
www.allitebooks.com

http://www.allitebooks.org

Modular Programming with
JavaScript

Modularize your JavaScript code for better readability,
greater maintainability, and enhanced testability

Sasan Seydnejad

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Modular Programming with JavaScript

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1150716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-065-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sasan Seydnejad

Reviewers
Joe Dorocak

Muhammad Piracha

Commissioning Editor
Veena Pagare

Acquisition Editor
Smeet Thakkar

Content Development Editor
Mayur Pawanikar

Technical Editor
Anushree Arun Tendulkar

Copy Editor
Safis Editing

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sasan Seydnejad has more than a decade of experience in web UI and frontend
application development using JavaScript, CSS, and HTM in .NET and ASP.NET
environments. He specializes in modular SPA design and implementation,
responsive mobile-friendly user interfaces, AJAX, client architecture, and UX
design, using HTML5, CSS3, and their related technologies. He implements
framework-less and framework-based applications using Node.js, MongoDB,
Express.js, and AngularJS. He is the holder of the U.S. patent for a user interface
for a multi-dimensional data store—US Patent 6907428.

Writing this book has been an interesting journey and a lot of work
but rewarding at the same time. I would like to thank my family
who has always motivated me to learn and progress in my life as
well as to help others along the way.
I would also like to thank my friends, my managers, my colleagues
and all the other people who have been a positive influence in my
life. You have helped me to grow personally and professionally.
Special thanks to my friend Taswar Bhatti for encouraging me to
write this book and the book's Content Development Editor, Mayur
Pawanikar for keeping me focused on the goal. Also, my book
reviewers and all the people in PACKT publishing who made this
book possible. My gratitude to JavaScript and open source community
as a whole, thank you for your support through out the years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Joe Dorocak, whose Internet moniker is Joe Codeswell, is a very experienced
programmer. He enjoys creating readable code that implements the project
requirements efficiently and understandably. He considers writing code akin to
writing poetry.

Joe prides himself on the ability to communicate clearly and professionally. He
considers his code to be a form of communication, not only with the machine
platforms upon which it will run, but also with all the human programmers who will
read it in the future.

Joe has been employed as a direct employee or a contractor by IBM, HP, GTE/
Sprint, and other top-shelf companies. He is presently concentrating on the web app
and web project consulting, coding primarily, but not exclusively, in Python and
JavaScript. For more details, visit https://www.linkedin.com/in/joedorocak.

Muhammad Piracha is director of engineering at Bamboo Solutions Corporation,
based in Reston, Virginia. Bamboo Solutions is a leading provider of software
solutions for the Microsoft® SharePoint® platform. Muhammad has over 18 years
experience building document management software applications using various
Microsoft products.

Currently he oversees several teams across engineering, research and quality
assurance to constantly improve the existing portfolio of over 50 products. He is a
major driving force in helping the company to develop strategy, architecture, and
direction for new initiatives in the SharePoint Online and Office 365™ space.

www.allitebooks.com

https://www.linkedin.com/in/joedorocak
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: What Are Modules and Their Advantages? 1

Prelude to modular programming 2
The simple rule for creating modules 3
A real-life example of modules 3
A look at a non-modular example 5
Re-factoring to a more modularized approach 6
Designing in a modular way 7
Summary 9

Chapter 2: Review of Important JavaScript OOP Concepts 11
JavaScript objects 12

Object type constructors 12
Object literal notation 13
Function objects 14

Functions as object constructors (classes) 14
Functions as static objects 15

Object literal notation versus function objects 16
The "this" keyword 19
Closures 22
Encapsulation and scoping 24
Inheritance 27

Prototype chaining 28
Constructor stealing 32
Parasitic combination inheritance 33

Constructor property 35
Native support for inheritance 36

Summary 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Module Design Pattern 39
Module pattern 39

Internal private scope in module pattern 42
Adding properties to an interface in module pattern 44
Object factory module 45

Creating loose coupling among modules 48
Application core module 50
Application Mediator module 51
Application non-core modules 51

testModule1 implementation 51
testModule2 implementation 52
Auto-initialization of application modules 53

Module initialization and design considerations 55
Summary 56

Chapter 4: Designing Simple Modules 57
The big picture 58

Our application requirements 58
Dynamic views 59

Designing our SPA main pieces 60
Application controller 61

Application controller modules 62
Creating our first core module 63

Structure of our first module 63
Using our first module's functionality 66
Mapping our module's methods to its interface 67

Application view 68
Creating the index.html page skeleton 69
Creating an object definition for the header 70
Generating the Header fragment dynamically 71
Generating client application's view dynamically 72

Application model 73
Creating a module for our application's model 74

Creating a logging module 76
Summary 78

Chapter 5: Module Augmentation 79
Principles of module augmentation 79
Implementing module augmentation 80
Simple augmentation of ImagesInc_GlobalData 82
The order of things in module augmentation 83
Loose augmentation of modules 83

Loose augmentation of ImagesInc_GlobalData 85
Testing ImagesInc_GlobalData data encapsulation 88

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Tight augmentation of modules 89
Tight augmentation of ImagesInc_GlobalData 89
Loading ImagesInc_GlobalData augmenting code 92
Considerations in tight augmentation 93

Generating our application's content area 94
Summary 97

Chapter 6: Cloning, Inheritance, and Submodules 99
Cloning modules 100

Creating instances of a constructor function 100
Using the assignment operator for copying objects 102
Creating a clone of an object 103

Shallow cloning and deep cloning 104
Using external libraries for cloning 104
Using JSON exploit for cloning 105
Creating a custom clone method 105

Creating ImagesInc_Utilites module 106
Testing our custom cloning method in ImagesInc_Utilites module 108
An important aspect of our cloning method 109

Inheritance in modules 111
Module inheritance using __proto__ object 111
Module inheritance using parasitic combination 113
Deciding on the module inheritance approach 116

Submodules 116
Adding submodules using dynamic properties 117
Adding submodules using asynchronous properties 118

Summary 120
Chapter 7: Base, Sandbox, and Core Modules 121

Application architecture overview 122
Base module 124

Adding general-purpose libraries to the base module 125
Sandbox module 126

Sandbox module functionality 127
Sandbox as a consistent interface 127
Sandbox as a security layer 128
Sandbox as a communication layer 128
Sandbox as a filter 128

Implementing multiple instances of the sandbox module 129
Advantages of multiple instances of the sandbox 129

Core module 132
Core module construction approach 133

Core module functionality 135
Acting as the controller 135

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Providing communication bridges 136
Initializing and destroying components 138
Providing plug-and-play capability 140
Providing a centralized approach to handling errors 142
Providing application-level extensibility 144
Leveraging third party libraries 145

Components 148
Components required methods 149
Binding events to the components elements 150
Component design considerations 151

Application architectural considerations 152
Summary 154

Chapter 8: Application Implementation – Putting It All Together 155
The user's view of our application 156
Application functionality 158

Index page 158
Image page 158
Favorites page 159
Support widget 160

Application implementation 162
Loading our module files in index.html 163
Base module implementation 165
Core module implementation 166

MainCore module implementation 167
Component registration with MainCore 172
Dynamic loading of components by MainCore 175
Routing functionality in MainCore module 180
Publish-subscribe implementation in MainCore 183

SandBox module implementation 186
SandBox module's constructor 186
Setting a component's container context in the SandBox instance 187
Identifying the SandBox module's instance 187
SandBox module considerations 188

Application components 188
Registering components with MainCore module 189
Header component 191
Footer component 192
Content component 193

Handling content area click events 193
Content area generator methods 196

NotificationWidget component 196
NotificationWidget's model 196
Required methods of the notificationWidget component 197

Table of Contents

[v]

Rendering notificationWidget 199
GlobalData module 200
Summary 202

Chapter 9: Modular Application Design and Testing 203
Advantages of writing automated tests 204
Different types of automated tests 205

Unit testing 205
TDD unit tests 205
BDD unit tests 206
TDD versus BDD 206
Test coverage 206

Integration testing 207
End to end testing 207

A simple start to writing our unit tests 208
Writing unit tests without any unit testing frameworks 208

Adding an AppTester module to our application 208
Adding unit test suites to our test-runner 210
CookieHandler module unit tests 210
Running CookieHandler unit tests 212
Cleaning up after running our unit tests 214

Writing unit tests using third party frameworks 215
Introduction to Jasmine 215
Introduction to Mocha 220

Summary 226
Chapter 10: Enterprise Grade Modular Design, AMD,
CommonJS, and ES6 Modules 227

Revisiting index.html file 228
Introducing Asynchronous Module Definition 230

Defining modules using AMD format 230
Importing AMD modules 231
Introducing RequireJS 232

Downloading RequireJS 232
A test project for creating and loading AMD modules 232

Creating a simple AMD module 233
Consuming our person AMD module 234
Loading dependencies of dependencies 235
Loading and consuming non-AMD modules 235
Setting paths in the config object 237
Creating shims for non-AMD modules 237

Refactoring Images Inc. application to use AMD format 238
Modifying Core submodules into AMD modules 238
Loading our non-AMD modules using RequireJS 240
Setting up our application's config.js file 240
Booting up our application using RequireJS 241

Table of Contents

[vi]

CommonJS 243
Implementing a CommonJS module 243

ECMAScript 6 modules 244
Defining an ES6 module 245
Consuming an ES6 module 246
Module loading sequence in the browsers for ES6 modules 246

Summary 248
Index 249

[vii]

Preface
There are many JavaScript books on the market these days, and some of them are
very good. However, most of them focus on various aspects of the language itself or
using certain frameworks to build JavaScript applications. In this book, we are going
to take a different approach and look at the architectural design of creating JavaScript
applications based on modules, without the need for third-party frameworks.

Creating a good application is more than just writing good code, it is also about
how different pieces of the application work and interact with each other. Another
characteristic of a good application is its ability to be easily maintained, scaled and
extended as needed. A proper modular design enables us to achieve all such goals in
our application seamlessly.

In the beginning of this book, I'll be introducing you to the fundamentals of
JavaScript modules and the concepts behind a good modular design. Leveraging
these concepts, we'll be building an application together, step-by-step, so we can
apply what we learn in practice. I recommend reading the chapters in the sequence
that they are presented so you can follow along with ease and observe how our
design evolves over time.

I would very much encourage you to develop the application pieces with me, as the
intent of this book is to be very hands-on, and I would like you to feel as a member
of the development team for this application.

As in the real world, we will be re-factoring our code-base a few times during the
development phase, in order to implement the new concepts as they are introduced
and improve the quality of our application.

Keep in mind that we will be creating a client-side application, and as such, there
is no server-side code involved. Nonetheless, many concepts that we will be
covering regarding modules and modular architecture can be applied to server-side
applications too.

Preface

[viii]

Also, as this book is an introduction to modular JavaScript application design, we
will develop a Proof of concept (POC)-grade application together which can provide
a good starting point for your own projects.

I have taken a minimalist approach in the implementation, and as a result, we will be
using very few third-party libraries in our development process. Therefore, instead
of focusing on studying new libraries and how to work with them, you can focus
on the application's architecture instead. Once we create a solid foundation, we can
incorporate other libraries into our design as required.

For the purposes of clarity, I have shied away from writing fancy code, so you don't
have to spend much time trying to understand the intricacies of the code, as opposed
to the big picture and how the pieces fit and work together.

Note that this book is meant for people who have a good understanding of
JavaScript language, but would like to learn more about JavaScript client-side
application design. If you find yourself having trouble with the language itself, you
can always refer to online resources and the JavaScript community. This community
consists of many smart and helpful people who can, and will be willing to answer
your questions. I, for one, am very grateful to the community for its help in my
professional growth over the years.

I hope you'll find the book informative and by seeing the benefits of a modular
architecture, will use the concepts presented in this book in your own future projects.

What this book covers
Chapter 1, What Are Modules and Their Advantages?, introduces you to the concept of
modules and how they can help us design a robust and scalable application.

Chapter 2, Review of Important JavaScript OOP Concepts, covers an overview of some
of the important OOP concepts in JavaScript which are necessary for the design and
implementation of the modules in our application.

Chapter 3, Module Design Pattern, introduces a very common pattern in creating
modules in JavaScript and shows how this pattern can be implemented.

Chapter 4, Designing Simple Modules, uses the module pattern to create simple modules
which work together to form the building blocks of our application.

Chapter 5, Module Augmentation, shows the use of various techniques to add more
functionality to our modules so that we can extend their capabilities further.

Preface

[ix]

Chapter 6, Cloning, Inheritance, and Submodules, covers how to create modules
based on other modules in our application, as well as some more techniques to
enhance our modules.

Chapter 7, Base, Sandbox, and Core Modules, introduces some of the main pieces of
our application and demonstrates how to create loose coupling among our
application modules.

Chapter 8, Application Implementation – Putting It All Together, shows us how to apply
all the concepts that we have learned regarding modular architectural design, in
order to implement all the pieces of our application.

Chapter 9, Modular Application Design and Testing, covers how to test our application
modules using either plain JavaScript or third-party frameworks.

Chapter 10, Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules,
introduces different modular formats in JavaScript which can be used to design
modules, as well as how modules can be imported and exported in our application
using these formats.

What you need for this book
You will require any modern browser (IE 9+, Chrome, Safari, Firefox) and any OS
that can run a modern browser from the preceding list.

The third-party library required would be jQuery 1.8+.

For the later chapters, the following are the third-party libraries:

• Jasmin 2+
• Mocha (latest version)
• Chai (latest version)
• RequireJS (latest version)

Who this book is for
If you are an intermediate to advanced JavaScript developer who has an experience
of writing JavaScript code, but probably not in a modular portable manner, or
you are looking to develop enterprise-level JavaScript applications, then this book
is for you.

A basic understanding of JavaScript concepts such as OOP, prototypal inheritance,
and closures is expected.

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Notice that I have created a function and called it MyObjDefinition".

A block of code is set as follows:

function doAddition(num1, num2){
 return num1 + num2;
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xi]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/ModularProgrammingwithJavaScript. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/ModularProgrammingwithJavaScript
https://github.com/PacktPublishing/ModularProgrammingwithJavaScript
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

What Are Modules and
Their Advantages?

In this very first chapter, I will provide you with an overview of the modular design
approach in application development as it relates to JavaScript applications.

I will also mention parallels between the modular style of application architecture
and the real-life examples of this conceptual design.

Hopefully, as you read along, you'll be able to relate to at least some aspects of the
modular design approach and start to see why this style of organizing your code can
be extremely beneficial.

The main objective of this chapter is to create a familiar context for you, and to get
you started on thinking the modular way as you create and organize your code.
Soon, you will see that this approach can organically grow into a well-defined
application architecture methodology.

We will start the chapter with a brief discussion on how we can organize our code
based on specialization. Then we will look at how we can define modules based on
the functionality that they provide.

The topics that are covered in this chapter are:

• The simple rule to creating modules
• A real life example of modules
• A look at a non-modular example
• Re-factoring into a more modular approach
• Designing in a modular way

What Are Modules and Their Advantages?

[2]

Prelude to modular programming
Many years ago, when I was taking my first computer programming course at
college, I found myself having having difficulty organizing organizing my code into
functions and classes. I always wondered what kind of criteria I needed to keep in
mind to qualify a chunk of code to belong to a function or to a class or a subclass.
When should I break down one function into multiple functions or a class into
multiple classes?

Of course, there were some rules and guidelines that I was familiar with such as "a
function should not be too long or should not do too many things; a class should be
a blueprint of a data type" and so on. However, such rules and guidelines seemed
abstract to me and I wanted to find a rule that was precise and applicable in all
situations.

As I became more knowledgeable in programming concepts and gained more
experience in application design, I was able to write more sophisticated code and
organize my code better into functions and classes.

However, while my code was organized into well-defined functions and classes,
such functions and classes still seemed scattered in different parts of the application.
When I needed to make modifications to one piece of the application, I would be
concerned about the impact that the change would have on other pieces and the
functionality of the application as a whole.

As my applications grew larger and became more complex, the impact of the
changes and enhancements became even more pronounced. There were more things
things that could adversely affect the application if the application pieces were not
designed properly.

Browser-based applications were particularly vulnerable to such impacts as different
parts of the application could be manipulating the same element in the browser,
which would produce unexpected behaviors and effects in other parts of the
application.

On the other hand, making small changes to the application was a challenge on
its own, as finding the best place to make such small changes was not always very
obvious. Each piece of the application could be performing many different activities
from manipulation DOM to writing to cookie to making AJAX calls.

What if I could make one part of the application responsible for only one type of
functionality? What if only one part of the application was responsible for all cookie-
related functionality? What if only one piece would make AJAX calls to the server
and provide the other pieces of the application with the returned data?

Chapter 1

[3]

As we design functions and classes to specialize in doing very specific tasks, we can
also bundle such functions and classes together to act as a specialized piece of the
application responsible for providing one particular functionality. The key point here
is to create specialized code packages.

This would mean that changes in how we read and write to cookies would only
take place in the package that is responsible for cookie operations and such changes
would have no impact on how AJAX calls are made to the server.

If we organize our code into specialized packages, (or modules as we will call them)
we can easily achieve this goal of separation of concerns and responsibilities among
our application pieces.

But before we can organize our code into modules, we need to see how we decide
that a chunk of code should be a module.

The simple rule for creating modules
I need to emphasize on the fact that modular programming is not some magical
and mystical design concept and pattern that is hard to grasp and even harder to
implement. It is really just a practical approach to organizing our code in such a way
that each chunk of code only does a very specific and specialized task.

The idea is that each module is a loosely coupled piece of the application, a building
block that, along with other pieces (and other modules), creates an ecosystem, that is
your application.

So here is the simple rule for creating modules: "If a piece of your application
provides a specialized functionality, it can be made into a module that can also be
reused in other applications."

I mentioned previously that I was looking for a "precise" rule to help me organize
my application code but as my experience has shown, there is no such precise rule
other than what I mentioned above, which is in fact not a rule but a guideline. And
as a guideline, there is flexibility in what can be considered a module or not. This
can be best decided both at the design time and as the application evolves since the
application needs can change over time.

A real-life example of modules
Let's consider a familiar modular system. You are most likely reading this book in a
place that has electricity and there are many electric outlets in the walls surrounding
you. This system enables you to plug in various electrical devices into the outlets and
each one of these devices is designed to do a very specific task.

What Are Modules and Their Advantages?

[4]

Consider the electrical devices that are plugged into some of these outlets:
microwaves, electric kettles, washers, dryers, and so on.

None of these devices care if they are plugged into the electrical outlet in your
house or your neighbor's house. They are designed to do their specific task and
functionality when they are plugged in and when the power is on, regardless of
whose house they are in.

Our application modules should follow the same philosophy. This means, regardless
of where in the application they are plugged in and even regardless of what
application they are plugged into, they should do their specific task and only their
specific task.

Also, in exactly the same way that an electrical device can easily be unplugged from
the wall outlet, a code module should be designed in such a way that it can easily be
decoupled and removed from your application.

Furthermore, as the removal of one electrical device has no impact on the
functionality of other devices that are plugged into your electrical system, the
removal of a code module or a series of code modules from your application should
not have any effect on the functionality of the other parts of your application.

This decoupling should also have no effect on the application as a whole, other than
perhaps just losing the specific functionality that was provided by that particular
module or group of modules in your application.

In this book, we will explore how creating modules will help in designing better
specialized code pieces that can easily be plugged into and unplugged from our
applications. We will also see how modular architecture provides for a more robust
and flexible application as a whole.

We will discover how this kind of architectural approach leads to huge advantages
in many aspects of our application fundamentals such as code usability,
maintainability, testability, and many more.

I hope now you are curious enough to at least consider modular programming in
general and JavaScript modular programming in particular as a possible approach
for your future application design.

In further chapters, we will apply the same principles that we discussed regarding
electrical outlets and appliances to our code modules, in both the design and
implementation phases.

Chapter 1

[5]

A look at a non-modular example
Let's consider an extremely simple example and see how the (somehow) specialized
modular approach differs from a non-modular one.

We start by writing a couple of functions in the traditional way, as following:

function doAddition(num1, num2){
 return num1 + num2;
}

function doSubtraction(num1, num2){
 var result = null;
 if(num1 > num2){
 result = num1 - num2;

 }else{
 result = num2 - num1;
 }
 return result;
}

console.log(doAddition(3,2)); // displays 5

console.log(doSubtraction(3,2)); // displays 1

As you can see in the above code, we have two independent functions for doing
simple additions and subtractions and there is no relation between the two, other
than the fact that they both operate on the two passed-in numbers (numeric values).

If we had implemented these functions in an application and were to do the identical
operations in a different application, we most likely would either rewrite the same
functions in that application from scratch or we would copy/paste the code from this
application into the other one.

What if we now decided to also do multiplication, division, and other related
calculations in our application using the same approach?

Well, one way would be to just continue writing independent functions as above
and add them to our application. This approach could work and would get the job
done, but probably not in the best way, since as the code grows it will become more
disorganized and chaotic.

By using this approach, not only would we be polluting the global namespace with
a bunch of global functions that could possibly collide with other global functions
of the same name. We would also end up with scattered pieces of code that had not
been packaged together based on their functionality and specialization.

What Are Modules and Their Advantages?

[6]

If all such functions do mathematical calculations of one kind or another and that is
the commonality that they all have, how about if we create a package (module) that
specializes in mathematical calculations?

This would allow us to have a specialized package that regardless of the application
that it is hosted in, would always provide the same specialized functionality.

Let's even imagine a step further and assume that we created this package in
a separate JavaScript file that can be added as an independent module to any
application.

Even better, how about if this module only would get added (requested from the
server, in the case of a client side web application) to the application at runtime, and
only when needed?

This type of implementation would give us the ability to load chunks, pieces, or
modules of the code when needed at runtime and then unload them when the
application does not need them anymore. This would enable us to cut down on
the footprint of our application on the client side while providing all the necessary
functionality as needed and on demand.

Such an approach can also be very useful on mobile devices which have limited
bandwidth and resources to be leveraged.

Rest assured that I do intend to explore all such possibilities with you in the later
chapters of this book.

Re-factoring to a more modularized
approach
Let's consider re-factoring the two functions that we looked at previously and
putting them together in a more specialized package (class or module) called,
CalculationHandler, as shown below:

function CalculationHandler(){
 CalculationHandler.result = null;
}

CalculationHandler.doAddition = function(num1, num2){
 return num1 + num2;
};

CalculationHandler.doSubtraction = function(num1, num2){

Chapter 1

[7]

 if(num1 > num2){
 CalculationHandler.result = num1 - num2;

 }else{
 CalculationHandler.result = num2 - num1;
 }
 return CalculationHandler.result;

};

console.log(CalculationHandler.doAddition(3,2)); // displays 5
console.log(CalculationHandler.doSubtraction(3,2)); // displays 1

As you can see in this "module" (and I use the term loosely here; you will see why in
later chapters), I am using a function object and adding properties (methods) to this
object. This methods do specialized tasks related to the overall functionality of the
object (module), such as addition and subtraction.

A note about our module here
If you are more experienced in JavaScript programming, you are
probably thinking that the way I have created this module is probably
not the best way to create a real module in JavaScript, and you are
right! But for now, the big idea here is that any piece of code that does
a specialized task can be tagged as a module, for the most part.

However, there are certainly better ways to write more robust and extensible
modules in JavaScript. For instance, creating a module can be accomplished much
better by using the Module Design Pattern, which we will get to explore a lot further
in later chapters of this book.

Designing in a modular way
In the early stages of designing an application, one of the most important steps is to
decide on the functionality that the application needs to provide. This of course, is
based on the overall purpose of the application and the type of application that you
are designing.

Based on such requirements, in the design phase, you should try to break down the
overall functionality (the big picture) of the application into smaller and specialized
pieces. Then, you can determine if such pieces already exist, either in the form
of third-party libraries or the code that you have already written for a different
application.

What Are Modules and Their Advantages?

[8]

If you already have your own chunks of reusable code designed in a modular
fashion (most third-party libraries are designed in such a way too), it would be
much easier and quicker to connect these pieces together and use them in your new
application. This would be the same as putting various Lego blocks together to create
a play structure.

This type of approach is very important and fits quite well within an Agile
development environment. This enables you to work on well defined, specialized
modules as you need them and as new application requirements are defined. Also,
as you create your code based on modules, you are able to prevent tight coupling
among your application pieces.

On the other hand, this approach allows different developers to work on different
pieces (modules) of the same application, independently of each other. Another
advantage is that modules can be tested separately and in different environments
before being added to the application.

In time and with more experience in modular application design and
implementation, you will become better at deciding how to distinguish and design
your modules. However, it is not realistic to think you can come up with the
complete list of all the modules that you could ever need in your application, in the
first attempt.

That is because applications evolve and requirements change over time. You may need
to create new modules, or modify current ones, or decide to use a different module or
library altogether to accommodate such changes in the requirements.

The key advantage of modular design is the flexibility that is provides. Dealing
with all the situations mentioned above is a lot easier and requires a lot less effort
in a modular architecture. It will also mitigate the impact that adding, removing, or
modifying a module could possibly have on the application as a whole.

In the following chapters, you will see how we can create simple and complex
modules and how they will be added to our application as loosely coupled pieces.

You will also see how we can load such modules dynamically and on demand when
we need them in our application.

So, let's get ready for an exciting journey into our future application design, using
modular architecture.

Chapter 1

[9]

Summary
In this chapter, we tried to get an overview of the concepts behind modular
programming in general and how such concepts can be used in JavaScript
applications in particular.

We saw that this approach is essentially based on creating packages of specialized
code that do very specific tasks.

We also made parallels between how modules are designed in real life and
our application modules, so that we can translate the similarities into our own
application design approach.

While the term "module" can be used to refer to different things in the code, we will
take this terminology to refer to a certain style of programming and architecture in
our JavaScript application design approach in later chapters.

However, before we completely dive into the more technical aspects of JavaScript
modular programming, it is a good idea to review the fundamentals of object-oriented
programming in JavaScript in the next chapter. This will allow us to establish a solid
foundation for more technical chapters as we move forward.

[11]

Review of Important
JavaScript OOP Concepts

Before we start creating and using our modules in JavaScript, it is important to
have a good grasp of important Object Oriented Programming (OOP) concepts in
JavaScript. We will rely on such concepts to design and implement our application
modules in later chapter.

While my intent in this chapter is not to explore such conceptes in great depth, I will
try to provide a good overview of some of the most important related topics.

If you feel that you are quite familiar with these concepts in JavaScript, you could
skip this chapter and move on to the next one.

However, if you are not very familiar with OOP in JavaScript, even if you are
familiar with similar concepts in classical object oriented languages, I encourage
you to follow along as things are a little different in JavaScript. I think it will be
worthwhile for you to have a look at these concepts in the realm of JavaScript.

In this chapter, we will cover:

• JavaScript objects and their constructors
• What this keyword is and how it behaves in different contexts
• Closure and its uses
• Inheritance in JavaScript
• Prototype chaining

And other related topics.

www.allitebooks.com

http://www.allitebooks.org

Review of Important JavaScript OOP Concepts

[12]

JavaScript objects
If you have programmed in JavaScript before (as I'm sure you have, since this book
is intended for intermediate to advanced JavaScript programmers), you will certainly
have used objects, even if you have not been aware of their inner workings.

If you are familiar with other more classical object oriented languages (such as
C++, C#, or Java), you'll be surprised to know that there is no formal syntax for
defining classes in JavaScript (at least till ECMAScript 6). I think you'll be even
more surprised to find out that, without having a formal syntax, you are still able to
create classes in JavaScript and harness the full power of object oriented design and
architecture (and one could even argue in a more flexible way).

Formal class definition in JavaScript
In the newer version of JavaScript (ES6), new syntax allows
you to define classes in a more formal and structured way.
For more information visit the following link:
http://es6-features.org/

You can create objects in JavaScript in many different ways but we will focus on
three of these approaches for creating objects in this chapter. These approaches are:

• Using native object type constructors
• Using object literal notation
• Using constructor functions

Object type constructors
Probably the easiest way to create objects in JavaScript is to create an instance of the
Object type and then augment it with properties that we need.

As you might know, the Object type is the top level object (the root object) in JavaScript
that all other objects are created from behind the scenes. This object has many properties
which have been defined for it by default. Every object created based on this type will
inherit these default properties such as toString, valueOf, hasOwnProperty, and so on.

Have a look at the following syntax as it shows the creation of an object using the
Object constructor and augmenting it with custom properties:

var myObj = new Object();

 myObj.value = "my first value";
 myObj.method = function(){

http://es6-features.org/

Chapter 2

[13]

 return this.value;
};

console.log(myObj.method()); // displays "my first value"

This syntax for creating objects was very popular at one point. However, it is no
longer used as much, since using other methods of creating objects allows for a better
conceptual view of how the object properties are packaged. Also, using an object
constructor is not as optimized, since the interpreter needs to do a scope resolution to
determine whether there is a local constructor with the same name or not, in order to
create the scope chain properly.

Regarding scope chains
A scope chain is a chain of objects whose properties are looked for
when looking for the existence and value of a property.
For more information visit the following link:
https://blogs.msdn.microsoft.com/jscript/2007/07/26/
scope-chain-of-jscript-functions/

Object literal notation
Creating objects using object literal notation allows for a good conceptual view of
the object and all of its properties.

This approach is also very popular for passing multiple parameters to functions
instead of passing one parameter at a time. This method of passing parameters
allows us to package all the parameters neatly into an object (usually as an
anonymous object) and pass it as one parameter into the function.

Using this syntax, an object in JavaScript can be created as simply as shown here:

var obj = {};

Of course, this object does not do anything and is completely useless, but nonetheless
it is a valid object (Singleton).

Let's create another object using this approach, as shown here:

var MyFirstObj = {
 myFirstValue : 2,
 mySecondValue : 5,

 addValues: function(){
 return this.myFirstValue + this.mySecondValue ;
 }
};

https://blogs.msdn.microsoft.com/jscript/2007/07/26/scope-chain-of-jscript-functions/
https://blogs.msdn.microsoft.com/jscript/2007/07/26/scope-chain-of-jscript-functions/

Review of Important JavaScript OOP Concepts

[14]

In the code above, we have created a variable that has been initialized with an object.
Our object here consists of two value properties and a simple method (method
property) to add these value properties.

To interact with the object in the preceding code, we can use the variable that holds
(references) the object MyfirstObj and access its members using the dot notation,
as follows:

console.log(MyFirstObj.addValues()); // displays 7

Function objects
In JavaScript, functions are considered first class objects. In fact, anytime you are
dealing with a function, you are dealing with an object.

We do not always use functions as objects in JavaScript but, when are used as objects,
we can use them as constructors to create other objects.

Functions as object constructors (classes)
Let's mimic the object definition in the previous section, which was written as an
object literal, and create a constructor function to achieve the same functionality.
Consider the following:

function MyObjDefinition(){
 var myFirstValue = 2;
 var mySecondValue = 5;

 this.addValues = function(){
 return myFirstValue + mySecondValue;
 };
}

var myFirstObj = new MyObjDefinition();

console.log(myFirstObj.addValues()); // displays 7

Notice that I have created a function and called it MyObjDefinition. I named the
function as such to indicate that this function is going to be used as a definition
(class) to create other objects from.

Using the new keyword, we can create an instance of this object and assign it to the
myFirstObj variable.

Chapter 2

[15]

If you are not used to using function objects as constructors, at this point you might
wonder if MyObjDefinition is a function, a class, or an object?

Well, MyObjDefinition is all of those! I will explain this in more depth shortly.

Functions as static objects
Let's modify the preceding code so we can see how MyObjDefinition can be better
thought of as an object.

// defining an object
function MyObjDefinition(){
 MyObjDefinition.myFirstValue = 2;
 MyObjDefinition.mySecondValue = 5;
}

// adding a property to the object
MyObjDefinition.addValues = function(){

 return this.myFirstValue + this.mySecondValue;
};

// initializing the object by calling it
 as a function
MyObjDefinition();

As you can see, we have moved our inner addValues method to the outside of the
object definition and used the dot notation to add it to MyObjDefinition object
as a property.

The reason that we can use such syntax is because JavaScript considers
MyObjDefinition function as both a function and an object. Since we can assign
properties to objects dynamically in JavaScript, we are able to assign the addValues
function as a property to this object, using the dot notation.

Note that we have called our object definition as a regular function to initialize the
default values for the myFirstValue and mySecondValue properties. Of course, we
can do this because MyObjDefinition is also a function.

We also have changed the myFirstValue and mySecondValue variables inside the
function definition to MyObjDefinition.myFirstValue and MyObjDefinition.
mySecondValue, respectively. This is so MyObjDefinition.addValues can access
them from outside the function definition. If you are not sure what this keyword is,
do not be concerned as we will talk about it shortly.

Review of Important JavaScript OOP Concepts

[16]

To add the two values, we can still use the same syntax as before:

console.log(MyObjDefinition.addValues()); // displays 7

Notice that we are not able to use MyObjDefinition as a constructor function as
we did before, since now it is acting as a static object. So the following will produce
an error:

var anotherObj = new MyObjDefinition();
anotherObj.addValues(); // error

In this scenario, while we are creating an object using the new keyword, the created
object does not have the properties of the MyObjDefinition function.

This exercise in re-factoring of our code shows how functions can act as function as
well as objects in JavaScript, depending on the usage.

I like the flexibility that JavaScript offers in how objects can be defined, as well as
how dynamic properties can be added to objects as needed. However, I can see why
some programmers with a background in more classical object oriented languages
might find the approach a little confusing.

My take on the subject is that JavaScript has its own realm and it is best to
understand it within its realm, as opposed to trying to see it in the context of
classical object oriented languages.

Object literal notation versus function objects
While both object literal notation and function object syntax can be used to create
objects, there are situations when one approach is better suited than the other.

In JavaScript, after the script is parsed, all the function declarations in the program
are hoisted to the beginning of the script. That is why you can call a function before
its actual definition in the code, as shown in the following example:

var firstPerson = CreatePerson("Tom", "Software Developer");

function CreatePerson(personName, personJob){
 // creating an object instance, using object type
 var person = new Object();
 // we can also use an object literal instead as below
 // var person = {};
 person.name = personName;
 person.job = personJob;

Chapter 2

[17]

 return person;
}

console.log(firstPerson.name); // displays "Tom"

In the preceding code, every time CreatePerson function is called a new object is
created, augmented, and then returned. This approach is also known as the Object
Factory design pattern.

Design patterns in JavaScript
If you are not familiar with design patterns in general or would
like to become more familiar with design patterns in JavaScript,
I highly recommend the following resource:
Mastering JavaScript Design Patterns, Simon Timms.

Notice that the call to the CreatePerson function is taking place before the actual
function definition. This code will not generate an error when it is run because of
function hoisting. Behind the scenes, the function CreatePerson has been hoisted
to the top of the script so when the call is made to this function, the declaration has
already been encountered by the interpreter.

Because of this mechanism, you don't have to worry if the call to the function takes
place before the function declaration or not.

This does not apply to object literals since there are no function declarations and,
thus, no hoisting involved. Therefore, all the calls to such objects need to happen
AFTER the object definition.

Consider the following example:

var Tom = {
 name: "Tom"
};
Tom.job = "SoftWare Developer";

console.log(Tom.job); // displays "Software Developer"
console.log(Tom.name); // displays "Tom"

Here, we are first defining an object, using object literal notation, and then adding a
property to it. Everything works fine and as expected.

Review of Important JavaScript OOP Concepts

[18]

However, if we try to add a property to this object before the object definition,
as follows:

Tom.job = "SoftWare Developer"; // "TypeError: Cannot set property
'job' of undefined"

var Tom = {
 name: "Tom"
};

We will encounter an error.

You may also have noticed that, in the case of constructor functions, the Person
function in our example, we can pass arguments to the constructor and create
different instances of Person with different names and different job titles. However,
this cannot be done when using object literal notation to create objects.

As you can tell by now, these different approaches for creating objects are suited for
different purposes. Most of the time, we use constructor functions when we need
to create multiple instances of an object but use object literal notation to package
parameters (data) that need to be passed to different parts of the application.

Objects created using object literal notation are also best suited for creating modular
code, which we will see a whole lot more of later in the upcoming chapters.

Let's make things a little more interesting and re-factor the preceding code so we can
use both approaches to creating objects together.

Have a look at the following:

function CreatePerson(personData){
 var person = {}; // using Object literal
 person.name = personData.Name;
 person.job = personData.Job;

 return person;
}

var personData = {
 Name: "Tom",
 Job: "Software Developer"
};

var firstPerson = new CreatePerson(personData);

console.log(firstPerson.name); // displays "Tom"

Chapter 2

[19]

Here, we are using object literal notation to create a person data object (personData)
and then pass this data object as a package to the CreatePerson constructor to create
our firstPerson instance.

In the chapters ahead, we will be using both of these object creation approaches to
create our modules.

The "this" keyword
You saw an example of using the this keyword when we looked at our static object
in this chapter. We will now spend some time on this to understand what it is and
how it can help us write better code.

The this keyword is simply a reference to an object. However, that reference can
point to different objects at different times, depending on the code execution context.

To see what that means, let's start by creating a simple constructor function:

function Person(){
 this.name = "Tom";
 this.job = "Software Developer";
}

In the preceding code, the this keyword has a global context. So inside the Person
function, this refers to the window object (if the code is run in a browser). In fact, if
we execute the following:

Person();

We have now created two properties for the window object, called name and job. We
can prove this by running the following:

console.log(window.name); // displays "Tom";
console.log(window.job); // displays "Software Developer";

Keep in mind that adding properties to the global context (the window object) is not a
good idea and will pollute the global context as well as creating a high possibility of
naming collisions. This could result in unexpected behavior in the code and strange
bugs that are hard to track.

But the this keyword can take a whole new context and reference a totally different
object, when used as the following:

function CreatePerson(personData){
 this.name = personData.Name;
 this.job = personData.Job;

Review of Important JavaScript OOP Concepts

[20]

}

var personOneData = {
 Name: "Tom",
 Job: "Software Developer"
};

var firstPerson = new CreatePerson(personOneData);

console.log(firstPerson.name);// displays "Tom"
console.log(firstPerson.job); // displays "Software Developer"

Here, we are creating a new person object using our CreatePerson constructor.
By using the new keyword, an instance of person is created and the variable
firstPerson now holds a reference to this instance. This person instance has its
name property set to Tom and its job property to Software Developer.

Note that the this keyword inside this object now refers to the instance.

Let's create another person object definition as below:

var personTwoData = {
 Name: "John",
 Job: "Software Architect"
};

And use our constructor function to create an instance of this second person.

Once the following code is executed, this will refer to the instance of this second
person.

var secondPerson = new CreatePerson(personTwoData);

We can examine the properties of the second person, as follows:

console.log(secondPerson.name); // displays "John";
console.log(secondPerson.job); // displays "Software Architect"

Things can get a little more interesting at times and a bit harder to figure out what
the context of this can be in different circumstances.

Consider the following example:

var name = "The window global";

var myOwnObject = {

Chapter 2

[21]

 name: "my Own Object",

 getName: function(){
 return this.name;
 }
};

As you can see in this example, we have defined an object using object literal
notation. This object is assigned to the myOwnObject variable and its getName
method returns the value of the name property in the object. So, as you might expect,
this in this context refers to the context of myOwnObject:

console.log(myOwnObject.getName()); // displays "my Own Object"

However, if we make an assignment such as:

// displays "The Window global"
console.log((myOwnObject.getName = myOwnObject.getName)());

This will produce the result: The window global. This result is rather confusing.

When we make the above assignment, only the function gets assigned from the left
side of the expression to the right side of the expression and now this refers to the
global object. Note that, in this scenario, myOwnObject.getName is just a function and
as explained before this inside a function (not an instance of an object) always refers
to the global context, which produces the result, The window global, when executed
in the browser.

Let's consider another object definition and create an inner function (a Closure,
which we will talk about shortly) inside this object. The context of this may not be
what you expect in this scenario.

var name = "The window global";
var myOwnObject = {

 name: "my Own Object",
 getName: function(){
 return function(){
 return this.name;
 };
 }
};

console.log(myOwnObject.getName()()); // displays "The window global"

Review of Important JavaScript OOP Concepts

[22]

Since the innermost function is an anonymous function inside another anonymous
function, the context of the innermost function is different from the object that is
hosting it. Therefore, this in this context is referencing the global context.

In order to preserve the context of myOwnObject, we can create a context in the first
inner function and let the innermost function access this context. So we can rewrite
our object definition as:

var name = "The window global";
var myOwnObject = {

 name: "My Own Object",

 getName: function(){
 var that = this;
 return function(){
 return that.name;
 };
 }
};

console.log(myOwnObject.getName()()); // displays "My Own Object"

Using this approach, we create a context inside the first inner function which
references our object and then the innermost function can access this context,
which is defined in its container (the first anonymous function). This results in the
innermost anonymous function accessing the context of myOwnObject object.

As shown, it can be a little challenging to figure out what context this refers to at
times but with practice and more experience you will become better at it. However, till
then, don't take the context of this for granted and make sure that the context which
you think this refers to is in fact the context that has been set for this in the code.

Closures
Now that we have had a brief discussion regarding execution context as it relates
to this, it is time to talk about Closures. If you don't have a lot of experience with
JavaScript, or if you are coming from more classical object oriented languages such
as C++, you might find the concept of Closures a bit confusing in the beginning.
In this section, I will try to take the mystery out of this concept and explain why
Closures can be very useful in our code.

The main idea behind Closures is about preserving context and (mostly) how an
inner function can keep the context of its containing parent.

Chapter 2

[23]

Consider the following simple example:

function setTestValue(value){

 var firstNum = value || 2;

 return function(secondNum){
 if(firstNum > secondNum){
 return firstNum;
 }else if(firstNum < secondNum){
 return secondNum;
 }else{
 return "=";
 }
 };
}

var theNumberExaminer = setTestValue(6);
var result = theNumberExaminer(2);
console.log(result); // displays 6

As you can see, innermost function setTestValue takes a number as a parameter
and sets it as the starting value to be used for comparison later.

When this function is executed, it also returns an anonymous function whose
reference will be stored in the theNumberExaminer variable. This anonymous
function is then used to compare a value passed to it with the value that was set as
the starting value (firstNum) in the setTestValue function.

Note that we only pass one value (2) to theNumberExaminer to be compared against
the starting number.

The question is: how does theNumberExaminer have access to the previous value
passed to the setTestValue function?

Normally, when a function is returned, its execution context is removed and thus all
the values related to that function's execution context are destroyed. However, with
Closures, things work a little differently.

Here, the inner anonymous function is returned from the setTestValue function call
(setTestValue(6)) and, with it, the execution context of its parent function. This
allows the anonymous function to have access to the value of firstNum.

This relationship will hold as long as the inner function (the anonymous function) is
not destroyed. The context of the parent object remains in memory because there is
still a reference to the inner function.

Review of Important JavaScript OOP Concepts

[24]

The most important point is that Closures allow for inner functions to have access to
the execution context of their parent functions (objects) as part of their scope chain.
As values in the scope of the outer function change, the inner function can have
access to the most recent values.

One advantage of creating and using Closures can be shown in the following
example:

function myClosedObject (){
 var privateValue = 5;

 function privateFunc (){
 privateValue *= 2;
 return privateValue ;
 }

 // privileged method
 this.publicFunc = function(){

 return privateFunc();
 };
}

var firstObj = new myClosedObject ();
console.log(firstObj.publicFunc()); // displays 10
console.log(firstObj.publicFunc()); // displays 20

In the preceding code, we first create an instance of myClosedObject and then we
execute the publicFunc of this instance. This call changes the value of privateValue
from 5 to 10.

When we call this method one more time, the value of privateValue will change to
20. This is because after the first call to publicFunc the value of privateValue has
been preserved (thanks to the created Closure). The second call to publicFunc, uses
the most up to date value of privateValue (which is 10) to do its calculation, thus
resulting in the value 20 being returned.

Encapsulation and scoping
As you may know, in JavaScript the idea of encapsulation is handled a little
differently from most classical object oriented languages, since we really don't have
a formal definition for classes (ECMAScript 6 introduces formal class definition).

Chapter 2

[25]

When we create a variable inside a function using the keyword var, we are creating
a private variable inside of that function, thus the scope of the variable is contained
within the function. This also means that, if we use the function as a constructor
function, such variables are not copied to the instances created using this constructor
function.

Also, JavaScript does not have the concept of block scopes; instead it has function
scope, so all the variables declared inside a function are accessible throughout the
function block (ECMAScript 6 introduced block scopes).

Let's consider the following function declaration:

function simpleFunc (){
 var firstValue = 1;
 var secondValue = 2;
 this.instanceValue = 100;

 for(var i =0; i<50; i++){
 var thirdValue = firstValue + secondValue + i;
 }

 // displays "The final value of thirdValue is:52"
 console.log("The final value of thirdValue is:" + thirdValue);
}

simpleFunc();

As you can see, the thirdValue variable has been defined within the for loop block,
but we can access it after the end of the for loop, since in JavaScript the scope of
variables is bound to the scope of the container function and not the container block.

Of course, code external to this function cannot access such variables, as shown:

console.log(simpleFunc.firstValue); // displays undefined

As expected, the above code will produce undefined in the console.

We also cannot get access to this.instanceValue since inside a function this
references the window object, as shown:

console.log(simpleFunc.instanceValue); // displays undefined

What happens if we use the preceding function as a constructor function and create
an instance of the simpleFunc object?

Review of Important JavaScript OOP Concepts

[26]

Consider the following:

var testObj = new simpleFunc();
console.log(testObj.firstValue); // displays undefined
console.log(testObj.instanceValue); // displays 100

As you know, when we define a variable with the this keyword, it is copied to the
instances of the object and hence testObj has a copy of it and we can access it from
the outside code.

However, if we take this a step further and create a private scope (namespace) inside
the constructor function, then even the inner functions of the constructor function
will not have access to it.

Consider the following:

function simpleFunc(){
 var firstValue = 1;
 (function(){
 var secondValue = 2;
 this.instanceValue = 100;
 console.log(firstValue); // shows 1

 })();

 //console.log(secondValue); //produces an error

}

The code above shows an immediately invoked anonymous function (also known
as IIFE) inside our simpleFunc function, and even though this function has
access to the execution context of its containing function, the containing function
(simpleFunc) cannot access the variables and methods inside this inner function.

In fact, we have created a private namespace inside our simpleFunc that is
completely hidden from the outside world.

The same is also true for when we create an instance of simpleFunc and try to access
this.inastanceValue, since this variable is only accessible from inside the scope of
the inner anonymous function.

This is shown here:

var testObj = new simpleFunc();
console.log(testObj.instanceValue); // displays undefined

Chapter 2

[27]

As you can see, while JavaScript may not have the same form of encapsulation
as classical object oriented languages, we can still create private scopes, and
define variables and methods inside that scope that are not accessible from
the outside code.

We will be re-visiting this concept and its usages a lot more when we design our
application modules in future chapters.

You may also be asking yourself, "What if I want to create a constructor function
which provides public methods, so I can access private members of the constructor
function using these public methods?"

Let's consider the following constructor function:

function simpleFunc (){
 var privateValue = 1;
 this.readPrivateValue = function(){

 return privateValue;
 };
}

var testObj = new simpleFunc();
console.log(testObj.readPrivateValue());// displays 1

In this constructor, we have created a private member privateValue that is not
accessible from the outside world. However, we have created a public method this.
readPrivateValue, which can be accessed by the external code and can access the
value of this private member.

So here, we have achieved two goals. First, we have kept our private member
protected, and second, we have still provided read access to such private member
through our public method.

The method this.readPrivateValue can be considered a privileged method, which
means this public member has access to private members of the object.

Inheritance
If you have a background in classical object oriented languages such as C++, C#, or
Java, you will be quite familiar with the concept of inheritance. In such languages, there
are two types of inheritance: interface inheritance and implementation inheritance.

Review of Important JavaScript OOP Concepts

[28]

JavaScript however, only supports implementation inheritance, as there is no concept
of function signature which is required for interface inheritance.

There are various ways of implanting inheritance in JavaScript and they all have
their pros and cons. In this section, I will cover a few ways of implementing
such relationship among objects and will briefly explain the advantages and
disadvantages of each approach.

Prototype chaining
Let's start by creating two different constructor functions and an inheritance
relationship between them.

Consider the following two function objects:

function BaseType (){
 this.baseValue = 2;
}

BaseType.prototype.getBaseValue = function(){
 return this.baseValue;
};

function ChildType (){
 this.childTypeValue = 50;
}
// creating inheritance relationship
ChildType.prototype = new BaseType();

ChildType.prototype.getChildTypeValue = function(){
 return this.childTypeValue;
};

var childInstance = new ChildType();

console.log(childInstance.getBaseValue()); // displays 2
console.log(childInstance.getChildTypeValue()); // displays 50

In the preceding code, we have created two extremely simple constructor functions.
As you can see, we have defined a simple property for each one of them which are
methods related to each object. However, we have created these simple methods as
properties of the prototype object for each function as opposed to directly creating
them on the constructor functions.

Chapter 2

[29]

If you are familiar with the prototype property, you know that every function has
this property by default. The value of this property is an object that is shared with all
the instances that are created using the constructor function.

The advantage of creating methods (properties) on prototype object as opposed to
on the constructor function itself is that by doing so, all the instances that are created
using the constructor share these methods. Therefore, these instances do not have to
have their own copy of these properties, thus optimizing our code's performance and
memory usage.

In the preceding code, in the case of BaseType, we simply augmented the prototype
object of this constructor with a method called getBaseValue, but for ChildType, we
did something a little different.

We first created an instance of BaseType and then we assigned it to ChildType using
the following expression:

ChildType.prototype = new BaseType();

After the above assignment, the ChildType.prototype value becomes an instance of
BaseType. This means that this prototype object has access to two properties now,
baseValue and getBaseValue.

The end result is that there are two properties that instances of ChildType have
access to but didn't need to create them.

When we run the following line of code:

console.log(childInstance.getBaseValue()); //displays 2

The childInstance variable can return the value of the baseValue variable, using
getBaseValue method.

Of course, childInstance also has access to its own variable childTypeValue. If we
run the following code, 50 will be displayed.

console.log(childInstance.getChildTypeValue()); // displays 50

Property look up in prototype chaining
Let's examine how ChildInstance gets access to the properties of BaseType in a
little more depth.

When we try to access a property on ChildInstance, behind the scenes, a search is
conducted on the instance itself to see if that property is available. If the property is
not found, then the search continues to the prototype object of the ChildInstance
object. Since an instance of BaseType is the value of the prototype object belonging
to ChildInstance, the search is continued in BaseType.

Review of Important JavaScript OOP Concepts

[30]

But there is more, the instance of BaseType (which is the value of the prototype
object belonging to ChildType) itself has a prototype object and our ChildType
prototype has a link to this prototype object. That prototype object has a property
called getBaseValue. Since this method has access to the BaseType properties, it can
return the value of baseValue.

You can think of how this lookup is conducted as shown here:

Looking for
the property

in
"ChildType"

Looking for
the property

in
"ChildType"
prototype

Looking for
the property

in
"BaseType"

Looking for
the property

in
"BaseType"
prototype

As you can see, there is quite a bit of searching taking place in order to find the
instance property. Also, keep in mind that if the property was not found in the
prototype of BaseType, the search would have continued to the prototype object of
the parent of all objects in JavaScript, the Object type. Let's talk about how that works.

Remember that every function has a prototype property which its value is an
object. This prototype object itself has a prototype property which its value is the
prototype object of the Object type.

That is why, when we call the BaseType.toString method, even though we have
not defined this method on BaseType or its prototype object, the call still succeeds
and produces the string value of the object. The toString method is defined on
the prototype object of Object type, and thus is available to all the children of
Object type.

It is very important to keep in mind that the search is ceased and will not continue
any further in the chain of protoypes, as soon as the property that the search is
being conducted for is found.

To make it a little more clear, let's modify our ChildType to have a property
(method) called getBaseValue. Doing so will result in what is known as shadowing
(or masking) of this property on BaseType.

So, if we modify the code for ChildType as below:

function ChildType (){
 this.childTypeValue = 50;
}
// creating inheritance relationship

Chapter 2

[31]

ChildType.prototype = new BaseType();

ChildType.prototype.getChildTypeValue = function(){
 return this.childTypeValue;
};
ChildType.prototype.getBaseValue = function(){
 return this.childTypeValue;
};
var childInstance = new ChildType();
console.log(childInstance.getBaseValue()); // displays 50

The call to childInstance.getBaseValue will now return the value 50 instead of
2. This is because as soon as the search for the getBaseValue method (property)
finds this method on ChildType, it will not search any further and will execute this
method. This of course, will return the value of the childTypeValue property.

One other thing that we need to keep in mind, is the fact that because of the
relationship that has been created among all these reference types, the following
instance check will return true for all of them.

console.log(childInstance instanceof Object); // displays true
console.log(childInstance instanceof BaseType); // displays true
console.log(childInstance instanceof ChildType); // displays true

You can use this test to see if one reference type is inheriting properties from another
reference type.

While prototype chaining has many advantages and allows us to create inheritance
among our base objects and our child objects, it has the disadvantage that any
changes to the base object's reference type properties are reflected in all the instances
of the child classes. This at times may not be a desirable effect and you need to be
aware of it.

Resetting the constructor property
Every prototype object has a constructor property. This property always refers
back to the constructor function itself. When we overwrite the prototype property
completely as we did in the previous code by setting it like so:

ChildType.prototype = new BaseType();

The constructor property of the prototype object will be referencing the parent
object. This can be examined as below:

console.log(childInstance.constructor);

www.allitebooks.com

http://www.allitebooks.org

Review of Important JavaScript OOP Concepts

[32]

Which displays:

function BaseType(){
 this.baseValue = 2;
}

It is always a good idea to reset the constructor property of the prototype object
after it has been completely replaced, as follows:

ChildType.prototype.constructor = ChildType;

This is so the prototype object can correctly point back to the correct constructor
object.

The reset enables us to correctly find the constructor object of the instance as shown:

console.log(childInstance.constructor);

Which now correctly reports the following:

function ChildType(){
 this.childTypeValue = 50;
}

We will discuss the constructor property some more, later in this chapter.

Constructor stealing
Another approach to creating inheritance in JavaScript is using a technique known as
constructor stealing, which is similar to classical inheritance in other object oriented
languages.

Consider the following:

function BaseType(){
 this.baseValue = 2;
}
function ChildType(){
 BaseType.call(this);
}
ChildType.prototype.getBaseTypeValue = function(){
 return this.baseValue;
};
var instanceObj = new ChildType();

console.log(instanceObj.getBaseTypeValue()); // displays 2

Chapter 2

[33]

In the above code, we are using the call method to execute BaseType in the context of
ChildType. This results in ChildType instances getting a copy of all the properties of
BaseType. Since each instance of ChildType now has its own copy of the properties,
modifying the properties of BaseType is not reflected in the child instances.

This approach, however, has its own issues. The main issue is that since we are
not assigning an instance of BaseType to the prototype object of ChildType, the
properties defined on the prototype object of BaseType are not shared among
the instances of ChildType. This will no result in the most efficient approach in
implementing inheritance and does not allow for code sharing of the parent's
prototype object properties among child instances.

Parasitic combination inheritance
Another way to create inheritance relationships among reference types is to use a
combination of the techniques that we have already discussed, while eliminating
their inefficiencies. This is also my favorite technique for creating inheritance.

Let's modify the code that we have already seen, so we can implement this approach:

function BaseType (){

 this.baseValue = 2;
 this.secondBaseValue = 99;
}

BaseType.prototype.getBaseValue = function(){
 return this.baseValue;
};

function ChildType (){
 BaseType.call(this);
 this.childTypeValue = 50;
}

// creating inheritance relationship
ChildType.prototype = BaseType.prototype;

ChildType.prototype.getChildTypeValue = function(){
 return this.childTypeValue;
};

Review of Important JavaScript OOP Concepts

[34]

var childInstance1 = new ChildType();
var childInstance2 = new ChildType();
childInstance1.baseValue = 100;
childInstance2.baseValue = 55;

console.log(childInstance1.getBaseValue()); //displays 100
console.log(childInstance1.getChildTypeValue()); //displays 50
console.log(childInstance1.secondBaseValue); //displays 99

console.log(childInstance2.getBaseValue()); //displays 55
console.log(childInstance2.getChildTypeValue()); //displays 50
console.log(childInstance2.secondBaseValue); // displays 99

In this latest implementation, we are using the call method in the ChildType
constructor to copy all the properties of BaseType. This provides the child object
instance with the ability to modify the properties of BaseType, which only affects
that particular instance of ChildType and does not get reflected in other instances
of ChildType.

In our example, this type of inheritance is initiated in the following statement in the
ChildType constructor:

BaseType.call(this);

We also have assigned the prototype of BaseType to ChildType, as shown:

ChildType.prototype = BaseType.prototype;

Note that we have assigned only the prototype object of BaseType to the prototype
object of ChildType, thus eliminating the second call to the BaseType constructor,
resulting in more efficient code.

This approach also has the advantage of allowing us to share all the properties that
have been defined on the prototype object of BaseType among all the instances of the
child object. Therefore, not every child object instance will have its own copy of such
properties, which in turn leads to better code efficiency and memory management.

Once we create an instance of ChildType, this instance has access to copied
properties from BaseType as well as all the shared properties defined on the
prototype object of BaseType. Of course, each instance also has access to all of
its own properties defined on the ChildType constructor and on the ChildType
prototype object.

Parasitic combination inheritance provides us with the best of both previously
discussed techniques (prototype chaining and constructor stealing) and it is widely
used by many experienced JavaScript developers.

Chapter 2

[35]

Constructor property
Every object in JavaScript has a constructor property that references the
constructor object that was used to create the instance of that object.

For instance, in all functions, the constructor property has a reference to the
Function type constructor. We could verify this by executing the following statement:

console.log(ChildType.constructor); // references
 Function type constructor

Since prototype property's value is an object too, it also has a constructor
property. However, this constructor property references the object (function) itself.
So if we examine this property before we assign the BaseType.prototype object to
ChildType.prototype, as follows:

console.log(ChildType.prototype.constructor); //
 references ChildType

We can see that this property is referencing the object that prototype belongs to,
which in this case is ChildType.

As mentioned previously, if we completely replace the prototype object , as in
the case of the following statement, which was used in implementing our previous
inheritance:

ChildType.prototype = BaseType.prototype;

We overwrite the value of the constructor property on the prototype object of
Childtype.

If we examine the constructor property of the prototype object now, it will be
referencing BaseType, instead of Childtype.

console.log(ChildType.prototype.constructor) //
 references BaseType

As seen before, we need to reset the constructor property of the prototype object
as shown:

ChildType.prototype.constructor = ChildType;

Keep in mind that resetting the constructor property needs to happen after the
prototype object has been re-written and not before. Otherwise, the re-write will
completely remove the constructor property.

Review of Important JavaScript OOP Concepts

[36]

The following is an example of how this should be done:

ChildType.prototype = BaseType.prototype;
ChildType.prototype.constructor = ChildType;

I encourage you to examine all the code discussed in this section closely to
understand how all the pieces are tied together and how inheritance works
among objects.

Native support for inheritance
Now that we have had a look at different techniques for creating inheritance
among constructor functions, it is a good idea to consider native support for creating
such relationships in JavaScript.

ECMAScript 5 provides prototypal inheritance by way of Object.create()
method.

This method accepts two parameters. The first parameter is the object to be used as
the prototype (base object) for the new object. The second parameter is optional and
is used to add additional properties to the new object.

Consider the following code:

var BaseType = {
 firstValue: 20,
 secondValue: [3,4]
};
var ChildType1 = Object.create(BaseType);

ChildType1.secondValue.push(5);

ChildType1.getBaseTypeFirstValue = function(){
 return this.firstValue ;
};

var ChildType2 = Object.create(BaseType);
ChildType2.newProperty = 50;

console.log(ChildType1.getBaseTypeFirstValue()); // displays 20
console.log(ChildType1.secondValue); // displays [3, 4, 5]

console.log(ChildType2.secondValue); // displays [3, 4, 5]
console.log(BaseType.secondValue); // displays [3, 4, 5]

Chapter 2

[37]

There are some interesting points that you need to keep in mind regarding the
preceding code. As you can see, we have used the BaseType constructor and have
passed it to the Object.create method to create an instance of our BaseType object
and assign it to the ChildType1 variable.

We then have added a new value to the property secondValue array of this
new object (ChildType1). In the next line, we have also added a new method,
getBaseTypeFirstValue to this instance.

When we create a second object ChildType2 using the method Object.create,
and examine the value of the secondValue array, we see that the value is as
shown below:

console.log(ChildType2.secondValue); // displays [3, 4, 5]

This is because the modified property secondValue is shared among all the instances
that have inheritance relationships with the base object BaseType. Thus, all the changes
done to the properties of the base object by one child instance are reflected in all the
instances, as well as in the base object, BaseType itself. This is shown here:

console.log(BaseType.secondValue); // displays [3, 4, 5]

This is an important point to keep in mind.

As previously mentioned, we could also use the second optional parameter of the
Object.create method to add new properties to the child instance at the same time
that we create the inheritance relationship between the base and the child object.

Consider the following:

var BaseType = {
 firstValue: 20,
 secondValue: [3,4]
};
var ChildType = Object.create(BaseType, {
 optionalObject:{
 value: 50
 }
});

console.log(ChildType.optionalObject); // displays 50
console.log(ChildType.firstValue); // displays 20

The ChildType object has now inherited all the properties of the BaseType object
and has a new property optionalObject, which is specific to this instance of the
child object.

Review of Important JavaScript OOP Concepts

[38]

Even though this is a native way for creating inheritance among objects in
ECMAScript 5, I have found this technique to not be as popular as parasitic
combination inheritance.

I personally find this approach to be a little too verbose in comparison to the other
approaches that we covered in this chapter for implementing inheritance but it
allows us to define attributes of the new property exactly as we like.

You can refer to the following online resource for more information
regarding the Object.create method:
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Object/create

Summary
The goal of this chapter was to provide a quick overview of some OOP concepts in
JavaScript. Having a good understanding of these concepts is important as we will
be using them in implementing our modular architecture in the following chapters.

In this chapter, we looked at various ways of creating objects as well as concepts
such as closure, encapsulation, and inheritance.

The assumption that I made was that you likely have a fairly good experience with
JavaScript and are probably familiar with at least some of these concepts.

My intent was to provide "just enough" of a review of JavaScript OOP concepts to
get you ready for future chapters.

There are many good resources available that can help you extend your knowledge
of Object Oriented JavaScript principles further.

Two of my personal favorites on this topic are:

• Object-Oriented JavaScript, Stoyan Stefanov, Kumar Chetan Sharma
• Professional JavaScript for Web Developers, Nicholas C. Zakas

In the next chapter, we will start focusing on a popular design pattern known as
Module Design Pattern to get us ready for creating simple modules in our application.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create

[39]

Module Design Pattern
Now that we have reviewed some important JavaScript OOP concepts in the
previous chapter, we are going to leverage some of the techniques discussed to create
modules and start using them in our application.

You are probably familiar with the term design pattern, which is essentially a way
of structuring code as a reusable solution for common programming problems. In
this chapter, we are going to focus on a particular design pattern in JavaScript called
module pattern.

We will explore how we can create simple modules using this pattern and then
we will build upon these modules to create our application's modules in the
following chapters.

Module pattern is one of the most frequently used patterns in JavaScript for creating
modular applications.

Some of the topics that we will discuss in this chapter are:

• Structure of module pattern
• Internal private scope in module pattern
• How to create simple modules
• How to create a module factory

Module pattern
In the previous chapter, we had a look at how we can create private variables
and namespaces inside functions. We also explored how private scopes can be
implemented. Some concepts related to private scopes can also be applied to
singleton objects residing inside functions.

Module Design Pattern

[40]

A singleton object is an object there will only ever be one instance of it in the
application. Singleton objects can be created using object literal notation, which we
saw examples of in the previous chapter.

Consider the following object definition:

var mySingletonObj = {};

While the preceding object does not do anything, it is in fact a valid object and there
can only be one instance of this object as we cannot create other objects based on
mySingletonObj.

Let's add some value properties and methods (method properties) to this object and
see how we can access such properties outside of the object definition:

var mySingletonObj = {

 name: "Sasan",

 title: "Software Developer",

 getName: function(){

 return this.name;
 },

 getTitle: function(){

 return this.title;
 }

};
// displays "Sasan"
console.log(mySingletonObj.getName());

// displays "Software Developer"
console.log(mySingletonObj.getTitle());

In the above object definition, we have created a singleton object with four
properties. Two of them are value properties and two are method properties.

Our method properties have access to our value properties and return their values.
However, we can also directly access the object's properties and even override their
values from outside of the object.

Chapter 3

[41]

Have a look at the following code snippet:

mySingletonObj.name = "John";
console.log(mySingletonObj.name); // displays "John"

This shows that, while we have encapsulation (I am using the term loosely here) in
our code, we do not have access control and the external code can change the values
of the properties in our object. This at times, is undesirable.

Let's re-factor our code and create a simple module, using the module pattern. This
will help us implement encapsulations as well as access control in our singleton object.

Consider the following:

var mySingletonObj = (function(){

 //private variables
 var name = "Sasan";
 var title = "Software Developer";

 //returning a Singleton
 return {

 // privileged method
 getName : function(){

 return name;
 },
 // privileged method
 getTitle: function(){

 return title;
 }

 };

})();

In the preceding code, we have created an Immediately Invoked Function
Expression (IIFE) and have assigned its return value (which is a singleton object) to
the variable mySingletonObj.

The returned singleton object has two methods that have access to the private
variables of the container function and return their related values.

Module Design Pattern

[42]

If we try to access the function variables directory from the returned object such as:

console.log(mySingletonObj.name); // displays undefined

We are unable to do so. This is because the name property is a private property of the
container function and it does not exist on the returned anonymous object.

However, we can access this property through the privileged method getName,
which is defined on the singleton object returned by our IIFE.

As the mySingletonObj variable has a reference to this singleton object, if we
execute the following code:

console.log(mySingletonObj.getName()); // displays "Sasan"

We are able to access the value assigned to the name property of the function. Note
that the singleton object returned from the IIFE still has access to the context of the
anonymous function that contains it. This is possible because we have created a
closure here. Of course, the same applies to the title property of the function as
seen here:

// displays "Software Developer"
console.log(mySingletonObj.getTitle());

This approach of structuring our code in such a way that a returned singleton object
from inside a function provides access to the private members (internal private
scope) of the container function object) is what forms the basis of module pattern in
JavaScript.

Internal private scope in module pattern
Module pattern enables us to create a private scope for our code inside a function
while providing controlled access to such a private scope through an interface. This
interface can be in the form of a returned singleton object.

In the code example in the previous section, mySingletonObj is the interface to the
private scope of our IIFE.

What happens if we add another property to mySingletonObj that has the same
identifier as one of the properties of the containing function?

Well, mySingletonObj is like any other object in the sense that we can add
properties to it regardless of it containing the object's properties. However, the
important thing to remember here is that assigning or modifying such properties
on the returned interface has no effect on the private variables encapsulated in the
function that contains the returned object.

Chapter 3

[43]

Let's modify our previous module and dig a little deeper:

var mySingletonObj = function() {
 //private variables
 var name = "Sasan";
 var title = "Software Developer";

 //returning a singleton
 return {
 name: 'Tom',

 // privileged method
 getOuterName: function() {
 return name;
 },

 // privileged method
 getInnerName: function() {
 return this.name;
 },

 // privileged method
 getTitle: function() {
 return title;
 }
 };
}();

As you can see, we have added a name property to our returned singleton object
from the IIFE, which has the same identifier as the name property on the function
object. We have also replaced one of the previous methods with two new methods
in our interface (the singleton object returned from the IIFE). The first method,
getOuterName, simply returns the value of the name property.

The question is, which name property, the one from the private scope of the function
or the name property from the singleton object itself?

If we run the following line of code:

console.log(mySingletonObj.name); // displays "Tom"

We can see that the value returned is the value in the scope of the singleton object
itself; thus, Tom is displayed.

Module Design Pattern

[44]

However, if we try to access the same property, using the method property on
the interface, a different value will be returned. Have a look at the following
code snippet:

console.log(mySingletonObj.getOuterName()); // displays "Sasan"

As you can see, the value returned from this method is the value for the name
property from the outer scope of the interface, which is the scope of the container
function. This can be rather confusing.

If the intent is to return the value for the name property which is defined inside the
singleton object itself (the interface), we need to qualify the property using the this
keyword.

Have a look at the second new method that we added to our module:

 getInnerName: function(){

 return this.name;
 }

In this method, we specifically qualify the context for name using the this keyword,
which references the context of the singleton object itself as opposed to the
containing function. Thus, if we run the following code:

console.log(mySingletonObj.getInnerName()); // displays "Tom"

The value assigned to name in the context of the singleton object is returned. This is
an important distinction to keep in mind.

Adding properties to an interface in module
pattern
Now that we have seen how internal private scope is at in play when we use the
module pattern, let's see what happens if we add new dynamic properties to the
singleton object returned in our previous example.

Consider the following line of code:

mySingletonObj.name = "Jack";

Here, we are simply adding a new property dynamically to our object mySingletonObj.
This property happens to have the same identifier as an already existing property on
the object. What happens to the original value of the name property?

Chapter 3

[45]

We can find out by running the following tests:

console.log(mySingletonObj.name); // displays "Jack"
console.log(mySingletonObj.getOuterName()); // displays "Sasan"
console.log(mySingletonObj.getInnerName()); // displays "Jack"

As you can see, the new value of the singleton object's property is displayed
regardless of whether we directly access the property or use our singleton's method
to return the value of the property.

On the other hand, as expected, no changes have taken place in the value of the
property contained in the container function's context, even though our singleton
object does have access to this context.

Remember, when we use the module pattern in JavaScript and return a singleton
object from it (as an interface to the containing object/function), there are two
contexts that are at play.

First, the internal private scope of the container function, which our singleton object
has access to through closure.

The second is the context of the singleton object itself as with any other object in
JavaScript. It is important to understand the distinction between the two contexts
when you design your modules using the module pattern in JavaScript.

Another important point to keep in mind is that the code structure (pattern) shown
previously allows us to have both object encapsulation and access control on the
properties defined in a private namespace. In this case, the anonymous function
creates a namespace that returns an anonymous object or, more accurately, a
reference to the anonymous object (the singleton object) as an interface.

This approach becomes very valuable since now we can be sure that no external code
is able to either intentionally or accidentally change the values of the properties in
our namespace. This structure provides control over what properties are accessible
by the outside code and what properties are hidden away and protected in the
private scope.

Object factory module
We can design our modules to be very specialized chunks of code that do very specific
tasks, while protecting their internals from external code interferences. So far, we have
looked at a very simple pattern for creating modules. We can take this pattern a step
further and design a module that creates instances of an object, adds properties to
these instances, and then returns them to the code external to the module.

Module Design Pattern

[46]

Consider the following module:

var myCarFactoryModule = function() {

 var createdCars = [];

 function carFactory() {

 // could also use "var newCar = {}";
 var newCar = new Object();

 newCar.type = arguments[0];
 newCar.color = arguments[1];
 newCar.gearType = arguments[2];
 newCar.cylinder = arguments[3];
 createdCars.push(newCar);
 return newCar;
 }
 return {

 // privileged method
 createCar: function(type, color, gearType, cylinder) {
 return carFactory(type, color, gearType, cylinder);
 },

 // privileged method
 getCarCount: function() {
 return createdCars.length;
 },

 // privileged method
 removeCar: function(index) {
 createdCars.splice(index, 1);
 }
 };
}();

As you can see in this code, we have combined two patterns together: the object
factory pattern and the module pattern.

Chapter 3

[47]

Design patterns in JavaScript
If you are not familiar with design patterns in general or would
like to become more familiar with design patterns in JavaScript,
I highly recommend the following resource:
Mastering JavaScript Design Patterns by Simon Timms.

When our function myCarFactoryModule is called, based on the parameters passed
in, we create an instance of a car and then we assign it to an array which is the
repository for all instances of the cars created. We have designed this module in such
a way that the external code to the module has no access to the method that creates
the cars, nor has access to the car repository.

Let's test this using the following code:

var myFirstCar = myCarFactoryModule.createCar("Sedan",
 "red", "automatic",4); // creates first instance of car

var mySecondCar = myCarFactoryModule.createCar("SUV",
 "Silver", "Standard",6); // creates second instance of car

console.log(myFirstCar.color); // displays "red"
console.log(mySecondCar.gearType); // displays "Standard"

var myTotalCars = myCarFactoryModule.getCarCount();
console.log(myTotalCars); //displays 2

myCarFactoryModule.removeCar(0); // removes the first care object

var myTotalCars = myCarFactoryModule.getCarCount();
console.log(myTotalCars); // displays 1

As you can see, the outside code can call our module's interface to create cars and
also get a count on the number of the cars created. It can also remove a car, if it is
desired to do so.

There are three privileged methods in this module: createCar, getCarCount, and
removeCar. You can think of these methods as bridges between the internals of the
module, which are hidden away from the outside world, and the external code,
which relies on the internals of the module to do some specific tasks.

The privileged methods (which are members of the singleton interface object) are
exposed to the external code to provide the module's functionality to whoever needs
its services.

Module Design Pattern

[48]

There is a notable advantage to this design. As you might have noticed, we can
modify the code inside our module and add additional functionality to the module
without affecting how other parts of our application can interact with our module.

This is true, as long as we don't change the name or the functionality of the
privileged methods that provide access for the external code to utilize the
module's functionality.

At the same time, we can add new privileged methods to the interface of the module
or modify the internals of our current privileged methods in the singleton object
without affecting the internal code of the module itself.

This allows us to have a good separation of concerns and responsibilities between
the exposed part of our module (the module's interface) and the private internals of
the module.

Creating loose coupling among modules
In a modular design, an application is often created using many modules. In order
for these modules to work together, we need to create coupling among them,
without the modules being tightly dependent on each other.

Let's create an application based on a few simple modules and have the modules
interact with each other in a loosely coupled manner. Of course, we will keep this
application very simple for now. In later chapters, we will take the concepts utilized
in this application and build upon them to create our fully modularized application
ecosystem.

I'm making the safe assumption here that our future application will consist of
many separate modules, with each one of them being responsible for doing a very
specific task.

We will start by creating our core application module and calling it
ApplicationInitModule. Usually, the very first step in running an application is to
take care of the application's initialization tasks. Our ApplicationInitModule will
be designed to do just that.

In the following code snippet, when ApplicationInitModule is started, it will in
turn start all the registered modules and their initialization routines. This process
will take care of the application's initialization routine as a whole.

Chapter 3

[49]

Have a look at the following code and see how our application is designed:

var ApplicationInitModule = function() {
 var registeredModules = [];

 return {
 registerModule: function(module) {
 registeredModules.push(module);
 },
 getAppModulesCount: function() {
 return registeredModules.length;
 },
 removeRegisteredModule: function(index) {
 registeredModules.splice(index, 1);
 },
 initializeAllModules: function() {
 for (var module in registeredModules) {
 registeredModules[module].initialize();
 }
 },
 };
}();

var GlobalApp = (function() {
 var registerModule = ApplicationInitModule.registerModule;
 return {
 registerModule: registerModule
 };
})();

var testModule1 = (function() {
 var self = {};
 var moduleName = "Module 1";

 self.initialize = function() {
 //displays "testmodule1 has been initialized!"
 console.log("testmodule1 has been initialized!");
 //displays "module name is: Module 1"
 console.log("module name is: " + moduleName);
 };

 (function() {
 GlobalApp.registerModule(self);
 })();

 return {
 initialize: self.initialize,

Module Design Pattern

[50]

 getName: function() {
 return moduleName;
 }
 };
})();

var testModule2 = (function() {
 var moduleName = "Module 2";

 function initialize() {
 //displays "testmodule2 has been initialized!"
 console.log("testmodule2 has been initialized!");
 }
 return {
 initialize: initialize
 };
})();
GlobalApp.registerModule(testModule2);

As you can see, a few interesting things are taking place in this application, but all
the techniques used, we have already discussed in this book. Nonetheless, I'll go
through each piece and explain the inner workings of each module.

Application core module
The code starts by defining ApplicationInitModule as an application initializer
module. The purpose of this module is to register all the available modules in the
application (store them in an array) and then initialize them all (one at a time), when
the application runs.

This module also provides an interface with some hooks for the external code to
interact with it. As you can see, there are methods to register a module, get the count
of all the modules registered in the app for initialization, and remove a module
from the list of registered modules; of course, there is also a method to initialize all
modules that have been registered with the app.

In this module, we are using an IIFE to return a reference to an anonymous singleton
object, which is essentially the interface of the module.

One of the points that I'd like to draw your attention to is the fact that the
functionality of this module is really defined in its interface. However, the module
didn't have to be designed in this manner. You can also see that, in the other
modules shown in the previous code, I have not used this approach. This is so you
can see how we can implement the module pattern in various ways.

Chapter 3

[51]

Application Mediator module
Our GlobalApp module also uses an IIFE to return a singleton object as the
interface to the module. The whole purpose of this module is to act as a mediator
(abstraction layer) between testModule1, testModule2, and our core module,
ApplicationInitModule.

We have designed the application this way so we can create a loose coupling
between our core module and the other registered modules. As you can see,
GlobalApp has been designed as a very thin layer.

This thin layer allows us to change our core module (ApplicationInitModule) as
we please and even change its interface to the outside world, without affecting the
other modules that rely on this module's functionality.

In our design, the only module which relies directly on the ApplicationInitModule
interface is our GlobalApp module. This means that, if there are any changes to the
interface of ApplicationInitModule, we only need to make modifications to our
thin mediator layer GlobalApp. All the other modules in the application will be
unaffected, as they still use the same thin layer interface provided by GlobalApp.

You will see in the future chapters of this book that this thin layer is called the
sandbox and we will be using this concept of sandboxing to isolate our application
modules/components from our application's core module(s). We will also use the
same technique to isolate the modules/components from each other. For now, just
try to become familiar with the general idea of module isolation (sandboxing) as
shown in the previous application.

Application non-core modules
In our application implementation, we have created two simple modules that register
themselves with the core module and really do nothing other than announcing to the
world that they have been initialized.

Let's have a closer look at how these modules have been implemented.

testModule1 implementation
In testModule1, we have created an empty object called self, which gets
augmented with a method called initialize. This is the method that will be called
when our core module tries to initialize this module.

Module Design Pattern

[52]

The registration of this module with the core module happens using an internal IIFE,
which in turn calls our mediator module GlobalApp with a reference to the object
self. This is implemented as shown below:

(function(){

 GlobalApp.registerModule(self);

})();

Of course, the GlobalApp.registerModule method is in fact a reference to the
core module's method, ApplicationInitModule.registerModule. However,
testModule1 does not know that and is only aware of GlobalApp provided
interface, GlobalApp.registerModule.

We have also used an IIFE to return an interface to this module, which is available
through the testModule1 variable.

Note that the interface provides two properties. One is a reference to the self.
initialize method of the module and the other, getName, simply returns the
value of the encapsulated and hidden moduleName variable. Also note that
moduleName is not a property on the self object. Instead, it is implemented as a
containing function's property.

testModule2 implementation
Our testModule2 is implemented a little differently in comparison to testModule1.
As shown in the code, we have simply defined a function inside our module called
initialize that is exposed to the external code indirectly through the interface
returned from our IIFE for this module.

In our testModule2, the moduleName variable is completely sealed from the
outside world as there are no methods defined on the interface to provide access
to this variable.

There is also no internal IIFE that registers the module with our core module,
ApplicationInitModule, thus we need to make a call outside of our module
definition to achieve this task, as shown here:

GlobalApp.registerModule(testModule2);

Notice that we have used our mediator module GlobalApp for this registration again
and we are not directly calling the related method on the core module. This allows us
to still preserve our loose coupling among the modules.

Chapter 3

[53]

Design Pattern used in testModule2
The way we have implemented testModule2 is based on a design
pattern known as revealing module pattern, in its simplest form. This
is a very popular pattern for designing modules but of course there are
various ways of implementing modules, as we have already seen. We
will see even more patterns for implementing modules in the upcoming
chapters. To get a better understanding of this pattern, please refer to
previously mentioned resource for JavaScript design patterns.

Auto-initialization of application modules
So far we have seen how our application modules use a mediator module to register
themselves with our application's core module, without being aware of the existence
of the core module.

We also noted that communication among modules was done through the interfaces
that were provided by the modules to the outside world. Only such interfaces had
access to the internals of the modules and their internal private scope.

The following diagram depicts the relationships that exist among our application
modules and provides an overall view of our application:

testModule1

testModule2

GlobalApp ApplicationInitModule

Let's have a look at the method in the core module that is responsible for calling
initialization methods on all of our registered modules.

Remember that a reference to each application module registered with the core
module has been added to the array registeredModules. This is shown in the
following code snippet:

registerModule : function(module){

 registeredModules.push(module);
}

Module Design Pattern

[54]

When we call the initializeAllModules method in our application (on the core
module), a for loop is used to call the initialize method on all the registered
modules. This is done as follows:

initializeAllModules: function(){

 for(var module in registeredModules){

 registeredModules[module].initialize();

 }
};

As you can see, initializeAllModules has no idea what each registered module's
initialize method does when it is called. All it knows is to call the initialize
method on the registered module and let the module take care of its own
initialization tasks.

This is a very important point when we modularize our code. Each module only
deals with tasks that are specific to that module's design and none of the other
modules have any knowledge of how such tasks are done in that module.

This means, while our core module calls the initialize method on one or many
modules, it does not directly get involved with the initialization tasks of each
module.

It is time to run a test and see how application initialization takes place. Consider the
following:

// displays
// "testmodule1 has been initialized!"
// "module name is: Module 1"
// "testmodule2 has been initialized!"
ApplicationInitModule.initializeAllModules();

When we run the preceding code, we can see that both of our modules report that
they have been successfully initialized.

Of course, we have designed our application in such a way that all the registered
modules do have an accessible method called initialize. This allows us to use an
array and a for loop to initialize them all in sequence.

Chapter 3

[55]

Module initialization and design
considerations
At the application design time, you decide on how the modules should be initialized
and how the initialization method in each module should be called. The important
point is that calling the initialization routine of each module should not cause a
tight coupling.

For consistency reasons, as well as ease of maintainability, I usually name the
methods which are responsible for initialization tasks in all of my application
modules: initialize or init. This allows me to use a for loop to call all the
registered modules in sequence and ask the modules to initialize themselves
accordingly.

Keep in mind that creating loose coupling among modules is only possible as long as
the interfaces (public method hooks) in our modules do not change their names and
their accessibility for the external code.

This means that, for example, if testModule1 calls the GlobalApp.registerModule
method to register itself, it should always be able to call that method for registration.
This should hold true even if the mechanism of how this registration takes place
changes internally in the GlobalApp object.

The architecture and design that you saw in our simple application here creates a
foundation for creating loose coupling among our application modules. This in turn
leads to a more extensible and maintainable implementation for both small and large
applications.

You can look at module interfaces as contracts among modules, which enables them
to interact with each other regardless of how the internals of such contracts are
implemented. Note that, while there are contracts among modules in the application,
there is no direct dependency among them. Each module is free to decide on how to
implement its specific functionality to accomplish the tasks that it was designed to do.

This is so, as long as the module provides the functionality and the service which is
expected from it.

This approach will provide a great deal of flexibility and extensibility for our
application. It allows us to add, remove, and modify various parts of our application
in a very targeted and manageable manner without such changes having an impact
on other pieces of the application.

The fundamental architectural concepts that we discussed here are the concepts that
will form the building blocks of the final application that we will build in this book.

Module Design Pattern

[56]

Summary
In this chapter, we looked at one of the most popular design patterns in JavaScript:
module pattern.

By creating simple modules, we explored various aspects of internal private scope in
module pattern and saw how modules can interact with each other, without having
access to the protected properties of each other's private scope.

This pattern allows us to create encapsulation and access control in our objects
and modules, while providing an interface for the external code to leverage the
implemented functionality intended for external use.

One of the most important aspect of module pattern is how it can be used to create a
modular design for our application as a whole. This enables us to create loose coupling
among our modules, which are essentially the building blocks of our application.

In later chapters, we will utilize this approach and slowly build more complex
modules to create a robust and easily maintainable code base for our application.
These modules can also be easily reused as needed, in all of our future applications.

[57]

Designing Simple Modules
In this chapter, we are going to focus on applying the concepts that we have learned
in the previous chapters to design some simple modules for our application.

We will start by analyzing our application's functionality as a whole and then we
will break it down into smaller functional pieces. Once we have decided on our
application's functional pieces, we will start creating simple modules to implement
the required functionality.

This chapter is meant to demonstrate the possible steps in the beginning of our
application's life cycle, based on our requirements. The goal is to see how using
modules can help us design a better architecture and get a feel for the practical
advantages of a modular design.

The simple modules that we create in this chapter will provide the foundation
for our final application in this book, which will be a working client-side single
page application.

In this chapter we will cover:

• Reflecting the overall application requirements in our design
• Designing the application's main pieces
• Creating specialized modules for our application's main pieces
• Collaboration among modules
• Using object definitions to describe page fragments
• Dynamically generating pages and page fragments

Designing Simple Modules

[58]

The big picture
Before we start any coding at all, we need to have a good understanding of what
our application is all about, what the requirements are, and what possible functional
pieces are needed to satisfy our requirements.

While in the beginning of an application's design phase, we try to answer as many
questions as possible regarding our application's requirements, we should always try
not to get too tied down by the details.

The idea is to get the big picture right, understand what it is that we want to deliver,
the timelines involved, and the resources available. Based on such analyses, we can
start creating a scalable, flexible, and extensible architectural design for our application.

I'd like to draw your attention to a very important word that I used here, extensible.
The ability of an application to be easily extended is very important in a proper
design. Keep in mind that no matter how much we try to finalize all of the
requirements for an application ahead of time, we won't be able to foresee them all in
the beginning.

Requirements change over time, new requirements are added, and old requirements
get modified or even removed altogether from the final draft of the application. The
key is to design our application in a way that can accommodate all such changes
without a big impact on the overall architecture. This is where the advantages of a
modular architecture shine and help to mitigate the adverse effects that such changes
might have on the application as a whole.

As we keep these points in mind, let's talk about the application that we are going to
build together in this book.

Our application requirements
Our application is a simple yet fully functional image gallery application. The goal
is to present the users with a catalog of beautiful images on our site. Our site visitors
can click each of the images to see a full view of the image and add the images to
their favorite list of images, if they wish to do so.

The application will have a header, a navigation bar at the top, a main content area in
the middle, a footer, and of course a logo.

As you can tell, there are not many complicated pieces at play here, but I assure
you that under the hood there are many modules that can be easily ported from this
application to many other more complex applications.

Chapter 4

[59]

Let's start by creating an overall layout (wireframe) of our application and see what
the big picture looks like.

Footer

Logo Header

Main Content Area

I have identified the main pieces of our index page in this mock-up. We are going to
create modules to build and update this page, its related pieces, and the rest of the
application for us.

Dynamic views
I mentioned that our JavaScript modules are going to build this page for us, and I
need to explain this a little further.

While we are going to create modules to take care of the functional pieces of the
application, we are going to take that a step further. We are also going to create
modules that will specialize in building our pages (views) dynamically on the
client side.

In this design, we only receive the skeleton of the page from the server. The page will
be populated by our view-generating modules based on the object definitions for
each page section (fragment) that is sent to the client.

Designing Simple Modules

[60]

The overall architecture of our application is based on Single Page Application (SPA)
design concepts. If you are not familiar with this term, the idea is that as we navigate
through our application pages (views), we won't need to load or build the parts of the
page that don't change from one view to the next. We simply update the changed pieces
of the view dynamically on the client while keeping the rest of the view untouched.

Since we only do targeted changes in our application's view, the rendering of our
views will be more robust and optimized.

This also means that after the application's initial load, the client will only be
requesting the changed parts of the application from the server. Therefore, we will
only be transferring the page fragments over the bandwidth as opposed to the full
page. Generally speaking, this can be a great advantage when we design applications
that need to operate in limited bandwidth scenarios, such as mobile applications.

For our application in this book, our page fragments are transferred as object
definitions to the client side and our view-generating specialized modules will
render the required views based on such object definitions.

You will see how we can achieve this in the near future as we move forward.

Designing our SPA main pieces
Usually when designing SPA applications, I create a core application code base
which is loaded in the browser at the application's initial load phase. This code base
provides application-level functionality that is independent of the application's
views. The application core consists of many modules that are loaded together. If
you are familiar with Model-View-Controller (MVC) or Model-View-Wildcard
(MV*) application design patterns, this core is essentially the controller of the
application.

MVC and MV* design patterns
These design patterns create a good degree of specialization and
separation of concerns in the code. Understanding these patterns
is important in creating a good application architecture. While
I will be referring to these patterns from time to time, covering
them in depth is beyond the scope of this book.
I recommend the following resources for more information:
https://www.packtpub.com/application-development/
mastering-javascript-design-patterns/

https://addyosmani.com/blog/understanding-mvc-
and-mvp-for-javascript-and-backbone-developers/

https://www.packtpub.com/application-development/mastering-javascript-design-patterns/
https://www.packtpub.com/application-development/mastering-javascript-design-patterns/
https://addyosmani.com/blog/understanding-mvc-and-mvp-for-javascript-and-backbone-developers/
https://addyosmani.com/blog/understanding-mvc-and-mvp-for-javascript-and-backbone-developers/

Chapter 4

[61]

The model and views of the application also have their own specialized modules,
some of which are loaded at the initial application load time and some as needed,
dynamically, at a later time. This type of approach enables the application to have a
small footprint in the browser and load only what it needs, as needed.

I also usually try to have every page of my application as a separate module
(component) both on the server and the client side. This provides the capability
to create, modify, or remove pages (components) and their related code without
affecting other pieces of the application.

Note that I'm using the term "module" here as a general term and it does not
necessarily mean modules that are built using the module pattern. My intent is to
convey the idea that each page is a separate piece in the application, within which
one or many JavaScript modules can be used to do the work related to that page and
that page only. If you are not sure exactly what this means, rest assured it will all
become more clear to you shortly.

The following figure depicts the main pieces of our application for this book,
categorized by their special functionality and design:

Controller

(Core Modules)

Model

(Application Data Module)

View

(Page Components)

As the figure shows, our overall design is based on three main pieces: Controller,
View, and Model. In the rest of this chapter, we will talk about each piece and will
start building them based on our modular architecture.

Application controller
The controller is the piece that contains the main functionality of the application.
Essentially, the controller module is the brain of the application. It will consist of
application-level modules that provide application-level functionality. This piece
will also be responsible for initializing all the other modules and components in the
application as well as gluing them together using a loose coupling approach.

Designing Simple Modules

[62]

Application controller modules
Considering the role of the controller in our application as mentioned, we are going
to design this piece based on specialized modules. These modules together create
what we will be referring to as the core module.

Keep in mind that since we are using specialized modules for our core, each
module can easily be modified or replaced without affecting the other parts of the
application, that is, with the exception of the functionality that is related to that
module and that module only.

Of course, we can also add more modules to the core, if we decide that additional
functionality is needed at some point in the future.

It is the collective functionality of the controller modules that provides the core
functionality of the application.

Based on our application's requirements, I anticipate that we will be needing the
following modules in our application's controller:

• Page updater module
• Storage handler module
• Communication handler module
• Utilities module
• Message handler module
• Logging handler module

Keep in mind that we are making our best guess as to what modules are required.
The list can change over time as we proceed further in our implementation. The idea
is to design and implement the modules that we think we will be needing at this
time, to have a starting baseline. However, the list of the modules, their functionality
as well as the names that we choose for them can change over time.

Let's start by exploring what the functionality of each module in our application's
core will be.

Page updater module
This module is responsible for building HTML pieces in our application. It does this
task by injecting a string passed to it into a container. This string corresponds to the
HTML elements that need to be rendered into the predefined container.

We will be building various pieces of our application pages and updating them
dynamically as required, using this module.

Chapter 4

[63]

Storage handler module
This module has the specific responsibility of storing application-related data. This
data can be either stored in cookies or in other storage facilities provided by the
browser, such as HTML 5 local storage.

Communication handler module
All application-related communication is done through this module. This module
is mainly designed to use AJAX calls to communicate with the back-end server.
However, the method of communication that this module uses might not be limited
to AJAX calls at some point in the future.

Utilities module
This module is responsible for providing utility type functionality to the application.
For instance, it can do string manipulation, object cloning, or page resize calculations.

Message handler module
As events take place in the application, we need a way to communicate such events
with the users and display messages on the application's pages. This module
specializes in this task.

Logging handler module
This module provides all the functionality related to the logging mechanism of the
application. The logging can take place on the client side, the server side, or both.

Creating our first core module
Now that we have put together the list of possible required modules for the core, let's
create the first module of our application's controller, the PageUpdater module. This
module should be designed in such a way that it can dynamically update a fragment
of the page. This fragment can be as small as a text on the page, or as large as the
entire displayed page itself. The update to the page fragment can be as trivial as
changing the font size or the background color or as complex as completely
re-structuring and re-rendering of the page fragment altogether.

Structure of our first module
Consider the following:

var PageUpdater = (function(){

 // module private function

Designing Simple Modules

[64]

 var insertHTMLTxt = function(containerID,newStructure){

 var theContainer = document.getElementById(containerID);
 theContainer.innerHTML = newStructure;
 };

 // module private function
 var applyElementCSS = function(elementID, className){

 var theElement = document.getElementById(elementID);
 theElement.className = className;
 };

 return{

 // privileged method
 updateElement : function(elemID, htmlTxt){

 insertHTMLTxt(elemID,htmlTxt);
 },

 // privileged method
 updateElementClass : function(elemId,className){

 if(!className){

 console.error('No class name has been
 provided, exiting module!');
 }
 applyElementCSS(elemId,className);
 }
 };

})();

The preceding code implements a simple module which enables us to do an update
on a page fragment. Let's examine the code and see how it is structured.

We have defined a JavaScript module, using the module pattern. An IIFE is used
to execute the code in our anonymous function, which creates a namespace. What
gets returned from this function is an object that is assigned to our global variable
PageUpdater.

Chapter 4

[65]

In our IIFE, we have defined insertHTMLTxt and applyElementCSS method
properties, using function expressions. These two methods are kept within the
internal private scope of our main container function, and as such no external code
can access them. Thus, we are protecting them from accidental and unintended
modifications.

We do provide controlled and indirect access to these methods through the module's
interface, which is the anonymous object that is returned when our container
function is executed. A reference to this returned object (our module's interface) is
assigned to the PageUpdater variable.

So in fact what is really referenced in this variable (PageUpdater) is the
following object:

{
 // privileged method
 updateElement : function(elemID, htmlTxt){

 insertHTMLTxt(elemID,htmlTxt);
 },
 // privileged method
 updateElementClass : function(elemId,className){

 if(!className){

 console.error('No class name has been
 provided, exiting module!');
 }
 applyElementCSS(elemId,className);
 }
};

As this is just a normal JavaScript object, we can call its methods from the external
code as:

PageUpdater.updateElement("headerContainer",
 headerContainerDef.sectionHTML);

The updateElement method of the PageUpdater object in turn calls
insertHTMLTxt(elemID,htmlTxt), which is the method inside our container
function that does the real work behind the scene.

This method receives two parameters: the id of the container element (containerID),
which we intend to update its contents, and a string (newStructure), which is
the string representation of the HTML elements that will be rendered inside this
container element.

Designing Simple Modules

[66]

If you are wondering how PageUpdater object can call the method inside of our
container function and how the link is established between the two, you need to
think of one word: closure!

We did talk about closures in Chapter 2, Review of Important JavaScript OOP Concepts.
If you recall, because the anonymous object returned from our IIFE was defined
inside the container function, it has access to the internal private scope of our
container function. This means PageUpdater has access to all the private variables
and methods defined inside of that scope. That is why the methods that are returned
as part of the interface from the module are called, privileged methods.

Having problems understanding the module pattern?
I took some time here to explain our first simple module in depth.
Moving forward, I will not be explaining the pattern used in
creating our modules (module pattern) in as much detail. It is
important for you to have a good understanding of this pattern, as
our other modules in the application follow a similar structure.
For a better understanding of the module pattern, I recommend
doing two things. First, review Chapter 2, Review of Important
JavaScript OOP Concepts and Chapter 3, Module Design Pattern again.
Second, spend some time analyzing the previous code and read
my explanations a couple more times. I'm sure you will get a good
grasp of this pattern very soon.

Note that the PageUpdater module is currently capable of doing two things. It can
update the innerHTML of a container element as well as being able to update the CSS
class of an element on the page.

Using our first module's functionality
The following is an example of how we can leverage the module's functionality by
making calls to its methods:

PageUpdater.updateElement("footerContainer",
 footerContainerDef.sectionHTML);

PageUpdater.updateElementClass("footerParentContainer",
 "footerContainerClass_Test");

The first line of the preceding code populates the footer section of our application,
based on a predefined object definition, which we will talk about a little later in this
chapter. The second line of code changes the CSS class of the footer container to
apply a different background color to this page fragment. The code accompanying
this chapter has the CSS class definition for this operation.

Chapter 4

[67]

As you can see, we let the module take care of the mechanics of how page fragments
are updated, and all we have to do is to make simple calls to it through the interface
that has been provided for this module.

Mapping our module's methods to its interface
There is one important point that we need to note regarding our module's interface,
which can easily be missed.

If you recall, in Chapter 3, Module Design Pattern, I mentioned that a module is free to
implement how it accomplishes its tasks and this implementation can change over
time. However, a module should keep its interface consistent to the outside world.
Of course, this is because the interface of a module is the module's contact and that's
how the other pieces of the application can interact with it.

Notice how we have defined the following interface for our PageUpdater module:

updateElementClass : function(elemId,className){

 if(!className){

 console.error('No class name has been provided,
exiting module!');
 }
 applyElementCSS(elemId,className);
}

As you can see, to the outside world, when a CSS class needs to be applied to an
element, the updateElementClass method should be called on the module. This
module in turn calls a method with a different name in the module's definition,
which is applyElementCSS.

This type of mapping allows us to change the name of the internal method of the
module without affecting the module's interface for the external code. The mapping
provides a layer of abstraction between the module's internals and its public interface.

Our module is currently a simple module that does relatively simple things for our
application, but it does not have to be limited to what we have defined here.

Designing Simple Modules

[68]

As we move along in this book, we will be augmenting this module (and others) to
do more things. Nonetheless, we should always keep in mind that this module is
specialized to only do tasks that are related to updating of our application pages and
nothing beyond that. After all, one of the main ideas behind modular design is that
each module only does one type of work and nothing more so we can stay true to the
concept of separation of responsibilities and concerns.

Running the accompanying application's code
You'll be able to run the application's code by loading the
index.html page in the browser using any IDE that has a
built in web server.
Please have a look at the code that accompanies this
chapter and use this module to update different fragments
of the page as you wish. All the modules discussed in this
chapter can be found in the js/Modules.js file in the
accompanying code.

Application view
Another main piece of our application is the view piece. As the name implies, this
piece deals with the view of all the pages and page fragments of the application.
The view is what the user actually sees in the browser.

Since our application is based on a MV* type architecture (in conjunction
with modular architecture), our views interact with the controller as well as
the model pieces.

However, the way we will build our application's views is a little different than
traditional MV* applications. Our application views will be designed as modules
and because these modules specialize in creating views, we will be calling them
components. This is to make the distinction between modules that have views
and those that only provide functionality but have no direct relations to our
application's views.

One other thing to keep in mind about components is that they can implement their
own MV* architecture. This type of implementation might not be very clear to you at
this time, but I assure you that it will all make more sense in the following chapters.

In this section, we will only focus on how index.html is built and how it is
populated using a few object definitions and the controller methods that we saw in
the previous section.

To create our index.html page, we will start by building a skeleton for this page and
then we will dynamically modify this skeleton to produce its main fragments.

Chapter 4

[69]

Creating the index.html page skeleton
The page skeleton of our application is designed to be as minimalist as possible at
this stage.

Have a look at the page structure as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta content="width=device-width,
 initial-scale=1.0" name="viewport">
 <title>Images Inc.</title>
 <link href="css/app.css" rel="stylesheet">
</head>
<body>
 <header class="headerContainerClass"
 id="headerContainer" role="banner">
 </header>
 <main class="clearfix mainPageContainerClass"
 id="mainPageContainer" role=
 "main"></main>
 <div class="footerContainerClass" id="footerParentContainer">
 <div class="footerlinksContainerClass"
 id="footerContainer"></div>
 </div>
 <script src="js/Modules.js" type="text/javascript">
 </script>
</body>
</html>

When we render this HTML markup in the browser, we will have the following
skeleton of our index.html page displayed:

Designing Simple Modules

[70]

Notice that we have created three main containers: headerContainer (the top
section of the page), mainPageContainer (the middle section of the page), and
footerContainer (the bottom section of the page), which are the three main
fragments of the page.

We will be populating each one of these page fragments with the HTML elements
that we need.

Creating an object definition for the header
If you recall, I mentioned that we will be using object definitions to define our page
fragments in the application.

As these object definitions are very similar to each other, we will only examine one of
them in this section , which is related to the header fragment of the page.

Here is the object definition for the header section:

var headerContainerDef = {
 sectionHTML: '<div class="logo_titleClass" >' +
 '<img src="img/ImagesIncLogo.png"
 alt="Company Logo" style="max-height:100%;">' +
 '<div class="siteTitleClass">Images Inc.</div>'
 + '</div>' +
 '<nav role="navigation" itemscope
 itemtype="https://schema.org/SiteNavigationElement">' +
 '<h1 class="hiddenClass">Main Navigation</h1>' +
 '<ul class="navmenuClass" >' +
 'Home' +
 'Our Company' +
 'Pricing' +
 'Contact Us' + '' + '</nav>'
};

As you can see, we have defined an object literal which at this time only contains one
property, sectionHTML.

This property holds a string that is the string representation of the HTML elements
for the header fragment of the page.

Keep in mind that, as implemented, we currently have a global variable called
headerContainerDef for our object definition. As you know, we should try to avoid
using global variables in our code. We will be fixing this issue soon, but at this time it
is done so on purpose.

Now that we have created our first object definition, it is time to create the first view
of our application for the Header fragment.

Chapter 4

[71]

Generating the Header fragment dynamically
As you saw previously, our application's controller has a module that specializes in
generating page fragments on the page and it is called PageUpdater.

Consider the following code snippet:

PageUpdater.updateElement("headerContainer",
 headerContainerDef.sectionHTML);

As you can see, we have used our application's PageUpdater module and have
passed the id of the Header fragment as the first parameter to its updateElement
method. The second parameter to this method is the object definition for the Header
fragment. This implementation allows us to leverage the functionality of our
application's controller to render the Header fragment.

Of course, we can use the same approach to create other parts (fragments) of our
page, such as the footer, as follows:

PageUpdater.updateElement("footerContainer",
 footerContainerDef.sectionHTML)

The following screenshot shows how the index.html page for our application is
displayed when the page fragments have been rendered on the page:

Images inc.

Latest News Services Support

Home Our Company Pricing Contact Us

Designing Simple Modules

[72]

The main content area of the page (colored red in the middle of the page), is the area
that will be updated as the user navigates through the pages in our application. The
header and footer of the page will not be re-rendered for any of the application's
pages, as our application is built on SPA principles.

As you can see, I have used some interesting background colors to depict each
fragment of the page. I like to call this color-coding of the page fragments.

The reason for this coloring schema is to easily distinguish each specific region
of the page in our visual design. When we are finished with our application
implementation, this page will look a lot better, but for now, this is a good starting
point.

Of course, if you are reading this book in a black and white medium, you only see
light and dark shades in the preceding image.

Generating client application's view dynamically
One of the techniques that I use in my applications is what I call Dynamic Page
Generation (DPG).

The idea is that each main fragment of the page is associated with an object
definition, and in this object definition the characteristics of the page fragment are
defined. For instance, in our design for this application, I have considered three
distinct fragments on the page: the header fragment, the content fragment, and the
footer fragment.

Each main fragment, in turn, could further be divided into sub-fragments and each
sub-fragment may or may not have its own distinct object definition.

On the other hand, we could have only one object definition for the entire page,
which would be used to dynamically generate the page as a whole.

Generally speaking, the decision on how to associate an object definition to a page
fragment or a sub-fragment is in the hands of the user interface developer. The
developer makes these decisions by considering factors such as the frequency at
which a fragment or sub-fragment needs to be updated, or whether a page fragment
needs to be updated independently of other fragments of the page. Of course,
performance also plays a major role in such decisions.

There are also instances when building certain page fragments on the server side is
more robust than building them on the client.

Chapter 4

[73]

In our application, we are building all the page fragments on the client dynamically.
This is so we can explore the full functionality of our modules and components on
the client side.

The look and feel of our application
Please note that the aim of this application is to help you
understand the concepts of modular design as it relates to
JavaScript applications, and as such the focus has not been on the
look and feel.
While we will improve the appearance of the application as we
move forward, I'm sure you can improve its appearance quite a
bit further on your own. Our application is somewhat responsive
based on the browser's view-port but can certainly use more CSS
polishing to make it fully responsive.
However, I do consider this application as a Minimum Viable
Product (MVP) for our purposes. Please feel free to download
the code from the site that accompanies this book and improve it
as you desire. Also, I have only tested this application in Chrome
46.0, but a production-quality application needs to be tested in a
variety of different browser types and versions.

Application model
The last main piece of our MV* implantation is the model. The main role of this piece
is to store application-level data. In a client application, such data can be stored in
cache, in cookies, or in local or session storage.

In the main application for this book, we will be using most of such mechanisms
to store our application's data. Also, as a general point, depending on the
implementation of the MV* architecture, changes in the model's data can trigger
changes in the application's view.

It is very important to shield application-level data from accidental overwrites and
modifications. In our implementation, we are going to use the module pattern once
again to create a module which will act as our application's model and will provide a
good level of protection for the stored data.

Designing Simple Modules

[74]

Creating a module for our application's model
Consider the following implementation:

var GlobalData = (function(){

 var headerContainerDef = {

 sectionHTML : '<div class="logo_titleClass" >' +
 '<img src="img/ImagesIncLogo.png"
 alt="Company Logo" style="max-height:100%;">' +
 '<div class="siteTitleClass">Images inc.</div>' +
 '</div>' +
 '<nav role="navigation" itemscope itemtype=
 "https://schema.org/SiteNavigationElement">' +
 '<h1 class="hiddenClass">Main Navigation</h1>' +
 '<ul class="navmenuClass" >' +
 'Home' +
 'Our Company' +
 'Pricing' +
 'Contact Us' +
 '' +
 '</nav>'
 };

 var footerContainerDef = {

 sectionHTML:'<div>' +
 'Latest News' +
 '</div>' +
 '<div>' +
 'Services' +
 '</div>' +
 '<div>' +
 'Support' +
 '</div>'
 };

 return {

 getHeaderHTMLTxt: function(){
 return headerContainerDef.sectionHTML;
 },

 getFooterHTMLTxt: function(){

Chapter 4

[75]

 return footerContainerDef.sectionHTML;
 }
 };
})();

As you can see, we have created a GlobalData module to keep our application-level
data.

I'm sure you are pretty familiar with how the mechanism works by now. We have
created an IIFE to return an object as an interface to our private namespace(module).
This object provides two methods: getHeaderHTMLTxt and getFooterHTMLTxt.

These methods return the property values of two private variables
headerContainerDef and footerContainerDef respectively.

Note that we have not provided any methods to set the values for these variables,
and since they are private variables in our module, we have created a degree of
encapsulation. Thus, shielding our data from outside influence.

The property value of headerContainerDef is a string representation of the HTML
elements in the header fragment.

This string is used to populate the Header fragment of our application's view,
as shown:

PageUpdater.updateElement("headerContainer",
 GlobalData.getHeaderHTMLTxt());

Just the same, the property value of footerContainerDef is a string representation
of the HTML elements in the Footer fragment.

This string is used to populate the footer fragment of our application's view, as shown:

PageUpdater.updateElement("footerContainer",
 GlobalData.getFooterHTMLTxt());

Note that when we rendered our header and footer fragments previously, we used
global variables (such as headerContainerDef) to get the required strings for the
page fragments.

However, in our new implementation, we access these strings using the GlobalData
interface methods.

An important point to keep in mind here is that we have implemented two
independent modules (PageUpdater and GlobalData) that work together to create
the building blocks of our application. We will leverage the collaboration among
our application modules further as we advance through the next chapters, and will
implement the full functionality of our application on such basis.

Designing Simple Modules

[76]

Also, notice that our GlobalData module is only tasked with providing data to
other pieces of the application, and PageUpdater is only responsible for updating
fragments of the page.

Another subtle point to consider is the fact that we can change the internals of both
modules as we desire. But as long as the interfaces of the modules don't change,
they can still continue working together without the internal changes of one module
having any effect on the functionality of the other.

Creating a logging module
As a further exercise, we are going to create one more module in this chapter.
This module will look after all the necessary work related to logging messages
for our application.

The question is, which main application piece does this module belong to?

To answer this question, we need to do a simple analysis. First, since this module
does not have any views associated with it, we need to consider it as a functional
module and not a component.

Second, this module does not store any application data for us. Therefore, this
module should belong to the controller piece of our application. As mentioned
before, since we consider the controller piece of our application to be the same as
the core module, the logging module should belong to the core module.

Remember that the core module consists of many smaller modules (sub-modules)
that build the core together.

Let's create our simple logger module as follows:

var LoggingHandler = (function(){

 // module private variables
 var defaultHelloMsg = "this is just to say
 Hello to the users!",
 theInterface ={};

 // privileged method
 theInterface.logError = function(errorMsg){
 console.error(errorMsg);
 };
 // privileged method
 theInterface.logInfo = function(infoMsg){

Chapter 4

[77]

 if(!infoMsg){
 infoMsg = defaultHelloMsg;
 }
 console.log(infoMsg);
 };

 return theInterface;

})();

This module definition structure is pretty much the same as other module definitions
that we have seen so far, but with minor differences.

We have used a different technique here and have returned a named object instead
of an anonymous object from our IIFE. We have named this object theInterface.
Initially, this object is an empty object but then we augment this empty object with
two method properties. One of them logs information messages and the other logs
error messages to the console.

In the case that no information message is passed to theInterface.logInfo
method, a default message is logged to greet the user.

Here is how we call the methods on the interface of this module:

LoggingHandler.logError("this is a test for logging errors!")
LoggingHandler.logInfo();

This is the same way that we call interface methods when we return an anonymous
object from a module.

I have used this technique of returning a named object from a module here to show
you we don't always have to return an anonymous object from an IIFE to create a
module interface, and that there are different ways of implementing the module
pattern. We will explore these techniques further in future chapters of the book.

Practical usage of our modules
As I like to present the concepts along with their practical aspects,
I recommend that you download the accompanying code for this
chapter. Have a look at the simple modules in action, and play
around with the code as much as you can. This will help you
become more familiar with the concepts and solidify them in your
mind. My recommendation applies to this chapter as well as all
the other chapters of the book.

Designing Simple Modules

[78]

Summary
In this chapter, we moved from the conceptual design of modules to the practical
aspects of implementing them. We started by looking at the high-level requirements
of our intended application, and then considered the kind of modules that we might
possibly need to fulfill those requirements.

We briefly discussed the MV* design pattern and structured our application to
follow this pattern. Then, based on the functionality and the role that our modules
play in our design, we categorized them to be part of the controller, view or model
pieces of our application.

The view for our application was generated by first creating an index.html page
skeleton and then populating its main fragments based on object definitions, using
a core module.

We also created a safe global data repository for our application to act as the model
piece of our architecture.

An example of how modules can collaborate together to complete tasks and provide
application level functionality was also presented.

In the next chapter we will extend our application modules and work further on the
building blocks of our application in a modular design approach.

[79]

Module Augmentation
In the previous chapter, we started creating simple modules for our fictitious
Images Inc. web application. In this chapter, we will take one of the modules that
we have already built and add more functionality to it using an approach known as
module augmentation.

This approach allows us to extend our modules without the need to change the
original implementation. There are different techniques which can be used to
implement module augmentation, and we will cover a couple of them in this chapter.

Module augmentation can be very useful when working on projects that have many
contributors to the code base. This type of projects usually require us to extend our
modules by adding new code and functionality to what has been already developed
by other developers.

The concepts that we will cover in this chapter are:

• The idea behind module augmentation
• Loose augmentation
• Tight augmentation
• Generating our application's content area
• Module augmentation and script loading order
• Advantages and disadvantage of different augmentation techniques

Principles of module augmentation
As you saw in the previous chapter, we created specialized modules to do some
specific tasks for us. However, as we move forward and develop our application
further, we are going to require more functionality from our modules, and we will
also require additional specialized modules.

Module Augmentation

[80]

When you are working on a large project, it is quite normal to have many developers
working on various pieces of the application. It is also possible to have many
developers work on the same part of the application together which requires a
seamless approach for combining their efforts and the functionality that they add to
the application.

Let's consider our GlobalData module from the previous chapter as an example.
This module was responsible for storing and caching application-level data.
However, in its current state, it holds a very limited amount of application-level data.
It is quite feasible to assume that when different developers are working on other
pieces of the application, they too need to store specific application-level data in the
same module.

One way to do this, is by modifying the GlobalData module manually and adding
more data and interfaces to it. But we need to keep in mind that the more people
who modify the module, the higher possibility of something breaking in the
module's code and for accidental modification to the important application-level
data in an undesirable way.

On the other hand, the original module file may not be accessible to some developers
for various reasons, which may hinder the cooperative development of our application.

What if we could come up with a way which would enable each developer to add
the required functionality to the original module without the need to modify or
require the original module's code?

Module augmentation allows us to do just that in a very robust way. As the name
implies, this concept is about adding functionality (properties) to the original
module, without changing the original module's code directly. The general idea is
that we can create a namespace which imports the original module at runtime and
then adds new functionality to it as required.

Implementing module augmentation
Imagine that we have a module called ModuleA and, as a developer, you want
to add more functionality to this module. However, for some reason, you decide
to implement this new functionality in a completely separate module and then
dynamically augment the original module with all the data and capabilities of this
new module. You can achieve this as shown here:

var ModuleA = (function(coreModule){
 var someData = "this is some data to be used later";
 coreModule.someMethod = function(){
 return someData;

Chapter 5

[81]

 };

 return coreModule;
})(ModuleA);

As you can see, we are again using the module pattern here, as the intent is to add
the new functionality in a modular fashion.

In this IIFE, a reference to coreModule object is returned.. There is, however, one
important thing to keep in mind here. We are passing ModuleA as a parameter to our
anonymous container function. Also, the property someMethod is being added to the
passed-in coreModule, which is in fact a reference to ModuleA.

Therefore, at the end of this function execution, ModuleA has a new property method
called someMethod, which has access to the value of someData variable.

There is one assumption that we are making here. We are assuming that ModuleA
does exist as an object, and if not, we will get an execution error when we run the
preceding code. You will see shortly how we can fix this issue, but for now, let's take
this augmentation concept and use it to extend ImagesInc_GlobalData module
in our application.

Module naming conventions
As we are getting more involved with module implementation in our
application, it is best to use more specific naming for our modules.
Generally speaking, it is a good idea to use names that are as specific
as possible for our modules. This minimizes the chance of naming
conflicts between our application modules and third-party modules
that we might be loading in our application. For this reason, as we
move forward, we will be adding ImagesInc_ prefix to all of our
module names, to make the names more specific to our application.
It is also worth mentioning that some developers choose to use
all capital lettering for the name of their modules in the code, as a
convention. We will not be using this convention in our application. In
your own coding practices, whether to use all capital lettering for your
module names or not is something that you should decide on with
your team. This is so you can establish a set of standards which all the
members of the team would be required to follow.

www.allitebooks.com

http://www.allitebooks.org

Module Augmentation

[82]

Simple augmentation of ImagesInc_
GlobalData
As you may recall, we used our ImagesInc_GlobalData module (previously named
GlobalData) to store application-level data for us. This module also provided a
couple of interfaces, so other pieces of the application could have access to the
private data that we had stored in this module.

Let's create another JavaScript file, which adds more data and a new interface to this
module. We can call this file Modules_2.js and add it to the list of JavaScript files
that our main page loads at runtime, as follows:

<script type="text/javascript" src="js/Modules.js" ></script>
<script type="text/javascript" src="js/Modules_2.js" ></script>

As you can see, this file is added as any other JavaScript file would be in our index.
html. However, one thing to notice in the preceding code is the order that the two
module files have been added. This order is important and we will talk more about it
shortly, but for now, keep in mind that our ImageInc_GlobalData module is loaded
first in our application (as it resides in Modules.js). Then, the code residing in
Modules_2.js will add more functionality to this module, as it is loaded afterwards.

We need to add the following lines of code to Modules_2.js:

(function(coreModule){

 coreModule.someText = "this is a test for
 module augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

})(ImagesInc_GlobalData);

Here, we have used an anonymous function to create a namespace, using an IIFE.
We have also passed in a reference to the ImagesInc_GlobalData object (module)
in the form of a parameter to this function.

Inside this anonymous function, we have added two properties to the passed-in
object reference, coreModule. This means that our ImagesInc_GlobalData now has
two new properties added to it. Let's verify this by running a test, as follows:

// displays "this is a test for module augmentation"
ImagesInc_GlobalData.getExtendedModuleMsg();

Chapter 5

[83]

When we call getExtendedModuleMsg method on ImagesInc_GlobalData object,
we see that the code runs properly and the expected message is shown in
the console.

As the ImagesInc_GlobalData module did not originally have the method
getExtendedModuleMsg, it now appears that it has been augmented with these
new properties.

This simple example demonstrates how we can augment our original module
without directly modifying the code in that module. We also saw that the
augmentation can be done in a separate file, which means a different developer
could add more functionality to our original module, without ever having direct
access to the original module's code file.

Of course, this type of augmentation can just as easily be done when both the
original module and the augmenting code are in the same file. It is good to have the
flexibility to pick and choose which approach we would like to take: to either have
the original module and its augmenting code in separate files or in the same file.

We will soon talk about this type of augmentation in greater depth, and will even
give it a technical name.

The order of things in module
augmentation
When we added Modules_2.js file to our index.html, I mentioned that we need to
load this file after we load Modules.js file for things to work properly.

The reason for this is not hard to discover. If the order of loading these files is
reversed, and subsequently the order of the code execution, we will be trying to add
properties to an object (ImagesInc_GlobalData) that does not exist yet, which will
result in a code execution error.

There are ways that we can work around this, which brings us to our next topic,
loose augmentation.

Loose augmentation of modules
When we try to enhance a module using the augmentation technique previously
discussed, we pass a reference of the module to another part of our code which is
responsible for doing the augmentation work.

Module Augmentation

[84]

How can we add functionality to an object that has not been loaded or created yet?

The answer to this question becomes very important when our modules (files) are
loaded in an asynchronous fashion, and we have no way of making sure that our
original module is loaded before the augmentation code that enhances the module.

One of the beautiful and powerful aspects of JavaScript is its ability to add properties
to objects dynamically, at any time during code execution. This allows us to add
functionality or modify our original module's implementation even before the
module is loaded, as long as we provide a temporary object in the absence of the
module. This temporary object will be added to the original module after the module
is loaded
(or more accurately, it becomes one with the original module).

If it sounds complicated, it really is simpler than you think. Let's revisit our previous
augmenting code and examine it a little closer:

(function(coreModule){

 coreModule.someText = "this is a test for module augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

})(ImagesInc_GlobalData);

I mentioned that for the augmentation to work properly, we needed to load this
code, which is responsible for augmenting the ImageInc_GlobalData module, after
the original module is loaded. Otherwise, a code execution error will be thrown.
While that remains true, what if we compensate for when ImagesInc_GlobalData
does not yet exist in the application by using an empty object?

As you probably know, we can call a function as follows:

someFunc(someParameter || someotherParameter);

When we do this, we are telling the JavaScript interpreter to pass someParameter
when calling someFunc, if it has a value; and if not, pass someotherParameter to the
function. That is how the || operator works in the preceding code snippet.

We can use the same technique and pass an empty object to our anonymous
function, as follows:

(ImagesInc_GlobalData || {});

Chapter 5

[85]

We tell the interpreter to pass a reference of our ImagesInc_GlobalData object when
calling the function, if the object exists, or pass a reference of an empty object which
will replace our original module for the time being.

Loose augmentation of ImagesInc_GlobalData
Let's rewrite our previous augmenting code for ImagesInc_GlobalData as follows:

var ImagesInc_GlobalData = (function(coreModule){

 coreModule.someText = "this is a test
 for loose module augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

 return coreModule;

})(ImagesInc_GlobalData || {});

In the preceding code, we are calling our anonymous function and passing a reference
of ImagesInc_GlobalData to it, if ImagesInc_GlobalData does exist. Otherwise, we
are passing a reference to an anonymous empty object into the function.

Our augmenting code still adds new properties to the passed-in object; however, this
time it returns a reference to coreModule to the ImagesInc_GlobalData variable.

For everything to work properly, we also need to modify our original ImagesInc_
GlobalData as follows:

var ImagesInc_GlobalData = (function(module){

 var headerContainerDef = {

 sectionHTML : '<div class="logo_titleClass" >' +
 '<img src="img/ImagesIncLogo.png"
alt="Company Logo" style="max-height:100%;">' +
 '<div class="siteTitleClass">Images Inc.</div>' +
 '</div>' +
 '<nav role="navigation" itemscope itemtype="https://schema.
org/SiteNavigationElement">' +
 '<h1 class="hiddenClass">Main Navigation</h1>' +
 '<ul class="navmenuClass" >' +
 'Home' +
 'Our Company' +

Module Augmentation

[86]

 'Pricing' +
 'Contact Us' +
 '' +
 '</nav>'
 };

 var footerContainerDef = {

 sectionHTML:'<div>' +
 'Latest News' +
 '</div>' +
 '<div>' +
 'Services' +
 '</div>' +
 '<div>' +
 'Support' +
 '</div>'
 };

 module.getHeaderHTMLTxt= function(){
 return headerContainerDef.sectionHTML;
 };

 module.getFooterHTMLTxt= function(){
 return footerContainerDef.sectionHTML;
 };

 return module;

})(ImagesInc_GlobalData || {});

As you can see, we have made a few modifications to the code.

If you recall, we used to create an anonymous object in our original module and
return a reference to it like so:

return {

 getHeaderHTMLTxt: function(){
 return headerContainerDef.sectionHTML;
 },

 getFooterHTMLTxt: function(){
 return footerContainerDef.sectionHTML;
 }
 };

Chapter 5

[87]

However, in our new augmenting implementation we are adding our module
interface methods directly to the module object that is passed into the anonymous
function. Also, the module object passed into our anonymous function is either a
reference to ImagesInc_GlobalData or a reference to an empty object.

There is one other subtle point to notice here. Both the augmenting code and
our original module code are returning an object reference to the ImagesInc_
GlobalData variable, and this is very important.

To explain this point, we need to dig a little deeper. There are times in our
applications that the module code and the code that is augmenting it are loaded
asynchronously. This means that we cannot be sure ahead of time which code is
executed first. When we return a reference to our object from both the original
module and the augmenting code, we can be sure that regardless of the code
execution order, our module is augmented properly.

In our example, if there is an ImagesInc_GlobalData object that already exists in
the global namespace, we augment it with the new properties, and if not, we create it
and then add new properties to it. That is why in both instances (the original module
code and the augmenting code), we execute our IIFE with the following call:

(ImagesInc_GlobalData || {});

This provides us with the ability to create or augment our module in a non-strict
order, hence the term loose augmentation.

Of course, the main advantage of this technique is that we don't have to worry about
which file is loaded first; either way, our module is created and augmented as intended.

Keep in mind that in both cases, we need to make sure that we create the same global
variable, ImagesInc_GlobalData, so that when we check for the existence of this
object in the global namespace, the correct reference is passed in.

It is time to put our code to the test. After making the modifications mentioned
previously, we can run the following line of code:

// displays "this is a test for module augmentation"
ImagesInc_GlobalData.getExtendedModuleMsg();

As you can see, the correct message is shown in the console. Now, let's see what
happens if we change the order in which our JavaScript module files are loaded in
the application.

First, we make the following change in our index.html file:

<script type="text/javascript" src="js/Modules_2.js" ></script>
<script type="text/javascript" src="js/Modules.js" ></script>

Module Augmentation

[88]

This is to make sure that our augmenting code is loaded first. Then we execute the
same line of code as before:

// displays "this is a test for module augmentation"
ImagesInc_GlobalData.getExtendedModuleMsg();

We can see that both our original module and our augmenting code are working as
expected, regardless of which was loaded and executed first.

Testing ImagesInc_GlobalData data
encapsulation
We can test and see how encapsulation and privacy have been preserved in our
module. This can be done by running the following code:

try{
 console.log(ImagesInc_GlobalData.headerContainerDef.
sectionHTML);

 }catch(e){
 ImagesInc_LoggingHandler.logError('could
 not access the property');
 }

This code will display could not access the property in the console, which confirms
our original module encapsulation is still in effect, as we would like it to be.

A note about the project code
As always, I highly recommend that you download the related
code for this chapter from the accompanying website for this
book. In the code for this chapter, I have created a new file called
AppTester.js, which is used to test the application as we
modify and enhance it. I recommend this approach of testing our
application every time we run it during the development phase.
This is so we can be sure that our changes in one part do not cause
any problems in other parts of the application. This is also aligned
with Test-Driven Development (TDD) approach, but in a very
rudimentary way.

Chapter 5

[89]

Tight augmentation of modules
So far in this chapter, we have talked about what module augmentation is in general
and have also covered the loose augmentation technique. It is time to explore a
different technique used in augmenting modules, known as tight augmentation.

You might wonder if tight augmentation is the opposite of loose augmentation, and
you are correct to think that, but with a couple of considerations which we will talk
about a little later.

Tight augmentation is used for adding properties (functionality) to our modules
when we do want to enforce a set order of file loading and code execution, and
therefore it is less flexible. This type of augmentation is usually used when we need
to make sure that a certain property from the original module is available for our
augmenting code.

Tight augmentation of ImagesInc_GlobalData
Consider our augmenting code for ImagesInc_GlobalData module from the
previous section, when loose augmentation was being used. As mentioned
previously, since we are passing a reference to ImagesInc_GlobalData or an
empty anonymous object into our IIFE, we can load our original module and our
augmenting code in any order that we like.

This was shown as follows:

var ImagesInc_GlobalData = (function(coreModule){

 coreModule.someText = "this is a test for
 loose module augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

 return coreModule;

})(ImagesInc_GlobalData || {});

However, this also means that if we wanted to override one of the original module's
properties, depending on what code gets loaded and executed first (the original
module or the augmenting code), our "override" might be overridden by another
piece of code, unintentionally and unexpectedly.

Module Augmentation

[90]

To understand this better, let's create another file, Modules_3.js, and add the
following code to it:

var ImagesInc_GlobalData = (function(coreModule){

 coreModule.someText = "this is a test for overriding
 module properties with loose augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };
 return coreModule;

})(ImagesInc_GlobalData || {});

Also, let's load this file in our application as follows:

<script type="text/javascript" async src="js/
 Modules_3.js" ></script>
<script type="text/javascript" src="js/Modules_2.js" ></script>
<script type="text/javascript" src="js/Modules.js" ></script>

Here we are loading two files (Modules_3.js and Modules_2.js), which augment
our original module. Modules_2.js is being loaded before Modules.js, but
Modules_3.js can be loaded in any order since we are using the async property on
the <script> tag for this file. This property tells the browser to load the file in any
order that it can.

Both of these augmenting codes add the same property, coreModule.someText, to
the original module. However, depending on which code is loaded and executed
first, only one of two pieces of text will be printed in the console.

We can test this by executing the following code:

ImagesInc_GlobalData.getExtendedModuleMsg();

The console will display one of the following:

• this is a test for module augmentation (from Modules_2.js)
• this is a test for overriding module properties with loose augmentation

(from Modules_3.js)

Keep in mind that in this scenario, we have no control over which one of the strings
will be the value of the coreModule.someText property after all the code execution
is completed. This is because we don't know which augmenter code will be loaded
and executed last. This also means that by using loose augmentation technique and
asynchronous loading, augmenter code precedence is determined dynamically at
runtime and not necessarily in the order that we think or desire.

Chapter 5

[91]

On such basis, if our intent was that the value of coreModule.someText should
be overridden by the code in Modules_3.js, then we could not be sure of such an
override taking place.

Simulating asynchronous script loading
To simulate the asynchronous loading of our augmenters, you
can reload the index.html page a few times in a row (from the
application code accompanying this chapter). You'll see that the
message displayed in the console may change from time to time.
The message displayed depends on which file, Modules_2.js or
Modules_3.js, is loaded first by the browser.

Tight augmentation, on the other hand, guarantees the order of code execution and
therefore how our modules get augmented. By using this technique, we can be sure
that when a module property is overridden, it will be in the order that we intended
and the result will be as expected.

This guarantee is provided by the fact that we don't have any choice but to load our
module and its augmenting code in the correct order, otherwise a code execution
error will be generated.

Let's examine this by modifying the code in our Moduels_3.js as follows:

var ImagesInc_GlobalData = (function(coreModule){

 if(!coreModule){
 ImagesInc_LoggingHandler.logError('coreModule was
 not found to be augmented!');
 alert('coreModule was not found to be augmented!');
 return false;

 }

 coreModule.someText = "this is a test for overriding
 module properties with TIGHT augmentation";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

 return coreModule;

})(ImagesInc_GlobalData);

Module Augmentation

[92]

In this version of the augmenting code, we are no longer passing in a reference to an
empty anonymous object to our IIFE. Therefore, if ImagesInc_GlobalData module
has not been already loaded, we cannot augment it with any new properties.

Note that at the start of the preceding code we are checking to see whether
coreModule exists, and if not we are using our ImagesInc_LoggingHandler module
to log an error to the console. We are also using an alert box in the browser to make
sure that the situation really catches the user's attention (try not to use alert boxes
in production code as it looks unprofessional; I'm just using it here for ease of
demonstration).

Loading ImagesInc_GlobalData augmenting
code
To examine how tight augmentation enforces a set order of script loading and code
execution, we can change our index.html as follows:

<script type="text/javascript" src="js/Modules_3.js" ></script>
<script type="text/javascript" src="js/Modules_2.js" ></script>
<script type="text/javascript" src="js/Modules.js" ></script>

As you can see, we are no longer loading the Modules_3.js file asynchronously
and it will be the first module-related file that gets loaded. Considering that we have
modified the augmenting code in this file to only augment the module when the
module (ImagesInc_GlobalData) is already present in the global scope, an error
message will be logged and an alert box will be displayed in the browser when we
load the page.

Because we are using the tight augmentation technique now, we need to load this
augmenting code after either Modules.js or Modules_2.js. This is necessary so we
can be sure that the ImagesInc_GlobalData module (object) is already present in the
global scope.

Also, since our intention is to override the value of someText by using the code in
Modules_3.js, and this property was added to the module by the augmenting code
in Modules_2.js, we need to load both Modules.js and Modules_2.js first. This is
the only way we can guarantee that an override of the value of someText is taking
place as intended.Therefore, to achieve the proper override, we need to modify the
loading order of our scripts as follows:

<script type="text/javascript" src="js/Modules.js" ></script>
<script type="text/javascript" src="js/Modules_2.js" ></script>
<script type="text/javascript" src="js/Modules_3.js" ></script>

Chapter 5

[93]

This rearrangement of the order of scripts in our index.html file ensures that
the override of the value of the someText property for the module will produce
the expected result. This is of course, because our original module is loaded first,
then it is augmented with the someText property, using the augmenting code in
Modules_2.js. At the end, the value of this property is overridden by the tight
augmenting code in Module_3.js.

Considerations in tight augmentation
At the beginning of this section, I mentioned that there are a couple of considerations
regarding tight augmentation that we need to keep in mind.

First, we do not really need to create a global variable to store the returned value
from the augmenting code that implements the tight augmentation technique.

This is so since this type of augmentation can only take place if the module already
exists in the global context. In fact, the following code will work just as well as the
previous version:

(function(coreModule){

 if(!coreModule){
 ImagesInc_LoggingHandler.logError('coreModule was
 not found to be augmented!');
 alert('coreModule was not found to be augmented!');
 return false;

 }

 coreModule.someText = "this is a test for overriding
 module properties with TIGHT augmentation!!!";
 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };

})(ImagesInc_GlobalData);

Second, before we override a property that already exists in the module, we
can preserve the original value of the property by storing it in another property.
This allows us to have access to both the original value of the property and its
overridden value.

Module Augmentation

[94]

Let's do that in our Modules_3.js file, as follows:

(function(coreModule){

 if(!coreModule){
 ImagesInc_LoggingHandler.logError('coreModule was not found to
be augmented!');
 alert('coreModule was not found to be augmented!');
 return false;

 }

 coreModule.original_someText = coreModule.someText;

 coreModule.someText = "this is a test for overriding module
properties with TIGHT augmentation!";

 coreModule.getExtendedModuleMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.someText);
 };
 coreModule.getExtendedModuleOriginalMsg = function(){
 ImagesInc_LoggingHandler.logInfo(coreModule.original_
someText);
 };

})(ImagesInc_GlobalData);

We can get the original value of the someText property by running the following in
the console:

// displays ""this is a test for module augmentation"
ImagesInc_GlobalData.getExtendedModuleOriginalMsg();

As you can see, not only tight augmentation technique is a nice way to override our
module properties, it also allows us to hold on to the original (previous) values of
our properties, in case we ever need to use them again.

Generating our application's content area
If you have read the previous sections of this chapter, you have a pretty good grasp
of what module augmentation is by now. You also know of a couple of techniques to
add dynamic properties to our modules using augmentation.

As it stands, our application (Images Inc.) has code that dynamically generates
the header and footer sections of our pages. But we still have an empty space in the
middle (the content area), which needs to be populated with content.

Chapter 5

[95]

Let's put the techniques that we have learned in this chapter to good use and add
functionality to our application that will generate the content area dynamically.

Note that the refactored augmenting code in Modules_3.js is now as follows:

(function(originalModule){

 if(!originalModule){
 ImagesInc_LoggingHandler.logError('originalModule
 was not found to be augmented!');
 return false;
 }

 //object definition for the index.html content area
 originalModule.mainContentContainerDef = {
 sectionHTML: (function(){
 var htmlStr = "";

 for(var i=0; i<=15; i++){
 htmlStr += '<div class="productDiv"></div>';
 }
 return htmlStr;
 })()

 };

 originalModule.getContentAreaHTMLTxt= function(){
 return originalModule.mainContentContainerDef.sectionHTML;
 };

})(ImagesInc_GlobalData);

A few things have happened here. As you can see, we are using tight augmentation
to augment our ImagesInc_GlobalData module. We have also created a new
property for this module, originalModule.mainContentContainerDef, which
holds the object definition for the content area of the page. Since the content area
uses a repeated structure of rectangles to display the desired images on the page, we
have used an inner IIFE, which creates that structure and stores it in sectionHTML
property of the content area object definition as a string.

In order for the external code to have access to this string, and to be able to render
the content area of our index.html page, we have created originalModule.
getContentAreaHTMLTxt method. This is added as an interface to our original
ImagesInc_GlobalData module.

Module Augmentation

[96]

When we load the application's index.html page now, it is displayed
as shown here:

Images Inc.

Latest News Services Support

Home Our Company Pricing Contact Us

Of course, for the time being, I'm using the previous color coding schema that you
have seen before for our various page fragments. For ease of identification, the image
boxes are shown in pink (if you are reading the book in color).

A caveat to keep in mind
In our augmenting code, we added the
mainContentContainerDef property to our module without
using a closure. Therefore, this property is not implemented
with the same type of encapsulation and private access as
headerContainerDef and footerContainerDef. These
properties were defined in our original module as private
variables, and access to them was only possible through the
interfaces that we created for external use. Of course, we created
that private access using a closure.
If you'd like to restrict access to them in your modules, it is best to
define the properties in the original modules (using closures) as
opposed to adding them to the modules using the augmentation
techniques (unless you use closures in your augmenting code
too).

Chapter 5

[97]

Summary
In this chapter, we covered what module augmentation is and explored a couple
of different techniques, known as loose augmentation and tight augmentation, to
implement module augmentation.

We saw how each approach is used in different circumstances and for different
application requirements, as well as the pros and cons related to each technique.

The order in which scripts should be loaded was also discussed, based on the
augmentation technique used.

Once we had a good grasp of these augmentation implementations, we refactored
part of our application code to augment ImagesInc_GlobalData module.
Subsequently, we generated the content area of index.html page and populated it
with containers, which will host the images for our application in the future.

In the next chapter, we will look at some more techniques in modular design which
will enable us to extend and clone our modules as needed.

[99]

Cloning, Inheritance,
and Submodules

In the previous chapter, we looked at how we can extend and modify modules using
loose and tight augmentation.

In this chapter, we are going to explore some other techniques that may come handy
when we are working with modules, which can help us extend and modify the
functionality of our modules. Depending on the requirements of your applications, as
well as your personal preferences, some or all of these techniques may be of use to you.

The beginning of the chapter will provide an overview of some of the approaches for
creating object based on other objects which you may already be familiar with. Then,
we will look at how object cloning can be used to create objects that are replicas of
other objects.

We will also create another one of the core modules for our application, which will
be utilized to clone objects as needed.

In this chapter we will cover:

• Module cloning and when to use it
• Different methods for cloning objects
• Using inheritance to extend modules
• Adding functionality to already created modules using submodules
• Internal private state and how it is affected when extending modules

Cloning, Inheritance, and Submodules

[100]

Cloning modules
Cloning objects in general, and cloning modules in particular, is about creating an
exact replica of the original object or module.

But before we talk about cloning, let's consider some of the ways that we can create
new objects based on other objects.

Creating instances of a constructor function
One way of creating objects based on another object is by creating instances of a
constructor function.

As you know, when we create an instance of an object using a constructor function
in JavaScript, we use the new keyword. The created instance resides in a different
memory address than the constructor function. When we assign properties to the
prototype property of the constructor function, all the instances of the constructor
function will share these properties of the prototype object.

Let's have a look at a simple example and review creating objects based on
constructor functions.

Consider the following code snippet:

function testConstructor (){

 this.someValue = "Value in the constructor function";

}

testConstructor.prototype.testFunc = function(){

 console.log(this.someValue);
};

As you can see, we have added a property to the prototype object of our constructor
function, which logs the value of the this.someValue property to the console.

Now, we create two instances of our constructor function as follows:

var firstInstance = new testConstructor();
var secondInstance = new testConstructor();

Chapter 6

[101]

Next, we run the following code in the console:

// displays "Value in the constructor function"
console.log(firstInstance.someValue);
// displays "Value in the constructor function"
console.log(secondInstance.someValue);

We can see that the same value for someValue property will be displayed for both
of the instances. Of course, if we change the value of someValue property for each
instance as follows:

firstInstance.someValue = "value for the firstInstance";
secondInstance.someValue = "value for the secondInstance";

And log the values of the properties:

// displays "Value for the firstInstance"
firstInstance.testFunc();

// displays "Value for the secondInstance"
secondInstance.testFunc();

The value of someValue property for each instance will be different. Here, each
instance has its own copy of someValue property, but they both share the same
method, (testFunc) since all the properties that are residing on the prototype object
are shared among all the instances of the constructor function.

There is also one more thing that we should keep in mind. After creating instances
of the constructor function, if we add new properties to the constructor function, the
instances will not have access to these new properties.

Consider the following code:

testConstructor.newProperty = "this is a new property but not shared";

// displays undefined
console.log(firstInstance.newProperty);

// displays undefined
console.log(secondInstance.newProperty);

As you see, none of the instances have access to this new property which was added
to the constructor function after the instances were created.

If you are thinking that alternatively, we could have defined properties defined on
the prototype object directly on the constructor function itself (testFunc in our
example), you are correct but with a caveat!

Cloning, Inheritance, and Submodules

[102]

Doing so would mean that every time we make an instance of the object, we would be
making unnecessary copies of the properties, which are identical for all the instances of
the object. Thus, we would be creating an unnecessary overhead for our code.

It is a good practice that, when we have properties which are identical for all the
instances of constructor function (in most cases, this applies to methods), they should
be defined on the prototype object and be shared among all the instances. We did
this in our example by adding testFunc method to the prototype object instead of
defining it on the constructor function itself.

When it comes to constructor functions and creating other objects (instances) based
on these objects, there is one other thing that we need to consider. What happens to
private properties in the constructor function?

Let's consider the following code snippet:

function testConstructor (){
 this.someValue = "Value in the constructor function";
 var privateValue = "no instances will have a copy of me";
}

The private variable privateValue will not be copied to the instances of the object
and will not be shared.

We can test this as follows:

var firstInstance = new testConstructor();
// displays undefined.
console.log(firstInstance.privateValue);

So how can we access these private properties from an object which is created based
on this object?

We'll talk about how we can provide access to such private members when we talk
about cloning modules.

Using the assignment operator for copying
objects
When we are using primitive types in JavaScript, we can easily use the assignment
operator to copy the value of one variable to another, as shown:

var testVar1 = "This is to be copied";
var testVar2 = testVar1;

Chapter 6

[103]

In the preceding code we are simply assigning the sting value of one variable
to another variable, and there is no mystery here, but how would that work for
two objects?

Let's put that to the test as follows:

var testObj1 = { testValue : 5};
var testObj2 = testObj1;

testObj1.newValue = "this is a new value";

// displays "this is a new value"
console.log(testObj2.newValue);

Here, we are assigning testObj1 to testObj2 using the assignment operator, which
might appear as creating a new object based on another object.

However, as you can see, when we create a new property for testObj1, even after
the assignment of testObj1 to testObj2 has taken place, the new property is
available to testObj2 as well.

The reason is that when we use the assignment operator to assign the value of a
variable which holds a reference to an object to another variable, we are in fact
assigning the memory address of the object to another variable. This results in both
variables referencing the same object. So, in the code above, both testObj1 and
testObj2 are referencing the same object.

While this result might be desirable at times, there are occasions when we need to
create an object that is an exact copy (replica) of another object, but we want the new
object to be a completely independent object from the original one. So how do we
do that?

One way to achieve that is to create a clone of the original object.

Creating a clone of an object
When we create a clone of an object, our objective is to create an exact replica
of the original object, without the newly created object having any ties to the
original object.

Cloning objects in JavaScript (as with some other languages) is not as
straightforward as you might think. While there are different ways of implementing
cloning, each approach has its own pros and cons.

Cloning, Inheritance, and Submodules

[104]

If we consider cloning as copying all the properties of an object to another object, we
can categorize cloning into two types:

• Shallow cloning
• Deep cloning

Shallow cloning and deep cloning
Shallow cloning copies all the top-level properties of the original object, but if this
object contains other reference types, only the references of these reference types are
copied to the newly created clone, as opposed to the actual reference types. This type
of cloning is used when we want to have separate copies of the primitive types in the
new object but we want the original object, and the newly cloned object, to share the
same reference types.

Deep Cloning on the other hand, copies all the primitive type properties of the
original object into the new object as well as making new copies of all the reference
types of the original object in the new object.

The important distinction is that true copies of the reference types are created in the
new object and not just the references (the memory addresses) of the reference types.
This type of cloning is desirable if we want to have two distinct objects with no ties
between them of any kind. Deep cloning is generally considered slower than shallow
cloning and consumes more resources.

To implement either of the cloning types, we can leverage one of the following
approaches:

• Use a third-party library such as jQuery or lodash
• Use the JSON exploit hack
• Create our own custom clone method

Using external libraries for cloning
jQuery provides the extend method which enables us to create both shallow and
deep cloning of objects.

The general format for the extend method is as follows:

jQuery.extend(target [, object1] [, objectN]);

Chapter 6

[105]

While this approach is generally a good option for cloning objects,
it does have some limitations, such as when dealing with built-in
JavaScript types. For complete information regarding this method,
please refer to the jQuery documentation at the following URL:
http://api.jquery.com/jQuery.extend/

Another good library that can be used for cloning of objects is lodash, which also
provides functionality for both shallow and deep cloning. The cloning functionality
that lodash provides seems to be ideal for most cases.

The general format for creating deep clones of an object in lodash is:

var deep = _.cloneDeep(objects);

There are however some limitations when using lodash for
deep cloning, such as dealing with maps and sets. Please refer
to the loadash documentation online at:
https://lodash.com/docs#cloneDeep

Using JSON exploit for cloning
A simple but effective way of cloning objects is to use a technique (hack) known as
JSON exploit.

The idea is to stringify the original object and then parse the string into a new object,
using JSON methods. This is shown as follows:

var cloneObj = (JSON.parse(JSON.stringify(originalObj)));

This approach is simple to use, however it has limited capabilities,
especially when it comes to copying function properties.
To view a good discussion on using this technique, please refer to
the following URL:
https://esdiscuss.org/topic/deep-cloning-objects-
defined-by-json

Creating a custom clone method
When it comes to relatively simple cloning of objects, we can create our own custom
cloning method. This method satisfies most of our needs, most of the time.

http://api.jquery.com/jQuery.extend/
https://lodash.com/docs#cloneDeep
https://esdiscuss.org/topic/deep-cloning-objects-defined-by-json
https://esdiscuss.org/topic/deep-cloning-objects-defined-by-json

Cloning, Inheritance, and Submodules

[106]

Consider the following:

function clone(deep) {
 var newClonedObj = new this.constructor();
 for (var property in this){
 if (!deep){
 newClonedObj[property] = this[property];
 }else if (typeof this[property] == 'object'){
 newClonedObj[property] = this[property].clone(deep);
 }else{
 newClonedObj[property] = this[property];
 }
 }
 return newClonedObj;
}

This function takes a Boolean parameter to perform either a shallow clone or a deep
clone of an object.

When a deep clone is required, a recursive call to the function is made to copy the
properties of an object property (a reference type) of the original object. Notice the
following snippet in the cloning function:

else if (typeof this[property] == 'object'){
 newClonedObj[property] = this[property].clone(deep);
}

Of course, as with the approaches discussed previously, this approach also has its
own limitations, for instance, when dealing with closures. However, it does a pretty
good job in most cases.

In the next section, we will be adding this function to one of our application's core
modules so it can be used in our application, when needed.

Creating ImagesInc_Utilites module
Since a utilities module is a good place to implement our object cloning code, let's
create our ImagesInc_Utilites module as follows:

var ImagesInc_Utilitizes = (function(){

 var clone = function clone(deep) {

 // create an instance of the object

Chapter 6

[107]

 var newClonedObj = new this.constructor();

 //copy all properties from the original object
 for (var property in this){
 // if deep flag is not set, just do a
 shallow copy of properties
 if (!deep){
 if(this.hasOwnProperty(property)){
 newClonedObj[property] = this[property];
 }
 // to make a deep copy, call the function recursively
 }else if (typeof this[property] == 'object' &&
 this.hasOwnProperty(property)){
 newClonedObj[property] =
 this[property].clone(deep);
 }else if(this.hasOwnProperty(property)){
 //Just copy properties for non objects
 newClonedObj[property] = this[property];
 }
 }

 return newClonedObj;
 };

 // attach the clone function to Object prototype
 var initialize = (function(){
 Object.prototype.clone = clone;
 })();

})();

In this module, we have implemented our cloning function which takes care of
copying an object's properties into a new object. I have also modified this function
a little from its previous version that you saw earlier. This is so it will only copy the
properties of the object itself and not its parent's properties (if there is one). We can
do this by using JavaScript's native hasOwnProperty method.

We have assigned the cloning function as a property to Object.prototype object, so
all the objects in the application can have access to this method.

Cloning, Inheritance, and Submodules

[108]

Testing our custom cloning method in
ImagesInc_Utilites module
Let's create a test module to see how our cloning mechanism works. Consider the
following code:

var TestModule = (function(){

 var privateTestValue = "Test for cloning, this
 property is hidden";

 return {
 publicTestValue: privateTestValue + " but now
 showing it publicly",

 testFunc : function(){

 var anotherTest= "This property will be cloned";
 return anotherTest;
 },

 getPrivteValue : function(){

 return privateTestValue;
 },

 changePrivateVar : function(){
 privateTestValue = "the private value
 has been changed";

 return privateTestValue;

 },

 testArray : [1,2,3]
 };

})();

Here we have created a simple module which exposes a public interface with
controlled access to its private variable.

Chapter 6

[109]

Now, if we run the following code:

// creating a clone object
CloneModule = TestModule.clone(true);

We can create a clone of the original module, TestModule.

We can run a simple test as follows:

// displays "This property will be cloned"
console.log(CloneModule.testFunc());

As you can see, the expected output is displayed.

To verify that all the properties have been copied from our original module to our
new module, we can examine all the properties in both modules, using our browser's
debugger (I'm using Chrome's debugger) as shown here:

An important aspect of our cloning method
There is also another interesting aspect of this cloning method that you need to be
mindful of.

Remember that our TestModule has a hidden property by design, which is
privateTestValue. What happens to this property when we do our cloning?

Well, the best way to find out is by running a test.

In our TestModule, we have a method property (changePrivateVar) which
modifies this hidden property. So if we run the following:

// displays "the private value has been changed"
console.log(TestModule.changePrivateVar());

Cloning, Inheritance, and Submodules

[110]

We can change the value of this property to the private value has been
changed, in our TestModule. Now, let's see if our CloneModule has access to this
value and if so, does it hold on to the old value of this property or will the value
will be changed for our CloneModule as well?

If we run the following code snippet:

// displays "the private value has been changed"
console.log(CloneModule.getPrivteValue());

We see that not only our CloneModule has access to this property but also that the
value has been changed for this module.

This shows us that because of the closure in our original TestModule module, our
CloneModule also has access to the private scope of this module and it also retains
the state of the scope that is provided by the closure.

This may, or may not, be a desirable result for us, depending on how we want to
clone our modules. However, it is very important to keep in mind that, because
of the closure in our original module, our cloning outcome is a little different than
when we clone objects which do not have embedded closures.

Running more tests on our cloning method
I have included a few tests for module cloning in the accompanying
code for this chapter. You can see these tests in the AppTester.js
file. Please have a look, read the comments and modify the code to
see how the results can be affected.

As you can see, cloning can be used when we want to create a replica of our original
module with access to the original module's closure context. This in turn can provide
us with access to the private members of the original module.

Most of the time, when we clone a module, we use it as the base module for a new
module. We can then add more functionality or modify the existing functionality
of the new module, using one of the other techniques that we discussed previously,
such as loose or tight augmentation.

This approach allows us to extend the clone of a module instead of the original
module, thus shielding the original module from all the changes, while having access
to all the functionality of the original module.

Of course, cloning is not the only way that we can achieve this, but nonetheless, it is
another valuable tool to have in our toolbox.

Chapter 6

[111]

Inheritance in modules
In Chapter 2, Review of Important JavaScript OOP Concepts, we talked about what
inheritance is and looked at different approaches to creating inheritance relationship
among objects. Here, we will leverage the techniques that we learned in that chapter
to create inheritance among modules.

Generally, we use inheritance to utilize our base module's functionality and then
either add new functionality or modify the existing functionality in our child
modules.

There are various ways of creating inheritance among modules and we will examine
two of these approaches in this section.

Module inheritance using __proto__ object
In this type of inheritance implementation, we use the child module's __proto__
object to inherit properties from the parent module.

Let's consider the following:

var Polygon_Module = (function() {

 var sides = 6;
 var name = "Polygon";
 var type = "2D";

 function getSides() {

 return sides;
 };

 function getName() {

 return name;
 };

 function getType(){

 return type;
 };

 return {

Cloning, Inheritance, and Submodules

[112]

 getSides: getSides,
 getName: getName,
 getType: getType
 };
})();

var Rectangle_Module = (function() {
 var Rectangle = {};
 var sides = 4;
 var name = "Rectangle";
 var color = "blue";

 Rectangle.__proto__ = Polygon_Module;

 Rectangle.getName = function(){
 return name;
 };

 Rectangle.getSides = function(){
 return sides;
 };

 Rectangle.getColor = function(){
 return color;
 };

 return {
 getName: Rectangle.getName,
 getSides: Rectangle.getSides,
 getType: Rectangle.getType
 };

})();

As you can see, we have created two modules here: Polygon_Module, which is the
parent module in our inheritance relationship, and Rectangle_Module, which is the
child module.

In our Polygon_Module, we have created private variables and functions, which are
not accessible to the external code, except through the module's interface.

Chapter 6

[113]

Rectangle_Module is designed in a way that it inherits some of its functionality
from its parent module (Polygon_Module). It then modifies some of the inherited
functionality as well as adding new functionality of its own.

The following line of code is the essential piece that creates the inheritance
relationship between the two modules:

Rectangle.__proto__ = Polygon_Module;

As shown, we have passed a reference from Polygon_Module to the __proto__
object of Rectangle object. This allows the Rectangle object to have access to
all the properties that were exposed in the parent module, through the parent
module's interface.

Let's see what we get when we run the following tests on our modules:

console.log(Polygon_Module.getName()); //displays "Polygon"
console.log(Polygon_Module.getSides()); // displays 6
console.log(Rectangle_Module.getName()); // displays "Rectangle"
console.log(Rectangle_Module.getSides()); // displays 4
console.log(Rectangle_Module.getType()); // displays "2D"

The above tests demonstrate that the child module, Rectangle_Module, has all the
methods that were inherited from the parent module; additionally, it has overridden
some of these inherited properties.

Notice Rectangle_Module.getType() method, which was not defined or
overridden in the child module, but was accessed by the child module through the
parent module's interface.

Module inheritance using parasitic
combination
Another approach to creating inheritance among objects, which you are probably
familiar with and have seen an example of in Chapter 2, Review of Important JavaScript
OOP Concepts, is parasitic combination inheritance.

As you may recall, the idea is that we use the base class's constructor function in
the child's constructor to create an instance of the child object. We also use the base
class's prototype object to get a reference to all the properties that are exposed on
the base class's prototype object.

Cloning, Inheritance, and Submodules

[114]

To refresh your memory, let's have a look at the following example:

var Polygon_Module2 = (function() {

 var sides = 6;
 var name = "Polygon";
 var type = "2D";

 function Polygon(){

 this.sides = sides;
 this.name = name;
 this.type = type;
 }

 Polygon.prototype.getSides = function(){

 return this.sides;
 };

 Polygon.prototype.getName = function(){

 return this.name;
 };

 Polygon.prototype.getType = function(){

 return this.type;
 };

 return {
 Polygon: Polygon,
 };
})();

var Rectangle_Module2 = (function(){
 var sides = 4;
 var name = "Rectangle";

 function Rectangle(){

 Polygon_Module2.Polygon.apply(this);
 this.sides = sides;

Chapter 6

[115]

 this.name = name;
 }

 Rectangle.prototype = Polygon_Module2.Polygon.prototype;
 Rectangle.prototype.constructor = Rectangle;

 var RectangleInstance = new Rectangle();

 return {

 Rectangle: RectangleInstance
 };

})();

In this version of our modules, Polygon_Module2 has a constructor function called
Polygon. All of our methods are also defined on the prototype object of the
Polygon class (object).

Polygon_Module2 module also has an anonymous object as an interface, which holds
a reference to Polygon class (object).

In our child module, we have created another constructor function Rectangle,
which uses the available interface in Polygon_Module2 to borrow the Polygon
constructor, as shown:

Polygon_Module2.Polygon.apply(this);

We have also set the prototype object of Rectangle object to point to
Polygon.prototype object so we can have access to all the methods defined
in this object, as shown:

Rectangle.prototype = Polygon_Module2.Polygon.prototype;
Rectangle.prototype.constructor = Rectangle;

And of course, since we have completely overwritten the prototype object of our
Rectangle class, we need to reset its constructor property so that it points to the
correct object, which in this case is Rectangle.

Notice that we have created an instance of Rectangle object to start the inheritance
relationship between the two objects and set the objects' contexts properly.

Cloning, Inheritance, and Submodules

[116]

Let's run a few tests to verify the inheritance relationship, as follows:

console.log(Rectangle_Module2.Rectangle.getName()); //
 displays "Rectangle"
console.log(Rectangle_Module2.Rectangle.getSides()); // displays 4
console.log(Rectangle_Module2.Rectangle.getType()); //
 displays "2D"

As you can see, the tests produce the results that were expected.

Deciding on the module inheritance approach
If you are wondering which approach to take (__proto__ inheritance or parasitic
inheritance) when you need to create an inheritance relationship among your
application modules, in my opinion it will be a matter of taste for the most part.

However, consider that in our first approach (using __proto__ inheritance), we
did not need to create an instance of the child module to create the inheritance
relationship. This means one less function call and probably a little less memory
consumption as no instances of the object are held in memory.

On the other hand, keep in mind that older browsers may not support setting
the __proto__ property of an object.

More information about inheritance
If you would like to get a little more information regarding
inheritance among JavaScript objects in general, please refer to
Chapter 2, Review of Important JavaScript OOP Concepts.

Submodules
The last technique that we consider in this chapter, which also allows us to extend
our modules, is using submodules.

Submodules are essentially independent modules, which can be added to another
module as properties of the hosting module. There are various ways of adding
submodules to other modules and we will cover two of these approaches in this section.

Let's stay with the shape theme that we have been using so far and create a Shape
module. We will consider this module as our hosting module. This module is the
parent module for all 2D and 3D shapes and we will add our Polygon module to it.

Chapter 6

[117]

Adding submodules using dynamic
properties
Adding a submodule to a module as a dynamic property is straightforward, and as
we can add dynamic properties to any JavaScript object, we can add a property to
a hosting module which points to a submodule.

Consider the following:

var Shape = (function(){

 var type = "Any 2D and 3D shape";

 function getType(){
 return type;
 }

 return {

 getType: getType
 };

})();

Shape.Polygon = (function() {

 var sides = 6;
 var name = "Polygon";
 var type = "2D";

 function getSides() {

 return sides;
 }

 function getName() {

 return name;
 }

 function getType(){

 return type;

Cloning, Inheritance, and Submodules

[118]

 }

 return {
 getSides: getSides,
 getName: getName,
 getType: getType
 };
})();

Here, we have created a submodule Shape.Polygon and have added it to our main
module Shape as a property.

Of course, we can access the main module and the submodule as follows:

console.log(Shape.getType()); // displays "Any 2D and 3D shape"
console.log(Shape.Polygon.getName()); // displays "Polygon"

This is the simplest way of adding a submodule to a main module but it does require
the main module to be present in the scope, before we can add the submodule to it.

Adding submodules using asynchronous
properties
Adding submodules to a hosting module using asynchronous properties has the
advantage of being more flexible, in the sense that the hosting module does not need
to be loaded before the submodule can be added to it.

Therefore, the submodule can potentially reside in a different file, and can be loaded
and added to the hosting module at different times (either before or after the hosting
module is loaded), in an asynchronous fashion.

Let's have a look at the following code snippet:

var Polygon_Module;

var Shape = (function(mainModule, subModule){

 var Polygon = mainModule.Polygon = mainModule.Polygon ||
subModule;

 Polygon.description = function(){

 return "submodule has been added to shape module";

Chapter 6

[119]

 };

 return mainModule;

})(Shape || {}, Polygon_Module ||{});

console.log(Shape.Polygon.description());

This code is responsible for adding our submodule Polygon_Module, to our main
module Shape.

As you can see, we are passing two parameters to our IIFE, one for the main module
and the other for the submodule. When any of them does not yet exist in the
execution context, we are passing an empty object to our IIFE.

Inside of the IIFE, we check to see if our mainModule has the property Polygon,
which is in fact our submodule. If the property does exist, we just use it and add a
new property to this submodule, called description.

If the property Polygon (the submodule) does not exist in our code execution
context, we use the passed-in submodule and then add the new property
description to it.

Let's check to see if we can access this new property on the submodule, as follows:

console.log(Shape.Polygon.description()); // displays "submodule has
been added to shape module"

Now, even if we add our Shape module (the hosting module) after our submodule
to our execution context, we can still add our submodule to this module. We can also
provide access to our submodule's properties, through the main (hosting) module.

Consider the code below:

var Shape = (function(module){

 var type = "Any 2D and 3D shape";

 module.getType= function(){
 return type;
 };

 return module;

})(Shape || {});

Cloning, Inheritance, and Submodules

[120]

This implementation of our Shape module accepts one parameter, which can be
either an empty object or a reference to an already existing Shape module. This
means that, even if our Shape module was already created in our previous IIFE,
which was responsible for adding our Polygon_Module to our Shape module, we are
still able to re-define it.

To test this, we can run the following:

console.log(Shape.getType()); // displays "any 2D and 3D shape"

console.log(Shape.Polygon.description()); // displays "submodule has
been added to shape module"

The result confirms that we are able to access properties of the Shape module as well
as our submodule, no matter which one is loaded first in our application.

You might also notice that the implementation above is very similar to our loose
augmentation pattern that we discussed previously. The only real difference is that
we are adding our submodule as a completely independent module to our main
module, as opposed to just augmenting the main module with new properties.

Summary
In this chapter, we looked at a few more techniques which enable us to extend and
modify our modules.

We considered how we can use various cloning approaches to create replicas
of our modules and talked about the pros and cons of each approach. We also
examined how we can use inheritance among modules so that a child module can
utilize the functionality of its parent module as well as override its parent module's
functionality, as needed.

In the last section of this chapter, we talked about submodules and looked at a couple
of different techniques for adding submodules to our main (hosting) modules.

The next chapter will be more focused on the design of our application as a whole.
We'll see how a flexible ecosystem can be created for our modules, which allows
them to interact and work together, without being dependent on each other.

[121]

Base, Sandbox, and Core
Modules

So far in this book, we have mostly looked at different techniques for creating
and enhancing modules. However, our focus has been on the smaller pieces of
the application.

In this chapter, we are going to take a holistic view of our application as a complete
functioning body. We will see how its various pieces can be put together to create
a robust and flexible ecosystem to deliver our ultimate goal, which is a working
Single-Page Application (SPA).

As you read through different sections of this chapter, keep in mind that all the
pieces of the application are designed to work together in concert, while still
adhering to the principles of maintainability and extensibility of a modular design.

In this chapter, we will cover:

• Base module and its design
• Sandbox and the principles behind sandboxing of our components
• Core and its related modules
• Components and how they are added to the application
• Plug-and-play, progressive enhancement, and graceful degradation in our

application

Note that we will not get too deep into the coding aspect of things here, since I
would really like you to focus on the architecture of the application, as opposed to
being distracted with the details of the implementation. As such, there is no project
code associated with this chapter of the book.

Base, Sandbox, and Core Modules

[122]

I should also mention that the architectural design concepts discussed in this chapter,
and the next, are based on the design principles that I was originally introduced to by
Nicholas C. Zakas, after watching one of his talks on the subject. He is one of my favorite
authors and speakers. While our implementation will slightly deviate from his, the
essence of our architecture will remain similar to his proposed architectural design.

Application architecture overview
To create a truly modular design for our application, we need to break it down
into smaller functional pieces, in such a way that each piece will specialize in and
be responsible for very specific tasks. This enables us to achieve the principle of
separation of concerns and responsibilities.

The following diagram provides a depiction of our overall application design:

Core

Base

Sub-Module

Sub-Module

Sub-Module Sub-Module

Sub-Module

Component
1

SandBox

Component
2

SandBox

Component
3

SandBox

As you can see, our application consists of four main pieces:

• Base
• Sandbox
• Core
• Component

Chapter 7

[123]

At the same time, each main piece may consist of other smaller pieces which are
packaged together to create the main piece.

Let's start by exploring each main piece of the application and looking at the specific
functionality that each piece provides.

For our purposes in this book, from this point forward, when I talk about
components, I'll be referring to modules that have user interface pieces (views)
which the user is able to interact with, such as the header component. However,
when I refer to modules I will be referring to functional modules that each main
piece may consist of, which do not have any views associated with them directly.

The definitions will become more clear as we move along but you may decide to
refer to such pieces differently in your own projects. This is fine, as long as the
architectural concepts behind them remain the same.

Also, from time to time, I will be referring to our modular design architecture as a
framework, which should be interpreted as all the various pieces of the application
together as a whole.

About the term framework
While I will be using the term framework at times, our
application is not meant to create what is generally known as a
framework. At least not in the same capacity that the term is used
to refer to frameworks in the likes of AngularJS or React.
Generally speaking, I think sometimes third-party frameworks
are overused and while they all provide some pros, there are also
cons associated with using any type of third party framework.
The purpose of this book is to show you how you can create
your own architectural design which allows you to easily create,
organize, and maintain your application's code base without the
need for a third party framework.
As such, I would like you to look at our implementation as an
architectural design concept as opposed to a framework. But if
you insist, you can call what we design and create here an ironic
framework. I say ironic, because it is really not a framework in
the traditional sense, as it does not impose a special syntax or a
slew of rules and regulations!
The best way to describe our implementation is perhaps by using
the term Client-side Modular Design (CMD), since the goal of
this architectural approach is to create a solid foundation and a
flexible ecosystem for our applications, as opposed to it being a
framework.

Base, Sandbox, and Core Modules

[124]

Base module
We will start our exploration of the design with the base module. As the name
implies, the base module provides the lowest level of functionality for our application.

This is where we import and leverage the functionality of third party libraries and
utilities. These libraries can consist of jQuery, Dojo, MooTools, and so on.

The main idea is that we can easily use the functionality provided by such libraries
without the need to create a tight dependency between our application and the
libraries used.

For instance, consider how we need to detect browser compatibility to attach events
to our elements on the page, as follows:

if (elem.addEventListener) {
 elem.addEventListener(event, callbackFunc);
} else if (elem.attachEvent) { // For IE 8 and earlier versions
 elem.attachEvent("on" + event, callbackFunc);
}

Whereras we could easily let jQuery take care of such intricacies by doing the following:

$(elem).on(event,callbackFunc);

Here, we are letting jQuery take care of the browser compatibility issues and we
can focus on other, more important things in our application. Another example is
adding animations to our elements only when jQuery is present. This approach
allows us to implement progressive enhancement and graceful degradation
techniques in our code.

We can also have both of such implementations in our code. This allows us to have a
fallback if jQuery has not been loaded properly.

Therefore, the preceding code can be written as follows:

if($) {
 $(elem).on(event,callbackFunc);

} else {
 if (elem.addEventListener) {
 elem.addEventListener(event, callbackFunc);
 } else if (elem.attachEvent) { // For IE 8
 and earlier versions
 elem.attachEvent("on" + event, callbackFunc);
 }
}

Chapter 7

[125]

Most of the time, it is best to leave low-level functionality such as browser
compatibility issues to third party libraries and focus on providing customized
functionality for our application in our own code.

Keep in mind that we are talking about third party libraries and utility packages
here and not third party frameworks, as one of the goals of our architecture is to
eliminate, or at least minimize, the need for third party frameworks.

Adding general-purpose libraries to the
base module
As mentioned, our base module loads and provides general-purpose libraries to
the core module of our application. This means that only the core is aware of what
base libraries are used in the code, as well as which particular functionality of such
libraries is being leveraged.

Depending on the design of our base module, the libraries are either loaded at
application start-up time or dynamically at a later time. The base module passes a
reference for each loaded and initialized library to the core module.

Since it is only the core module that is aware of what libraries are used in the
application and to what extend, if we ever decide to change our third party libraries
or how they are used in the application, it is only the core module that is affected and
no other pieces.

This means that all the other pieces and components of our application will continue
to work as they did before, regardless of the change in the third party libraries.
Implementing our application as such minimizes the impact of replacing or
removing the third party libraries on the application as a whole.

This also holds true when we import and use new libraries in order to add more
functionality to our application.

In the next chapter, we will have a closer look at how the base module is used to add
jQuery to our application's core module.

Base, Sandbox, and Core Modules

[126]

The following is a depiction of how third party libraries are provided to the core
module by our application's base module:

Core

jQuery Dojo Iodash

Base

Sandbox module
When we talk about a sandbox in our daily lives, we usually have a picture of a box
full of sand in our minds, where we allow the kids to play and make all the mess
they like - and hopefully only in that box.

In our modular architecture, we capitalize on the same concept and create spaces for
our components to play in and to be isolated from other pieces of the application.

By sandboxing our modules in such a way, we eliminate tight coupling among our
application components and the core module.

The sandbox is essentially a layer of abstraction as well as a thin interface between
our components and the other pieces of our application.

As the sandbox module is designed to be an interface and to provide communication
among our components and the rest of the application, it is considered a contract
and, as such, it should never change. This is so our components can be sure that they
can always count on a consistent layer of communication with the application as well
as a certain level of functionality provided by the core module.

That is not to say, we cannot add new methods or functionality to the sandbox; it
is only that we cannot change what is already there and that our components have
come to rely on.

Chapter 7

[127]

Sandbox module functionality
When our components are loaded in the application, either at application start-up time
or dynamically any time after, they are all given an instance of the sandbox module.

The sandbox module provides the following for our components:

• A consistent interface
• Security
• Communication
• Filtering

Each one of the services provided by the sandbox module is crucial to the modular
aspect of our implementation.

Let's explore each aspect in more detail.

Sandbox as a consistent interface
As mentioned, when every registered component is given an instance of the sandbox
module by the core module.

This instance of the sandbox then acts as an interface to the rest of the application,
which provides application-level functionality for the component.

When a component needs a particular functionality, it does not necessarily need
to implement it itself. This is true when the implementation of that functionality is
already available in the application.

For instance, to bind event handlers to elements, each component does not need to
provide its own implementation. Components can simply ask the sandbox module,
which in turn, asks the core module to bind a certain event handler to a particular
element on the page.

Of course, the components also do not have to worry about browser compatibility
issues related to event binding, as it is the job of the core module to take care of
such issues.

Since the sandbox instance is identical for every registered component, we can be
sure that any changes in the sandbox code is provided to all the components at
the same time. This means that the addition of new functionality, bug fixes, and
modifications in the sandbox module are done once and then propagated to all the
components that use the sandbox module, in a uniform and cohesive manner.

Base, Sandbox, and Core Modules

[128]

Note that any changes to the sandbox module should still honor the previous
contract between this module and the application's components.

Sandbox as a security layer
The components in our application only know about the sandbox module and are not
allowed (or able) to directly communicate with any other pieces of the application.

This means that the sandbox makes sure that protected areas of the framework are
not accessible by the components through its interface. This enables us to control the
type of operations that the components are permitted to perform, within the context
of the core and other modules of the application.

Sandbox as a communication layer
As the sandbox module is a thin layer of interface which provides the exposed
interface of the core module to the components, it is the only route of communication
between the components and the rest of the application.

It is also through the sandbox module that components can subscribe to and publish
custom events in the application.

Note that it is important for the components to only have one route of
communication with the rest of the application so we can preserve the integrity of
our modular design. If a component is able to directly communicate with another
component or other parts of the application, then it could be tightly coupled to such
pieces, and we certainly would like to avoid this type of tight coupling.

Sandbox as a filter
The design of the sandbox should be done in a way that not only will it provide the
functionality of the core module that we want to expose to the components, but it can
also do simple error checking for the calls made by the components to the core.

For instance, consider the following:

getElement : function(elementID){

 if(elementID && typeof elementID === "string"){
 return core.getElement(elementID);
 }else{
 core.log(3,"incorrect parameters passed
 in; from SandBox.getElement");
 }
}

Chapter 7

[129]

The preceding method has been provided to our components through the sandbox
module. This method does a simple parameter check to make sure that the
parameter, as well as the correct type of the parameter, has been passed to it by the
component before the sandbox module asks the core to do the work.

While the core module might have its own error checking, it is always a good idea to
do some error checking at the sandbox level before getting the core module involved.

Implementing multiple instances of the
sandbox module
You may be wondering at this point, why is it a better idea to use multiple instances
of the sandbox module (one for each component) as opposed to having all the
components use the same sandbox object as a singleton?

The short answer is: better isolation and performance. We need to explore that
answer a little further in the upcoming sections.

Advantages of multiple instances of the sandbox
Usually, a module provides its exposed functionality to the outside world through a
single common interface.

However, our implementation of the sandbox module is different. As mentioned
previously, we create multiple instances of the sandbox module and, to be more
precise, one instance per component.

The following summarizes the goals behind this design:

• Isolating sandbox instances from each other
• Creating a code execution context for each component
• Performance improvements

Isolating the sandbox instances from each other
In our analogy of a kid playing in a sandbox, I mentioned that this type of isolation
contains the possible mess created in the box. In just the same way, we would like
any possible damage to a sandbox module instance to be contained and isolated.

This would mean that, if one of our components does something undesirable which
could cause issues in its sandbox instance, such a mess would be contained within
that sandbox module instance. The adverse effects will only impact the functionality
of that component but no other sandbox instances, or any other components for that
matter.

Base, Sandbox, and Core Modules

[130]

It is very important for us to design our architecture in such a way which minimizes
the chances of complete application failure caused by an issue in one of the
components.

This allows for at least partial functionality of our application, which is probably a
much more acceptable outcome than a complete application failure.

For instance, the footer component in our application may stop working but the user
can still view the catalog of our images and add them to the favorites list.

Creating a code execution context
When a sandbox module is created, it sets a context object for its component.
Components can use this context object to easily refer to the correct execution context
when needed. This is probably better understood if we look at an example.

Consider the following code snippet from our application:

handleMainContainerClicked: function (e) {

 if (e.target != e.currentTarget) {

 e.preventDefault();
 e.stopPropagation();

 if (e.target.tagName.toUpperCase() === 'IMG') {
 sandBox.contextObj.handleImageClick(e.target);

 } else if (e.target.tagName.toUpperCase() === 'A') {
 sandBox.contextObj.handelFavLinkClick(e.target);
 }

 }
}

The function above is implemented in the content component of our application.
Inside this function, which is the click event handler for some of the elements on the
page, we need to call other related functions in the content component.

We can easily do that by using the execution context that we set on the sandbox
instance for this component when we first initialize the component.

This is done as follows:

sandBox.contextObj = this;

Chapter 7

[131]

In the code snippet, this refers to the content component of our application. Thus,
when we need to execute any functions in the context of our content component, we
can just refer to the correct context, as follows:

sandBox.contextObj.handelFavLinkClick(e.target);

If this does not make a lot of sense to you right now, do not be alarmed. I will
explain this further in the next chapter where we'll have a chance to look at it's full
implementation in the code.

For now, the only thing that you need to keep in mind is that we can use each
instance of the sandbox module to preserve a reference to the component that the
sandbox instance belongs to. This allows us to easily access the execution context of
that component.

Performance improvements
When we create an instance of the sandbox for each component, we also assign a
reference on the sandbox instance to the DOM element in which the component's
view resides. This allows us to make our DOM manipulation within that container a
lot more efficiently, since we do not need to traverse the whole DOM tree to find the
DOM element of interest within the container of the component's view.

Have a look at the following code snippet:

getElementInContext : function(elementID){

 if(elementID && typeof elementID === "string"){
 return core.getChildOfParentByID(
 containerElemContext,elementID);

 }else{

 core.log(3,"incorrect parameters
 passed in; from SandBox.getElementInContext");
 }

}

In this snippet, we are trying to find a child element of the container element where
the component's view has been rendered.

When the component was registered with the core, the core created an instance of
the sandbox and returned a reference to the component's container element with the
sandbox instance.

Base, Sandbox, and Core Modules

[132]

For instance, after the header component of our application is created, all the
header-related DOM elements reside inside a main div element container that
hosts them. The header component's sandbox instance holds a reference to this
div container.

When the header component needs access to any DOM elements related to its view,
it will only need to look for the desired element inside of its container div element as
opposed to traversing the whole DOM tree to find the element.

This makes finding the desired element much quicker as we don't need to search the
entire DOM looking for it.

If you are not completely clear on how this works, we will cover it again in the next
chapter when we examine the code in more depth.

For now, just be mindful of the fact that the sandbox instance allows us to have quick
and direct access to the DOM element that the component renders in, which in turn
allows for much more optimized DOM manipulation tasks related to the component.

Core module
The core module is really the brain of our application. It is where the application's
heavy lifting is done and the real magic happens.

The core module is responsible for implementing application-level business logic as
well as providing bridges among components when there is a need for components
to communicate with each other. Of course, while still preserving the loose coupling
nature of the application.

The core module also leverages the functionality provided by the third party libraries,
which are loaded by the base module, to create a cohesive functional application.

If you are familiar with the architectural design pattern known as Module-View-
Controller (MVC), the core module is the controller piece of this design pattern in
our application.

We can summarize the role of core module as the following:

• Acting as the controller for the application
• Providing communication bridges among modularized components
• Initializing and destroying components
• Implementing plug-and-play capability for the components
• Providing a centralized method of handling errors

Chapter 7

[133]

• Providing application-level extensibility
• Leveraging third party libraries' functionality

We will examine all these aspects very shortly but before doing so, let's talk about
how the core is constructed in our application.

Core module construction approach
There are different approaches to building the core module, but one of the best
approaches is to build it in a modularized fashion.

We can start the implementation by building a main core module and then augment
it using techniques such as loose and tight augmentation, which we have already
covered in this book. However, adding most of the functionality to the core module
using sub-modules allows for a better separation of the logic in the code.

In the implementation of our main application for this book, we will be using all the
above techniques to build our core module.

The next chapter will examine the implementation of the core in depth, but for now,
we'll look at a couple of things related to its implementation.

Consider the following:

var ImagesInc_Core = (function(Core){

 var $ = Core.jQuery;
 var insertHTMLTxt = function(containerID,newStructure){
 var containerElem;
 if(typeof containerID === 'string'){

 containerElem = Core.getElement(containerID);
 }else if(typeof containerID === 'object'){

 containerElem = containerID;
 }
 Core.setInnerHTML(containerElem,newStructure);
 };
...

return Core;

})(ImagesInc_Core); // using tight augmentation

Base, Sandbox, and Core Modules

[134]

In the preceding code, we are using tight augmentation to add DOM-related
functionality to the core module. We can also add functionality to the core by
attaching a sub-module to it, as shown here:

// using simple sub-module augmentation
ImagesInc_Core.LoggingHandler = (function(){

 var self = {}, messageParam, colorParam;

 self.logMessage = function(severity, message,color) {
 // if no severity number was possed in,
 then give the message and warn the user
 if(typeof severity === 'string'){
 message = severity;
 severity = 2;
 }

...

return {
 logMessage: self.logMessage,
 initialize: self.initialize
 };

})();

As you can see, we are augmenting the core module by attaching a self-contained
sub-module, which is added as a new property to the core module object.

Augmenting the core module using sub-modules, is similar to building a play house
using Lego blocks as separate pieces are attached together to create the whole structure.

This would mean that not only the application main pieces (such as components
and sandbox) are built as modules, but also the core module itself is built based on
smaller modules.

This allows us to easily extend our core module while providing us with the ability
to remove or replace each sub-module without affecting the other pieces of the core
module.

Chapter 7

[135]

We will examine this modular implementation of the core module quite a bit further,
when we'll have a look under the hood in the next chapter. Have a look at the
following image to see all the pieces of the core module in our final application. This
image depicts how the core module consists of separate self-contained sub-modules:

Of course, at the time of deployment, we can combine and minify all of these files
(sub-modules) into one file but during development, this separation of sub-modules
provides a good visual representation of all the pieces of the core module.

Now that we have had a good overview of how the core module is built, let's
examine the functionality that this module provides for us.

Core module functionality
Core module plays different vital roles in our application, and provides essential
services for all the other modules. It is important to note that while the core
module consists of many pieces itself, it acts as a uniform and cohesive piece while
providing the following functionality for the application.

Acting as the controller
The core module provides application-level functionality for all the components
in the application. For instance, event binding and unbinding happen in the core
module and the components only need to ask the core to take care of this task for
them.

Consider the following code snippet:

if(elem.addEventListener) {
 elem.addEventListener(event, callbackFunc);
 } else if(elem.attachEvent) {

Base, Sandbox, and Core Modules

[136]

 // For IE 8 and earlier versions
 elem.attachEvent("on" + event, callbackFunc);
 }
}

This code is implemented in the core module and all the components in the
application call this method (through their instance of the sandbox module) to bind
an event handler to an element.

Another example can be when a component would need to make an AJAX call to
the server. It is the core module that would make the call instead to the server and
would return the result to the component and/or would take an action based on the
result returned, such as logging an error when the AJAX call fails.

We can also mention cookie and local storage-related functionality in the application
as some of the other application-level functionality the core provides to all the
registered components.

Keep in mind that the implementation should be designed in a way that
component-specific functionality that only the component cares about should
happen at the component level and that the application-level functionality should
take place at the core module.

Each component, in a sense, implements its own MVC or MV* design at the
component level, which is separate from the application-level implementation. This
point will become more clear to you when we look at implementation code in the
next chapter.

Providing communication bridges
As you may recall, one of the main goals of our modular architecture was to provide
loose coupling among our components. This means that none of the components in
our application knows about any other component, nor are they dependent on any
other component.

However, there are times when components need to communicate with each other,
or an event or action in one component should cause a change in another component,
while the components have no knowledge of each other.

To provide such functionality the core implements a variation to the observer pattern
called the mediator pattern.

Using the mediator pattern, our application's components can register for and
publish events. However, this is done through an abstraction layer.

Chapter 7

[137]

The following is a depiction of how the mediator pattern is implemented:

The core module in our application acts as the mediator, which enables the
components (modules) for subscribe to and publish events without knowing
about each other, thus still adhering to the principle of loose coupling among our
components and modules.

Consider the following code snippet:

sandBox.publishCustomEvent({
 type: 'support-Clicked',
 data: "support"
});

Here, the footer component in our application is publishing a custom event,
support-Clicked, through its instance of the sandbox module. Beyond that, it has
no idea what other pieces of the application could be listening for this event and
what actions they would take based on this event.

On the other hand, the following snippet shows that our NotificationHandler
module is listening to this event and will take action when this event is published,
as follows:

ImagesInc_Core.registerForCustomEvents("Notification",{
 'support-Clicked':this.handleSupportClick
}

The core module is responsible for notifying all the registered components and
modules that a certain event has taken place if they have registered for that
particular event.

Base, Sandbox, and Core Modules

[138]

Initializing and destroying components
In our architectural design, we can load and unload components (modules) both at
the start-up phase of the application as well as any time after.

This is pretty robust, since it allows us to load what we need when we need it, which
helps to keep the consumption of the resources on the device to a minimum, as well
as keeping the application very light and responsive. This could be particularly
important for mobile devices.

When a component is loaded (either at application start-up or any other time), it first
registers itself with the core module and then the core module calls the init method
of the component when it needs to be initialized.

Consider the following code snippet and see how this is done:

ImagesInc_Core.registerComponent("footerContainer",
 "footer", function(sandBox){

 return {

 init: function(){
 try{
 sandBox.updateElement("footerContainer",
 ImagesInc_GlobalData.getFooterHTMLTxt());
 this.registerForEvents();
 sandBox.contextObj = this;
 sandBox.logMessage(1,'Footer component
 has been initialized...', 'blue');

 }catch(e){
 sandBox.logMessage(3,'Footer component has NOT
 been initialized correctly --> ' + e.message);
 }
 },

As you can see in the preceding code, each component upon loading calls the
registerComponent method of the core module. Note that the core module is
known as ImagesInc_Core to other application pieces.

The component sends the ID of its container (footerContainer for instance) as
well as its own ID (shown as footer in the preceding code) as parameters to the
registerComponent method of the core module.

Chapter 7

[139]

It also sends a reference to the function that the core module needs to call to create an
instance of the component. This function is then called by the core module with an
instance of the sandbox module, which is an interface for the component to use for
interacting with the application from this point forward.

Here is how registration of the component is done in the core module:

mainCore.registerComponent = function(containerID,
 componentID, createFunc){
...
if(createFunc && typeof createFunc === 'function'){
 componentObj = createFunc(new
 SandBox(this,containerElem, componentID));
 if (componentObj.init && typeof componentObj.init ===
 'function' && componentObj.destroy && typeof
 componentObj.destroy === 'function') {

 componentObj.id = componentID;
 registeredComponents.push(componentObj);
 }
...
};

As you can see, the core module first checks to see if the component has the required
methods, init and destroy, and if so, the creator function (createFunc) on the
component is called to create an instance of the component.

You can think of this phase as the hand-shake phase between the component and
the core module specifically, as well as the hand-shake of the component with the
application as a whole.

As mentioned, the component is also required to have a destroy method, which
allows the core module to either disable the component for event handling and/or to
completely remove the component from the application.

At the start-up phase of application, the core module goes through all the registered
components and calls the init method on all of them, as shown:

for(var i=0; i < registeredComponents.length; i++){

 registeredComponents[i].init();
}

Base, Sandbox, and Core Modules

[140]

We use a similar approach to destroy (remove) all the registered components from
the application, as shown:

for(var i=lastIndex; i >= 0 ; i--){

 registeredComponents[i].destroy(removeFromDom);
}

We will look at the details of these operations in the next chapter and will examine
the code more closely then. The takeaway here is that the core module handles the
initialization and destruction of all the components in the application, either as a
collection or on individual basis.

Providing plug-and-play capability
As we mentioned previously, components can be loaded and added to the
application at any time while the application is loaded in the browser.

Let's have a look at how a component is loaded dynamically and how it becomes
part of the application.

Dynamic loading of the components is done by leveraging a mechanism which first
checks to see if the component is already loaded in the cache, and if not, finding its
object definition in either the local storage or in the PageDefinitions.js file and
then subsequently loading it.

The PageDefinitions.js is the file that holds object definitions (as JavaScript
objects) for all the components that can be loaded dynamically in the application, at
any time other than the start-up phase.

We can also keep resource (asset) information related to any component in this file if
we desire to do so. Generally speaking, this file is mostly used to find the location of
our dynamic assets.

For instance, in our application, we will be keeping information related to the
Favorites page and the location of its CSS file in PageDefinitions.js. This
information will be consumed by the content component when the user navigates
to this page.

Chapter 7

[141]

Have a look at the following diagram to see an overview of the dynamic
component-loading mechanism in our application:

Load Component Render Component

Get location and name
of component file

Load the component
from the server

Was object definition for
component found?

Load Page Definitions
file from the server

Is component in cache?

Yes

Yes

Component loads and
registers with the Core

No

No

As the flow diagram shows, when there is a need for a component to be rendered
dynamically in the application, the core module checks to see if the component object
is already present in the cache.

If the component object is already present in the cache, then there is no need to do
anything else but to render its view.

Base, Sandbox, and Core Modules

[142]

On the other hand, if the component object is not present, the core module looks
for the component's object definition in the local storage first. This object definition
has a property that holds the location (path) of the component's JavaScript file on the
server.

Note that we are using the local storage as the primary storage facility for such
object definitions as opposed to keeping them in the cache. This is purely to keep
the footprint of the application as small as possible in the browser. Usage of the
local storage is especially important if we have quite a few object definitions for the
components, since such, definitions could get quite large and consume a considerable
amount of memory.

Admittedly, in our application there is no real need to use local storage, since we
have only one dynamically loading component. But I'm using the local storage to
show you how it can be leveraged if you decide to use this mechanism in your
future applications.

The important point is that when the core finds the location of the component's
file, it will make a request to the server for the .js (and possibly .css) file(s) of
the component.

Once the required .js file for the component is loaded and parsed, then the
component registers itself with the core and, as with any other component in the
application, it is given an instance of the sandbox module.

As you can imagine, this approach provides us with a very robust way to
dynamically load and activate our application's components, which essentially
encompasses the plug-and-play capabilities of the application.

The mechanism is a bit more involved than what is explained here, but this brief
description should provide a good overview of how things work behind the
scenes. In the next chapter, we will have a closer look at the implementation of this
mechanism and I'm sure all the details will become more clear to you in that chapter.

Providing a centralized approach to
handling errors
The core module implements a centralized approach to logging all types of
messages. This frees the application modules and components from implementing
such functionality themselves. It also provides enhanced capabilities for the logging
mechanism that all components can leverage in a uniform way.

Note that any future enhancements that we may make to our logging mechanism will
be done in one place and will be available to all the modules at the same time.

Chapter 7

[143]

For instance, imagine that we would like all the error messages in the application to
be logged on the server. This could mean that for each error, an AJAX call needs to
be made from the client to the server with the related information.

If each module wanted to do that task itself, we would have to implement such
functionality for each module separately. Of course, it makes more sense to
implement this functionality once and then provide it to all of the application
modules in a cohesive manner.

Have a look at the following screenshot, which displays our application messages
being logged in the Chrome debugger tool when the application is in the debug mode:

As you can see, when the application is loaded, all the modules as well as all the
components in the application are initialized and the related messages are displayed.

All that the components need to do is call the sandbox module with the message, and
the sandbox module in turn will send the message to the core module. In the case of
other core modules, they can directly use the core module's logging mechanism.

Here is a code snippet which shows how the footer component logs its initialization
message using the core module's logging mechanism:

sandBox.logMessage(1,'Footer component has
 been initialized...', 'blue');

To log an error message, the footer component only needs to do the following:

sandBox.logMessage(3,'Footer component has NOT been initialized
correctly --> ' + e.message);

This is a much simpler and better approach than the footer component implementing
its own error-handling mechanism.

Base, Sandbox, and Core Modules

[144]

If we decide to send all the error messages to the server, the module, will still make
the same call to the sandbox module and in turn to the core module. It will be the
core module that will be responsible for sending the error message to the server.

The following code snippet shows how one of the core sub-modules sends its
initialization message to the core module. This is similar to how the components
log their message but with one difference.

ImagesInc_Core.log(1,"Utilities Module has
 been initialized...", "blue");

The difference is that the sub-module directly sends its message to the core module
and not through a sandbox module instance. This is, of course, because the sub-module
is part of the core module and does not have an instance of the sandbox module.

Also, the sandbox module itself uses the same logging facility provided by the core
module to log its errors, as shown:

Core.log(3,"incorrect parameters passed in; from
 SandBox.getElement ");

The following image shows how the error message is displayed in the debugger:

We will have a more in-depth look at how the logging mechanism has been
implemented in our application, and how it is designed to be a sub-module of the
core module, in the next chapter.

Providing application-level extensibility
From the beginning, we designed our application based on modular architecture.
One of the advantages that our modular architecture provides is the ability to easily
extend our application's functionality and capabilities when needed.

As you saw, the functionality of our application was enhanced using various
techniques, such as loose augmentation, tight augmentation, and sub-modules.

While our application might provide quite a bit of functionality, it is a reasonable to
assume that more features and capabilities will be needed in the future.

For instance, imagine that one or more of our future components need to do
form field validation. This functionality can be easily added to our application by
extending the core module and then providing the functionality to our components.

Chapter 7

[145]

The core module can provide form field validation by either importing a validation
library through the base module or by implementing the functionality itself. This
new functionality will then be provided to all the registered components through the
sandbox module and all the components can use it as needed.

In fact, our components would not even know who has provided this new functionality
and how it works behind the scenes. All they need to know is that the functionality is
available to them and they can use it to accomplish their validation tasks.

Being able to provide application-level extensibility is one of the key features of
our modular design and one of the most important tasks that the core module is
responsible for.

Leveraging third party libraries
We briefly talked about this responsibility of the core module before. As mentioned,
the core module is designed to ask for third party libraries from the base module.
These libraries are used by the core module to provide application-level functionality
for other pieces of the application.

The import of such libraries usually happens at the application start-up time, but it
does not have to.

As you saw previously in this chapter, our application does have the capability to
load files dynamically from the server. It is quite possible that while the application
is running, based on certain application needs or certain user interactions with the
application, we need to load a third party library dynamically.

Most of the time, we would use the dynamic loading of a third party library when
the library is not needed for most of the functionality of our application. This
allows us to keep the foot print of our application small, which is an important
consideration on mobile devices.

In the application for this book, we do not use such dynamic loading of third party
libraries. However, if at any point in the future you decide to leverage this capability,
all the hooks are available for it in the code.

Let's have a look at how the core module uses the base module to import the jQuery
library into our application.

Consider the following:

(function Core_initialize(){

 mainCore.debug = true;

Base, Sandbox, and Core Modules

[146]

 try{
 // get jQuery from the base module loader
 mainCore.jQuery = $ = ImagesInc_Base.getBaseModule();

 }catch(e){

 if(mainCore.debug){
 console.error('Base Module has
 not been defined!!!');
 };
 };

 if(mainCore.debug){
 console.log("%c Core Module has been initialized...",
"color:blue");
 };

})();

In the preceding code snippet, during the start-up phase of the application, our core
module (MainCore module of the core module) asks the base module for jQuery.

This is done as shown here:

mainCore.jQuery = $ = ImagesInc_Base.getBaseModule();

Notice that we have wrapped this call in a try/catch statement to capture any errors
that could happen during this operation.

Let's also have a look at how the base module provides a reference for jQuery to the
core module.

if(typeof jQuery !== 'undefined'){
 return jQuery;
}else{
 return null;
}

As you can see, since jQuery loads as a global object in the application, the base
module simply returns a reference to this global object to the core module. From
that point forward, jQuery is used by the core module as a sub-module to deliver
application-level functionality.

Chapter 7

[147]

The following code snippet shows an example of how jQuery is used in the
application to provide the required functionality:

var ImagesInc_Core = (function(Core){
 var $ = Core.jQuery;
 Core.makeAjaxCall = function(url, theQuery, method, handler){

 if($ && Core.jQueryAjaxEngine &&
 Core.jQueryAjaxEngine.makeAjaxCall){
 Core.jQueryAjaxEngine.makeAjaxCall(url,
 theQuery, method, handler);

 }else{
 Core.log(3, "Cannot make Ajax call!; from
 makeAjaxCall")
 }
 };
…
})(ImagesInc_Core); // using tight augmentation

Just in the same way, other third party libraries can be loaded into the application at
the start-up phase to enhance our application's functionality.

Note that none of the other modules or components are aware of the third party
libraries or how they are leveraged. It is only the core module that is aware of such
libraries, and it is the only module to provide the third party library functionality to
other application modules and components.

The following image shows how third party libraries can be placed in our
application's folder structure:

Base, Sandbox, and Core Modules

[148]

Components
The last main piece of our application design is related to components. In this
section, we will cover how components are built and plugged into our application.

Remember that we considered components as pieces of the application that have
views. By views, I am referring to the pieces that have HTML elements associated
with them which are rendered in the browser and the users can interact with them
directly.

Components can be as simple as a layover box. Such simple components can be
rendered as part of another component or as a stand-alone component on their own.

Most of the time, our components are independent modules with their own MVC
or MV* architecture, which are attached to the application and use the facilities and
functionality that the rest of the application provides for them.

In our design, we have created three main components and a widget named
NotificationWidget. This widget is also a component but it is loaded and
viewed based on the user's interaction with another component. In our application,
NotificationWidget is launched when the user clicks on the Support link in
the footer component. Since this widget can potentially be launched by other
components too, I am tagging it as a widget but for all practical intents and purposes,
it is also a component with its own MV* implementation.

Components can have very sophisticated business logic implemented in their
controller, or have a very simple controller with very little functionality.

In our application, the content component is an example of a component with a fairly
involved controller logic, and the footer stands as a component with a relatively
simple controller.

Also remember that the only bridge or point of connection between a component and
the rest of the application is via an instance of the sandbox which was passed to it
when the component registered itself with the core.

We previously talked about how, in our architecture, components can be loaded
either at the start-up phase of the application or dynamically at any time after that.
In our implementation, header, footer, and the content components are loaded at the
start-up phase and NotificationWidget is loaded dynamically, when required.

Let's have a look at one of our simpler components, the footer, and see how it is
implemented.

Chapter 7

[149]

Components required methods
In our design, there are two required methods that every component needs to
implement in order to register and connect with the core module and the rest of
the application.

These two required methods are called init and the destroy methods. The init
method is called by the core module to start the initialization of the component. On
the other hand, the destroy method is called by the core module to either disable or
completely remove the component from the application.

Consider the implementation below:

init: function(){
 try{
 sandBox.updateElement("footerContainer",
 ImagesInc_GlobalData.getFooterHTMLTxt());
 this.registerForEvents();
 sandBox.contextObj = this;
 sandBox.logMessage(1,'Footer component has
 been initialized...', 'blue');

 }catch(e){
 sandBox.logMessage(3,'Footer component has NOT
 been initialized correctly --> ' + e.message);
 }
},

 destroy: function(removeComponent){

 sandBox.contextObj.unregisterFromEvents();
 sandBox.unregisterAllCustomEvents();

 if(removeComponent){
 sandBox.removeComponent("footerContainer");
 }
 sandBox.logMessage(1,'Footer component has been
 destroyed...', "blue");
 }

As you can see, in the init method of the footer component, the required HTML
string for the view is fetched from the GlobalData object. This object is an
application-level object (the application model) which holds application-level
data. The HTML string is then passed to the core module via the sandbox module
instance.

Base, Sandbox, and Core Modules

[150]

Note that the core module is responsible for rendering HTML elements, in this case
the footer's view, on the page.

This is done in the following lines of code in the init method:

sandBox.updateElement("footerContainer", ImagesInc_GlobalData.
getFooterHTMLTxt());

For this particular component, we call for the rendering of the view in this method.
However, the rendering does not always have to be done in the init method of a
component. For instance, for NotificationWidget component, the rendering is
done in a different method which is called at some later time by the application.
Consequently, the init method of NotificationWidget is kept very simple, as
follows:

init: function(){
 try{
 sandBox.contextObj = this;
 sandBox.logMessage(1,'Notification Widget component
has been initialized...', 'blue');

 }catch(e){
 sandBox.logMessage(3,'Notification Widget has NOT been
initialized correctly --> ' + e.message);
 }
 }

Binding events to the components elements
In init method of the footer component, we also register the HTML elements related
to its view for handling events. This is done by calling registerForEvents method
of the component. In registerForEvents method, the related event handler is
bound to the support link, as follows:

registerForEvents : function(){
 …...................
 sandBox.addEventHandlerToElement("support","click", this.
handleSupportClick);

}

As you can see, the actual binding for the event is done in the core module.

Chapter 7

[151]

I previously mentioned that our components are loosely coupled with the other
pieces of the application by custom events using the mediator pattern. Let's have a
quick look at that.

Consider the following code snippet:

handleSupportClick : function(e){

 sandBox.publishCustomEvent({
 type: 'support-Clicked',
 data: "support"
 });

 e.preventDefault();
 e.stopPropagation();
}

As you can see, the footer component publishes a custom event when the Support
link is clicked. Then, all the other pieces of the application that have registered for
this custom event will be notified by the core module that this event has occurred.
We will talk about this mechanism more in the next chapter.

Component design considerations
In this chapter, we did not examine the implementation details of the components
too closely, as we will have a more in-depth look at them in the next chapter.
However, I would like you to consider a few conceptual aspects of the components.

First of all, all the components are loosely coupled with the application. The only
connection between them and the rest of the application is through an instance of the
Sandbox, which was passed to them during the registration phase.

Second, all the components are responsible for implementing their own controllers.
The other application pieces do not get involved with the functionality, which is
specific to an individual component.

The job of the application as a whole, and the core module in particular, is to create
a robust ecosystem in which the components can leverage the application-level
functionality that has been implemented. Therefore, the components do not need
to implement such functionality themselves. This approach allows us to create a
cohesive and loosely coupled application that can be easily maintained and extended
as the need arises.

Base, Sandbox, and Core Modules

[152]

Note that each Component is a self-contained piece of the application and the core or
any other pieces of the application are not aware of nor are dependent on the internal
implementation of the Component. This means that components are free to decide
on their own implementation.

In this manner, we can create a good level of separation of concerns and
responsibilities throughout all the application pieces.

When a component needs to modify the DOM, it should do so by leveraging the
functionality that the core module provides. Therefore the component does not have
to implement this functionality itself. Also, by using the core module, we are able to
prevent other pieces of the application from accidentally causing any conflicts at the
same DOM element level, thus preventing collisions and application-level issues.

The proper approach in most cases is that components only modify the DOM
elements (through the core module) in their own container and not beyond that.

Application architectural considerations
Let's review the important points that we have discussed about our modular
architecture in this chapter and see how they relate to various pieces of our
application, as follows:

• All third party libraries are imported into the application through the base
module

• The core module and the base module are the only pieces of the application
that know about the loaded third party libraries

• All browser compatibility issues are dealt with in the core module by
leveraging the functionality of the third party libraries

• Every component in the application gets an instance of the sandbox module
• The sandbox only knows about the core and no other pieces of the

application
• No pieces of the application know about the internal implementation of

other pieces
• Components can be added, modified, or removed from the application

without affecting the application as a whole
• Components can only call their own methods and the methods provided to

them through their instance of the sandbox module

Chapter 7

[153]

• Components cannot access DOM elements outside of their own container
• Components should not create global objects
• Each module and component only does limited tasks and only things which

are directly related to its own functionality
• All the components in the application are loosely coupled with the rest

of the application
• Components can only communicate with other components and other pieces

of the application using a publish-subscribe model (the mediator pattern)
and their sandbox instance, thus preserving the loose coupling architecture

• Each component has a very limited understanding of the application, and
that is through the instance of the sandbox module which was assigned to it
during the registration phase of the component with the application

The following can be considered as the advantages that modular architecture
provides for us:

• Once the modular architecture ecosystem has been developed, it can be used
for many applications; therefore, we can code once and use many times

• Each piece of the application can be tested separately
• Each piece of the application can be implemented by different people in a

modularized fashion
• Third party external dependencies can be controlled and managed by the

core module
• Modules and components can be replaced, modified, or removed without

affecting the application as a whole
• Components and modules can be loaded dynamically and as needed after

the application start-up phase

I hope you view the points above as important takeaways from this chapter and will
keep them in mind as we move forward to a more in-depth look at the application's
implementation in the next chapter.

Base, Sandbox, and Core Modules

[154]

Summary
As was noted in the beginning of this chapter, we had a good overview of the
architectural concepts related to the modular implementation of our application.

We discussed the main pieces of the application and saw how they come together to
create a cohesive ecosystem.

We also examined the specific roles that the pieces play in the overall application
design and looked at how we can create a good separation of responsibilities and
concerns among our modules and components.

One of the important aspects that we focused on was to loosely couple our various
application pieces together, which allows for ease of maintainability as well as
future extensibility.

While some application code was shown in the chapter, we did not get deeply
involved in analyzing the code and the application implementation. This is exactly
what we will cover in the next chapter, where we will have a closer look at how
things are done under the hood.

[155]

Application Implementation –
Putting It All Together

After discussing the architectural concepts of our modular design in the previous
chapter, it is time for us to look at the actual implementation.

The goal of this chapter is to examine the code and see how all the pieces fit and
work together in a real application.

While we will not discuss every aspect of the code, each main piece will be broken
down into smaller pieces, and most of the details will be explained.

I highly recommend that you download the project code related to this chapter from
the site accompanying this book and follow along as we go through the finer points
of the code. I am using different techniques at different parts of the code, which at
first glance, might look inconsistent. However, this is done intentionally so that you
can see how different techniques can be applied as needed, in different contexts.

Also, keep in mind that many aspects of the application can be improved upon as
the focus has been on creating a Proof Of Concept (POC) application as opposed to
production quality code. You will see how our modular approach allows us to create
an easily maintainable, extensible, and robust application.

In this chapter, we will:

• Look at the main modules in the application
• Examine how components in the application have been constructed
• Discuss the overall architecture of the application
• Look at our publish-subscribe implementation, which provides loose

coupling among our modules and components
• Implement a simple client-side router

Application Implementation – Putting It All Together

[156]

But before examining the implementation, let's have a look at the final view of
our application.

The user's view of our application
If you load index.html file of our project using an IDE which has a built-in web
server, you will see the following main page in the browser. This file resides at the
root of the application folder.

As you may have noticed, I have made improvements to the look and feel of the
application, in comparison to what we had in the previous chapters. I have also
done some re-factoring of the code in the project.

Chapter 8

[157]

I mentioned previously that our application is somewhat responsive based on the
browser's view-port. The following screenshot shows the application's
index.html page in the Chrome Developer Tools emulator (Ctrl + Shift + M in
Windows), simulating its rendering in an Apple iPad:

Application Implementation – Putting It All Together

[158]

Application functionality
As you may recall, our application was intended to be an image gallery-type
application which displays a list of images. Users are able to interact with the
application in a variety of different ways. While the application might seem very
simple from a user's point of view, it is designed from the ground up, to be easily
extensible, so more functionality can be added to it as needed.

Let's consider the various aspects of our application's functionality.

Index page
The main page of the application (index.html) consists of three main components:
header, footer, and content.

These components build the header, footer, and content sections (page fragments) of
the main page respectively, as shown in the previous screenshot.

Since we designed our application as a Single Page Application (SPA), navigation to
different pages of the application only updates the view of the content area.

The footer and header sections of the application are rendered only once, and that is
at the initial load time of index.html. The main advantage of our SPA design is that
there is no need to fully re-render the page every time different pages are viewed.
Therefore, there is no flickering of the page in the browser.

In the main page, users are able to see the full catalog of all the images available.
By clicking on an image, the user can see its full-size. Images can also be added to,
or removed from, the list of favorite images when the user clicks on the related link
below each image.

Users are able to interact with the header and footer of the application too, even
though, for our POC, not all the links in the footer and header are activated.

Image page
When a user clicks on an image, the view of the content area of the application is
changed to show the image in full view, as shown:

Chapter 8

[159]

If you look at the address bar of the browser, the URL of the page changes when an
image is clicked to reflect the ID of the image. For the preceding image, the URL of
the page will be similar to:

http://127.0.0.1:49202/Image_9.jpg

This is the URL of your local server along with the image ID.

Favorites page
In the main page of our application, a user can click on the link at the bottom of each
image to add the image to the list of his/her favorite images, as shown:

Application Implementation – Putting It All Together

[160]

Once Add to Favorites link has been clicked, the text of the link changes to Remove
from Favorites, which enables the user to remove the image from the list of
favorite images.

Users can also view all of their favorite images by clicking the Favorites link in
the header section of the page; which takes the user to the Favorites page of the
application, as displayed:

Support widget
When a user clicks on the Support link in the footer section of the application, a
dialog box will be displayed with information regarding the site's catalog.

Chapter 8

[161]

This widget (the dialogue box) has been designed to be dynamically loaded, and
rendered on the page, but only when the Support link is clicked. This is an example
of how components can be loaded and rendered dynamically in the application, as
needed. This allows us to keep the weight of the application in the browser light and
minimize its footprint.

The design of this widget also demonstrates the concept of plug-and-play in respect
to dynamic components in the application.

The following screenshot shows how this widget is displayed in the browser:

Now that we have had a look at the appearance of the application, it is time to
examine the mechanics of its implementation and see how things are done under-
the-hood.

Application Implementation – Putting It All Together

[162]

Application implementation
From the beginning, our intent in the design of our application was to create a
modularized ecosystem in which different pieces of the code (modules) would be
joined together to create a fully functional application. To that end, our code has
been structured as displayed in the following screenshot:

As you can see, our application has been organized into three main folders:
css which hosts all of our styling files, Images which stores all the images in
the application's catalog; and js, which contains all the JavaScript code for our
application. As this structure is only one approach to organizing the application's
code, you may decide to organize the code differently.

Under js folder, we have organized our JavaScript files further into three main sub-
folders; Components which contains the files related to modules that have views
associated with them, Modules which contains our modules for the controller and
Model of the application, and Widgets which hosts files related to components that
are loaded and rendered dynamically in our application.

Our Modules folder is further broken down into five sub-folders; Base which
contains our third-party dependencies and the base module, Core which hosts the
controller's code (modules) for our application, and GlobalData which holds our
application's model files.

Chapter 8

[163]

The other two sub-folders, SandBox and PageDefinitions contain the sandbox
module and object definitions file for our dynamically loading components,
respectively.

We will examine the code in most of the files of our sub-folders in the following
sections.

Loading our module files in index.html
Before we start looking at our JavaScript code and modules, let's have a closer look at
index.html file and see how the application modules are loaded in the browser.

Our index.html page is designed in such a way that it only provides the bare
minimum skeleton for our application's main page, and all the other pieces (header,
footer, and content) are built dynamically when the page is loaded.

Generally speaking, there are instances when it makes more sense to build some of
the pieces of the application's pages on the server before sending them to the client,
since this implementation could provide better performance at times.

In our approach here, we are building all the pieces of our application's pages on the
client. This is so we can examine and apply different concepts of our application's
design a little easier.

The skeleton of our index.html file consists of three main containers, as follows:

<header id="headerContainer" role="banner" itemscope
 itemtype="https://schema.org/WPHeader"
 class="headerContainerClass">
</header>

<main id="mainPageContainer" role="main" class="clearfix
 mainPageContainerClass">
</main>

<div id="footerParentContainer" class="footerContainerClass" >
 <div id="footerContainer"
 class="footerlinksContainerClass">
 </div>
</div>

As you can see, we have our header container, which hosts the header component
of our application, the main container, which hosts the content component of our
application and a div, which is the container for our footer component.

Application Implementation – Putting It All Together

[164]

These are the pieces (containers) in our index.html page which are passed to our
components so they can render themselves inside of them.

Just before the closing tag for the page's body element, we have included the
<script> tags which load the scripts for our application. Let's have a look:

As you can see, quite a few script files need to be loaded. We can improve on this
by combining (and minifying) some of the files together, as well as using formats
such as Asynchronous Module Definition (AMD) in conjunction with libraries
like Require.js to load our files. For now however, for the sake of clarity, we leave
things as they are.

In Chapter 10, Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules of
this book, we will discuss how we can use AMD format to combine and load our
application's required files in a more optimized way.

The following script has also been implemented in our index.html file, which is
responsible for starting up the application.

Chapter 8

[165]

We will discuss how the start-up of the application takes place shortly. Notice that
we initialize all the modules first, then the components, and at the end, we pass the
URL of the page to handlePageChange method of ImagesInc_Core module. This is
done, so we can use the URL of the page in our application's router, which will be
examined in depth shortly.

I emphasize the point that as you are reading this chapter, you should probably load
the related code into your IDE so you can easily follow along.

Base module implementation
Let's start the exploration of our application's modules with the base module. Our
Base folder hosts two JavaScript files; Base.js and jquery-1.10.2.min.js.

Base.js file implements ImagesInc_Base module which is responsible for
importing all of our third-party libraries into the application, as we discussed in the
previous chapter. Currently, the only third-party library that we are importing is
jQuery.

The following code snippet shows how this is implemented:

var ImagesInc_Base = (function(){
 function getBaseModule(){
 if(typeof jQuery !== 'undefined'){
 return jQuery;
 }else{
 return null;
 }
 }
 return {
 getBaseModule: getBaseModule
 };
})();

As you can see, we are using an IIFE to return an object to the global variable
ImagesInc_Base.

In this function, we first check to see if a jQuery object has been defined in the global
scope; if so, we return it. Otherwise, null is returned.

Our core module will be using this object to leverage the jQuery library's
functionality.

Application Implementation – Putting It All Together

[166]

This is done in MainCore module as follows:

(function Core_initialize(){
 mainCore.debug = true;
 try{
 // get jQuery from the base module loader
 mainCore.jQuery = $ = ImagesInc_Base.getBaseModule();
 }catch(e){
 if(mainCore.debug){
 console.error('Base Module has not been
 defined!!!');
 }
 }
 if(mainCore.debug){
 console.log("%c Core Module has been
 initialized...", "color:blue");
 }

})();

As our MainCore module is initializing itself (using an IIFE), it asks the base module
for its base library and then assigns a reference of the returned object in both the $
and mainCore.jQuery properties of MainCore module.

Note that in the current implementation, we are only able to import one base
library. This is to keep the implementation simple, as we only need jQuery in our
application. However, we could also import and use a collection of libraries with
some modification to this code.

Core module implementation
The Core module is the heavy-lifter module in our application, and is constructed
using a few sub-modules. This module's functionality has also been enhanced and
augmented using the techniques that we discussed in the previous chapters, such
as tight and loose augmentation.

Chapter 8

[167]

Here is a list of all the sub-modules that make up the Core module:

We will not cover all the related code for this module but we will have a look at the
important parts of it in this section. Note that the Core module is also the controller
of our application.

MainCore module implementation
This module provides the main functionality of the Core module and all the related
Core's sub-modules are attached to this module, hence the name MainCore.js.

I'll be referring to this module as MainCore from this point forward.

This module has been defined as follows:

var ImagesInc_Core = (function(mainCore){
var $ = null, registeredModules = [], registeredComponents = []....
...
...

})(ImagesInc_Core || {}); // using loose augmentation

As you can see, we have used the loose augmentation technique in this module to
enhance its functionality.

This module also uses an inner IIFE to initialize itself and to import our application's
base library. When the application is in debug mode, MainCore will announce that it
has been initialized as soon as it is loaded.

Application Implementation – Putting It All Together

[168]

This is shown in the following code snippet:

(function Core_initialize(){
 mainCore.debug = true;
 try{
 // get jQuery from the base module loader
 mainCore.jQuery = $ = ImagesInc_Base.getBaseModule();

 }catch(e){
 if(mainCore.debug){
 console.error('Base Module has
 not been defined!!!');
 }
 }
 if(mainCore.debug){
 console.log("%c Core Module has been
 initialized...", "color:blue");
 }
})();

To turn the debug mode on or off in the application, we have implemented the
following method which can be called by the external code:

mainCore.toggleDebug = function(){
 mainCore.debug = !mainCore.debug;
 if(mainCore.debug){
 mainCore.log(1, "Application debug has
 been turned on...", "blue");
 }else{
 console.log("%c Application debug has been
 turned off...", "color:orange");
 }
};

Notice that we are returning a reference to MainCore module as a global variable,
ImagesInc_Core, which allows the external code to interact with this module,
through the interface that this module provides.

Augmenting MainCore module
In designing MainCore module, I have purposely used various augmentation
techniques. This is done to demonstrate the practical aspects of such techniques in
enchaining modules.

Chapter 8

[169]

Augmenting MainCore using tight augmentation
Consider the following augmentation:

// event related functionality augmentation
var ImagesInc_Core = (function(Core){
 var $ = Core.jQuery;
 var addEventHandlerToElem = function(elem,event,callbackFunc){

 if(!elem){
 Core.log(3, 'elem is not passed in,
 from addEventHandlerToElem');
 throw new Error('Element not found');
 }
...

 Core.addEventHandlerToElement = addEventHandlerToElem;
 Core.removeEventHandlerFromElem = removeEventHandlerFromElem;
 Core.registerForCustomEvents = registerForCustomEvents;
 …..........
 return Core;
})(ImagesInc_Core); // using tight augmentation

Here, we have made a logical separation between the code that deals with
event-related functionality in MainCore module and the rest of the code
related to this module.

Notice that we have passed a reference of MainCore module (known to the
application as ImagesInc_Core) to the IIFE that implements this augmentation
(using tight augmentation technique) and then we have added new properties
to MainCore module as needed. At the end, the reference to the now augmented
MainCore module is returned to ImagesInc_Core, which is the global variable that
provides access to MainCore module.

We use the same technique again in another part of the code to augment the module
with more functionality. Please have a look at the related code in MainCore.js file of
the application.

Augmenting MainCore using sub-modules
Let's look at an example of how we add sub-modules to MainCore module.
To add enhanced logging functionality to the application, we have augmented
MainCore module with a sub-module which specializes in logging messages
for the application.

Application Implementation – Putting It All Together

[170]

The following code snippet shows how this sub-module is being used by MainCore
module:

mainCore.log = function(severity,msg, color){

 // if the logging module has been loaded, then use its full
functionality
 // otherwise just log a simple message
 if(mainCore.LoggingHandler && mainCore.LoggingHandler.
logMessage){

 mainCore.LoggingHandler.logMessage(severity,msg,color);

 }else{
 if(severity === 3){
 color = "color:red;font-weight:bold";
 }
 console['log']("%c Severity: " + severity + " ---> " + msg
+ " (From Core!)", color);
 }
};

In this method, we first check to see if LoggingHandler object (the logging
sub-module) exists and also if logMessage method on that object is implemented.
If both conditions are met, then we pass on the logging message and its related
information to this sub-module.

On the other hand, if the logging sub-module or its required method do not exit,
we use mainCore module's own simple logging mechanism to log messages in the
browser's console.

We should have a look at how LoggingHandler sub-module has been implemented
and added to MainCore module.

Consider the following code snippet:

// using simple sub-module augmentation
ImagesInc_Core.LoggingHandler = (function(){

 var self = {}, messageParam, colorParam;
 self.logMessage = function(severity, message,color) {

 …....

return {
 logMessage: self.logMessage,

Chapter 8

[171]

 initialize: self.initialize
 };
})();

As shown, we have added a property to ImagesInc_Core object (MainCore module).
An IIFE returns an object to this property (LoggingHandler) when it is executed.
This object consists of two methods which provide all the functionality related to the
logging mechanism of the application.

While the implementation of these two methods is hidden away from the rest of the
application, other pieces of the application can interact with this sub-module through
MainCore module and the related interface.

Notice that this sub-module can easily be swapped for a different one or modified
internally in any form that we desire. However, as long as the exposed interface does
not change, all the external code would still be able to use this sub-module for its
logging functionality.

In fact, we can even remove this sub-module completely and it will not affect the
application at all, except for the fact that the advanced logging mechanism for the
application would be absent. This highlights some of the advantages of modular
design in our application, such as plug-and-play, progressive enhancement, and
graceful degradation.

In the same way, we can also add other sub-modules to MainCore module to provide
more functionality without the need to make many changes in the application. This
allows us to have a flexible and easily maintainable code base.

In our application, there are also other sub-modules, which attach themselves to
MainCore module, and provide added functionality to the application. We talked
about these sub-modules in the previous chapter but I will mention them again here:

• AjaxEngine: This module is responsible for making AJAX calls to the server,
using jQuery AJAX functionality.

• CookieHandler: This module looks after all the cookie-related operations in
the application, such as writing, reading, and deleting cookies in the browser.

• NotificationHandler: This module is responsible for displaying
notifications to the users by leveraging a dialog box component.

• StorageHanlder: All the functionality related to the browser's local storage
that is implemented in this sub-module, such as storing, reading, and
deleting objects in local storage.

• Utilities: This module provides helper methods to the application, such
as methods to combine two objects, to see if an object is an array, to load files
from the server, and so on.

Application Implementation – Putting It All Together

[172]

Component registration with MainCore
Every component of our application is registered with MainCore module. This
allows to create the bridge between the component and the application, by using
an instance of SandBox module.. We will talk about the SandBox module shortly
but let's have a look at how the registration of the components takes place in the
application (in the MainCore module).

The following diagram provides an overview of this process:

Consider the following implementation in MainCore module:

mainCore.registerComponent = function(containerID,
 componentID, createFunc){

 var containerElem, componentObj;

 // setting context for the sandbox
 if($){
 containerElem = $("#" + containerID)[0];
 }else{
 containerElem = document.getElementById(containerID);
 }

Chapter 8

[173]

 if(createFunc && typeof createFunc === 'function'){
 componentObj = createFunc(new
 SandBox(this,containerElem, componentID));
 //checking for required methods in component
 if (componentObj.init && typeof componentObj.init ===
 'function' && componentObj.destroy && typeof
 componentObj.destroy === 'function') {
 componentObj.id = componentID;
 registeredComponents.push(componentObj);

 }else{
 this.log(3,"Component does not have necessary
 methods, thus not registered");
 }
 }else{
 this.log(3,"no creator function on
 component, component not registered");
 }
};

As you can see, when this method is called at a component's load time by
the component, three parameters are passed into MainCore's mainCore.
registerComponent method: containerID, componentID, and createFunc.

containerID parameter is passed to this method to tell the application what
container (HTML element) the component's view needs to be rendered in.
componentID is the ID of the component that gets registered with the application
and createFunc is the callback function on the component, which mainCore.
registerComponent method calls to create an instance of the component.

We will talk about how components are instantiated in more depth, later in this
chapter. But for now, let's have a look at this mechanism from MainCore module's
perspective.

In the above method, we first walk the DOM tree to find the container element for
the component's view, either by using jQuery or the DOM API directly.

Then, we check to see if the required createFunc parameter has been passed in, and
whether it is a function. If so, we call this component's function with an instance of
SandBox module (using dependency injection). Remember that every component
gets a different instance of SandBox module, which is the bridge between the
component and the application.

Application Implementation – Putting It All Together

[174]

This is done as follows:

componentObj = createFunc(new SandBox(this,containerElem,
componentID));

If the component is designed properly, the result of this function call is an instance of
the component which is returned and stored in componentObj variable.

There are also a couple of required methods that we need to make sure exist on the
component's instance: init and destroy methods. Notice that MainCore is not
concerned with how such methods are implemented in the component or what they
do, only that they exist. The internal implementation of such methods and what
they do are the responsibility of the component itself and each component may
implement these methods differently. Consider the following code snippet:

//checking for required methods in component
if (componentObj.init && typeof componentObj.init ===
 'function' && componentObj.destroy && typeof
 componentObj.destroy === 'function') {

 componentObj.id = componentID;
 registeredComponents.push(componentObj);

}else{
 this.log(3,"Component does not have necessary methods,
 thus not registered");
}

At the end of the registration phase, each component is pushed to
registeredComponents array, which is a collection of all the registered components.

We use this array of components to do a few different things in the application. For
instance, when the application is starting up, we loop through all the components in
this array and call init method on each one of them. This is done as follows:

mainCore.initializeAllComponents = function(){

 this.log(1,"Initializing all components...", "orange");

 try{
 for(var i=0; i < registeredComponents.length; i++){
 registeredComponents[i].init();
 }

 }catch(e){
 this.log(3, 'APPLICATION CATASTROPHIC ERROR!' +
 e.name + ": " + e.message);
 }

Chapter 8

[175]

 this.log(1,"All components have been
 initialized...", "orange");
};

The preceding method of MainCore module is called in index.html file, as shown
here:

ImagesInc_Core.initializeAllComponents();

After init methods of all the components have been called by the application in the
start-up phase, we will see the following messages displayed in the console, if the
application is in debug mode.

Dynamic loading of components by MainCore
As you may recall, I mentioned previously that application components can be
loaded at a later time than the application's start-up. MainCore module provides the
hooks and implements the functionality needed to achieve this.

I think it might be a good idea to go back to the previous chapter and have a look
at the flow diagram which depicts this mechanism before continuing with the
explanations to follow, just so you can refresh your memory.

In our application, when the user clicks on the Support link provided in the footer
section, a dialogue box is displayed. This dialogue box provides information
regarding where the images of our application have been taken from and whether
the user would like to visit that site.

This widget component (notificationWidget), is not loaded in index.html page
when the application is initially started up; it is only loaded when the user clicks on
the Support link.

Application Implementation – Putting It All Together

[176]

However, if the widget has been previously loaded in the application (if the user had
clicked on the Support link before), we will simply re-render it on the page. This is
because after the first time this component is loaded, it will be kept in cache, even
after the user closes the dialogue box by clicking on its Close button.

NotificationHandler sub-module is responsible for listening and acting on the
click event of the Support link. This is done by using a publish-subscribe mechanism
(pattern), which we will discuss shortly in this chapter.

Consider the following code snippet:

self.handleSupportClick = function(){
 // name of the component when it registers
 itselft with core is used here
 NotificationWidgetObj = ImagesInc_
 Core.getComponentByID("notificationWidget");
 if(!NotificationWidgetObj){
 ImagesInc_Core.loadComponent(ImagesInc_GlobalData
 .getNoficationWidgetDefID(), self.renderWidget);

 }else{
 self.renderWidget();
 }
 };

This method is the callback function for the Support link click event in
NotificationHandler sub-module. The very first thing that this method does is to
ask the application (MainCore module specifically) whether this component (widget)
has been previously loaded and registered with the application, as follows:

NotificationWidgetObj = ImagesInc_Core
 .getComponentByID("notificationWidget");

If so, this methods calls NotificationHandler.renderWidget (self.
renderWidget) function, which in turn calls renderWidget method on the widget
component itself. Note that the widget is responsible for its own rendering, as shown
here:

self.renderWidget = function(){
 ImagesInc_Core.getComponentByID("notificationWidget").
renderWidget();
};

If the widget has not been loaded previously, the method asks the MainCore module
to load the widget first, and then call NotificationHandler.renderWidget function,
which is the callback function that is passed in as self.renderWidget.

Chapter 8

[177]

This call is shown as follows:

ImagesInc_Core.loadComponent(ImagesInc_GlobalData
 .getNoficationWidgetDefID(), self.renderWidget);

Now the control is given to MainCore module to load the component (widget)
dynamically. This is done by first finding the object definition for the component in
the browser's local storage.

Let's first have a look at how the local storage is populated with the components'
object definitions.

Storing object definitions in local storage
The application has been designed to find the object definitions for all the
dynamically loaded components, in the browser's local storage.

However, these definitions are in fact implemented in PageDefinitions.js file.

When the PageDefinitions.js file is loaded, it uses an IIFE to store its object
definitions in the browser's local storage, as follows:

(function(){

 var NotificationWidgetDefinition = {
 componentID: "notificationWidget",
 scriptFile: "NotificationWidget.js",
 scriptPath: "/js/Widgets/",
 cssFile: "NotificationWidget.css",
 cssPath: "css/"
 };

...
 ImagesInc_Core.saveValueToLocalStorage(ImagesInc_GlobalData
 .getNoficationWidgetDefID(),NotificationWidgetDefinition);

...

})();

After the browser's local storage is populated with the object definitions, the file
is removed from the browser's cache as it can potentially be large and consume a
significant amount of memory. This design allows us to minimize the use of the
browser's cache, which could be of particular interest on mobile devices, where
resources are limited.

Application Implementation – Putting It All Together

[178]

Notice the object definition for notificationWidget. On this object, ScriptFile
property holds the name of the .js file for this component and ScriptPath property
stores the path to this file. MainCore module uses this information to find and load
the component from the server.

Getting a component's object definition from local storage
Now that you know how the local storage is populated with the object definitions,
we can look at how MainCore module gets the notificationWidget object
definition from the local storage and loads the related resources.

Consider the following code snippet:

mainCore.loadComponent = function(ComponentDefID, callbackFunc){
 // get the value of Component object defintion from storage
 var ComponentDef = mainCore.getValueForKeyAsObjectFromStorage
(ComponentDefID);
 loadedComponentcallbackFunc = callbackFunc;

 if(!ComponentDef){
 // if Component definition is not in the storage then the
page object definitions probably needs to be loaded
 mainCore.loadPageDefinitionsFileAndCallBack(
 function(){mainCore.getComponentObjAndCallback(
 ComponentDefID, mainCore.loadComponent
 FilesAndInitializeWithCallBack);});

 }else{
 mainCore.loadComponentFilesAndInitialize
 WithCallBack(ComponentDef);
 }
};

In this method, first the local storage in the browser is checked (using the
StorageHandler sub-module behind the scenes) for the object definition of the
component. If it is found, then this method calls another method to dynamically
load the necessary resources for the component as follows:

mainCore.loadComponentFilesAndInitializeWithCallBack(ComponentDef)

Chapter 8

[179]

Dynamically loading component's resources from the
server
Once a component's object definition has been extracted from the local storage, its
required .js and .css files are loaded from the server using the following method:

mainCore.loadComponentFilesAndInitializeWithCallBack =
 function(pageDefinitionObj, callbackFunc){
...
 mainCore.loadJSfileFromObjDefAndCallBack(pageDefinitionObj.
 scriptFile, pageDefinitionObj.scriptPath, function(){
 mainCore.initializeComponent(pageDefinitionObj
 .componentID, loadedComponentcallbackFunc)});

...
 mainCore.loadCSSfileFromObjDef(pageDefinitionObj.cssFile,
 pageDefinitionObj.cssPath);
...

}

As you can see, this method calls other methods which specialize in loading .js or
.css files, as the mechanism for loading the files into the application is different,
based on the file type. Of course the .js file is where the code for the component
resides and the .css file has the styling-related information for the component.

Keep in mind that the callback function is called asynchronously after the files are
loaded into the browser's cache.

Also, note that MainCore module uses Utilities sub-module (behind the scenes)
to take care of the mechanics of requesting and loading the component files from the
server.

The dynamic loading of components is probably the most involved operation in the
application and it can be a little challenging to fully understand it by just reading
this section. I highly recommend that you download the application's code and put
breakpoints in the methods that I have mentioned in this section when you run
the application. Doing so, will help you to fully realize how the flow of loading
components dynamically is taking place.

After a component is dynamically loaded into the application, it still needs to
register itself with MainCore module. We will talk about this process more later
in this chapter.

Application Implementation – Putting It All Together

[180]

Routing functionality in MainCore module
As our application is a single page application, and its view needs to change based
on the user's interaction, we need to implement the client-side routing functionality.
This also means that we need to incorporate page view changes based on the user
clicking on the back and forward buttons of the browser.

In our application, I have used the HTML5 History API as the basis for our client-
side routing, but we could have also used open source libraries such as History.js
instead.

Let's see how routing functionality has been implemented in MainCore module.

Adding a URL to the history object of the browser
Consider the following method:

 var addToHistory = function(dataObj){
 // if history object is supported
 if(!!(window.history && history.pushState)){
 history.pushState(dataObj,dataObj.url, dataObj.url);
 }else{
 alert('Your browser needs to be upgraded
 to the latest version');
 Core.log(3, "History API is not supported;
 from addToHistory");
 }
};

This method is called when the application needs to create an entry in the history
object of the browser. For instance, when the Home link of the header section is
clicked, the following callback function is called in the header component:

handleHomeClick: function (e) {
 sandBox.loadPage("index.html");
 e.preventDefault();
 e.stopPropagation();
 sandBox.addToHistory({
 url: "index.html"
 });
},

Chapter 8

[181]

As you can see, the callback function calls addToHistory API of its SandBox instance
with an anonymous object. The SandBox instance, in turn, calls addToHistory
method of MainCore module. The anonymous object is passed to
this method and then the browser's history object is updated, as follows:

var addToHistory = function(dataObj){

 // if history object is supported
 if(!!(window.history && history.pushState)){

 history.pushState(dataObj,dataObj.url, dataObj.url);

 }else{

 alert('Your browser needs to be upgraded
 to the latest version');
 Core.log(3, "History API is not supported;
 from addToHistory");
 }
};

There are three parameters which are passed to pushState API of the history object.
These parameters are; State object, Title, and URL, respectively.

In our preceding example, the following object will be passed to this API as the first
parameter:

{
 url: "index.html"
}

Note that we use url property of the same object for the other
parameters too.
For more information regarding the browser's history API, you
can refer to the following link:
https://developer.mozilla.org/en-US/docs/Web/
API/History_API

Getting a URL from the history object of the browser
To get URL entries from the browser's History object, we first bind popstate event
of the browser to MainCore's getFromHistory method, as follows:

addEventHandlerToElem(window,'popstate',getFromHistory);

https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API

Application Implementation – Putting It All Together

[182]

This means that every time the browser's pop event takes place, which is when
the user clicks on the back or forward button of the browser, the following method
is called:

 var getFromHistory = function(e){
 // if history object is supported
 if(!!(window.history && history.pushState)){
 if(e.state){
 Core.handlePageChange(e.state.url);
 }else if(e.originalEvent && e.originalEvent.state){
 // to get the original event in case of jQuery
 Core.handlePageChange(e.originalEvent.state.url);
 }else{
 Core.log(2, "Could not get the state of event
 from history object");
 }
 }else{
 alert('Your browser needs to be upgraded
 to the latest version');
 Core.log(3, "History API is not supported;
 from getFromHistory");
 }
};

The main action taken by this method is to call handlePageChange method of
MainCore module. This method, in turn, publishes a page-Changed event in the
application, as follows:

Core.handlePageChange = function(pageURL){
 Core.publishCustomEvent({
 type: 'page-Changed',
 data:pageURL
 });

};

When this event is published, all the modules that have registered for this event are
notified. The modules can then take action based on the published event.

For instance, content component has bound updateContentPage method to this
event as follows:

'page-Changed': this.updateContentPage

To better understand how this process works, we also need to talk about custom
events and publish-subscribe (observer) pattern implementation in the application.

Chapter 8

[183]

Publish-subscribe implementation in MainCore
As previously mentioned, one of the goals of our application design has been to
create loose coupling among the application modules.

We have also talked about the fact that while our application modules are not
aware of each other, they need to be able to communicate with one another in an
indirect manner.

These goals can be achieved by leveraging the Mediator design pattern and
implementing a publish-subscribe mechanism around that pattern.

As we saw in the previous chapter, in Mediator pattern pieces of the application
do not directly register with each other for custom events. Instead, they register for
these events and are notified of the broadcast of such events through an intermediary
piece. In our application, the intermediary piece is our MainCore module.

If you are not familiar with mediator or publish-subscribe patterns,
I highly recommend reading, Mastering JavaScript Design Patterns
by Simon Timms, which discusses many popular patterns as well as
mediator pattern. You can find this book at the following link:
https://www.packtpub.com/application-development/
mastering-javascript-design-patterns

Registering components for custom events
The following method in MainCore module is used for registering components to
receive custom events:

var registerForCustomEvents = function (componentID,eventsObj) {
 if (typeof componentID === 'string' &&
 typeof eventsObj === 'object') {
 for(var i=0; i< Core.registeredComponents.length ; i++){
 if(Core.registeredComponents[i].id === componentID){
 Core.registeredComponents[i].events = eventsObj;
 }
 }
 } else {
 Core.log(3,'Incorrect parameters passed in,
 from registerForCustomEvents');
 }
};

As you can see, this method registers the custom event object passed to it with the ID
of the component, which needs to be notified when the event is published.

https://www.packtpub.com/application-development/mastering-javascript-design-patterns
https://www.packtpub.com/application-development/mastering-javascript-design-patterns

Application Implementation – Putting It All Together

[184]

For instance, content component registers for the following events:

registerForCustomEvents : function(){
 sandBox.registerForCustomEvents({
 'img-Clicked': this.updateContentPage,
 // handles image click
 'page-Changed': this.updateContentPage,
 // handles back and forward buttons
 'favorites-Clicked':this.updateContentPage
 });
},

When any one of the preceding events is published, the bound event handler method
for that event is called.

Notice that in the code above, no component ID is passed to the SandBox module
instance by the component. However, the SandBox module instance associated with
this component sends the required component ID to MainCore module as follows:

 registerForCustomEvents : function(eventsObj){
 if(eventsObj && typeof eventsObj === "object"){
 Core.registerForCustomEvents(componentID,eventsObj);
 }else{
 Core.log(3,"incorrect parameter passed in;
 from SandBox.registerForCustomEvents");
 }
},

We will talk about how the SandBox instance is aware of the component ID, when
we talk about SandBox module later in this chapter.

Broadcasting custom events by components
When components need to publish custom events in the application, they do so by
using publishCustomEvent method in MainCore module.

Consider the following code for this method:

var publishCustomEvent = function(eventObj){
 for(var i=0; i< Core.registeredComponents.length ; i++){
 if(Core.registeredComponents[i].events &&
 Core.registeredComponents[i].events[eventObj.type]){
 Core.registeredComponents[i].events[
 eventObj.type](eventObj.data);
 }
 }
};

Chapter 8

[185]

As you can see, an event object is passed to this method. The method loops through
all the components which have registered for this event and then calls the associated
event handler on the components for the event.

Components can publish their events using their instance of SandBox module. For
example, the header component of the application broadcasts that the Favorites link
in the application has been clicked, as follows:

handleFavouritesClick: function (e) {

 e.preventDefault();
 e.stopPropagation();

 ...
 sandBox.publishCustomEvent({
 type: 'favourites-Clicked',
 data: "favourites"
 });
 sandBox.addToHistory({
 url: 'favourites' //update url in the browser
 });
}

Since the content component has registered for this event, the method
updateContentPage of the content component is subsequently called.

To sum things up, application components publish custom events, then the
components that have registered for these custom events are notified by MainCore
module, which calls the associated methods for these custom events. Thus, MainCore
module acts as the mediator piece among all the components of the application.

This concludes our discussion and examination of the core module, but keep in mind
that the core module as a whole provides many more capabilities for the application,
beyond what we have discussed here. All such functionality is either implemented in
MainCore module (MainCore.js) or other sub-modules which together, make up the
core module.

Keep in mind that from the component's point of view, all the application
functionality is provided by an instance of SandBox module.

Application Implementation – Putting It All Together

[186]

SandBox module implementation
As mentioned previously, the components in our application do not directly
communicate with each other nor do they communicate directly with any other
parts of the application. The only connection between the components and the rest of
the application is through an instance of SandBox module assigned to them.

SandBox module's constructor
Consider the following code snippet:

var SandBox = function(Core,contextElem, componentSelector){
 var Core = Core, containerElemContext =
 contextElem, componentID = componentSelector;

 return{
 getElement : function(elementID){
 if(elementID && typeof elementID === "string"){
 return Core.getElement(elementID);

 }else{
 Core.log(3,"incorrect parameters passed in;
 from SandBox.getElement ");
 }
 },
...
};

As the preceding code shows, SandBox module is created as a global object SandBox,
and three parameters are passed to its constructor by MainCore module. Core
parameter, which is a reference to MainCore module; contextElem parameter,
which is a reference to the container element for the component's view that the
SandBox instance belongs to; and componentSelector , which is the ID of the
sandbox's component.

For instance, the SandBox instance of header component, receives the following
parameters when it is instantiated: A reference to the core module as the first
parameter, headerContainer which is the ID of header component's view container
on the page as the second parameter, and header which is the ID of header
component as the third parameter.

The reference to Core module is used by the SandBox module instance to get access
to the functionality that Core module provides.

Chapter 8

[187]

Setting a component's container context in the
SandBox instance
A reference to the container element of the component's view is used by the SandBox
module instance to set the DOM context of the component's HTML elements. This
is so when an HTML element within this container needs to be accessed, the search
for this element can start from the container element, as opposed to the document
element of the page.

Have a look at the following code:

 getElementInContext : function(elementID){
 if(elementID && typeof elementID === "string"){
 return Core.getChildOfParentByID(
 containerElemContext,elementID);
 }else{
 Core.log(3,"incorrect parameters passed in;
 from SandBox.getElementInContext");
 }

},

Here the SandBox module instance is calling the core module's getChildOfParentByID
method. This method takes two parameters, containerElemContext, and elementID.
The objective is to search the DOM tree for the element whose ID has been passed in.

Using the container element's DOM Context, we can start the search in the container of
the component as opposed to the top-level element of the DOM tree. This approach
allows us to have a much more optimized search for finding our component's
elements.

Identifying the SandBox module's instance
The component ID, which is passed in as the third parameter to SandBox module's
constructor, identifies the instance of SandBox module. This is used
by the core module, to identify which component the SandBox instance belongs to.

Application Implementation – Putting It All Together

[188]

For instance, the component's ID is used in the following method of SandBox
module:

unregisterCustomEvent : function(eventType){

 if(eventType && typeof eventType === "string"){
 Core.unregisterCustomEvent(componentID,eventType);

 }else{

 Core.log(3,"incorrect parameter passed in;
 from SandBox.unregisterCustomEvent");
 }
},

In the code snippet above, we are calling unregisterCustomEvent method of Core
module and are passing in the parameter componentID. This is so core module
knows which instance of SandBox is making this call and in turn, which component
wishes to unsubscribe from the custom event.

SandBox module considerations
There are also a couple of other things that you need to keep mind about SandBox
module. First, SandBox module can be designed to only provide a subset of
Core module's functionality to the components. This enables us to control what
application functionality components can have access to. Second, all the methods
of SandBox module are designed to do a very basic error checking. This filter calls
which that have passed the basic level of validation to propagate to Core module.

Keep in mind that SandBox module is supposed to be only a thin layer which sits
between the components and the rest of the application. Thus, it is best to not do
extensive validation at SandBox module level.

What constitutes a thin layer is open to interpretations, but since there could
potentially be many instances of SandBox module in the application, it is best to keep
it as thin as possible.

Application components
Considering that our application is a proof of concept type application, we have only
implemented four components; header, footer, content, and notificationWidget
(I'm using the component IDs used in the application).

Chapter 8

[189]

These components are implemented in the following files in the application's project,
ImagesInc_Header.js, ImagesInc_Footer.js, ImagesInc_Content.js, and
NotificationWidget.js, respectively.

In the following sections, I will provide an overview of each component, but I highly
recommend that you have a look at the code accompanying this book to get a better
understanding of how these components are implemented.

Keep in mind that our components are modules, which create different application
views. In an MVC or MV* architectural pattern paradigm, our components contain
their own controllers as well as leveraging the application level controller which has
been provided to them through their own instance of SandBox module.

The components also implement their own views and each component is only aware
of its view in the application.

While an application level model is present (ImagesInc_GlobalData), and our
components can use the data stored in this application model, each component can
also contain its own model. Therefore, each component implements its own MVC or
MV* architecture.

Registering components with MainCore
module
We have already talked about how a component is registered with MainCore module
from the MainCore's perspective. It is time to have a look at how this is done at the
component's level.

The mechanism for registering components with the application is always the same,
regardless of whether the component is loaded at the application start-up phase or at
a later time.

Consider the following code snippet:

ImagesInc_Core.registerComponent("mainPageContainer",
"notificationWidget", function(sandBox){

...
 var widgetMainContainer, stockSnapURL =
 "https://stocksnap.io";

 return {
 init: function(){
 try{
 sandBox.contextObj = this;

Application Implementation – Putting It All Together

[190]

 sandBox.logMessage(1,'Notification Widget
 component has been initialized...', 'blue');

 }catch(e){
 sandBox.logMessage(3,'Notification Widget has NOT
 been initialized correctly --> ' + e.message);
 }
 },

 destroy: function(removeComponent){

 sandBox.contextObj.unregisterFromEvents();
 if(removeComponent){
 sandBox.removeComponentFromDom("widgetContainer");
 }
 sandBox.logMessage(1,'Notification Widget has been
 destroyed...', "blue");
 },
...

}

As you can see, when a component's .js file is loaded, for instance
notificationWidget shown previously, registerComponent method of MainCore
module is called. Thus, MainCore module needs to be loaded before any component
files in the application.

Since we have talked about how this method is called by a component previously,
the following should be just a review for you.

In the preceding code, when NotificationWidget.js file is loaded, the
registerComponent method of MainCore module is called with three parameters:
mainPageContainer, which is the ID of the container element that hosts the
component's view; notificationWidget, which is the ID of the component itself,
and a third parameter as a callback function. When this callback function is called
by MainCore module, it receives an instance of SandBox module.

Note that the return object from this callback function is the component's singleton
object, which has the required methods init and destroy. Of course, these
methods are used by the application to initialize and destroy the component
instance, respectively. We will talk about these methods more when we talk about
notificationWidget component.

One other thing to notice here is that we have created a closure in this callback
function, so only the returned object from this function has access to the private
variables of the component.

Chapter 8

[191]

Header component
This component registers itself with Core module using the ID header, and from that
point forward, this ID is used by the application to reference this component.

As with all the other components in the application, this component implements the
required init and destroy methods.

header component also implements methods to attach and remove event handlers,
for its elements. The method handleFavouritesClick is an example
of an event handler in this component.

Consider the implementation of this event handler as follows:

handleFavouritesClick: function (e) {
 e.preventDefault();
 e.stopPropagation();
 var favoritedImagesArray = sandBox
 .getValueAsArrayFromCookie(ImagesInc_GlobalData
 .getFavCookieName());

 if(!favoritedImagesArray){
 alert('No favorites have been selected!');
 return;
 }
 sandBox.publishCustomEvent({
 type: 'favorites-Clicked',
 data: "favorites"
 });
 sandBox.addToHistory({
 url: 'favorites' //update url in the browser
 });
}

This method is called when the Favorites link of header component is clicked. It
first checks to see if there are any favorite images stored in the browser's cookie.
However, this check is not done directly by the component itself, as the call is made
to the instance of SandBox module for this component.

Notice that header component has no idea how the mechanism for checking the
cookie is implemented, and it does not need to implement such functionality itself.

Application Implementation – Putting It All Together

[192]

If such mechanism is changed at some point in the future, it makes no difference
to this component. The component will always make the same call to the SandBox
module instance and lets the application handle this operation.

Also note that this method updates the URL in the browser, and publishes a custom
event that informs the application of the particular event that has taken place. Of
course, the component leverages the application's functionality through
the SandBox module instance to accomplish all these tasks.

Footer component
The design of footer component is very similar to header component, and it
registers itself with Core module with the ID of footer.

One method in the component which we need to have a look at is
hanldeSupportClick. This method is called when the Support link of footer
component is clicked. Let's examine the implementation of this method, as follows:

handleSupportClick : function(e){

 sandBox.publishCustomEvent({
 type: 'support-Clicked',
 data: "support"

 });

 e.preventDefault();
 e.stopPropagation();
}

As you can see, when the link is clicked, the custom event support-Clicked
is published. If you recall from an earlier section in this chapter,
NotificationHandler module is listening to this event and will take the required
action when this event takes place.

This is another example which shows, while these pieces of the application are
communicating with each other, they are not actually aware of each other's existence.
These components are loosely coupled using our publish-subscribe implementation.

Chapter 8

[193]

Content component
This component can be considered as the main component of our application and it
is responsible for changing the views of the content area. It registers itself with Core
module with the ID of content.

The content component implements the required init and destroy methods as well
as many other methods.

We are going to have a look at some of the important ones here.

Handling content area click events
When a user clicks on the Add to Favorites link in the application or when an image
is clicked in the content area, the parent container of the content component's view
captures the event and processes it.

The binding for the event handling of the parent container takes place in init
method of content component as follows:

sandBox.addEventHandlerToParent("click",
 this.handleMainContainerClicked);

As you can see, handleMainContainerClicked is the callback method that processes
this click event.

Consider how this method has been implemented:

handleMainContainerClicked: function (e) {
 if (e.target != e.currentTarget) {
 e.preventDefault();
 e.stopPropagation();

 if (e.target.tagName.toUpperCase() === 'IMG') {
 sandBox.contextObj.handleImageClick(e.target);
 } else if (e.target.tagName.toUpperCase() === 'A') {
 sandBox.contextObj.handelFavLinkClick(e.target);
 }
 }
}

As shown, we check to see if the click event is taking place on an image or on an
anchor tag, and based on this determination, we delegate the rest of the event
processing to the associated methods.

Application Implementation – Putting It All Together

[194]

Handling the Add To Favorite link click event
In handelFavLinkClick method, we check the state of the Add to Favorites link and
change its text to Remove from Favorites. If the link has already been clicked, and
it contains the text Remove from Favorites, we re-set the text to its default value of
Add to Favorites.

We also add or remove the ID of the favorite image in the browser's cookie, so when
the user navigates to the Favorites page, the correct favorite images are rendered in
the content area.

Consider the implementation of this method:

handelFavLinkClick: function (elem) {
 var anchorState, parentNode, anchorID;
 anchorState = elem.getAttribute('data-state');
 anchorID = elem.getAttribute('id');
 parentNode = sandBox.getParentNode(elem);

 if (anchorState) {
 sandBox.removeValueFromCookie(favCookieName,anchorID);
 sandBox.updateElement(parentNode,
 sandBox.contextObj.getAnchorHTMLStr(anchorID));

 } else {
 sandBox.populateCookie(favCookieName,anchorID);
 sandBox.updateElement(parentNode,
 sandBox.contextObj.getAnchorHTMLStr(anchorID, true));
 }
 sandBox.publishCustomEvent({
 type: 'FavLink-Clicked',
 data: anchorID
 });
},

As you can see, there is also one other thing that we do in this method, which is to
broadcast the related custom event to the application. This allows all the other pieces
of the application which are registered for this event to be informed of the event
taking place in this component.

Chapter 8

[195]

Handling an image click event
When an image is clicked in the content area of the application, the following
method is called:

handleImageClick: function (elem) {
 var imgName;

 imgName = elem.getAttribute('data-name');
 sandBox.publishCustomEvent({
 type: 'img-Clicked',
 data: imgName
 });
 sandBox.addToHistory({
 url: imgName
 });
}

Notice that this method does two main things. One is to update the history object of
the browser so that the application router can work properly when the user clicks on
the back and forward buttons of the browser. The second is to broadcast the message
img-Clicked to the application.

The interesting point to consider is that our content component itself listens to
this event and acts on this event to update the page view, using the following event
registration method:

registerForCustomEvents : function(){

 sandBox.registerForCustomEvents({
 'img-Clicked': this.updateContentPage,
 'page-Changed': this.updateContentPage,
 'favourites-Clicked':this.updateContentPage
 });
}

As you can see, when img-Clicked event is received by content component (which
itself had generated), then updateContentPage method of this component is called.

Of course, we could have directly updated the view of the page in
handleImageClick method, but by broadcasting the event at the application level,
we can be sure that all the pieces of the application, including content component
itself, can take action upon the broadcast of this event.

Application Implementation – Putting It All Together

[196]

Content area generator methods
content component also has methods which are responsible for generating
the content area of the page, based on the URL of the browser. The following is
a summary of such methods:

• buildFavouritesPage: This method loads the related CSS file for the Favorites
page (using the SandBox module instance) and then renders this page based on
the number of the favorite images previously selected by the user

• buildIndexContentHTML: As the name implies, this method is responsible
for building HTML tags for the content area of index.html page

• buildImagePageHTML: The full view of the clicked image is rendered using
this method

• getAnchorHTMLStr: This method generates the related link for each image so
the image can be added or removed from the favorite images list, based on
the state of the link

I highly recommend that you have a look at the code for this component to see how
these methods are implemented.

NotificationWidget component
When this component is loaded, it registers itself as notificationWidget with core
module.

We talked about this component previously and while its design is similar to all the
other components in the application, there are some differences.

As mentioned before, this component is not loaded or rendered at the application's
start-up phase. It is loaded and rendered dynamically only when needed, based on
the user's interaction with the application.

NotificationWidget's model
This component's view is stored as a string in the component itself, as follows:

var widgetInnerHTMLStr = '<div id="notificationMainContainer">' +
 '<h1 class="centerElem header">Thank you for
 visiting us.</h1>' +
 '<h3 class="centerElem header">All the images
 on this site are provided by <a href="https://stocksnap.
io">stocksnap.io.</h3>' +
 '<h3 class="centerElem header">We thank them and
 encourage you to visit their site.</h3>' +
 '<div class="buttonContainer">' +

Chapter 8

[197]

 '<div class="button button-left" id=
 "notification_visit">Visit stocksnap.io</div>' +
 '<div class="button button-right"
 id="notification_close">Close</div>' +
 '</div>' +
 '</div>';

This string is passed by the component to MainCore module to render its view. You
will see how this is done very shortly.

Required methods of the notificationWidget
component
As mentioned previously, each component needs to implement the required
methods: init and destroy.

Have a look at the following init method of notificationWidget component as
follows:

 init: function(){
 try{
 sandBox.contextObj = this;
 sandBox.logMessage(1,'Notification Widget component
has been initialized...', 'blue');

 }catch(e){
 sandBox.logMessage(3,'Notification Widget has NOT been
initialized correctly --> ' + e.message);
 }
}

When the application calls init method of a component, in this case
notificationWidget, a new property is added to the instance of SandBox module
that was passed to the component. This property is contextObj and its value is set to
this.

In this context, this is a reference to the component itself and is assigned to
the SandBox instance so we can have an easy way to access the context of the
component when we need to. This property is particularly useful for our event
handler callbacks in the component.

Consider the following code snippet from notificationWidget component:

handleCloseClick : function(){
 sandBox.contextObj.unregisterFromEvents();
 sandBox.removeComponentFromDom("widgetContainer");
}

Application Implementation – Putting It All Together

[198]

This callback function is called when the user clicks on the Close button of the
dialogue box which is the view for notificationWidget component. You might
wonder why we are not calling the component's internal method from the callback
function as:

this.unregisterFromEvents();

For the above function call to succeed, the callback function needs to run in the
context of the component. However, since the context of this is set at the time of
code execution to the object that calls this callback function, and not the component,
we are not be able to call the component's internal methods using this.

Thus, by setting the property contextObj on the SandBox instance, we are able to
easily access the original context of the component and call the required internal
method as:

sandBox.contextObj.unregisterFromEvents();

Of course, we could also use JavaScript's bind() method to achieve the same context
preservation but I have used this approach instead, so you can see a different way of
resolving this issue.

The destroy method of the component is used to make it inactive
(no events on the component will be processed) or to completely remove the
component from the DOM.

Consider destroy method implementation of notificationWidget, as follows:

destroy: function(removeComponent){

 sandBox.contextObj.unregisterFromEvents();

 if(removeComponent){
 sandBox.removeComponentFromDom("widgetContainer");
 }

 sandBox.logMessage(1,'Notification Widget has
 been destroyed...', "blue");

},

Depending on the value of removeComponent flag(true or false), which is passed
to this method, the component is either disabled or completely removed from the
DOM.

Chapter 8

[199]

Note that in the above code, the component uses its instance of SandBox module to
remove itself from the DOM and it does not need to implement such functionality
itself. This allows the component to only focus on its own specialized tasks and
leverage the functionality provided by the application (through the SandBox instance).
This design also limits the component's access to the world beyond its own so we can
minimize possible DOM manipulation conflicts, as described in the previous chapter.

Rendering notificationWidget
This component is rendered when NotificationHandler calls the render method
of the component, as follows:

ImagesInc_Core.getComponentByID("notificationWidget")
 .renderWidget();

Consider the implementation of this method, as shown here:

renderWidget : function(){

 var generatedWidget;

 generatedWidget = sandBox.createDocument
 LevelComponent(widgetInnerHTMLStr);

 generatedWidget.id = "widgetContainer";
 sandBox.setElementContext(generatedWidget.id);
 this.registerForEvents();
},

The component uses a method on its instance of SandBox module to create a
document level component (itself), in the following line of code:

generatedWidget = sandBox.createDocumentLevel
 Component(widgetInnerHTMLStr);

In turn, from the SandBox module instance, the following method on Core module is
called:

var createDocumentLevelComponent = function(compnentViewStr){
 var mainComponentContainer;

 mainComponentContainer = document.createElement("DIV");
 mainComponentContainer.innerHTML = compnentViewStr;
 document.body.appendChild(mainComponentContainer);

 return mainComponentContainer;

};

Application Implementation – Putting It All Together

[200]

And a reference to the rendered component's view is passed back from Core module
to renderWidget method of the component object. The rendered component's view
is then tagged with an ID and its context is set on the SandBox module instance, as
follows:

generatedWidget.id = "widgetContainer";
sandBox.setElementContext(generatedWidget.id);

Note that it is only at this stage that the component registers for events. This is
different than other components in the application, which register for events when
they are initialized. The reason is because when init method of this component
is called, the component's view has not yet been rendered on the page. Therefore,
there are no HTML elements for this component's view to attach events to. It is only
after the rendering of the component's view that we can attach the required event
handlers to the elements.

This widget is an example of how we can render and activate components in the
application at any time, after the start-up phase.

GlobalData module
As the name implies, this module is designed to store application level data and
act as the model for our application. It also provides public methods so that other
modules can get and set data in this module. This module is defined as
ImagesInc_GlobalData global variable in the application..

The following shows a snippet of the kind of data that the module stores:

 var favCookieName = "Images_Inc",
 pageDefintionsFile = "PageDefinitions.js",
 pageDefinitionsFilePath = "js/Modules/PageDefinitions/",
...

This module is augmented with a sub-module ImagesInc_PageSections, which
stores HTML markup strings related to header and footer components.

It is worth looking at how this sub-module is added to GlobalData module.

var ImagesInc_GlobalData = ImagesInc_GlobalData || null;

var ImagesInc_PageSections = (function(mainModule, subModule){
 // assigning the subModule if it is passed in
and also augmenting sub-module

Chapter 8

[201]

 var pageSections = mainModule.pageSections =
 mainModule.pageSections || subModule;

...

 })(ImagesInc_GlobalData || {}, ImagesInc_PageSections || {});
 // using Asynchronous sub-module

As you can see, we are using asynchronous sub-module augmentation technique to
add the sub-module to GlobalData module.

This technique allows us to load GlobalData and its related sub-module
(ImagesInc_PageSections) in any order that we desire without affecting the
module's augmentation. The augmentation is different in comparison to how we
added sub-modules to MainCore module in the application, as they could only be
added to MainCore module after it was loaded.

Notice that we create the sub-module if it does not exist in the application when we
execute the IIFE, as shown:

(ImagesInc_GlobalData || {}, ImagesInc_PageSections || {});

Asynchronous sub-module augmentation also allows us to augment the sub-module
itself, if it already exists in the application. The augmentation is shown in the
following code snippet:

var pageSections = mainModule.pageSections =
mainModule.pageSections || subModule;

 pageSections.headerContainerDefObj = {

 sectionHTML : '<div id="logoDiv" class="logo_titleClass" >' +
...

}

Admittedly, this technique is a little more complex than the other augmentation
techniques that we have used elsewhere in the application but it does provide a
greater degree of flexibility.

I encourage you to have a look at the code related to this sub-module (GlobalData_
Sub.js) to get a better understanding of how the technique works.

Application Implementation – Putting It All Together

[202]

Summary
In this chapter, we had a closer look at our application's implementation and saw
how all the pieces fit and work together to create our modular ecosystem, at the code
level.

We examined how Core module (our application's controller) was created by
leveraging different augmentation techniques and adding sub-modules to MainCore
module. This approach allowed us to extend our application's capabilities with ease
and in a modular way.

By creating instances of SandBox module, we established communication bridges
among the components and the rest of the application while preserving the loose
coupling principle of our design.

One important aspect of our application, is the ability to load components
dynamically and we discussed how such functionality has been implemented in our
Core module.

Using the publish-subscribe and mediator patterns, we created an event handing
mechanism which all the pieces of the application can use to communicate with each
other. This mechanism was also used in our client side router to change the views of
the application.

At the end of the chapter, we created a global module to store our application level
data and act as the model piece of our MV* design.

In the next chapter, we will discuss testing of our application's modules and will
see how unit testing can help us maintain the integrity of our application during its
development and operational phases.

[203]

Modular Application Design
and Testing

Now that we have completed the implementation of our application, it is time
for us to talk about testing it. Of course, we test our application to make sure things
works
as expected and that the future changes to our code-base do not break our
application's functionality.

One thing to keep in mind here, is that we are writing our tests after we have
completed our implementation. However, there are times when we write our tests
before our application's code.

The idea is that we write our tests first and expect them to fail since there is no
implementation of the code. Then, as we implement our application, our tests start
passing and we can be sure that the implemented code behaves as expected.

You may choose this approach over implementation first and testing later for your
projects, but I would like to emphasize the point that, regardless of the approach,
you need to write some automated tests!

With that in mind, in this chapter we are going to have a look at how we can write
some unit tests, and how our modular approach in our application design makes
writing automated tests easier and more maintainable. For brevity, we will only
write unit tests for two of our modules but the principles discussed can be used to
test our other modules too.

Modular Application Design and Testing

[204]

In this chapter we will cover:

• How our modules can be tested individually
• Writing tests without the need for third-party frameworks
• Improving and streamlining our unit tests using third party tools
• Using Jasmine as a testing framework
• Using Mocha and its related assertion libraries as a testing framework

Advantages of writing automated tests
As developers, our primary concern is to write code that can produce the expected
functionality and results. While principle holds true, the way we achieve our final
implementation goal is also very important.

A properly designed application is not just about achieving the final goal of the
application but it should also be about implementing an easily extensible and
maintainable code-base.

Using a modular approach certainly helps us with achieving such objectives but as
we make changes to our code-base, and as our application goes through its life cycle,
we need to make sure all the pieces of the application still work properly.

When we make a change to one part of the application, we need to make sure that
the change does not adversely affect the other parts of our code base. Of course,
one way of assuring this, is to test everything manually and check every aspect
of our application under all the circumstance that it was designed for.. But such
an approach is not only time-consuming, it is also very tedious as we need to go
through the same process for every single change in our application.

Also, especially in big projects, other developers could be working on various pieces
of the application. How can we be sure that their changes would not have undesired
effects on the parts of the application that we are responsible for?

Automated tests enable us to check the functionality that we expect from our code
base, either in a targeted manner for a particular piece of code or for the entire
application as a whole. We write the tests once, and then can run them many times at
will, either when there is a change in the code-base or on a continuous basis as part
of our regular and testing process.

The other advantage of automated tests is that, as we are implementing our code, we
get into the habit of considering how we can test the particular functionality using
automated tests. This mindset results in writing better, more targeted and modular
code.

Chapter 9

[205]

Different types of automated tests
There are many different types of automated tests, but we will consider and talk
about only three categories of such tests as listed here:

• Unit testing
• Integration testing
• End to end testing

Unit testing
Unit tests are usually designed to test the functionality of individual pieces of our
code in isolation. This usually means testing our functions and methods, one at a
time, to make sure they do exactly what is expected of them.

We usually write such tests in a manner that can verify the functionality of our
methods and individual pieces of our code in various scenarios.

There are two main styles of writing unit tests; Test Driven Development (TDD)
and Behavioral Driven Development (BDD).

Let's have a simplified overview of what they are and how they are different.

TDD unit tests
TDD unit testing is mostly used to test the implementation of our code. This is done
by testing the actual result that a method produces against what is expected.

The TDD process can be thought of as the following loop, if we write our tests before
the code implementation:

1. Write a unit test
2. Run the test and expect it to fail
3. Write the code required to make the test pass
4. Run the test again to make sure the test passes
5. Re-factor the code if needed
6. Start from the first step again

As you can see, TDD is meant to be implemented from the beginning of the project
and to continue through the project's life cycle.

Modular Application Design and Testing

[206]

BDD unit tests
This style of testing is focused on the expected behavior of our code and not
necessarily the implementation of it.

When we use BDD style of writing unit tests, we write our assertions in a way that
can be read like a natural sentence.

For instance a test should read as, "returns a value that is incremented by 1 from the
previous value".

BDD can also follow the same process loop shown in the TDD section.

TDD versus BDD
Imagine that we have a function which is a counter, and when it is called for the first
time, it will return the value 1 and every time after that, it will return the previous
counter value plus 1.

In TDD style of writing unit tests, we test that our function is initialized with the
default value (start value) of zero, since that is tied with the very first time that the
function is called.

This detail (that the start value is 0) is an implementation aspect, and TDD style of
writing tests checks for such implementation details. It also means that if we decide
the default value (start value) in our counter function should change to 2, our test
case also needs to change accordingly.

In BDD style of writing unit tests, we don't check to see what the returned value is
when the function is called for the very first time. We only check to see that every
time the function is called the counter has been incremented by 1. This means that
if we change the start value of the function at some later time, it has no effect on
the expected behavior of the function. Our function should always increment the
previous value by 1, regardless of the starting value.

The difference between TDD and BDD is very subtle but important to keep in mind.

In this chapter we will focus on writing unit tests in BDD style.

Test coverage
It is ideal to write enough unit tests to achieve 100 percent test coverage of our code.
However, in reality, it is not always possible to write unit tests for every aspect of the
code.

Chapter 9

[207]

Of course, the more tests we write, the better the code quality we can expect, but
time lines also need to be kept in mind for every project. In reality, we do not
always have sufficient time to achieve the full coverage of our code base with unit
tests. However, we should keep in mind that in the long run, we save more time on
finding and fixing bugs when we have more code coverage with our tests.

In the absence of sufficient time, my recommendation is to make sure that you at
least write unit tests for the core pieces of your application and cover them 100
percent. Then, if time permits, turn your focus to other non-critical pieces of your
application and write as many unit tests as you can for those pieces.

This way, you can make sure of the quality and integrity of the application core and
isolate possible issues in non-core and non-critical modules.

Integration testing
This type of testing is mainly focused on making sure that different pieces of the
application can work together properly.

When different methods and modules are involved to provide a certain functionality,
we want to test and see if the desired functionality has been achieved by the sum of
collaboration among such pieces.

An example could be that one function reads a string from a file and passes it to
another function, which creates an array based on the comma delimiter in the string.
Our integration test will make sure that the correct array was produced based on
these two functions working together to read and process the string.

End to end testing
These tests usually checks the flow of the application's functionality from the start
to finish to make sure that the application as a whole is working properly and as
intended.

For instance, to test the correct behavior of the application based on the form
submission on a page, we can submit the form values to the server using an
AJAX call, get the results from the server, and then refresh the content area of the
application based on the returned values. By examining the final result, we can be
sure that our application behaves as expected.

End to end (also known as E2E) testing is usually done after our unit tests and
integration tests have passed.

Modular Application Design and Testing

[208]

A simple start to writing our unit tests
Writing unit tests is not about using the latest and greatest unit testing tools and
libraries. It is simply about testing little pieces of the code in isolation. The simple
fact which we should always keep in mind is that the main goal of unit testing is to
ensure the proper functionality and integrity of our code. Even if you are not familiar
with any unit testing tools, you can still write you own unit tests, using the skills
that you already have in JavaScript.

However, as you will see later in this chapter, using third-party tools and
frameworks can greatly help us to write better and more sophisticated tests.

For the rest of the chapter, we will target two of our sub-modules (CookieHandler
and StorageHandler) and will write some simple unit tests for them. We will also
explore how our modular architecture can help us write targeted and independent
unit tests for each module.

Writing unit tests without any unit testing
frameworks
While I don't recommend writing your unit tests without any help from third-party
libraries and frameworks, my focus here is to get you started writing unit tests,
regardless of whether you use a testing framework or not. Once you get started, you
will slowly get used to the process and soon it will become a part of your regular
development routine.

Thus, as a starting point, we will write our unit tests using plain JavaScript.

Adding an AppTester module to our application
As our client architecture is based on a modular design, we will continue with that
approach and create a module that is responsible for running our unit tests.

Have a look at how I have structured this module in our project.

Chapter 9

[209]

The AppTester module resides in the AppTester.js file, and adds itself to our
MainCore Module (ImagesInc_Core) as a sub-module, as follows:

// adding AppTester as a sub-module
ImagesInc_Core.AppTester = (function(){
 function runAllUnitTests(){
 var testModule;
 for(testModule in ImagesInc_Core.AppTester){

 if(typeof ImagesInc_Core.AppTester[testModule]
 === 'object'){
 // run tests
 ImagesInc_Core.AppTester[testModule].runAllTest();
 }
 }
 }
 function reportTestResults(totalNumOfTest,
 passedNum, failedNum){
 var failTestMsgColor;
 failTestMsgColor = failedNum ? 'red':'pink';

 ImagesInc_Core.log(1, 'Total number of tests run:
 ' + totalNumOfTest, 'orange');
 ImagesInc_Core.log(1, 'Number of Tests Passed:
 ' + passedNum, 'green');
 ImagesInc_Core.log(1, 'Number of Tests failed:
 ' + failedNum, failTestMsgColor);
 }
 return {
 runAllUnitTests: runAllUnitTests,
 reportTestResults: reportTestResults
 };
})();

This sub-module exposes two methods: runAllUnitTests which runs all the unit
tests that have been added to it and reportTestResults which is our unit test
reporter responsible for displaying the result of our unit tests when they are run.

Notice that we are using the logging mechanism of our core module for reporting
our test results, which demonstrates the re-usability of our modules and sub-
modules in different contexts.

Modular Application Design and Testing

[210]

Adding unit test suites to our test-runner
We are going to add our unit tests to our test-runner AppTester, using the tight
augmentation technique that you are now quite familiar with.

Generally speaking, it is a good idea to have at least one test file per module which
contains all the related unit tests for that module in our application. As such, we have
two files in our project; CookieHandlerTester.js and StorageHandlerTester.js.
As the names imply, one of them holds all the unit tests related to CookieHandler
sub-module and the other contains all the related tests for StorageHandler sub-
module.

Keep in mind that if you create a large number of unit tests (the more, the better),
you can further break down your unit tests into smaller chunks and files, which
focus the different functionality of each module.

In our application, since we have a limited number of unit tests, we have kept all of
them in their related files, one file per module.

In the following sections, we will only discuss one of them as they are both
structured in a very similar manner.

CookieHandler module unit tests
The unit test suite related to our CookieHandler sub-module is added to the
AppTester module as an object property. This enables our test runner (AppTester)
to easily loop through all of our unit tests and execute them.

Consider the following code snippet:

ImagesInc_Core.AppTester = (function(mainTestModule){

 if(!mainTestModule){
 ImagesInc_Core.log(3, 'main test module not found!');
 return false;
 }
 var CookieTester = mainTestModule.CookieHandlerTester = {};
 var unitTests = [], totalErrors = 0, totalPasses = 0;

 //create a new value in the cookie
 unitTests[unitTests.length] = CookieTester
 .createCookie = function(name, value, decodeFlag){
 if(!name){
 name = "testCreateCookie";
 }
 if(!value){
 value = "testing for cookie";

Chapter 9

[211]

 }
 if(!decodeFlag){
 decodeFlag = false;
 }
...
return mainTestModule;

})(ImagesInc_Core.AppTester); // using tight augmentation

Note how we have added an object as a property to AppTester module.
This object (test suite) has all the related tests as its properties.

var CookieTester = mainTestModule.CookieHandlerTester = {};

Every individual unit test is added to this object, as follows:

CookieTester.createCookie = function(name, value, decodeFlag){
...
}

The array unitTests is used to run all of our tests using a loop when AppTester
module calls the cookieTester.runAllTests method, as follows:

// run all unit tests
CookieTester.runAllTests = function (){
 ImagesInc_Core.log(1, '*** RUNNING CookieHandler
 MODULE UNIT TESTS ***', 'orange');

 // run all unit tests
 for(var i=0; i< unitTests.length; i++){
 unitTests[i]();
 }

 //** test for negative result
 // should not be able to find the value
 below in the cookie specified
 CookieTester.findValueInCookie("testCreateCookie",
 "some value!", true);
 unitTests.length++;
 // should not be able to add the value
 to the cookie as it will be a duplicate
 CookieTester.addValueToCookie("testCreateCookie",
 "testing for cookie",false);
 unitTests.length++;
 mainTestModule.reportTestResults(unitTests.length,
 totalPasses, totalErrors);
 CookieTester.cleanup();
};

Modular Application Design and Testing

[212]

To run individual unit tests, we can call them by using their name identifier, directly
on the CookieTester object, like so:

CookieTester.findValueInCookie("testCreateCookie", "some value!",
true);

That is why each individual unit test is added to both the CookieTester object and
the unitTests array when defined, as follows:

unitTests[unitTests.length] = CookieTester.createCookie =
function(name, value, decodeFlag)

I highly recommend that you have a look at the code related to the AppTester and
CookieHandlerTester modules in the accompanying project for this chapter to see
how they are implemented.

Running CookieHandler unit tests
In our project setup, since we are not using an automated build system, we can add
the functionality to our index.html and our core module to run all the unit tests
when index.html is loaded in the browser.

Of course, we do not want to do this in a production environment. Usually, a good
development environment leverages task runners such as Grunt or Gulp to run
the unit tests as well as all the other client application build tasks such as linting,
minifying and so on.

If you are not familiar with these task runners, please check
the following resources online:
http://gruntjs.com/

http://gulpjs.com/

In our environment, to run the unit tests, we call the following method in our index.
html file:

ImagesInc_Core.runAllUnitTests();

runAllUnitTests method in our MainCore module, will use AppTester module to
run all of our unit tests.

http://gruntjs.com/
http://gulpjs.com/

Chapter 9

[213]

Consider the following implementation in our MainCore module:

mainCore.runAllUnitTests = function(){
 if(typeof ImagesInc_Core.AppTester !== 'undefined'){

 try{
 ImagesInc_Core.AppTester.runAllUnitTests();
 }catch(e){
 mainCore.log(3, 'AppTester ERROR! ' +
 e.name + ": " + e.message);
 }
 }else{
 mainCore.log(3, 'AppTester not available! ');
 }
};

Here, we first check to see if AppTester module is present, and if so, we call
runAllUnitTests method on that module.

In AppTester module, the code loops through all the unit test suites (in our case, unit
tests for the CookieHandler and StorageHandler modules) which are the properties
of the AppTester object. This is shown as follows:

function runAllUnitTests(){
 var testModule;
 for(testModule in ImagesInc_Core.AppTester){
 if(typeof ImagesInc_Core.AppTester[testModule] ===
 'object'){
 // run tests
 ImagesInc_Core.AppTester[testModule].runAllTests();
 }
 }
}

In turn, this method calls the runAllTests method on each unit test suite as you
saw earlier:

CookieTester.runAllTests = function (){
 ...
}

Because of our modular architecture, as we can add individual unit test suites for
each module to our AppTester module; we can also remove them. This is done so in
a similar way as we added CookieHandler test suite to AppTester but by removing
the property related to test suite instead.

Modular Application Design and Testing

[214]

When we run our unit tests by loading index.html, we will see the following output
in the browser's console (I'm using Chrome Development Tools).

I recommend that you try writing some of your own unit tests and adding them to
the application's test suites.

All the needed setup for this has already been implemented for you in the
accompanying code for this chapter.

Cleaning up after running our unit tests
It is always a good idea to design our unit tests in a way that they clean up after
themselves, so any modification made either to the application or the environment is
reset to its original state.

If you look at the code for both of our unit test suites, there is a clean-up method in
each one of them that does just that.

Consider the following method in CookieHandlerTester.js:

CookieTester.cleanup = function(){
 ImagesInc_Core.CookieHandler.deleteAllCookies();
 totalErrors = 0; totalPasses = 0;
};

As you can see, since our unit tests add a few cookies to the browser, and
manipulates them, we want to make sure that all the created cookies are removed
and the environment is reset to its original state.

Chapter 9

[215]

CookieHandler.deleteAllCookies method takes care of removing all the cookies
in the browser.

Writing unit tests using third party
frameworks
While it is possible to write our unit tests using only JavaScript and no third-party
frameworks, it is a lot of manual work, even when writing a few simple tests.

Our approach in the previous section for writing unit tests was a good exercise
but I think we can do much better by leveraging third-party frameworks designed
specifically for this task. Such frameworks enable us to write more sophisticated tests
with much less effort.

In this section, I'll introduce you to two very popular third-party frameworks, which
allow us to write good, clean, and professional-grade unit tests.

The goal here is to give you a good starting point and provide you with a general
overview of each library, but we will not explore any of them in great depth.
Nevertheless, I'm hoping to get you excited enough about using third-party unit
testing libraries (frameworks) that you will spend some time getting to know them
better on your own and use them in your future projects.

Introduction to Jasmine
Jasmine defines itself as "a behavior-driven development framework for testing
JavaScript code."

Jasmine does not require a DOM and can be used for writing and running JavaScript
unit tests both on the server and client side.

Setting up Jasmine is easy, especially on the client side, and is created in a way that
provides all the functionality that you may require from a professional-grade testing
framework in one package. I think you will find the syntax quite intuitive and easy
to follow.

I personally like Jasmine quite a bit and am very grateful to its creators for providing
us with such a great tool.

In this section, I'll be using Jasmine 2.4 and encourage you to
visit the related site at: http://jasmine.github.io/.

http://jasmine.github.io/

Modular Application Design and Testing

[216]

Setting up Jasmine
When you visit Jasmine's site, you will be presented with a link to download the
standalone version of the framework, which is the version that we will be using for
our unit tests here.

After downloading the zip file, and extracting its contents, you will see the following
structure:

We will be using a similar file structure for our tests, however, without the need for
the src folder, which is the location of the source files that Jasmine loads to run the
tests against.

In our tests, we will be loading MainCore module and CookieHandler module
directly from where they reside currently in our project.

The lib folder is where all the source code for Jasmine itself is kept and the spec
folder is where we will store our test specs.

Here is how the final file structure has been implemented in our application:

Chapter 9

[217]

In order to load our test specs in SpecRunner.html, we need to make the following
modifications to this file, as follows:

As you can see, we have pointed SpecRunner.html to the file locations of our
MainCore and CookieHandler modules in the application, instead of using the
default Jasmine src folder.

That is all we have to do to get Jasmine set up and ready for use in our client
application.

Why load MainCore.js?
As you may have noticed in SpecRunner.html, I'm loading
both the MainCore.js and CookieHandler.js files. This is not
necessary, as long as CookieHandler.js returns a global object,
which can then be used in CookieHandlerSpec.js to run the
tests against. In such a scenario, CookieHandler object will act
as an independent module, thanks to our modular architecture.
However, to keep the code as is, I load MainCore module first and
then use CookieHandler as a sub-module of MainCore; thus both
files need to be loaded.

Creating our Jasmine spec file
To write and run our tests, we need to first create the structure of our spec file.
We do this by implementing our test suites.

Modular Application Design and Testing

[218]

A test suite is constructed using describe function of Jasmine framework. This
function takes two parameters, a string which describe the test suite and a callback
function used to implement the test suite itself. This is shown below:

describe("Testing cookieHandler Sub-module", function() {
...
}

Inside the callback function is where we write our test specs. Keep in mind that we
can nest describe functions too. This means that we can use one describe function
to create a test suite for the whole module and use nested describe functions
inside that to create test suites for each individual method of the module. Also, any
variables that we declare inside a describe function is available to all the specs
which reside inside that describe block.

Let's have a look at our first spec for CookieHandler sub-module:

describe("Testing cookieHandler Sub-module", function() {

 var cookieHandler = ImagesInc_Core.CookieHandler;
 describe("createCookie Method", function() {
 it("should exist", function() {
 expect(cookieHandler.createCookie).toBeDefined();
 });
…
}

As you can see, we have used the outer describe function to encapsulate all the
unit tests related to CookieHandler sub-module. Inside that, we are using another
describe function to write the related specs for createCookie method of this
sub-module. The it function is where we write our expectations, which are our
assertions about the method that we are testing.

The expectations use matchers to implement a comparison between the actual value
and the expected value. Jasmine comes with a slew of built-in matchers but it also
provides us with the ability to write our own custom matchers.

In the code snippet above, we are telling Jasmine to check to see if cookieHandler.
createCookie has been defined.

Notice how we are describing our tests using strings passed to describe and it
methods. When the tests are run, these strings should read like sentences, describing
what our tests are, and what kind of results we should be expecting from running
such tests.

Chapter 9

[219]

Important point to keep in mind when writing unit tests
Ideally, we want each unit test to only test one functionality,
and not have any dependency on another functionality in the
code. For instance, if we want to test that a method can read
from a cookie, we should only test that and not if we can write
to the cookie first, and then read the value, all in one test spec.
In some of our specs we have not followed such a rule. To
eliminate these types of dependencies, we need to use spies,
stubs, and mocks which require more in-depth knowledge of
our testing frameworks as they are considered more advanced
features. Since, this is only an introduction to unit testing, such
advanced functionality of the frameworks are beyond the scope
of this book, but I highly recommend that you research them
further on your own as such features are very useful in writing
unit tests.

Running our Jasmine unit tests
We can run our unit tests by loading SpecRunner.html in the browser. When our
tests have completed running, we will see the following results displayed in our
browser window:

Modular Application Design and Testing

[220]

As you can see, the sentence in our test suite tells us what method the group of tests
belongs to, and the sentence in our assertion tells us what the test is for.

Our results show that all of our tests are passing. If one of our tests fails, Jasmine
notifies us as follows:

The message shows us what test has failed along with a stack trace related to that
test. This allows us to quickly identify the failing test and look into what needs to be
done to fix it.

Exploring Jasmine further
Jasmine is a complete testing framework for JavaScript. My goal was to only
introduce you to it, and give a very quick overview of some of its capabilities.
However, Jasmine provides much more functionality to satisfy any testing needs
that you might have, such as using spies, stubs, and mocks, as well as support for
asynchronous testing.

I recommend that you first have a look at the test suite that I have created for our
CookieHandler sub-module, in the code accompanying this chapter. Then, go to
Jasmine's website and learn more about the framework. I think once you start using
Jasmine, you will be very impressed with its capabilities and ease of use.

For more information, refer to the following link:
http://jasmine.github.io/2.4/introduction.html

Introduction to Mocha
Mocha is another great testing framework which allows us to use any assertion
library that we like, and provides great flexibility in that aspect. As indicated on
Mocha's website, "if it throws an error, it will work!".

http://jasmine.github.io/2.4/introduction.html

Chapter 9

[221]

We will be using Chai assertion library in our tests and we will talk about this library
very shortly.

Mocha can be run both on the server and the client side and it supports both BDD
and TDD style tests. We can also use different reporters with Mocha, such as Dot
Matrix and List.

For our purposes, we will be focusing on how to run Mocha in the browser.

Setting up Mocha
To set up Mocha for running our tests in the browser, we can use sample.html file
that Mocha provides on its website.

In this file, Mocha is loaded using a content delivery network (CDN). We can also
download the framework from GitHub, at: https://github.com/mochajs/mocha.

For our application, I have downloaded Mocha and created the following structure
in the project:

In the preceding screenshot, MochaRunner.html is our test-runner page and loads
Mocha, Chai (the assertion library), our source file (StorageHandlerSpec.js), and
the related spec file, storageHandlerSpec.js. This file stores all of our Mocha tests.

https://github.com/mochajs/mocha

Modular Application Design and Testing

[222]

This is how our MochaRunner.html is set up:

As you can see, we are also telling Mocha that we will be using BDD style test specs.

This is all we have to do to implement a simple setup for Mocha.

Chai
Chai is a very popular assertion library that integrates well with Mocha and
provides different assertion styles. In my opinion, one of the best assertion styles
to use is Expect.

I think you will find Expect syntax similar to Jasmine assertion syntax and easy to
understand.

To use Chai, you can simply download the code (copy/paste) from
the following location and add it to your project:
http://chaijs.com/chai.js

As you saw previously, I have already downloaded and installed Chai in the project
library and it is ready for us to use.

http://chaijs.com/chai.js

Chapter 9

[223]

Creating our Mocha spec file
The setup for a Mocha spec file is very similar to Jasmine's spec file. We create our
test suites using the global describe function and pass it a callback function which
contains the code for our assertions.

Just as with Jasmine, we use strings to identify our tests and use it function
to write our assertions. Also, similar to Jasmine, we can use nested describe blocks,
and any variable defined in a describe block is available to all the assertions in that
block.

Have a look at the following code snippet from our storageHandlerSpec.js file as
follows:

var expect = chai.expect;
describe("Testing storageHandler Sub-module", function() {
 var storageHandler = ImagesInc_Core.StorageHandler;

 describe("saveValueToLocalStorage Method", function() {
 it("should exit", function() {
 expect(storageHandler.saveValueToLocalStorage).to.exit;
 });
….
});

Note that we have set the variable expect on chai.expect global object, and then
this variable is used in our assertions.

Chai provides a great set of matchers which we can use in writing our unit tests.
However, the set of matchers provided by Chai is not as complete as Jasmine.

For instance, to use spies, stubs, and mocks, which are considered more advanced
testing features, we need to use a different library such as Sinon.

Since such features are beyond the scope of this book, we will not explore them
here but I encourage you to visit Sinon's web site for more information at: http://
sinonjs.org/.

http://sinonjs.org/
http://sinonjs.org/

Modular Application Design and Testing

[224]

Running our Mocha-Chai unit tests
If we load our project's MochaRunner.html file in the browser, we will see the
following test results displayed, after all the tests are run:

Of course, the check marks beside our tests indicate that the tests have passed.

Chapter 9

[225]

The following image shows the page when one of our tests fails:

As you can see, to report a related error, Mocha uses the string that we have passed
to it function of our test spec.

Exploring Mocha further
Using Mocha in conjunction with Chai and Sinon enables us to create a robust
testing framework. We can even go beyond that by leveraging Mocha on the server
side as part of our client's build system. This allows us to set up and run our tests
automatically as one of the build steps, using Node.js. Furthermore, while not
specific to Mocha, using GitHub as our source repository enables us to upload our
Mocha tests into GitHub and have our tests run automatically in various browsers.

You can get a lot more information regarding this feature at
the following site:
https://ci.testling.com/

https://ci.testling.com/

Modular Application Design and Testing

[226]

Summary
In this chapter, we talked about various types of tests and why continuous testing of
our code is important to the integrity of our application as a whole. One of the ways
to implement continuous testing is using unit tests.

We explored how we can write some simple unit tests using plain JavaScript and
saw that using third-party testing frameworks enables us to have more capable and
robust tests in our application, with much less effort.

Using a modular architecture, allows us to easily test our modules in isolation and to
quickly find and fix possible issues in our code.

We also glanced over two very popular open source testing frameworks, Jasmine
and Mocha. However, we barely scratched the surface of the capabilities that these
frameworks offer, and I encourage you to explore them further on your own.

All the tests shown in this chapter are included in the source code accompanying this
book, and I highly recommend that you have a look at the test suites and spend some
time to become familiar with them.

In the next chapter, we will look at different approaches for loading modules into
our application and see how we can manage module dependencies using industry's
best practices.

[227]

Enterprise Grade Modular
Design, AMD, CommonJS,

and ES6 Modules
In this last chapter of the book, we are going to mainly focus on re-factoring some of our
application modules so we can have a more robust way of loading and managing them.

The title of this chapter mentions Enterprise Grade, but in fact we can use the
principles discussed here for applications of any size and type. In the next sections,
I'll introduce you to various approaches for creating and loading modules in
JavaScript and talk about the environments that each approach might be better
suited for. You'll also see how we can manage our module dependencies in a more
structured manner.

Keep in mind that this chapter is meant to be only an introduction to such
techniques, but hopefully it will make you curious enough to research them further.

I believe after seeing their benefits, you'll consider these modular design
implementations in your future projects.

Some of the topics that we will cover in this chapter are:

• Why we need a better setup for loading our modules
• AMD module format and how to use it
• Tools for creating AMD modules
• CommonJS module format
• ECMAScript 6 modules

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[228]

Revisiting index.html file
If you recall, in Chapter 8, Application Implementation – Putting It All Together, I
mentioned that we were using quite a few <script> tags in our index.html
file to load our application's modules.

To refresh your memory, here is what we had:

While this implementation worked, it was not very scalable, since for each module
file we needed to add a <script> tag to our page. Also, by looking at the list of
files being loaded, we could not determine how each module or component was
dependent on another piece (or pieces) of the application.

We had to create another <script> tag at the bottom of the page as well, which took
care of booting-up the application, as shown here:

Chapter 10

[229]

It would be nice if we could eliminate the need for having all the <script> tags and
our boot-up sequence in index.html. Also, it would be very useful to implement a
mechanism which could indicate and mange our modules' dependencies.

Well, we are going to achieve all that very soon!

The following screenshot depicts how the new approach will clean up our index.
html file and provide us with a more robust script-loading capability:

As you can see, the page has been shortened considerably and there is only one
JavaScript file that is loaded in index.html now. This file is require.js, with its
data-main attribute set to js/config, as shown here:

<script src="js/libs/require.js" data-main="js/config"></script>

Loading this script is all we need to do in order to load all of our modules and
components, and to start up the application.

We will have a look at how this magic has taken place shortly, but before doing so,
we need to talk about AMD modules.

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[230]

Introducing Asynchronous Module
Definition
Asynchronous Module Definition (AMD) format for creating modules in JavaScript,
is targeted for use in browsers. This format proposes a particular way for defining
modules so that modules and their dependencies can be loaded into the browser
asynchronously.

There are two key methods that you need to use when creating and consuming AMD
modules, these are define and require methods.

The idea is that we create a module using the global define method and then we
can import that module in other parts of the code (other modules) using the global
require method.

Defining modules using AMD format
Here is how a module can be defined in AMD format:

define('moduleOneId', ['dependency'], function(dependency) {

 return {
 sayHi: function(){
 console.log('Hi there!')
 }
 }
});

In the preceding code, we are passing three arguments to the global define method,
which has been provided to us by an AMD-compatible module loader.

The first argument, moduleOneId, is an optional parameter which assigns an ID to
the module. Most of the time, we do not use this argument and other than some edge
cases or when a non-AMD concatenation tool is being used to bundle our code, we
leave it empty.

The second argument to define function is an array of dependencies, which tells
the AMD module loader what modules (files) need to be loaded before executing
the callback function. Of course, the third argument passed to define method is the
callback function.

Chapter 10

[231]

Notice that we are returning an object from this callback function. This object is the
module that we are defining. In AMD format, the callback function can also return
constructors and functions.

Importing AMD modules
To use the module that we have defined in the preceding code, we can import it by
using the global require function.

Consider the following:

require(['moduleOneId'], function(moduleOne){
 moduleOne.sayHi();
});

Here, we are asking the AMD module loader to load the dependency moduleOneId
before executing the callback function.

Note that we could also use the path to our dependency instead of using the related
ID. For instance, we could write the preceding code snippet as follows:

require(['folderPath/moduleOne.js'], function(moduleOne){
 moduleOne.sayHi();
});

AMD format provides great flexibility in defining and loading our modules.
It also eliminates the need for creating global variables to define the modules.
AMD-compatible script loaders also often provide the capability to lazy-load our
modules, if needed.

There are many web development tools (libraries) that support AMD format, but the
most popular ones are RequireJS and curl.js.

In our application in this chapter, we will be using RequireJS to create our AMD
modules and load their dependencies.

For an in-depth discussion on JavaScript modules and
their related formats, I encourage you to visit a great
post by Addy Osmani at https://addyosmani.com/
writing-modular-js/.

https://addyosmani.com/writing-modular-js/
https://addyosmani.com/writing-modular-js/

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[232]

Introducing RequireJS
As mentioned previously, one of the most popular AMD module loaders for the
browsers is RequireJS. In this section, we will learn how to create and load modules
using this tool.

You can also run RequireJS on the server side using its related optimizer, r.js. The
optimizer can package all of our AMD modules into one file and then the browser
will only have to make one request to the server to load all the necessary modules. In
this scenario, AMD format is used to manage dependencies among modules when
they are being bundled on the server.

Alternatively, if you are using a server build setup for your client files, you may
want to consider using almond.js for packaging your AMD modules. This is a much
smaller library, but does not have the dynamic loading capabilities of RequireJS. For
more information regarding almond.js, visit the following URL: https://github.
com/requirejs/almond/.

Since we are not using a build system for our project, I will only cover using
RequireJS for the browsers in this chapter.

Downloading RequireJS
We can download this library from the following location: http://requirejs.org/
docs/download.html#requirejs.

You can simple copy the minimized version of the tool and save it in your selected
file location.

A test project for creating and loading AMD
modules
To help you become more familiar with RequireJS, I have included an additional
project called requireJsLearning in the source code related to this chapter. I
encourage you to download this project and follow along as we continue our talk
regarding AMD
and RequireJS.

https://github.com/requirejs/almond/
https://github.com/requirejs/almond/
http://requirejs.org/docs/download.html#requirejs
http://requirejs.org/docs/download.html#requirejs

Chapter 10

[233]

In requireJsLearning project, I have saved the RequireJS library (require.js) in
the libs folder, as shown here:

Let's create some simple modules in this project and see how we can use RequireJS to
load and manage them.

Creating a simple AMD module
We start by creating a simple AMD module in person.js file, under modules folder.

Consider the following:

define(['modules/stuff', 'jquery'], function(stuff, jq) {
 console.log(jq + " --> Accessing jQuery from person");
 return {
 first: "Sam",
 last: "SamLastName",
 favorites: stuff.likes.join(' ')
 }
});

In the preceding code, we are using the global define method that RequireJS has
provided for us and passing two parameters to it. The first parameter is an array
with two values. The first value in this array is a path to another module, which is a
dependency for our person module.

Notice that we are using the name of the file but without the .js extension. This is
because RequireJS assumes the extension to be .js by default.

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[234]

The second value in our dependency array is jQuery. We are not specifying a path
for jQuery here, as it is being used as a global variable.

jQuery and AMD format
As of version 1.7, jQuery supports AMD format. However, for it
to be loaded properly as an AMD module, we can only place it
in the same location as our config.js file. Since we would like
to have all of our third-party libraries under libs folder in our
project, we need to do a little bit of configuration. We will talk
about this shortly.

The second parameter passed to define method is the callback function that gets
executed after our person module's dependencies are loaded.

As the preceding code shows, this callback function receives two parameters, which
are matched one-to-one to the dependency list defined for the person module.

We also return an object from this callback function which is our person module that
can be consumed by other modules.

Consuming our person AMD module
Since person module is created as an AMD module, we can consume it as a
dependency in other modules by only specifying its path.

Have a look at how our main module (in main.js) requires and uses person module,
as shown in the following:

// bootstrap file
require(['modules/person', 'jquery', 'person2'],
function(person, $$, person2){

 console.log("Accessing Person --> person first + person last;
 from main -> " + person.first + ' ' + person.last);
 console.log($$ + " --> jquery from main");
 console.log("Accessing person2 --> person2.first ;
 from main -> " + person2.first)
});

The preceding syntax should be a lot more familiar to you now. We are telling
RequireJS (using require method) to load all the dependencies listed in the
dependency array (the first argument to require method) and then pass them as
arguments to the callback function.

Chapter 10

[235]

RequireJS in turn, will make asynchronous calls to the server (one call per module) to
download all of the dependencies.

Loading dependencies of dependencies
Notice that our main module has listed person module as a dependency. However,
person module itself has also listed stuff module as a dependency:

define(['modules/stuff', 'jquery'], function(stuff, jq) {
...
}

Therefore, there is a dependency chain that needs to be resolved. When RequireJS
looks for the dependency list of main module and sees person as a dependency,
it then looks to see if person has any dependencies itself. If so, it will load those
dependencies first. After that person module is loaded and passed to main module.

We can think of this chain as follows:

Load stuff module | pass it to person module | load person module | then pass
person module to main module.

This is a very simplified view of how RequireJS manages dependencies and loads
modules in the correct order, based on the dependency list.

A small but important point
In the preceding explanation, I mentioned the order of how
modules get loaded based on the dependency list. The fact
is that these modules can be physically loaded in a different
order, but the important point to keep in mind is that all of the
modules listed in the dependency list are loaded and the code
in them is executed before the callback function is called.

Loading and consuming non-AMD modules
We also need a way to load non-AMD modules or non-modular files in our projects,
and RequireJS provides hooks to do just that.

It also has many plugins which enable us to load CSS and text files, as well as
providing many other capabilities.

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[236]

In our requireJsLearning project, we have three modules (files) which are not
using AMD module format. These are person2, person3, and person4. In order
for RequireJS to load such modules and make them available for usage by other
modules, we need to provide some configuration settings.

If you look at config.js file in our project, you see the following code:

require.config({
 deps: ['main'],
 paths: {
 //'jquery' : 'libs/jquery'// if loading
 from local directory
 'person2': 'modules/person2', // location to
 none AMD modules
 'person3': 'modules/person3',
 'person4': 'modules/person4',
 'jquery': "https://code.jquery.com/jquery-1.12.3.min"
 // loading from CDN
 },
 shim: {
 "person2": {
 "exports": "person2"
 // use this alias in the global scope and
 pass it to modules as dependency
 },
 "person3": {
 deps: ['person4'],
 // none AMD module, depending on another
 non AMD module
 "exports": "person3"
 }
 }
});

Here, we are passing a configuration object to require.config method of RequireJS.
The first property of this object defines main as a dependency (deps: ['main']).
Remember that main module is the module that boots up our application, but in
index.html file, we told RequireJS to load config.js using
data-main attribute, as shown here:

<script src="js/libs/require.js" data-main="js/config"></script>

When RequireJS loads config.js file, the configuration object is passed to require.
config method. Then, RequireJS figures out that it needs to load main.js (by
looking at the deps: ['main'] property on this object). Of course, in turn, by
looking at the dependency list of main module, RequireJS loads all the dependencies
for main module as well.

Chapter 10

[237]

Setting paths in the config object
The next property set in the configuration object passed to require.config method
is paths property. This property itself is an object and it's where we define the paths
to our dependencies. For instance, see the following snippet:

'person2': 'modules/person2'

Here we tell RequireJS that, when it needs to load person2, it can find it in the
modules/person2.js file. Remember that we do not provide the file extension for
the file in this property.

Creating shims for non-AMD modules
The next property that we define in object passed to require.config method is
shim property.

shim property is an object too and is used to provide configuration settings for non-
AMD modules.

For instance, see how we are configuring person3 module in the following
code snippet:

"person3": {
 deps: ['person4'],
 // none AMD module, depending on another
 non AMD module
 "exports": "person3"
}

We tell RequireJS that, when you want to load person3 module as a dependency, first
you need to load person4 (using deps property), and then let the consuming modules
declare this module as a dependency using the keyword person3.

Consider how stuff module declares and consumes person3 as a dependency in
the following code snippet:

define(['person3'], function(person3) {
 console.log(person3.first +
 " --> Accessing person3.first from stuff");
 return {
 likes: ['Car', 'Bike', 'Scooter']
 };
});

In this way, we can load and consume non-AMD modules asynchronously, thanks
to RequireJS.

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[238]

To confirm that everything is working as it should and all the dependencies are
resolved properly, we can load index.html in the browser. We should then see the
following messages in the debugger tools console (I'm using Chrome browser):

I encourage you to have a look at the code related to this project
(requireJsLearning) and use it to see how you can create, load, and consume
modules using RequireJS.

For more in-depth information regarding this great library and the many different
options that it provides, please visit http://requirejs.org/.

I hope this was a good introduction to AMD module format and RequireJS. Let's
now use what we have learned from this section and re-factor our main application
to load our modules the AMD way.

Refactoring Images Inc. application to use
AMD format
To leverage the functionality that RequireJS provides for us, we are going to take two
different approaches here. First, we are going to convert all of the submodules in the
Core module into AMD modules.

Second, we are going to load all of our other files in the application, including our
application's components, as non-AMD modules. These two approaches will provide
us with a practical exercise to put our knowledge of RequireJS and AMD modules to
good use.

Modifying Core submodules into AMD modules
In this section, we are going to look at ImagesInc_Core.LoggingHandler
submodule and see how we can convert it into an AMD module. All the other
submodules in the application can also be converted to AMD modules, following the
same approach.

http://requirejs.org/

Chapter 10

[239]

Consider how ImagesInc_Core.LoggingHandler submodule is implemented in our
application:

ImagesInc_Core.LoggingHandler = (function(){
...

return {

 logMessage: self.logMessage,
 initialize: self.initialize
 };
})();

We were using an IIFE to return an object as a property on ImagesInc_Core global
object (which is our MainCore module). This returned object is the interface to the
code inside of our IIFE namespace.

To convert this submodule to an AMD module, we simply need to transfer the
code which was originally inside the IIFE to define method provided to us
by RequireJS.

Consider the following code snippet:

define(['MainCore'], function(ImagesInc_Core){
...
 return ImagesInc_Core.LoggingHandler = {

 logMessage: self.logMessage,
 initialize: self.initialize
 }
}

Notice that we are still returning an object from the callback function and we are also
assigning it to LoggingHandler property of ImagesInc_Core object.

This approach allows us to easily convert our non-AMD submodules into AMD
modules, with very little modification. This is mostly because, from the beginning,
our architecture was designed to be a modular-based architecture. Now, thanks to
RequireJS, we are able to load our submodule files asynchronously, without the need
to add them as <script> tags to our index.html file.

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[240]

Loading our non-AMD modules using RequireJS
We are going to load the rest of the files in our application, including MainCore, as
non-AMD modules.

You may decide later on that you would like to convert these modules into AMD
modules as well. I encourage you to do so, as it will be a valuable exercise. However,
my goal here is to show you how AMD and non-AMD modules can work together in
harmony, without much trouble at all.

As explained previously, to load non-AMD modules using RequireJS, we need to
define them in shim property of our application's config file.

Remember that we load config.js file in our index.html, as shown here:

<script src="js/lib/require.js" data-main="js/config"></script>

config.js file in turn will cause the loading of our main.js file (as it has been
defined as a dependency for config.js file), which does the bootstrapping of our
application.

It is time for us to have a closer look at our application's config.js file.

Setting up our application's config.js file
Our application's config.js file consists of three main properties; deps property,
which defines the dependencies of config file; paths property, which maps all of
our dependencies to their physical file locations, and shim property, which is used to
define the non-AMD modules in our application.

Have a look at config file, in the code snippet below:

require.config({
 deps: ['main'],
 paths:{
 'MainCore' : 'Modules/Core/MainCore',
 'Logger': 'Modules/Core/Logger',
 'AjaxEngine': 'Modules/Core/AjaxEngine',
 'CookieHandler': 'Modules/Core/CookieHandler',
 'NotificationHandler': 'Modules/Core/NotificationHandler',
 'StorageHandler': 'Modules/Core/StorageHandler',
 'Utilities': 'Modules/Core/Utilities',
 'SandBox' : 'Modules/SandBox/SandBox',
 'ImagesInc_Content': 'Components/ImagesInc_Content',
 'ImagesInc_Footer': 'Components/ImagesInc_Footer',
 'ImagesInc_Header': 'Components/ImagesInc_Header',
 'AppTester': 'Modules/AppTester/AppTester',

Chapter 10

[241]

 'CookieHandlerTester':
 'Modules/AppTester/CookieHandlerTester',
 'StorageHandlerTester':
 'Modules/AppTester/StorageHandlerTester',
 'Base': 'Modules/Base/Base',
 'jquery': 'Modules/Base/jquery-1.10.2.min',
 'GlobalData_Sub': 'Modules/GlobalData/GlobalData_Sub',
 'GlobalData': 'Modules/GlobalData/GlobalData'
 },

 shim:{

 'Base':{
 exports : 'Base'
 },

 'jquery':{
 exports : 'jquery'

 },
...

});

I think by now you are quite familiar with the types of configuration items that we
set for our application in this file. Based on this configuration, RequireJS can now
load our modules and files, asynchronously and in the correct order.

This implementation allows us to have a well-organized, maintainable, and
scalable solution to loading our modules, without the need to list them all in
our index.html file.

Booting up our application using RequireJS
Our main module is the module responsible for booting up our application.

Have a look at the following code snippet and see how this module is implemented:

// Application bootstrap file
var modulesToLoad = ['MainCore','Logger','AjaxEngine',
 'CookieHandler', 'NotificationHandler',
 'StorageHandler','Utilities','ImagesInc_Content',
 'ImagesInc_Footer', 'ImagesInc_Header','SandBox', 'AppTester',
 'CookieHandlerTester',
 'StorageHandlerTester', 'Base', 'jquery', 'GlobalData_Sub',
 'GlobalData'];

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[242]

require(modulesToLoad, function(ImagesInc_Core, Logger,AjaxEngine,
 CookieHandler, NotificationHandler, StorageHandler, Utilities,
 ImagesInc_Content, ImagesInc_Footer, ImagesInc_Header, SandBox,
 Base, jquery, GlobalData_Sub, GlobalData){
 //register StorageHandler with MainCore
 ImagesInc_Core.StorageHandler.register = (function(){
 ImagesInc_Core.registerModule(ImagesInc_Core.StorageHandler);
 })();

 //add error handling to all methods of StorageHandler,
 in case localStorage not available
 if(ImagesInc_Core.Utilitizes){
 ImagesInc_Core.Utilitizes.addLocalStorageCheck(
 ImagesInc_Core.StorageHandler);
 }
 ImagesInc_Core.initializeAllModules();
 ImagesInc_Core.initializeAllComponents();
 ImagesInc_Core.handlePageChange(location.pathname);
});

As you can see, we have listed all of our application's dependencies in an array. Then,
we have used require method to load them all and pass them to the callback function.

Inside this callback function, we execute the code necessary to get the application
started up.

If you look at the Network tab of your browser's debugger tool (I use Chrome),
you will see how RequireJS has loaded the necessary modules and files for our
application, as shown in the following screenshot:

Chapter 10

[243]

As you can see, modular architecture can help us greatly to manage our application
pieces and their related dependencies with ease. I recommend that you spend some
time exploring how to leverage the full functionality of AMD modules in your own
applications.

CommonJS
As with AMD format, CommonJS (also known as CJS) is another format which
defines JavaScript modules as objects that can be made available to any dependent
code. CJS modules can only define objects, as opposed to AMD modules, which can
define constructors and functions too.

Unlike AMD format, which takes a browser-first approach, CommonJS takes a
server-first approach. It also covers a broader set of concerns which are server-
related, such as io, file system, and alike.

Many developers (I'm one of them) use AMD format for browser-targeted modules
and CommonJS for server-side targeted modules. However, you could use CJS
format for browser modules as well.

Some of the tools that support CJS for the browsers are:

• curl.js: http://github.com/unscriptable/curl
• SproutCore: http://sproutcore.com

Let's have a look at a simple example to see how we can implement a CJS format
module.

Implementing a CommonJS module
Imagine that we have a file called moduleOne.js. From inside this file, we can export
a CJS module like so:

exports.someFunc = function(){

 return console.log("I am some function");
}

Here, exports is a global variable and contains the object which the module is
making available to other modules that wish to consume it.

On the other hand, imagine that we have another module in moduleTwo.js file,
which resides in the same directory as moduleOne.js.

http://github.com/unscriptable/curl
http://sproutcore.com

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[244]

moduleTwo can import moduleOne and consume it like so:

var firstModule = require('./moduleOne');
firstModule.someFunc();

exports.someApp = function(){
 return firstModule.someFunc();
}
exports.someOtherApp = function(){
 return console.log("I am some other app");
}

As you can see, in this module we use CJS require method to import the first
module (someFunc), and then we can use it as firstModule.someFunc().

In moduleTwo.js, we are also exporting another module called someApp, which
can be consumed by other modules in the application. Note that in the preceding
example, we are in fact exporting more than one module from the same file.

Notice also that there is no define method to wrap our modules and return an object
from the callback function, as opposed to what we saw in AMD format.

CJS syntax is similar to how ECMAScript 6 defines modules, and we will have a look
at that in the next section.

For more information regarding CJS modules, please refer to the following resource
online: http://www.commonjs.org/.

ECMAScript 6 modules
In the new version of JavaScript, ECMAScript 6 (also known as ES6), native modules
have been introduced. The following points are some of the most important aspects
of these modules:

• Module code always automatically runs in strict mode
• Variables that are created in the top level of a module are not added to the

global scope
• A module must export anything that should be available to the outside code
• A module can import bindings (things that are exported from other modules)

http://www.commonjs.org/

Chapter 10

[245]

The main idea behind modules in ES6 is to give you complete control over what
is accessible to the outside code from inside the module, as well as when the code
inside of the module is executed.

Let's have a look at a simple example of an ES6 module.

Defining an ES6 module
We can define an ES6 module either inside of a .js file, or inside a <script> tag in
our.html page.

Consider the following code snippet, from an imaginary simpleModule.js file:

var name = "Tom";
// export function
export function sayHello(name) {
 alert("Hello " + name);
}
function sayName(){
 alert('My name is: ' + name);
}
function sayBye(name) {
 alert("Bye " + name);
}
export sayBye;

In the preceding module, we have defined three functions as well as a module
variable. Note that while the variable name is not inside of a function, its scope is still
limited to the module. This means that no external code to the module can access it.

We have also used the keyword export to make two of our functions available to the
potential consumers of the module. As you can see, we can use export either on the
function declaration, as in the case of sayHello function, or as a reference, in the case
of sayBye function.

To create a module as an embedded module in an .html file, we can use the
following syntax:

<script type="module">
 var modulePrivateVar = 2
 alert("The value in the module is: " + modulePrivateVar);
</script>

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[246]

Note that we have specified type of the script to be module, which causes the
browser to treat the code inside the <script> tag as an ES6 module.

Consuming an ES6 module
When the external code to an ES6 module needs to have access to what has been
exposed by the module, binding needs to be used.

Consider how we can get access to the two functions that were exposed by our first
module, simpleModule, as shown here:

import { sayHello, sayBye } from "simpleModule.js";
sayHello();
sayBye();
sayName(); // error, sayName was not exported

As shown, we need to use the keyword import to create binding between the
external code to the module and the functions that the module exports.

Also, notice that since sayName was not exported by the module, we have no
access to it.

Module loading sequence in the browsers for
ES6 modules
ES6 modules in the browsers are always loaded as soon as the browsers encounter
the following tag:

<script type="module" src="simpleModule.js">

However, the code in the module is not executed until the document has been
completely parsed.

Modules are also executed in the order in which they appear. This means that in our
preceding examples, if we had listed our modules as:

<script type="module" src="simpleModule.js">
<script type="module">
 var modulePrivateVar = 2
 alert("The value in the module is: " + modulePrivateVar);
</script>

Chapter 10

[247]

The code in simpleModule.js would be executed before the code for our embedded
module would.

Since a module can also have its own dependencies, which it defines using the
import statements (bindings), each module is parsed completely before its code is
executed. This is so the dependencies can be resolved correctly.

This means, if the browser encounters an import statement in an already
downloaded module, it will download the dependency first before executing the
code in that module. This ensures that all the modules and their dependencies are
loaded before any code-execution in the modules.

There is a lot more to ES6 modules than what we have covered here, as this was
meant to be a very brief introduction. I encourage you to research the subject further
on your own. There are many good resources online which you can refer to and I
highly recommend the following sites for more information:

• https://leanpub.com/understandinges6

• https://hacks.mozilla.org/2015/08/es6-in-depth-modules/

• https://developer.mozilla.org/en/docs/web/javascript/reference/
statements/import

Final note regarding our Images Inc. application
It is always a good idea to revisit and improve the quality of
the code in our applications. As such, I have made some small
modifications to the code-base related to this chapter. The latest
project's code is a little more polished and linted. Also, I have made
improvements to the visual responsiveness of the application in the
browsers by making some changes to the related CSS files.
However, there are always things that can be improved further in
any project and this application is no exception.
Nonetheless, I hope the application will provide a good starting
point for your future projects.

https://leanpub.com/understandinges6
https://hacks.mozilla.org/2015/08/es6-in-depth-modules/
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import

Enterprise Grade Modular Design, AMD, CommonJS, and ES6 Modules

[248]

Summary
As this was the last phase in the implementation of our application, in this chapter
we discussed how we can improve the dependency management and loading of our
modules in the browser.

By re-factoring our application's code, we converted our Core submodules to AMD
modules and then used RequireJS to load all of our JavaScript files asynchronously
from the server.

We saw how we can use RequireJS, which is mainly a script-loading library, to load
our AMD and non-AMD modules.

We also covered different formats for defining modules in JavaScript and talked
about AMD, CommonJS, and ES6 modules. Since this book is focused on using
JavaScript in the browsers, we spent more time getting to know AMD modules, as
they are better suited for this purpose.

In our overview of CommonJS and ES6 modules, we noted the similarities between
the two formats and saw how ES6 modules can be used in our code.

I hope you have found this book informative and a good introduction to modular
programming with JavaScript.

As always, there is a lot more to learn for all of us and I wish you great success in
your future endeavors.

[249]

Index
Symbols
__proto__ object

selecting 116
used, for module inheritance 111-113

A
advantages, multiple instances of

sandbox module
about 129
code execution context, creating 130
isolation 129
performance improvements 131

Agile development environment 8
AJAX 136
alert box 92
almond.js

reference link 232
AMD format

using, by re-factoring Images
Inc. application 238

AMD modules
AMD person module, consuming 234
core submodules, modifying into 238
dependencies of dependencies, loading 235
importing 231
loading, with test project 232, 233
paths, setting in config object 237
simple person AMD module,

creating 233, 234
AngularJS 123
application

components 188
defining 58
designing, in modular way 7, 8

functionality 158
implementation 162
requirements 58, 59
user's view 156

application architecture
base module 124
components 148
considerations 152
core module 132
overview 122
sandbox module 126

application components
about 189
content component 193
footer component 192
header component 191
notificationWidget component 196
notificationWidget, rendering 199, 200
registering, with MainCore

module 189, 190
application content area

generating 94, 95
application controller

about 61
modules 62

application functionality
about 158
favorites page 159, 160
image page 158, 159
index page 158
support widget 161

application implementation
about 162
base module implementation 165, 166
core module implementation 166

[250]

module files, loading in module
files 163-165

SandBox module implementation 186
application model

about 73
module, creating as 74, 75

application modules
auto initialization 53, 54

application non-core modules
about 51
testModule1 implementation 51
testModule2 implementation 52

application view
about 68
generating dynamically 72
Header fragment, generating 71
index.html page skeleton, creating 69, 70
object definition, creating for header 70

Asynchronous Module
Definition (AMD)

about 164, 230
used, for defining modules 230, 231

asynchronous script loading
simulating 91

automated tests
end to end (E2E) testing 207
integration testing 207
types 205
unit testing 205
writing, advantages 204

B
base module

about 124, 125
general purpose libraries, adding 125, 126

Behavioral Driven Development (BDD)
unit tests 206

C
Chai

about 221, 222
reference link 222

Client-side Modular Design (CMD) 123
Closure

defining 22-24

CommonJS(CJS) module
about 243
curl.js 243
implementing 243
reference link 244
SproutCore 243

components
about 68, 123, 148
design considerations 151
events, binding to elements 150
required methods 149

considerations, application
architecture 152, 153

constructor property 35
constructor stealing 32-34
content area click events

Add To Favorite link click event,
handling 194

handling 193
image click event, handling 195

content area generator methods
buildFavouritesPage 196
buildImagePageHTML 196
buildIndexContentHTML 196
getAnchorHTMLStr 196

content component
about 193
area generator methods 196
content area click events, handling 193

content delivery network (CDN) 221
cookie 136
core module

about 62, 132
application level extensibility,

providing 144, 145
centralized approach, providing for

error handling 142-144
communication bridges, providing 136, 137
components, destroying 138, 139
components, initializing 138, 139
core construction approach 133, 134
plug-and-play capability,

providing 140-142
tasks, performing 132
third party libraries, leveraging 145-147

core module implementation
about 166, 167

[251]

component registration, with
MainCore 172-175

components, dynamic loading by
MainCore 175, 176

functionality, routing in MainCore
module 180

MainCore module implementation 167
publish-subscribe implementation,

in MainCore module 183
curl.js

reference link 243

D
deep cloning 104
design pattern 39
Dot Matrix 221
Dynamic Page Generation (DPG) 72
dynamic views

defining 59

E
ECMAScript 6 12
ECMAScript 6 modules

about 244
considerations 244
consuming 246
defining 245
loading sequence, in browsers 246, 247
reference links 247

encapsulation
defining 24-27

end to end (E2E) testing 207
Expect 222
extensible 58

F
first module

defining 63-66
functionality, using 66, 67
interface, defining 67, 68

framework 123
functionality, routing in MainCore module

URL, adding to history object of
browser 180, 181

URL, obtaining from history object
of browser 181, 182

function object
about 14
versus object literal notation 16-18

functions
as object constructors (classes) 14, 15
as static objects 15, 16

G
GitHub 225
GlobalData module 200, 201
graceful degradation 124
Grunt

reference link 212
Gulp

reference link 212

H
history API

reference link 181

I
IIFE 26
Images Inc. application

about 247
booting up, with RequireJS 241-243
config.js file, setting up 240, 241
core submodules, modifying into AMD

modules 239
non-AMD modules, loading with

RequireJS 240
ImagesInc_GlobalData module

augmentation 82, 83
augmenting code, loading 92
data encapsulation, testing 88
loose augmentation, performing 85-87
tight augmentation, performing 89-92

ImagesInc_Utilites module
about 106
creating 106, 107
custom cloning method, testing 108, 109
features 109, 110

Immediately Invoked Function
Expression (IIFE) 41

[252]

implementation inheritance 28
index.html

about 228
used, for loading modules 228, 229

inheritance
constructor stealing 32, 33
defining 27
parasitic combination inheritance 33, 34
prototype chaining 28

integration testing 207
interface inheritance 28

J
Jasmine

about 215
exploring 220
reference link 215
spec file, creating 218, 219
unit tests, running 219, 220

Jasmine 2.4
setting up 216, 217

JavaScript (ES6)
URL 12

JavaScript modules
reference link 231

JavaScript objects
Closures 22-24
constructor property 35
defining 12
encapsulation 24-27
function object 14
inheritance 27
native support, for inheritance 36-38
object literal notation 13, 14
object literal notation, versus

function object 16-18
object type constructor 12, 13
scoping 24-27
this keyword 19-22

jQuery
about 104
and AMD format 234
reference link 105

JSON exploit
reference link 105

L
List 221
local storage 136
lodash

about 105
documentation link 105

loose augmentation
about 83
of ImagesInc_GlobalData module 85-87
of modules 83, 84

loose coupling
creating, among modules 48-50

M
MainCore

component's resources,
dynamically loading from server 179

component's object definitions, obtaining
from local storage 178

dynamic loading of components 175-177
object definitions, storing in local

storage 177, 178
MainCore.js 217
MainCore module

augmenting 168
augmenting, with sub-modules 169-171
augmenting, with tight augmentation 169
functionality, routing 180
implementation 167, 168

Minimum Viable Product (MVP) 73
Mocha

about 220, 221
Chai 222
exploring 225
Mocha-Chai unit tests, running 224, 225
reference link 221
setting up 221, 222
spec file, creating 223

mocks 219, 220
Model-View-Controller (MVC) 60
Model-View-Wildcard (MV*) 60
modular design, advantages

graceful degradation 171
plug-and-play 171
progressive enhancement 171

[253]

modular programming 2, 3
module augmentation

about 79, 80, 83
implementing 80, 81
of ImagesInc_GlobalData module 82, 83

Module Design Pattern
using 7

module inheritance
__proto__ object, using 111-113
about 111
parasitic combination inheritance,

using 113-116
selecting 116

module pattern
about 39
defining 39-42
internal private scope 42-44
object factory module 45-47
problems 66
properties adding, to interface 44, 45

modules
application core module 50
application Mediator module 51
application non-core modules 51
cloning 100
creating 3
defining, with AMD format 230, 231
design considerations 55
example 3, 4
inheritance 111
loading, with index.html 228, 229
loose augmentation 83, 84
module initialization 55
naming conventions 81
non-modular example 5, 6
re-factoring 6, 7
tight augmentation 89

modules, application controller
communication handler module 63
logging handler module 63
message handler module 63
page updater module 62
storage handler module 63
utilities module 63

modules, cloning
assignment operator, used for

copying objects 102, 103

constructor function instances,
creating 100-102

object clone, creating 103
multiple instances, sandbox module

advantages 129
implementing 129

N
namespace 82
Node.js 225
non-AMD modules

consuming 235, 236
loading 235, 236
loading, with RequireJS 240
shims, creating 237, 238

notificationWidget component
model 196
required methods 197, 198

O
object clone, creating

about 104
cloning approaches 104
custom clone method, creating 105, 106
deep cloning 104
external libraries, using 104
JSON exploit, using 105
shallow cloning 104

Object Factory design pattern 17
object factory module 45-47
object literal notation

about 13, 14
versus function object 16-18

Object Oriented Programming (OOP) 11

P
package

creating 6
parasitic combination inheritance

about 34
selecting 116
used, for module inheritance 113-116

private variable 25
privileged methods 66
progressive enhancement 124

[254]

project code 88
Proof Of Concept (POC) 155
prototypal inheritance 36
prototype chaining

about 28, 34
constructor property, resetting 31
property look up, in prototype

chaining 29, 30
publish-subscribe implementation

components, registering for custom
events 183, 184

custom events, broadcasting by
components 184, 185

in MainCore 183

R
React 123
RequireJS

about 232
downloading 232
reference link 238
used, for booting up Images Inc.

application 241-243
used, for loading non-AMD modules 240

revealing module pattern 53

S
sandbox functionality

about 127
as communication layer 128
as consistent interface 127
as filter 128
as security layer 128

sandbox module
about 126
components 127
functionality 127
multiple instances, implementing 129

SandBox module implementation
about 186
component's container context, setting in

SandBox instance 187
considerations 188
constructor 186
instance, identifying 187

scope chain
about 13
URL 13

scoping
defining 24-27

shadowing 30
shallow cloning 104
Single Page Application (SPA) 60, 158
singleton objects 39
Sinon

about 223
reference link 223

SPA application
application controller 61
application model 73
application view 68
first core module 63
logging module, creating 76, 77
references 60

specialized modular approach 5
spies 219
SproutCore

reference link 243
stubs 219, 220
sub-modules

AjaxEngine 171
CookieHandler 171
NotificationHandle 171
StorageHanlder 171
utilities 171

submodules
about 116
adding, asynchronous properties
used 118, 119
adding, dynamic properties used 117, 118

T
Test Driven Development (TDD) unit tests

about 205
versus Behavioral Driven Development

(BDD) unit tests 206
tests

writing 203
this keyword

defining 19-22

[255]

tight augmentation
about 89
considerations 93, 94
of ImagesInc_GlobalData module 89-92

U
unit testing

about 205
Behavioral Driven Development (BDD) 206
TDD, versus BDD 206
test coverage 207
Test Driven Development (TDD) 205
tests, writing 208

unit tests, writing without unit testing
frameworks

about 208
AppTester module, adding to

application 208, 209
cleaning up, after running tests 214
CookieHandler module unit tests 210-212
CookieHandler module unit tests,

running 212-214
unit test suites, adding to test-runner 210

unit tests, writing with third party
frameworks

about 215
Jasmine 215
Mocha 220

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What Are Modules and
Why Are They So Good?
	Prelude to modular programming
	The simple rule for creating modules
	A real-life example of modules
	A look at a non-modular example
	Re-factoring to a more modularized approach
	Designing in a modular way
	Summary

	Chapter 2: Review of Important JavaScript OOP Concepts
	JavaScript objects
	Object type constructors
	Object literal notation
	Function objects
	Functions as object constructors (classes)
	Functions as static objects

	Object literal notation versus function objects
	The "this" keyword
	Closures
	Encapsulation and scoping
	Inheritance
	Prototype chaining
	Constructor stealing
	Parasitic combination inheritance

	Constructor property
	Native support for inheritance

	Summary

	Chapter 3: Module Design Pattern
	Module pattern
	Internal private scope in module pattern
	Adding properties to an interface in module pattern
	Object factory module

	Creating loose coupling among modules
	Application core module
	Application Mediator module
	Application non-core modules
	testModule1 implementation
	testModule2 implementation
	Auto-initialization of application modules

	Module initialization and design considerations

	Summary

	Chapter 4: Designing Simple Modules
	The big picture
	Our application requirements
	Dynamic views

	Designing our SPA main pieces
	Application controller
	Application controller modules

	Creating our first core module
	Structure of our first module
	Using our first module's functionality
	Mapping our module's methods to its interface

	Application view
	Creating the index.html page skeleton
	Creating an object definition for the header
	Generating the Header fragment dynamically
	Generating client application's view dynamically

	Application model
	Creating a module for our application's model

	Creating a logging module

	Summary

	Chapter 5: Module Augmentation
	Principles of module augmentation
	Implementing module augmentation
	Simple augmentation of ImagesInc_GlobalData
	The order of things in module augmentation
	Loose augmentation of modules
	Loose augmentation of ImagesInc_GlobalData
	Testing ImagesInc_GlobalData data encapsulation

	Tight augmentation of modules
	Tight augmentation of ImagesInc_GlobalData
	Loading ImagesInc_GlobalData augmenting code
	Considerations in tight augmentation

	Generating our application's content area
	Summary

	Chapter 6: Cloning, Inheritance,
and Submodules
	Cloning modules
	Creating instances of a constructor function
	Using the assignment operator for copying objects
	Creating a clone of an object
	Shallow cloning and deep cloning
	Using external libraries for cloning
	Using JSON exploit for cloning
	Creating a custom clone method

	Creating ImagesInc_Utilites module
	Testing our custom cloning method in ImagesInc_Utilites module
	An important aspect of our cloning method

	Inheritance in modules
	Module inheritance using __proto__ object
	Module inheritance using parasitic combination
	Deciding on the module inheritance approach

	Submodules
	Adding submodules using dynamic properties
	Adding submodules using asynchronous properties

	Summary

	Chapter 7: Base, Sandbox, and Core
	Application architecture overview
	Base module
	Adding general-purpose libraries to the
base module

	Sandbox module
	Sandbox module functionality
	Sandbox as a consistent interface
	Sandbox as a security layer
	Sandbox as a communication layer
	Sandbox as a filter

	Implementing multiple instances of the sandbox module
	Advantages of multiple instances of the sandbox

	Core module
	Core module construction approach
	Core module functionality

	Acting as the controller
	Providing communication bridges
	Initializing and destroying components
	Providing plug-and-play capability
	Providing a centralized approach to
handling errors
	Providing application-level extensibility
	Leveraging third party libraries

	Components
	Components required methods
	Binding events to the components elements
	Component design considerations

	Application architectural considerations
	Summary

	Chapter 8: Application Implementation – Putting It All Together
	The user's view of our application
	Application functionality
	Index page
	Image page
	Favorites page
	Support widget

	Application implementation
	Loading our module files in index.html
	Base module implementation
	Core module implementation
	MainCore module implementation
	Component registration with MainCore
	Dynamic loading of components by MainCore
	Routing functionality in MainCore module
	Publish-subscribe implementation in MainCore

	SandBox module implementation
	SandBox module's constructor
	Setting a component's container context in the SandBox instance
	Identifying the SandBox module's instance
	SandBox module considerations

	Application components
	Registering components with MainCore module
	Header component
	Footer component
	Content component
	Handling content area click events
	Content area generator methods

	NotificationWidget component
	NotificationWidget's model
	Required methods of the notificationWidget component

	Rendering notificationWidget

	GlobalData module
	Summary

	Chapter 9: Modular Application Design and Testing
	Advantages of writing automated tests
	Different types of automated tests
	Unit testing
	TDD unit tests
	BDD unit tests
	TDD versus BDD
	Test coverage

	Integration testing
	End to end testing

	A simple start to writing our unit tests
	Writing unit tests without any unit testing frameworks
	Adding an AppTester module to our application
	Adding unit test suites to our test-runner
	CookieHandler module unit tests
	Running CookieHandler unit tests
	Cleaning up after running our unit tests

	Writing unit tests using third party frameworks
	Introduction to Jasmine
	Introduction to Mocha

	Summary

	Chapter 10: Enterprise Grade Modular Design, AMD, CommonJS, and ES 6 Modules
	Revisiting index.html file
	Introducing Asynchronous Module Definition
	Defining modules using AMD format
	Importing AMD modules
	Introducing RequireJS
	Downloading RequireJS

	A test project for creating and loading AMD modules
	Creating a simple AMD module
	Consuming our person AMD module
	Loading dependencies of dependencies
	Loading and consuming non-AMD modules
	Setting paths in the config object
	Creating shims for non-AMD modules

	Refactoring Images Inc. application to use AMD format
	Modifying Core submodules into AMD modules
	Loading our non-AMD modules using RequireJS
	Setting up our application's config.js file
	Booting up our application using RequireJS

	CommonJS
	Implementing a CommonJS module

	ECMAScript 6 modules
	Defining an ES6 module
	Consuming an ES6 module
	Module loading sequence in the browsers for
ES6 modules

	Summary

	Index

