
12



Testing

[ 585 ]

We created a mock object, dumb_function, that will behave like a callable—a
function—that only returns the value 12. For unit testing, this can be very handy, since the
results are simple and predictable.

What's more important is this feature of the Mock object:

>>> dumb_function.mock_calls
[call(9), call(18)]

The dumb_function() tracked each call. We can then make assertions about these calls.
For example, the assert_called_with() method checks the last call in the history:

>>> dumb_function.assert_called_with(18)

If the last call really was dumb_function(18), then this succeeds silently. If the last call
doesn't match the assertion, then this raises an AssertionError exception that the
unittest module will catch and register as a test failure.

We can see more detail like this:

>>> dumb_function.assert_has_calls( [call(9), call(18)] )

This assertion checks the entire call history. It uses the call() function from the Mock
module to describe the arguments provided in a function call.

The patch() function can reach into a module's context and change any reference in that
context. In this example, we used patch() to tweak a definition in the __main__
module—the one currently running. In many cases, we'll import another module, and will
need to patch that imported module. It's crucial to reach out to the context that's in effect for
the module under test and patch that reference.

There's more…
In this example, we created a mock for the datetime module that had a very narrow
feature set.

The module had a single element which is an instance of the Mock class, named datetime.
For the purposes of unit testing, a mocked class generally behaves like a function which
returns an object. In this case, the class returned a Mock object.



Testing

[ 586 ]

The Mock object that stands in for the datetime class has a single attribute, utcnow(). We
used the special return_value keyword when defining this attribute so that it would
return a fixed datetime instance. We can extend this pattern and mock more than one
attribute to behave like a function. Here's an example that mocks both utcnow() and
now():

    self.mock_datetime = Mock(
       datetime = Mock(
            utcnow = Mock(
                return_value = datetime.datetime(2017, 7, 4, 1, 2, 3)
            ),
            now = Mock(
                return_value = datetime.datetime(2017, 7, 4, 4, 2, 3)
            )
        )
    )

The two mocked methods, utcnow() and now(), each create a different datetime object.
This allows us to distinguish between the values. We can more easily confirm the correct
operation of a unit test.

Note that all of this Mock object construction executes during the setUp() method. This is
long before the patching done by the patch() function. During setUp(), the datetime
class is available. In the context of the with statement, the datetime class is unavailable,
and is replaced by the Mock object.

We can add the following assertion to confirm that the utcnow() function was used
properly by the unit under test:

    self.mock_datetime.datetime.utcnow.assert_called_once_with()

This will examine the self.mock_datetime mock object. It looks inside this object at the
datetime attribute, which we've defined to have a utcnow attribute. We expect that this is
called exactly once with no argument values.

If the save_data() function doesn't make a proper call to utcnow(), this assertion will
detect that failure. It's essential to test both sides of the interface. This leads to two parts to a
test:

The result of the mocked datetime was used properly by the unit being tested
The unit being tested made appropriate requests to the mocked datetime object



Testing

[ 587 ]

In some cases, we might need to confirm that an obsolete or deprecated method is never
called. We might have something like this to confirm that another method is not used:

    self.assertFalse( self.mock_datetime.datetime.called )

This kind of testing is used when refactoring software. In this example, the previous version
may have used the now() method. After the change, the function is required to use the
utcnow() method. We've included a test to be sure that the now() method is no longer
being used.

See also
The Creating separate test modules and packages recipe has more information about
basic use of the unittest module

Testing things that involve randomness
Many applications rely on the random module to create random values or put values into
random order. In many statistical tests, repeated random shuffling or random subset
calculations are done. When we want to test one of the algorithms, the results are essentially
impossible to predict.

We have two choices for trying to make the random module predictable enough to write
meaningful unit tests:

Set a known seed value, this is common, and we've made heavy use of this in
many other recipes.
Use unittest.mock to replace the random module with something much less
random.

How can we unit test algorithms that involve randomness?

Getting ready
Given a sample dataset, we can compute a statistical measure such as a mean or median. A
common next step is to determine the likely values of these statistical measures for some
overall population. This can done by a technique called bootstrapping.



Testing

[ 588 ]

The idea is to resample the initial set of data repeatedly. Each of the resamples provides a
different estimate of the statistical measures. This overall set of resample metrics shows the
likely variance of the measure for the overall population.

In order to be sure that a resampling algorithm works, it helps to eliminate randomness
from the processing. We can resample a carefully planned set of data with a non-
randomized version of the random.choice() function. If this works properly, then we
have reason to believe that a truly random version will also work.

Here's our candidate resampling function. We need to validate this to be sure that it
properly does sampling with replacement:

    def resample(population, N):
        for i in range(N):
            sample = random.choice(population)
            yield sample

We would normally apply this resample() function to populate a Counter object that
tracks each distinct value for a particular measure such as the mean. The overall resampling
procedure looks like this:

    mean_distribution = Counter()
    for n in range(1000):
        subset = list(resample(population, N))
        measure = round(statistics.mean(subset), 1)
        mean_distribution[measure] += 1

This evaluates the resample() function 1,000 times. This will lead to a number of subsets,
each of which may have a distinct value for the mean. These values are used to populate the
mean_distribution object.

The histogram for mean_distribution will provide a meaningful estimate for population
variance. This estimate of the variance will help show the population's most likely actual
mean value.

How to do it…
Define an outline of the overall test class:1.

        class GIVEN_resample_WHEN_evaluated_THEN_fair(unittest.TestCase):
            def setUp(self):

            def runTest(self):



Testing

[ 589 ]

        if __name__ == "__main__":
            unittest.main()

We've included a main program so that we can simply run the module to test it.
This is handy when working in tools such as IDLE; we can use the F5 key to test
the module after making a change.

Define a mock version of the random.choice() function. We'll provide a mock2.
data set, self.data, and a mock response to the choice() function:

        self.expected_resample_data. self.data = [2, 3, 5, 7, 11, 13, 17,
19]
        self.expected_resample_data = [23, 29, 31, 37, 41, 43, 47, 53]
        self.mock_random = Mock(
            choice = Mock(
                side_effect = self.expected_resample_data
            )
        )

We've defined the choice() function using the side_effect attribute. This will
return values one at a time from the given sequence. We've provided eight mock
values that are distinct from the source sequence so that we readily identify the
outputs from the choice() function.

Define the When and Then aspects of the test. In this case, we'll patch the3.
__main__ module to replace the reference to the random module. The test can
then establish that the result has the expected set of values and that the choice()
function was called multiple times:

        with patch('__main__.random', self.mock_random):
            resample_data = list(resample(self.data, 8))

        self.assertListEqual(self.expected_resample_data, resample_data)
        self.mock_random.choice.assert_has_calls( 8*[call(self.data)] )

How it works…
When we create an instance of the Mock class, we must provide the methods and attributes
of the resulting object. When the Mock object includes a named argument value, this will be
saved as an attribute of the resulting object.



Testing

[ 590 ]

When we create an instance of Mock that provides the side_effect named argument
value, we're creating a callable object. The callable object will return a value from the
side_effect list each time the Mock object is called.

Here's an example of a mock object that behaves like a very dumb function:

>>> from unittest.mock import *
>>> dumb_function = Mock(side_effect=[11,13])
>>> dumb_function(23)
11
>>> dumb_function(29)
13
>>> dumb_function(31)
Traceback (most recent call last):
  ... (traceback details omitted)
StopIteration

First, we created a Mock object and assigned it to the name dumb_function. The
side_effect attribute of this Mock object provides a short list of two distinct values that
will be returned.

The example then evaluates dumb_function() two times with two different argument
values. Each time, the next value is returned from the side_effect list. The third attempt
raises a StopIteration exception that becomes a test failure.

This behavior allows us to write a test that detects certain kinds of improper uses of a
function or a method. If the function is called too many times, an exception will be raised.
Other improper uses must be detected with the various kinds of assertions that can be used
for Mock objects.

There's more…
We can easily replace other features of the random module with mock objects that provide
appropriate behavior without actually being random. We could, for example, replace the
shuffle() function with a function that provides a known order. We might follow the
above test design pattern like this:

    self.mock_random = Mock(
        choice = Mock(
            side_effect = self.expected_resample_data
        ),
        shuffle = Mock(
            return_value = self.expected_resample_data
        )



Testing

[ 591 ]

    )

This mock shuffle() function returns a distinct set of values that can be used to confirm
that some process is making proper use of the random module.

See also
The Using set methods and operators, Creating dictionaries – inserting and
updating recipes in Chapter 4, Built-in Data Structures – list, set, dict, and the Using
cmd for creating command-line applications recipe in Chapter 5, User Inputs and
Outputs, show how to seed the random number generator to create a predictable
sequence of values.
In Chapter 6, Basics of Classes and Objects, there are several other recipes that
show the alternative approach, for example, Using a class to encapsulate data +
processing, Designing classes with lots of processing, Optimizing small objects with
__slots__, and Using properties for lazy attributes.
Also, in Chapter 7, More Advanced Class Design, see Choosing between inheritance
and extension – the is-a question, Separating concerns via multiple inheritance,
Leveraging Python's duck typing, Creating a class which has orderable objects, and
Defining an ordered collection recipes.

Mocking external resources
The Testing things that involve dates or times and Testing things that involve randomness recipes
show techniques for mocking relatively simple objects. In the case of the Testing things that
involve dates or times recipe, the object being mocked is essentially stateless, and a single
return value works nicely. In the Testing things that involve randomness recipe, the object has
a state change, but the state change does not depend on any input arguments.

In these simpler cases, a test provides a series of requests to an object. Mock objects can be
built which are based on a known and carefully planned sequence of state changes. The test
case follows the object's internal state changes precisely. This is sometimes called white box
testing because the implementation details of the object under test are required to define the
test sequence and the mock objects.



Testing

[ 592 ]

In some cases, however, a test scenario may not involve a well-defined sequence of state
changes. The unit under test may make requests in a difficult-to-predict order. This is
sometimes a consequence of black box testing where the implementation details are not
known.

How can we create more sophisticated mock objects that have internal state and make their
own internal state changes?

Getting ready
We'll look at mocking a stateful RESTful web services request. In this case, we'll be using a
database API for the Elastic database. See h t t p s ://w w w . e l a s t i c . c o / for more information
on this database. The database has the advantage of working with simple RESTful web
services. These can easily be mocked to simple, fast unit tests.

For this recipe, we'll test a function that uses the RESTful API to create records.
Representational State Transfer (REST) is a technique for using  Hypertext Transfer
Protocol (HTTP) to transfer a representation of an object's state between processes. To
create a database record, for example, a client will transfer a representation of an object's
state to the database server, using HTTP POST requests. In many cases, JSON notation is
used to represent object state.

Testing this function will involve mocking one part of the urllib.request module.
Replacing the urlopen() function will allow a test case to simulate database activity. This
will allow us to test a function that depends on web services without actually making
potentially expensive or slow external requests.

There are two overall approaches to working with the elastic search API in our application
software:

We can install the Elastic database on our laptop or some server to which we
have access. The installation is a two-part process that starts by installing a
proper Java Developer Kit (JDK) and then installs the ElasticSearch software. We
won't go into details here, because we have an alternative which seems simpler.

The URLs to create and access objects on a local computer will look like this: 

        http://localhost:9200/eventlog/event/

The requests will use a number of data items in the body of the request. These
requests don't require any of the HTTP headers for security or authentication
purposes.

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/


Testing

[ 593 ]

We can use a hosting service such as h t t p ://o r c h e s t r a t e . i o . This requires
signing up with the service to get an API key instead of installing software. An
API key grants access to a defined application. Within the application, a number
of collections can be created. Since we won't have to install additional software,
this seems like a handy way to proceed.

The URLs to work with objects on a remote server will look like this:

        https://api.orchestrate.io/v0/eventlog/

The requests will also use a number of HTTP headers to provide information to the host.
Next, We'll look at details of this service.

The data payload for the document to be created will look like this:

    {
        "timestamp": "2016-06-15T17:57:54.715",
        "levelname": "INFO",
        "module": "ch09_r10",
        "message": "Sample Message One"
    }

This JSON document represents a log entry. This came from the sample.log file used in
earlier examples. This document can be understood as a specific instance of the event type
that will be saved in the eventlog index of the database. The object has four attributes with
string values.

The Reading complex formats using regular expressions recipe in Chapter 9, Input/Output,
Physical Format, and Logical Layout, shows how to parse a complex log file. In the Using
multiple contexts for reading and writing files recipe, the complex log records were written to a
CSV file. In this example, we'll show how the log records could be placed into cloud-based
storage using a database such as Elastic.

Creating an entry document in the entrylog collection
We're going to create entry documents in an entrylog collection in the database. An HTTP
POST request is used to create new items. The response of 201 Created will indicate that
the database created the new event.

To use the orchestrate.io database service, each request has a base URL. We can define
this with a string like this:

    service = "https://api.orchestrate.io"

http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io
http://orchestrate.io


Testing

[ 594 ]

The https scheme is used so that the Secure Socket Layer (SSL) is used to assure that the
data is private between client and server. The host name is api.orchestrate.io. Each
request will have a URL based on this base service definition.

The HTTP headers for each request will look like this:

    headers = {
        'Accept': 'application/json',
        'Content-Type': 'application/json',
        'Authorization': basic_header(api_key, '')
    }

The Accept header shows what kind of response is expected. The Content-Type header
shows what kind of document representation is being used for the content. These two
headers direct the database to use JSON representation for object state.

The Authorization header is how the API key is sent. The value for this header is a rather
complex string. It's easiest to build the encoded API key string code like the following:

    import base64
    def basic_header(username, password):
        combined_bytes = (username + ':' + password).encode('utf-8')
        encoded_bytes = base64.b64encode(combined_bytes)
        return 'Basic ' + encoded_bytes.decode('ascii')

This snippet of code will combine a username and password into a single string of
characters, and then encode those characters into a stream of bytes using the UTF-8
encoding scheme. The base64 module creates a second stream of bytes. In this output
stream, four bytes will contain the bits that comprise three input bytes. The bytes are chosen
from a simplified alphabet. This value is then converted back into Unicode characters along
with the keyword 'Basic '. This value can be used with the Authorization header.

It's easiest to work with a RESTful API by creating a Request object. The class is defined in
the urllib.request module. The Request object combines the data, URL, and headers,
and names a specific HTTP method. Here's the code to create a Request instance:

    data_document = {
        "timestamp": "2016-06-15T17:57:54.715",
        "levelname": "INFO",
        "module": "ch09_r10",
        "message": "Sample Message One"
    }

    headers={
        'Accept': 'application/json',
        'Content-Type': 'application/json',



Testing

[ 595 ]

        'Authorization': basic_header(api_key, '')
    }

    request = urllib.request.Request(
        url=service + '/v0/eventlog',
        headers=headers,
        method='POST',
        data=json.dumps(data_document).encode('utf-8')
    )

The request object includes four elements:

The value of the url parameter is the base service URL plus the collection name,
/v0/eventlog. The v0 in the path is the version information which must be
provided with each request.
The headers parameter includes the Authorization header which has the API
Key which authorizes access to the application.
The method of POST will create a new object in the database.
The data parameter is the document to save. We've converted a Python object to
a string in JSON notation. Then encoded the Unicode characters into bytes using
UTF-8 encoding.

Seeing a typical response
The processing involves sending the request and receiving a response. The urlopen()
function accepts the Request object as an argument; this builds the request that's
transmitted to the database server. The response from the database server will include three
elements:

A status. This includes both a numeric code and a reason string. When creating a
document, the expected response code is 201 and the string is CREATED. For
many other requests, the code is 200 and the string is OK.
The response will also have headers. For a creation request, these will include the
following:

        [
         ('Content-Type', 'application/json'),
         ('Location',
'/v0/eventlog/12950a87ef024e43/refs/8e50b6bfc50b2dfa'),
         ('ETag', '"8e50b6bfc50b2dfa"'),
         ...
         ]  



Testing

[ 596 ]

The Content-Type header tells us that the content is encoded in JSON. The
Location header provides a URL that can be used to retrieve the object which is
created. It also provides an ETag header, which is a hashed summary of the
current state of the object; this helps to support caching local copies of an object.
Other headers may be present; we've just shown ... in the example.

The response may have a body. If present, this will be a JSON-encoded document
(or documents) retrieved from the database. The body must be read with the
read() method of the response. A body can be quite large; a Content-Length
header provides the exact number of bytes.

Client class for database access
We'll define a simple class for database access. A class can provide context and status
information for multiple related operations. When working with the Elastic database, an
access class can create the request headers dictionary just once and reuse it in multiple
requests.

Here's the essence of a database client class. We'll show this in several sections. First, the
overall class definition:

    class ElasticClient:
        service = "https://api.orchestrate.io"

This defines a class-level variable, service, with the scheme and hostname. The
initialization method, __init__(), can build the headers that are used by the various
database operations:

    def __init__(self, api_key, password=''):
        self.headers = {
            'Accept': 'application/json',
            'Content-Type': 'application/json',
            'Authorization': ElasticClient.basic_header(api_key, password),
        }

This method takes the API key and creates a set of headers that relies on HTTP basic
authorization. The password is not used by the orchestrate service. We've included it,
however, because the username and password are used for the example unit test case.



Testing

[ 597 ]

Here's the method:

    @staticmethod
    def basic_header(username, password=''):
        """
        >>> ElasticClient.basic_header('Aladdin', 'OpenSesame')
        'Basic QWxhZGRpbjpPcGVuU2VzYW1l'
        """
        combined_bytes = (username + ':' + password).encode('utf-8')
        encoded_bytes = base64.b64encode(combined_bytes)
        return 'Basic ' + encoded_bytes.decode('ascii')

This function can combine a username and a password to create the value for the HTTP
Authorization header. The orchestrate.io API uses an assigned API key as the
username; the password is a zero-length string, ''. The API key is assigned when someone
signs up for their service. The free level of service allows a reasonable number of
transactions and a comfortably small database.

We've included a unit test case in the form of a docstring. This provides evidence that the
results are correct. The test case comes from the Wikipedia page on HTTP basic
authentication.

The final part is a method to load one data item into the eventlog collection of the
database:

    def load_eventlog(self, data_document):
        request = urllib.request.Request(
            url=self.service + '/v0/eventlog',
            headers=self.headers,
            method='POST',
            data=json.dumps(data_document).encode('utf-8')
        )

        with urllib.request.urlopen(request) as response:
            assert response.status == 201, "Insertion Error"
            response_headers = dict(response.getheaders())
            return response_headers['Location']

This function builds a Request object with the four required pieces of information—the full
URL, the HTTP headers, the method string, and the encoded data. In this case, the data is
encoded as a JSON string, and the JSON string encoded into bytes using the UTF-8
encoding scheme.



Testing

[ 598 ]

Evaluating the urlopen() function sends the request and retrieves a response object. This
object is used as a context manager. The with statement assures that the resources are
released properly even if there is an exception raised during response processing.

A POST method should respond with a status of 201. Any other status is a problem. In this
code, the status is checked with an assert statement. It might be better to provide a
message such as Expected 201 status, got {}.format(response.status).

The headers are then examined to get the Location header. This provides a URL fragment
for locating the object which was created.

How to do it…
Create the database access module. This module will have the ElasticClient1.
class definition. It will also have any additional definitions that this class needs.
This recipe will use unittest and doctest to create a unified suite of tests. It2.
will use the Mock class from unittest.mock, as well as json. Since this module
is separate from the unit under test, it needs to import ch11_r08_load, which
has the class definitions that will be tested:

        import unittest
        from unittest.mock import *
        import doctest
        import json
        import ch11_r08_load

Here's the overall framework for a test case. We'll fill in the setUp() and3.
runTest() methods of this test below. The name shows that we're given an
instance of ElasticClient, when we invoke load_eventlog(), then a proper
RESTful API request was made:

        class
GIVEN_ElasticClient_WHEN_load_eventlog_THEN_request(unittest.TestCase):

            def setUp(self):

            def runTest(self):
  



Testing

[ 599 ]

The first part of the setUp() method is a mock context manager that provides4.
responses similar to the urlopen() function:

         def setUp(self):
            # The context manager object itself.
            self.mock_context = Mock(
                __exit__ = Mock(return_value=None),
                __enter__ = Mock(
                    side_effect = self.create_response
                ),
            )

            # The urlopen() function that returns a context.
            self.mock_urlopen = Mock(
                return_value = self.mock_context,
            )

When urlopen() is called, the return value is a response object which behaves
like a context manager. The best way to mock this is to return a mock context
manager. The mock context manager's __enter__() method does the real work
to create a response object. In this case, the side_effect attribute identifies a
helper function that will be called to prepare the result from calling the
__enter__() method. The self.create_response has not been defined yet.
We'll use a function, defined as follows.

The second part of the setUp() method is some mock data to be loaded:5.

        # The test document.
        self.document = {
            "timestamp": "2016-06-15T17:57:54.715",
            "levelname": "INFO",
            "module": "ch09_r10",
            "message": "Sample Message One"
        }

In a more complex test, we might want to simulate a large, iterable collection of
documents.

Here's the create_response() helper method that builds response-like objects.6.
The response objects can be complex, so we've defined a function to create them:

        def create_response(self):
            self.database_id =
hex(hash(self.mock_urlopen.call_args[0][0].data))[2:]
            self.location = '/v0/eventlog/{id}'.format(id=self.database_id)
            response_headers = [



Testing

[ 600 ]

                ('Location', self.location),
                ('ETag', self.database_id),
                ('Content-Type', 'application/json'),
            ]
            return Mock(
                status = 201,
                getheaders = Mock(return_value=response_headers)
            )

This method uses self.mock_urlopen.call_args to examine the last call to
this Mock object. This call's arguments are a tuple of positional argument values
and keyword arguments. The first [0] index picks the positional argument value
from the tuple. The second [0] index picks the first positional argument value.
This will be the object to be loaded to the database. The value of the hex()
function is a string that includes a 0x prefix that we discard.

In a more complex test, it may be necessary for this method to keep a cache of
objects loaded into the database to make more accurate database-like responses.

The runTest() method makes a patch to the module under test. It locates the7.
reference from ch11_r08_load to urllib.request and to the urlopen()
function. This is replaced with the mock_urlopen replacement:

        def runTest(self):
            with patch('ch11_r08_load.urllib.request.urlopen',
self.mock_urlopen):
                client = ch11_r08_load.ElasticClient('Aladdin',
'OpenSesame')
                response = client.load_eventlog(self.document)

            self.assertEqual(self.location, response)

            call_request = self.mock_urlopen.call_args[0][0]
            self.assertEqual(
                'https://api.orchestrate.io/v0/eventlog',
call_request.full_url)
            self.assertDictEqual(
                {'Accept': 'application/json',
                 'Authorization': 'Basic QWxhZGRpbjpPcGVuU2VzYW1l',
                 'Content-type': 'application/json'
                },
                 call_request.headers)
            self.assertEqual('POST', call_request.method)
            self.assertEqual(
                json.dumps(self.document).encode('utf-8'),
call_request.data)



Testing

[ 601 ]

            self.mock_context.__enter__.assert_called_once_with()
            self.mock_context.__exit__.assert_called_once_with(None, None,
None)

This test follows the ElasticClient requirements of first creating a client object.
Instead of using an actual API key, this uses a username and password that will
create a known value for the Authorization header. The result of the
load_eventlog() is a response-like object that can be examined to see whether it
has the proper values.

All of this interaction will be done through the mock objects. We can use the
various assertions to confirm that a proper request object was created. The test
examines four attributes of the request object and also checks to be sure that the
context was used properly.

We'll also define a load_tests() function to combine this unittest suite with8.
any test examples found docstrings of ch11_r08_load:

        def load_tests(loader, standard_tests, pattern):
            dt = doctest.DocTestSuite(ch11_r08_load)
            standard_tests.addTests(dt)
            return standard_tests

Finally, we'll provide the overall main program to run the complete suite. This9.
makes it easy to run the test module as a standalone script:

        if __name__ == "__main__":
            unittest.main()

How it works…
This recipe combines a number of unittest and doctest features to create a sophisticated
test case. The features include:

Creating a context manager
Using the side-effect feature to create a dynamic, stateful test
Mocking a complex object
Using the load tests protocol to combine doctest and unittest cases

We'll look at each of these features separately.



Testing

[ 602 ]

Creating a context manager
The context manager protocol wraps an object in an additional layer of indirection. See the
Reading and writing files with context managers and Using multiple contexts for reading and
writing files recipes for more information on this. The core features that must be mocked are
the __enter__() and __exit__() methods.

The pattern for mock context managers looks like this:

    self.mock_context = Mock(
        __exit__ = Mock(return_value=None),
        __enter__ = Mock(
            side_effect = self.create_response
            # or
            # return_value = some_value
        ),
    )

The context manager object has two attributes. The __exit__() will be called once. A
return value of True will silence any exception. The return value of None or False will
allow exceptions to propagate.

The __enter__() method returns the object which is assigned in the with statement. In
this example, we used the side_effect attribute and provided a function so that a
dynamic result can be computed.

A common alternative for the __enter__() method is to use a fixed return_value
attribute and provide the same manager object each time. It's also possible to provide a
sequence with side_effect; in this case, each time the method is called, another object
from the sequence is returned.

Creating a dynamic, stateful test
In many cases, the test can use a static, fixed set of objects. The mock responses can be
defined in the setUp() method. In some cases, however, an object's state may need to
change during the operations of a complex test. In this case, the side_effect attribute of a
Mock object can be used to track a state change.



Testing

[ 603 ]

In this example, the side_effect attribute used the create_response() method to build
a dynamic response. A function referenced by side_effect can do anything; this can be
used to update dynamic state information that is used to compute complex responses.

There's a fine line here. A complex test case can introduce its own bugs. It's generally a good
idea to keep the test cases as simple as possible to avoid having to write meta tests to test
the test cases.

For non-trivial tests, it's important to be sure that the test can actually fail. Some tests
involve inadvertent tautologies. It's possible to create a contrived test that is as meaningful
as self.assertEqual(4, 2+2). To be sure the test actually uses the unit under test, it
should fail when the code is missing or has a bug injected into it.

Mocking a complex object
The response object from urlopen() has a large number of attributes and methods. For our
unit test, we only needed to set a few of these features.

We used the following:

    return Mock(
        status = 201,
       getheaders = Mock(return_value=response_headers)
    )

This created a Mock object with two attributes:

The status attribute had a simple numeric value.
The getheaders attribute used a Mock object with the return_value attribute
to create a method function. This method function returned the dynamic
response_headers value.

The value of response_headers is a sequence of two-tuples that has (key, value) pairs. This
representation of the response headers can be transformed into a dictionary very easily.



Testing

[ 604 ]

The object is built like this:

    response_headers = [
        ('Location', self.location),
        ('ETag', self.database_id),
        ('Content-Type', 'application/json'),
    ]

This sets three headers: Location, ETag, and Content-Type. Other headers may be
needed, depending on the test case. It's important not to clutter the test case with headers
that are not used. This kind of clutter can lead to bugs in the test itself.

The database id and location are based on the following calculation:

    hex(hash(self.mock_urlopen.call_args[0][0].data))[2:]

This uses self.mock_urlopen.call_args to examine the arguments provided to the test
case. The value of the call_args attribute is a two-tuple with the positional and keyword
argument values. The positional arguments are a tuple too. This means that call_args[0]
is the positional argument and call_args[0][0] is the first positional argument. This
will be the document that's loaded to the database.

Many Python objects have hash values. In this case, the object is expected to be a string
created by the json.dumps() function. The hash value for this string is a large number.
The hex value of that number will be a string with a 0x prefix. We'll use the [2:] slice to
ignore the prefix. For information on this, see the Rewriting an immutable string recipe in
Chapter 1, Numbers, Strings, and Tuples.

Using the load_tests protocol
A complex module will include class and function definitions. The module as a whole
needs a descriptive docstring. Each class and function needs a docstring. Each method
within a class also needs a docstring. These will provide essential information about the
module, class, function, and method.

In addition, each docstring can include an example. The examples can be tested by the
doctest module. See the Using docstrings for testing recipe for examples. We can combine
the docstring example tests without more complex unit tests. See the Combining unittest and
doctest tests recipe for more information on how to do this.



Testing

[ 605 ]

There's more…
The unittest module can be used to construct integration tests too. The idea of an
integration test is to avoid mocks and actually use the real external service in a test mode.
This can be slow or expensive; it's common to avoid integration testing until after all of the
unit tests provide confidence that the software is likely to work.

We might, for example, create two applications with orchestrate.io—the real
application and a test application. This will provide us with two API keys. The test key
would be used so that the database can be reset to its initial state without creating problems
for actual users of the real data.

We can control this using the unittest, setUpModule(), and tearDownModule()
functions. The setUpModule() function is executed prior to all of the tests in a given
module file. This is a handy way to set the database to a known state.

We can also remove the database with the tearDownModule() function. This can be handy
for removing unneeded resources created by the test. It's sometimes more helpful to leave
resources around for debugging purposes. For this reason, the tearDownModule()
function may not be as useful as the setUpModule() function.

See also
The Testing things that involve dates or times and Testing things that involve
randomness recipes show techniques.
The Reading complex formats using regular expressions recipe in Chapter 9,
Input/Output, Physical Format, and Logical Layout, shows how to parse a complex
log file. In the Using multiple contexts for reading and writing files recipe, the
complex log records were written to a CSV file.
For information on chopping up strings to replace parts, see the Rewriting an
immutable string recipe.
Elements of this can be tested by the doctest module. See the Using docstrings for
testing recipe for examples. It's also important to combine these tests with any
doctests. See the Combining unittest and doctest tests recipe for more information on
how to do this.



12
Web Services

    In this chapter, we'll look at the following recipes:

Implementing web services with WSGI
Using the Flask framework for RESTful APIs
Parsing the query string in a request
Making REST requests with urllib
Parsing the URL path
Parsing a JSON request
Implementing authentication for web services

Introduction
Providing web services involves solving several interrelated problems. There are a number
of applicable protocols that must be followed, each with its own unique design
considerations. The core of web services are the various standards that define the HTTP.

HTTP involves two parties; a client and a server:

The client makes requests of the server
The server sends responses back to the client

The relationship is highly asymmetric. We expect a server to process concurrent requests
from multiple clients. Because the client requests arrive asynchronously, the server cannot
easily distinguish those requests that originate from a single human user. The idea of a
human user's session is implemented by designing a server that provides a session token
(or cookie) to track the human's sense of current state.



Web Services

[ 607 ]

The HTTP protocol is flexible and extensible. One popular use case for HTTP is to serve
content in the form of web pages. Web pages are generally encoded as HTML documents,
often with links to graphics, style sheets, and JavaScript code. We've looked at parsing
HTML in the Reading HTML documents recipe from Chapter 9, Input/Output, Physical
Format, and Logical Layout.

Serving web page content further decomposes into two kinds of content:

Static content is essentially a download of files. A program such as GUnicorn,
NGINGX, or Apache HTTPD can reliably serve static files. Each URL defines a
path to a file, and the server downloads the file to the browser.
Dynamic content is built by an application as needed. In this case, we'll use a
Python application to build unique HTML (or possibly the graphics) in response
to a request.

The other very popular use case for HTTP is to provide web services. In this case, the
standard HTTP requests and responses will exchange data in formats other than HTML.
One of the most popular formats for encoding information is JSON. We've looked at
processing JSON documents in the Reading JSON documents recipe from Chapter 9,
Input/Output, Physical Format, and Logical Layout.

Web services can be seen as a variation on using HTTP to serve dynamic content. A client
can prepare documents in JSON. The server includes a Python application that creates
response documents, also in JSON notation.

In some cases, the services have a very narrow focus. It's possible to bundle a service and
database persistence into a single package. This might involve creating a server that has an
NGINX-based web interface plus a database using MongoDB or Elastic. The entire
package—web service plus persistence—can be called a microservice.

The documents exchanged by a web service encode a representation of an object's state. A
client application in JavaScript may have an object state that is sent to a server. A server in
Python may transfer a representation of object state to a client. This is called
Representational State Transfer (REST). A service using REST processing is often called
RESTful.

Handling HTTP for HTML or JSON can be designed as a number of transformation
functions. The idea is as follows:

    response = F(request, persistent state)



Web Services

[ 608 ]

The response is built from the request by some function, F(r, s), which relies on the
request plus some persistent state in a database on the server.

These functions form nested shells or wrappers around a core service. For example, the core
processing may be wrapped with additional steps to be sure that the user making the
request is authorized to change the database state. We might summarize this as follows:

    response = auth(F(request, persistent state))

The authorization processing may be wrapped in processing to authenticate user's
credentials. All of this may be further wrapped in a shell that assures that the client
application software expects responses in JSON notation. Using multiple layers like this can
provide consistent operation for many different core services. The overall process might
start looking like this:

    response = JSON( user( auth( F(request, persistent state) ) ) )

This kind of design fits naturally with a stack of transformational functions. This idea gives
us some guidance in ways to design complex web services that include many protocols and
many rules for creating a valid response.

A good RESTful implementation should also provide a great deal of information about the
service. One way to provide this information is through the OpenAPI specification. For 
information on the OpenAPI (Swagger) specification, see h t t p ://s w a g g e r . i o /s p e c i f i c a t i

o n /.

The core of the OpenAPI specification is a JSON schema specification. For more information
on this, see h t t p ://j s o n - s c h e m a . o r g .

The two foundational ideas are as follows:

We write in JSON a specification for the requests that are sent to the service and1.
the responses provided by the service.
We provide the specification at a fixed URL, often /swagger.json. This can be2.
queried by a client to determine the details of how the service works.

Creating Swagger documents can be challenging. The swagger-spec-validator project
can help. See h t t p s ://p y p i . p y t h o n . o r g /p y p i /s w a g g e r - s p e c - v a l i d a t o r . This is a Python
package that we can use to confirm that a Swagger specification meets the OpenAPI
requirements.

In this chapter, we'll look at a number of recipes for creating RESTful web services and also
serving static or dynamic content.

http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://swagger.io/specification/
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
http://json-schema.org
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator


Web Services

[ 609 ]

Implementing web services with WSGI
Many web applications will have several layers. The layers can often be summarized into
three common patterns:

A presentation layer might run on a mobile device or a website. This is the
visible, external view.
An application layer is often implemented as web services. This layer does the
processing for the web or mobile presentation.
A persistence layer handles retention of data and transaction state over a single
session as well as across multiple sessions from a single user. This will support
the application layer.

A Python-based website or web services application will adhere to the Web Services
Gateway Interface (WSGI) standard. This provides a uniform way for a frontend web
server such as Apache HTTPD, NGINX, or GUnicorn to use Python to provide the dynamic
content.

Python has a wide variety of RESTful API frameworks. In the Using the Flask framework for
RESTful APIs recipe, we'll look at Flask. In some cases, however, the core WSGI features are
all we need.

How can we create applications that support layered composition following the WSGI
standard?

Getting ready
The WSGI standard defines an overall framework for composable web applications. The
idea behind this is to define each application so that it stands alone and can be trivially
connected to other applications. The overall website is built from a collection of shells or
wrappers.

This is a bare-bones approach to web server development. WSGI isn't a sophisticated
framework; it's a minimal standard. We'll look at some ways to simplify the design using a
better framework in the Using the Flask framework for RESTful APIs recipe.



Web Services

[ 610 ]

The essence of web services are the HTTP request and response. A server receives requests
and creates responses. The HTTP request includes several pieces of data:

The URL for the resource. A URL can be as complex as
http://www.example.com:8080/?query#fragment. There are several parts
to a URL:

The scheme http: This ends with :.
The host www.example.com: This is prefixed with //. It may
include an optional port number. In this case, it's 8080.
The path to the resource: The / character in this example. The path,
in some form, is required. It is often more complex than a simple /.
A query string prefaced with ?: In this example, the query string is
just the key query with no value.
A fragment identifier prefaced with #: In this example, the
fragment is fragment. For HTML documents, this can be the id
value of a particular tag; the browser will scroll to the named tag.

Almost all of these URL elements are optional. We can make use of the query
string (or the fragment) to provide additional format information about the
request.

The WSGI standard requires that the URL is parsed. The various pieces put into the
environment. Each piece will be assigned a separate key:

Methods: Common HTTP methods include HEAD, OPTIONS, GET, POST, PUT, and
DELETE.
Request headers: The headers are additional information that support the
request. Headers are used, for example, to define the kind of content that can be
accepted.
Attached content: A request might include input from an HTML form, or a file to
be uploaded.

The HTTP response is similar to a request in many ways. It contains response headers and
the response body. The headers will include details such as the encoding of the content so
that the client can render it correctly. If a server is providing HTML content and is
maintaining a server session, then the cookies are sent in headers as part of each request
and response.



Web Services

[ 611 ]

WSGI is designed to help create application components that can be used to build larger
and more sophisticated applications. A WSGI application generally acts like a wrapper,
insulating other applications from bad requests, unauthorized users, or unauthenticated
users. To do this, each WSGI application must follow a common, standard definition. Each
application must be either a function or a callable object, that has the following signature:

    def application(environ, start_response):
        start_response('200 OK', [('Content-Type', 'text/plain')])
        return iterable_strings

The environ parameter is a dictionary that includes information about the request. This
includes all of the HTTP details, plus the OS context, plus the WSGI server context. The
start_response parameter is a function that must be called prior to returning the
response body. This provides the status and the headers for the response.

The return value from the WSGI application function is the HTTP response body. This is
generally a sequence of strings or an iterable over string values. The idea here is that a
WSGI application might be part of a larger container that will stream the response in pieces
from the server to the client as the response is being built.

Since all WSGI applications are callable functions, they can be composed easily. A complex
web server might have several WSGI components to handle details of authentication,
authorization, standard headers, audit logging, performance monitoring, and so on. These
aspects are generally independent of the underlying content; they're universal features of all
web applications or RESTful services.

We'll look at a relatively simple web service that emits playing cards from either a deck or a
shoe. We'll rely on the Card class definition from the Optimizing small objects with __slots__
recipe from Chapter 6, Basics of Classes and Objects. Here's the core Card class with rank and
suit information:

    class Card:
        __slots__ = ('rank', 'suit')
        def __init__(self, rank, suit):
            self.rank = int(rank)
            self.suit = suit
        def __repr__(self):
            return ("Card(rank={self.rank!r}, "
             "suit={self.suit!r})").format(self=self)
        def to_json(self):
            return {
                "__class__": "Card",
                'rank': self.rank,
                'suit': self.suit}



Web Services

[ 612 ]

We've defined a small base class for playing cards. Each instance of the class has two
attributes, rank and suit. We've omitted the hash and comparison method definitions. To
follow the Creating a class that has orderable objects recipe from Chapter 7, More Advanced
Class Design, this class would need a number of additional special methods. This recipe will
avoid those complications.

We've defined a to_json() method that is handy for serializing this complex object into a
consistent JSON format. This method emits a dictionary representation of the state of the
Card. If we want to deserialize Card objects from JSON notation, we'll need to also create
an object_hook function. We don't need it for this recipe, though, since we won't accept
Card objects as input.

We'll also need a Deck class as a container of Card instances. An instance of this class can
create the Card instances as well as acting as a stateful object that can deal cards. Here's the
class definition:

    import random
     class Deck:
        SUITS = (
            '\N{black spade suit}',
            '\N{white heart suit}',
            '\N{white diamond suit}',
            '\N{black club suit}',
        )

        def __init__(self, n=1):
            self.n = n
            self.create_deck(self.n)

        def create_deck(self, n=1):
            self.cards = [
                Card(r,s)
                    for r in range(1,14)
                        for s in self.SUITS
                            for _ in range(n)
            ]
            random.shuffle(self.cards)
            self.offset = 0

        def deal(self, hand_size=5):
            if self.offset + hand_size > len(self.cards):
                self.create_deck(self.n)
            hand = self.cards[self.offset:self.offset+hand_size]
            self.offset += hand_size
            return hand



Web Services

[ 613 ]

The create_deck() method uses a generator to create all 52 combinations of the thirteen
ranks and four suits. Each suit is defined by a single character: ♣, ♢, ♡, or ♠. The example
spells out the Unicode character names using \N{} sequences.

If a value of n is provided when creating the Deck instance, the container will create
multiple copies of the 52-card deck. This multideck shoe is sometimes used to speed up
play by reducing the time spent shuffling. Once the sequence of Card instances has been
created, it is shuffled using the random module. For repeatable test cases, a fixed seed can
be provided.

The deal() method will use the value of self.offset to determine where to start
dealing. This value starts at 0 and is incremented after each hand of cards is dealt. The
hand_size argument determines how many cards will be in the next hand. This method
updates the state of the object by incrementing the value of self.offset so that the cards
are dealt just once.

Here's one way to use this class to create Card objects:

>>> from ch12_r01 import deck_factory
>>> import random
>>> import json

>>> random.seed(2)
>>> deck = Deck()
>>> cards = deck.deal(5)
>>> cards
[Card(rank=4, suit='♣'), Card(rank=8, suit='♡'),
 Card(rank=3, suit='♡'), Card(rank=6, suit='♡'),
 Card(rank=2, suit='♠')]

To create a sensible test, we provided a fixed seed value. The script created a single deck
using Deck(). We can then deal a hand of five Card instances from the deck.

In order to use this as part of a web service, we'll also need to produce useful output in
JSON notation. Here's an example of how that would look:

>>> json_cards = list(card.to_json() for card in deck.deal(5))
>>> print(json.dumps(json_cards, indent=2, sort_keys=True))
    [
      {
        "__class__": "Card",
        "rank": 2,
        "suit": "\u2662"
      },
      {



Web Services

[ 614 ]

        "__class__": "Card",
        "rank": 13,
        "suit": "\u2663"
      },
      {
        "__class__": "Card",
        "rank": 7,
        "suit": "\u2662"
      },
      {
        "__class__": "Card",
        "rank": 6,
        "suit": "\u2662"
      },
      {
        "__class__": "Card",
        "rank": 7,
        "suit": "\u2660"
      }
    ]

We've used deck.deal(5) to deal a hand with five more cards from the deck. The
expression list(card.to_json() for card in deck.deal(5)) will use the
to_json() method of each Card object to emit the small dictionary representation of that
object. The list of dictionary structure was then serialized into JSON notation. The
sort_keys=True option is handy for creating a repeatable test case. It's not generally
necessary for RESTful web services.

How to do it…
Import needed modules and objects. We'll use the HTTPStatus class because it1.
defines the commonly-used HTTP status codes. The json module is required to
produce JSON responses. We'll also use the os module to initialize a random
number seed:

         from http import HTTPStatus
        import json
        import os
        import random



Web Services

[ 615 ]

Import or define the underlying classes, Card and Deck. Generally, it's a good2.
idea to define these as a separate module. The basic features should exist and be
tested outside the web services environment. The idea is that web services should
wrap existing, working software.
Create objects that are shared by all sessions. The value of deck is a module3.
global variable:

         random.seed(os.environ.get('DEAL_APP_SEED'))
        deck = Deck()

We've relied on the os module to examine the environment variables. If the
environment variable DEAL_APP_SEED is defined, we'll seed the random number
generator with the string value. Otherwise, we'll rely on the built-in
randomization features of the random module.

Define the target WSGI application as a function. This function will respond to a4.
request by dealing a hand of cards and then creating a JSON representation of the
Card information:

        def deal_cards(environ, start_response):
            global deck
            hand_size = int(environ.get('HAND_SIZE', 5))
            cards = deck.deal(hand_size)
            status = "{status.value} {status.phrase}".format(
             status=HTTPStatus.OK)
            headers = [('Content-Type', 'application/json;charset=utf-8')]
            start_response(status, headers)
            json_cards = list(card.to_json() for card in cards)
            return [json.dumps(json_cards, indent=2).encode('utf-8')]

The deal_cards() function deals the next group of cards from the deck. The OS
environment can define a HAND_SIZE environment variable to change the size of
the deal. The global deck object is used to perform the relevant processing.  

The status line for a response is a string that has the numeric value and phrase for
the HTTP status of OK. This can be followed by headers. This example includes the
Content-Type header to provide information to the client; the content is a JSON
document and that the bytes for this document are encoded using utf-8. Finally,
the document itself is the return value from this function.



Web Services

[ 616 ]

For demonstration and debugging purposes, it's helpful to build a server that5.
runs the WSGI application. We'll use the wsgiref module's server. There are
good servers defined in Werkzeug. Servers such as GUnicorn are even better:

        from wsgiref.simple_server import make_server
        httpd = make_server('', 8080, deal_cards)
        httpd.serve_forever()

Once the server is running, we can open a browser to see
http://localhost:8080/. This will return a batch of five cards. Each time we
refresh, we get a different batch of cards.

This works because entering a URL in the browser executes a GET request with a minimal
set of headers. Since our WSGI application didn't require any specific headers, and
responded to any HTTP method, it will return a result.

The result is a JSON document that represents five cards dealt from the current deck. Each
card is represented with a class name, rank, and suit:

    [
      {
        "__class__": "Card",
        "suit": "\u2663",
        "rank": 6
      },
      {
        "__class__": "Card",
        "suit": "\u2662",
        "rank": 8
      },
      {
        "__class__": "Card",
        "suit": "\u2660",
        "rank": 8
      },
      {
        "__class__": "Card",
        "suit": "\u2660",
        "rank": 10
      },
      {
        "__class__": "Card",
        "suit": "\u2663",
        "rank": 11
      }
    ]



Web Services

[ 617 ]

We can create web pages with clever JavaScript programs to fetch batches of cards. These
web pages and JavaScript programs can animate dealing, and include graphics for the card
images.

How it works…
The WSGI standard defines an interface between a web server and an application. This is
based on the the Apache HTTPD Common Gateway Interface (CGI). The CGI was
designed to run shell scripts or separate binaries. The WSGI is an enhancement to this
legacy concept.

The WSGI standard defines the environment dictionary with a variety of information:

A number of keys in the dictionary reflect the request after some preliminary
parsing and data conversion.

REQUEST_METHOD: The HTTP request method, such as GET or
POST.
SCRIPT_NAME: The initial portion of the request URL's path. This is
generally taken as an overall application object or function.
PATH_INFO: The remainder of the request URL's path, designating
a location of a resource. In this example, no path parsing is
performed.
QUERY_STRING: The portion of the request URL that follows the ?,
if any:
CONTENT_TYPE: The contents of any Content-Type header value in
the HTTP request.
CONTENT_LENGTH: The contents of any Content-Length header
value in the HTTP request.
SERVER_NAME and SERVER_PORT: The server name and port
number from the request.
SERVER_PROTOCOL: The version of the protocol the client used to
send the request. Typically, this will be something like HTTP/1.0
or HTTP/1.1.

The HTTP headers: These will have keys that start with HTTP_ and contain the
header name in all uppercase letters.

Generally the contents of a request are not the only data that's required to create a
meaningful response from a server. Often, additional information is required. This
information generally includes two other kinds of data:



Web Services

[ 618 ]

OS environment: The environment variables that were in place when the service
was started provide configuration details for the server. This could provide a
path to a directory that contains static content. It could provide information used
for authenticating users.
WSGI server context: These keys start with wsgi. and are always lowercase. The
values include some additional information on the internal state of a server that
adheres to the WSGI standard. There are two particularly interesting objects that
upload files and logging support:

wsgi.input: It is a file-like object. From this, the HTTP request
body bytes can be read. This will often have to be decoded based
on the Content-Type header.
wsgi.errors: It is a file-like object to which error output can be
written. This is the server's log.

The return value from a WSGI function can be a sequence object or an iterable. Returning an
iterable is the way a very large document can be built in pieces and downloaded via a
number of smaller buffers.

This example WSGI application does not check the request path. Any path can be used to
retrieve a hand of cards. A more sophisticated application might parse the path to
determine information about the size of a hand being requested or the size of the deck from
which the hand should be dealt.

There's more…
A web service can be visualized as a number of common pieces that are connected together
into nested shells or layers. The uniform interface for WSGI applications encourages this
kind of composition of reusable features.

There are a number of common techniques that are used to protect and produce dynamic
content. These techniques are cross-cutting concerns for web service applications. We have
a few choices for this as follows:

We can write lots of if statements in a single application
We can extract the common programming and create a common wrapper that
separates security concerns from the construction of content



Web Services

[ 619 ]

A wrapper is simply another WSGI application that doesn't produce a result directly.
Instead, a wrapper hands off the work of producing results to another WSGI application.

We might, for example, need a wrapper that confirms that a JSON response is expected.
This wrapper will distinguish requests for human-centric HTML from application-focused
JSON.

To make more flexible applications, it's often helpful to use a callable object instead of a
simple function. Doing this makes configuration of the various applications and wrappers
considerably more flexible. We'll combine the idea of a JSON filter with a callable object.

The outline of this object looks like the following:

    class JSON_Filter:
        def __init__(self, json_app):
            self.json_app = json_app
        def __call__(self, environ, start_response):
            return json_app(environ, start_response)

We'll create a callable object from this class definition by providing another app. The other
app, json_app, will be wrapped by this callable object.

We'll use it like this:

    json_wrapper = JSON_Filter(deal_cards)

This will wrap the original deal_cards() WSGI application. We can now use the
composite json_wrapper object as a WSGI application. When the server calls
json_wrapper(environ, start_response), that will invoke the __call__() method
of the object, which—in this example, will pass the request to the deal_cards() function.

Here's the more complete wrapper application. This wrapper will check the HTTP Accept
header for the characters "json". It will also check the query string for ?$format=json to
see if a JSON-formatted request was made. An instance of this class can be configured to
reference the deal_cards() WSGI application:

    from urllib.parse import parse_qs
    class JSON_Filter:
        def __init__(self, json_app):
            self.json_app = json_app
        def __call__(self, environ, start_response):
            if 'HTTP_ACCEPT' in environ:
                if 'json' in environ['HTTP_ACCEPT']:
                    environ['$format'] = 'json'
                    return self.json_app(environ, start_response)
            decoded_query = parse_qs(environ['QUERY_STRING'])



Web Services

[ 620 ]

            if '$format' in decoded_query:
                if decoded_query['$format'][0].lower() == 'json':
                    environ['$format'] = 'json'
                    return self.json_app(environ, start_response)
            status = "{status.value}
{status.phrase}".format(status=HTTPStatus.BAD_REQUEST)
            headers = [('Content-Type', 'text/plain;charset=utf-8')]
            start_response(status, headers)
            return ["Request doesn't include ?$format=json or Accept
header".encode('utf-8')]

The __call__() method checks the Accept header as well as the query string. If the string
json appears anywhere in the HTTP Accept header, then the given application is invoked.
The environment is updated to include header information used by this wrapper.

If the HTTP Accept header is not present or doesn't require a JSON response, then the query
string is checked. This fall-back can be helpful because it is difficult to change the headers
sent by a browser; using the query string is a browser-friendly alternative to the Accept
header. The parse_qs() function will decompose the query string into a dictionary of keys
and values. If the query string has $format as a key, then this is checked to see if the value
includes 'json'. If this is true, then the environment is updated with the format
information found in the query string.

In both cases, the environment is modified when calling the wrapped application. The
function being wrapped only needs to check the WSGI environment for format information.
This wrapper object returns the response without any further modification.

If the request does not request JSON, then a 400 BAD REQUEST response is sent with a
simple text message. This will provide some guidance as to why the query was
unacceptable.

We use this JSON_Filter wrapper class definition as follows:

    json_wrapper = JSON_Filter(deal_cards)
    httpd = make_server('', 8080, json_wrapper)

Instead of making a server from deal_cards(), we've created an instance of the
JSON_Filter class that references the deal_cards() function. This will behave almost
exactly like the version shown earlier. The important difference is that this requires either
an Accept header or a URL like this: http://localhost:8080/?$format=json.

This example has a subtle semantic issue. The GET method changes the
state of the server. This is generally a bad idea.



Web Services

[ 621 ]

Because we're looking at a browser, it's difficult to sort out problems. There isn't much
debugging support available here. This means that print() functions as well as log
messages are essential for debugging. Because of the way WSGI works, it's essential to print
to sys.stderr. It is easier to work with Flask, which we'll show in the Using the Flask
framework for RESTful APIs recipe.

HTTP supports a number of methods, including GET, POST, PUT, and DELETE. Generally, it's
sensible to map these methods to database CRUD operations; Create is done with POST,
Retrieve is done with GET, Update is done with PUT, and Delete maps to DELETE. This
means that a GET operation will not change the state of the database.

This leads to the idea that a web service's GET operation should be idempotent. A series of
GET operations without any other POST, PUT, or DELETE operation should return the same
result each time. In this recipe, each GET returns a different result. This is a semantic
problem with using GET to deal cards.

For our purpose of demonstrating the basics, the distinction is minor. In a large and more
complex web application, the distinction is an important consideration. Since the deal
service is not idempotent, there's a point of view that suggests it should be accessed with
the POST method.

To make it easy to explore using a browser, we've avoided checking the method in the
WSGI application.

See also
Python has a wide variety of RESTful API frameworks. In the Using the Flask
framework for RESTful APIs recipe, we'll look at the Flask framework.
There are three places to look for detailed information on the overall WSGI
standard:

PEP 3333: See h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p - 3333/.
The Python standard library: It includes the wsgiref module.
This is the reference implementation in the standard library.
The Werkzeug project: See h t t p ://w e r k z e u g . p o c o o . o r g . This is
an external library with numerous WSGI utilities. This is used
widely to implement proper WSGI applications.

Also, see h t t p ://d o c s . o a s i s - o p e n . o r g /o d a t a /o d a t a - j s o n - f o r m a t /v 4. 0/o d a t

a - j s o n - f o r m a t - v 4. 0. h t m l for more information on JSON-formatting of data for
web services.

https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://werkzeug.pocoo.org
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html


Web Services

[ 622 ]

Using the Flask framework for RESTful APIs
In the Implementing web services with WSGI recipe, we looked at building RESTful APIs and
microservices using the WSGI components available in the Python standard library. This
leads to a large amount of programming to handle a number of common cases.

How can we simplify all of the common web application programming and eliminate
boilerplate code?

Getting ready
First, we'll need to add the Flask framework to our environment. This generally relies on
using pip to install the latest release of Flask and the other related projects, itsdangerous,
Jinja2, click, MarkupSafe, and Werkzeug.

The installation looks like the following:

slott$ sudo pip3.5 install flask
Password:
Collecting flask
  Downloading Flask-0.11.1-py2.py3-none-any.whl (80kB)
    100% |████████████████████████████████| 81kB
3.6MB/s
Collecting itsdangerous>=0.21 (from flask)
  Downloading itsdangerous-0.24.tar.gz (46kB)
    100% |████████████████████████████████| 51kB
8.6MB/s
Requirement already satisfied (use --upgrade to upgrade): Jinja2>=2.4 in
/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-
packages (from flask)
Collecting click>=2.0 (from flask)
  Downloading click-6.6.tar.gz (283kB)
    100% |████████████████████████████████| 286kB
4.0MB/s
Collecting Werkzeug>=0.7 (from flask)
  Downloading Werkzeug-0.11.10-py2.py3-none-any.whl (306kB)
    100% |████████████████████████████████| 307kB
3.8MB/s
Requirement already satisfied (use --upgrade to upgrade): MarkupSafe in
/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-
packages (from Jinja2>=2.4->flask)
Installing collected packages: itsdangerous, click, Werkzeug, flask
  Running setup.py install for itsdangerous ... done
  Running setup.py install for click ... done
Successfully installed Werkzeug-0.11.10 click-6.6 flask-0.11.1



Web Services

[ 623 ]

itsdangerous-0.24

We can see that Jinja2 and MarkupSafe were already installed. The missing elements
were located by pip, downloaded, and installed. Windows users won't use the sudo
command.

Flask allows us to dramatically simplify our web services application. Instead of creating a
large and possibly complex WSGI-compatible function or callable object, we can create a
module with separate functions. Each function can handle a specific pattern of URL paths.

We'll look at the same core card-dealing functions we had in the Implementing web services
with WSGI recipe. The Card class defines a simple playing card. The Deck class defines a
deck of cards.

Because Flask handles the details of URL parsing for us, we can create a much more
sophisticated web service quite easily. We'll define a path that looks like this:

/dealer/hand/?cards=5.

This route has three important pieces of information:

The first part of the path, /dealer/, is the overall web service.
The next part of the path, hand/, is a specific resource, a hand of cards.
The query string, ?cards=5, defines the cards parameter for the query. This is
the size of the hand being requested. This is limited to a range of 1 to 52 cards. A
value that's out of range will get a 400 status code because the query is invalid.

How to do it…
Import some core definitions from the flask package. The Flask class defines1.
the overall application. The request object holds the current web request:

        from flask import Flask, request, jsonify, abort
        from http import HTTPStatus

The jsonify() function will return a JSON-format object from a Flask view
function. The abort() function returns an HTTP error status and ends processing
of the request. 



Web Services

[ 624 ]

Import the underlying classes, Card and Deck. Ideally, these are imported from a2.
separate module. It should be possible to test all of the features outside the web
services environment:

        from ch12_r01 import Card, Deck

In order to properly shuffle, we'll also need the random module:

        import random

Create the Flask object. This is the overall web services application. We'll call the3.
Flask application 'dealer', and we'll also assign the object to a global variable,
dealer:

        dealer = Flask('dealer')

Create any objects used throughout the application. These can be assigned to the4.
Flask object, dealer, as attributes. Be sure to create a unique name that doesn't
conflict with any of Flask's internal attributes. The alternative is to use module
globals. 

Stateful global objects must be able to work in a multi-threaded environment, or
threading must be explicitly disabled:

        import os
        random.seed(os.environ.get('DEAL_APP_SEED'))
        deck = Deck()

For this recipe, the implementation of the Deck class is not thread-safe, so we'll
rely on having a single-threaded server. The deal() method should use the Lock
class from the threading module to define an exclusive lock to assure proper
operation with concurrent threads.

Define a route—a URL pattern—to a view function that performs a specific5.
request. This is a decorator, placed immediately in front of the function. It will
bind the function to the Flask application:

        @dealer.route('/dealer/hand/')

Define the view function, which retrieves data or updates the application state. In6.
this example, the function does both:

         def deal():
            try:
                hand_size = int(request.args.get('cards', 5))



Web Services

[ 625 ]

                assert 1 <= hand_size < 53
            except Exception as ex:
                abort(HTTPStatus.BAD_REQUEST)
            cards = deck.deal(hand_size)
            response = jsonify([card.to_json() for card in cards])
            return response

Flask parses the string after the ? in the URL—the query string—to create the
request.args value. A client application or browser can set this value with a
query string such as ?cards=13. This will deal 13-card hands for bridge. 

If the hand size value from the query string is inappropriate, the abort()
function will end processing and return an HTTP status code of 400. This
indicates that the request was unacceptable. This is a minimal response, with no
more detailed content. 

The real work of the application is a single statement, cards =
dealer.deck.deal(hand_size). The idea here is to wrap existing functionality
in a web framework. The features can be tested without the web application. 

The response is handled by the jsonify() function: this creates a response
object. The body of the response which will be a Python object represented in
JSON notation. If we need to add headers to the response, we can update
response.headers to include additional information.

Define the main program which runs the server:7.

         if __name__ == "__main__":
            dealer.run(use_reloader=True, threaded=False, debug=True)

We've included the debug=True option to provide rich debugging information in
the browser as well as the Flask log file. Once the server is running, we can open a
browser to see http://localhost:5000/. This will return a batch of five cards.
Each time we refresh, we get a different batch of cards.

This works because entering a URL in the browser executes a GET request with a minimal
set of headers. Since our WSGI application didn't require any specific headers, and
responded to all of the HTTP methods, it will return a result.



Web Services

[ 626 ]

The result is a JSON document with five cards. Each card is represented by a class name,
rank, and suit information:

    [
      {
        "__class__": "Card",
        "suit": "\u2663",
        "rank": 6
      },
      {
        "__class__": "Card",
        "suit": "\u2662",
        "rank": 8
      },
      {
        "__class__": "Card",
        "suit": "\u2660",
        "rank": 8
      },
      {
        "__class__": "Card",
        "suit": "\u2660",
        "rank": 10
      },
      {
        "__class__": "Card",
        "suit": "\u2663",
        "rank": 11
      }
    ]

To see more than five cards, the URL can be modified. For example, this will return a bridge
hand: http://127.0.0.1:5000/dealer/hand/?cards=13.

How it works…
A Flask application consists of an application object with a number of individual view
functions. In this recipe, we created a single view function, deal(). Applications often have
numerous functions. A complex website may have many applications, each of which has
many functions.

A route is a mapping between a URL pattern and a view function. This makes it possible to
have routes which contain parameters that are used by the view function.



Web Services

[ 627 ]

The @flask.route decorator is the technique used to add each route and view function
into the overall Flask instance. The view function is bound into the overall application
based on the route pattern.

The run() method of a Flask object does the following kinds of processing. This isn't
precisely how Flask works, but it provides a broad outline of the various steps:

It waits for an HTTP request. Flask follow the WSGI standard, the request arrives
in the form of a dictionary. For more information on WSGI, see the Implementing
web services with WSGI recipe.
It creates a Flask Request object from the WSGI environment. The request
object has all of the information from the request, including all of the URL
elements, query string elements, and any attached documents.
Flask then examines the various routes, looking for a route which matches the
request's path.

If a route is found, then the view function is executed. The function
creates a Response object. This is the return value from a view
function.
If a route is not found, a 404 NOT FOUND response is sent
automatically.

The WSGI pattern is followed to prepare status and headers to start sending the
response. The Response object that was returned from the view function is then
provided as a stream of bytes.

A Flask application can contain a number of methods that make it very easy to provide a
web service. Flask exposes some of these methods as standalone functions that are
implicitly bound to the request or the session. This makes it slightly simpler to write view
functions.

There's more…
In the Implementing web services with WSGI recipe, we wrapped the application in a generic
test that confirmed that the request had one of two properties. We used the following two
rules:

An Accept header that required JSON
A query string with $format=json in it



Web Services

[ 628 ]

If we're writing a complex RESTful application server, we often want this kind of test
applied to all of the view functions. We'd rather not repeat the code for this test.

We can—of course—combine the WSGI solution from the Implementing web services with
WSGI recipe with the Flask application to build a composite application. We can also
accomplish this entirely within Flask. The pure Flask solution is a bit simpler than the WSGI
solution, making it desirable.

We've seen the Flask @flask.route decorator. Flask has a number of other decorators that
can be used to define various stages in request and response processing. In order to apply a
test to the incoming request, we can use the @flask.before_request decorator. All of the
functions with this decoration will be invoked prior to the request being processed:

    @dealer.before_request
    def check_json():
        if 'json' in request.headers.get('Accept'):
        return
        if 'json' == request.args.get('$format'):
            return
        return abort(HTTPStatus.BAD_REQUEST)

When a @flask.before_request decorator fails to return a value (or returns None), then
processing will continue. The routes will be checked, and a view function will be evaluated.

In this example, if the Accept header includes json or the $format query parameter is
json, then the function returns None. This means that the normal view function will then
be found to process the request.

When a @flask.before_request decorator returns a value, this is the final result, and
processing stops. In this example, the check_json() function may return an abort()
response, which will stop processing. The abort() response becomes the final response
from the Flask application. This makes it very easy to return error messages.

We can now use a browser's address window to enter a URL like the following:

http://127.0.0.1:5000/dealer/hand/?cards=13&$format=json

This will return a 13-card hand, and the request now explicitly requests the result in JSON
format. It is instructive to try other values for $format as well as omitting the $format key
entirely.



Web Services

[ 629 ]

This example has a subtle semantic issue. The GET method changes the
state of the server. This is generally a bad idea.

HTTP supports a number of methods that parallel database CRUD operations. Create is
done with POST, Retrieve is done with GET, Update is done with PUT, and Delete maps to
DELETE.

This idea then leads to the idea that a web services GET operation should be idempotent. A
series of GET operations—without any other POST, PUT, or DELETE—should return the same
result each time. In this example, each GET returns a different result. Since the deal service is
not idempotent, it should be accessed with the POST method.

To make it easy to explore using a browser, we've avoided checking the method in the Flask
route. Ideally, the route decorator should look like the following:

    @dealer.route('/dealer/hand/', methods=['POST'])

Doing this makes it difficult to use a browser to see that the service is working. In the
Making REST requests with urllib recipe we'll look at creating a client, and switching to using
POST for the method.

See also
For background in web services, see the Implementing web services with WSGI
recipe.
See h t t p ://f l a s k . p o c o o . o r g /d o c s /0. 11/ for details of Flask.
See h t t p s ://w w w . p a c k t p u b . c o m /w e b - d e v e l o p m e n t /l e a r n i n g - f l a s k - f r a m e w o r

k to learn more about the Flask framework. Also, h t t p s ://w w w . p a c k t p u b . c o m /w e

b - d e v e l o p m e n t /m a s t e r i n g - f l a s k has more information on mastering Flask.

Parsing the query string in a request
A URL is a complex object. It contains at least six separate pieces of information. More
information can be included via optional elements.

http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
http://flask.pocoo.org/docs/0.11/
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/learning-flask-framework
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask


Web Services

[ 630 ]

A URL such as http://127.0.0.1:5000/dealer/hand/?cards=13&$format=json has
several fields:

http is the scheme. https is for secure connections using encrypted sockets.
127.0.0.1 can be called the authority, although network location is more
commonly used. This particular IP address means the localhost and is a kind of
loopback to the localhost. The name localhost maps to this IP address.
5000 is the port number, and is part of the authority.
/dealer/hand/ is the path to a resource.
cards=13&$format=json is a query string, and it's separated from the path by
the ? character.

The query string can be quite complex. While not an official standard, it's possible (and
common) for a query string to have a repeated key. The following query string is valid,
though perhaps confusing:

    ?cards=13&cards=5

We've repeated the cards key. The web service will provide a thirteen-card hand and a
five-card hand.

[The author is unaware of any card games with hands of varying sizes. The lack of a good user story
makes this example somewhat contrived.]

The ability to repeat a key breaks the possibility of a simple mapping between a URL query
string and a built-in Python dictionary. There are several possible solutions to this problem:

Each key in the dictionary must be associated with a list that contains all of the
values. This is awkward for the most common case where a key is not repeated;
each list has only a single item. This solution is implemented via the parse_qs()
in urllib.parse.
Each key is only saved once and the first (or last) value is kept, the other values
are dropped. This is awful.
A dictionary not used. Instead the query string can be parsed into a list of (key,
value) pairs. This also allows keys to be duplicated. For the common case with
unique keys, the list can be converted to a dictionary. For the uncommon case, the
duplicated keys can be handled some other way. This is implemented by the
parse_qsl() in urllib.parse.



Web Services

[ 631 ]

Is there a better way to handle a query string? Can we have a more sophisticated structure
that behaves like a dictionary with single values for the common case, and a more complex
object for the rare cases where a field key is duplicated and has multiple values?

Getting ready
Flask depends on another project, Werkzeug. When we install Flask using pip, the 
requirements will lead pip to also install the Werkzeug toolkit. Werkzeug has a data
structure that provides an excellent way to handle query strings.

We'll modify the example in the Using the Flask framework for RESTful APIs recipe to use a
somewhat more complex query string. We'll add a second route that deals multiple hands.
The sizes of each hand will be specified in a query string that allows repeated keys.

How to do it…
Start with the Using the Flask framework for RESTful APIs recipe. We'll be adding a1.
new view function to an existing web application.
Define a route—a URL pattern—to a view function that performs a specific2.
request. This is a decorator, placed immediately in front of the function. It will
bind the function to the Flask application:

        @dealer.route('/dealer/hands/')

Define a view function that responds to requests sent to the particular route: 3.

        def multi_hand():

Within the view function, extract the values of a unique key with the get()4.
method or use ordinary [] syntax that is appropriate for the built-in dict type.
This returns individual values without the complication of a list for the common
case where the list would only have a single element. 
For repeated keys, use the getlist() method. This returns each of the values as5.
a list. Here's a view function that looks for a query string such as
?card=5&card=5 to deal two five-card hands:

        try:
            hand_sizes = request.args.getlist('cards', type=int)
            if len(hand_sizes) == 0:
                hand_sizes = [13,13,13,13]



Web Services

[ 632 ]

            assert all(1 <= hand_size < 53 for hand_size in hand_sizes)
        except Exception as ex:
            dealer.logger.exception(ex)
            abort(HTTPStatus.BAD_REQUEST)

        hands = [deck.deal(hand_size) for hand_size in hand_sizes]
        response = jsonify(
            [
                {'hand':i,
                 'cards':[card.to_json() for card in hand]
                } for i, hand in enumerate(hands)
            ]
        )
        return response

This function will get all of the cards keys from the query string. If the values are
all integers, and each value is in the range 1 to 52 (inclusive), then the values are
valid, and the view function will return a result. If there are no cards key values
in the query, then four hands of 13 cards will be dealt. 

The response will be a JSON representation of each hand as a small dictionary
with two keys: a hand ID, and the cards from the hand.

Define a main program that runs the server: 6.

        if __name__ == "__main__":
            dealer.run(use_reloader=True, threaded=False)  

Once the server is running, we can open a browser to see this URL:

http://localhost:5000/?cards=5&cards=5&$format=json

The result is a JSON document with two hands of five cards. We've elided some details to
emphasize the structure of the response:

    [
      {
        "cards": [
          {
            "__class__": "Card",
            "rank": 11,
            "suit": "\u2660"
          },
          {
            "__class__": "Card",
            "rank": 8,
            "suit": "\u2662"



Web Services

[ 633 ]

          },
          ...
        ],
        "hand": 0
      },
      {
        "cards": [
          {
            "__class__": "Card",
            "rank": 3,
            "suit": "\u2663"
          },
          {
            "__class__": "Card",
            "rank": 9,
            "suit": "\u2660"
          },
          ...
        ],
        "hand": 1
      }
    ]

Because the web service parses the query string, it's trivial to add more complex hand sizes
to the query string. The example includes the $format=json based on the Using the Flask
framework for RESTful APIs recipe.

If the @dealer.before_request function, check_json(), is implemented to check for
JSON, then the $format is required. If the @dealer.before_request function,
check_json(), is not implemented, then the additional information in the query string is
ignored.

How it works…
The Werkzeug—Multidict class is a very handy data structure. This is an extension to the
built-in dictionary. It allows multiple, distinct values for a given key.

We can build something like this using the defaultdict class from the collections
module. The definition would be defaultdict(list). The problem with this definition is
that the value of every key is a list, even when the list only has a single item as a value.



Web Services

[ 634 ]

The advantage provided by the Multidict class are the variations on the get() method.
The get() method returns the first value when there are many copies of a key or the only
value when the key occurs only once. This has a default parameter, as well. This method
parallels the method of the built-in dict class.

The getlist() method, however, returns a list of all values for a given key. This method is
unique to the Multidict class. We can use this method to parse more complex query
strings.

One common technique that's used to validate query strings is to pop items as they are
validated. This is done with the pop() and poplist() methods. These will remove the key
from the Multidict class. If any keys remain after checking all the valid keys, these extras
can be considered syntax errors, and the web request rejected with
abort(HTTPStatus.BAD_REQUEST).

There's more…
The query string uses relatively simple syntax rules. There are one or more key-value pairs
using = as the punctuation between key and value. The separator between each pair is the
& character. Because of the meaning of other characters in parsing a URL, there is one other
rule that's important—the keys and values must be encoded.

The URL encoding rules require that certain characters be replaced with HTML entities. The
technique is called percent encoding. This means that when we put & into the value of a
query string, it must be encoded as %26, here's an example showing this encoding:

>>> from urllib.parse import urlencode
>>> urlencode( {'n':355,'d':113} )
'n=355&d=113'
>>> urlencode( {'n':355,'d':113,'note':'this&that'} )
'n=355&d=113&note=this%26that'

The value this&that was encoded to this%26that.

There's a short list of characters which must have the %-encoding rules applied. This comes
from the RFC 3986, refer to section 2.2, Reserved Characters. The list includes these characters:

! * ' ( ) ; : @ & = + $ , / ? # [ ] %



Web Services

[ 635 ]

Generally, the JavaScript code associated with a web page will handle encoding query
strings. If we're writing an API client in Python, we need to use the urlencode() function
to properly encode query strings. Flask handles the decoding automatically for us.

There's a practical size limit on the query string. Apache HTTPD, for example, has a
LimitRequestLine configuration parameter with a default value of 8190. This limits the
overall URL to this size.

In the OData specifications (h t t p ://d o c s . o a s i s - o p e n . o r g /o d a t a /o d a t a /v 4. 0/), there are
several kinds of value that are suggested for the query options. This specification suggests
that our web services should support the following kinds of query option:

For a URL that identifies an entity or a collection of entities, the $expand and
$select options can be used. Expanding a result means that the query will
provide additional details. The select query will impose additional criteria on the
collection.
A URL that identifies a collection should support $filter, $search, $orderby,
$count, $skip, and $top options. These don't make sense for a URL that returns
a single item. The $filter and $search options accept complex conditions for
finding data. The $orderby option defines a particular order to impose on the
results. 

The $count option changes the query fundamentally. It will return the count of items
instead of the items themselves.

The $top and $skip options are used to page through data. If the count is large, it's
common to use the $top option to limit the results to a specific number that will be shown
on a web page. The value of the $skip option determines which page of data will be
shown. For example, $top=20$skip=40 would be page 3 of the results—the top twenty
after skipping 40.

Generally, all URLs should support the $format option to specify the format of the result.
We've been focusing on JSON, but a more sophisticated service might offer CSV output or
even XML.

http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/
http://docs.oasis-open.org/odata/odata/v4.0/


Web Services

[ 636 ]

See also
See the Using the Flask framework for RESTful APIs recipe for the basics of using
Flask for web services.
In the Making REST requests with urllib recipe, we'll look at how to write a client
application that can prepare complex query strings.

Making REST requests with urllib
A web application has two essential parts:

A client: This can be a user's browser, but may also be a mobile device app. In
some cases, a web server may be a client of other web servers.
A server: This provides the web services and resources we've been looking at, in
the Implementing web services with WSGI, Using the Flask framework for RESTful
APIs, and Parsing the query string in a request recipes, as well as other recipes, such
as Parsing a JSON request and Implementing authentication for web services.

A browser-based client will generally be written in JavaScript. Mobile apps are written in a
variety of languages, with a focus on Java for Android devices and Objective-C with Swift
for iOS devices.

There are several user stories that involve RESTful API clients written in Python. How can
we create a Python program that is a client of RESTful web services?

Getting ready
We'll assume that we have a web server based on the Implementing web services with WSGI,
Using the Flask framework for RESTful APIs, or Parsing the query string in a request recipe. We
can write a formal specification for this server's behavior in the following way:

    {
      "swagger": "2.0",
      "info": {
        "title": "dealer",
        "version": "1.0"
      },
      "schemes": ["http"],
      "host": "127.0.0.1:5000",
      "basePath": "/dealer",



Web Services

[ 637 ]

      "consumes": ["application/json"],
      "produces": ["application/json"],
      "paths": {
        "/hands": {
          "get": {
            "parameters": [
              {
                "name": "cards",
                "in": "query",
                "description": "number of cards in each hand",
                "type": "array",
                "items": {"type": "integer"},
                "collectionFormat": "multi",
                "default": [13, 13, 13, 13]
              }
            ],
            "responses": {
              "200": {
                "description":
                "one hand of cards for each `hand` value in the query
string"
              }
            }
          }
        },
        "/hand": {
          "get": {
            "parameters": [
              {
                "name": "cards",
                "in": "query",
                "type": "integer",
                "default": 5
              }
            ],
            "responses": {
              "200": {
                "description":
                "One hand of cards with a size given by the `hand` value in
the query string"
              }
            }
          }
        }
      }
    }



Web Services

[ 638 ]

This document provides us some guidance on how to consume these services using
Python's urllib module. It also describes what the expected responses should be, giving
us guidance on how to handle the responses.

Some of the fields in this specification define a base URL. These three fields, in particular,
provide this information:

      "schemes": ["http"],
      "host": "127.0.0.1:5000",
      "basePath": "/dealer",

The produces and consumes fields provide information that helps to build and verify the
HTTP headers. The request Content-Type header must be a Multipurpose Internet Mail
Extensions (MIME) type that the server consumes. Similarly, the request Accept header
must specify a MIME type that the server produces. In both cases, we'll supply
application/json.

The detailed service definitions are provided in the paths section of the specification. The
/hands path, for example, shows the details of how to make a request for multiple hands.
The path detail is a suffix for the basePath value.

When the HTTP method is get, then parameters are provided in the query. The cards
parameter in the query provides an integer number of cards, and it can be repeated multiple
times.

The response will include at least the response described. In this case, the HTTP status will
be 200, and the body of the response has a minimal description. It's possible to provide a
more formal schema definition for the response, we'll omit that from this example.

How to do it…
Import the urllib components that are required. We'll be making URL requests,1.
and building more complex objects, such as query strings. We'll need the
urllib.request and urllib.parse modules for these two features. Since the
expected response is in JSON, then the json module will be useful as well:

        import urllib.request
        import urllib.parse
        import json



Web Services

[ 639 ]

Define the query string that will be used. In this case, all of the values happen to2.
be fixed. In a more complex application, some might be fixed and some might be
based on user inputs:

        query = {'hand': 5}

Use the query to build the pieces of the full URL: 3.

        full_url = urllib.parse.ParseResult(
            scheme="http",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/hand/",
            params=None,
            query=urllib.parse.urlencode(query),
            fragment=None
        )

In this case, we're using a ParseResult object to hold the relevant parts of the
URL. This class isn't graceful about missing items, so we must provide explicit
None values for parts of the URL that aren't being used. 

We could use "http://127.0.0.1:5000/dealer/hand/?cards=5" in our
script. However, this condensed string is awkward to change. It's useful as a
compact message when making the request, but it's not ideal for making flexible,
maintainable, and testable programs. 

Using this long constructor has the advantage of providing explicit values for each
part of a URL. In more complex applications, the individual pieces are built from
an analysis of the JSON Swagger specification document shown previously:

Build a final Request instance. We'll use the URL built from a variety of pieces.4.
We'll explicitly provide an HTTP method (browsers tend to use GET as a default).
Also, we can provide explicit headers:

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "GET",
            headers = {
                'Accept': 'application/json',
            }
        )



Web Services

[ 640 ]

We've provided the HTTP Accept header to state MIME type results that will be
produced by the server, and accepted by the client. We've provided the HTTP
Content-Type header to state the request consumed by the server, and provided
by our client script.

Open a context to process the response. The urlopen() function makes the5.
request, handling all of the complexities of the HTTP protocol. The final result
object is available for processing as a response:

        with urllib.request.urlopen(request) as response:

Generally, there are three attributes of the response that are of particular interest:6.

        print(response.status)
        print(response.headers)
        print(json.loads(response.read().decode("utf-8")))

The status is the final status code. We expect a HTTP status 200 for a normal
request. The headers include all of the headers that are part of the response. We
might, for example, want to check that the response.headers['Content-
Type'] really is application/json. 

The value of response.read() are the bytes downloaded from the server. We'll
often need to decode these to get proper Unicode characters. The utf-8 encoding
scheme is very common. We can use json.loads() to create a Python object
from the JSON document.

When we run this, we'll see the following output:

200
Content-Type: application/json
Content-Length: 367
Server: Werkzeug/0.11.10 Python/3.5.1
Date: Sat, 23 Jul 2016 19:46:35 GMT

[{'suit': '♣', 'rank': 4, '__class__': 'Card'},
 {'suit': '♡', 'rank': 4, '__class__': 'Card'},
 {'suit': '♠', 'rank': 9, '__class__': 'Card'},
 {'suit': '♣', 'rank': 1, '__class__': 'Card'},
 {'suit': '♣', 'rank': 2, '__class__': 'Card'}]



Web Services

[ 641 ]

The initial 200 is the status, showing that everything worked properly. There were four
headers provided by the server. Finally, the internal Python object was an array of small
dictionaries that provided information about the cards which were dealt.

To reconstruct Card objects, we'd need to use a slightly more clever JSON parser. See the
Reading JSON documents recipe in Chapter 9, Input/Output, Physical Format, and Logical
Layout.

How it works…
We've built up the request through several explicit steps:

The query data started as a simple dictionary with keys and values.1.
The urlencode() function turned the query data into a query string, properly2.
encoded.
The URL as a whole started as individual components in a ParseResult object.3.
This makes each piece visible, and changeable. For this particular API, the pieces
are largely fixed. In other APIs, the path and the query portion of the URL might
both have dynamic values.
The request as a whole was built from URL, method, and a dictionary of headers.4.
This example did not provide a separate document as the body of a request. If a
complex document is sent, or a file is uploaded, this is also done by providing
details to the Request object.

The step by step assembly isn't required for a simple application. In the simple cases, a
literal string value for the URL might be acceptable. At the other extreme, a more complex
application may print out intermediate results as a debugging aid to be sure that the request
is being constructed correctly.

The other benefit of spelling out the details like this is to provide a handy avenue for unit
testing. See Chapter 11, Testing, for more information. We can often decompose a web
client into request building and request processing. The request building can be tested
carefully to be sure that all of the elements are set properly. The request processing can be
tested with dummy results that don't involve a live connection to a remote server.



Web Services

[ 642 ]

There's more…
User authentication is often an important part of a web service. For HTML-based
websites—where user interaction is emphasized—people expect the server to understand a
long-running sequence of transactions via a session. The person will authenticate
themselves once (often with a username and password) and the server will use this
information until the person logs out or the session expires.

For RESTful web services, there is rarely the concept of a session. Each request is processed
separately, and the server is not expected to maintain a complex long-running transaction
state. This responsibility shifts to the client application. The client is required to make
appropriate requests to build up a complex document that can be presented as a single
transaction.

For RESTful APIs, each request may include authentication information. We'll look at this in
detail in the Implementing Authentication for web services recipe. For now, we'll look at
providing additional details via headers. This will fit comfortably with our RESTful client
script.

There are a number of ways that authentication information is provided to a web server:

Some services use the HTTP Authorization header. When used with the Basic
mechanism a client can provide a username and password with each request.
Some services will invent an entirely new header with a name such as API-Key.
The value for this header might be a complex string that has encoded information
about the requestor.
Some services will invent a header with a name such as X-Auth-Token. This may
be used in a multi-step operation where a username and password credentials are
sent as part of an initial request. The result will include a string value (a token)
that can be used for subsequent API requests. Often, the token has a short
expiration period and must be renewed.

Generally, these methods require the Secure Socket Layer (SSL) protocol. This is available
as the https scheme. In order to handle the SSL protocol, the servers (and sometimes the
clients) must have proper certificates. These are used as part of the negotiation between
client and server to set up the encrypted socket pair.



Web Services

[ 643 ]

All of these authentication techniques have a feature in common—they rely on sending
additional information in headers. They differ slightly in which header is used, and what
information is sent. In the simplest case, we might have something like the following:

    request = urllib.request.Request(
        url = urllib.parse.urlunparse(full_url),
        method = "GET",
        headers = {
            'Accept': 'application/json',
            'X-Authentication': 'seekrit password',
        }
    )

This hypothetical request would be for a web service that requires a password provided in
an X-Authentication header. In the Implementing Authentication for web services recipe,
we'll add an authentication feature to the web server.

The OpenAPI (Swagger) specification
Many servers will explicitly provide a specification as a file at a fixed, standard URL path of
/swagger.json. The OpenAPI specification was formerly known as Swagger, and the
filename that provides the interface reflects that history.

If provided, we can get a website's OpenAPI specification in the following way:

    swagger_request = urllib.request.Request(
        url = 'http://127.0.0.1:5000/dealer/swagger.json',
        method = "GET",
        headers = {
            'Accept': 'application/json',
        }
    )

    from pprint import pprint
    with urllib.request.urlopen(swagger_request) as response:
        swagger = json.loads(response.read().decode("utf-8"))
        pprint(swagger)

Once we have the specification, we can use it to get the details for the service or resource.
We can use the technical information in the specification to build URLs, query strings, and
headers.



Web Services

[ 644 ]

Adding Swagger to the server
For our little demonstration server, one additional view function is required to provide the
OpenAPI Swagger specification. We can update the ch12_r03.py module to respond to a
request for swagger.json.

There are several ways to handle this important information:

A separate, static file. That's what's shown in this recipe. It's a very simple way to1.
provide the required content. 

Here's a view function we can add that will send a file. Of course, we also need to
put the specification into the named file:

         from flask import send_file
        @dealer.route('/dealer/swagger.json')
        def swagger():
            response = send_file('swagger.json',
mimetype='application/json')
            return response

The drawback of this approach is that the specification is separate from the
implementation module.

Embed the specification as a large blob of text in the module. We could, for2.
example, provide the specification as the docstring for the module itself. This
provides a visible place to put important documentation, but it makes it more
difficult to include docstring test cases at the module level. 

This view function sends the module docstring, assuming that the string is a valid
JSON document:

        from flask import make_response
        @dealer.route('/dealer/swagger.json')
        def swagger():
            response = make_response(__doc__.encode('utf-8'))
            response.headers['Content-Type'] = 'application/json'
            return response

This has the disadvantage of requiring that we check the syntax of the docstring to
be sure that it's valid JSON. This is in addition to validating that the module
implementation actually conforms to the specification.



Web Services

[ 645 ]

Create a Python specification object in proper Python syntax. This can then be3.
encoded into JSON and transmitted. This view function sends a specification
object. This will have to be a valid Python object that can be serialized into JSON
notation:

         from flask import make_response
        import json
        @dealer.route('/dealer/swagger.json')
        def swagger3():
            response = make_response(
                json.dumps(specification, indent=2).encode('utf-8'))
            response.headers['Content-Type'] = 'application/json'
            return response  

In all cases, there are several benefits to having a formal specification available:

Client applications can download the specification to fine-tune their processing.1.
When examples are included, the specification becomes a series of test cases for2.
both client and server.
The various details of the specification can also be used by the server application3.
to provide validation rules, defaults, and other details.

See also
The Parsing the query string in a request recipe introduces the core web service
The Implementing Authentication for web services recipe will add authentication to
make the service more secure

Parsing the URL path
A URL is a complex object. It contains at least six separate pieces of information. More can
be included as optional values.

A URL such as http://127.0.0.1:5000/dealer/hand/player_1?$format=json has
several fields:

http is the scheme. https is for secure connections using encrypted sockets.
127.0.0.1 can be called the authority, although network location is more
commonly used. This particular IP address means the localhost and is a kind of
loopback to the localhost. The name localhost maps to this IP address.



Web Services

[ 646 ]

5000 is the port number, and is part of the authority.
/dealer/hand/player_1 is the path to a resource.
$format=json is a query string.

The path to a resource can be quite complex. It's common in RESTful web services to use the
path information to identify groups of resources, individual resources, and even
relationships among resources.

How can we handle complex path parsing?

Getting ready
Most web services provide access to some kind of resource. In the Implementing Web services
with WSGI, Using the Flask framework for RESTful APIs, and Parsing the query string in a request
recipes, the resource was identified on the URL path as a hand or hands. This is—in a
way—misleading.

There are actually two resources that are involved in those web services:

A deck, which can be shuffled to produce one or more random hands
A hand, which was treated as a transient response to a request

To make matters even more confusing, the hand resource was created via a GET request
instead of the more common POST request. This is confusing because a GET request is never
expected to change the state of the server.

For simple explorations and technical spikes, GET requests are helpful. Because a browser
can make GET requests, these are a good way to explore some aspects of web services
design.

A redesign can provide explicit access to a randomized instance of the Deck class. One
feature of the deck will be hands of cards. This parallels the idea of Deck as a collection and
Hands as a resource within the collection:

/dealer/decks: A POST request will create a new deck object. The response to
this request is taken that is used to identify the unique deck.
/dealer/deck/{id}/hands: A GET request to this will get a hand object from
the given deck identifier. The query string will specify how many cards. The
query string can use the $top option to limit how many hands are returned. It
can also use the $skip option to skip over some hands and get cards for later
hands.



Web Services

[ 647 ]

These queries will require an API client. They can't easily be done from a browser. One
possibility is to use Postman as a plug-in to the Chrome browser. We'll leverage the Making
REST requests with urllib recipe as the starting point for a client to process these more
complex APIs.

How to do it…
We'll decompose this into two parts: server and client.

Server
Start with the Parsing the query string in a request recipe as a template for a Flask1.
application. We'll be changing the view functions in that example:

        from flask import Flask, jsonify, request, abort, make_response
        from http import HTTPStatus
        dealer = Flask('dealer')

Import any additional modules. In this case, we'll use the uuid module to create a2.
unique key for a shuffled deck:

         import uuid

We'll also use the Werkzeug BadRequest response. This allows us to provide a
detailed error message. This is a little nicer than using abort(400) for an
erroneous request:

        from werkzeug.exceptions import BadRequest

Define the global state. This includes the collection of decks. It also includes the3.
random number generator. For testing purposes, it can help to have a way to
force a particular seed value:

        import os
        import random
        random.seed(os.environ.get('DEAL_APP_SEED'))
        decks = {}



Web Services

[ 648 ]

Define a route—a URL pattern—to a view function that performs a specific4.
request. This is a decorator, placed immediately in front of the function. It will
bind the function to the Flask application:

        @dealer.route('/dealer/decks', methods=['POST'])

We've defined the decks resource and limited the route to only handling HTTP
POST requests. This narrows the semantics of this particular endpoint—a POST
request generally means that the URL will create something new in the server. In
this example, it creates a new instance in the collection of decks.

Define the view function that supports this resource:5.

        def make_deck():
            id = str(uuid.uuid1())
            decks[id]= Deck()
            response_json = jsonify(
                status='ok',
                id=id
            )
            response = make_response(response_json, HTTPStatus.CREATED)
            return response

The uuid1() function will create a universally unique ID based on the current
host and a randomly-seeded sequence generator. The string version of this is a
long hexadecimal string that looks like
93b8fc06-5395-11e6-9e73-38c9861bf556. 

We'll use this string as a key for creating a new instance of Deck. The response
will be a small JSON document with two fields:

The status field will be 'ok' because everything worked. This allows
us to perhaps provide other state information that includes warnings
or errors.
The id field has the ID string for the deck just created. This allows the
server to have multiple, concurrent games, each of which is
distinguished by a deck ID.

The response is created with the make_response() function so that we can
provide an HTTP status of 201 CREATED instead of the default of 200 OK. This
distinction is important because this request changes the state of the server.



Web Services

[ 649 ]

Define a route that requires a parameter. In this case, the route will include the6.
specific deck ID to deal from:

        @dealer.route('/dealer/decks/<id>/hands', methods=['GET'])

The <id> makes this a path template instead of a simple, literal path. Flask will
parse the / characters and separate the <id> field.

Define a view function that has parameters which match the template. Since the7.
template included <id>, the view function has a parameter named id as well:

        def get_hands(id):
            if id not in decks:
                dealer.logger.debug(id)
                return make_response(
                    'ID {} not found'.format(id), HTTPStatus.NOT_FOUND)
            try:
                cards = int(request.args.get('cards',13))
                top = int(request.args.get('$top',1))
                skip = int(request.args.get('$skip',0))
                assert skip*cards+top*cards <= len(decks[id].cards), \
                    "$skip, $top, and cards larger than the deck"
            except ValueError as ex:
                return BadRequest(repr(ex))
            subset = decks[id].cards[skip*cards:(skip+top)*cards]
            hands = [subset[h*cards:(h+1)*cards] for h in range(top)]
            response = jsonify(
                [
                    {'hand':i, 'cards':[card.to_json() for card in hand]}
                     for i, hand in enumerate(hands)
                ]
            )
            return response

If the value of the id parameter is not one of the keys to the decks collection, the
function makes a 404 NOT FOUND response. Rather than use the abort()
function, this function uses BadRequest to include an explanatory error message.
We could also have used the make_response() function in Flask.

The values of $top, $skip, and cards from the query string are also extracted by
this function. For this example, all of the values happen to be integers, so the
int() function is used for each value. A rudimentary sanity check is performed
on the query parameters. An additional check is actually required, and the reader
is encouraged to think through all of the possible bad parameters that might be
used. 



Web Services

[ 650 ]

The subset variable is the portion of the deck being dealt. We've sliced the deck
to start after skip sets of cards; we've included just top sets of cards in this
slice. From that slice, the hands sequence decomposes the subset into the top
number of hands, each of which has cards in it. This sequence is converted to
JSON via the jsonify() function, and is returned. 

The default status is 200 OK, which is appropriate here because this query is an
idempotent GET request. Each time a query is sent, the same set of cards will be
returned.

Define a main program that runs the server:8.

        if __name__ == "__main__":
            dealer.run(use_reloader=True, threaded=False)  

Client
This will be similar to the client module from the Making REST requests with urllib recipe:

Import the essential modules for working with RESTful APIs: 1.

        import urllib.request
        import urllib.parse
        import json

There's a sequence of steps to make the POST request that will create a new,2.
shuffled deck. This starts by defining the URL in pieces, by creating a
ParseResult object manually. This will be collapsed into a single string later:

        full_url = urllib.parse.ParseResult(
            scheme="http",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/decks",
            params=None,
            query=None,
            fragment=None
        )



Web Services

[ 651 ]

Build a Request object from the URL, method, and headers: 3.

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "POST",
            headers = {
                'Accept': 'application/json',
            }
        )

   The default method is GET, which is unsuitable for this API request.

Send the request and process the response object. For debugging purposes, it can4.
be helpful to print status and header information. Generally, we only need to be
sure that the status was the expected 201. 

The response document should be a JSON serialization of a Python dictionary
with two fields, status and ID. This client confirms the status in the response is
ok before using the value in the id field:

        with urllib.request.urlopen(request) as response:
            # print(response.status)
            assert response.status == 201
            # print(response.headers)
            document = json.loads(response.read().decode("utf-8"))

        print(document)
        assert document['status'] == 'ok'
        id = document['id']

In many RESTful APIs, there will be a location header, which provides a URL that
links to the object that was created.

Create a URL that includes inserting the ID into a URL path, as well as providing5.
some query string arguments. This is done by creating a dictionary to model the
query string, and then building a URL using a ParseResult object:

         query = {'$top': 4, 'cards': 13}

        full_url = urllib.parse.ParseResult(
            scheme="http",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/decks/{id}/hands".format(id=id),
            params=None,
            query=urllib.parse.urlencode(query),
            fragment=None



Web Services

[ 652 ]

        )

We've inserted the id value into the path using
"/decks/{id}/hands/".format(id=id). Another way to do this is
"/".join(["", "decks", id, "hands", ""]). Note that the empty strings
are a way to force the "/" to appear at the beginning and end.

Make the Request object using the full URL, the method, and the standard6.
headers: 

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "GET",
            headers = {
                'Accept': 'application/json',
            }
        )

Send the request and process the response. We'll confirm that the response is 2007.
OK. The response can then be parsed to get the details of the cards that are part of
the requested hand:

        with urllib.request.urlopen(request) as response:
            # print(response.status)
            assert response.status == 200
            # print(response.headers)
            cards = json.loads(response.read().decode("utf-8"))

        print(cards)

When we run this, it will create a fresh, new Deck instance. Then it will deal four
hands of 13 cards each. The query defines the exact number of hands and the
number of cards in each hand.

How it works…
The server defines two routes that follow a common pattern for a collection and an instance
of the collection. It's typical to define collection paths with a plural noun, decks. Using a
plural noun means that the CRUD operations are focused on creating instances within the
collection.



Web Services

[ 653 ]

In this case, the Create operation is implemented with a POST method of the
/dealer/decks path. Retrieve could be supported by writing an additional view function
to handle the GET method of the /dealer/decks path. This would expose all of the deck
instances in the decks collection.

If Delete is supported, this could use the DELETE method of /dealer/decks. Update
(using the PUT method) doesn't seem to fit with the idea of a server that creates random
decks.

Within the /dealer/decks collection, a specific deck is identified by the
/dealer/decks/<id> path. The design calls for using the GET method to fetch several
hands of cards from the given deck.

The remaining CRUD operations—Create, Update, and Delete—don't make much sense for
this kind of Deck object. Once the Deck object is created, then a client application can
interrogate the deck for various hands.

Deck slicing
The dealing algorithm makes several slices of a deck of cards. The slices are based on the
fact that the size of a deck, D, must contain enough cards for the the number of hands, h,
and the number of cards in each hand, c. The number of hands and cards per hand must be
no larger than the size of the deck:

h × c ≤ D

The social ritual of dealing often involves cutting the deck, which is a very simple shuffle
done by the non-dealing player. Traditionally, each hth card is assigned to each hand, Hn:

Hn = { Dn+h×i : 0 ≤ i < c }

The idea in the preceding formula is that hand Hn=0 has cards H0 = { D0, Dh, D2h, …, Dc×h },
hand Hn=1 has cards H1 = { D1, D1+h, D1+2h, …, D1+c×h}, and so on. This distribution of cards looks
more fair than simply handing each player the next batch of c cards.

This isn't really necessary, and our Python program deals cards in batches that are slightly
easier to compute with Python:

Hn= { Dn×c+1 : 0 ≤ i < c }



Web Services

[ 654 ]

The Python code creates hand Hn=0 with cards H0={ D0, D1, D2, …, Dc-1 }, hand Hn=1 has cards
H0 = { Dc, Dc+1, Dc+2, …, D2c-1 }, and so on. Given a random deck, this is just as fair as any other
allocation of cards. It's slightly simpler to enumerate in Python because it involves list
slicing. For more information on slicing, see the Slicing and dicing a list recipe in Chapter 4,
Built-in Data Structures – list, set, dict.

Client side
The client side of this transaction is a sequence of RESTful requests:

Ideally, the operations start with a GET to swagger.json to get the server's1.
specifications. Depending on the server, this may be as simple as:

        with
urllib.request.urlopen('http://127.0.0.1:5000/dealer/swagger.json') as
response
            swagger = json.loads(response.read().decode("utf-8"))

Then, there's a POST to create a new Deck instance. This requires creating a2.
Request object so that the method can be set to POST.
Then, there's a GET to get some hands from the deck instance. This can be done by3.
tweaking the URL as a string template. It's slightly more general to work the URL
as a collection of individual fields instead of a trivial string.

There are two ways to handle errors from RESTful applications:

Use a simple status response such as abort(HTTPStatus.NOT_FOUND) for a
resource that's not found.
Use make_response(message, HTTPStatus.BAD_REQUEST) for a request that
is in some way invalid. The message can provide needed details.

For some other status codes, such as 403 Forbidden, we might not want to provide too
many details. In the case of an authorization issue, it's often a bad idea to provide too many
details. For this, abort(HTTPStatus.FORBIDDEN) might be appropriate.



Web Services

[ 655 ]

There's more…
We'll look at some features that we should consider adding to the server:

Check for JSON in the Accept header
Provide a Swagger specification

It's common to use a header to distinguish between RESTful API requests and other
requests to a server. The Accept header can provide a MIME type that distinguishes
requests for JSON content from requests for user-oriented content.

The @dealer.before_request decorator can be used to inject a function that filters each
request. This filter can distinguish proper RESTful API requests based on the following
requirements:

The Accept header includes a MIME type that includes json. Typically, the full
MIME string is application/json.
Additionally, we can make an exception for the swagger.json file. This can be
treated as a RESTful API request irrespective of any other indicators.

Here's the additional code that implements this:

    @dealer.before_request
    def check_json():
        if request.path == '/dealer/swagger.json':
            return
        if 'json' in request.headers.get('Accept', '*/*'):
            return
        return abort(HTTPStatus.BAD_REQUEST)

This filter will simply return an uninformative 400 BAD REQUEST response. To provide a
more explicit error message might divulge too much information about the server's
implementation. If it seems helpful, however, we can replace abort() with
make_response() to return a more detailed error.

Providing a Swagger specification
A well-behaved RESTful API provides the OpenAPI specification for the various services
available. This is generally packaged in the /swagger.json route. This doesn't necessarily
mean that a literal file is available. Instead, this path is used as a focus to provide the
detailed interface specification in JSON notation following the Swagger 2.0 specification.



Web Services

[ 656 ]

We've defined the route, /swagger.json, and bound a function, swagger3(), to this
route. This function will create a JSON representation of a global object, specification:

    @dealer.route('/dealer/swagger.json')
    def swagger3():
        response = make_response(json.dumps(specification,
indent=2).encode('utf-8'))
        response.headers['Content-Type'] = 'application/json'
        return response

The specification object has the following outline. Important details have been replaced
with ... to emphasize the overall structure. The details are as follows:

    specification = {
        'swagger': '2.0',
        'info': {
            'title': '''Python Cookbook\nChapter 12, recipe 5.''',
            'version': '1.0'
        },
        'schemes': ['http'],
        'host': '127.0.0.1:5000',
        'basePath': '/dealer',
        'consumes': ['application/json'],
        'produces': ['application/json'],
        'paths': {
            '/decks': {...}
            '/decks/{id}/hands': {...}
        }
    }

The two paths correspond to the two @dealer.route decorators in the server. This is why
it's often helpful to start the design of a server with a Swagger specification, and then build
the code to meet specification.

Note the small syntax difference. Flask uses /decks/<id>/hands where the OpenAPI
Swagger specification uses /decks/{id}/hands. This small thing means we can't trivially
copy and paste between Python and Swagger documents.

Here's the /decks path. This shows the input parameters that come from the query string.
It also shows the details of the 201 response that contains the deck ID information:

    '/decks': {
     'post': {
        'parameters': [
          {
            'name': 'size',
            'in': 'query',



Web Services

[ 657 ]

            'type': 'integer',
            'default': 1,
                'description': '''number of decks to build and shuffle'''
          }
        ],
        'responses': {
          '201': {
            'description': '''Create and shuffle a deck. Returns a unique
deck id.''',
            'schema': {
              'type': 'object',
                'properties': {
                  'status': {'type': 'string'},
                  'id': {'type': 'string'}
                }
              }
            },
          '400': {
            'description': '''Request doesn't accept a JSON response'''
          }
        }
      }

The /decks/{id}/hands path has a similar structure. It defines all of the parameters that
are available in the query string. It also defines the various responses; a 200 response that
contains the cards and define the 404 response when the ID value was not found.

We've omitted some of the details of the parameters for each path. We've also omitted
details on the structure of the deck. The outline, however, summarizes the RESTful API:

The swagger key must be set to 2.0.
The info key can provide a great deal of information. This example only has the
minimal requirements.
The schemes, host, and basePath fields define some of the common elements
of the URLs used for this service.
The consumes field states what the request Content-Type should include.
The produces field states both; that the request Accept header must state, as well
as what the response Content-Type will be.
The paths field identifies all of the paths that provide a response on this server.
This shows the /decks and the /decks/{id}/hands paths.

The swagger3() function transforms this Python object into JSON notation and returns it.
This implements what appears to be a download of a swagger.json file. The content
specifies the resources provided by the RESTful API server.



Web Services

[ 658 ]

Using a Swagger specification
In the client programming, we've used simple literal values for building the URL. The
example looked like the following:

    full_url = urllib.parse.ParseResult(
        scheme="http",
        netloc="127.0.0.1:5000",
        path="/dealer" + "/decks",
        params=None,
        query=None,
        fragment=None
    )

Parts of this can come from the Swagger specification. We could, for example, use
specification['host'] and specification['basePath'] instead of the netloc
value and the first part of the path value. This use of the Swagger specification can provide
a little bit of extra flexibility.

The Swagger specification is meant for consumption by tools that are used by people to
make design decisions. The real purpose it to drive automated testing of APIs. Often,
Swagger specifications will contain detailed examples that can help to clarify how to write a
client application.

See also
See the Making REST requests with urllib and Parsing the query string in a request
recipes for more examples of RESTful web services

Parsing a JSON request
Many web services involve a request to create a new persistent object or make an update to
an existing persistent object. In order to do these kinds of operation, the application will
need input from the client.

A RESTful web service will generally accept input (and produce output) in the form of
JSON documents. For more information on JSON, see the Reading JSON documents recipe in
Chapter 9, Input/Output, Physical Format, and Logical Layout

How can we parse JSON inputs from web clients? What's an easy way to validate the input?



Web Services

[ 659 ]

Getting ready
We'll extend the Flask application from the Parsing the query string in a request recipe to add
a user registration feature; this will add a player who can then request cards. The player is a
resource that will involve the essential CRUD operations:

A client can do a POST to the /players path to create a new player. This will
include a payload of a document that describes the player. The service will
validate the document, and if it's valid, create a new, persistent Player instance.
The response will include the ID assigned to the player. If the document is
invalid, a response will be sent back detailing the problems.
A client can do a GET to the /players path to get the list of players.
A client can do a GET to the /players/<id> path to get the details of a specific
player.
A client can do a PUT to the /players/<id> path to update the details of a
specific player. As with the initial POST, this requires a payload document that
must be validated.
A client can do a DELETE to the /players/<id> path to remove a player.

As with the Parsing the query string in a request recipe, we'll implement both the client and
the server portion of these services. The server will handle the essential POST and GET
operations. We'll leave the PUT and DELETE operations as exercises for the reader.

We'll need a JSON validator. See h t t p s ://p y p i . p y t h o n . o r g /p y p i /j s o n s c h e m a /2. 5. 1.
This is particularly good. It's helpful to have a Swagger specification validator as well. See h
t t p s ://p y p i . p y t h o n . o r g /p y p i /s w a g g e r - s p e c - v a l i d a t o r .

If we install the swagger-spec-validator package, this also installs the latest copy of the
jsonschema project. Here's how the whole sequence might look:

MacBookPro-SLott:pyweb slott$ pip3.5 install swagger-spec-validator
Collecting swagger-spec-validator
  Downloading swagger_spec_validator-2.0.2.tar.gz
Requirement already satisfied (use --upgrade to upgrade):
    jsonschema in /Library/.../python3.5/site-packages
    (from swagger-spec-validator)
Requirement already satisfied (use --upgrade to upgrade):
    setuptools in /Library/.../python3.5/site-packages
    (from swagger-spec-validator)
Requirement already satisfied (use --upgrade to upgrade):
    six in /Library/.../python3.5/site-packages
    (from swagger-spec-validator)
Installing collected packages: swagger-spec-validator

https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/jsonschema/2.5.1
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator
https://pypi.python.org/pypi/swagger-spec-validator


Web Services

[ 660 ]

  Running setup.py install for swagger-spec-validator ... done
Successfully installed swagger-spec-validator-2.0.2

We used the pip command to install the swagger-spec-validator package. This
installation also checked that jsonschema, setuptools, and six were already installed.

There's a hint about using --upgrade. It can help to use a command such as this to
upgrade a package: pip install jsonschema --upgrade. This might be necessary if
there's a version of jsonschema that's below version 2.5.0.

How to do it…
We'll decompose this into three parts: Swagger specification, server, and client.

Swagger specification
Here's the outline of the Swagger specification:1.

         specification = {
            'swagger': '2.0',
            'info': {
                'title': '''Python Cookbook\nChapter 12, recipe 6.''',
                'version': '1.0'
            },
            'schemes': ['http'],
            'host': '127.0.0.1:5000',
            'basePath': '/dealer',
            'consumes': ['application/json'],
            'produces': ['application/json'],
            'paths': {
                '/players': {...},
                '/players/{id}': {...},
            }
            'definitions': {
                'player: {..}
            }
        }

The first fields are essential boilerplate for RESTful web services. The paths and
definitions will be filled in with the URLs and the schema definitions that are
part of the service.



Web Services

[ 661 ]

Here's the schema definition used to validate a new player. This goes inside the2.
definition of the overall specification:

        'player': {
            'type': 'object',
            'properties': {
                'name': {'type': 'string'},
                'email': {'type': 'string', 'format': 'email'},
                'year': {'type': 'integer'},
                'twitter': {'type': 'string', 'format': 'uri'}
            }
        }

The overall input document is formally described as having a type of object. There
are four properties of that object:

A name, which is a string
An e-mail address, which is a string with a specific format
A Twitter URL, which is a string with a given format
A year, which is a number

There are a few defined formats that are part of the JSON schema specification
language. The email and url formats are widely used. The complete list of
formats includes date-time, hostname, ipv4, ipv6, and uri. For details on
defining a schema, see http://json-schema.org/documentation.html.

Here's the overall players path that's used to create a new player or get the3.
entire collection of players:

        '/players': {
            'post': {
                'parameters': [
                        {
                            'name': 'player',
                            'in': 'body',
                            'schema': {'$ref': '#/definitions/player'}
                        },
                    ],
                'responses': {
                    '201': {'description': 'Player created', },
                    '403': {'description': 'Player is invalid or a
duplicate'}
                }
            },
            'get': {



Web Services

[ 662 ]

                'responses': {
                    '200': {'description': 'All of the players defined so
far'},
                }
            }
        },

This path defines two methods—post and get. The post method has one
parameter, called player. This parameter is the body of the request, and it
follows the player schema provided in the definitions section. 

The get method is shown without any parameters or any formal definition of the
structure of the response.

Here's the definition of a path to get details about a specific player:4.

        '/players/{id}': {
            'get': {
                'parameters': [
                    {
                        'name': 'id',
                        'in': 'path',
                        'type': 'string'
                    }
                ],
                'responses': {
                    '200': {
                        'description': 'The details of a specific player',
                        'schema': {'$ref': '#/definitions/player'}
                    },
                    '404': {'description': 'Player ID not found'}
                }
            }
        },

That path is similar to the one shown in the Parsing the URL path recipe. The
player key is provided in the URL. The response when a player ID is valid is
shown in detail. The response has a defined schema that also uses the player
schema definition in the definitions section.

This specification will be part of the server. It can be provided by a view function
defined in the @dealer.route('/swagger.json') route. It's often simplest to
create a file with this specification document in it.



Web Services

[ 663 ]

Server
Start with the Parsing the query string in a request recipe as a template for a Flask1.
application. We'll be changing the view functions: 

        from flask import Flask, jsonify, request, abort, make_response
        from http import HTTPStatus

Import the additional libraries required. We'll use the JSON schema for2.
validation. We'll also compute hashes of strings to serve as useful external
identifiers in URLs:

        from jsonschema import validate
        from jsonschema.exceptions import ValidationError
        import hashlib

Create the application and the database of players. We'll use a simple global3.
variable. A larger application might use a proper database server to save this
information: 

        dealer = Flask('dealer')
        players = {}

Define the route for posting to the overall collection of players:4.

        @dealer.route('/dealer/players', methods=['POST'])

Define the function that will parse the input document, validate the content, and5.
then create the persistent player object:

        def make_player():
            document = request.json
            player_schema = specification['definitions']['player']
            try:
                validate(document, player_schema)
            except ValidationError as ex:
                return make_response(ex.message, 403)

            id =
hashlib.md5(document['twitter'].encode('utf-8')).hexdigest()
            if id in players:
                return make_response('Duplicate player', 403)

            players[id] = document

            response = make_response(



Web Services

[ 664 ]

                jsonify(
                    status='ok',
                    id=id
                ),
                201
            )
            return response

   This function follows a common four-step design:

Validate the input document. The schema is defined as part of the
overall Swagger specification.
Create a key and confirm that it's unique. This is a key that's derived
from the data. We might also create unique keys using the uuid
module.
Persist the new document in the database. In this example, it's only a
single statement, players[id] = document. This follows the ideal
that a RESTful API is built around classes and functions that already
provide a complete implementation of the features.
Build a response document.

Define a main program that runs the server:6.

         if __name__ == "__main__":
            dealer.run(use_reloader=True, threaded=False)  

We can add other methods to see multiple players or individual players. These will follow
the essential designs of the Parsing the URL path recipe. We'll look at these in the next
section.

Client
This will be similar to the client module from the Parsing the URL path recipe:

Import the essential modules for working with RESTful APIs:1.

        import urllib.request
        import urllib.parse
        import json



Web Services

[ 665 ]

Create the URL in pieces by creating a ParseResult object manually. This will2.
be collapsed into a single string later:

         full_url = urllib.parse.ParseResult(
            scheme="http",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/players",
            params=None,
            query=None,
            fragment=None
        )

Create an object that can be serialized to a JSON document and posted to the3.
server. Studying swagger.json shows what this document's schema must be.
The document will include the required four properties:

        document = {
            'name': 'Xander Bowers',
            'email': 'x@example.com',
            'year': 1985,
            'twitter': 'https://twitter.com/PacktPub'
        }

We'll combine URL, document, method, and headers to create the complete4.
request. This will use urlunparse() to collapse the URL parts into a single
string. The Content-Type header alerts the server that we're going to provide a
text document in JSON notation:

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "POST",
            headers = {
                'Accept': 'application/json',
                'Content-Type': 'application/json;charset=utf-8',
            },
            data = json.dumps(document).encode('utf-8')
        )

We've included the charset option, which specifies the specific encoding used to
create bytes from Unicode strings. Since utf-8 encoding is the default, this isn't
required. In the rare case that a different encoding is used, this shows how to
provide the alternative.



Web Services

[ 666 ]

Send the request and process the response object. For debugging purposes, it5.
can be helpful to print the status and headers information. Generally, we only
need to be sure that the status was the expected 201 CREATED:

        with urllib.request.urlopen(request) as response:
            # print(response.status)
            assert response.status == 201
            # print(response.headers)
            document = json.loads(response.read().decode("utf-8"))

        print(document)
        assert document['status'] == 'ok'
        id = document['id']

We've examined the response document to assure that it includes the two
expected fields.

We can also include other queries in this client. We might want to retrieve all players or
retrieve a specific player. These will follow the design shown in the Parsing the URL path
recipe.

How it works…
Flask automatically examines inbound documents to parse them. We can simply use
request.json to leverage the automated JSON parsing that's built-in to Flask.

If the input is not actually JSON, then the Flask framework will return a 400 BAD REQUEST
response. This happens when our server application references the json property of the
request. We can use a try statement to capture the 400 BAD REQUEST response object and
make changes to it, or possibly return a different response.

We've used the jsonschema package to validate the input document. This will check a
number of features of the JSON document:

It checks if the overall type of the JSON document matches the overall type of the
schema. In this example, the schema required an object, which is a {} JSON
structure.



Web Services

[ 667 ]

For each property defined in the schema and present in the document, it confirms
that the value in the document matches the schema definition. This means that
the value fits one of the defined JSON types. If there are other validation rules
like a format, or a range specification, or a number of elements for an array, these
constraints are checked also. This check proceeds recursively through all levels of
the schema.
If there's a required list of fields, it checks that all of these are actually present in
the document.

For this recipe, we've kept the details of the schema to a minimum. A common feature that
we've omitted in this example is the list of required properties. We can also provide
considerably more detailed attribute descriptions. The year, for example, should probably
have a minimum value of 1900.

We've kept the database update processing to a minimum in this example. In some cases,
the database insert might involve a much more complex process where a database client
connection is used to execute a command that changes the state of a database server.
Ideally, the database processing is kept to a minimum—the application-specific details are
often imported from a separate module and presented as RESTful API resources.

In a larger application, there might be a player_db module that included all of the player
database processing. This module would define all of the classes and functions. This would
often provide the detailed schema definitions for a player object. The RESTful API service
would import these classes, functions, and schema specifications and expose them for
external consumers.

There's more…
The Swagger specification allows examples of response documents. This is often helpful in
several ways:

It's common to start designing the sample document that is part of the response.
Writing a schema specification that describes a document can be difficult and the
schema validation feature helps to ensure that the specification matches the
document.
Once the specification is complete, the next step is to write the server-side
programming. It's helpful to have unit tests that leverage schema example
documents.
For users of the Swagger specification, a concrete example of the response can be
used to design the client, and write unit tests for the client-side programming.



Web Services

[ 668 ]

We can use the following code to confirm that a server has a valid Swagger specification. If
this raises an exception, either there's no Swagger document or the document doesn't
properly fit the Swagger schema:

    from swagger_spec_validator import validate_spec_url
    validate_spec_url('http://127.0.0.1:5000/dealer/swagger.json')

Location header
The 201 CREATED response included a small document with some status information. The
status information included the key that was assigned to the newly-created record.

It's also common for a 201 CREATED response to have an additional location header in the
response. This header will provide a URL that can be used to recover the document which
was created. For this application, the location would be a URL, like the following example:
http://127.0.0.1:5000/dealer/players/75f1bfbda3a8492b74a33ee28326649c.

The location header can be saved by a client. A complete URL is slightly simpler than
creating a URL from a URL template and a value.

The server can build this header as follows:

    response.headers['Location'] = url_for('get_player', id=str(id))

This relies on the Flask url_for() function. This function takes the name of a view
function, and any parameters that come from the URL path. It then uses the route for the
view function to construct a complete URL. This will include all the information for the
currently running server. After the header is inserted, the response object can be returned.

Additional resources
The server should be able to respond with a list of players. Here's a minimal
implementation that simply transforms the data into a large JSON document:

    @dealer.route('/dealer/players', methods=['GET'])
    def get_players():
        response = make_response(jsonify(players))
        return response



Web Services

[ 669 ]

A more sophisticated implementation would support the $top and $skip query
parameters to page through the list of players. Additionally, a $filter option might be
useful to implement a search for a subset of players.

In addition to the generic query for all players, we need to implement a method that will
return an individual player. This kind of view function is often just as simple, as shown in
the following code:

    @dealer.route('/dealer/players/<id>', methods=['GET'])
    def get_player(id):
        if id not in players:
            return make_response("{} not found".format(id), 404)

        response = make_response(
            jsonify(
                players[id]
            )
        )
        return response

This function confirms that the given ID is a proper key value in the database. If the key is
not in the database, the database document is transformed into JSON notation and
returned.

Query for a specific player
Here's the client processing required to locate a specific value in the database. This involves
multiple steps:

First, we'll create the URL for a particular player:1.

        id = '75f1bfbda3a8492b74a33ee28326649c'
        full_url = urllib.parse.ParseResult(
            scheme="http",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/players/{id}".format(id=id),
            params=None,
            query=None,
            fragment=None
        )

We've built the URL from pieces of information. This is created as a ParseResult
object with separate fields.



Web Services

[ 670 ]

Given the URL, we can then create a Request object:2.

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "GET",
            headers = {
                'Accept': 'application/json',
            }
        )

Once we have the request object, we can then make the request, and retrieve the3.
response. We need to confirm that the response status is 200. If so, we can then
parse the body of the response to get the JSON document that describes a given
player:

        with urllib.request.urlopen(request) as response:
            assert response.status == 200
            player= json.loads(response.read().decode("utf-8"))
        print(player)

If the player doesn't exist, the urlopen() function will raise an exception. We can
enclose this in a try statement to capture the 403 NOT FOUND exceptions that
could be raised if the player ID doesn't exist.

Exception handling
Here's the general pattern for all client requests. This includes the explicit try statement:

    try:
        with urllib.request.urlopen(request) as response:
            # print(response.status)
            assert response.status == 201
            # print(response.headers)
            document = json.loads(response.read().decode("utf-8"))

        # process the document here.

    except urllib.error.HTTPError as ex:
        print(ex.status)
        print(ex.headers)
        print(ex.read())



Web Services

[ 671 ]

There are actually two general kinds of exception:

Lower-level exceptions: This exception indicates that the server can't be
contacted. The ConnectionError exception is a common example of this lower-
level exception. This is a subclass of the OSError exception.
The HTTPError exceptions from the urllib module: This exception means that
the overall HTTP protocol worked, but the response from the server was not a
successful status code. Success is generally a value in the range 200 to 299. 
The HTTPError exception has similar attributes to a proper response. It includes
a status, headers, and a body.

In some cases, an HTTPError exception might be one of several expected responses from a
server. It might not indicate an error or problem. It might simply be another meaningful
status code.

See also
See the Parsing the URL path recipe for other examples of URL processing.
The Making REST requests with urllib recipe shows other examples of query string
processing.

Implementing authentication for web
services
Security, in general, is a pervasive issue. Every part of an application will have security
considerations. Parts of the implementation of security will involve two closely-related
issues:

Authentication: A client must provide some evidence of who they are. This
might involve signed certificates or it might involve credentials like a username
and password. It might involve multiple factors, such as an SMS message to a
phone that the user should have access to. The web server must validate this
authentication.
Authorization: A server must define areas of authority and allocate these to
groups of users. Furthermore, individual users must be defined as members of
the authorization groups. 



Web Services

[ 672 ]

While it's technically possible to define authorization on an individual basis, this tends to
become awkward as a site or application grows and changes. It's easier to define security
for groups. In some cases, a group may (initially) have only a single individual.

Application software must implement authorization decisions. For Flask, the authorization
can be part of each view function. The connection of individual to group and group to view
function defines the resources available to any specific user.

Confusingly, the HTTP standards provide authentication credentials using the HTTP
Authorization header. This may lead to some confusion because the header's name
doesn't precisely reflect its purpose.

There are a variety of ways that authentication details can be provided from a web client to
a web server. Here are a few of the alternatives:

Certificates: Certificates which are encrypted and include a digital signature as
well as a reference to a CertificateAuthority (CA): These are exchanged by the
Secure Socket Layer (SSL). In some environments, both client and server must 
have certificates that are used for mutual authentication. In other environments,
the server provides a certificate of authenticity, but the client does not. This is
common for the https scheme. The server doesn't verify the client's certificate.
Static API keys or tokens: A web service might provide a simple, fixed key. This
might be issued with advice to keep it secret, much like a password.
Usernames and passwords: The web server might identify users by a username
and password. User identity might be further confirmed using e-mail or SMS
messages.
Third-party authentication: This might involve using a service such as OpenID.
For details, see h t t p ://o p e n i d . n e t . This will involve a callback URL so that
notification information can be returned by the OpenID provider.

Additionally, there's a question of how the user information gets loaded into a web server.
Some websites are self-service, with users providing some minimal contact information and
being granted access to the content.

In many cases, websites aren't self-service. A user might be carefully vetted before being
allowed access. Access might involve contracts and fees for access to data or services. In
some cases, one company will purchase licenses for their employees, providing a finite list
of users who have access to a given suite of web services.

http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net
http://openid.net


Web Services

[ 673 ]

This recipe will show a self-service application in which there is no defined set of users.
This means that there must be a web service to create new users that doesn't require any
authentication. All other services will require a properly authenticated user.

Getting ready
We'll implement a version of HTTP-based authentication using the Authorization header.
There are two variations on this theme:

HTTP basic authentication: This uses a simple username and password string. It
relies on the SSL layer to encrypt the traffic between client and server.
HTTP digest authentication: This uses a much more complex hash of username,
password, and a nonce provided by the server. The server computes the expected
hash value. If the hash values match, then the same bytes were used to compute
the hash, and the password must have been valid. This doesn't require SSL.

SSL is frequently used by web servers to establish their authenticity. Because this
technology is so pervasive, it means that HTTP basic authentication can be used. This is a
huge simplification in RESTful API processing, since each request will include the
Authorization header and secure sockets will be used between client and server.

Configuring SSL
The details of getting and configuring certificates is outside of the realm of Python
programming. The OpenSSL package provides tools for creating self-signed certificates that
can be used for configuring a secure server. CAs such as Comodo Group and Symantec
offer trusted certificates that are widely recognized by OS vendors, as well as the Mozilla
Foundation.

There are two parts to creating a certificate with OpenSSL:

Create a private key file. This is generally done with the following OS-level1.
command:

       slott$ openssl genrsa 1024 > ssl.key
      Generating RSA private key, 1024 bit long modulus
      .......++++++
      ..........................++++++
      e is 65537 (0x10001)

The openssl genrsa 1024 command created a private key file, which was



Web Services

[ 674 ]

saved under the name ssl.key.

Create a certificate using the key file. The following command is one way to2.
handle this:

      slott$ openssl req -new -x509 -nodes -sha1 -days 365 -key ssl.key >
ssl.cert

You are about to be asked to enter information that will be incorporated into your
certificate request. What you are about to enter is what is called a Distinguished
Name (DN). There are quite a few fields but you can leave some blank. For some
fields there will be a default value. If you enter ., the field will be left blank.

      Country Name (2 letter code) [AU]:US
      State or Province Name (full name) [Some-State]:Virginia
      Locality Name (eg, city) []:
      Organization Name (eg, company) [Internet Widgits Pty
Ltd]:ItMayBeAHack
      Organizational Unit Name (eg, section) []:Common Name (e.g. server
FQDN or YOUR name) []:Steven F. Lott
      Email Address []:

The command openssl req -new -x509 -nodes -sha1 -days 365 -key
ssl.key created the private certificate file, which was saved in ssl.cert. This
certificate is privately signed, and doesn't have a CA. It provides only a limited set
of features.

These two steps create two files: ssl.cert and ssl.key. We'll use these files below to
secure the server.

Users and credentials
In order for users to be able to supply a username and a password, we'll need to store this
information on the server. There's a very important rule about user credentials:

Never store credentials. Never.



Web Services

[ 675 ]

It should be clear that storing plain text passwords is an invitation to a security disaster.
What's less obvious is that we can't even store encrypted passwords. When the key used to
encrypt the passwords is compromised, that will lead to a loss of all of the user identities.

How can a user's password be checked if we do not store the password?

The solution is to store a hash instead of a password. The first time the password is created,
the server saves the hashed summary. Each time after that, the user's input is hashed and
compared with the saved hash. If the two hashes match, then the password must have been
correct. What's central is the extreme difficulty of recovering a password from the hash.

There is a three-step process to create the initial hash value for a password:

Create a random salt value. Generally, 16 bytes from os.urandom() are used.1.
Use the salt plus the password to create a hash value. Generally, the hashlib is2.
used for this. Specifically, hashlib.pbkdf2_hmac(). A specific digest algorithm
is used for this, for example, md5 or sha224.
Save the digest name, the salt, and the hashed bytes. Often this is combined into3.
a single string that looks like—md5$salt$hash. The md5 is a literal. The $
separates the algorithm name, salt, and hash values.

When a password needs to be checked, a similar process is followed:

Given the username, locate the saved hash string. This will have a three-part1.
structure of the digest algorithm name, saved salt, and hashed bytes. The
elements may be separated by $.
Use the saved salt plus the user-supplied candidate password to create a2.
computed hash value.
If the computed hash bytes match the saved hash bytes, we know the digest3.
algorithm and salt matched; therefore, the password must have matched as well.

We'll define a simple class to retain user information as well as the hashed password. We
can use Flask's g object to save the user information during request processing.



Web Services

[ 676 ]

Flask view function decorator
There are several alternatives for handling the authentication checks:

If every route has the same security requirements, then the
@dealer.before_request function can be used to validate all
Authorization headers. This would require some exception processing for the
/swagger.json route and the self-service route that allows an unauthorized
user to create their new username and password credentials.
When some routes require authentication and some don't, it works out well to
introduce a decorator for the routes that need authentication.

A Python decorator is a function that wraps another function to extend its functionality. The
core technique looks like this:

    from functools import wraps
    def decorate(function):
        @wraps(function)
        def decorated_function(*args, **kw):
            # processing before
            result = function(*args, **kw)
            # processing after
            return result
        return decorated_function

The idea is to replace a given function, The function in this example, with a new function,
decorated_function. Within the body of the decorated function, it executes the original
function. Some processing can be done before and some processing done after the function
being decorated.

In a Flask context, we'll put our decorators after the @route decorator:

    @dealer.route('/path/to/resource')
    @decorate
    def view_function():
        return make_result('hello world', 200)

We've wrapped the view_function() with the @decorate decorator. A decorator can
check authentication to be sure that the user is known. We can do a wide variety of
processing in these functions.



Web Services

[ 677 ]

How to do it…
We'll decompose this into four parts:

Defining the User class
Defining a view decorator
Creating the server
Creating an example client

Defining the User class
This class definition provides an example of a definition of an individual User object:

Import modules that are required to create and check the password:1.

        import hashlib
        import os
        import base64

Other useful modules include json so that a User object can be properly
serialized.

Define the User class:2.

        class User:

Since we'll be changing some aspects of password generation and checking, we'll3.
provide two constants as part of the overall class definition:

        DIGEST = 'sha384'
        ROUNDS = 100000

We'll use the SHA-384 digest algorithm. This provides 64-byte summaries. We'll
use 100,000 rounds for the Password-Based Key Derivation Function 2 (PBKDF2)
algorithm.



Web Services

[ 678 ]

Most of the time, we'll create users from a JSON document. This will be a4.
dictionary that can be turned into keyword argument values using **:

         def __init__(self, **document):
            self.name = document['name']
            self.year = document['year']
            self.email = document['email']
            self.twitter = document['twitter']
            self.password = None

Note that we don't expect to set the password directly. Instead, we'll set the
password separately from creating the user document. 

We've omitted additional authorization details, such as a list of groups to which
the user belongs. We've also omitted an indicator showing that the password
needs to be changed.

Define the algorithm for setting the password hash value: 5.

        def set_password(self, password):
            salt = os.urandom(30)
            hash = hashlib.pbkdf2_hmac(
                self.DIGEST, password.encode('utf-8'), salt, self.ROUNDS)
            self.password = '$'.join(
                [self.DIGEST,
                 base64.urlsafe_b64encode(salt).decode('ascii'),
                 base64.urlsafe_b64encode(hash).decode('ascii')
                ]
            )

We've built a random salt using os.urandom(). We've then built the complete
hash value using the given digest algorithm, the password, and salt. We've used
a configurable number of rounds. 

Note that the hash computation works in bytes, not Unicode characters. We've
encoded the password into bytes using the utf-8 encoding. 

We assembled a string using the name of the digest algorithm, the salt, and the
encoded hash value. We've used URL-safe base64 encoding of the bytes so that
the full, hashed password value can be displayed easily. It can be saved in any
kind of database because it uses only A-Z, a-z, 0-9, - and _. 



Web Services

[ 679 ]

Note that urlsafe_b64encode() creates a string of byte values. These must be
decoded to see what Unicode characters they represent. We use the ASCII
encoding scheme here because base64 only uses sixty-four standard ASCII
characters.

Define an algorithm for checking a password hash value:6.

        def check_password(self, password):
            digest, b64_salt, b64_expected_hash = self.password.split('$')
            salt = base64.urlsafe_b64decode(b64_salt)
            expected_hash = base64.urlsafe_b64decode(b64_expected_hash)
            computed_hash = hashlib.pbkdf2_hmac(
                digest, password.encode('utf-8'), salt, self.ROUNDS)
            return computed_hash == expected_hash

We've decomposed the password hash into digest, salt, and expected_hash
value. Since the various parts were base64 encoded, they must be decoded to
recover the original bytes. 

Note that the hash computation works in bytes, not Unicode characters. We've
encoded the password into bytes using the utf-8 encoding. The computed results
of hashlib.pbkdf2_hmac() are compared with the expected results. If they
match, then the passwords must have been the same.

Here's a demonstration of how this class is used:

>>> details = {'name': 'xander', 'email': 'x@example.com',
...     'year': 1985, 'twitter': 'https://twitter.com/PacktPub' }
>>> u = User(**details)
>>> u.set_password('OpenSesame')
>>> u.check_password('opensesame')
False
>>> u.check_password('OpenSesame')
True

This test case can be included in the class docstring. See the Using docstrings for testing recipe
in Chapter 11, Testing, for more information on this kind of test case.

In more complex applications, there may also be a definition for the collection of users. This
often uses a database of some kind to facilitate locating users and inserting new users.



Web Services

[ 680 ]

Defining a view decorator
Import the @wraps decorator from functools. This helps define decorators by1.
assuring that the new function has the original name and docstring copied from
the function that is being decorated:

        from functools import wraps

In order to check passwords, we'll need the base64 module to help decompose2.
the value of the Authorization header. We'll also need to report errors and
update the Flask processing context using the global g object:

         import base64
        from flask import g
        from http import HTTPStatus

Define the decorator. All decorators have this essential outline. We'll replace the3.
processing here part in the next step:

         def authorization_required(view_function):
            @wraps(view_function)
            def decorated_function(*args, **kwargs):
                processing here
            return decorated_function

Here are the processing steps to examine the header. Note that every problem4.
encountered simply aborts processing with the 401 UNAUTHORIZED as the status
code. To prevent hackers from exploring the algorithm, all of the results are
identical even though the root causes are different: 

        if 'Authorization' not in request.headers:
            abort(HTTPStatus.UNAUTHORIZED)
        kind, data = request.headers['Authorization'].split()
        if kind.upper() != 'BASIC':
            abort(HTTPStatus.UNAUTHORIZED)
        credentials = base64.decode(data)
        username, _, password = credentials.partition(':')
        if username not in user_database:
            abort(HTTPStatus.UNAUTHORIZED)
        if not user_database[username].check_password(password):
            abort(HTTPStatus.UNAUTHORIZED)
        g.user = user_database[username]
        return view_function(*args, **kwargs)

   



Web Services

[ 681 ]

There are a number of conditions that must be successfully passed:

An Authorization header must be present
The header must specify basic authentication
The value must include a username:password string encoded using base64
The username must be a known username
The computed hash from the password must match the expected password hash

Any single failure leads to a 401 UNAUTHORIZED response.

Creating the server
This parallels the server shown in the Parsing a JSON request recipe. There are some
important modifications:

Create the local self-signed certificate or purchase a certificate from a certificate1.
authority. For this recipe, we'll assume the two filenames are ssl.cert and
ssl.key.
Import the modules required to build a server. Also import the User class2.
definition: 

        from flask import Flask, jsonify, request, abort, url_for
        from ch12_r07_user import User
        from http import HTTPStatus

Include the @authorization_required decorator definition.3.
Define a route with no authentication. This will be used to create new users. A4.
similar view function was defined in the Parsing a JSON request recipe. This
version requires a password property in the incoming document. This will be the
plain-text password that's used to create the hash. The plain text password is not
saved anywhere; only the hash is retained:

        @dealer.route('/dealer/players', methods=['POST'])
        def make_player():
            try:
                document = request.json
            except Exception as ex:
                # Document wasn't even JSON. We can fine-tune
                # the error message here.
                raise
            player_schema = specification['definitions']['player']
            try:



Web Services

[ 682 ]

                validate(document, player_schema)
            except ValidationError as ex:
                return make_response(ex.message, 403)

            id =
hashlib.md5(document['twitter'].encode('utf-8')).hexdigest()
            if id in user_database:
                return make_response('Duplicate player', 403)

            new_user = User(**document)
            new_user.set_password(document['password'])
            user_database[id] = new_user

            response = make_response(
                jsonify(
                    status='ok',
                    id=id
                ),
                201
            )
            response.headers['Location'] = url_for('get_player',
id=str(id))
            return response

After creating the user, the password is set separately. This follows the pattern set
by some applications where users are loaded in bulk. This processing might
provide a temporary password for each user, which must be immediately
changed. 

Note that each user is assigned a cryptic ID. The assigned ID is computed from a
hex digest of their Twitter handle. This is unusual, but it shows that there's a great
deal of flexibility available. 

If we wanted users to choose their own username, we'd need to add that to the
request document. We would use that username instead of the computed ID
value.

Define a route for which authentication is required. A similar view function was5.
defined in the Parsing a JSON request recipe. This version uses the
@authorization_required decorator:

        @dealer.route('/dealer/players/<id>', methods=['GET'])
        @authorization_required
        def get_player(id):
            if id not in user_database:
                return make_response("{} not found".format(id), 404)



Web Services

[ 683 ]

            response = make_response(
                jsonify(
                    players[id]
                )
            )
            return response

Most of the other routes will have similar @authorization_required
decorators. Some routes, such as the /swagger.json route, will not require
authorization.

The ssl module defines the ssl.SSLContext class. The context can be loaded6.
with the self-signed certificate and private key file created previously. The
context is then used by the Flask object's run() method. This will change scheme
in the URL from http://127.0.01:5000 to https://127.0.0.1:5000:

        import ssl
        ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
        ctx.load_cert_chain('ssl.cert', 'ssl.key')
        dealer.run(use_reloader=True, threaded=False, ssl_context=ctx)

Creating an example client
Create an SSL context that will work with a self-signed certificate:1.

        import ssl
        context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)
        context.check_hostname = False
        context.verify_mode = ssl.CERT_NONE

This context can be used with all urllib requests. This will politely ignore the
lack of CA signature on the certificate. 

Here's how we use this context to fetch the Swagger specification: 

        with urllib.request.urlopen(swagger_request, context=context) as
response:
            swagger = json.loads(response.read().decode("utf-8"))
            pprint(swagger)



Web Services

[ 684 ]

Create the URL for creating a new player instance. Note that we must use https2.
for the scheme. We've built a ParseResult object to show the various pieces of
the URL separately:

        full_url = urllib.parse.ParseResult(
            scheme="https",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/players",
            params=None,
            query=None,
            fragment=None
        )

Create a Python object that will be serialized into a JSON document. This schema3.
is similar to the example shown in the Parsing a JSON request recipe. This includes
one extra property, which is the plain text:

        password. document = {
            'name': 'Hannah Bowers',
            'email': 'h@example.com',
            'year': 1987,
            'twitter': 'https://twitter.com/PacktPub',
            'password': 'OpenSesame'
        }

Because the SSL layer uses an encrypted socket, sending a plain text password like
this is feasible.

We'll combine URL, document, method, and headers to create the complete4.
Request object. This will use urlunparse() to collapse the URL parts into a
single string. The Content-Type header alerts the server that we're going to
provide a text document in JSON notation:

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "POST",
            headers = {
                'Accept': 'application/json',
                'Content-Type': 'application/json;charset=utf-8',
            },
            data = json.dumps(document).encode('utf-8')
        )  



Web Services

[ 685 ]

We can post this document to create a new player:5.

         try:
            with urllib.request.urlopen(request, context=context) as
response:
                # print(response.status)
                assert response.status == 201
                # print(response.headers)
                document = json.loads(response.read().decode("utf-8"))

            print(document)
            assert document['status'] == 'ok'
            id = document['id']
        except urllib.error.HTTPError as ex:
            print(ex.status)
            print(ex.headers)
            print(ex.read())

The happy path will receive a 201 status response, and the user will be created.
The response will include the assigned user ID plus a redundant status code. 

If the user is a duplicate, or the document doesn't match the schema, then there
will be an HTTPError exception raised. This may have useful error messages that
can be displayed.

We can use the assigned ID and the known password to create an6.
Authorization header:

        import base64
        credentials =
base64.b64encode(b'75f1bfbda3a8492b74a33ee28326649c:OpenSesame')

The Authorization header has a two-word value: b"BASIC " + credentials.
The word BASIC is required. The credentials must be a base64 encoding of the
username:password string. In this example, the username is a specific ID
assigned when the user was created.

Here's a URL to query all of the players. We've built a ParseResult object to7.
show the various pieces of the URL separately:

         full_url = urllib.parse.ParseResult(
            scheme="https",
            netloc="127.0.0.1:5000",
            path="/dealer" + "/players",
            params=None,
            query=None,



Web Services

[ 686 ]

            fragment=None
        )

We can combine the URL, method, and headers into a single Request object. This8.
includes the Authorization header, which has the base64 encoding of
username and password:

        request = urllib.request.Request(
            url = urllib.parse.urlunparse(full_url),
            method = "GET",
            headers = {
                'Accept': 'application/json',
                'Authorization': b"BASIC " + credentials
            }
        )

The Request object can be used to make the query from the server and process9.
the response with urllib:

        request.urlopen(request, context=context) as response:
            assert response.status == 200
            # print(response.headers)
            players = json.loads(response.read().decode("utf-8"))

        pprint(players)

The expected status is 200. The response should be a JSON document with a list
of known players.

How it works…
There are three parts to this recipe:

Using SSL to provide a secure channel: This makes it possible to exchange
usernames and passwords directly. Instead of the more complex HTTP digest
authentication, we can use the simpler HTTP basic authentication scheme. There
are a variety of other authentication schemes used by web services; most of them
require SSL.
Using best practices for password hashing: Saving passwords in any form is a
security risk. Rather than save plain passwords, or even encrypted passwords,
we only save a computed hash value of a password and a random salt string.
This assures us that it's nearly impossible to reverse engineer passwords from the
hashed values.



Web Services

[ 687 ]

Using a decorator: It is used to distinguish between routes that require
authentication and routes that do not require authentication. This allows a great
deal of flexibility in creating a web service. 

In cases where all routes require authentication, we could add the password check
algorithm to the @dealer.before_request function. This would centralize all
authentication checks. It would also mean that a separate administrative process is required
to define users and hashed passwords.

What's essential here is that the security check on the server is a simple
@authorization_required decorator. It's very easy to be sure that it is in place on all
view functions.

There's more…
This server has a relatively simple set of authorization rules:

Most routes require a valid user. This was implemented by the presence of the
@authorization_required decorator in the view function.
A GET for /dealer/swagger.json and a POST to /dealer/players do not
require a valid user. This was implemented by the absence of an additional
decorator.

In many cases, we'll have a considerably more complex configuration of privileges, groups,
and users. The principle of least privilege suggests that the users should be segregated into
groups, and that each group has the fewest privileges possible to accomplish their goals.

This often means that we'll have an administrative group that creates new users, but has no
other access to use the RESTful web services. Users can access the web services, but are
unable to create any additional users.

This requires several changes to our data model. We should define user groups and assign
users to those groups:

    class Group:
        '''A collection of users.'''
        pass

    administrators = Group()
    players = Group()



Web Services

[ 688 ]

We can then expand the definition of User to include group membership:

    class GroupUser(User):
        def __init__(self, *args, **kw):
            super().__init__(*args, **kw)
            self.groups = set()

When we create a new instance of the GroupUser class, we can also assign them to a
particular group:

    u = GroupUser(**document)
    u.groups = set(players)

We can now expand our decorator to check the groups attribute of the authenticated user.
A decorator with parameters is a bit more complex than a parameterless decorator:

    def group_member(group_instance):
        def group_member_decorator(view_function):
            @wraps(view_function)
            def decorated_view_function(*args, **kw):
                # Check Password and determine user
                if group_instance not in g.user.groups:
                    abort(HTTPStatus.UNAUTHORIZED)
                return view_function(*args, **kw)
            return decorated_view_function
        return group_member_decorator

A decorator with a parameter works by creating a concrete decorator that includes the
parameter. The concrete decorator, group_member_decorator, will wrap a given view
function. This will parse the Authorization header, locate the GroupUser instance and
check the group membership.

We've used # Check Password and determine user as a placeholder for a refactored
function to check the Authorization header. The core functionality of the
@authorization_required decorator needs to be extracted into a stand-alone function so
it can be used in several places.

We can then use this decorator as follows:

    @dealer.route('/dealer/players')
    @group_member(administrators)
    def make_player():
        etc.

This narrows the scope of privilege for each individual view function. It provides assurance
that the principle of least privilege is followed by the RESTful web services.



Web Services

[ 689 ]

Creating a command-line interface
When working with a site that has special administrator privileges, we often need to
provide a way to create an initial administrative user. This user can then create all of the
users with non-administrative privileges. This is often done with a CLI application which is
run by the administrative user directly on the web server.

Flask supports this with a decorator that defines commands that must be run outside the
RESTful web services environment. We can use @dealer.cli.command() to define a
command that is run from the command line. This command can, for example, load the
initial administrative user. A command might be created to load users from a list, also.

The getpass module is a way for an administrative user to provide their initial password
in a way that won't be echoed on a terminal. This can provide confidence that the site's
credentials are being processed securely.

Building the Authentication header
Web services that rely on an HTTP basic Authorization header can be supported in one
of two common ways:

Build the Authorization header with the credentials and include this in each
request. To do this, we need to provide the proper base64 encoding of the string
username:password. This alternative has the advantage of being relatively
simple.
Use the urllib features to provide the Authorization header automatically:

        from urllib.request import HTTPBasicAuthHandler,
HTTPPasswordMgrWithDefaultRealm
        auth_handler = urllib.request.HTTPBasicAuthHandler(
            password_mgr=HTTPPasswordMgrWithDefaultRealm)
        auth_handler.add_password(
            realm=None,
            uri='https://127.0.0.1:5000/',
            user='Aladdin',
            passwd='OpenSesame')
        password_opener = urllib.request.build_opener(auth_handler)



Web Services

[ 690 ]

We've created an instance of HTTPBasicAuthHandler. This is populated with all of the
usernames and passwords that might be required. For complex applications that gather
data from multiple sites, there may be more than one set of credentials added to the
handler. 

Instead of using with urllib.request.urlopen(request) as response:, we would
now use with password_opener(request) as response:. The Authorization
header is added to the request by the password_opener object. 

This alternative has the advantage of being relatively flexible. We can switch to using
HTTPDigestAuthHandler without any difficulties. We can also add additional usernames
and passwords. 

The realm information is sometimes confusing. A realm is a container for multiple URLs.
When a server requires authentication, it will respond with a 401 status code. This response
will include an Authenticate header that names a realm to which the credentials must
belong. Since the realm contains multiple site URLs, the realm information tends to be
extremely static. HTTPBasicAuthHandler uses the realm and URL information to choose
which of the usernames and passwords to supply in the authorization response. 

It's often necessary to write a technical spike that attempts a connection, and prints the
headers on the 401 response just to see what the realm string is. Once the realm is known,
HTTPBasicAuthHandler can be built. An alternative is to use the developer modes
available in some browsers to examine the headers and see the details of the 401 response.

See also
Proper SSL configuration of a server generally involves using certificates signed
by a CA. This involves a certificate chain that starts with the server and includes
certificates for the various authorities that issued the certificates.
Many web service implementations use servers such as GUnicorn or NGINX.
These servers generally handle the HTTP and HTTPS issues outside our
application. They can also handle complex chains and bundles of certificates.
For details, see h t t p ://d o c s . g u n i c o r n . o r g /e n /s t a b l e /s e t t i n g s . h t m l #s s l and
also h t t p ://n g i n x . o r g /e n /d o c s /h t t p /c o n f i g u r i n g _ h t t p s _ s e r v e r s . h t m l .

http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://docs.gunicorn.org/en/stable/settings.html#ssl
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html


13
Application Integration

In this chapter, we'll look at the following recipes:

Finding configuration files
Using YAML for configuration files
Using Python for configuration files
Using class-as-namespace for configuration values
Designing scripts for composition
Using logging for control and audit output
Combining two applications into one
Combining many applications using the Command design pattern
Managing arguments and configuration in composite applications
Wrapping and combining CLI applications
Wrapping a program and checking the output
Controlling complex sequences of steps

Introduction
Python's extensible library gives us rich access to numerous computing resources. This
makes Python programs particularly strong at integrating components to create
sophisticated composite processing.



Application Integration

[ 692 ]

In the Using argparse to get command line input, Using cmd for creating command-line
applications, and Using the OS environment settings recipes in Chapter 5, User Inputs and
Outputs, specific techniques for creating top-level (main) application scripts were shown. In
Chapter 9, Input/Output, Physical Format, Logical Layout, we looked at file-system input and
output. In Chapter 12, Web Services, we looked at creating servers, which are main
applications that receive requests from clients.

All of these examples show some aspects of application programming in Python. There are
some additional techniques that are helpful:

Processing configuration from files. In the Using argparse to get command line
input recipe in chapter 5, User Inputs and Outputs, we showed techniques for
parsing command line arguments. In the Using the OS environment settings recipe,
we touched on other kinds of configuration details. In this chapter, we'll look at a
number of ways to handle configuration files. There are many file formats that
can be used to store long-term configuration information:

The INI file format as processed by the configparser module.
The YAML file format is very easy to work with, but requires an
add-on module that's not currently part of the Python distribution.
We'll look at this in the Using YAML for configuration files recipe.
The Properties file format is typical of Java programming, and can
be handled in Python without writing too much code. The syntax
overlaps with Python scripts.
For Python scripts, a file with assignment statements looks a lot
like a properties file, and is very easy to process using compile()
and exec() methods. We'll look at this in the Using Python for
configuration files recipe.
Python modules with class definitions is a variation that uses
Python syntax, but isolates the settings into separate classes. This
can be processed with the import statement. We'll look at this in
the Using class-as-namespace for configuration recipe.

In this chapter, we'll look at ways that we can design applications that can be
composed to create larger, more sophisticated composite applications.
We'll look at the complications that can arise from composite applications and the
need to centralize some features like command line parsing.
We'll extend some of the concepts from Chapter 6, Basics of Classes and Objects,
and Chapter 7, More Advanced Class Design, and apply the idea of the Command
design pattern to Python programs.



Application Integration

[ 693 ]

Finding configuration files
Many applications will have a hierarchy of configuration options. There could be defaults
that are built in to a particular release. There might be server-wide (or cluster-wide) values.
There might be user-specific values, or perhaps even configuration files that are local to a
specific invocation of a program.

In many cases, these configuration parameters will be written in files so that they are easy to
change. The common tradition in Linux is to put system-wide configuration in the /etc
directory. A user's personal changes would be in their home directory, often named
~username.

How can we support a rich hierarchy of locations for configuration files?

Getting ready
The example will be a web service that provides hands of cards to users. The service is
shown in several recipes throughout Chapter 12, Web Services. We'll gloss over some details
of the service so that we can focus on fetching configuration parameters from a variety of
file-system locations.

We'll follow the design pattern of the bash shell, which looks for configuration files in
several places:

It starts with the /etc/profile file.1.
After reading that file, it looks for one of these files, in this order:2.

~/.bash_profile.1.
~/.bash_login.2.
~/.profile.3.

In a POSIX-compliant operating system, the shell expands the ~ to be the home directory for
the logged-in user. This is defined as the value of the HOME environment variable. In
general, the Python pathlib module can handle this automatically.

There are several ways to keep configuration parameters for a program:

Using a class definition has the advantage of tremendous flexibility and a
relatively simply Python syntax. It can use ordinary inheritance to include default
values. It doesn't work as well when there are multiple sources of parameters
because there's no trivial way to mutate a class definition.



Application Integration

[ 694 ]

For a mapping parameter, we can then use the ChainMap collection to search
multiple dictionaries, each from a different source.
For the SimpleNamespace instance, the types module offers this class, which is
mutable and can be updated from multiple sources.
A Namespace instance from the argparse module can be handy because it
mirrors the options that come from the command-line.

The design pattern from the bash shell uses two separate files. When we include
application-wide defaults, there are actually three levels of configuration. This can be done
elegantly with a mapping and the ChainMap class from the collections module.

In later recipes, we'll look at ways to parse and process a configuration file. For the
purposes of this recipe, we'll assume that a function, load_config_file(), has been
defined that will load a configuration map from the contents of the file:

    def load_config_file(config_file):
        '''Loads a configuration mapping object with contents
        of a given file.

        :param config_file: File-like object that can be read.
        :returns: mapping with configuration parameter values
        '''
        # Details omitted.

We'll look at ways to implement this function separately. Variations on the implementation
are covered in the Using YAML for configuration files and Using Python for configuration
files recipes of this chapter.

The pathlib module can help with this processing. This module provides the Path class
definition that provides a great deal of sophisticated information about the OS's files. For
more information, see the Using pathlib to work with filenames recipe in Chapter 9,
Input/Output, Physical Format, Logical Layout.

Why so many choices?
There's a side-bar topic that sometimes arises when discussing this kind of design—Why
have so many choices? Why not specify exactly two places?



Application Integration

[ 695 ]

The answer depends on the context for the design. When creating an entirely new
application, the choices can be limited to exactly two. However, when replacing legacy
applications, it's common to have a new location that's better in some ways than the legacy
location, but the legacy location still needs to be supported. After several such evolutionary
changes, it's common to see a number of alternative locations for files.

Also, because of variations among Linux distributions, it's common to see variations that
are typical for one distribution, but atypical for another. And, of course, when dealing with
Windows, there will be variant file paths that are unique to that platform too.

How to do it…
Import the Path class and the ChainMap class: 1.

        from pathlib import Path
        from collections import ChainMap

Define an overall function to get the configuration files:2.

        def get_config():

Create paths for the various locations. These are called pure paths because there's3.
no relationship with the file-system. They start as names of potential files:

        system_path = Path('/etc/profile')
        home_path = Path('~').expanduser()
        local_paths = [home_path/'.bash_profile',
            home_path/'.bash_login',
            home_path/'.profile']

  Define the application's built-in defaults:4.

        configuration_items = [
            dict(
                some_setting = 'Default Value',
                another_setting = 'Another Default',
                some_option = 'Built-In Choice',
            )
        ]



Application Integration

[ 696 ]

Each individual configuration file is a mapping from key to value. The various5.
mapping objects will form a list; this becomes the final ChainMap configuration
mapping. We'll assemble the list of maps by appending items, and then reverse
the order after the files are loaded.
If a system-wide configuration file exists, load this file:6.

        if system_path.exists():
            with system_path.open() as config_file:
                configuration_items.append(config_file)

Iterate through other locations looking for a file to load. This loads the first of the7.
files that it finds:

        for config_path in local_paths:
            if config_path.exists():
                with config_path.open() as config_file:
                    configuration_items.append(config_file)
                break

We've included the if-break pattern to stop after the first file is found. This
modifies the loop from the default semantics of For All to mean There Exists. See
the Avoiding a potential problem with break statements recipe for more
information.

Reverse the list and create the final ChainMap. The list needs to be reversed so7.
that the local file is searched first, then the system settings, and finally the
application default settings:

        configuration = ChainMap(*reversed(configuration_items))  

Return the final configuration mapping:8.

        return configuration  

Once we've built the configuration object, we can use the final configuration
like a simple mapping. This object supports all of the expected dictionary
operations.



Application Integration

[ 697 ]

How it works…
One of the most elegant features of any object-oriented language is being able to create
simple collections of objects. In this case, the objects are filesystem Path objects.

As noted in the Using pathlib to work with file names recipe in Chapter 9, Input/Output,
Physical Format, Logical Layout, the Path object has a resolve() method that can return a
concrete Path built from a pure Path. In this recipe, we used the exists() method to
determine if a concrete path could be built. The open() method, when used to read a file,
will resolve the pure Path and open the associated file.

In the Creating dictionaries – inserting and updating recipe in Chapter 4, Built-in Data
Structures – list, set, dict, we looked at the basics of using a dictionary. Here we've combined
several dictionaries into a chain. When a key is not located in the first dictionary of the
chain, then later dictionaries in the chain are checked. This is a handy way to provide
default values for each key in the mapping.

Here's an example of creating a ChainMap manually:

>>> from collections import ChainMap
>>> config = ChainMap(
...     {'another_setting': 2},
...     {'some_setting': 1},
...     {'some_setting': 'Default Value',
...      'another_setting': 'Another Default',
...      'some_option': 'Built-In Choice'})

The config object is built from three separate mappings. The first might be details from a
local file such as ~/.bash_login. The second might be system-wide settings from the
/etc/profile file. The third contains application-wide defaults.

Here's what we see when we query this object's values:

>>> config['another_setting']
2
>>> config['some_setting']
1
>>> config['some_option']
'Built-In Choice'

The value for any given key is taken from the first instance of that key in the chain of maps.
This allows a very simple way to have local values that override system-wide values that
override the built-in defaults.



Application Integration

[ 698 ]

There's more…
In the Mocking External Resources recipe in Chapter 11, Testing, we looked at ways to mock
external resources so that we could write a unit test that wouldn't accidentally delete files. A
test for the code in this recipe needs to mock the filesystem resources by mocking the Path
class. Here's how the unit test would look, starting with a high-level outline of the test class:

    import unittest
    from unittest.mock import *

    class GIVEN_get_config_WHEN_load_THEN_overrides(unittest.TestCase):
        def setUp(self):

        def runTest(self):

This provides a boilerplate structure for a unit test. Mocking a Path becomes rather
complex because of the number of distinct objects involved. Here's a summary of what
kinds of object creations occur:

A call to the Path class creates a Path object. The test process will create two1.
Path objects, so we can use the side_effect feature to return each of these. We
need to be sure that the values are in the correct order based on the code in the
unit to be tested:

         self.mock_path = Mock(
            side_effect = [self.mock_system_path, self.mock_home_path]
        )

For the value of system_path, there will be a call to a Path object exists()2.
method; this will determine if the concrete file exists. There will then be calls to
open the file and read the content:

        self.mock_path = Mock(
            side_effect = [self.mock_system_path, self.mock_home_path]
        )

For the value of home_path, there will be a call to the expanduser() method to3.
change the ~ to a proper home directory:

         self.mock_home_path = Mock(
            expanduser = Mock(
                return_value = self.mock_expanded_home_path
            )
        )



Application Integration

[ 699 ]

The expanded home_path is then used with the / operator to create the three4.
alternative directories:

        self.mock_expanded_home_path = MagicMock(
            __truediv__ = Mock(
                side_effect = [self.not_exist, self.exist, self.exist]
            )
        )

For the purposes of unit testing, we've decided that the first path to search5.
doesn't exist. The other two do exist, but we expect that only one of these will be
read. The second will be ignored:

For mock paths that don't exist, we can use this:

            self.not_exist = Mock(
                exists = Mock(return_value=False) )

For the mock paths that exist, we'll have something more complex:

            self.exist = Mock( exists = Mock(return_value=True), open =
mock_open() )

We have to also handle the processing of the file via the mock_open()
function in the mock module. This can handle all of the various details
of files being used as context managers, something that becomes rather
complex. The with statement requires __enter__() and __exit__()
methods, which is handled by mock_open().

We have to assemble each of these mock objects in reverse order. This assures that each
variable is created before it's used. Here's the entire setUp() method showing the objects in
the proper order:

    def setUp(self):
        self.mock_system_path = Mock(
            exists = Mock(return_value=True),
            open = mock_open()
        )
        self.exist = Mock(
            exists = Mock(return_value=True),
            open = mock_open()
        )
        self.not_exist = Mock(
            exists = Mock(return_value=False)
        )
        self.mock_expanded_home_path = MagicMock(
            __truediv__ = Mock(



Application Integration

[ 700 ]

                side_effect = [self.not_exist, self.exist, self.exist]
            )
        )
        self.mock_home_path = Mock(
            expanduser = Mock(
                return_value = self.mock_expanded_home_path
            )
        )
        self.mock_path = Mock(
            side_effect = [self.mock_system_path, self.mock_home_path]
        )

        self.mock_load = Mock(
            side_effect = [{'some_setting': 1}, {'another_setting': 2}]
        )

In addition to the mocks for Path manipulation, we've added one more mock module. The
mock_load object is a stand-in for the undefined load_config_file(). We want to
separate this test from the path processing, so the mock object uses the side_effect
attribute to return two separate values, expecting that it will be invoked exactly twice.

Here are some of the tests that will confirm that the path search works as advertised. Each
test starts by applying two patches to create a modified context for testing the
get_config() function:

    def runTest(self):
        with patch('__main__.Path', self.mock_path), \
        patch('__main__.load_config_file', self.mock_load):
            config = get_config()
        # print(config)
        self.assertEqual(2, config['another_setting'])
        self.assertEqual(1, config['some_setting'])
        self.assertEqual('Built-In Choice', config['some_option'])

The first use of patch() replaces the Path class with self.mock_path. The second use of
patch() replaces the load_config_file() function with the self.mock_load function;
this function will return two small configuration documents. In both cases, the context
being patched is the current module, with the __name__ value of "__main__". In the cases
where the unit test is in a separate module, then the module under test will be imported,
and that module's name will be used.

We can check to see that the load_config_file() was called properly by examining the
calls to self.mock_load. In this case, there should be one for each of the configuration
files:



Application Integration

[ 701 ]

    self.mock_load.assert_has_calls(
        [
call(self.mock_system_path.open.return_value.__enter__.return_value),
            call(self.exist.open.return_value.__enter__.return_value)
        ]
    )

We've made sure that the self.mock_system_path file is checked first. Note the chain of
calls—Path() returns a Path object. That object's open() must return a value that will be
used as a context. The __enter__() method of a context is an object that will be used by
the load_config_file() function.

We've made sure that the other path is one for which the exists() method returns True.
Here's the check for the filenames that are built:

    self.mock_expanded_home_path.assert_has_calls(
        [call.__truediv__('.bash_profile'),
        call.__truediv__('.bash_login'),
        call.__truediv__('.profile')]
    )

The / operator is implemented by the __truediv__() method. Each of the calls builds a
separate the Path instance. We can confirm that overall, the Path object is used just twice.
Once for the literal '/etc/profile' and once for the literal '~':

    self.mock_path.assert_has_calls(
        [call('/etc/profile'), call('~')]
    )

Note that two files answer True to the exists() method. We expect, however, that only
one of those two will be checked. Once this is found, the second file will be ignored. Here's
a test that confirms that there's only one check for existence:

    self.exist.assert_has_calls( [call.exists()] )

Just to be complete, we've also checked that the file that exists will go through the entire
context management sequence:

    self.exist.open.assert_has_calls(
        [call(), call().__enter__(), call().__exit__(None, None, None)]
    )

The first call is for the self.exist object's open() method. The return value from this is a
context that will have the __enter__() method executed as well as the __exit__()
method. In the preceding code, we checked that the return value from __enter__() is read
to get the configuration file content.



Application Integration

[ 702 ]

See also
In the Using YAML for configuration files and Using Python for configuration
files recipes we'll look at ways to implement the load_config_file() function.
In the Mocking external resources recipe in Chapter 11, Testing, we looked at ways
to test functions such as this, which interact with external resources.

Using YAML for configuration files
Python offers a variety of ways to package application inputs and configuration files. We'll
look at writing files in YAML notation because it's elegant and simple.

How can we represent configuration details in YAML notation?

Getting ready
Python doesn't have a YAML parser built in. We'll need to add the pyyaml project to our
library using the pip package management system. Here's how the installation looks:

MacBookPro-SLott:pyweb slott$ pip3.5 install pyyaml
Collecting pyyaml
  Downloading PyYAML-3.11.zip (371kB)
    100% |████████████████████████████████| 378kB
2.5MB/s
Installing collected packages: pyyaml
  Running setup.py install for pyyaml ... done
Successfully installed pyyaml-3.11

The elegance of the YAML syntax is that simple indentation is used to show the structure of
the document. Here's an example of some settings that we might encode in YAML:

query:
  mz:
    - ANZ532
    - AMZ117
    - AMZ080
url:
  scheme: http
  netloc: forecast.weather.gov
  path: /shmrn.php
description: >
  Weather forecast for Offshore including the Bahamas



Application Integration

[ 703 ]

This document can be seen as a specification for a number of related URLs that are all
similar to h t t p ://f o r e c a s t . w e a t h e r . g o v /s h m r n . p h p ?m z =A N Z 532. The document contains
information about building the URL from a scheme, net location, base path, and several
query strings. The yaml.load() function can load this YAML document; it will create the
following Python structure:

{'description': 'Weather forecast for Offshore including the Bahamas\n',
 'query': {'mz': ['ANZ532', 'AMZ117', 'AMZ080']},
 'url': {'netloc': 'forecast.weather.gov',
         'path': 'shmrn.php',
         'scheme': 'http'}}

This dict-of-dict structure can be used by an application to tailor its operations. In this case, it
specifies a sequence of URLs to be queried to assemble a larger weather briefing.

We'll often use the Finding configuration files recipe to check a variety of locations for finding
a given configuration file. This flexibility is often essential for creating an application that's
easily used on a variety of platforms.

In this recipe, we'll build the missing part of the previous example, the
load_config_file() function. Here's the template that needs to be filled in:

    def load_config_file(config_file) -> dict:
        '''Loads a configuration mapping object with contents
        of a given file.

        :param config_file: File-like object that can be read.
        :returns: mapping with configuration parameter values
        '''
        # Details omitted.

How to do it…
Import the yaml module:1.

        import yaml

Use the yaml.load() function to load the YAML-syntax document:2.

        def load_config_file(config_file) -> dict:
            '''Loads a configuration mapping object with contents
            of a given file.

            :param config_file: File-like object that can be read.

http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532


Application Integration

[ 704 ]

            :returns: mapping with configuration parameter values
            '''
            document = yaml.load(config_file)
        return document

How it works…
The YAML syntax rules are defined at h t t p ://y a m l . o r g . The idea of YAML is to provide
JSON-like data structures with more flexible, human-friendly syntax. JSON is a special case
of the more general YAML syntax.

The trade-off here is that some spaces and line breaks in JSON don't matter—there is visible
punctuation to show the structure of the document. In some of the YAML variants, line
breaks and indentation determine the structure of the document; the use of white-space
means that line breaks will matter with YAML documents.

The principle data structures available in JSON syntax are as follows:

Sequence: [item, item, ...]
Mapping: {key: value, key: value, ...}
Scalar:

String: "value"
Number: 3.1415926
Literal: true, false, and null

JSON syntax is one style of YAML; it's a called flow style. In this style, the document
structure is marked by explicit indicators. The syntax requires {…} and […] to show the
structure.

The alternative that YAML offers is block style. The document structure is defined by line
breaks and indentation. Furthermore, long string scalar values can use plain, quoted, and
folded styles of syntax. Here is how the alternative YAML syntax works:

Block sequence: We preface each line of a sequence with a -. This looks like a
bullet list, and is easy to read. Here's an example:

      zoneid:
        - ANZ532
        - AMZ117
        - AMZ080

http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org
http://yaml.org


Application Integration

[ 705 ]

When loaded, this will create a dictionary with a list of strings in Python:
{zoneid: ['ANZ532', 'AMZ117', 'AMZ080']}.

Block mapping: We can use simple key: value syntax to associate a key with a
simple scalar. We can use key: on a line by itself; the value is indented on the
following lines. Here's an example: 

      url:
        scheme: http
        netloc: marine.weather.gov

This creates a nested dictionary that looks like this in Python: {'url':
{'scheme': 'http', 'netloc': 'marine.weather.gov'}}.

We can also use explicit key and value markers, ? and :. This can help when the keys are
particularly long strings or more complex objects:

 ? scheme
: http
? netloc
: marine.weather.gov

Some more advanced features of YAML will make use of this explicit separation between
key and value:

For short string scalar values, we can leave them plain, and the YAML rules will
simply use all the characters with leading and trailing white-space stripped away.
The examples all use this kind of assumption for string values.
Quotes can be used for strings, exactly as they are in JSON.
For longer strings, YAML introduces the | prefix; the lines after this are
preserved with all of the spacing and newlines intact. 

It also introduces the > prefix, which preserves the words as a long string of text—any
newlines are treated as single white-space characters. This is common for running text. 

In both cases, the indentation determines how much of the document is part of the text.

In some cases, the value may be ambiguous. For example, a US ZIP code is all
digits—22102. This should be understood as a string, even though the YAML
rules will interpret it as a number. Quotes, of course, can be helpful. To be more
explicit, a local tag of !!str in front of the value will force a specific data type.
!!str 22102, for example, assures that the digits will be treated as a string
object.



Application Integration

[ 706 ]

There's more…
There are a number of additional features in YAML that are not present in JSON:

The comments, which begin with # and continue to the end of the line. They can
go almost anywhere. JSON doesn't tolerate comments.
The document start, which is indicated by the --- line at the start of a new
document. This allows a YAML file to contain many individual objects. JSON is
limited to a single document per file. The alternative to one document-per-file is
somewhat a more complex parsing algorithm. YAML provides an explicit
document separator and a very simple parsing interface.
The YAML file with two separate documents:

       >>> import yaml
      >>> yaml_text = '''
      ... ---
      ... id: 1
      ... text: "Some Words."
      ... ---
      ... id: 2
      ... text: "Different Words."
      ... '''
      >>> document_iterator = iter(yaml.load_all(yaml_text))
      >>> document_1 = next(document_iterator)
      >>> document_1['id']
      1
      >>> document_2 = next(document_iterator)
      >>> document_2['text']
      'Different Words.'

The yaml_text value contains two YAML documents, each of which starts with
---. The load_all() function is an iterator that loads the documents one at a
time. An application must iterate over the results of this to process each of the
documents in the stream.
Document end. A ... line is the end of a document.
Complex keys for mappings; JSON mapping keys are limited to the available
scalar types—string, number, true, false, and null. YAML allows mapping
keys to be considerably more complex. 
What's important is that Python requires a hash able, immutable object for a
mapping key. This means that a complex key must be transformed into an
immutable Python object, generally a tuple. In order to create a Python-specific
object, we need to use a more complex local tag. Here's an example:



Application Integration

[ 707 ]

      >>> yaml.load('''
      ... ? !!python/tuple ["a", "b"]
      ... : "value"
      ... ''')
      {('a', 'b'): 'value'}

This example uses ? and : to mark the key and value of a mapping. We've done
this because the key is a complex object. The key value uses a local tag,
!!python/tuple, to create a tuple instead of the default, which would have
been a list. The text of the key uses a flow-type YAML value, ["a", "b"].
JSON has no provision for a set. YAML allows us to use the !!set tag to create a
set instead of a simple sequence. The items in the set are identified by a ? prefix
because they are considered keys of a mapping for which there are no values. 
Note that the !!set tag is at the same level of indentation as the values within
the set collection. It's indented inside the dictionary key of data_values:

       >>> import yaml
      >>> yaml_text = '''
      ... document:
      ...     id: 3
      ...     data_values:
      ...       !!set
      ...       ? some
      ...       ? more
      ...       ? words
      ... '''
      >>> some_document = yaml.load(yaml_text)
      >>> some_document['document']['id']
      3
      >>> some_document['document']['data_values'] == {'some', 'more',
'words'}
      True

The !!set local tag modifies the following sequence to become a set object
instead of the default list object. The resulting set is equal to the expected Python
set object, {'some', 'more', 'words'}. 
Python mutable object rules will have to be applied to the contents of a set. It's
impossible to build a set of list objects because list instances don't have hash
values. The !!python/tuple local tag will have to be used to build a set of
tuples.



Application Integration

[ 708 ]

We can create a Python list-of-two-tuples sequence, as well which implements
ordered mapping. The yaml module doesn't readily create an OrderedDict for
us:

      >>> import yaml
      >>> yaml_text = '''
      ... !!omap
      ... - key1: string value
      ... - numerator: 355
      ... - denominator: 113
      ... '''
      >>> yaml.load(yaml_text)
      [('key1', 'string value'), ('numerator', 355), ('denominator', 113)]

Note that it's difficult to take the next step and create an OrderedDict from this
without specifying a large number of details. Here's the YAML to create an
instance of OrderedDict. 

        !!python/object/apply:collections.OrderedDict
        args:
            -   !!omap
                -   key1: string value
                -   numerator: 355
                -   denominator: 113

The args keyword is required to support the !!python/object/apply tag.
There's only one positional argument, and it's a YAML !!omap built from a
sequence of keys and values.
Python objects of almost any class can be built using YAML local tags. Any class
with a simple __init__() method can be built from a YAML serialization. 

Here's a simple class definition: 

        class Card:
            def __init__(self, rank, suit):
                self.rank = rank
                self.suit = suit
            def __repr__(self):
                return "{rank} {suit}".format_map(vars(self))



Application Integration

[ 709 ]

We've defined a class with two positional attributes. Here's the YAML description
of this object:

        !!python/object/apply:__main__.Card
        kwds:
            rank: 7
            suit: ♣

We've used the kwds key to provide two keyword-based argument values to the
Card constructor function. The Unicode ♣ character works well because YAML
files are text written using UTF-8 encoding.

In addition to local tags, which start with !!, YAML also supports tags that are
URIs using the tag: scheme. This allows URI-based type specifications that are
globally unique. This can make YAML documents easier to process in a variety of
contexts. 

A tag includes an authority name, a date, and specific details in the form of a /-
delimited path. For example, a tag might look like
this—!<tag:www.someapp.com,2016:rules/rule1>.

See also
See the Finding configuration files recipe to see how to search multiple file-system
locations for a configuration file. We can easily have application defaults, system-
wide settings, and personal settings built into separate files and combined by an
application

Using Python for configuration files
Python offers a variety of ways that we can package application inputs and configuration
files. We'll look at writing files in Python notation because it's elegant and simple.

A number of packages use assignment statements in a separate module for providing
configuration parameters. The Flask project in particular, can do this. We looked at Flask in
the Using the Flask framework for RESTful APIs recipe and a number of related recipes in
Chapter 12, Web Services.

How can we represent configuration details in Python module notation?



Application Integration

[ 710 ]

Getting ready
Python assignment statement notation is particularly elegant. It's quite simple, easy to read,
and extremely flexible. If we use assignment statements, we can import the configuration
details from a separate module. This could have a name like settings.py to shows that it's
focused on configuration parameters.

Because Python treats each imported module as a global Singleton object, we can have
several parts of an application all use the import settings statement to get a consistent
view of the current, global application configuration parameters.

In some cases, however, we might want to choose one of several alternative settings files. In
this case, we want to load a file using a technique that's more flexible than the import
statement.

We'd like to be able to provide definitions in a text file that look like this:

    '''Weather forecast for Offshore including the Bahamas
    '''
    query = {'mz': ['ANZ532', 'AMZ117', 'AMZ080']}
    url = {
      'scheme': 'http',
      'netloc': 'forecast.weather.gov',
      'path': '/shmrn.php'
    }

This is Python syntax. The parameters include two variables, query and url. The value of
the query variable is a dictionary with a single key, mz, and a sequence of values.

This can be seen as a specification for a number of related URLs that are all similar to h t t p

://f o r e c a s t . w e a t h e r . g o v /s h m r n . p h p ?m z =A N Z 532.

We'll often use the Finding configuration files recipe to check a variety of locations for finding
a given configuration file. This flexibility is often essential for creating an application that's
easily used on a variety of platforms.

In this recipe, we'll build the missing part of the previous example, the
load_config_file() function. Here's the template that needs to be filled in:

    def load_config_file(config_file) -> dict:
        '''Loads a configuration mapping object with contents
        of a given file.

        :param config_file: File-like object that can be read.
        :returns: mapping with configuration parameter values
        '''

http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532
http://forecast.weather.gov/shmrn.php?mz=ANZ532


Application Integration

[ 711 ]

        # Details omitted.

How to do it…
This code replaces the # Details omitted. line in the load_config_file() function:

Compile the code in the configuration file using the built-in compile() function.1.
This function requires the source text as well as a filename from which the text
was read. The filename is essential for creating trace-back messages that are
useful and correct:

        code = compile(config_file.read(), config_file.name, 'exec')

In rare cases where the code doesn't come from a file, the general practice is to2.
provide a name such as <string> instead of a filename.
Execute the code object created by the compile() function. This requires two3.
contexts. The global context provides any previously imported modules, plus the
__builtins__ module. The local context is where new variables will be created:

         locals = {}
        exec(code, {'__builtins__':__builtins__}, locals)
        return locals

When code is executed at the very top level of a script file—often inside the if4.
__name__ == "__main__" condition—it executes in a context where globals
and locals are the same. When code is executed inside a function, method, or
class definition, the locals for that context are separate from the globals. 
By creating a separate locals object, we've made sure that the imported5.
statements don't make unexpected changes to any other global variables.

How it works…
The details of the Python language; syntax and semantics are embodied in the compile()
and exec() functions. When we launch a script, the process is essentially this:

Read the text. Compile it with the compile() function to create a code object.1.
Use the exec() function to execute that code object.2.

The __pycache__ directory holds code objects, and saves recompiling text files that haven't
changed. It doesn't have a material impact on the processing.



Application Integration

[ 712 ]

The exec() function reflects the way Python handles global and local variables. There are
two namespaces provided to this function. These are visible to a script that's running via the
globals() and locals() functions.

We provided two distinct dictionaries:

A dictionary of global objects. These variables can be accessed via the global
statement. The most common use is to provide access to the imported modules,
which are always global. The __builtins__ module, for example, is often
provided. In some cases, other modules should be added.
The dictionary provided for the locals is updated by each assignment statement.
This local dictionary allows us to capture the variables created within the
settings module.

There's more…
This recipe builds a configuration file that can be entirely a sequence of name = value
assignments. This statement is supported directly by the Python assignment statement
syntax.

Additionally, the full spectrum of Python programming is available. There are a number of
engineering trade-offs that must be made.

Any statement can be used in the configuration file. However, this can lead to complexity. If
the processing becomes too complex, the file ceases to be configuration, and becomes a first-
class part of the application. Very complex features should be done by modifying the
application programming, not hacking around with the configuration settings. Since Python
applications include the source, this is relatively easy to do.

In addition to the simple assignment statement, it can be sensible to use if statements to
handle alternatives. A file might provide a section for unique features of a specific run-time
environment. For example, the platform package can be used to isolate features.

Something like this might be included:

    import platform
    if platform.system() == 'Windows':
        tmp = Path(r"C:\TEMP")
    else:
        tmp = Path("/tmp")



Application Integration

[ 713 ]

For this to work, the globals should include platform and Path. This a reasonable
extension above and beyond __builtins__.

It can also be sensible to do some processing simply to make a number of related settings
easier to organize. For example, an application might have a number of related files. It can
be helpful to write a configuration file like this:

    base = Path('/var/app/')
    log = base/'log'
    out = base/'out'

The values of log and out are used by the application. The value of base is only used to
assure that the other two locations are placed in the same directory.

This leads to the following variation on the load_config_file() function shown earlier.
This version includes some additional modules and global classes:

    from pathlib import Path
    import platform
    def load_config_file_path(config_file) -> dict:
        code = compile(config_file.read(), config_file.name, 'exec')
        globals = {'__builtins__': __builtins__,
            'Path': Path, 'platform': platform}
        locals = {}
        exec(code, globals, locals)
        return locals

Including Path and platform means that a configuration file can be written without the
overhead of import statements. This can make the settings simpler to prepare and
maintain.

See also
See the Finding configuration files recipe to learn how to search multiple file-
system locations for a configuration file.

Using class-as-namespace for configuration
Python offers a variety of ways for packaging application inputs and configuration files.
We'll look at writing files in Python notation because it's elegant and simple.



Application Integration

[ 714 ]

A number of projects allow the use of a class definition for providing configuration
parameters. The use of a class hierarchy means that inheritance techniques can be used to
simplify organization of parameters. The Flask package in particular, can do this. We
looked at Flask in the recipe, Using the Flask framework for RESTful APIs, and a number of
related recipes.

How can we represent configuration details in Python class notation?

Getting ready
Python notation for defining the attributes of a class is particularly elegant. It's quite simple,
easy to read, and reasonably flexible. We can, with little work, define a sophisticated
configuration language that allows someone to change configuration parameters for a
Python application quickly and reliably.

We can base this language on class definitions. This allows us to package a number of
configuration alternatives in a single module. An application can load the module and pick
the relevant class definition from the module.

We'd like to be able to provide definitions that look like this:

    class Configuration:
        """
        Weather forecast for Offshore including the Bahamas
        """
        query = {'mz': ['ANZ532', 'AMZ117', 'AMZ080']}
        url = {
          'scheme': 'http',
          'netloc': 'forecast.weather.gov',
          'path': '/shmrn.php'
        }

We can create this Configuration class in a single settings module. To use the
configuration, the main application will do this:

    from settings import Configuration

This uses a fixed file with a fixed class name. In spite of the apparent lack of flexibility, this
can often be more useful than other alternatives. We have two additional ways to support
complex configuration files:

We can use the PYTHONPATH environment variable to list a number of locations
for a configuration module



Application Integration

[ 715 ]

Use multiple inheritance and mix ins to combine defaults, system-wide settings,
and localized settings into a configuration class definition

These techniques can be helpful because the configuration file locations simply follow
Python's rules for finding modules. We don't need to implement our own search for the
configuration files.

In this recipe, we'll build the missing part of the previous example, the
load_config_file() function. Here's the template that needs to be filled in:

    def load_config_file(config_file) -> dict:
        '''Loads a configuration mapping object with contents
        of a given file.

        :param config_file: File-like object that can be read.
        :returns: mapping with configuration parameter values
        '''
        # Details omitted.

How to do it…
This code replaces the # Details omitted. line in the load_config_file() function:

Compile the code in the given file using the built-in compile() function. This1.
function requires the source text as well as a filename from which the text was
read. The filename is essential for creating trace-back messages that are useful
and correct:

        code = compile(config_file.read(), config_file.name, 'exec')  

Execute the code object created by the compile() method. We need to provide2.
two contexts. The global context can provide the __builtins__ module, plus
the Path class and the platform module. The local context is where new
variables will be created: 

        globals = {'__builtins__':__builtins__,
                   'Path': Path,
                   'platform': platform}
        locals = {}
        exec(code, globals, locals)
        return locals['Configuration']



Application Integration

[ 716 ]

This returns only the defined Configuration class from the locals which are set3.
by the executed module. Any other variables will be ignored.

How it works…
The details of the Python language—syntax and semantics—are embodied in the
compile() and exec() functions. The exec() function reflects the way Python handles
global and local variables. There are two namespaces provided to this function. The global
namespace instance includes __builtins__ plus a class and module that might be used in
the file.

The local variable namespace will have the new class created in it. This namespace has a
__dict__ attribute that makes it accessible via dictionary methods. Because of this, we can
then extract the class by name. The function returns the class object for use throughout the
application.

We can put any kind of object into the attributes of a class. Our example showed mapping
objects. There's no limitation on what can be done when creating attributes at the class level.

We can have complex calculations within the class statement. We can use this to create
attributes which are derived from other attributes. We can execute any kind of statement,
including if statements and for statements to create attribute values.

There's more…
Using a class definition means that we can leverage inheritance to organize the
configuration values. We can easily create multiple subclasses of Configuration, one of
which will be selected for use in the application. The configuration might look like this:

    class Configuration:
        """
        Generic Configuration
        """
        url = {
          'scheme': 'http',
          'netloc': 'forecast.weather.gov',
          'path': '/shmrn.php'
        }

    class Bahamas(Configuration):
        """
        Weather forecast for Offshore including the Bahamas



Application Integration

[ 717 ]

        """
        query = {'mz': ['AMZ117', 'AMZ080']}

    class Cheaspeake(Configuration):
        """
        Weather for Cheaspeake Bay
        """
        query = {'mz': ['ANZ532']}

This means that our application must choose an appropriate class from the available classes
in the settings module. We might use an OS environment variable or a command-line
option to specify the class name to use. The idea is that our program is executed like this:

python3 some_app.py -c settings.Chesapeake

This would locate the Chesapeake class in the settings module. Processing would then
be based on the details in that particular configuration class. This idea leads to an extension
to the load_config_file() function.

In order to pick one of the available classes, we'll provide an additional parameter with the
class name:

    import importlib
    def load_config_module(name):
        module_name, _, class_name = name.rpartition('.')
        settings_module = importlib.import_module(module_name)
        return vars(settings_module)[class_name]

Rather than manually compile and execute the module, we've used the higher-level
importlib module. This module implements the import statement semantics. The
requested module is imported; compiled and executed—and the resulting module object
assigned to the variable name settings_module.

We can then look inside the module's variables and pick out the class that was requested.
The vars() built-in function will extract the internal dictionary from a module, class, or
even the local variables.

Now we can use this function as follows:

>>> configuration = load_config_module('settings.Chesapeake')
>>> configuration.__doc__.strip()
'Weather for Cheaspeake Bay'
>>> configuration.query
{'mz': ['ANZ532']}
>>> configuration.url['netloc']
'forecast.weather.gov'



Application Integration

[ 718 ]

We've located the Chesapeake configuration class in the settings module.

Configuration representation
One consequence of using a class like this is that the default display for a class isn't too
informative. When we try to print the configuration, it looks like this:

>>> print(configuration)
<class 'settings.Chesapeake'>

This is nearly useless. It provides one nugget of information, but that's not nearly enough
for debugging.

We can use the vars() function to see more details. However, this shows local variables,
not inherited variables:

>>> pprint(vars(configuration))
mappingproxy({'__doc__': '\\n    Weather for Cheaspeake Bay\\n    ',
              '__module__': 'settings',
              'query': {'mz': ['ANZ532']}})

This is better, but still incomplete.

In order to see all of the settings, we need something a little more sophisticated.
Interestingly, we can't simply define __repr__() for this class. A method defined in a class
will apply to the instances of this class, not the class itself.

Each class object we create is an instance of the built-in type class. We can, using a meta-
class, tweak the way the type class behaves, and implement a slightly nicer __repr__()
method, which looks through all parent classes for attributes.

We'll extend the built-in type with a __repr__ that does a somewhat better job at
displaying the working configuration:

    class ConfigMetaclass(type):
        def __repr__(self):
            name = (super().__name__ + '('
                + ', '.join(b.__name__ for b in super().__bases__) + ')')
            base_values = {n:v
                for base in reversed(super().__mro__)
                    for n, v in vars(base).items()
                        if not n.startswith('_')}
            values_text = ['    {0} = {1!r}'.format(name, value)
                for name, value in base_values.items()]
            return '\n'.join(["class {}:".format(name)] + values_text)



Application Integration

[ 719 ]

The class name is available from the superclass, type, as the __name__ attribute. The
names of the base classes are included as well, to show the inheritance hierarchy for this
configuration class.

The base_values are built from the attributes of all of the base classes. Each class is
examined in reverse order of the Method Resolution Order (MRO). Loading all of the
attribute values in reverse MRO means that all of the defaults are loaded first, then
overridden with subclass values.

The names that lack the _ prefix are included. Names with the _ prefix are quietly ignored.

The resulting values are used to create a text representation that resembles a class
definition. It's not the original class source code; it's the net effect of the original class
definition.

Here's a Configuration class hierarchy that uses this meta-class. The base class,
Configuration, incorporates the meta-class, and provides default definitions. The
subclass extends those definitions with values that are unique to a particular environment
or context:

    class Configuration(metaclass=ConfigMetaclass):
        unchanged = 'default'
        override = 'default'
        feature_override = 'default'
        feature = 'default'

    class Customized(Configuration):
        override = 'customized'
        feature_override = 'customized'

We can leverage all of the power of Python's multiple inheritance to build Configuration
class definitions. This can provide the ability to combine details on separate features into a
single configuration object.

See also
We'll look at class definitions in Chapter 6, Basics of Classes and Objects, and
Chapter 7, More Advanced Class Design



Application Integration

[ 720 ]

Designing scripts for composition
Many large applications are actually amalgamations of multiple, smaller applications. In
enterprise terminology, they are often called application systems comprising individual
command-line application programs.

Some large, complex applications include a number of commands. For example, the
Git application has numerous individual commands, such as git pull, git commit, and
git push. These can also be seen as separate applications that are part of the overall
Git system of applications.

An application might start as a collection of separate Python script files. At some point
during its evolution, it can become necessary to refactor the scripts to combine features and
create new, composite scripts from older disjoint scripts. The other path is also possible, a
large application might be decomposed and refactored into a new organization.

How can we design a script so that future combinations and refactoring is made as simple
as possible?

Getting ready
We need to distinguish between several design features of a Python script:

We've seen several aspects of gathering input:
Getting highly dynamic input from a command-line interface and
environment variables. See the Using argparse to get command-line
input recipe in Chapter 5, User Inputs and Outputs.
Getting slow for changing configuration options from files. See the
recipes, Finding configuration files, Using YAML for configuration files,
and Using Python for configuration files.
For reading any input files, see the Reading delimited files with the
CSV module, Reading complex formats using regular expressions,
Reading JSON documents, Reading XML documents, and Reading
HTML documents recipes in Chapter 9, Input/Output, Physical
Format, and Logical Layout.

There are several aspects to producing output:
Creating logs and offering other features that support audit,
control, and monitoring. We'll look at some of this in the Using
logging for control and audit output recipe.



Application Integration

[ 721 ]

Creating the principle output of the application. This might be printed
or written to an output file, using the same library modules used to
parse inputs.

The real work of the application. These are the essential features, disentangled
from the various input parsing and output formatting considerations. This
algorithm works exclusively with Python data structures.

This separation of concerns suggests that any application, no matter how simple, should be
designed as several separate functions. These should be combined into a complete script.
This lets us separate the input and output from the core processing. The processing is the
part we'll often want to reuse. The input and output formats should be something that can
easily be changed.

As a concrete example, we'll look at a simple application that creates sequences of dice rolls.
Each sequence will follow the rules of the game of craps. Here are the rules:

The first roll of two dice is the come out roll:1.
A roll of two, three, or twelve is an immediate loss. The sequence has a1.
single value, for example, [(1, 1)].
A roll of seven or eleven is an immediate win. This sequence also has a2.
single value, for example, [(3, 4)].

Any other number establishes a point. The sequence starts with the point value2.
and continues until either a seven or the point value is rolled:

A final seven is a loss, for example, [(3, 1), (3, 2), (1, 1),1.
(5, 6), (4, 3)].
A final match of the original point value is a win. There will be a2.
minimum of two rolls. There's no upper bound on the length of a
game, for example, [(3, 1), (3, 2), (1, 1), (5, 6), (1,
3)].

The output is a sequence of items with different structures. Some will be short lists. Some
will be long lists. This is an ideal place for using YAML format files.

This output can be controlled by two inputs—how many samples to create, and whether or
not to seed the random number generator. For testing purposes, it can help to have a fixed
seed.



Application Integration

[ 722 ]

How to do it…
Design all of the output display into two broad areas:1.

Functions (or classes) that do no processing, but display result objects.1.
Logging may be for debugging, monitoring, audit, or some other2.
control. This is a cross-cutting concern that will be embedded in the
rest of the application.

For this example, there are two outputs—the sequence of sequences, and some
additional information to confirm that processing worked properly. A count of
each number rolled is a handy way to establish that the simulated dice were fair. 

The sequence of rolls needs to be written to a file. This suggests that the
write_rolls() function is given an iterator as a parameter. Here's a function
that iterates and dumps values to a file in YAML notation:

         def write_rolls(output_path, roll_iterator):
            face_count = Counter()
            with output_path.open('w') as output_file:
                for roll in roll_iterator:
                    output_file.write(
                        yaml.dump(
                            roll,
                            default_flow_style=True,
                            explicit_start=True))
                    for dice in roll:
                        face_count[sum(dice)] += 1
            return face_count

The monitoring and control output should display the input parameters used to
control the processing. It should also provide the counts that show that the dice
were fair:

        def summarize(configuration, counts):
            print(configuration)
            print(counts)

Design (or refactor) the essential processing of the application to look like a single2.
function:

All inputs are parameters.1.
All outputs are produced by return or yield. Use return to create2.
the single result. Use yield to generate an sequence iterate for
multiple results.



Application Integration

[ 723 ]

In this example, we can easily make the core feature a function that emits an
sequence iterate of values. The output function can use this iterator: 

        def roll_iter(total_games, seed=None):
            random.seed(seed)
            for i in range(total_games):
                sequence = craps_game()
                yield sequence

This function relies on a craps_game() function to generate the requested
number of samples. Each sample is a full game, showing all of the dice rolls. This
function provides the face_count counter to this lower-level function to
accumulate some totals to confirm that everything worked properly. 

The craps_game() function implements the craps game rules to emit a single
sequence of one or more rolls. This comprises all the rolls in a single game. We'll
look at this craps_game() function later.

Refactor all of the input gathering into a function (or class) that gathers the3.
various input sources. This can include environment variables, command-line
arguments, and configuration files. It may also include the names of multiple
input files:

        def get_options(argv):
            parser = argparse.ArgumentParser()
            parser.add_argument('-s', '--samples', type=int)
            parser.add_argument('-o', '--output')
            options = parser.parse_args(argv)

            options.output_path = Path(options.output)

            if "RANDOMSEED" in os.environ:
                seed_text = os.environ["RANDOMSEED"]
                try:
                    options.seed = int(seed_text)
                except ValueError:
                    sys.exit("RANDOMSEED={0!r} invalid".format(seed_text))
            else:
                options.seed = None
            return options

This function gathers command-line arguments. It also checks the os.environ
collection of environment variables. 



Application Integration

[ 724 ]

The argument parser will handle the details of parsing the --samples and --
output options. We can leverage additional features of argparse to better
validate the argument values. 

The value of output_path is created from the the value of the --output option.
Similarly, the value of the RANDOMSEED environment variable is validated and
placed into the options namespace. This use of the options object keeps all of
the various arguments in one place.

Write the final main() function, which incorporates the three previous elements,4.
to create the final, overall script:

         def main():
            options = get_options(sys.argv[1:])
            face_count = write_rolls(options.output_path,
roll_iter(options.samples, options.seed))
            summarize(options, face_count)

This brings the various aspects of the application together. It parses the command-
line and environment options. It creates a control total counter. 

The roll_iter() function is the core processing. It takes the various options,
and it emits a sequence of rolls. 

The primary output from roll_iter() method is collected by write_rolls() and
written to the given output path. The control output is written by a separate function, so
that we can change the summary without an impact on the primary output.

How it works…
The output looks like this:

slott$ python3 ch13_r05.py --samples 10 --output=x.yaml
Namespace(output='x.yaml', output_path=PosixPath('x.yaml'), samples=10,
seed=None)
Counter({5: 7, 6: 7, 7: 7, 8: 5, 4: 4, 9: 4, 11: 3, 10: 1, 12: 1})
slott$ more x.yaml
--- [[5, 4], [3, 4]]
--- [[3, 5], [1, 3], [1, 4], [5, 3]]
--- [[3, 2], [2, 4], [6, 5], [1, 6]]
--- [[2, 4], [3, 6], [5, 2]]
--- [[1, 6]]
--- [[1, 3], [4, 1], [1, 4], [5, 6], [6, 5], [1, 5], [2, 6], [3, 4]]
--- [[3, 3], [3, 4]]



Application Integration

[ 725 ]

--- [[3, 5], [4, 1], [4, 2], [3, 1], [1, 4], [2, 3], [2, 6]]
--- [[2, 2], [1, 5], [5, 5], [1, 5], [6, 6], [4, 3]]
--- [[4, 5], [6, 3]]

The command line requested ten samples, and specified an output file of x.yaml. The
control output is a simple dump of the options. It shows the values for the parameters plus
the additional values set in the options object.

The control output includes the counts from ten samples. This provides some confidence
that values such as six, seven, and eight occur more often. It shows that values such as three
and twelve occur less frequently.

The central premise here is the separation of concerns. There are three distinct aspects to the
processing:

Inputs: The parameters from the command line, and environment variables are
gathered by a single function, get_options(). This function can grab inputs
from a variety of sources, including configuration files.
Outputs: The primary output was handled by the write_rolls() function. The
other control output was handled by accumulating totals in a Counter object and
then dumping this output at the end.
Process: The application's essential processing is factored into the roll_iter()
function. This function can be reused in a variety of contexts.

The goal of this design is to separate the roll_iter() function from the surrounding
application details. Another application might have different command-line arguments, or
different output formats, but reuse the essential algorithm.

For example, there may be a second application that performs some statistical analyses on
the sequences of rolls. This might include a count of rolls, and the final outcome of win or
lose. We can assume that these two applications are generator.py (shown previously) and
overview_stats.py.

After using these two applications to create rolls, and summarize them, the users may
determine that it would be advantageous to combine the roll creation and the statistical
overview into a single application. Because the various aspects of each application have
been separated, it becomes relatively easy to rearrange the features and create a new
application. We can now build a new application that will start with the following two
imports:

    from generator import roll_iter, craps_rules
    from stats_overview import summarize



Application Integration

[ 726 ]

This new application can be built without any changes to the other two applications. This
leaves the original applications untouched by the introduction of new features.

More importantly, the new application did not involve any copying or pasting of code. The
new application imports working software—changes made to fix one application will also
fix latent bugs in other applications.

Reuse via copy and paste creates technical debt. Avoid copying and
pasting the code.

When we try to copy code from one application to make a new application, we create a
confusing situation. Any changes made to one copy won't magically fix latent bugs in the
other copy. When changes are made to one copy, and the other copy is not kept up-to-date,
this is one kind of code rot.

There's more…
In the previous section, we skipped over the details of the craps_rules() function. This
function creates a sequence of dice rolls that comprise a single game of Craps. It can vary
from a single roll to a sequence of indefinite length. About 98% of the games will be thirteen
or fewer throws of the dice.

The rules depend on the total of two dice. The data captured include the two separate faces
of the dice. In order to support these details, it's helpful to have a namedtuple instance that
has these two related properties:

    Roll = namedtuple('Roll', ('faces', 'total'))
    def roll(n=2):
        faces = list(random.randint(1, 6) for _ in range(n))
        total = sum(faces)
        return Roll(faces, total)

This roll() function creates a namedtuple instance with a sequence that shows the faces
of the dice, as well as the total of the dice. The craps_game() function will generate
enough rules to return one complete game:

    def craps_game():
        come_out = roll()
        if come_out.total in [2, 3, 12]:
            return [come_out.faces]
        elif come_out.total in [7, 11]:



Application Integration

[ 727 ]

            return [come_out.faces]
        elif come_out.total in [4, 5, 6, 8, 9, 10]:
            sequence = [come_out.faces]
            next = roll()
            while next.total not in [7, come_out.total]:
                sequence.append(next.faces)
                next = roll()
            sequence.append(next.faces)
            return sequence
        else:
            raise Exception("Horrifying Logic Bug")

The craps_game() function implements the rules for craps. If the first roll is two, three, or
twelve, the sequence only has a single value, and the game is a loss. If the first roll is seven
or eleven, the sequence also has only a single value, and the game is a win. The remaining
values establish a point. The sequence of rolls starts with the point value. The sequence
continues until it's ended by seven or the point value.

Designing as a class hierarchy
The close relationship between roll_iter(), roll(), and craps_game() methods
suggests that it might be better to encapsulate these functions into a single class definition.
Here's a class that has all of these features bundled together:

    class CrapsSimulator:
        def __init__(self, seed=None):
            self.rng = random.Random(seed)
            self.faces = None
            self.total = None

        def roll(self, n=2):
            self.faces = list(self.rng.randint(1, 6) for _ in range(n))
            self.total = sum(self._faces)

        def craps_game(sel):
            self.roll()
            if self.total in [2, 3, 12]:
                return [self.faces]
            elif self.total in [7, 11]:
                return [self.faces]
            elif self.total in [4, 5, 6, 8, 9, 10]:
                point, sequence = self.total, [self.faces]
                self.roll()
                while self.total not in [7, point]:
                    sequence.append(self.faces)
                    self.roll()



Application Integration

[ 728 ]

                sequence.append(self.faces)
                return sequence
            else:
                raise Exception("Horrifying Logic Bug")

        def roll_iter(total_games):
            for i in range(total_games):
                sequence = self.craps_game()
                yield sequence

This class includes an initialization of the simulator to include its own random number
generator. It will either use the given seed value, or the internal algorithm will pick seed
value. The roll() method will set the self.total and self.faces instance variables.

The craps_game() generates one sequence of rolls for one game of craps. It uses the
roll() method and the two instance variables, self.total and self.faces, to track the
state of the dice.

The roll_iter() method generates the sequence of games. Note that the signature of this
method is not exactly like the preceding roll_iter() function. This class separates
random number seeding from the game creation algorithm.

Rewriting main() to use the CrapsSimulator class is left as an exercise for the reader.
Since the method names are similar to the original function names, the refactoring should
not be terribly complex.

See also
See the Using argparse to get command-line input recipe in Chapter 5, User Inputs
and Outputs, for background on using argparse to get inputs from a user
See the Finding configuration files recipe for a way to track down configuration
files
The Using logging for control and audit output recipe looks at logging
In the Combining two applications into one recipe, we'll look at ways to combine
applications that follow this design pattern



Application Integration

[ 729 ]

Using logging for control and audit output
In the Designing scripts for composition recipe, we examined three aspects of an application:

Gathering input
Producing output
The essential processing that connects input and output

There are several different kinds of output that applications produce:

The principle output that helps a user make a decision or take action
Control information that confirms that the program worked completely and
correctly
Audit summaries that are used to track the history of state changes in persistent
databases
Any error messages that indicate why the application didn't work

It's less than optimal to lump all of these various aspects into print() requests that write to
standard output. Indeed, it can lead to confusion because too many different outputs are
conflated into a single stream.

The OS provides two output files, standard output and standard error. These are visible in
Python through the sys module with the names sys.stdout and sys.stderr. By default,
the print() method writes to the sys.stdout file. We can change this and write the
control, audit, and error messages to sys.stderr. This is an important step in the right
direction.

Python offers the logging package, which can be used to direct the ancillary output to a
separate file. It can also be used to format and filter that additional output.

How can we use logging properly?

Getting ready
In the Designing scripts for composition recipe, we looked at an application that produced a
YAML file with the raw output of a simulation in it. In this recipe, we'll look at an
application that consumes that raw data and produces some statistical summaries. We'll call
this application overview_stats.py.



Application Integration

[ 730 ]

Following the design pattern of separating the input, output, and processing, we'll have an
application main() that looks something like this:

    def main():
        options = get_options(sys.argv[1:])
        if options.output is not None:
            report_path = Path(options.output)
            with report_path.open('w') as result_file:
                process_all_files(result_file, options.file)
        else:
            process_all_files(sys.stdout, options.file)

This function will get the options from various sources. If an output file is named, it will
create the output file using a with statement context. This function will then process all of
the command-line argument files as input from which statistics are gathered.

If no output file name is provided, this function will write to the sys.stdout file. This will
display output that can be redirected using the OS shell's > operator to create a file.

The main() function relies on a process_all_files() function. The
process_all_files() function will iterate through each of the argument files, and gather
statistics from that file. Here's what that function looks like:

    def process_all_files(result_file, file_names):
        for source_path in (Path(n) for n in file_names):
            with source_path.open() as source_file:
                game_iter = yaml.load_all(source_file)
                statistics = gather_stats(game_iter)
                result_file.write(
                    yaml.dump(dict(statistics), explicit_start=True)
                )

The process_all_files() function applies gather_stats() to each file in the
file_names iterable. The resulting collection is written to the given result_file.

The function shown here conflates processing and output in a design that
is not ideal. We'll address this design flaw in the Combining two applications
into one recipe.

The essential processing is in the gather_stats() function. Given a path to a file, this will
read and summarize the games in that file. The resulting summary object can then be
written as part of the overall display or, in this case, appended to a sequence of YAML-
format summaries:



Application Integration

[ 731 ]

    def gather_stats(game_iter):
        counts = Counter()
        for game in game_iter:
            if len(game) == 1 and sum(game[0]) in (2, 3, 12):
                outcome = "loss"
            elif len(game) == 1 and sum(game[0]) in (7, 11):
                outcome = "win"
            elif len(game) > 1 and sum(game[-1]) == 7:
                outcome = "loss"
            elif len(game) > 1 and sum(game[0]) == sum(game[-1]):
                outcome = "win"
            else:
                raise Exception("Wait, What?")
            event = (outcome, len(game))
            counts[event] += 1
        return counts

This function determines which of the four game termination rules were applied to the
sequence of dice rolls. It starts by opening the given source file, and using the load_all()
function to iterate through all of the YAML documents. Each document is a single game,
represented as a sequence of dice pairs.

This function uses the first (and last) rolls to determine the overall outcome of the game.
There are four rules, which should enumerate all possible logical combinations of events. In
the event, if there is some error in our reasoning, an exception will get raised to alert us to a
special case that didn't fit the design in some way.

The game is reduced to a single event with an outcome and a length. These are accumulated
into a Counter object. The outcome and length of a game are the two values we're
computing. These are a stand-in for more complex or sophisticated statistical analyses that
are possible.

We've carefully segregated almost all file-related considerations from this function. The
gather_stats() function will work with any iterable source of game data.

Here's the output from this application. It's not very pretty; it's a YAML document that can
be used for further processing:

slott$ python3 ch13_r06.py x.yaml
---
? !!python/tuple [loss, 2]
: 2
? !!python/tuple [loss, 3]
: 1
? !!python/tuple [loss, 4]
: 1



Application Integration

[ 732 ]

? !!python/tuple [loss, 6]
: 1
? !!python/tuple [loss, 8]
: 1
? !!python/tuple [win, 1]
: 1
? !!python/tuple [win, 2]
: 1
? !!python/tuple [win, 4]
: 1
? !!python/tuple [win, 7]
: 1

We'll need to insert logging features into all of these functions to show which file is being
read, and any errors or problems with processing the file.

Furthermore, we're going to create two logs. One will have details, and the other will have a
minimal summary of files that are created. The first log can go to sys.stderr, which will
be displayed at the console when the program runs. The other log will be appended to a
long-term log file to cover all uses of the application.

One approach to having separate needs is to create two loggers, each with a different intent.
The two loggers will also have dramatically different configurations. Another approach is to
create a single logger, and use a Filter object to distinguish content intended for each
logger. We'll focus on creating separate loggers because it's easier to develop and easier to
unit test.

Each logger has a variety of methods reflecting the severity of the message. The severity
levels defined in the logging package include the following:

DEBUG: These messages are not generally shown, since their intent is to support
debugging.
INFO: These messages provide information on the normal, happy-path
processing.
WARNING: These messages indicate that processing may be compromised in
some way. The most sensible use case for a warning is when functions or classes
have been deprecated: they work, but they should be replaced. These messages
are often displayed.
ERROR: Processing is invalid and the output is incorrect or incomplete. In the
cases of a long-running server, an individual request may have problems, but the
server, as a whole, can continue to operate.
CRITICAL: A more severe level of error. Generally, this is used by long-running
servers where the server itself can no longer operate, and is about to crash.



Application Integration

[ 733 ]

The method names are similar to the severity levels. We use logging.info() to write an
INFO-level message.

How to do it…
We'll start by implementing basic logging features into the existing functions.1.
This means that we'll need the logging module:

        import logging

The rest of the application will use a number of other packages:

        import argparse
        import sys
        from pathlib import Path
        from collections import Counter
        import yaml

We'll create two logger objects as module globals. The creating functions can go2.
anywhere in the script that creates global variables. One location is to put these
early, after the import statements. Another common choice is near the end, but
outside any __name__ == "__main__" script processing. These variables must
always be created, even if the module is imported as a library. 

Loggers have hierarchical names. We'll name the loggers using the application
name and a suffix with the content. The overview_stats.detail logger will
have processing details. The overview_stats.write logger will identify the
files read and the files written; this parallels the idea of an audit log because the
file writes track state changes in the collection of output files:

        detail_log = logging.getLogger("overview_stats.detail")
        write_log = logging.getLogger("overview_stats.write")

We don't need to configure these loggers at this time. If we do nothing more, the
two logger objects will silently accept individual log entries, but won't do
anything further with the data.

We'll rewrite the main() function to summarize the two aspects of the3.
processing. This will use the write_log logger object to show when a new file is
created:

        def main():
            options = get_options(sys.argv[1:])



Application Integration

[ 734 ]

            if options.output is not None:
                report_path = Path(options.output)
                with report_path.open('w') as result_file:
                    process_all_files(result_file, options.file)
                write_log.info("wrote {}".format(report_path))
            else:
                process_all_files(sys.stdout, options.file)

We've added the write_log.info("wrote {}".format(result_path)) line
to put an information message into the log for files that have been written.

We'll rewrite the process_all_files() function to provide a note when a file4.
is read:

        def process_all_files(result_file, file_names):
            for source_path in (Path(n) for n in file_names):
                detail_log.info("read {}".format(source_path))
                with source_path.open() as source_file:
                    game_iter = yaml.load_all(source_file)
                    statistics = gather_stats(game_iter)
                result_file.write(
                    yaml.dump(dict(statistics), explicit_start=True)
                )

We've added the detail_log.info("read {}".format(source_path))
line to put information messages in the detail log for every file that's read.

The gather_stats() function can have a log line added to it to track normal5.
operations. Additionally, we've added a log entry for the logic error:

         def gather_stats(game_iter):
            counts = Counter()
            for game in game_iter:
                if len(game) == 1 and sum(game[0]) in (2, 3, 12):
                    outcome = "loss"
                elif len(game) == 1 and sum(game[0]) in (7, 11):
                    outcome = "win"
                elif len(game) > 1 and sum(game[-1]) == 7:
                    outcome = "loss"
                elif len(game) > 1 and sum(game[0]) == sum(game[-1]):
                    outcome = "win"
                else:
                    detail_log.error("problem with {}".format(game))
                    raise Exception("Wait, What?")
                event = (outcome, len(game))
                detail_log.debug("game {} -> event {}".format(game, event))
                counts[event] += 1



Application Integration

[ 735 ]

            return counts

The detail_log logger is used to collect debugging information. If we set
the overall logging level to include debug messages, we'll see this additional
output.

The get_options() function will also have a debugging line written. This can6.
help diagnose problems by displaying the options into the log:

        def get_options(argv):
            parser = argparse.ArgumentParser()
            parser.add_argument('file', nargs='*')
            parser.add_argument('-o', '--output')
            options = parser.parse_args(argv)
            detail_log.debug("options: {}".format(options))
            return options

We can add a simple configuration to see the log entries. This works as a first step7.
to simply confirm that there are two loggers and they're being used properly:

        if __name__ == "__main__":
            logging.basicConfig(stream=sys.stderr, level=logging.INFO)
            main()

This logging configuration builds the default handler object. This object simply
prints all of the log messages on the given stream. This handler is assigned to the
root logger; it will apply to all children of this logger. Therefore, both of the
loggers created in the preceding code will go to the same stream. 

Here's an example of running this script:

      slott$ python3 ch13_r06a.py -o sum.yaml x.yaml
      INFO:overview_stats.detail:read x.yaml
      INFO:overview_stats.write:wrote sum.yaml

There are two lines in the log. Both have a severity of INFO. The first line is from
the overview_stats.detail logger. The second line is from the
overview_stats.write logger. The default configuration sends all loggers to
sys.stdout.



Application Integration

[ 736 ]

In order to route the different loggers to different destinations, we'll need a more8.
sophisticated configuration than the basicConfig() function. We'll use
the logging.config module. The dictConfig() method can provide a
complete set of configuration options. The easiest way to do this is to write the
configuration in YAML and then convert this to an internal dict object using the
yaml.load() function:

            import logging.config
            config_yaml = '''
        version: 1
        formatters:
            default:
                style: "{"
                format: "{levelname}:{name}:{message}"
                #   Example: INFO:overview_stats.detail:read x.yaml
            timestamp:
                style: "{"
                format: "{asctime}//{levelname}//{name}//{message}"

        handlers:
            console:
                class: logging.StreamHandler
                stream: ext://sys.stderr
                formatter: default
            file:
                class: logging.FileHandler
                filename: write.log
                formatter: timestamp

        loggers:
            overview_stats.detail:
                handlers:
                -   console
            overview_stats.write:
                handlers:
                -   file
                -   console
        root:
            level: INFO
        '''

The YAML document is enclosed in a triple-apostrophe string. This allows us to
write as much text as necessary. We've defined five things in the big block of text
using YAML notation:



Application Integration

[ 737 ]

The value of the version key must be 1.
The value of the formatters key defines the log format. If this is not
specified, the default format shows only the message body, without
any level or logger information:

The default formatter defined here mirrors the format
created by the basicConfig() function.
The timestamp formatter defined here is a more
complex format that includes the date-time stamp for the
record. To make the file easier to parse, a column
separator of // was used.

The handlers key defines the two handlers for the two loggers. The
console handler writes to the stream, sys.stderr. We specified the
formatter this handler will use. This definition parallels the
configuration created by the basicConfig() function. 

The file handler writes to a file. The default mode for opening the file is a, which
will append to the file with no upper limit on the file size. There are other
handlers that can rotate through multiple files, each of a limited size. We've
provided an explicit filename, and the formatter that will put more detail into the
file than is shown on the console:

The loggers key provides a configuration for the two loggers that the
application will create. Any logger name that begins with
overview_stats.detail will be handled only by the console
handler. Any logger name that begins with
overview_stats.write will go to both the file handler and the
console handler.
The root key defines the top-level logger. It has a name of '' (the
empty string) in case we need to refer to it in code. Setting the level on
the root logger will set the level for all of the children of this logger.

Use the configuration to wrap the main() function like this:9.

        logging.config.dictConfig(yaml.load(config_yaml))
        main()
        logging.shutdown()

This will start the logging in a known state. It will do the processing of the10.
application. It will finalize all of the logging buffers and properly close any files.



Application Integration

[ 738 ]

How it works…
There are three parts to introducing logging into an application:

Creating logger objects
Placing log requests near important state changes
Configuring the logging system as a whole

Creating loggers can be done in a variety of ways. Additionally, it can also be ignored. As a
default, we can use the logging module itself as a logger. If we use the logging.info()
method, for example, this will implicitly use the root logger.

A more common approach is to create one logger with the same name as the module:

    logger = logging.getLogger(__name__)

For the top-level, main script, this will have the name "__main__". For imported modules,
the name will match the module name.

In more complex applications, there will be a variety of loggers serving a variety of
purposes. In these cases, simply naming a logger after a module may not provide the
needed level of flexibility.

There are two concepts that can be used to assign names to the loggers. It's often best to
choose one of these and stick with it throughout a large application:

Follow the package and module hierarchy. This means that a logger specific to a
class might have a name like package.module.class. Other classes in the same
module would share a common parent logger name. It's then possible to set the
logging level for the the whole package, one of the specific modules, or just one of
the classes.
Follow a hierarchy based on the audience or use case. The top-level name will
distinguish the audience or purpose for the log. We might have top-level loggers
with names such as event, audit, and perhaps debug. This way, all of the audit
loggers will have names that start with "audit.". This can make it easy to route
all loggers under a given parent to a specific handler.

In the recipe, we used the first style of naming. The logger names parallel the software
architecture. Placing logging requests near all the important state changes should be
relatively straightforward. There are a variety of interesting state changes that belong in a
log:



Application Integration

[ 739 ]

Any change to a persistent resource might be a good place to include a message
of level INFO. Any OS change (usually to the file-system) is a candidate for
logging. Similarly, database updates, and requests that should change the state of
a web services should be logged.
Whenever there's a problem making a persistent state change, there should be a
message ERROR. Any OS-level exceptions can be logged when they are caught
and handled.
In long, complex calculations, it may be helpful to log DEBUG messages after
particularly import assignment statements. In some cases, this is a hint that the
long calculation might need to be decomposed into functions so that they can be
tested separately.
Any change to an internal application resource deserves a DEBUG message so that
object state changes can be tracked through the log.
When the application enters an erroneous state. This should generally be due to
an exception. In some cases, an assert statement will be used to detect the state
of the program and raise an exception when there are problems. Some exceptions
are logged at the EXCEPTION level. Some exceptions, however, only need DEBUG
level messages because the exception is being silenced or transformed. Some
exceptions may be logged at the ERROR or CRITICAL level.

The third aspect of logging is configuring the loggers so that they route the requests to the
appropriate destination. By default, with no configuration at all, the loggers will all quietly
create log events, but won't display them.

With a minimal configuration, we can see all of the log events on the console. This can be
done with the basicConfig() method and covers a large number of simple use cases
without any real fuss. Instead of a stream, we can use filename to provide a named file.
Perhaps the most important feature is providing a simple way to enable debugging by
setting the logging level on the root logger from basicConfig() method.

The example configuration in the recipe used two common handlers—the StreamHandler
and FileHandler classes. There are over a dozen more handlers, each with unique
features for gathering and publishing log messages.

There's more…
See the Designing scripts for composition recipe for the complementary part of this
application



Application Integration

[ 740 ]

Combining two applications into one
In the Designing scripts for composition recipe, we looked at a simple application that creates a
collection of statistics by simulating a process. In the Using logging for control and audit output
recipe, we looked at an application that summarizes a collection of statistics. In this recipe,
we'll combine those two separate applications to create a single, composite application that
both creates and summarizes the statistical data.

There are several common approaches to combining these two applications:

A shell script can run the simulator and then run the analyzer
A Python program can stand in for the shell script and use the runpy module to
run each program
We can build a composite application from the essential features of each
application

In the Designing scripts for composition recipe, we examined three aspects of an application:

Gathering input
Producing output
The essential processing that connects input and output

In the recipe, we looked at a design pattern that would allow several Python language
components to be combined into a larger application.

How can we combine applications to create a composite?

Getting ready
In the Designing scripts for composition and Using logging for control and audit output recipes,
we followed a design pattern that separated the input gathering, the essential processing,
and the production of output. The objective behind that design pattern was gathering the
interesting pieces together to combine and recombine them into higher-level constructs.

Note that we have a tiny mismatch between the two applications. We can borrow a phrase
from database engineering (and also electrical engineering) and call this an impedance
mismatch. In electrical engineering, it's a problem with circuit design, and it's often solved
by using a device called a transformer. This can be used to match impedance between
circuit components.



Application Integration

[ 741 ]

In database engineering, this kind of problem surfaces when the database has normalized,
flat data, but the programming language uses richly structured complex objects. For SQL
databases, this is a common problem and packages such as SQLAlchemy are used as an
Object-Relational Management (ORM) layer. This layer is a transformer between flat
database rows (often from multiple tables) and complex Python structures.

When building a composite application, the impedance mismatch that surfaces in this
example is a cardinal problem. The simulator is designed to run more frequently than the
statistical summarizer. We have several choices for addressing cardinal issues such as this
one:

Total Redesign: This may not be a sensible alternative because the two
component applications have an established base of users. In other cases, the new
use cases are an opportunity to make sweeping fixes and retire some technical
debt.
Include the Iterator: This means that when we build the composite application,
we'll add a for statement to perform many simulation runs and then process this
into a single summary. This parallels the original design intent.
List of One: This means that the composite application will run one simulation
and provide this single simulation output to the summarizer. This modifies the
structure to do more summarization; the summaries may need to be combined
into the expected single result.

The choice between these depends on the user story that leads to creating the composite
application in the first place. It may also depend on the established base of users. For our
purposes, we'll assume that the users have come to realize that 1,000 simulation runs of
1,000 samples is standard, and they would like to follow the Include the Iterator design to
create a composite process.

As an exercise, the reader should pursue the alternative design. Assume instead that the
users would rather run 1,000,000 samples in a single simulation. For this, the users would
prefer the summarizer work with a List of One design.

We'll also look at another option. In this case, we'll perform 100 simulation runs spread over
a number of concurrent worker processes. This will reduce the time to create a million
samples. This is a variation of the Include the Iterator composite design.



Application Integration

[ 742 ]

How to do it…
Follow a design pattern that decomposes a complex process into functions that1.
are independent of input or output details. See the Designing scripts for composition
recipe for details on this.
Import the essential functions from the working modules. In this case, the two2.
modules have the relatively uninteresting names, ch13_r05 and ch13_r06:

        from ch13_r05 import roll_iter
        from ch13_r06 import gather_stats

Import any other modules required. We'll use a Counter function to prepare the3.
summaries in this example:

        from collections import Counter

Create a new function that combines the existing functions from the other4.
applications. The output from one function is input to another:

        def summarize_games(total_games, *, seed=None):
            game_statistics = gather_stats(roll_iter(total_games,
seed=seed))
            return game_statistics

In many cases, it makes more sense to explicitly stack the functions, creating
intermediate results. This is particularly important when there are multiple
functions creating a kind of map-reduce pipeline:

        def summarize_games_2(total_games, *, seed=None):
            game_roll_history = roll_iter(total_games, counts, seed=seed)
            game_statistics = gather_stats(game_roll_history)
            return game_statistics

We've broken the processing into steps with intermediate variables. The
game_roll_history variable is the output from the roll_iter() function. The
output from this generator is the iterable input to the gather_states() function,
which is saved in the game_statistics variable.

Write the output-formatting functions that use this composite process. Here, for5.
example, is a composite process that exercises the summarize_games() function.
This also writes the output report:

        def simple_composite(games=100000):
            start = time.perf_counter()



Application Integration

[ 743 ]

            stats = summarize_games(games)
            end = time.perf_counter()
            games = sum(stats.values())
            print('games', games)
            print(win_loss(stats))
            print("{:.2f} seconds".format(end-start))

Gathering command-line options can be done using the argparse module. There6.
are examples of this in recipes including the Designing scripts for composition
recipe.

How it works…
The central feature of this design is a separation of the various concerns of the application
into isolated functions or classes. The two component applications started with a design
divided up among input, process, and output concerns. Starting from this base made it easy
to import and reuse the processing. This also left the two original applications in place,
unchanged.

The objective is to import functions from working modules and avoid copy and paste
programming. Copying a function from one file and pasting it into another means that any
change made to one is unlikely to be made to the other. The two copies will slowly diverge,
leading to a phenomenon sometimes called code rot.

When a class or function does several things, the reuse potential is reduced. This leads to
the observation of Inverse Power Law of Reuse—the re-usability of a class or function, R(c),
is related to the inverse of the number of features in that class or function, F(c):

R(c) ∝ 1 / F(c)

A single feature aids reuse. Multiple features reduce the opportunities for reuse of a
component.

When we look at the two original applications from the Designing scripts for composition and
Using logging for control and audit output recipes, we can see that the essential functions had
few features. The roll_iter() function simulated a game, and yielded results. The
gather_stats() function gathered statistics from any source of data.

The idea of counting features depends, of course, on the level of abstraction. From a small-
scale view, the functions do many small things. From a very large scale view, the functions
require several helpers to form a complete application; from this viewpoint, an individual
function is only a part of a feature.



Application Integration

[ 744 ]

Our focus here is on technical features of the software. This has nothing to do with the agile
concept of feature as a unifying concept behind multiple user stories. In this context, we're
talking about software architecture technical features—input, output, processing, OS
resources used, dependencies, and so on.

Pragmatically, the relevant technical features are tied to user stories. This puts the scale
question into the realm of software properties as perceived by users. If the user sees more
than one feature, it means that reuse may be a struggle.

In this case, one application created files. The second application summarized files.
Feedback from users may have revealed that the distinction was not important or perhaps
confusing. This lead to a redesign to create a one-step operation from the two original steps.

There's more…
We'll look at three other architectural features that can be part of the composite application:

Refactoring: The Combining two applications into one recipe did not properly
distinguish between processing and output. When trying to create a composite
application, we may need to refactor the component modules.
Concurrency: Running several roll_iter() instances in parallel to use multiple
cores.
Logging: When multiple applications are combined, the combined logging can
become complex.

Refactoring
In some cases, it becomes necessary to rearrange software to extract the useful features. In
one of the components, the ch13_r06 module, the following function was available:

    def process_all_files(result_file, file_names):
        for source_path in (Path(n) for n in file_names):
            detail_log.info("read {}".format(source_path))
            with source_path.open() as source_file:
                game_iter = yaml.load_all(source_file)
                statistics = gather_stats(game_iter)
                result_file.write(
                    yaml.dump(dict(statistics), explicit_start=True)
                )



Application Integration

[ 745 ]

This combines source file iteration, detailed processing, and output creation in one place.
The result_file.write() output processing is a single, complex statement that's
difficult to extract from this function.

In order to reuse this feature properly between two applications, we'll need to refactor the
ch13_r06 application so that the file output is not buried in the process_all_files()
function. In this case, the refactoring isn't too difficult. In some cases, the wrong abstractions
are chosen, and the refactoring is extremely difficult.

One line of code, result_file.write(...), needs to be replaced with a separate
function. This is a small change. Details are left as an exercise for the reader. When defined
as a separate function, it is easier to replace.

This refactoring makes the new function available for other composite applications. When
multiple applications share a common function, then it's much more likely that outputs
between the applications are actually compatible.

Concurrency
The underlying reason for running many simulations followed by a single summary is a
kind of map-reduce design. The detailed simulations can be run concurrently, using
multiple cores and multiple processors. The final summary, however, needs to be created
from all of the simulations via a statistical reduction.

We often use OS features to run multiple concurrent processes. The POSIX shells include
the & operator which can be used to fork concurrent subprocesses. Windows has a start
command, which is similar. We can leverage Python directly to spawn a number of
concurrent sumulation processes.

One module for doing this is the futures module from the concurrent package. We can
build a parallel simulation processor by creating an instance of ProcessPoolExecutor.
We can submit requests to this executor and then collect the results from those concurrent
requests:

    import concurrent.futures

    def parallel():
        start = time.perf_counter()
        total_stats = Counter()
        worker_list = []
        with concurrent.futures.ProcessPoolExecutor() as executor:
            for i in range(100):
                worker_list.append(executor.submit(summarize_games, 1000))



Application Integration

[ 746 ]

            for worker in worker_list:
                stats = worker.result()
                total_stats.update(stats)
        end = time.perf_counter()

        games = sum(total_stats.values())
        print('games', games)
        print(win_loss(total_stats))
        print("{:.2f} seconds".format(end-start))

We've initialized three objects: start, total_stats, and worker_list. The start object
has the time at which processing started; time.perf_counter() is often the most accurate
timer available. total_stats is a Counter object that will collect the final statistical
summary. worker_list will be a list of individual Future objects, one for each request
that's made.

The ProcessPoolExecutor method defines a processing context in which a pool of
workers are available to handle requests. By default, the pool has as many workers as the
number of processors. Each worker process is running an executor which imports the given
module. All functions and classes defined in the module are available to the workers.

The submit() method of an executor is given a function to execute along with arguments
to that function. In this example, there will be 100 requests made, each of which will
simulate 1,000 games and return the sequence of dice rolls for those games. submit()
returns a Future object, which is a model for the working request.

After submitting all 100 requests, the results are collected. The result() method of a
Future object waits for the processing to finish and gathers the resulting object. In this
example, the result is a statistical summary of 1,000 games. These are then combined to
create the overall total_stats summary.

Here's a comparison between serial and parallel execution:

games 100000
Counter({'loss': 50997, 'win': 49003})
2.83 seconds
games 100000
Counter({'loss': 50523, 'win': 49477})
1.49 seconds

The processing time is cut in half. Since there are 100 concurrent requests, why isn't the time
cut by 1/100th of the original time? The observation is that there is considerable overhead in
spawning the subprocesses, communicating the request data, and communication the result
data.



Application Integration

[ 747 ]

Logging
In the Using logging for control and audit output recipe, we looked at how to use the logging
module for control, audit, and error outputs. When we build a composite application, we'll
have to combine the logging features from each of the original applications.

Logging involves a three-part recipe:

Creating logger objects. This is generally a line such as logger =1.
logging.get_logger('some_name'). It's generally done once at the class or
module level.
Using the logger objects to collect events. This involves lines such as2.
logger.info('some message'). These lines are scattered throughout an
application.
Configuring the logging system as a whole. There are two possibilities for log3.
configuration in an application:

As external as possible. In this case, the logging configuration is done
only at the outermost, global scope of the application:

             if __name__ == "__main__":
                logging configuration goes only here.
                main()
                logging.shutdown()

This guarantees that there will only be a single configuration of the logging
system.

Somewhere inside a class, function, or module. In this case, we may
have several modules that are all attempting to do logging
configuration. This is tolerated by the logging system. It can, however,
be confusing to debug.

These recipes all follow the first approach. If all applications configure logging in the most
global scope, then it's easy to understand how to configure a composite application.

In cases where there are multiple logging configurations, there are two approaches that a
composite application can follow:

The composite application contains a final configuration, which intentionally
overwrites all previously-defined loggers. This is the default, and can be stated
explicitly via incremental: false in a YAML configuration document.



Application Integration

[ 748 ]

The composite application preserves other application loggers, and merely
modifies the logger configurations, perhaps by setting the overall level. This is
done by including incremental: true in the YAML configuration document.

The use of incremental configuration is helpful when combining Python applications that
don't isolate the logging configuration. It can take some time to read and understand the
code from each application in order to properly configure logging for composite
applications.

See also
In the Designing scripts for composition recipe, we looked at the core design pattern
for a composable application

Combining many applications using the
Command design pattern
Many complex suites of applications follow a design pattern similar to the one used by the
Git program. There's a base command, git, with a number of subcommands. For example,
git pull, git commit, and git push.

What's central to this design is the idea of a collection of individual commands. Each of the
various features of git can be thought of as a separate class definition that performs a given
function.

When we enter a command such as git pull, it's as if the program, git, is locating a class
to implement the command.

How can we create families of closely related commands?

Getting ready
We'll imagine an application built from three commands. This is based on the applications
shown in the Designing scripts for composition, Using logging for control and audit output, and
Combining two applications into one recipes. We'll have three applications—simulate,
summarize, and a combined application called simsum.



Application Integration

[ 749 ]

These features are based on modules with names such as ch13_r05, ch13_r06, and
ch13_r07. The idea is that we can restructure these separate modules into a single class
hierarchy following the Command design pattern.

There are two key ingredients to this design:

The client depends only on the abstract superclass, Command.1.
Each individual subclass of the Command superclass has an identical interface. We2.
can substitute any one of them for any other.

When we've done this, then an overall application script can create and execute any one of
the Command subclasses.

How to do it…
The overall application will have a structure that attempts to separate the features1.
into two categories—argument parsing and command execution. Each
subcommand will include both processing and the output bundled together. 

Here's the Command superclass: 

        from argparse import Namespace

        class Command:
            def execute(self, options: Namespace):
                pass

We're going to rely on the argparse.Namespace to provide a very flexible
collection of options to each subclass. This is not required, but will be helpful in
the Managing arguments and configuration in composite applications recipe. Since that
recipe will include option parsing, it seems best to focus each class on using
argparse.Namespace.

Create a subclass of the Command superclass for the Simulate command:2.

        import ch13_r05

        class Simulate(Command):
            def __init__(self, seed=None):
                self.seed = seed
            def execute(self, options):
                self.game_path = Path(options.game_file)



Application Integration

[ 750 ]

                data = ch13_r05.roll_iter(options.games, self.seed)
                ch13_r05.write_rolls(self.game_path, data)

We've wrapped the processing and output from the ch13_r05 module into the
execute() method of this class.

Create a subclass of the Command superclass for the Summarize command:3.

        import ch13_r06

        class Summarize(Command):
            def execute(self, options):
                self.summary_path = Path(options.summary_file)
                with self.summary_path.open('w') as result_file:
                    ch13_r06.process_all_files(result_file,
options.game_files)

For this class, we've wrapped the file creation and the file processing into the
execute() method of the class.

All of the overall processes can be performed by the following main() function: 4.

        from argparse import Namespace

        def main():
            options_1 = Namespace(games=100, game_file='x.yaml')
            command1 = Simulate()
            command1.execute(options_1)

            options_2 = Namespace(summary_file='y.yaml',
game_files=['x.yaml'])
            command2 = Summarize()
            command2.execute(options_2)

We've created two commands, an instance of Simulate class, and an instance of
the Summarize class. These can be executed to provide a combined feature that
both simulates and summarizes data.

How it works…
Creating interchangeable, polymorphic classes for the various subcommands is a handy
way to provide an extensible design. The Command design pattern strongly encourages each
individual subclass to have an identical signature so that any command can be created and
executed. Also, new commands can be added that fit the framework.



Application Integration

[ 751 ]

One of the SOLID design principles is the Liskov Substitution Principle (LSP). Any of the 
subclasses of the Command abstract class can be used in place of the parent class.

Each Command instance has a simple interface. There are two features:

The __init__() method expects a namespace object that's created by the
argument parser. Each class will pick only the needed values from this
namespace, ignoring any others. This allows global arguments to be ignored by a
subcommand that doesn't require it.
The execute() method does the processing and writes any output. This is based
entirely on the values provided during initialization.

The use of the Command design pattern makes it easy to be sure that they can be
interchanged with each other. The overall main() script can create instances of the
Simulate or the Summarize class. The substitution principle means that either instance can
be executed because the interfaces are the same. This flexibility makes it easy to parse the
command-line options and create an instance of either of the available classes. We can
extend this idea and create sequences of individual command instances.

There's more…
One of the more common extensions to this design pattern is to provide for composite
commands. In the Combining two applications into one recipe, we showed one way to create
composites. This is another way, based on defining a new command that implements a
combination of existing commands:

    class CommandSequence(Command):
        def __init__(self, *commands):
            self.commands = [command() for command in commands]
        def execute(self, options):
            for command in self.commands:
                command.execute(options)

This class will accept other Command classes via the *commands parameter. This sequence
will combine all of the positional argument values. From the classes, it will build the
individual class instances.

We might use this CommandSequence class like this:

    options = Namespace(games=100, game_file='x.yaml',
        summary_file='y.yaml', game_files=['x.yaml']
    )
    sim_sum_command = CommandSequence(Simulate, Summarize)



Application Integration

[ 752 ]

    sim_sum_command.execute(options)

We created an instance of CommandSequence using two other classes—Simulate and
Summarize. The __init__() method will build an internal sequence of the two objects.
The execute() method of the sim_sum_command object will then perform the two
processing steps in sequence.

This design, while simple, exposes many implementation details. In particular, the two class
names, and the intermediate x.yaml file are details that can be encapsulated into a better
class design.

We can create a slightly nicer subclass of CommandSequence argument if we focus
specifically on the two commands being combined. This will have an __init__() method
that follows the pattern of other Command subclasses:

    class SimSum(CommandSequence):
        def __init__(self):
            super().__init__(Simulate, Summarize)

This class definition incorporates two other classes into the already defined
CommandSequence structure. We can continue this idea by also modifying the options
slightly to eliminate the explicit values for game_file output from the Simulate step,
which must also be part of the game_files input to the Summarize step.

We want to build and use a simpler Namespace with options like this:

    options = Namespace(games=100, summary_file='y.yaml')
    sim_sum_command = SimSum()
    sim_sum_command.execute(options)

This means that some missing options must be injected by the execute() method. We'll
add this method to the SimSum class:

    def execute(self, options):
        new_namespace = Namespace(
            game_file='x.yaml',
            game_files=['x.yaml'],
            **vars(options)
        )
        super().execute(new_namespace)

This execute() method clones the options. It adds two additional values that are part of
the integration of the commands, but not something that a user should provide.



Application Integration

[ 753 ]

This design avoids updating the stateful set of options. In order to leave the original options
object intact, a copy was made. The vars() function exposes the Namespace as a simple
dict. We can then use the ** keyword argument technique to make the dictionary into the
keyword arguments for a new Namespace object. This will create a shallow copy. If any
stateful objects within the namespace are updated, it will be clear that both the original
options and new_namespace arguments have access to the same underlying value objects.

Since new_namespace is a distinct collection, we can add new keys and values to this
Namespace instance. These will only appear in new_namespace, leaving the original
options object alone.

See also
In the Designing scripts for composition, Using logging for control and audit output,
and Combining two applications into one recipes, we looked at the constituent parts
of this composite application. In most cases, we'll need to combine elements of all
of these recipes to create a useful application.
We'll often need to follow the Managing arguments and configuration in composite
applications recipe.

Managing arguments and configuration in
composite applications
When we have a complex suite (or system) of individual applications, it's common for
several applications to share common features. We can, of course, use ordinary inheritance
to define a library module that provides the common classes and functions to each of the
individual applications in a complex suite.

The downside of creating a number of separate applications is that the external CLI is tied
directly to the software architecture. It becomes awkward to rearrange the software
components because changes will also alter the visible CLI.

The coordination of common features among many application files can become awkward.
For example, defining the various, one-letter abbreviated options for command-line 
arguments is difficult. It requires keeping some kind of master list of options, outside all of
the individual application files. It seems like this should be kept in one place in the code
somewhere.



Application Integration

[ 754 ]

Is there an alternative to inheritance? How can we assure that a suite of applications can be
refactored without creating unexpected changes to the CLI or requiring complex additional
design notes?

Getting ready
Many complex suites of applications follow a design pattern similar to the one used by
Git. There's a base command, git, with a number of subcommands. For example, git
pull, git commit, and git push. The core of the command-line interface can be
centralized by the git command. The subcommands can then be organized and
reorganized as needed with fewer changes to the visible CLI.

We'll imagine an application built from three commands. This is based on the applications
shown in the Designing scripts for composition, Using logging for control and audit output, and
Combining two applications into one recipes. We'll have three applications with three
commands: craps simulate, craps summarize, and the combined application craps
simsum.

We'll rely on the subcommand design from the Combining many applications using the
Command design pattern recipe. This will provide a handy hierarchy of Command subclasses:

The Command class is an abstract superclass
The Simulate subclass performs the simulation functions from the Designing
scripts for composition recipe
The Summarize subclass performs summarization functions from the Using
logging for control and audit output recipe
A SimSum subclass can perform combined simulation and summarization,
following the ideas of the Combining two applications into one recipe

In order to create a simple command-line application, we'll need appropriate argument
parsing.

This argument parsing will rely on the subcommand parsing capability of the argparse
module. We can create a common set of command options that apply to all subcommands.
We can also create unique options for each subcommand.



Application Integration

[ 755 ]

How to do it…
Define the command interface. This is an exercise in User Experience (UX)1.
design. While most UX is focused on web and mobile device applications, the
core principles are appropriate for CLI applications and servers, as well. 

Earlier, we noted that the root application will be craps. It will have the following
three subcommands:

      craps simulate -o game_file -g games
      craps summarize -o summary_file game_file ...
      craps simsum -g games

Define the root Python application. Consistent with other files in this book, we'll2.
call it ch13_r08.py. At the OS level, we can provide an alias or a link to make
the visible interface match the user expectation of craps.
We'll import the class definitions from the Combining many applications using the3.
Command design pattern recipe. This will include the Command superclass and the
Simulate, Summarize, and SimSum subclasses.
Create the overall argument parser then create a subparser builder. The4.
subparsers object will be used to create each subcommand's argument
definition:

        import argparse
        def get_options(argv):
            parser = argparse.ArgumentParser(prog='craps')
            subparsers = parser.add_subparsers()

For each command, create a parser and add arguments that are unique to that
command.

Define the simulate command with the two options that are unique to5.
simulation. We'll also provide a special default value that will initialize the
resulting Namespace object:

            simulate_parser = subparsers.add_parser('simulate')
            simulate_parser.add_argument('-g', '--games', type=int,
default=100000)
            simulate_parser.add_argument('-o', '--output',
dest='game_file')
            simulate_parser.set_defaults(command=Simulate)



Application Integration

[ 756 ]

Define the summarize command, with the arguments unique to this command.6.
Provide the default value that will populate the Namespace object:

            summarize_parser = subparsers.add_parser('summarize')
            summarize_parser.add_argument('-o', '--output',
dest='summary_file')
            summarize_parser.add_argument('game_files', nargs='*')
            summarize_parser.set_defaults(command=Summarize)

Define the simsum command, and similarly, provide a unique default value that7.
makes processing the Namespace easier:

            simsum_parser = subparsers.add_parser('simsum')
            simsum_parser.add_argument('-g', '--games', type=int,
default=100000)
            simsum_parser.add_argument('-o', '--output',
dest='summary_file')
            simsum_parser.set_defaults(command=SimSum)

Parse the command-line values. In this case the overall argument to the8.
get_options() function is expected to be the value of sys.argv[1:], which
includes the arguments to the Python command. We can override the argument
value for testing purposes:

            options = parser.parse_args(argv)
            if 'command' not in options:
                parser.print_help()
                sys.exit(2)
            return options

The overall parser includes three subcommand parsers. One will handle the
craps simulate command, another handles craps summarize, and the third
handles craps simsum. Each subcommand has slightly different combinations of
options. 

The command option is set only via the set_defaults() method. This sends
useful, additional information about the command to be executed. In this case,
we've provided the class that must be instantiated.

The overall application is defined by the following main() function: 9.

        def main():
            options = get_options(sys.argv[1:])
            command = options.command(options)
            command.execute()



Application Integration

[ 757 ]

The options will be parsed. Each distinct subcommand sets a unique class value
for the options.command  argument. This class is used to build an instance of a
Command subclass. This object will have an execute() method that does the real
work of this command.

Implement the OS wrapper for the root command. We might have a file named10.
craps. The file would have rx permissions so that it was readable by other users.
The content of the file could be this line:

      python3.5 ch13_r08.py $*

This small shell script provides a handy way to enter a command of craps and
have it properly execute a Python script with a different name. 

We can create a bash shell alias like this:

      alias craps='python3.5 ch13_r08.py'

   This can be placed in a .bashrc file to define a craps command.

How it works…
There are two parts to this recipe:

Using the Command design pattern to define a related set of classes that are
polymorphic. For more information on this, see the Combining many applications
using the Command design pattern recipe.
Using features of the argparse module to handle subcommands.

The argparse module feature that's important here is the add_subparsers() method of a
parser. This method returns an object that is used to build each distinct subcommand
parser. We assigned this object to the variable subparsers.

We also defined a simple command argument in the top-level parser. This argument can
only be filled by the defaults defined for each of the sub-parsers. This provides a value that
shows which of the subcommands was actually invoked.

Each sub-parser is built using the add_parser() method of the sub-parsers object. The
parser object that is returned can then have arguments and defaults defined.



Application Integration

[ 758 ]

When the overall parser is executed, it will parse any arguments defined outside the
subcommands. If there's a subcommand, this is used to determine how to parse the
remaining arguments.

Look at the following command:

craps simulate -g 100 -o x.yaml

This command will be parsed to create a Namespace object that looks like this:

Namespace(command=<class '__main__.Simulate'>, game_file='x.yaml',
games=100)

The command attribute in the Namespace object is the default value provided as part of the
subcommand definition. The values for game_file and games come from the -o and -g
options.

The Command design pattern
Creating interchangeable, polymorphic classes for the various subcommands creates a 
design that's easily refactored or expanded. The Command design pattern strongly
encourages each individual subclass to have an identical signature so that any one of the
available command classes can be created and executed.

One of the SOLID design principles is the Liskov Substitution Principle. Any of the
subclasses of the Command abstract class can be used in place of the parent class.

Each Command has a consistent interface:

The __init__() method expects a namespace object that's created by the
argument parser. Each class will pick only the needed values from this
namespace, ignoring any others. This allows global arguments to be ignored by a
subcommand that doesn't require it.
The execute() method does the processing and writes any output. This is based
entirely on the values provided during initialization.

The use of the Command design pattern makes it easy to ensure that they can be
interchanged with each other. The substitution principle means that the main() function
can simply create an instance and then execute the execute() method of the object.



Application Integration

[ 759 ]

There's more…
We can consider pushing the subcommand parser details down into each class definition.
For example, the Simulate class defines two arguments:

    simulate_parser.add_argument('-g', '--games', type=int, default=100000)
    simulate_parser.add_argument('-o', '--output', dest='game_file')

It doesn't seem appropriate for the get_option() function to define these details about the
implementation class. It seems like a properly encapsulated design would allocate this
detail to each Command subclass.

We would need to add a static method that configures a given parser. The new class
definitions would look like this:

    import ch13_r05
    class Simulate(Command):
        def __init__(self, options, *, seed=None):
            self.games = options.games
            self.game_file = options.game_file
            self.seed = seed
        def execute(self):
            data = ch13_r05.roll_iter(self.games, self.seed)
            ch13_r05.write_rolls(self.game_file, data)
        @staticmethod
        def configure(simulate_parser):
            simulate_parser.add_argument('-g', '--games', type=int,
default=100000)
            simulate_parser.add_argument('-o', '--output',
dest='game_file')

We've added a configure() method to configure a parser. This change makes it very easy
to see how the __init__() arguments will be created by parsing the command-line values.
This allows us to rewrite the get_option() function, as well:

    import argparse
    def get_options(argv):
        parser = argparse.ArgumentParser(prog='craps')
        subparsers = parser.add_subparsers()

        simulate_parser = subparsers.add_parser('simulate')
        Simulate.configure(simulate_parser)
        simulate_parser.set_defaults(command=Simulate)

        # etc. for each class



Application Integration

[ 760 ]

This will leverage the static configure() method to provide the parameter details. The
default value for the command argument can be handled by the overall get_options()
because it doesn't involve internal details.

See also
See the Designing scripts for composition, Using logging for control and audit output,
and Combining two applications into one recipes for background on the components
See the Using argparse to get command-line input recipe in Chapter 5, User Inputs
and Outputs, for more background in argument parsing

Wrapping and combining CLI applications
One common kind of automation involves running several programs, none of which are
actually Python applications. Since the programs aren't written in Python, it's impossible to
rewrite each program to create a composite Python application. We can't follow the
Combining two applications into one recipe.

Instead of aggregating the functionality, the alternative is to wrap the other programs in
Python to provide a higher level construct. The use case is very similar to the use case for
writing a shell script. The difference is that Python is used instead of the shell language.
Using Python has some advantages:

Python has a rich collection of data structures. The shell only has strings and
arrays of strings.
Python has an outstanding unit test framework. This provides confidence that the
Python version of a shell script works without the risk of crashing a widely-used
service.

How do we run other applications from within Python?

Getting ready
In the Designing scripts for composition recipe, we identified an application that did some
processing leading to the creation of a rather complex result. For the purposes of this recipe,
we'll assume that the application is not written in Python.



Application Integration

[ 761 ]

We'd like to run this program several hundred times, but we don't want to copy and paste
the necessary commands into a script. Also, because the shell is difficult to test and has so
few data structures, we'd like to avoid using the shell.

For this recipe, we'll assume that the ch13_r05 application is a native binary application; it
might have been written in C++ or Fortran. This means that we can't simply import the
Python module that comprises the application. Instead, we'll have to process this
application by running a separate OS process.

We will use the subprocess module to run an application program at the OS level. There
are two common use cases for running another binary program from within Python:

There isn't any output, or we don't want to gather it in our Python program. The
first situation is typical of OS utilities that return a status code when they succeed
or fail. The second situation is typical where many child programs are all writing
to the standard error logs; the parent Python program is merely starting a child
processes.
We need to capture and possibly analyze the output to retrieve information or
ascertain the level of success.

In this recipe, we'll look at the first case—the output isn't something we need to capture. In
the Wrapping a program and checking the output recipe, we'll look at the second case, where
the output is scrutinized by the Python wrapper program.

How to do it…
Import the subprocess module: 1.

        import subprocess  

Design the command line. Generally, this should be tested at the OS prompt to be2.
sure that it does the right things:

      slott$ python3 ch13_r05.py --samples 10 --output x.yaml

The output filename needs to be flexible, so that we can run the program
hundreds of times. This means creating files with names such as game_{n}.yaml.



Application Integration

[ 762 ]

Write a statement that iterates through the appropriate commands. Each3.
command can be built as a sequence of individual words. Start with the working
shell command and split that line on the spaces to create a proper sequence of
words:

        files = 100
        for n in range(files):
            filename = 'game_{n}.yaml'.format_map(vars())
            command = ['python3', 'ch13_r05.py',
                '--samples', '10', '--output', filename]

This will create the various commands. We can use a print() function to show
each command and confirm that the filenames are defined properly.

Evaluate the run() function from the subprocess module. This will execute the4.
given command. Provide check=True so that if there's any problem, it will raise
a subprocess.CalledProcessError exception:

        subprocess.run(command, check=True)

In order to test this properly, the entire sequence should be transformed into a5.
proper function. If there will be more, related commands in the future, it should
be a method of a subclass in a Command class hierarchy. See the Managing
arguments and configuration in composite applications recipe.

How it works…
The subprocess module is how Python programs run other programs available on a given
computer. The run() function, does a number of things for us.

In a POSIX (such as Linux or Mac OS X) context, the steps are similar to the following
sequence:

Prepare the stdin, stdout, and stderr file descriptors for the child process. In
this case, we've accepted the defaults, which means that the child inherits the files
being used by the parent. If the child process prints to stdout, it will appear on
the same console being used by the parent.
Invoke the os.fork() function to split the current process into a parent and a
child. The parent will be given the process ID of the child; it can then wait for the
child to finish.
In the child, execute the os.execl() function (or a similar function) to provide
the command path and arguments that will be executed by the child.



Application Integration

[ 763 ]

The child process then runs, using the given stdin, stdout, and stderr files.
The parent, meanwhile, uses a function such as os.wait() to wait for the child
to finish and return the final status.
Since we used the check=True option, a non-zero status is transformed into an
exception by the run() function.

An OS shell, such as bash, conceals these details from application developers. The
subprocess.run() function, similarly, hides the details of creating and waiting for a child
process.

Python, with the subprocess module, offers many features similar to the shell. Most
importantly, Python offers several additional sets of features:

A much richer collection of data structures.
Exceptions to identify problems that arise. This is much simpler and more reliable
than inserting if statements throughout a shell script to check status codes.
A way to unit test the script without using OS resources.

There's more…
We'll add a simple cleanup feature to this script. The idea is that all of the output files
should be created as an atomic operation. We want all of the files, or none of the files. We
don't want an incomplete collection of data files.

This fits with the ACID properties:

Atomicity: The entire set of data is available or it is not available. The collection is
a single, indivisible unit of work.
Consistency: The file-system should move from one internally consistent state to
another consistent state. Any summaries or indices will properly reflect the actual
files.
Isolation: If we want to process data concurrently, then having multiple, parallel
processes should work. Concurrent operations should not interfere with each
other.
Durability: Once the files are written, they should remain on the file-system. This
property almost goes without saying for files. For more complex databases, it
becomes necessary to consider transaction data that might be acknowledged by a
database client, but not actually written yet to a server.



Application Integration

[ 764 ]

Most of these features are relatively simple to achieve using OS processes with separate
working directories. The atomicity property, however, leads to a need for a cleanup
operation.

In order to clean up, we'll need to wrap the core processing with a try:  block. The overall
function would look like this:

    import subprocess
    from pathlib import Path

    def make_files(files=100):
        try:
            for n in range(files):
                filename = 'game_{n}.yaml'.format_map(vars())
                command = ['python3', 'ch13_r05.py',
                    '--samples', '10', '--output', filename]
                subprocess.run(command, check=True)
        except subprocess.CalledProcessError as ex:
            for partial in Path('.').glob("game_*.yaml"):
                partial.unlink()
            raise

The exception-handling block does two things. First, it removes any incomplete files from
the current working directory. Second, it re-raises the original exception so that the failure
will propagate to the client application.

Since the processing has failed, it's important to raise an exception. In some cases, an
application may define a new exception, unique to this application. That new exception can
be raised instead, re-raising the original CalledProcessError exception.

Unit test
In order to unit test this, we'll need to mock two external objects. We need a mock for the
run() function in the subprocess module. We don't want to actually run the other
process, but we want to be sure that the run() function is called appropriately from the
make_files() function.

We also need to mock the Path class and the resulting Path object. These provide the
filenames, and will have the unlink() method called. We need to create mocks for this so
that we can be sure only the appropriate files will be unlinked by the real application.

Testing with mock objects means that we never run the risk of accidentally deleting useful
files when testing. This is a significant benefit of using Python for this kind of automation.



Application Integration

[ 765 ]

Here's the setup where we define the various mock objects:

    import unittest
    from unittest.mock import *

    class GIVEN_make_files_exception_WHEN_call_THEN_run(unittest.TestCase):
        def setUp(self):
            self.mock_subprocess_run = Mock(
                side_effect = [
                    None,
                    subprocess.CalledProcessError(2, 'ch13_r05')]
            )
            self.mock_path_glob_instance = Mock()
            self.mock_path_instance = Mock(
                glob = Mock(
                    return_value = [self.mock_path_glob_instance]
                )
            )
            self.mock_path_class = Mock(
                return_value = self.mock_path_instance
            )

We've defined self.mock_subprocess_run, which will behave somewhat like the run()
function. We've used the side_effect attribute to provide multiple return values for this
function. The first response will be the None object. The second response, however, will be a
CalledProcessError exception. This exception requires two arguments, a process return
code, and the original command.

The self.mock_path_class, shown last, responds to calls to the Path class requests. This
will return a mocked instance of the class. The self.mock_path_instance object is the
mock instance of Path.

The first path instance that's created will have the glob() method evaluated. For this,
we've used the return_value attribute to return a list of Path instances to be deleted. In
this case, the return value will be a single Path object that we expect to be unlinked.

The self.mock_path_glob_instance object is the return from glob(). This should be
unlinked if the algorithm operates correctly.

Here's the runTest() method for this unit test:

    def runTest(self):
        with patch('__main__.subprocess.run', self.mock_subprocess_run), \
            patch('__main__.Path', self.mock_path_class):
            self.assertRaises(
                subprocess.CalledProcessError, make_files, files=3)



Application Integration

[ 766 ]

        self.mock_subprocess_run.assert_has_calls(
            [call(
                ['python3', 'ch13_r05.py', '--samples', '10',
                 '--output', 'game_0.yaml'],
                check=True),
             call(
                ['python3', 'ch13_r05.py', '--samples', '10',
                '--output', 'game_1.yaml'],
                check=True),
             ]
         )
         self.assertEqual(2, self.mock_subprocess_run.call_count)
         self.mock_path_class.assert_called_once_with('.')
self.mock_path_instance.glob.assert_called_once_with('game_*.yaml')
         self.mock_path_glob_instance.unlink.assert_called_once_with()

We've applied two patches:

In the __main__ module, a reference to subprocess will have the run()
function replaced with the self.mock_subprocess_run object. This will allow
us to track how many times run() is called. It will allow us to confirm that
run() is called with the correct arguments.
In the __main__ module, the reference to Path will be replaced with the
self.mock_path_class object. This will both return known values, and allow
us to confirm that only the expected calls were made.

The self.assertRaises method is used to confirm that a CalledProcessError
exception is properly raised when make_files() method is called in this particular
patched context. The mocked version of run() method will raise an exception—we expect
that exact exception to be the one that stops processing.

The mocked run() function be called just two times. The first call will succeed. The second
call will raise an exception. We can confirm that there are exactly two calls to run() using
the call_count attribute of a Mock object.

The self.mock_path_instance method is a mock for the Path('.') object that's
created as part of exception handling. This object must have the glob() method evaluated.
The test assertion checks the argument value to be sure that 'game_*.yaml' is used.

Finally, the self.mock_path_glob_instance is a mock for the Path object created by
Path('.').glob('game_*.yaml'). This object will have the unlink() method
evaluated. This will result in deleting the file.



Application Integration

[ 767 ]

This unit test provides confidence that the algorithm will work as advertised. The testing is
done without tying up a lot of compute resources. Most importantly, the testing is done
without accidentally deleting the wrong files.

See also
This kind of automation is often combined with other Python processing. See the
Designing scripts for composition recipe.
The goal is often to create a composite application; see the Managing arguments
and configuration in composite applications recipe.
For a variation on this recipe, see the Wrapping a program and checking the output
recipe.

Wrapping a program and checking the
output
One common kind of automation involves running several programs, none of which are
actually Python applications. In this case, it's impossible to rewrite each program to create a
composite Python application. In order to properly aggregate the functionality, the other
programs must be wrapped as a Python class or module to provide a higher level construct.

The use case for this is very similar to the use case for writing a shell script. The difference is
that Python can be a better programming language than the OS's built-in shell languages.

In some cases, the advantage Python offers is the ability to analyze the output files. A
Python program might transform, filter, or summarize the output from a subprocess.

How do we run other applications from within Python and process their output?

Getting ready
In the Designing scripts for composition recipe, we identified an application that did some
processing, leading to the creation of a rather complex result. We'd like to run this program
several hundred times, but we don't want to copy and paste the necessary commands into a
script. Also, because the shell is difficult to test and has so few data structures, we'd like to
avoid using the shell.



Application Integration

[ 768 ]

For this recipe, we'll assume that the ch13_r05 application is a native binary application
written in Fortran or C++. This means that we can't simply import the Python module that
comprises the application. Instead, we'll have to process this application by running a
separate OS process.

We will use the subprocess module to run an application program at the OS level. There
are two common use cases for running another binary program from within Python:

There isn't any output, or we don't want to gather it in our Python program.
We need to capture and possibly analyze the output to retrieve information or
ascertain the level of success. We might need to transform, filter, or summarize
the log output.

In this recipe, we'll look at the second case—the output must be captured and summarized.
In the Wrapping and combining CLI applications recipe, we'll look at the first case, where the
output is simply ignored.

Here's an example of running the ch13_r05 application:

slott$ python3 ch13_r05.py --samples 10 --output=x.yaml
Namespace(output='x.yaml', output_path=PosixPath('x.yaml'), samples=10,
seed=None)
Counter({5: 7, 6: 7, 7: 7, 8: 5, 4: 4, 9: 4, 11: 3, 10: 1, 12: 1})

There are two lines of output that are written to the OS standard output file. The first has a
summary of the options. The second line of output is a Counter object with a summary of
the file. We want to capture the details of these 'Counter' lines.

How to do it…
Import the subprocess module:1.

        import subprocess

Design the command line. Generally, this should be tested at the OS prompt to be2.
sure that it does the right things. We've shown an example of the command.
Define a generator for the various commands to be executed. Each command can3.
be built as a sequence of individual words. The original shell command is split on
spaces to create the sequence of words:

        def command_iter(files):
            for n in range(files):



Application Integration

[ 769 ]

                filename = 'game_{n}.yaml'.format_map(vars())
                command = ['python3', 'ch13_r05.py',
                    '--samples', '10', '--output', filename]
                yield command

This generator will yield a sequence of command strings. A client can use a for
statement to consume each of the generated commands.

Define a function which executes the various commands, collecting the output4.
from each:

        def command_output_iter(iterable):
            for command in iterable:
                process = subprocess.run(command, stdout=subprocess.PIPE,
check=True)
                output_bytes = process.stdout
                output_lines = list(l.strip() for l in
output_bytes.splitlines())
                yield output_lines

Using the argument value of stdout=subprocess.PIPE means that the parent
process will collect the output from the child. An OS-level pipe is created so that
the child output can be read by the parent. 

This generator will yield a sequence of lists of lines. Each list of lines will be the
output lines from the ch13_r05.py application. There will, generally, be two
lines in each list. The first line is the argument summary, and the second line is the
Counter object.

Define an overall process to combine the two generators so that each command5.
that is generated is then executed:

        command_sequence = command_iter(100)
        output_lines_sequence = command_output_iter(command_sequence)
        for batch in output_lines_sequence:
            for line in batch:
                if line.startswith('Counter'):
                    batch_counter = eval(line)
                    print(batch_counter)

The command_sequence variable is a generator that will produce a number of
commands. This sequence is built by the command_iter() function. 



Application Integration

[ 770 ]

The output_lines_sequence is a generator that will produce a number of lists
of output lines. This is is built by the command_output_iter() function, which
will use the given command_sequence object, runs a number of commands,
collecting the output.

Each batch in output_lines_sequence will be a list of, ideally, two lines. The
line that begins with Counter has the representation of a Counter object. 

We've used the eval() function to recreate the original Counter object from this
text representation. We can use these Counter objects for analysis or
summarization. 

Most practical applications will have to use a function that's more complex than the built-in
eval() to interpret output. For information on processing complex line formats, see the
String parsing with regular expressions in Chapter 1, Numbers, Strings, and Tuples, and Reading
complex formats using regular expressions recipe in Chapter 9, Input/Output, Physical Format,
and Logical Layout.

How it works…
The subprocess module is how Python programs run other programs available on a given
computer. The run() function, does a number of things for us.

In a POSIX (such as Linux or Mac OS X) context, the steps are similar to the following:

Prepare the stdin, stdout, and stderr files descriptors for the child process. In
this case, we've arranged for the parent to collect output from the child. The child
will produce stdout file to a shared buffer (a pipe in Linux parlance) that is
consumed by the parent. The stderr output, on the other hand, is left alone—the
child inherits the same connection the parent has, and error messages will be
displayed on the same console being used by the parent.
Invoke the os.fork() and os.execl() functions to split the current process
into parent and child, and then start the child process.
The child process then runs, using the given stdin, stdout, and stderr.
The parent, meanwhile, is reading from the child's pipe while waiting for the
child process to finish.
Since we used the check=True option, a non-zero status is transformed into an
exception.



Application Integration

[ 771 ]

There's more…
We'll add a simple summarization feature to this script. Each individual batch of samples
produces two lines of output. The output text is split into a sequence of two lines by the
expression list(l.strip() for l in output_bytes.splitlines()). This splits text
into lines and also strips leading and trailing spaces from each line, leaving text that's
slightly easier to process.

The overall script filtered these lines, looking for the line that started with 'Counter'. Each
of these lines is a text representation of a Counter object. Using the eval() function on the
line will rebuild a copy of that original Counter. Many Python class definitions work like
this—the repr() and eval() functions are inverses of each other. The repr() function
transforms an object to text, and the eval() function can convert the text back to an object.
This isn't true for all classes, but it is true for many.

We can create a summary of the various Counter objects. In order to do this, it helps to
have a generator that will process the batches and yield the final summaries.

The function should look like this:

    def process_batches():
        command_sequence = command_iter(2)
        output_lines_sequence = command_output_iter(command_sequence)
        for batch in output_lines_sequence:
            for line in batch:
                if line.startswith('Counter'):
                    batch_counter = eval(line)
                    yield batch_counter

This will create the processing commands with the command_iter() function. The
command_output_iter() will process each individual command, collecting the entire set
of output lines.

The nested for statements will examine each batch's list of lines. Within each list, it will
examine each line. The line that starts with Counter will be evaluated with the eval()
function. The resulting sequence of Counter objects is the output from this generator.

We can use a process like this to summarize the sequence of Counter instances:

    total_counter = Counter()
    for batch_counter in process_batches():
        print(batch_counter)
        total_counter.update(batch_counter)
    print("Total")
    print(total_counter)



Application Integration

[ 772 ]

We'll create Counter to hold the grand total, total_counter. The process_batches()
will yield individual Counter instances from each file that's processed. These batch-level
objects are used to update the total_counter. We can then print the grand total to show
the aggregate distribution of data in all of the files created.

See also
See the Wrapping and combining CLI applications recipe for another approach to this
recipe.
This kind of automation is often combined with other Python processing. See the
Designing scripts for composition recipe.
The goal is often to create a composite application; see the Managing arguments
and configuration in composite applications recipe.

Controlling complex sequences of steps
In the Combining two applications into one recipe, we looked at ways to combine multiple 
Python scripts into a single, longer, more complex operation. In the Wrapping and combining
CLI applications and Wrapping a program and checking the output recipes, we looked at ways to
use Python to wrap non-Python programs.

How can we combine these techniques effectively? Can we create longer, more complex
sequences of operations using Python?

Getting ready
In the Designing scripts for composition recipe, we created application that did some
processing that lead to the creation of a rather complex result. In the Using logging for control
and audit output recipe, we looked at a second application that built on those results to create
a sophisticated statistical summary.

The overall process looks like this:

Run the ch13_r05 program 100 times to create 100 intermediate files.1.
Run the ch13_r06 program to summarize those intermediate files.2.

We've kept this simple so that it's easy to focus on the Python programming involved.



Application Integration

[ 773 ]

For the purposes of this recipe, we'll assume that neither of these applications is written in
Python. We'll pretend that they're written in Fortran or Ada or some other language that's
not directly compatible with Python.

In the Combining two applications into one recipe, we looked at how we can combine Python
applications. When the applications are written in Python, this is the preferred approach.
When applications are not written in Python, some additional work is required.

This recipe uses the Command design pattern; this supports the expansion and
modification of the sequences of commands.

How to do it…
We'll define an abstract Command class. The other commands will be defined as1.
subclasses. We'll push the subprocess processing into this class definition to
simplify the subclasses: 

        import subprocess
        class Command:
            def execute(self, options):
                self.command = self.create_command(options)
                results = subprocess.run(self.command,
                    check=True, stdout=subprocess.PIPE)
                self.output = results.stdout
                return self.output
            def create_command(self, options):
                return ['echo', self.__class__.__name__,
repr(self.options)]

The execute() method works by first creating the OS-level command to execute.
Each subclass will provide distinct rules for the commands which are wrapped.
Once the command has been built, then the run() function of the subprocess
module will process this command. 

The create_command() method builds the sequence of words that comprise the
command to be executed by the OS. The options, generally, will be used to
customize the command arguments that are created. The superclass
implementation of this method provides some debugging information. Each
subclass must override this method to produce useful output.



Application Integration

[ 774 ]

We can use the Command superclass to define a command to simulate the game2.
and create samples:

        import ch13_r05

        class Simulate(Command):
            def __init__(self, seed=None):
                self.seed = seed
            def execute(self, options):
                if self.seed:
                    os.environ['RANDOMSEED'] = str(self.seed)
                super().execute(options)
            def create_command(self, options):
                return ['python3', 'ch13_r05.py`,
                    '--samples', str(options.samples),
                    '-o', options.game_file]

In this case, we provided an override for the execute() method so that this class
could change the environment variables. This allows an integration test to set a
specific random seed and confirm that the results match a fixed set of expected
values. 

The create_command() method emits the words for a command-line execution
of the ch13_r05 command. This converts the numeric value of
options.samples to a string.

We can also use the Command superclass to define a command to summarize the3.
various simulation processes:

        import ch13_r06

        class Summarize(Command):
            def create_command(self, options):
                return ['python3', 'ch13_r06.py',
                    '-o', options.summary_file,
                    ] + options.game_files

In this case, we only implemented create_command(). This implementation
provides the arguments for the ch13_r06 command.

Given these two commands, the overall main program can follow the design4.
pattern from the Designing scripts for composition recipe. We need to gather the
options, and then use these options to execute the two commands:



Application Integration

[ 775 ]

         from argparse import Namespace

        def demo():
            options = Namespace(samples=100,
                game_file='x12.yaml', game_files=['x12.yaml'],
                summary_file='y12.yaml')
            step1 = Simulate()
            step2 = Summarize()
            step1.execute(options)
            step2.execute(options)

This demonstration function, demo(), creates a Namespace instance with the
parameters that could have come from the command line. It builds the two
processing steps. Finally, it executes each step. 

This kind of function provides a high-level script for executing a sequence of
applications. It's considerably more flexible than the shell, because we can make
use of Python's rich collection of data structures. Because we're using Python, we
can include unit tests as well.

How it works…
There are two interlocking design patterns in this recipe:

The Command class hierarchy
Wrapping external commands by using the subprocess.run() function

The idea behind a Command class hierarchy is to make each separate step or operation into a
subclass of a common, abstract superclass. In this case, we've called that superclass
Command. The two operations are subclasses of the Command class. This assures that we can
provide common features to all of the classes.

Wrapping external commands has several considerations. One primary question is how to
build the command-line options that are required. In this case, the run() function will use a
list of individual words, making it very easy to combine literal strings, filenames, and
numeric values into a valid set of options for a program. The other primary question is how
to handle the OS-defined standard input, standard output, and standard error files. In some
cases, these files can be displayed on the console. In other cases, the application might
capture those files for further analysis and processing.



Application Integration

[ 776 ]

The essential idea here is to separate two considerations:

The overview of the commands to be executed. This includes questions about1.
sequence, iteration, conditional processing, and potential changes to the
sequence. These are higher-level considerations related to the user stories.
The details of how to execute each command. This includes command-line2.
options, output files used, and other OS-level considerations. These are more
technical considerations of the implementation details.

Separating the two makes it easier to implement or modify the user stories. Changes to the
OS-level considerations should not alter the user stories; the process might be faster or use
less memory, but is otherwise identical. Similarly, changes to the user stories should not
break the OS-level considerations.

There's more…
A complex sequence of steps can involve iteration of one or more steps. Since the high-level
script is written in Python, adding iteration is done with the for statement:

    def process_i(options):
        step1 = Simulate()
        options.game_files = []
        for i in range(options.simulations):
            options.game_file = 'game_{i}.yaml'.format_map(vars())
            options.game_files.append(options.game_file)
            step1.execute(options)
        step2 = Summarize()
        step2.execute(options)

This process_i() function will process the Simulate step many times. It uses the
simulations option to specify how many simulations to run. Each simulation will
produce the expected number of samples.

This function will set a distinct value for the game_file option for each iteration of the
processing. Each of the resulting filenames will be unique, leading to a number of sample
files. The list of files is also collected into the game_files option.

When the next step, the Summarize class, is executed, it will have the proper list of files to
process. The Namespace object, assigned to the options variable, can be used to track
global state changes and provide this information to subsequent processing steps.



Application Integration

[ 777 ]

Building conditional processing
Since the high-level programming is written in Python, it's quite easy to add additional
processing that isn't based on the two applications that are wrapped. One feature might be
an optional summarization step.

For example, if the options do not have a summary_file option, then the processing can be
skipped. This might lead to a version of the process() function that looks like this:

    def process_c(options):
        step1 = Simulate()
        step1.execute(options)
        if 'summary_file' in options:
            step2 = Summarize()
            step2.execute(options)

This procees_c() function will process the Summarize step conditionally. If there is a
summary_file option, it will execute the second step. Otherwise, it will skip the summary
step.

In this case, and the previous example, we've used Python programming features to
augment the two application programs.

See also
Generally, these kinds of processing steps are done for larger or more complex
applications. See the Combining two applications into one and Managing arguments
and configuration in composite applications for more recipes that work with larger
and more complex composite applications.



Index

A
abductive reasoning  316
Abstract Base Classes (ABCs)
   about  157
   mapping  157
   sequence  157
   set  157
abstract class  285
abstract data type  255
ACID properties
   atomicity  763
   consistency  763
   durability  763
   isolation  763
ActiveState  61
advanced graph manipulation
   reference  158
aggregation  302
Algorithm Design Manual
   reference  92
append() method
   used, for building list  160
application processing
   data - collections and items  272
applications
   multiple applications, combining with command

design pattern  748, 750
   testing, that involve date or time  580, 581, 582,

584, 585
   testing, that involve randomness  587, 588, 590
   two applications, combining  740, 741, 742, 743
approaches, of function designing with optional

parameters
   General to Particular  112, 115, 116
   Particular to General  112, 114
architectural features, composite applications

   concurrency  744, 745
   logging  744, 747
   refactoring  744
argparse
   used, for obtaining command-line input  232,

233, 234, 235, 236, 237, 238
argument styles  238
arguments
   managing, in composite applications  753, 755,

757

arithmetic operators  16
arrays  158
ASCII characters
   creating  49, 51
aspects, processing
   inputs  725
   outputs  725
   process  725
assertions, TestCase class
   assertAlmostEquals()  574
   assertCountEqual()  574
   assertEqual()  574
   assertFalse()  574
   assertIs()  574
   assertIsInstance()  574
   assertIsNone()  574
   assertIsNot()  574
   assertIsNotNone()  574
   assertNotAlmostEquals()  574
   assertNotEqual()  574
   assertNotIsInstance()  574
   assertNotRegex()  574
   assertRegex()  574
   assertTrue()  574
assignment  205
associative store  194
audit output



[ 779 ]

   logging, using for  729, 731, 733, 737, 738
authentication
   about  642
   implementing, for web services  671, 672
authorization  672
autocorrelation
   computing  517, 518, 519, 520, 521, 522, 523
average of values
   in Counter  502, 503, 504

B
backslash
   used, for breaking long statement into logical

lines  67
bash  64
bash shell  693
BBEdit
   reference  61
Beautiful Soup
   reference  54
   Tag objects  474
binary operators  16
bisect module  278
block files  421
body element, RST parser
   block quotes  79
   hyperlink targets  79
   lists  79
   literal blocks  79
   paragraphs of text  79
   RST comments  79
   substitution definitions  79
   tables  79
bootstrapping  587
break statements
   potential problems, avoiding with  93, 95
built-in collections, in collections module
   ChainMap  157, 278
   Counter  157, 277
   defaultdict  157, 277
   deque  157, 277
   namedtuple  157
   OrderedDict  157, 277
built-in statistic library
   using  493, 494, 495, 496, 497

bytes
   decoding  52, 53, 54, 55
   versus string  51

C
C3
   reference  312
calculations  297
Cascading Style Sheet (CSS)  469
categorical data  540
Certificate Authority (CA)  672
certificates  672
character codes
   reference  48
character files  421
chunking  117
ckdate command  229
ckgid command  229
ckint command  229
ckitem command  229
ckkeywd command  229
ckpath command  229
ckrange command  229
ckstr command  230
cktime command  230
ckuid command  230
ckyorn command  230
class definition
   using  716
class-as-namespace
   using, for configuration  713, 715
class-level static variable  323
class
   about  8
   creating, that has orderable objects  329, 332,

333

   designing, techniques  307
   designing, with lot of processing  260, 261, 263,

264, 265
   designing, with unique processing  268, 269,

270, 272
   used, for data processing  254, 255, 257, 258
   used, for encapsulating data  254, 255, 257, 258
clear documentation strings
   writing, with RST markup  137, 138, 139, 140



[ 780 ]

CLI applications
   combining  760, 762
   wrapping  760, 762
client class
   creating, for database access  596, 597, 598,

599

Cmd class  247
cmd module
   used, for building interactive interface  229
   used, for creating command-line applications 

240, 241, 242, 243, 244, 246
coefficient
   computing, of correlation  507, 508, 509, 511
collaborators  256
collection of objects
   extending  305, 306
collection
   extending  282, 284
   summarizing  380, 381, 383, 384
   transformations, applying to  369, 371, 372
collections modules
   built-in collections  277
Command design pattern  758
command-line applications
   creating, cmd module used  240, 241, 242, 243,

244, 246
command-line input
   obtaining, argparse used  232, 233, 234, 235,

236, 237, 238
common doctest issues
   handling  561, 562, 563
Common Gateway Interface (CGI)  617
comparison directives, for individual tests
   +DONT_ACCEPT_BLANKLINE  561
   +DONT_ACCEPT_TRUE_FOR_1  561
   +ELLIPSIS  560
   +IGNORE_EXCEPTION_DETAIL  560
   +NORMALIZE_WHITESPACE  560
   +SKIP  560
complex algorithms
   simplifying, with immutable data structures  406,

408, 409, 411, 412
complex data structure
   deserializing  460, 461
   serializing  458, 459

complex files
   operations  452, 453
complex formats
   reading, regular expressions used  447, 448
complex if...elif chains
   designing  82, 83, 84, 85
complex numbers  24
complex object
   mocking  603, 604
complex sequences
   controlling, of steps  772, 774, 775
complex strings
   building  38, 39, 40, 41
   building, from lists of characters  43, 44
composite applications
   arguments, managing in  753, 755, 757
   configuration, managing in  753, 755, 757
composition  302
   scripts, designing for  720, 725
comprehension  162
concerns
   separating, via multiple inheritance  309, 310,

313

   types  313
conditional processing
   building  777
configuration files
   finding  693, 696
   Python, using for  709, 712
   YAML, using for  702, 704
configuration representation  718
configuration
   class-as-namespace, using for  714, 716
   managing, in composite applications  753, 755,

757

context managers
   about  109
   creating  602
   files, reading with  432, 433, 434
   files, writing with  432, 433, 434
   working  435, 436
context
   managing, with statement used  107, 108, 109
continuous real-valued data  540
control



[ 781 ]

   logging, using for  729, 731, 733, 737, 739
copy of list
   reversing  176, 177, 178, 179
correlation
   coefficient, calculating of  507, 508, 509, 511
count data  540
Counter class
   extending  261
Counter object
   updating  266, 267
   wrapping  261
Counter
   average of values  502, 503, 504
Coupon Collector's Test  180, 260
CRUD operations  194, 621
CSV (comma-separated value) format  326, 421
csv module
   used, for reading delimited files  441, 442, 443,

444, 445
CSV
   upgrading, from DictReader to namedtuple

reader  475, 477, 478
   upgrading, from DictReader to namespace

reader  481, 482
currency  17
currency calculations
   performing  18, 19

D
dangling else
   reference  87
data processing, from files
   logical layout of data  421
   physical format of data  421
data structure
   reference  158
   selecting  154, 156, 157
data
   encapsulating, class used  254, 255, 257, 258
   processing, class used  254, 255, 257, 258
database access
   client class, creating for  596, 597, 598, 599
debugging tools  230, 231
deck slicing  653, 654
deep copy of objects

   making  207, 208, 209, 210
delimited files
   reading, with csv module  441, 442, 443, 444,

445

DeMorgan's Law  93
Dependency Inversion Principle  259
descriptions
   including  71, 72
descriptive names  12
dice() function  118
dict objects  567
dictionary keys
   working with  566
dictionary
   creating  189, 190, 191, 192
   handling, in doctest examples  201, 203
   items, removing from  195, 196, 197
   setdefault() method, using of  192
DictReader, to namedtuple reader
   CSV, upgrading from  475, 477, 478
DictReader, to namespace reader
   CSV, upgrading from  481, 482, 483
directives
   about  80
   using  81
directory
   creating  426, 427
discrete data  540
distinct names
   number of sibling output files, making with  425,

426

div-mod pair  25
division operators  25, 27
docstring, for script
   example  73
docstring
   about  62
   RST markup, writing in  76, 78, 79
   using, for testing  549, 551
   writing, for library modules  74
   writing, for scripts  72
doctest examples
   dictionary, handling in  201, 203
   set, handling in  201, 203
   writing, for floating-point values  565



[ 782 ]

   writing, for mapping values  564
   writing, for setting values  564
doctest parser  554
document object model (DOM)  472
Document Type Definition (DTD)  464
documentation
   including  71, 72
docutils package
   reference  141
docutils tools
   reference  82
Don't Repeat Yourself (DRY) principle  252, 366
dynamic content  607

E
eager attributes
   updating, settable properties used  292, 293,

294, 295, 296
eager loading  262
eager processing  286
edge cases  555, 556
Elastic
   reference  592
emergent behavior  255
encodings
   reference  55
entry documents
   creating, in entrylog collection  593, 594
except clause
   potential problems, avoiding with  102, 103
exception matching rules
   leveraging  97, 98, 99, 100
exceptions
   chaining, with raise from statement  104, 106
explicit line joining  69, 70
explicit types
   writing, on function parameters  126, 127, 128,

129, 130, 131
exploratory data analysis (EDA)
   about  493
   central tendency  493
   extrema  493
   variance  493
exponent  23
expressions  70

extension
   versus inheritance  300, 301, 302
external resources
   mocking  591, 592, 593

F
features
   using, of print() function  218, 219, 220, 221,

222

Fibonacci problem
   recursions  146, 147
file dates
   comparing  427, 428
files
   about  420
   creating  426, 427
   finding, that match  429
   OS files  420
   reading, multiple contexts used  485, 488
   reading, with context managers  432, 433, 434
   removing  428
   replacing, while preserving previous version  437,

438, 440
   writing, multiple contexts used  485, 489
   writing, with context managers  432, 433, 434
filter  394
filter() function
   using  173
filtering  350
First Normal Form (1NF)  442
First-In-First-Out (FIFO)  278
Flask framework
   using, for RESTful APIs  622, 625, 626, 627,

628

Flask view function decorator  676
Flask
   references  629
floating-point approximations  20, 21
floating-point
   need for  23
floor division
   performing  26
fold left operation  382
fold right operation  382
fraction calculations  19, 20



[ 783 ]

fractions  17
full pathname
   elements  422
function definitions  111
function parameters
   explicit types, writing on  126, 127, 128, 129,

130, 131
   mutable default values, avoiding for  211, 212,

214

functional programming  349
functions
   designing, with optional parameters  112
   testing, that arise exceptions  557, 560
   wrapping  134, 137
functools.partial()
   using  403

G
general domain validation  227
generator expression
   list function, using on  162
generator functions
   about  356
   core value  357
   writing, with yield statement  351, 352, 355
getpass()
   using, for user input  223, 224, 225, 226, 228
GIVEN-WHEN-THEN style, of test case naming 

549

global objects
   managing  320, 321
global singleton variables
   sharing  324
graphs  158

H
half-open interval  32
happy path  568
hard links  423
has-a relationship  300
hashes  158
head-tail merge algorithm  361
heap queue  278
heapq module  278
high-order function  405

hints  129
HTML documents
   reading  468, 469, 471, 473
HTTP basic authentication  673
HTTP digest authentication  673
HTTP headers  617
HTTP request  610
HTTP response  610
HTTP
   about  607
   use case  607
Hungarian Notation  10
Hypertext Transfer Protocol (HTTP)  592

I
IEEE floating point
   reference  24
if-break pattern  696
immutable data structures
   used, for simplifying complex algorithms  406,

408, 409, 411, 412
immutable objects  408
immutable string
   rewriting  28, 29
implicit line joining  69, 70
indexing  33
inheritance
   versus extension  300, 301, 302
inline markup
   using  81, 82
input()
   using, for user input  223, 224, 225, 226, 228
instance
   initializing, with values  296, 297
integer processing
   reference  17
integration testing  548
Interface Segregation Principle  259
intermediate results
   assigning, for separating variables  69
invariant  89
Inverse Power Law of Reuse  743
irrational numbers  18
is-a or inheritance  302
is-a relationship  300



[ 784 ]

ISO11179
   reference  12
items
   adding, to set  184, 185
   deleting, from list  171, 172, 174
   extracting, from tuples  56, 57
   removing, from dictionary  195, 196, 197
   removing, from set  186, 187, 188, 189
   removing, pop() method used  173
   removing, remove() method used  172
   tuples, using of  55
iterator  355
itertools modules
   about  397
   accumulate() function  398
   chain() function  398
   compress() function  398
   dropwhile() function  398
   filterfalse() function  398
   groupby() function  398
   islice() function  399
   starmap() function  398
   takewhile() function  399
   tee() function  399
   zip_longest() function  398

J
Java Developer Kit (JDK)  592
joining
   explicit line joining  70
   implicit line joining  70
JSON documents
   reading  454, 456, 457
JSON request
   client module  664
   parsing  658
   server  663
   Swagger specification  660
JSON schema specification
   reference  608
JSON
   complex data structure, deserializing  460, 461
   complex data structure, serializing  458, 459
   reference  454

K
key-and-count algorithm  193
keyword parameters
   partial function, creating with  135, 136
keyword-only arguments
   forcing, with * separator  122, 123
Komodo Edit  61
Komodo IDE
   about  61
   reference  61
ksh  64

L
lambda object
   creating  403
large integers
   working with  13, 15
Last-In-First-Out (LIFO)  278
Law of the Excluded Middle  83
lazy attributes
   properties, using for  286, 287, 290
lazy loading  262
lazy processing  286
library modules
   about  71
   docstrings, writing for  74
line joining  69
Liskov Substitution Principle (LSP)  259, 751
list comprehension
   working  163
   writing  161, 162
list function
   using, on generator expression  162
list objects
   creating, ways  160
list of mappings
   deleting from  342, 343, 344, 345, 347
lists
   about  80
   building  159
   building, with append() method  160
   deleting from  170, 171
   dicing  165, 168
   extending  164, 165



[ 785 ]

   items, deleting from  171, 172
   namespace, using instead of  367
   slicing  165, 168
literal blocks  80
load_tests protocol
   using  604
logging package
   security levels  732
logging
   using, for audit output  729, 731, 733, 737, 738
   using, for control  729, 731, 733, 736, 738
long lines of code
   writing  65, 66
long statement
   breaking, () characters used  67, 68
   breaking, backslash used  67
long-term model  524

M
MAD (Median Absolute Deviation)  533
man page
   about  75
   reference  76
mantissa  23
map  394
map transformation
   combining, with reduce transformation  386, 388,

389, 390, 392
map() function
   about  373
   using  547
mapping
   about  350
   immutable mapping  157
   mutable mapping  157
maps of lists
   using  325, 326, 327
Mastering Python Regular Expressions book
   reference  37
math module, Python  23, 24
maxima  385
meaningful names
   creating  7, 8, 11
memoization  146
memory leaks  107

Method Resolution Order (MRO)  312, 719
methods
   finding, Python mechanism used  306
microservice  607
minima  385
mixed content model  464
mixin  300
modeline  65
module files  8
   writing  60, 62, 63, 64
module global variable  321, 322
multiple contexts
   used, for reading files  485, 488
   used, for writing files  485, 489
multiple inheritance
   concerns, separating via  309, 310, 312, 313
multiple variables
   analyzing, in one pass  539, 540, 541, 543, 544
Multipurpose Internet Mail Extensions (MIME)  638
mutable default values
   avoiding, for function parameters  211, 212, 214,

215, 216
mutable objects  408
mypy
   reference  129, 132

N
names
   assigning, to objects  10, 11
   selecting  8
namespace
   using, instead of list  367
no echo input  223
Notepad++
   reference  61
null hypothesis  265, 525, 526, 528, 529, 530
number of sibling output files
   making, with distinct names  425, 426
numbered lists  80
numbers
   converting, from one type to another  21

O
object  255
object-oriented programming  255



[ 786 ]

Object-Relational Management (ORM)  741
objects
   about  8
   names, assigning to  10, 11
OData specifications
   reference  635
ontology  301
Open/Closed Principle  259
OpenAPI (Swagger) authentication  643
OpenID
   reference  672
operators
   using  179, 180, 181, 182, 183, 184
optional parameters
   functions, designing with  112
   int (str)  112
   int (str, base)  112
order for parameters
   picking, based on partial functions  132, 133, 134
order of dict keys
   controlling  198
ordered collection
   defining  335, 337, 339, 340, 341, 342
ordinal data  540
ordinary input  223
OS environment settings
   using  248, 249, 250, 251, 252
OS files
   about  420
   block files  421
   character files  421
outliers
   about  400
   locating  532, 533, 534, 535
   reference  539
output filename
   making, by changing input suffix  425
output files
   directory, creating based on timestamps  440,

441

P
packages
   creating  568, 569, 570
paragraphs of text  79

parse function
   defining  449
   using  450
partial function
   creating  399, 400, 402, 403
   creating, with keyword parameters  135, 136
   creating, with positional parameters  135
Path class
   operations, example  430
pathlib module
   about  430
   used, for working with filenames  422, 423
patterns, for applying function to set of data
   filtering  350
   mapping  350
   reducing  350
Pearson's r  508
PEP 3333
   reference  621
performance testing  549
piton  152
pop() method
   used, for removing items  173
positional parameters
   partial function, creating with  135
predicate transformer semantics
   reference  87
print() function
   features, using of  218, 219, 220, 221, 222
priority queue  278
program output
   checking  767, 770
program
   wrapping  767, 770
properties
   using, for lazy attributes  286, 287, 290
pure paths, for specific operating system
   cases  431
pymongo
   reference  200
Python collections
   reference  165
Python Enhancement Proposal 484
   reference  65
Python Enhancement Proposal number 8 (PEP-8) 



[ 787 ]

12

Python Language Reference document
   reference  276
Python Package Index (PyPI)  468
Python script
   writing  60, 62, 63, 64
Python Standard Library documents  64
Python standard library
   reference  621
Python's duck typing
   leveraging  315, 316, 318
Python
   operators  22
   using, for configuration files  709, 711

Q
query string
   parsing, in request  629, 630, 631, 634
   syntax rules  634
queue  278

R
raise from statement
   exceptions, chaining with  104, 106
random walk technique  190
Rate-Time-Distance (RTD)  119
rational fraction calculations  27
rational fraction value  25
rational numbers  17
reactive programming  351
read-eval-print loop (REPL)  7, 242
recursive functions
   designing, around Python's stack limits  142,

143, 144
recursive generator functions
   writing, with yield form statement  413, 414, 416
reduce  394
reduce transformation
   combining, with map transformation  386, 388,

389, 390, 392
reduce() function  384
reduction  144, 350
references  204
regression parameters
   computing  512, 513, 514, 516

regular expressions
   used, for reading complex formats  447, 448
remaining numbers  84
remove() method
   used, for removing items  172
Representational State Transfer (REST)  592, 607
request
   query string, parsing in  629, 630, 631, 634
REST requests
   making, with urllib  636, 638, 639, 640, 641
RESTful APIs
   Flask framework, using for  622, 625, 626, 627,

628

ReStructuredText (RST) markup  72
reusable scripts
   writing, with script library switch  148, 151
RST markup
   clear documentation strings, writing with  137,

138, 139, 140
   writing, in docstrings  76, 78, 79
RST syntax  75
rule
   writing, for rejecting data  379

S
script library switch
   reusable scripts, writing with  148, 151
scripts
   about  8, 71
   designing, for composition  720, 725
   docstrings, writing for  72, 73
Secure Socket Layer (SSL)  594, 642, 672
security levels, logging package
   CRITICAL  732
   DEBUG  732
   ERROR  732
   INFO  732
   WARNING  732
sequence
   immutable sequence  157
   mutable sequence  157
server
   Swagger, adding to  644, 645
set builder  350
set comprehension  350



[ 788 ]

set methods
   using  179, 180, 181, 182, 183, 184
set
   handling, in doctest examples  201, 203
   immutable set  157
   items, adding to  184, 185
   items, removing from  186, 187, 188, 189
   mutable set  157
settable properties
   used, for updating eager attributes  292, 293,

294, 295, 296
shallow copy  169
shallow copy of objects
   making  207, 208, 209, 210
share global state  325
signature  112
Single Responsibility Principle  259
singleton objects
   managing  320, 321
slice  32
slice notation  32
slice operator
   forms  169
small integers
   working with  13, 15
small objects
   optimizing, with __slots__  273, 274, 275, 276
soft links  423
SOLID principle
   about  259
   Dependency Inversion Principle  259
   Interface Segregation Principle  259
   Liskov Substitution Principle  259
   Open/Close Principle  259
   Single Responsibility Principle  259
solid state drives (SSD)  421
sophisticated collections
   using  277, 280
Sphinx Python Documentation Generator
   reference  75, 82
Sphinx
   reference  76
spike solution  152
SQLAlchemy  741
SSL

   configuring  673
stack  278
stacked generator expressions
   using  359, 361, 363, 365
stateful class  269
stateful objects
   examples, writing for  552, 553
stateless class  269
stateless functions
   examples, writing for  552
stateless objects
   about  269, 270
   defining, existing class used  271
   defining, with new class  270
static content  607
string literal concatenation
   using  68, 69
string parsing
   inputting  228, 229
   with regular expressions  34, 35
string patterns  36
string
   changing, to lowercase  31
   encoding  49, 51
   extra punctuation marks, removing  31
   parsing  37
   piece of string, slicing  29
   updating, with replacement  30, 31
   versus byte  51
subdomain validation  227
subset
   picking  374, 375, 377, 378
super flexible keyword parameters
   using  118, 121, 122
Swagger specification
   providing  655, 656
   using  658
swagger-spec-validator project
   reference  608
Swagger
   about  643
   adding, to server  644, 645
   reference  608
symbolic links  423
sys module  222



[ 789 ]

system testing  549

T
tail recursion  143
test modules
   creating  568, 569, 570
TestCase class
   assertions  574
testing
   about  548
   docstrings, using for  549, 551
   integration testing  548
   performance testing  549
   system testing  549
   unit testing  548
tests directory  575
text role  82
there exists processing
   implementing  394, 396
transformations
   applying, to collection  369, 371, 372
trees  158
true division operator  27
true division
   performing  26
true value  25
truncated division operator  28
tuples
   creating  56
   items, extracting from  56, 57
   using, of items  55
   working  57, 58
type hints
   reference  132
type inferencing  328
typical response
   viewing  595

U
UDEF and NIEM Naming and Design Rules

standards
   reference  12
Unicode characters
   reference  46
   using  46, 47

Unicode encodings
   reference  51
unit test  764
unit testing  548
unittest module  568
   working  571, 572
unittest, and doctest tests
   combining  576, 578, 579
unlinking  428
URL path
   parsing  645, 648, 649
urllib
   REST requests, making with  636, 638, 639,

640, 641
User class
   defining  677
user input
   getpass(), using for  223, 224, 225, 226, 228
   input(), using for  223, 224, 225, 226, 228
UTF-8 bytes
   creating  49, 51
UTF-8 encoding
   reference  51

V
variables
   about  204
   using  7
   working  206
variance
   computing  505, 506
vars() function  42
view decorator
   defining  680

W
web application
   client  636
   server  636
web log file
   searching, for particular sequence of events  281,

282

web page content
   dynamic content  607
   static content  607



web services
   authentication, implementing for  672
   implementing, with WSGI  609, 610, 611, 614,

615, 616
Werkzeug project
   reference  621
while statement
   designing  87, 88, 89, 90, 91, 92
with context
   reference  110
with statement
   reference  110
   used, for managing context  107, 108, 109
wrapper  619
wrapping  303, 304
WSGI server context
   wsgi.errors  618
   wsgi.input  618
WSGI standard
   attached content  610
   environment dictionary  617
   methods  610
   request headers  610

WSGI
   web services, implementing with  609, 610, 611,

614, 615, 616

X
XML documents
   reading  461, 462, 463, 465
XML Path Language (XPath)  466
XML
   reference  461

Y
YAML
   additional features  706, 708
   reference  704
   using, for configuration files  702, 704
yield form statement
   used, for writing recursive generator functions 

413, 414, 416, 417
yield statement
   generator functions, writing with  351, 353, 355,

356


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Numbers, Strings, and Tuples
	Introduction
	Creating meaningful names and using variables
	Getting ready
	How to do it…
	Choosing names wisely
	Assigning names to objects

	How it works…
	There's more…
	See also

	Working with large and small integers
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Choosing between float, decimal, and fraction
	Getting ready
	How to do it…
	Doing currency calculations
	Fraction calculations
	Floating-point approximations
	Converting numbers from one type to another

	How it works…
	There's more…
	See also

	Choosing between true division and floor division
	Getting ready
	How to do it…
	Doing floor division
	Doing true division
	Rational fraction calculations

	How it works…
	See also

	Rewriting an immutable string
	Getting ready
	How to do it…
	Slicing a piece of a string
	Updating a string with a replacement
	Making a string all lowercase
	Removing extra punctuation marks

	How it works…
	There's more…
	See also

	String parsing with regular expressions
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building complex strings with “template”.format()
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building complex strings from lists of characters
	Getting ready
	How to do it…
	How it works…
	There's more
	See also

	Using the Unicode characters that aren't on our keyboards
	Getting ready
	How to do it…
	How it works…
	See also

	Encoding strings – creating ASCII and UTF-8 bytes
	Getting ready
	How to do it…
	How it works…
	See also

	Decoding bytes – how to get proper characters from some bytes
	Getting ready
	How to do it..
	How it works…
	See also

	Using tuples of items
	Getting ready
	How to do it…
	Creating tuples
	Extracting items from a tuple

	How it works…
	There's more
	See also…


	Chapter 2: Statements and Syntax
	Introduction
	Writing Python script and module files – syntax basics
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Writing long lines of code
	Getting ready
	How to do it…
	Using backslash to break a long statement into logical lines
	Using the () characters to break a long statement into sensible pieces
	Using string literal concatenation
	Assigning intermediate results to separate variables

	How it works…
	There's more…
	See also

	Including descriptions and documentation
	Getting ready
	How to do it…
	Writing docstrings for scripts
	Writing docstrings for library modules

	How it works…
	There's more…
	See also

	Writing better RST markup in docstrings
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using directives
	Using inline markup

	See also

	Designing complex if…elif chains
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Designing a while statement which terminates properly
	Getting ready
	How to do it…
	How it works…
	See also

	Avoiding a potential problem with break statements
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Leveraging the exception matching rules
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Avoiding a potential problem with an except: clause
	Getting ready
	How to do it…
	How it works…
	See also

	Chaining exceptions with the raise from statement
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Managing a context using the with statement
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 3: Function Definitions
	Introduction
	Designing functions with optional parameters
	Getting ready
	How to do it…
	Particular to General Design
	General to Particular design

	How it works…
	There's more…
	See also

	Using super flexible keyword parameters
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Forcing keyword-only arguments with the * separator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Writing explicit types on function parameters
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Picking an order for parameters based on partial functions
	Getting ready
	How to do it…
	Wrapping a function
	Creating a partial function with keyword parameters
	Creating a partial function with positional parameters

	How it works…
	There's more…
	See also

	Writing clear documentation strings with RST markup
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Designing recursive functions around Python's stack limits
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Writing reusable scripts with the script library switch
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 4: Built-in Data Structures – list, set, dict
	Introduction
	Choosing a data structure
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building lists – literals, appending, and comprehensions
	Getting ready
	How to do it…
	Building a list with the append() method
	Writing a list comprehension
	Using the list function on a generator expression

	How it works…
	There's more…
	Other ways to extend a list

	See also

	Slicing and dicing a list
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Deleting from a list – deleting, removing, popping, and filtering
	Getting ready
	How to do it…
	Deleting items from a list
	The remove() method
	The pop() method
	The filter() function

	How it works…
	There's more…
	See also

	Reversing a copy of a list
	Getting ready
	How to do it…
	How it works…
	See also

	Using set methods and operators
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Removing items from a set – remove(), pop(), and difference
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating dictionaries – inserting and updating
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Removing from dictionaries – the pop() method and the del statement
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Controlling the order of dict keys
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Handling dictionaries and sets in doctest examples
	Getting ready
	How to do it…
	How it works…
	There's more…

	Understanding variables, references, and assignment
	
	How to do it…
	How it works…
	There's more…
	See also

	Making shallow and deep copies of objects
	Getting ready
	How to do it…
	How it works…
	See also

	Avoiding mutable default values for function parameters
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 5: User Inputs and Outputs
	Introduction
	Using features of the print() function
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using input() and getpass() for user input
	Getting ready
	How to do it…
	How it works…
	There's more…
	Input string parsing
	Interaction via the cmd module

	See also

	Debugging with “format”.format_map(vars())
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using argparse to get command-line input
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using cmd for creating command-line applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the OS environment settings
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 6: Basics of Classes and Objects
	Introduction
	Using a class to encapsulate data and processing
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Designing classes with lots of processing
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Designing classes with little unique processing
	Getting ready
	How to do it…
	Stateless objects
	Stateful objects with a new class
	Stateful objects using an existing class

	How it works…
	There's more…
	See also

	Optimizing small objects with __slots__
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using more sophisticated collections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Extending a collection – a list that does statistics
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using properties for lazy attributes
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…

	Using settable properties to update eager attributes
	Getting ready
	How to do it…
	How it works…
	There's more…
	Initialization
	Calculation

	See also


	Chapter 7: More Advanced Class Design
	Introduction
	Choosing between inheritance and extension – the is-a question
	Getting ready
	How to do it…
	Wrapping – aggregation and composition
	Extending – inheritance

	How it works…
	There's more…
	See also

	Separating concerns via multiple inheritance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Leveraging Python's duck typing
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Managing global and singleton objects
	Getting ready
	How to do it…
	Module global variable
	Class-level static variable

	How it works…
	There's more…

	Using more complex structures – maps of lists
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a class that has orderable objects
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Defining an ordered collection
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Deleting from a list of mappings
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 8: Functional and Reactive Programming Features
	Introduction
	Writing generator functions with the yield statement
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using stacked generator expressions
	Getting ready
	How to do it…
	How it works…
	There's more…
	Namespace instead of list

	See also

	Applying transformations to a collection
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…

	Picking a subset – three ways to filter
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…

	Summarizing a collection – how to reduce
	Getting ready
	How to do it…
	How it works…
	There's more…
	Maxima and minima
	Potential for abuse


	Combining map and reduce transformations
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Implementing “there exists” processing
	Getting ready
	How to do it…
	How it works…
	There's more…
	The itertools module


	Creating a partial function
	Getting ready
	How to do it…
	Using functools.partial()
	Creating a lambda object

	How it works…
	There's more…

	Simplifying complex algorithms with immutable data structures
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing recursive generator functions with the yield from statement
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 9: Input/Output, Physical Format, and Logical Layout
	Introduction
	Using pathlib to work with filenames
	Getting ready
	How to do it…
	Making the output filename by changing the input suffix
	Making a number of sibling output files with distinct names
	Creating a directory and a number of files
	Comparing file dates to see which is newer
	Removing a file
	Finding all files that match a given pattern

	How it works…
	There's more…
	See also

	Reading and writing files with context managers
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Replacing a file while preserving the previous version
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading delimited files with the CSV module
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading complex formats using regular expressions
	Getting ready
	How to do it…
	Defining the parse function
	Using the parse function

	How it works…
	There's more…
	See also

	Reading JSON documents
	Getting ready
	How to do it…
	How it works…
	There's more…
	Serializing a complex data structure
	Deserializing a complex data structure

	See also

	Reading XML documents
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading HTML documents
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Upgrading CSV from DictReader to namedtuple reader
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Upgrading CSV from a DictReader to a namespace reader
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using multiple contexts for reading and writing files
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also


	Chapter 10: Statistical Programming and Linear Regression
	Introduction
	Using the built-in statistics library
	Getting ready
	How to do it…
	How it works…
	There's more…

	Average of values in a Counter
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Computing the coefficient of a correlation
	Getting ready
	How to do it…
	How it works…
	There's more…

	Computing regression parameters
	Getting ready
	How to do it…
	How it works…
	There's more…

	Computing an autocorrelation
	Getting ready
	How to do it…
	How it works…
	There's more…
	Long-term model

	See also

	Confirming that the data is random – the null hypothesis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Locating outliers
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Analyzing many variables in one pass
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using map()

	See also


	Chapter 11: Testing
	Introduction
	Using docstrings for testing
	Getting ready
	How to do it…
	Writing examples for stateless functions
	Writing examples for stateful objects

	How it works…
	There's more…
	See also

	Testing functions that raise exceptions
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Handling common doctest issues
	Getting ready
	How to do it…
	Writing doctest examples for mapping or set values
	Writing doctest examples for floating-point values

	How it works…
	There's more…
	See also

	Creating separate test modules and packages
	Getting ready
	How to do it…
	How it works…
	There's more…
	Some other assertions
	Separate tests directory

	See also

	Combining unittest and doctest tests
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Testing things that involve dates or times
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Testing things that involve randomness
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Mocking external resources
	Getting ready
	Creating an entry document in the entrylog collection
	Seeing a typical response
	Client class for database access

	How to do it…
	How it works…
	Creating a context manager
	Creating a dynamic, stateful test
	Mocking a complex object
	Using the load_tests protocol

	There's more…
	See also


	Chapter 12: Web Services
	Introduction
	Implementing web services with WSGI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the Flask framework for RESTful APIs
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Parsing the query string in a request
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Making REST requests with urllib
	Getting ready
	How to do it…
	How it works…
	There's more…
	The OpenAPI (Swagger) specification
	Adding Swagger to the server

	See also

	Parsing the URL path
	Getting ready
	How to do it…
	Server
	Client

	How it works…
	Deck slicing
	Client side

	There's more…
	Providing a Swagger specification
	Using a Swagger specification

	See also

	Parsing a JSON request
	Getting ready
	How to do it…
	Swagger specification
	Server
	Client

	How it works…
	There's more…
	Location header
	Additional resources
	Query for a specific player
	Exception handling

	See also

	Implementing authentication for web services
	Getting ready
	Configuring SSL
	Users and credentials
	Flask view function decorator

	How to do it…
	Defining the User class
	Defining a view decorator
	Creating the server
	Creating an example client

	How it works…
	There's more…
	Creating a command-line interface
	Building the Authentication header

	See also


	Chapter 13: Application Integration
	Introduction
	Finding configuration files
	Getting ready
	Why so many choices?

	How to do it…
	How it works…
	There's more…
	See also

	Using YAML for configuration files
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using Python for configuration files
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using class-as-namespace for configuration
	Getting ready
	How to do it…
	How it works…
	There's more…
	Configuration representation

	See also

	Designing scripts for composition
	Getting ready
	How to do it…
	How it works…
	There's more…
	Designing as a class hierarchy

	See also

	Using logging for control and audit output
	Getting ready
	How to do it…
	How it works…
	There's more…

	Combining two applications into one
	Getting ready
	How to do it…
	How it works…
	There's more…
	Refactoring
	Concurrency
	Logging

	See also

	Combining many applications using the Command design pattern
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Managing arguments and configuration in composite applications
	Getting ready
	How to do it…
	How it works…
	The Command design pattern

	There's more…
	See also

	Wrapping and combining CLI applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	Unit test

	See also

	Wrapping a program and checking the output
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Controlling complex sequences of steps
	Getting ready
	How to do it…
	How it works…
	There's more…
	Building conditional processing

	See also


	Index



