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solve problems, update and enhance their professional skills, make their work 
lives easier, and capitalize on opportunity.
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unbiased advice you need to excel in your daily work life. Our authors have no 
axes to grind; they understand they have one job only—to deliver up-to-date, 
accurate information simply, concisely, and with deep insight that addresses 
the real needs of our readers.
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We are always interested in your feedback or ideas for new titles. Perhaps 
you’d even like to write a book yourself. Whatever the case, reach out to us 
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Introduction
In December of 2013, I was a sales engineer at Symantec. It was the week 
before Christmas, and it was very quiet. With no meetings and no training, 
I spent time doing what I normally did with my down time: playing around 
with the data stream coming in from our honeypots, looking for something 
interesting.

It turned out there was something very interesting going on: a huge spike in 
NTP traffic. I was curious as to what was going on. It turned out that hack-
ers had discovered the monlist command in NTP. Monlist is a command that 
outputs a whole lot of data, but only takes a little bit of data to issue a query. 
That makes it perfect for use in Distributed Denial of Service (DDoS) attacks. 
Eventually, hacker groups went on to launch what was at that time the largest 
DDoS attack in history.

The thing was, security researchers and the NTP developers had known about 
this potential attack and had issued security recommendations to prevent 
these types of attacks from occurring. But no one saw them.

Even today, more than three years later, there are still unpatched public-facing 
NTP servers that can be used in these types of attacks. The reason for this 
is that NTP is an obscure protocol. It is critical for the functioning of the 
Internet, but most people don’t know anything about it. They set the protocol 
when a new system is deployed, then they forget all about it.

That is part of the reason why I wrote this book. I want to raise awareness 
of NTP and the potential security risk it poses to networks if not secured 
properly.

Thank you for your interest in this book. I would love to hear your feedback, 
good and bad, about the book. If you have any comments, you can email me at 
allan@allan.org.
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C H A P T E R 

Understanding 
NTP
Marking the passage of time has played a role in every great civilization, and 
as civilizations have continued to evolve, they have also developed a need for 
more precise timekeeping. The Sumerians, in early Mesopotamia, were content 
to track the months and years—as early as 3500 BCE—while the Egyptians, a 
few centuries later, used giant obelisks to track the time during the day. Even 
within civilizations, the marking of time continued to advance. The Egyptians 
moved from obelisks to more precise and portable sundials that divided days 
into 12 parts and were used to track working hours. Shadow clocks allowed 
Egyptians to track time day and night, and water clocks were used to track 
time irrespective of the sun.

Other civilizations built on the idea of the water clock and refined it to the 
point that the Romans used water clocks as alarm clocks and the Greeks used 
them as stopwatches. Refinements on the water clock continued through the 
13th century, when the mechanical clock was introduced.

A mechanical clock is different than a water clock, even if the water clock relies 
heavily on gears, as those in the 13th century did. A mechanical clock is different 
because it has an escapement. An escapement is a mechanical device that releases 
a small amount of energy over a fixed period of time, resulting in the movement 
of, in the case of a clock, gears, which in turn move the hands on a clock. The ear-
liest mechanical clock was a Verge and Foliot Escapement, which used a regulating 
weight attached to a cord that was wrapped around a drum. The tension from 
the weight falling slowly turned the drum, which caused the crown gear to turn, 
which in turn moved the pinion, and the hands on the clock turned.

1
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Like the first obelisks in Mesopotamia and Egypt, the first mechanical clocks 
were used in churches and town squares to mark the passing of time for the 
entire town.

Mechanical clocks offered an advantage over water clocks because they had 
less drift. Drift, in the field of horology, is the amount of time that a timekeep-
ing device strays from the correct time over a given period. The best water 
clocks had a drift of about 15 minutes over the course of a day. So, if the 
correct time was 11:00 PM, a water clock could report the time as being any-
where from 10:45 PM to 11:00 PM. However, improvements in the technology 
of the underlying mechanical clocks significantly reduced drift. In fact, drift in 
mechanical clocks was halved roughly every 30 years, so that by the end of the 
20th century drift, in an everyday mechanical clock it was only seconds a day.

In the early 19th century, the first electric clocks were introduced. The first 
electrical clocks were battery powered, but the DC (direct current) did not 
power the clock itself—instead, it powered the mechanical mechanism, which 
in turn powered the clock. Essentially, the batteries replaced the winding 
mechanism. Early DC-based electric clocks did not offer improvement in drift, 
but AC (alternating current) electric clocks eventually did.

AC-based electric clocks became much more pervasive as alternating current 
won out of direct current in the electricity battles of the late 19th and early 20th 
century. By the 1930s, AC-based electrical clocks were the most popular type 
of clocks in the United States. AC-based electric clocks offered the advantage 
of improved accuracy. AC-based clocks used a cycle motor, which did not 
impact the timing mechanism; rather, the cycle motor acted as a meter for the 
actuating impulse of the AC power delivered by the electric company. Most 
electric companies settled on a 60-hertz standard for delivering AC power, so 
the current alternated 60 times per second. The meter in an AC-based elec-
tric clock synchronized the time to the current to ensure the clock remained 
accurate and drift was kept to a minimum. Even if an AC-based electric clock 
did drift a couple of seconds over a period of time, it would synchronize with 
the cycle from the electric company to make up those seconds, thus keeping 
AC-based electric clocks accurate to within a few seconds per month.

The problem with timekeeping so far was that the clocks did not keep time 
consistently. Each one of the clocks described above was subject to drift based 
on environmental variables. Changes in temperature or altitude could signifi-
cantly alter the amount of drift to which a clock was subject.

In the 20th century, accurate timekeeping became much more important. In 
a now-global world, precise timekeeping was important for communication, 
travel, and collaboration. To this end, in 1928 the first quartz clock was devel-
oped by Warren Morrison and Joseph Horton at Bell Telephone Laboratories 
(now known as Nokia Bell Labs and responsible for many inventions we take 
for granted today). Quartz clocks were different because they did not rely on 
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mechanics to keep track of time; instead, the clock used a power source (usu-
ally a battery) to send an electronic signal through circuit to a quartz crystal, 
which would vibrate (properly known as oscillating). One of the unique prop-
erties of quartz is that it oscillates 32,768 times per second. It does this no 
matter where it is, or what the temperature is. The circuit counted the num-
ber of oscillations, and when it reached 32,768, it told the clock to advance 
one second. Quartz clocks were low-powered, so a single battery could keep 
it running for months or years with very little drift. A quartz clock was usually 
accurate to within a few seconds a month and it was portable. Everyone could 
now have a clock as accurate as an AC clock, but always with them.

At about the time quartz clocks were being developed, a different, even more 
accurate type of clock was also being developed: the atomic clock. The con-
cept of an atomic clock was not new. It is believed that Scottish physicist James 
Clerk Maxwell first suggested the use of atoms as a way to measure time in 
the 1870s. In fact, Maxwell also suggested the idea that quartz would make an 
excellent oscillating material.

Building on the work of Maxwell, Isidor Isaac Rabi developed a framework for 
building an atomic clock in the 1930s at Columbia University. An atomic clock 
took the quartz clock concept and shrunk it. Instead of measuring the oscillat-
ing of a quartz crystal, the atomic clock measured the oscillation of a specific 
atom. The first atomic clock used the ammonia molecule as its base and was 
introduced in 1949. Unfortunately, ammonia was not a good choice to use in 
atomic clocks, and the first atomic clock was no more accurate than the best 
quartz clocks of the day.

In 1950, a team at the National Bureau of Standards (NBS), led by Harold 
Lyons and Jesse Sherwood, started development of a new atomic clock that 
would use cesium instead of ammonia. Cesium had a number of qualities that 
made it better suited as an element in an atomic clock. Unfortunately, work on 
the atomic clock was halted at NBS. However, in the United Kingdom there 
was a separate team, led by Louis Essen and Jack Perry, working an atomic 
clock at the National Physical Laboratory (NPL) located in Teddington.

■■ Note  NPL also broadcasts the time over the air from the Anthorn Radio Station in Cumbria, 

and it is known as the MSF signal. Until 2007, the signal was operated from a radio station in 

Rugby. The radio station has three atomic clocks, one of which is installed on site. The signal is 

broadcast over a frequency of 60 KHz. People all over Europe can use the signal to synchronize 

their clocks, but the signal spreads even farther. Researchers in Antarctica in the 1950s were able 

to synchronize their time by listening to the familiar “This is MSF, Rugby, England, transmitting…” 

every 15 minutes.
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The NPL team also relied on the cesium molecule, and they released their 
clock in 1955. The first atomic clock was so accurate that it only had a one-
second drift every 300 years. As with mechanical clocks, scientists continue to 
improve the accuracy of atomic clocks, so much so that today’s atomic clocks 
have a drift of one second every 300 million years.

Quartz and atomic clocks did more than improve on the accuracy of other 
types of clocks; they changed the definition of time. Until the quartz clock, 
time was measured based on the rotation of the earth and its revolution 
around the sun. A second was defined as 1/86400th of a day. Because scientists 
now had a more accurate and consistent tool with which to measure time in 
1967, a second was redefined as:

The second is the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between two hyperfine levels of the ground 
state of the cesium 133 atom.1

Even though most people still think of time in terms of the rotation of the 
earth, that is no longer the case in the scientific community, and it has not 
been that way for decades.

While this book is not about the history of time, an understanding of how the 
perception of time has changed and how societies have evolved their ability 
to measure time is important for understanding the Network Time Protocol 
(NTP). A fundamental understanding of NTP is critical to understanding the 
security problems associated with it and how to implement NTP in the most 
secure way possible.

A Brief History of Time Synchronization
Almost from the invention of tools to track time, there has been a need to 
synchronize those tools to account for inaccuracies in measurement or flaws 
in the tools used to measure time.

The Sumerians were among the first civilizations to create a calendar. The 
Sumerian calendar followed the lunar cycle and contained 354 days divided 
into 12 months. Of course, since a year is actually 365.24 days long, every 
few years they would have to have a leap month to make up for the missing 
11.24 days. This is a form of time synchronization, and allowed the Sumerians 
to sync their calendar with the celestial time and keep their months in the 
proper seasons.

113th Conférence Générale des Poids et Mesures (CGPM) 1967/1968 Resolution 1, p 103.
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Timekeeping devices eventually became smaller and even portable; it was nec-
essary to sync them on a regular basis with permanent clocks. For many early 
societies, those clocks were simply the large obelisks or water clocks that 
remained in the center of early cities. As mechanical clocks became more 
common, community churches often became the authoritative “time serv-
ers.” Citizens of a town or city could sync their clocks at home based on the 
church bells, which usually went off at the top of the hour and every fifteen 
minutes between the hours. The churches would ring the bells a different 
number of times to indicate whether it was the top of the hour, quarter of an 
hour, half an hour, or three quarters of an hour.

As civilizations became more interconnected, the need for synchronized time 
became more apparent and important. Remember that prior to the invention 
of the quartz and atomic clocks, time was linked to the movement of the earth 
and position of the sun. This meant that time between cities—even cities that 
were within a day’s travel—could vary by minutes or hours.

When most commerce was conducted within the same city or was only con-
ducted in an ad-hoc fashion with other cities, this time difference was not a 
problem. But with the rise of railroads in Great Britain, even slight variations 
in time could cause problems with schedules as the trains traveled from one 
end of Great Britain to another.

The Great Western Railway in Great Britain was the first railway to intro-
duce railway time. Railway time is a way of applying a single standard time 
across a wide range of local times. Prior to the adoption of railway time, 
schedules were distributed to travelers that told them how much to adjust 
their watches forward/backward when they arrived in a new town. Again, this 
method worked perfectly fine when the primary mode of transportation was 
horse and buggy, but not for trains.

In 1840, the Great Western Railway decided to standardize on Greenwich 
Mean Time (GMT) across all of its stations. There were two reasons for this: 
The first is that it made it easier to track train travel across the country. The 
second is that the Great Western Railway had also introduced telegraph sta-
tions at some of their rail stations in 1839.

■■ Note  Greenwich Mean Time (GMT) is equivalent to the time in London as set by the Royal 

Observatory, Greenwich (RGO). In 1840, the RGO was already a critical part of the fields of 

astronomy and naval navigation within Great Britain. The RGO was also the keeper of GMT, which 

was well established at the time of its introduction to the railroads and is still used today, though 

it has largely been superseded by Coordinated Universal Time (UTC) in the technical and scientific 

world.
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The use of the telegraph allowed stations to sync their time to GMT. Instead 
of relying on offsets, paper schedules, and manual adjustments, time could 
now be synced almost instantaneously across the telegraph lines, directly from 
the RGO. GMT quickly became the standardized time across Great Britain. 
Initially, towns and cities were resistant to the idea of changing their clocks to 
match London. As the rail spread throughout Great Britain, and more railroad 
companies adopted GMT as their standard time, towns and cities quickly real-
ized they need to adapt.

In the United States, the United States Naval Observatory served the same 
role as the RGO. Starting in 1845, the Naval Observatory managed a “time 
ball” that was dropped precisely at noon every day. Ships in port were able to 
set their clocks before heading out to sea, to ensure they would be able to 
maintain accurate time during their voyage. Citizens of Washington DC were 
also able to set watches and clocks when the time ball dropped.

The Naval Observatory eventually began using the telegraph system, which 
ran along railroad lines as it did in Great Britain, to synchronize time across 
all railroad systems.

Eventually, the telegraph was superseded by the telephone, and most tele-
phone companies offered a time service to their customers. Anyone of a cer-
tain age will most likely remember being able to call 844- [any four numbers] 
and listen the message, “At the tone, the time will be…”

■■ Note  The United States Naval Observatory still maintains a phone-based time system. Calling 

202-762-1401 will connect the caller to a pre-recorded message providing the time in five-second 

intervals.

The phone time service was important for decades because the rise of the 
suburbs and continued growth of the city meant that it was not easy to sync 
timepieces with large clock in a town square. The idea of networked clocks 
was not yet commonplace, so “calling time” was the only way to ensure that 
clocks and watches remained synchronized with the rest of the world.

The Importance of Time Synchronization in 
Modern Networks
Synchronizing time has always been a critical part of society. Even going back 
to early calendars, if the calendar drifted too far from the revolution of the 
earth around the sun, farmers would wind up planting crops too early or too 
late. As the populations of cities continued to grow, synchronizing time was 
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important to ensure that meetings and other activities that were critical to 
running cities happened at the correct time. Of course, in war, time synchro-
nization has always been important. Synchronized time allows commanders to 
plan attacks at specific times and coordinate troop movements against a single 
force or on multiple fronts. Time synchronization has also become critical in 
the world of finance—if time is off by even as much as a few seconds in trading 
systems, it can result in the loss of millions of dollars.

Beyond agrarian, military, and finance needs, as society has become more 
interconnected, time synchronization has become a critical part of commerce 
and communication.

Nowhere is this more apparent than in modern communication standards. It 
doesn’t matter if devices are communicating over a cellular network, cable 
network, wireless network, or fiber optic network—time synchronization is 
critical to ensuring that the communication works as designed.

Each network type has its own synchronization protocol. Networked com-
puters generally use the Network Time Protocol, but other communications 
networks rely heavily on synchronized timing as well. Cellular networks, for 
example, require phones to be properly synched to towers and to the car-
rier’s cellular network so that calls can be properly tracked and conversations 
can continue uninterrupted as a phone passes from one cell tower to the next.

Each of these industries uses different standards to track time synchroniza-
tion, but they all base their synchronization on the atomic clock.

The Network Time Protocol
Because accurate time on devices that communicate over the Internet is so 
important, early Internet pioneers realized that they needed a way to ensure 
those devices could synchronize time. One of the first attempts at this, out-
lined in Request for Comments (RFC) 868, was the Time Protocol. The Time 
Protocol was introduced by a team led by the great Jon Postel, and operated 
over either the Transmission Control Protocol (TCP) port 37 or the User 
Datagram Protocol (UDP) port 37. Time was delivered as the number of sec-
onds since January 1st, 1900 00:00:00, GMT.

The protocol was relatively simple, the idea being that a node on a network 
could poll other systems on the same network asking for their time. The 
other hosts on the network that were listening on the right ports would reply 
with their current time as a 32-bit integer (again, expressed as seconds since 
January 1st, 00:00:00 GMT). If a queried host had its time set to January 1st, 
2017 GMT, it would return a response of 3692217600, very similar to the way 
Epoch time works on UNIX systems, but with a base date of January 1st, 1900 
GMT instead of a base date of January 1st, 1970 GMT.
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The Time Protocol had a number of weaknesses and is not widely used today, 
though the xinetd daemon and rdate command still use it, as well as some cable 
Internet providers whose equipment supports the Time Protocol over Data 
Over Cable Service Interface Specifications (DOCSIS). In almost all cases, any 
application that requires time synchronization over a network uses NTP.

The specification for version zero of NTP was documented as part of RFC 
958, written by David L Mills, in 1985. However, the roots of NTP go back 
further than that. The concept of time synchronization across computer con-
nected networks was first mentioned in Internet Experiment Note (IEN) 173, 
“Time Synchronization in DCNET Hosts,” also authored by David L Mills 
in February of 1981. IEN 173 became RFC 778, “DCNET Internet Clock 
Service,” in April of 1981.

In other words, the idea of synchronizing time between computer systems 
across the Internet is more than 35 years old.

Understanding NTP
At its most basic, NTP is a protocol that allows network connected system 
clocks to synchronize time using a tiered set of distributed clients and serv-
ers. NTP allows these clocks to keep time between systems synchronized to 
within tens of microseconds (one second is equal to one million microsec-
onds) of each other. It does this in a robust and scalable way without having to 
rely on a single centralized server that could be prone to failure.

The fact that NTP is so robust and decentralized is what has allowed to it 
thrive as a protocol over 35 years. It has also led to continual improvements 
in the protocol to allow for more accurate timekeeping and more capabilities 
in the underlying program.

NTP has not only continued to grow in use, but the underlying program 
has also been ported to a wide array of platforms, from UNIX and Linux to 
Microsoft Windows and Cisco’s Internet Operating System (IOS) platform. 
In fact, almost all NTP implementations are based on the core code that is 
maintained by the Network Time Foundation.

While the first version of NTP left a lot of parameters undefined, the current 
version of NTP, version 4, is well documented in RFCs 5905 and 7822. The 
focus of this book is on NTPv4. Other versions of NTP have inherent and eas-
ily exploitable security flaws and should be avoided at all cost.
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■■ Note  Despite the fact that the NTPv4 standard was first published in June of 2010, there are 

still some systems that use NTPv3 as their standard. It is important to know what version of NTP is 

being used on systems in the network, especially closed systems, and to pressure those vendors 

who are still running NTPv3 to upgrade.

NTPv4 uses a hierarchical structure that allows clients to connect to one or 
more systems in order to sync time. There are two types of hierarchical struc-
tures inherent in NTPv4. The first is the modes of operation. In the modes 
of operation, a system can be a primary server, secondary server, or client. A 
primary server is one that is directly connected to a reference clock. A refer-
ence clock maintains time according to UTC standards. This could be one that 
is tied to a GPS system, an Inter-Range Instrumentation Group, or one of the 
other types of reference clocks.

Directly tied to the concept of modes of operation in NTP is the idea of 
the stratum of an NTP host. A stratum is an eight-bit integer that refers to 
the hierarchy of a server, loosely translated as the distance from a reference 
clock and a given NTP server is. Primary servers have a stratum value of 1. 
Secondary NTP servers have a stratum value of between 2-15 depending on 
its logical distance from the primary server, as well as its network path and the 
stability of its system clock. A stratum value of 16 means that the clock on the 
system is no longer synchronized with another clock.

As demonstrated in Figure 1-1, a primary NTP server with a direct connec-
tion to a reference clock is a stratum 1 server. The secondary NTP servers 
that sync with the primary server are stratum 2 servers. These servers not 
only act as clients, getting updates from the stratum 1 server, but also as serv-
ers, providing updates to stratum 3 servers or to hosts on a local network. 
The stratum 3 servers get updates from the stratum 2 servers and provide 
updates to the clients on the local network. Stratum 3 hosts can provide 
updates to stratum for hosts, and so on.
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The only exception to this chain of updates is stratum 0, which is the stra-
tum level reserved for the reference clocks, shown in Figure 1-1. Examples of 
reference time sources include GSM clocks, GPS clocks, and cesium fountain 
atomic clocks.

The NTP server hierarchy can exist entirely within a network, entirely exter-
nal to a network, or as a hybrid of servers that reside inside and outside the 
network. In fact, there are several security advantages to running a stratum 
1 NTP server within an organization’s network. One of the primary security 
advantages is that it makes the organization less susceptible to NTP-based 
Distributed Denial of Service (DDoS) attacks, because it allows the organiza-
tion to restrict access to NTP packets at the firewall. While there is undoubt-
edly higher cost and more complexity involved in acquiring and managing a 
stratum 1 NTP server, the security payoff could potentially outweigh the cost.

NTP from the Client Side
How does all this activity look from the client side? It depends on how the 
NTP is configured on the server side, but on the client end it is relatively 
simple. If a client is configured to use NTP, which most workstations are at 

Figure 1-1.  NTP Hierarchy
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this point, it will generally have a single domain set up that is used to sync time. 
That domain can point to a single host or a number of hosts.

For example, Apple workstations point to time.apple.com, which points to a 
number of different IP addresses depending on the location of the request, as 
shown in Listing 1-1.

Listing 1-1.  Output of a DNS query for time.apple.com

server$ host time.apple.com
time.apple.com is an alias for time-osx.g.aaplimg.com.
time-osx.g.aaplimg.com has address 17.253.20.253
time-osx.g.aaplimg.com has address 17.253.20.125
time-osx.g.aaplimg.com has address 17.253.24.253
time-osx.g.aaplimg.com has address 17.253.24.125
time-osx.g.aaplimg.com has address 17.253.6.253

Microsoft does something similar with their workstations, which use time.
windows.com, and returns a single address, as in Listing 1-2.

Listing 1-2.  Output of DNS query for time.windows.com

server$ host time.windows.com
time.windows.com is an alias for time.microsoft.akadns.net.
time.microsoft.akadns.net has address 40.76.58.209

Microsoft actually recommends using the NTP servers listed at www.pool.
ntp.org, or just querying 0.pool.ntp.org – 4.pool.ntp.org, which returns a 
series of IP addresses, just like the query to Apple and shown in Listing 1-3.

Listing 1-3.  Outpoint of DNS query for 0.pool.ntp.org

server$ host 0.pool.ntp.org
0.pool.ntp.org has address 171.66.97.126
0.pool.ntp.org has address 216.152.240.220
0.pool.ntp.org has address 69.167.160.102
0.pool.ntp.org has address 108.61.73.243

■■ Note  The use of the time.windows.com domain for time synchronization really only applies to 

stand-alone workstations that are not part of a domain. Microsoft Windows desktops and servers 

that are part of a Windows domain will synchronize time with the domain controller for that domain, 

unless they are instructed to do otherwise.

http://www.pool.ntp.org/
http://www.pool.ntp.org/
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On the Linux side, most distributions also have their own NTP servers, some 
of which are managed by the team that runs pool.ntp.org, such as the servers 
listed in Listing 1-4 when querying ntp.ubuntu.com:

Listing 1-4.  Output of DNS query for ntp.ubuntu.org

server$ host ntp.ubuntu.com
ntp.ubuntu.com has address 91.189.94.4
ntp.ubuntu.com has address 91.189.91.157
ntp.ubuntu.com has address 91.189.89.198
ntp.ubuntu.com has address 91.189.89.199
ntp.ubuntu.com has IPv6 address 2001:67c:1560:8003::c8
ntp.ubuntu.com has IPv6 address 2001:67c:1560:8003::c7 

In this case, Ubuntu returns a sampling of IPv4 and IPv6 addresses in response 
to the query. Why do public NTP servers return multiple IP addresses in 
response to a single query? This has to do with the mode in which the NTP 
servers are configured.

NTP Server Configuration
NTP servers can be configured in a number of different ways. The most com-
mon is in a straight client-to-server configuration. This how most organi-
zations who run their own NTP infrastructure set up their servers. In this 
configuration, one or more servers in the network is designated as an NTP 
server, and the local systems in the network point to it for synchronized time.

Generally, these are not stand-alone servers. Instead, they are web servers, 
mail servers, or domain controllers; they serve other functions in the orga-
nization; or they also run NTP. That is why it is a good idea to have multiple 
servers in the network running NTP and to configure servers and endpoints 
in the network to synchronize with multiple NTP servers. Even in the case of 
Microsoft Windows desktops, it is possible to configure a backup NTP server 
to the domain controller.

In the case of NTP pool servers, like pool.ntp.org or time.windows.com, 
the configuration is usually done using the Domain Name System (DNS) or 
Content Delivery Network (CDN). On the surface, the request looks like it 
is going to a single host—instead, that domain name masks hundreds or even 
thousands of servers that are constantly being rotated. This helps to distrib-
ute the load and provide the fastest response to the client. This type of DNS 
is really only necessary when managing hundreds of thousands to millions of 
NTP clients.
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Another way in which an NTP server can be set up is using the anycast proto-
col. Anycast is a way of delivering service from multiple systems all masquer-
ading as the same IP address. It uses a combination of special IP addressing 
and routing protocols—usually Border Gateway Protocol (BGP)—to deliver 
service in a robust manner. In the case of NTP, the NTP client would make a 
request to a single IP address. When the request is broadcast, even if it travels 
through multiple routers, it will find the closest server in that anycast configu-
ration. The identified server will respond and answer any NTP queries. If that 
server crashes, or something happens to it, the next closest server will step in 
and respond to queries from that client, using the same IP address.

The anycast service only works with stateless protocols like NTP and DNS, 
which operate over UDP. Because the servers do not have to maintain any 
sort of state, it is easy for one server to step in when another server becomes 
unresponsive.

Servers and clients can also be configured in broadcast mode, though this is 
not done very often. Broadcast for NTP works in the same way that radio 
does: the NTP server sends out a signal and the clients pick it up. So, an NTP 
server could be configured with a line like this:

broadcast 192.168.1.255

This would send out the time periodically to all hosts on the 192.168.1.0/24 
network at regular intervals. If the NTP clients on that network were configured 
with the broadcastclient flag, they would receive those signals automatically.

In some ways this is a more elegant solution. Instead of 254 hosts sending 
out queries and receiving responses, all 254 are automatically updated, so 
this method actually requires less back-and-forth traffic. On the other hand, if 
there are only 40 hosts on that Class C, it will generate even more traffic. This 
solution also suffers from the fact that many implementations do not support 
it. In fact, very few beyond the NTP reference implementation support this 
configuration.

NTP Reference Implementation
The NTP reference implementation is available at www.ntp.org and has been 
ported to dozens of different platforms and operating systems. It is referred 
to as the reference implementation because it includes support for every fea-
ture outlined in RFC 5905. There are other NTP programs available, but most 
of those don’t include all the features that the reference implementation does.

http://www.ntp.org/
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The NTP program actually consists of three primary applications, as well as 
several others that are used less frequently. The three primary programs are:

	1.	 ntpd – the NTP daemon itself

	2.	 ntpdc – special NTP query program

	3.	 ntpq – standard NTP query program

There is also the ntpdate command, which in the past has been used for 
one-time synchronizations. This program, while still included with most NTP 
packages, is deprecated, as this one-off functionality is now included in the 
NTP daemon.

The heart of the reference NTP implementation is ntpd, the NTP daemon. This 
command is used to synchronize time. It also manages the many algorithms 
that NTP uses to decide which of the upstream clocks to use and updates the 
statistics collected. All of the NTP functionality is contained within the dae-
mon. Control of ntpd can be managed using flags upon starting up the service, 
or, as in most cases, it can be managed through a configuration file.

The standard naming convention for the configuration is ntp.conf, and it is 
normally stored in the /etc directory on most UNIX or Linux systems. A 
typical and basic ntp configuration file will be similar to the output shown in 
Listing 1-5.

Listing 1-5.  Sample ntp.conf file

driftfile       /var/lib/ntp/ntp.drift
logfile        /var/log/ntp.log

server          0.ntp.pool.org           iburst
server          1.ntp.pool.org           iburst
server          2.ntp.pool.org           iburst

broadcast       192.168.1.255        minpoll 10
restrict -4     default                      noquery nomodify nopeer notrap
restrict -6     default                      noquery nomodify nopeer notrap

restrict        127.0.0.1                       nomodify nopeer notrap
restrict        192.168.1.0 mask 255.255.255.0  nomodify nopeer notrap

Different parts of this file will be covered throughout the book. The basics of 
the example include the drift file, log file, server listings, and restrict commands.

The drift file maintains information about the difference between the sys-
tem clock and correct time as provided by the NTP servers. NTP implicitly 
trusts the NTP servers to keep more accurate time than the local clock, so 
it will adjust the system clock unless there is a large difference between the 
two times, and it records that difference. This is one of the reasons that it 
is recommended to synchronize with more than one server at a time. It is 
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always possible for a single server to be off, even in a chain of NTP servers. 
However, it is unlikely for multiple servers in multiple chains to be off of UTC 
time. Synchronizing with multiple upstream servers allows NTP to calculate 
the time difference between the local server and all of the different upstream 
servers. As long as all the upstream servers agree on a time, the NTP will 
make any time adjustment necessary.

The log file indicates where to send NTP logs. By default, NTP will send logs 
to the syslog file, instead of a file specific for NTP logs. Irrespective of whether 
the logs are sent to syslog or to an NTP-specific file, the logs will be sent in 
syslog format.

The server commands are the upstream, or lower stratum, servers with 
which this NTP client is synchronizing. Again, the more servers the better in 
terms of maintaining the most accurate time and having the most redundancy. 
The iburst flag in the servers line instructs NTP to increase the number of 
queries to that server if it appears to be offline in an attempt to re-establish 
communication.

The restrict command will be covered in more detail in Chapter 4. It is used 
to limit the queries to which the NTP server will respond whether locally or 
from remote hosts. NTP administrators use restrict to create access control 
lists (ACLs) that limit interaction from remote hosts to the NTP servers.

NTP also maintains a facility for authentication. Authentication parameters are 
also configured in the ntp.conf file and will be discussed in the next session.

Both ntpdc and ntpq are used to communicate with the NTP daemon. They are 
used to pull statistics, make configuration changes on the fly, and get updates. 
The difference between the two is that ntpq operates using mode 6 packets, 
while ntpdc uses mode 7 packets. Both commands can be run interactively or 
from the command line, with output that looks like Listing 1-6.

Listing 1-6.  Output of the sysstats command

allan@v623:~$ ntpq -c sysstats
uptime:                 407479
sysstats reset:         407479
packets received:       2648
current version:        2588
older version:          0
bad length or format:   3
authentication failed:  0
declined:               0
restricted:             48
rate limited:           0
KoD responses:          0
processed for time:     2566

http://dx.doi.org/10.1007/978-1-4842-2412-0_4
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The sysstats command provides an overview of the packets received and 
processed by the NTP servers. It also shows if there have been any bad pack-
ets or failed authentication by outside hosts. There are a number of different 
queries that administrators can use to better understand the current state of 
an NTP instance, whether that is local or remote. The various commands are 
listed in Table 1-1.

Table 1-1.  List of ntpq and ntpdc commands

List of available queries from ntpq and ntpdc

:config refid mreadlist readvar

addvars exit mreadvar reslist

apeers help mrl rl

associations host mrulist rmvars

authenticate hostnames mrv rv

authinfo ifstats ntpversion saveconfig

cl iostats opeers showvars

clearvars kerninfo passociations sysinfo

clocklist keyid passwd sysstats

clockvar keytype peers timeout

config-from-file lassociations poll timerstats

cooked lopeers pstats version

cv lpassociations quit writelist

debug lpeers raw writevar

delay monstats readlist

The ntpq and ntpdc commands are powerful, giving administrators great con-
trol over NTP servers. Unfortunately, they also give potential attackers great 
control over those servers, which is why the restrict commands are so impor-
tant. They help to ensure that only those with the right access are able to issue 
remote commands.

NTP Authentication 
Another way that NTP helps to ensure that only those who have the correct 
level of access are connecting to the NTP daemon is by using authentication. 
There are two ways to authenticate an incoming NTP request: symmetric-key 
encryption and AutoKey.
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Symmetric-key encryption is a form of password-based authentication. Two 
NTP servers participating in symmetric-key encryption both use a shared key, 
and that key is stored on both servers. When one server sends a request to 
the other, it includes the key in the packet. The receiving NTP server checks 
the key, makes sure it matches the key stored in its key file, and proceeds with 
the transaction.

The NTP configuration looks like Listing 1-7 on the client side.

Listing 1-7.  Symmetric-key configuration

keys /etc/ntp/keys
server [IP Address of NTP Server] key 1
trustedkey 1
controlkey 1
requestkey 1

The keys file is where the actual key is stored, and each key is assigned a 
unique number, commonly referred to as a key identifier, between 1-65535. 
This allows a client to connect to multiple servers using a different key for 
each server.

The keys file will look similar to Listing 1-8.

Listing 1-8.  NTP keys file

# PLEASE DO NOT USE THE DEFAULT VALUES HERE.
#
#65535  M  akey
#1      M  pass
1  M  [Password]

Each line has the unique key identifier, the encryption mode, and the actual 
password.

On the server side, the configuration is very similar, with the lines listed in 
Listing 1-9 added to the ntp.conf file.

Listing 1-9.  Symmetric-key encryption on the server side

keys /etc/ntp/keys
trustedkey 1
controlkey 1
requestkey 1

A server can also maintain multiple keys. When a client connects, the request 
must match both the key identifier and the associated key in order to be suc-
cessfully authenticated.
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The other authentication scheme supported by NTP is AutoKey. AutoKey uses 
a private key encryption scheme for authentication. As shown in Figure 1-2, 
AutoKey is more complicated than symmetric encryption.

Figure 1-2. AutoKey encryption for NTP

AutoKey requires that OpenSSL be installed on the NTP host and that NTP 
was compiled with the –enable-autokey flag (this is the default for most pack-
ages). As Figure 1-2 shows, the primary advantage of AutoKey is that it does 
not require the client and server to share private keys. Instead, it relies on a 
trusted authority to ensure that both client and server are who they say they 
are. This is similar to the way that transport layer security (TLS) (more com-
monly known as https) transactions occur.

In addition to making changes to the ntp.conf file, AutoKey requires the use of 
the ntp_keygen tool to create public/private keypairs. To start, the lines shown 
in Listing 1-10 need to be added to the ntp.conf file.

Listing 1-10.  AutoKey configuration in ntp.conf file

# Crypto
crypto pw [Password]
keysdir /etc/ntp
crypto randfile /dev/urandom

server [NTP server 1] autokey version 4
server [NTP server 2] autokey version 4
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Instead of a single file, AutoKey requires a directory in which all of the keys 
are stored. Each server may have its own key, or one key can be used for all 
servers. Keys are generated using the ntp_keygen (or ntp_genkeys on older 
versions of NTP) and the keys are copied into the /etc/ntp directory.

The public key can be shared with clients connecting to the server, but the 
private key is never shared—it is simply used to verify the connection.

AutoKey is, unfortunately, not widely deployed, largely because of the com-
plexity involved in maintaining public key infrastructure (PKI) on top of the 
NTP configuration. However, organizations that already have PKI in place can 
add AutoKey configuration to their NTP deployment relatively easily.

Mapping the Network Time Protocol
Before discussing NTP security issues, it is important to understand what 
NTP traffic is supposed to look like. There are two primary ways of attacking 
NTP: attack the daemon or attack the protocol. Unfortunately, because of the 
nature of NTP, attacking the protocol has been a highly successful method of 
attack over the years.

NTP operates over UDP port 123. UDP is a stateless and connectionless 
protocol. This means that everything one end of an NTP transaction needs 
to know about that transaction is contained in a single packet. When a client 
sends a request to a server, it does not know if the connection was successful 
or not until it gets a response. Similarly, when a server sends a response, it 
does not know if the client received it.

This contrasts with a TCP, which has a three-way handshake requiring confir-
mation of the initial connection and response.

Chapter 2 has a detailed analysis of NTP traffic, but Figure 1-3 shows the struc-
ture of an NTP packet. The top header of the packet in Figure 1-3 includes 
the Leap Indicator (LI), which tells the host on the receiving end whether the 
packet contains a leap second. It also has the version number (VN), letting the 
host know whether it is NTP version 0, 2, 3, or 4. It contains the mode of the 
packet and the stratum (0-15) of the sending host. It also contains informa-
tion about how often it is polling (poll) the other host and the precision of 
the clock.

http://dx.doi.org/10.1007/978-1-4842-2412-0_2
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The body of the packet contains information about the time as it currently 
is set on the originating host, where it got that time, and what the delay and 
dispersion is between the time on the host and UTC (if there is any).

Understanding what a NTP packet is supposed to look like, and the type 
of information that is included, can help security and administrative teams 
troubleshoot when something is wrong.

Figure 1-3.  NTP packet structure

www.allitebooks.com

http://www.allitebooks.org
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Conclusions
Time and time synchronization has played a strong role in the development 
and advancement of society over tens of thousands of years. It has gotten to 
the point where many of society’s current systems, such as transactions that 
occur over the web and stock market trading transactions, require the host 
and server to have their time closely synchronized.

This has led to the development of the Network Time Protocol. NTP is used 
by hosts around the world and makes use of a robust and redundant infra-
structure to keep time synchronized to within nanoseconds per month.

This type of remote synchronization requires countless man hours to main-
tain and continue operating around the world. It also requires a reliable NTP 
client that servers and endpoints can use to connect to that infrastructure 
and trust that the time they are being given is actually correct.

The next few chapters will go into deeper detail about NTP and its potential 
security problems, and how to prevent those problems from creating larger 
problems within an organization.



© Allan Liska 2016 
A. Liska, NTP Security, DOI 10.1007/978-1-4842-2412-0_2

C H A P T E R 

Issues in NTP 
Security
NTP is most likely the longest continuously operating protocol on the Internet. 
At more than 30 years old, NTP has become pervasive across the Internet, 
to the point that most people don’t even think about it. Unfortunately, that is 
part of the problem. NTP is an obscure protocol that rarely fails and does its 
job well. This has led to a lot of entropy in the development and deployment 
of the protocol.

The current version of NTP, version 4, was first introduced in 2010, and even 
though version 4 has been considered the standard for more than six years, 
there are still operating systems that don’t support it. On top of that, there 
are a number of operating systems that don’t fully implement the available 
security capabilities in version 4 of the protocol, opting instead to implement 
the Simple Network Time Protocol (SNTP). This can leave organizations open 
to attacks again a vulnerable NTP daemon or the organization’s network vul-
nerable to a Distributed Denial of Service (DDoS) attack.

In a way, NTP is a victim of its own success. Because NTP just works, with 
almost no adjustment needed from the desktop, server, a network or security 
team very little attention is paid to the protocol, until something major happens.

2
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A History of NTP Attacks
When NTP attacks happen, they tend to be big and impact large swaths of 
Internet-connected networks. Precisely because no one thinks about it, NTP 
daemons tend not to be updated and security enhancements are not always 
enabled. This is not something that just happens at the local network level 
— many vendors don’t pay attention to security announcements concerning 
NTP.

Because NTP is an obscure protocol, and one that is not always well under-
stood, other security concerns are prioritized over it. This can leave NTP vul-
nerabilities exposed for longer periods of time than other security concerns. 
On top of that, NTP may be given a longer patch cycle within a local network, 
because it is perceived as a lower risk. The time period between a vulnerability 
in NTP being discovered and the time it is patched at the local level can be 
longer than for other, more prominent protocols such as TLS or HTTP.

A great example of this is with CVE-2001-0414. CVE is the Common 
Vulnerabilities and Exposures database that has been maintained by The 
MITRE Corporation (and sponsored by US-CERT) since 1999.

■■ Note  The CVE database is available at https://cve.mitre.org and is a very valuable resource for 

finding out what the latest vulnerabilities are and what systems they are impacting.

CVE-2001-0414 is a buffer overflow vulnerability in version 4.0.99k and ear-
lier of the NTP daemon that was released in 2001. The vulnerability, if success-
fully exploited, would allow a remote attacker to initiate a denial of service 
against a system and possibly even gain remote access. The vulnerability is very 
serious, and was given a criticality of 10.

This was a critical vulnerability that impacted vendors across multiple plat-
forms, including Cisco. However, it took Cisco 11 months to release a security 
advisory on this particular vulnerability. That means that for 11 months, Cisco 
routers running NTP were potentially vulnerable, to say nothing of how much 
longer after the security advisory was released before network administra-
tors actually implemented the suggestions. Routers and switches tend to go 
long periods of time between upgrades and configuration changes, so it is not 
unreasonable to expect it to be at least another year before most vulnerable 
routers were updated.

■■ Note  This is in no way a knock on Cisco. Cisco is normally very responsive when it comes to 

releasing security advisories and encouraging its customers to upgrade—this just happens to be 

an example of a time when they were not.

https://cve.mitre.org/
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There have been a number of other NTP vulnerabilities published over the 
years. Some of the most critical are listed here.

CVE-2004-0657 impacted all versions of the NTP daemon prior to 4.0, and 
it was an integer overflow bug that would cause a server to return an incor-
rect date/time offset when a client requested a time that more than 34 years 
outside of the current time. This was a medium threat that was easy to exploit, 
but caused minimal damage.

CVE-2009-0159 was a buffer overflow to which all versions of NTP prior to 
4.2.4p7R-C2 were vulnerable. The buffer overflow was in the cookedprint() 
function. The vulnerability allowed an attacker to potentially crash the NTP dae-
mon and possibly execute a command. The cookedprint() function is part of the 
ntpq command subset; in fact, it is the function that is responsible for presenting 
NTP output in human readable format. Getting access to this type of function 
meant it was possible for the attacker to gain remote access to the system.

CVE-2013-5211 documented a vulnerability that was present in versions of 
the NTP daemon prior to 4.2.7p26, which would allow a server running the 
NTP service to be used in a Denial of Service (DoS) or DDoS attack. The 
vulnerability was with the monlist control message command, and it was not 
really a vulnerability as much as it was taking advantage of the way NTP works. 
The monlist is part of the ntp_request application that monitors the up to 600 
machines that are connected to the server, along with their traffic count. The 
command, and its output, looks like Listing 2-1:

Listing 2-1.  Output of the monlist command

root@server:~# ntpdc -c monlist 127.0.0.1
remote address          port local address   count m ver rstr avgint  lstint
============================================================================
ntp-northamerica.core.   123 198.84.61.242     539 4 4    1d0    987     118
snotra.fanube.com        123 198.84.61.242     553 4 4    1d0    962     609
mail.mariocube.com       123 198.84.61.242     494 4 4    1d0   1077     673
pacific.latt.net         123 198.84.61.242     554 4 4    1d0    960     864
golem.canonical.com      123 198.84.61.242     554 4 4    1d0    960    1022
198-84-62-37.las01.rok 53197 198.84.61.242       1 3 3    1d0 185834  185834

■■ Note  Running the command may return the error “***Server reports data not found.” This 

error simply means that the remote NTP server has been configured not to respond to these types 

of queries, which is good.

The command is a normal function of NTP, and there is nothing inherently 
insecure about tracking these statistics. On the other hand, the fact that this 
command can often be used to query remote servers, even those on different 
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networks, is a big security risk. In fact, attackers figured out that this command 
could be used to launch a reflection/amplification attack. Remember, an NTP 
server can store up to 600 servers, along with the associated traffic informa-
tion, in the monlist database. That is a lot of data, so a relatively small query—for 
example, the one above is only 48 bytes—can generate a large response, usually 
in the realm of megabytes. That is the amplification part of the attack. The reflec-
tion part is possible because NTP operates over UDP, and a UDP query can 
easily be forged. In the case of CVE-2013-5211, the attacker identifies a target; 
finds an NTP server with a large, publicly queryable monlist; and crafts queries 
that appear to come from the target host. Hence, a low-impact forged query 
generates a large amount of traffic to the target host, potentially taking it offline.

This is exactly what happened in December of 2013. There was a significant 
spike in NTP traffic as attackers began taking advantage of this weakness in NTP.

■■ Note  Reading all these vulnerabilities, many security administrators will wonder which version 

of the NTP daemon is running in the organization, or, more accurately, which versions. This concern 

will be further heightened if no one can determine when the last time these different daemons were 

updated. Fortunately, using ntpq, it is relatively easy to find out which version of NTP is running on 

most Linux or UNIX-type servers. The command to run is: ntpq -c "rv 0 version" and the output 

should look similar to this: version="ntpd 4.2.6p5@1.2349-o Thu Feb 11 18:30:40 UTC 2016 (1)"

CVE-2013-5472 concerned a vulnerability in the Cisco IOS versions 12.0 
through 12.4 and 15.0 through 15.1. This vulnerability also impacted IOS XE 
versions 2.1 through 3.3. In this vulnerability, the NTP daemon on the Cisco 
hardware did not properly respond to NTP requests sent in an encapsulated 
Multicast Source Discovery Protocol (MSDP) Source-Active (SA) packet from 
a trusted peer. Vulnerable systems would respond to the packet by reloading. 
A sustained attack would result in the DoS of the vulnerable router. While this 
was a critical vulnerability, the attack was unlikely to occur and there are no 
known public instances of it being exploited. Cisco released a patch quickly.

CVE-2014-9293-CVE-2014-9298 dealt with a number of vulnerabilities 
that were reported by Neel Mehta and Stephen Roettger, both part of 
Google’s security team and Dieter Sibold, PhD of the Physikalisch-Technische 
Bundesantalt (the authoritative source of time in Germany). These vulner-
abilities were patched as of version 4.2.8p1. Several of these vulnerabilities 
included flaws in the encryption of the NTP daemon, such as generating a 
weak default key if the authentication key variable was not set in the ntp.conf 
file, not validating the vallen packet value in the ntp_crypto.c library, and a buf-
fer overflow in the crypto_recv() function.

CVE-2015-1798 impacted all NTPv4 releases from 4.2.5p99 to 4.2.8p1. This 
was a vulnerability in the symmetric key authentication. NTP clients and peers 

http://mailto:4.2.6p5@1.2349-o/
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that accepted symmetric key authentication would confirm that a valid mes-
sage authentication code (MAC) was present in the authentication packet, 
but not if a MAC was present. In other words, if an attacker were to send 
a client or peer a packet with a blank MAC field, the NTP daemon would 
treat it the same as a successful authentication. This would allow an attacker 
to potentially conduct a man-in-the-middle (MITM) attack against a network 
using symmetric encryption for NTP.

CVE-2015-7871 allowed crypto-NAK packets to force the NTP daemon to 
accept a time update from temporary peers. First discovered by Matthew Van 
Gundy at Cisco, this vulnerability affected NTP daemon versions 4.2.5p186 
through 4.2.8p3. It also impacted version 4.3.0 through 4.3.76. The cleverly 
titled “NAK to the Future1” allowed an attacker that was not part of an NTP 
server’s peer network to force the victim to sync with an NTP server of the 
attacker’s choosing. Again, this would allow an attacker to throw off an NTP 
server or client’s clock and potentially disrupt network activity.

CVE-2015-7974 was also discovered by a researcher at Cisco, Matt Street, 
and it involved versions of the NTP daemon prior to 4.2.8p6 and 4.3.90 not 
verifying the peer associations of symmetric keys. One way that NTP servers 
can authenticate with each other is to use symmetric keys. In a symmetric 
authentication setup, if a server has multiple peers, each peer will have their 
own key. In vulnerable versions, an attacker is able to use a “skeleton key” to 
authenticate—the server checks to make sure that the key works, but doesn’t 
check to make sure it is the key assigned to that specific peer.

CVE-2016-4956 was a new vulnerability introduced by the fixes to CVE-2016-
1548. Versions of the NTP daemon prior to 4.2.8p8 were vulnerable to a DoS 
attack from a forged broadcast packet.

CVE-2016-4957 was a new vulnerability introduced by the fixes to CVE-2016-
1547. This bug impacted versions of the NTP daemon prior to 4.2.8p8 and 
allowed an attacker to remotely initiate a DoS attack against an NTP server 
using forged crypto-NAK packets.

CVE-2016-9312 was a high-level vulnerability affecting the Windows version 
of the NTP daemon, reported in November of 2016. The vulnerability affected 
all version of the Windows NTP daemon prior to 4.2.8p9 and it allowed an 
attacker to send a malicious packet that was “too big” to the NTP server.  
The crafted packet would cause the Windows NTP daemon to shut down.

This list was a quick summary of some of the medium- and high-level vulner-
abilities NTP has experienced over many years. It is not an exhaustive list, but 
it does provide an overview of some of the problems NTP has experienced.

1The bug was reported in 2015, which was also the 30-year anniversary of the movie Back 
to the Future.
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Why Is NTP So Insecure?
With a long list of vulnerabilities in the NTP daemon across multiple plat-
forms, it seems like NTP must be one of the most insecure programs/proto-
cols on the Internet. The truth is that NTP, when implemented properly, is not 
all that insecure.

Although there certainly have been a number of serious flaws that have plagued 
NTP over the years, it is important to remember that NTP has a 30-plus-year 
history of continuous operation. While that does not diminish the seriousness 
of flaws in NTP, it does give it some context.

Compare the security track record of NTP with an application such as 
WordPress. Between the base program and its plugins, WordPress has had 
more than 975 reported vulnerabilities since its inception, as opposed to the 
roughly 35 or so vulnerabilities reported about the various implementations 
of NTP during the same time period.

For a more direct comparison, over its lifetime, the Berkeley Internet Name 
Domain (BIND) DNS server, developed by the Internet Systems Consortium 
(ISC), has had 68 reported vulnerabilities. Like the Network Time Foundation, 
ISC has been very responsive, fixing reported vulnerabilities and introducing 
new security capabilities into the product, making it even more secure.

NTP has developed a reputation for being insecure because when a vulnera-
bility is discovered it impacts so much of the Internet. When a new WordPress 
vulnerability is reported, most organizations don’t care because they are not 
running instances of WordPress. On the other hand, every organization con-
nected to the Internet is running some variant of NTP. Because of this, NTP 
vulnerabilities carry an outsized importance and, rightfully, receive outsized 
attention in the press.

As more vulnerabilities are reported over time, or as those vulnerabilities are 
used to launch repeated large-scale DDoS attacks, the reports remain pres-
ent in the minds of network and security administrators. When a new one is 
reported, it becomes a case of “there goes NTP again—when are they going 
to fix all of these problems?”

On the other side of the problem is the fact that a lot of organizations have 
not implemented many of the security capabilities that the Network Time 
Foundation has added over the years. There are a number of security features 
built into the NTP daemon that can be used to prevent the NTP server from 
being used in DDoS attacks. There are more that can be enabled to thwart 
some zero day vulnerabilities. There are even network configuration options 
that help keep NTP servers protected from spying eyes. Yet, too many organi-
zations either don’t implement them or don’t even know they exist.
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Credit needs to go to many of the Linux vendors who have started imple-
menting some of these security features by default. The default ntp.conf file 
for Ubuntu, Debian, Red Hat Enterprise Linux, CentOS, and others includes 
a number of security enhancements such as not allowing queries, peering, or 
modifications from remote hosts, as shown in Listing 2-2.

Listing 2-2.  Entries in ntp.conf restricting remote access

# By default, exchange time with everybody, but don't allow configuration.
restrict -4 default kod notrap nomodify nopeer noquery 
restrict -6 default kod notrap nomodify nopeer noquery

But there are vendors who have not taken the same steps to improve the 
default security of their NTP installations. In those cases, it is incumbent on 
organizations to understand what security options are available and imple-
ment those security options in a timely fashion.

Finally, NTP was originally developed in a different time. While there were 
certainly malicious actors and worms in 1985, they were not as prevalent. In 
the original RFC 958, security is not mentioned at all. The RFC for NTP ver-
sion 4 talks about security 15 different times. There is much more emphasis 
on security and secure configuration of an NTP installation.

On top of changes to the way the Network Time Foundation thinks about 
security, they have also gotten more responsive to security reports. In addition 
to putting out patches in a more timely fashion, they also work closely with 
the security research community as it uncovers new bugs and vulnerabilities.

Of course, none of this effort on the part of the Network Time Foundation 
means anything if their recommendations and not heeded. Too often, the ver-
sion of the NTP that is shipped with a server is never upgraded or changed, 
even when recommendations from the Network Time Foundation change.

This is really the biggest problem with protocols such at NTP.

The Problem with “Set It and Forget It” 
Protocols
The problem with NTP is that it falls into a small subset of protocols that are 
really “set it and forget it.” In other words, after the initial configuration, there 
is really nothing else that network administrator has to do to keep it running. 
Other protocols on this list include DNS, HTTP/HTTPS, SSH and RDP.

These protocols tend to be forgotten when it comes to security planning 
because they just work and don’t require any updating on the part of the 
security teams. There may be planning around the programs that operate on 
top of these protocols, such as web browsers or the websites that operate 
over HTTP/HTTPS, but the protocols themselves go unnoticed.
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That is, until there is a well-publicized vulnerability or, even worse, a well-
publicized attack directed at the protocol. At that point, organizations often 
scramble to understand whether or not they are impacted. It is one thing to 
secure a web server against cross-site scripting attacks, but does anyone in the 
organization remember how the HTTP server itself was initially configured? 
If there is a new DDoS attack that takes advantage of a flaw in NTP, does any-
one know how many devices in the network use NTP and how each of those 
devices is configured?

The answer to these question is generally no, but it doesn’t need to be. Just as 
it is important to understand all of the programs that are installed on desk-
tops and servers throughout the network, understanding what protocols are 
enabled and how they are configured is a critical component of a successful 
security program.

It starts with treating these protocols just like an operating system baseline. 
Most organizations have a “gold image” for servers and workstations, or more 
accurately, multiple “gold images” depending on the function of the device. 
These “gold images” have all the programs necessary for the system to func-
tion properly in its role, but they also have all of the necessary security patches 
that the image must maintain in order to comply with the security team.

The same should be done with “set it and forget it” protocols. Security teams 
should be working with system and networking teams in an organization to 
create requirements for implementing these protocols across all platforms. 
For example, for NTP there could be a requirement that any implementation 
of NTP should use NTP version 4. There could also be a requirement that all 
NTP-enabled hosts must not allow queries from hosts outside the network. 
For organizations that have installed their own NTP server, it should be a 
requirement for all internal hosts to use the internal NTP server. Finally, there  
should be a requirement that all systems must have a certain version of the 
NTP daemon installed. This version will change from platform to platform, so 
it should be clearly documented. It should also be documented how quickly 
the organization will test and move from one version to the next whenever a 
new version is released.

Whatever the security requirements for enabling these protocols, the security 
team should document them clearly. They should also document any use cases 
that can’t meet the outlined security requirements. Those systems that can’t 
meet the requirements should be closely monitored for potential attacks.

Of course, best practices in security change all the time. The last phase of 
this is to regularly review and update the best security practices for these 
protocols. As new attack vectors are discovered in the wild, developers will 
make recommendations for configuration updates and, of course, release new 
versions. This requires not only updating the configuration for newly deployed 
systems, but having a plan in place to go back and update existing systems.
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None of this is easy, especially in an environment where network, system and 
security teams are often overworked. Unfortunately, not tracking with current 
best practices can result in a costly breach of the organization. So, while it 
does not need to be a full-time job, there should be someone in the organiza-
tion who is responsible for looking after one or more of the protocols in the 
network and understanding what the current best practices are. That person 
should provide regular reporting to the rest of the teams and should be mak-
ing recommendations for changes as appropriate.

Analysis of NTP Traffic
Before diving into how NTP is exploited, it’s important to understand what 
NTP traffic looks like. Chapter 1 presented an overview of an NTP packet in 
diagram form, but it is also good to see it in action.

■■ Note  The packets used in this section originate from an NTP server maintained by the 

author, ntp.cryptodns.com, which is part of the pool.ntp.org pool of NTP servers. All third-party IP 

addresses have been obscured for security purposes.

The first packet is from a machine making an NTP request to ntp.cryptodns.
com (line breaks are inserted for readability) as shown in Listing 2-3.

Listing 2-3.  A client making a request to a server

01:00:31.363495 IP (tos 0x0, ttl 46, id 0, offset 0, flags [DF], proto UDP 
(17), length 76)
  192.168.1.30.44404 > ntp.cryptodns.com.ntp: [udp sum ok] NTPv3, length 48
        �Client, Leap indicator:  (0), Stratum 0 (unspecified), poll 0 (1s), 

precision 0
        �Root Delay: 0.000000, Root dispersion: 0.000000, Reference-ID: 

(unspec)
          Reference Timestamp:  0.000000000
          Originator Timestamp: 0.000000000
          Receive Timestamp:    0.000000000
          Transmit Timestamp:   3678998430.149000003 (2016/08/01 01:00:30)
            Originator - Receive Timestamp:  0.000000000
            Originator - Transmit Timestamp: 3678998430.149000003 
(2016/08/01 01:00:30)

The first two lines in the example above are part of the UDP header, indicating 
the source host, destination host, source port, destination port (NTP), length 
of the pack, and version of NTP. In this case, the host is sending an NTPv3 
request, which means the NTP server will respond with an NTPv3 response.

http://dx.doi.org/10.1007/978-1-4842-2412-0_1
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The third line starts with the actual NTP packet. The first field indicates the 
mode, which in this case is “client,” of the requesting host, and that it is not a 
Leap Second packet (which would not originate from a client). The client has 
a stratum of 0, which is the stratum associated with clients that have never 
connected to a remote NTP server (true stratum 0 servers are reference 
clocks to which stratum 1 servers have a direct connection). The poll expo-
nent is set to 0, which most likely means it is the first time that this client has 
contacted this server—however, it could also indicate a reset. The precision 
field indicates the precision of the system clock expressed in log base 2 (usu-
ally written as log2) seconds. Again, a value of 0 indicates that this is the first 
communication between the client and server, or that there has been a reset.

Because this is the first time the source host has queried this clock, the root 
delay and root dispersion are set to 0, while the reference-ID, the name of the 
reference time source, is unspecified—expected behavior from a client.

Listing 2-4 shows the response from the server. Note that the response is 
NTPv3 compliant, since the original request was an NTPv3 request. The mode 
in this case is set to server, while the stratum is set to 2, which most NTP 
servers in the NTP Pool Project are. The poll is set to 3 log2 or 8 seconds, 
which is the maximum interval between messages on this server. The preci-
sion of the clock on the responding server is set to -20 log2, or less than a 
microsecond (1/1000000 of a second).

The root delay is the round-trip delay to the reference clock, and the root 
dispersion is the difference in time between the server and the correct time 
(the time provided by the stratum 1 server). Finally, the reference-ID, in this 
case darkcity.cerias.purdue.edu, is the stratum 1 server from which the stra-
tum 2 server gets its time.

Listing 2-4.  Response from the server to the client

01:00:31.363586 IP (tos 0xc0, ttl 64, id 17769, offset 0, flags [DF], proto 
UDP (17), length 76)
  ntp.cryptodns.com.ntp > 192.168.1.30.44404: [udp sum ok] NTPv3, length 48
        �Server, Leap indicator:  (0), Stratum 2 (secondary reference), poll 

3 (8s), precision -20
        �Root Delay: 0.032821, Root dispersion: 0.041763, Reference-ID: 

darkcity.cerias.purdue.edu
          Reference Timestamp:  3678997837.299738913 (2016/08/01 00:50:37)
          Originator Timestamp: 3678998430.149000003 (2016/08/01 01:00:30)
          Receive Timestamp:    3678998431.363495409 (2016/08/01 01:00:31)
          Transmit Timestamp:   3678998431.363574236 (2016/08/01 01:00:31)
            Originator - Receive Timestamp:  +1.214495420
            Originator - Transmit Timestamp: +1.214574232
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Listing 2-5 is a slightly different example. This query is an NTPv4 query, though 
all the same fields are present as in the previous example. The first pair of 
packets shows the first time these two hosts are communicating. The Leap 
Indicator field shows an unsynchronized clock, and the client has set itself at 
stratum 0 operating in client mode.

Listing 2-5.  Client connecting to an NTP server

21:55:38.217609 IP (tos 0xc0, ttl 64, id 40800, offset 0, flags [DF], proto 
UDP (17), length 76)
    192.168.1.77.ntp > ntp.cryptodns.com.ntp: [udp sum ok] NTPv4, length 48
        Client, Leap indicator: clock unsynchronized (192), Stratum 0 
(unspecified), poll 6 (64s), precision -23
        Root Delay: 0.000000, Root dispersion: 0.000991, Reference-ID: 
(unspec)
          Reference Timestamp:  0.000000000
          Originator Timestamp: 3679091672.225474119 (2016/08/01 21:54:32)
          Receive Timestamp:    3679091672.233604848 (2016/08/01 21:54:32)
          Transmit Timestamp:   3679091738.217555865 (2016/08/01 21:55:38)
            Originator - Receive Timestamp:  +0.008130721
            Originator - Transmit Timestamp: +65.992081761
21:55:38.228064 IP (tos 0x0, ttl 53, id 19741, offset 0, flags [DF], proto 
UDP (17), length 76)
    ntp.cryptodns.com.ntp > 192.168.1.77.ntp: [udp sum ok] NTPv4, length 48
        �Server, Leap indicator:  (0), Stratum 2 (secondary reference), poll 

6 (64s), precision -20
        �Root Delay: 0.033676, Root dispersion: 0.041046, Reference-ID: 

darkcity.cerias.purdue.edu
          Reference Timestamp:  3679091211.681040108 (2016/08/01 21:46:51)
          Originator Timestamp: 3679091738.217555865 (2016/08/01 21:55:38)
          Receive Timestamp:    3679091738.225709989 (2016/08/01 21:55:38)
          Transmit Timestamp:   3679091738.225783973 (2016/08/01 21:55:38)
            Originator - Receive Timestamp:  +0.008154135
            Originator - Transmit Timestamp: +0.008228117

However, in the second set of queries, after the servers have been talking for 
several hours, the stratum is set to 3. The client still identifies itself as such, 
but it can now also operate as a stratum 3 server, and it has set its reference 
clock as ntp.cryptodns.com, the server clock.

All of this happened automatically; there were no changes that needed to be 
made to the configuration of the client server. The NTP daemon did all of the 
work and made the changes—see Listing 2-6.
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Listing 2-6.  NTP server response to the client

00:51:14.326353 IP (tos 0xc0, ttl 64, id 64539, offset 0, flags [DF], proto 
UDP (17), length 76)
  192.168.1.77.ntp > ntp.cryptodns.com.com.ntp: [udp sum ok] NTPv4, length 48
        �Client, Leap indicator:  (0), Stratum 3 (secondary reference), poll 

6 (64s), precision -23
        �Root Delay: 0.040283, Root dispersion: 1.013671, Reference-ID: ntp.

cryptodns.com
          Reference Timestamp:  3679102207.333402454 (2016/08/02 00:50:07)
          Originator Timestamp: 3679102207.316343069 (2016/08/02 00:50:07)
          Receive Timestamp:    3679102207.333402454 (2016/08/02 00:50:07)
          Transmit Timestamp:   3679102274.326300173 (2016/08/02 00:51:14)
            Originator - Receive Timestamp:  +0.017059391
            Originator - Transmit Timestamp: +67.009957099

00:51:14.334436 IP (tos 0x0, ttl 53, id 20022, offset 0, flags [DF], proto 
UDP (17), length 76)
    ntp.cryptodns.com.ntp > 192.168.1.77.ntp: [udp sum ok] NTPv4, length 48
        �Server, Leap indicator:  (0), Stratum 2 (secondary reference), poll 

6 (64s), precision -20
        �Root Delay: 0.033264, Root dispersion: 0.041809, Reference-ID: 

darkcity.cerias.purdue.edu
          Reference Timestamp:  3679101761.680720388 (2016/08/02 00:42:41)
          Originator Timestamp: 3679102274.326300173 (2016/08/02 00:51:14)
          Receive Timestamp:    3679102274.321736901 (2016/08/02 00:51:14)
          Transmit Timestamp:   3679102274.321832090 (2016/08/02 00:51:14)
            Originator - Receive Timestamp:  -0.004563249
            Originator - Transmit Timestamp: -0.004468078

The only change that cannot be automatically made in the NTP configuration 
is the jump from a stratum 2 to a stratum 1 server. As outlined previously, 
stratum 1 servers must be attached to a reference clock. No matter how 
accurate a stratum 2 server is (as seen above, with today’s computing power 
and network speeds, a stratum 2 server can maintain sub-microsecond accu-
racy), it cannot jump up to stratum 1.

Conclusions
While NTP has a long list of well-published security vulnerabilities, NTP is not 
any more insecure than dozens of other widely deployed applications. In fact, 
compared to some, NTP’s track record when it comes to fixing security holes 
is admirable.
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In reality, NTP’s biggest problem is one of entropy. Because the NTP daemon 
works so well and is able to adapt to changing network environment on the fly, 
it gets very little attention from network and security teams. This means that 
updates and security configuration recommendations are not always heeded, 
or even seen.

In order to more effectively secure an NTP installation, it is incumbent on the 
security team to keep up to date on the latest developments in NTP secu-
rity. Watching for security alerts on the NTP web site, subscribing to mailing 
lists, or even using a third party that tracks vulnerabilities are all ways that a 
security team can manage new NTP vulnerabilities and make changes as NTP 
security changes.
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C H A P T E R 

Vulnerabilities 
in NTP
Having reviewed some of the issues in NTP security, the next step is to take 
a closer look at some of the vulnerabilities. The goal of this chapter is not to 
cover specific vulnerabilities, but instead look at how vulnerabilities in NTP 
can be exploited and the potential damage those exploits can cause to an 
organization.

This chapter will review examples of vulnerabilities that have occurred in four 
areas of attack: the daemon, the protocol, the encryption process, and authen-
tication. The last two, encryption and authentication, are rarely deployed, even 
though they should be. Making use of authentication and encryption makes it 
more difficult for attackers to take advantage of the last security risk: the use 
of NTP packets in the Distributed Denial of Service (DDoS) attack.

Vulnerabilities in the Daemon
Unpatched vulnerabilities in the NTP daemon, especially those that are 
remotely executable, are of particular concern to an organization because 
they potentially allow an attacker access to the network. A remotely execut-
able vulnerability can do a lot of damage depending on the user that is running 
the NTP daemon:

ntp Ss Aug02 336:41 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 105:112

3
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Note that in this example the NTP daemon is running as the user “ntp,” 
an unprivileged user with limited access to the system. However, that is not 
always the case—some systems run the NTP daemon as root. So, if an attacker 
gains access by exploiting an NTP vulnerability, she has unlimited access to the 
system.

■■ Note  The focus of this section will be on the NTP reference implementation available at www.

ntp.org. This is the most widely deployed version of the NTP daemon and is the basis for most 

NTP implementations in use today.

Again, it should be noted that the developers at the Network Time Project 
take security very seriously, and there have been relatively few recent vul-
nerabilities that have allowed remote execution on the victim server. The 
bigger problem is that system administrators don’t patch the NTP daemon 
frequently. Beyond that, even system administrators who do regularly update 
their systems are at the mercy of software vendors who don’t always provide 
packages for the latest version of the NTP daemon.

This leaves system administrators and security teams with a quandary: should 
they use the daemon available from the Network Time Project and be forced 
to check back regularly for updates? Or should they use the package provided 
by their distribution vendor and take advantage of automated updates, even if 
some of those updates are slow coming? Neither option is ideal.

To understand vulnerabilities against the NTP daemon, it is worth looking at 
CVE-2014-9295. Remember, CVE-2014-9295 is a buffer overflow vulnerability 
in all versions of the NTP daemon prior to 4.2.8.

There were actually three different buffer overflows in different functions 
of the code: crypto_recv(), ctl_putdata(), and configure(). Each of these buf-
fer overflow conditions would allow an attacker to send arbitrary code that 
would be executed at the privilege level of the user running the NTP daemon. 
If that user doesn’t have any privileges, as in the previous example, the damage 
to the system could be minimal. However, if that user is running as root, the 
damage to the organization could be severe.

Let’s take a step back for a second and define what a buffer overflow is. A 
buffer overflow occurs when input sent to a buffer in a program exceeds the 
boundary for that particular buffer, or when the program tries to place data 
in memory outside of the buffer. What does this mean in practical terms? A 
program accepts inputs at different points in the execution process, but there 
is a limit to how much data can be sent at any one time. When the amount of 
data sent exceeds the amount that can be handled by a particular buffer, the 
program can reject it, drop it, or, if there are no protections in place, allow 

http://www.ntp.org/
http://www.ntp.org/
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the data to continue coming. That data will overflow the buffer and start fill-
ing up the memory of the system. At its least insidious, a buffer overflow can 
cause a program to crash, knocking the service offline. However, sometimes 
the program will crash while still feeding that data into memory. In these 
cases, the attacker can embed a lightweight executable, called a loader, into the 
data stream along with the command to execute. When the targeted program 
crashes, the loader will be executed and call back to the attacker’s command 
and control infrastructure, potentially giving the attacker access to the vulner-
able system.

In this case, there were three functions in the NTP daemon that were poten-
tially impacted by a buffer overflow vulnerability. One of these, configure(), 
looked to be relatively easy to exploit (it should be noted that, as of this writ-
ing, there is no known exploit for vulnerability).

This vulnerability was particularly dangerous because it applied to any NTP 
host running in server mode and it could be exploited remotely. An attacker 
with a well-formed packet from a spoofed IP address could exploit NTP and 
use that exploitation to gain access to the server.

What does a buffer overflow vulnerability look like? Generally, it is simply the 
absence of error handling code for a buffer. In this case, there was no bound-
ary checking in place. To understand, first see the code as it was prior to the 
patch1 in Listing 3-1.

Listing 3-1.  NPT daemon remote configuration buffer code with an unpatched buffer overflow

/* Initialize the remote config buffer */
data_count = reqend - reqpt;
memcpy(remote_config.buffer, reqpt, data_count);
if (data_count > 0
    && '\n' != remote_config.buffer[data_count - 1])

And the code after the vulnerability was patched, looks like Listing 3-2:

Listing 3-2.  NTP daemon remote configuration buffer with patches in place

/* Initialize the remote config buffer */
data_count = reqend - reqpt;

if (data_count > sizeof(remote_config.buffer) - 2) {
       snprintf(remote_config.err_msg,
                sizeof(remote_config.err_msg),
                "runtime configuration failed: request too long");
       ctl_putdata(remote_config.err_msg,
                   strlen(remote_config.err_msg), 0);

1Both code samples retrieved from the NTP Project Bug Page at http://bugs.ntp.org/
attachment.cgi?id=1159&action=diff, accessed August 14, 2016.

http://bugs.ntp.org/attachment.cgi?id=1159&action=diff
http://bugs.ntp.org/attachment.cgi?id=1159&action=diff
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       ctl_flushpkt(0);
       msyslog(LOG_NOTICE,
               "runtime config from %s rejected: request too long",
               stoa(&rbufp->recv_srcadr));
       return;
}

memcpy(remote_config.buffer, reqpt, data_count);
if (data_count > 0
    && '\n' != remote_config.buffer[data_count - 1])

Note that the new code adds a check to ensure that the amount of data being 
sent doesn’t exceed the limits set for the buffer. If more data is sent, the data 
is dropped and an event is logged to the Syslog facility.

How does an attacker exploit this vulnerability? To demonstrate this, take a 
look at CVE-2001-0414, an earlier buffer overflow vulnerability in the NTP 
daemon. This is a very out-of-date vulnerability that most NTP servers are 
patched against, but there is an exploit module in the Metasploit exploit kit. 
This makes it easy to see how the exploit works.

CVE-2001-0414 is a buffer overflow in the NTP daemon that potentially 
allows an attacker to execute arbitrary code by issuing an invalid readvar 
command that contains too much data. Take a look at the code snippet from 
the Metasploit module2 in Listing 3-3.

Listing 3-3.  Metasploit code snippet

hunter  = generate_egghunter(payload.encoded, payload_badchars, { :checksum 
=> true })
egg     = hunter[1]

connect_udp
pkt1 = "\x16\x02\x00\x01\x00\x00\x00\x00\x00\x00\x016stratum="
pkt2 = "\x16\x02\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00"

sploit =  pkt1 + make_nops(512 - pkt1.length)
sploit[(220 + pkt1.length), 4] = [target['Ret']].pack('V')
sploit[(224 + pkt1.length), hunter[0].length] = hunter[0]  

The setup is pretty simple; the module prepares a loader and then prepares 
two specially crafted NTP packets (pkt1 and pkt2). The attacker simply has to 
point Metasploit at the target server. The module first sends the forged pkt1 
over, and then sends pkt2 to conduct the actual overflow, shown in Listing 3-4.

2Metasploit code retrieved from the Metasploit GitHub page at https://github.com/
rapid7/metasploit-framework/blob/master/modules/exploits/multi/ntp/ntp_
overflow.rb, accessed August 14, 2016.

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/ntp/ntp_overflow.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/ntp/ntp_overflow.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/ntp/ntp_overflow.rb
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Listing 3-4.  Sending the UDP packets to exploit the target NTP server

print_status("Sending hunter")
udp_sock.put(sploit)
select(nil,nil,nil,0.5)

print_status("Sending payload")
udp_sock.put(pkt1 + egg)
select(nil,nil,nil,0.5)

print_status("Calling overflow trigger")
udp_sock.put(pkt2)

If a buffer overflow is so easy to exploit, why don’t developers do more to 
limit the amount of data that can be sent to a buffer? There are a couple of 
different answers to this question.

The first is that many application developers are not security experts, so as 
they are developing programs they may not think about buffer overflows—at 
least not until the first time one is discovered and exploited. Unfortunately, by 
the time that happens, it is often too late. In an application of any size, there 
are thousands of potential buffer overflow points in the program. Remember, 
any point where data can be input has the potential for a buffer overflow, even 
if there is no human interaction.

That creates a special problem for developers of programs like the NTP dae-
mon, which has a long history and contributions from multiple developers 
over time. Going back through the codebase looking for potential buffer over-
flows is a monotonous and time-consuming task that has to be done while still 
making improvements to the code. This means it is unlikely that every buffer 
overflow in the current code base will be uncovered and patched.

On the other hand, because the NTP daemon is open source, there are devel-
opers around the world looking at the code. Many of the reported buffer 
overflows in the current code base have been discovered and reported by 
third-party developers and fixed quickly by the current NTP development 
team. This has resulted in significantly fewer buffer overflow reports over the 
past few years.

The second reason buffer overflows are hard to protect against is that attack-
ers discover new attack vectors for buffer overflows. A method of buffer over-
flow that may have been unknown five years ago may suddenly be exploitable. 
Both attackers and security researchers are always looking for new methods 
of exploitation, so even code developed with security in mind can be suscep-
tible to new forms of attack.

Fortunately, the developers at the NTP project have been very responsive to 
reports of new attack vectors and have worked quickly to patch the code and 
respond to new threats.
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Vulnerabilities in the Protocol
Although vulnerabilities in the code of the NTP daemon may present the big-
gest risk to the organization, vulnerabilities in the NTP protocol are the most 
common.

Part of the risk inherent in NTP is the use of UDP as its transport protocol. 
UDP is a connectionless Internet Protocol, meaning there is no requirement 
for confirmation of a successful connection. Unlike protocols that rely on TCP 
for transport, which do require confirmation of a connection via a three-way 
handshake, NTP delivered over UDP requires no confirmation that the con-
nection is coming from the original source. In practice, this means that people 
can do things like issue the command in Listing 3-5 with UDP.

Listing 3-5.  Sending spoofed packet using the hping command

allan@allan-1015E:~$ sudo hping3 ntp.cryptodns.com -V --udp -p 123 
--spoof 8.8.8.8 --data 500 using wlan1, addr: 192.168.1.7, MTU: 1500
HPING ntp.cryptodns.com (wlan1 198.84.61.242): udp mode set, 28 
headers + 500 data bytes

In this example, using the tool hping3, 500 bytes of random data are being sent 
to the server ntp.cryptodns.com from the spoofed IP address 8.8.8.8, which is 
one of the Google DNS servers. On the receiving server, the incoming traffic 
looks like the packet capture shown in Listing 3-6.

Listing 3-6.  View of the spoofed traffic from the previous hping command

15:28:31.120250 IP (tos 0x0, ttl 64, id 49704, offset 0, flags [none], proto 
UDP (17), length 528)
google-public-dns-a.google.com.2908 > ntp.cryptodns.com.ntp: [udp sum 
ok] NTPv4, length 500 unspecified, Leap indicator: +1s (64), Stratum 88 
(reserved), poll 88 (16777216s), precision 88 
Root Delay: 22616.345092, Root dispersion: 22616.345092, Reference-ID: 
ti0203a400-1361.bb.online.no
          Reference Timestamp:  1482184792.345098048 (2083/01/25 23:28:08)
          Originator Timestamp: 1482184792.345098048 (2083/01/25 23:28:08)
          Receive Timestamp:    1482184792.345098048 (2083/01/25 23:28:08)
          Transmit Timestamp:   1482184792.345098048 (2083/01/25 23:28:08)
            Originator - Receive Timestamp:  -0.000000000
            Originator - Transmit Timestamp: -0.000000000

As far as the receiving host can tell, the request came in from the Google DNS 
server, and that is where it would send the response. This is a major flaw with 
the UDP transport mechanism, because there is no connection between the 
two hosts and it is easy to spoof a connection.

www.allitebooks.com
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Spoofing packets means that UDP-based protocols are uniquely susceptible 
for use in DDoS attacks, which are discussed later in this chapter. It also 
means that protocols like NTP are susceptible to forged packets. Those forged 
packets can be used to disrupt the protocol and even crash NTP. A perfect 
example of this is with CVE-2009-3563, in which a spoofed NTP packet with 
the mode 7 flag set would cause an NTP daemon to crash.

This was covered briefly in Chapter 1, but it is worth a quick review. Although 
there are three protocol modes in NTP version 4 (symmetric, client/server, 
and broadcast), there are six different association modes that are flagged in 
NTP packets. Those modes are:

	1.	 Mode 1 – Symmetric Active

	2.	 Mode 2 – Symmetric Passive

	3.	 Mode 3 – Client

	4.	 Mode 4 – Server

	5.	 Mode 5 – Broadcast Server

	6.	 Mode 6 – Broadcast Client

So although there are only three modes, there are six possible flags associated 
with those modes in NTP version 4. However, in prior versions of NTP, there 
was a Mode 7, which was a reserved mode. Mode 7 is still recognized by NTP 
version 4 servers for the purpose of backwards compatibility.

In the case of the CVE-2009-3563, an attacker could send a forged packet 
that had Mode 7 set and a payload of 0x17 (an invalid hex value) and the NTP 
server would respond to what it thought was the original sender with an 
error response. The second server would then respond to the target server 
with an error response and the cycle would continue until all memory on 
both servers was used up and the systems would crash.

For an even cleaner attack, the attacker could spoof the packet so it looked 
like it originated from the target server itself. The server would continue to 
respond to itself in a loop, eating up a little more memory each time until it 
finally crashed, essentially issuing a DoS attack against itself.

Ultimately, the vulnerability in this instance was with error handling within 
the NTP daemon, but it was enabled by the fact that an attacker could easily 
spoof packets. This allowed an attacker to take advantage of a vulnerability 
that otherwise might not have been easily exploited.

http://dx.doi.org/10.1007/978-1-4842-2412-0_1
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Flaws in NTP Encryption and Authentication
Version 4 of NTP introduced a number of improvements in the encryption 
process used by NTP for authentication and integrity checking. This is an 
important distinction: NTP does not maintain a facility to encrypt NTP traf-
fic itself. Instead, NTP encryption is used only for the authentication pro-
cess. Therefore, it is almost impossible to separate NTP encryption from the 
authentication process and vice versa.

■■ Note  There are versions of NTP that do support encrypted communication, but the reference 

build, which is what this book has focused on because it is the most widely deployed, does not. 

Chapter 6 will discuss a number of NTP daemon variants that support encrypted communication.

Encrypted authentication is important, as it helps to ensure that an incoming 
message is able to be verified. However, by not encrypting the data packets 
NTP traffic is subject to monitoring by an attacker sitting between a client and 
server or between a pool of servers.

So what? Generally, there is no sensitive data contained within an NTP packet, 
so it doesn’t really matter if an attacker can snoop it. Unfortunately, it can 
make a difference. To this point in the book, there has been little discussion 
around some of the more advanced attacks that can only be carried out by 
someone who is able to inspect NTP traffic, primarily because these attacks 
are rare, and in cases where they can be carried out there are usually other, 
“low-hanging fruit” type of attacks that make more sense and don’t potentially 
expose other systems controlled by the attackers.

The fact is, there are a number of advanced hacking groups, including nation 
states, with the type of accesses that would allow them to inspect NTP pack-
ets and use that information to carry out a complex attack.

Symmetric Encryption 
NTP version 3 supported the use of symmetric key encryption for authen-
tication and verification purposes. NTP version 4 maintains backwards com-
patibility with this feature. Symmetric-key encryption uses the same key to 
encrypt and decrypt the data. This requires the key to be stored by both the 
sender and the receiver in order to encrypt and decrypt the message. Thus, 
symmetric-key encryption is vulnerable to attack if an attacker has access to 
either the sender’s or the receiver’s system.

http://dx.doi.org/10.1007/978-1-4842-2412-0_6
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Setting up the keys is a two-part process. The first step is to identify where the 
keyfile is in the ntp.conf file:

### Authentication section ###
keys /etc/ntp/keys

While doing that, it is also important to identify which hosts require keys in 
order to connect to the client or server:

server ntp.cryptodns.com key 5 

The key number is a unique identifier assigned to each host (or every host can 
use the same identifier), and it must be a 16-bit number between 1 and 65535.

The keys file, defined in the ntp.conf file, contains statements similar to those 
in Listing 3-7.

Listing 3-7.  Sample keys file

#
# PLEASE DO NOT USE THE DEFAULT VALUES HERE.
#
#65535  M  [password]
#1      M  pass
5  M  s3cur3NTP

The format of the keys file is simple. Each line contains the key number, the 
key type, and the password, or key, itself.

In the example above, unique key identifier 5, which is assigned to ntp.crypto-
dns.com, is assigned the MD5 hashed password s3cur3NTP. This same setup 
will need to be mirrored on the server side as well, so that the server will 
know that it needs to authenticate the client with that password.

Obviously, there are a number of security problems with this setup, not the 
least of which is the fact that storing unencrypted passwords in a file on the 
client and server makes them an easy target. Not to mention that every time 
this password is changed, it has to be sent to one or more hosts in a secure 
manner, causing many potential weak points in the chain that can be exploited 
by an attacker.

Unfortunately, that is not the only problem. As mentioned briefly in Chapter 2, 
CVE-2015-1798 and CVE-2015-1799 both identified bugs in symmetric authen-
tication that could allow an attacker to bypass this security measure. In the case 
of CVE-2015-1798, NTP version 4 between versions 4.2.5p99 and 4.2.8p2 were 
vulnerable to a flaw in which NTP was checking to make sure that incoming 
packets had a valid message authentication code (MAC), but not if the incoming 
messages had the actual MAC.

http://dx.doi.org/10.1007/978-1-4842-2412-0_2
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In other words, a bad guy sniffing traffic between a client and server could 
forge packets indicating that they had a valid MAC, even if the MAC was not 
included in the message, and the NTP client or server on the other end would 
accept those packets as if they had a valid MAC included. This would allow the 
attacker to bypass authentication systems enabled by the NTP administrators.

CVE-2015-1799 is another example where symmetric authentication should 
have prevented an attack from happening, but wouldn’t have been able to. 
CVE-2015-1799 was a DoS vulnerability that existed in all versions of NTP 
prior to 4.2.8p2. The vulnerability itself existed between two symmetrically 
peered hosts. An attacker could have sent a forged packet to host A, which 
appeared to have originated from peering host B. The forged packet would 
contain incorrect NTP state variables. Host A would update with the new 
variables, and when it sent its next update to host B, it would have different 
variables. Eventually, the different state variables would cause the two hosts to 
de-peer and the two hosts would not be able to synchronize with each other.

Symmetric authentication between the two peering hosts should make an 
attack like this unworkable. However, as it turns out, the updated state infor-
mation was being passed to the peering host prior to the authentication being 
processed. So, even if the packet was rejected with a bad MAC, the NTP state 
information from the forged packet would still be processed.

The fix to this was simple: process NTP state information after the symmetric 
authentication was successfully processed. As stated above, this fix is imple-
mented in versions 4.2.8p2 and later of NTP.

AutoKey
NTP version 4 introduced a public key encryption security model known as 
AutoKey. AutoKey is not a true Public Key Infrastructure (PKI) security model. 
Making use of PKI would put too great a strain on the time synchronization 
aspect of NTP, so while it would increase the security of the protocol, it would 
do so at the expense of its primary purpose: synching time.

Instead, AutoKey relies on a combination of public keys and a pseudo-random 
sequence of hashes. This was explained in more detail in Chapter 1. AutoKey is 
a lightweight but cryptographically secure method of authentication. Similar to 
the Domain Name System Security Extensions (DNSSEC) protocol, AutoKey 
is delivered from the top down. This means that an NTP client can’t initiate an 
AutoKey sequence, but its server can (of course, like DNSSEC, the client has 
to be configured to accept it).

AutoKey provides a stronger encrypted authentication sequence than sym-
metric key encryption, but it has still had a few security issues. Note that none 
of the security issues have involved the encryption itself—only the implemen-
tation of the encryption.

http://dx.doi.org/10.1007/978-1-4842-2412-0_1
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Probably the biggest flaw in the AutoKey implementation was reported in the 
previously discussed CVE-2014-9295. This vulnerability allowed an attacker 
to exploit a buffer overflow in the crypto_recv function and possibly execute 
code. The vulnerability was so critical that the developers of NTP recom-
mended users disable AutoKey until the patch could be delivered. The good/
bad news is that, given the complexity of setting up AutoKey and the rela-
tively poor documentation, not many users appear to be taking advantage of 
AutoKey, so it does not seem that too many people were affected.

To understand how this buffer overflow worked, take a look at the patched 
code3 in Listing 3-8.

Listing 3-8.  Patched AutoKey buffer overflow code

--- a/ntpd/ntp_crypto.c
+++ b/ntpd/ntp_crypto.c
@@ -792,15 +792,24 @@ crypto_recv(
                         * errors.
                         */
                        if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
+                               u_int32 *cookiebuf = malloc(
+                                   RSA_size(host_pkey->pkey.rsa));
+                               if (!cookiebuf) {
+                                       rval = XEVNT_CKY;
+                                       break;
+                               }
+
                                if (RSA_private_decrypt(vallen,
                                    (u_char *)ep->pkt,
-                                   (u_char *)&temp32,
+                                   (u_char *)cookiebuf,
                                    host_pkey->pkey.rsa,
-                                   RSA_PKCS1_OAEP_PADDING) <= 0) {
+                                   RSA_PKCS1_OAEP_PADDING) != 4) {
                                        rval = XEVNT_CKY;
+                                       free(cookiebuf);
                                        break;
                                } else {
-                                       cookie = ntohl(temp32);
+                                       cookie = ntohl(*cookiebuf);
+                                       free(cookiebuf);
                                }
                        } else {
                                rval = XEVNT_CKY;

3Code sample retrieved from the NTP Project Bug Page at: http://bugs.ntp.org/show_
bug.cgi?id=2667, accessed August 16, 2016

http://bugs.ntp.org/show_bug.cgi?id=2667
http://bugs.ntp.org/show_bug.cgi?id=2667
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Note that the patch delivered by Stephen Röttger fixes the buffer for the 
received RSA key. The original buffer was limited to four bytes when the buffer 
should have been dynamically allocated to allow for whatever size the incom-
ing RSA key was.

Although that may have been the most serious, it is not the only bug associ-
ated with AutoKey. In May of 2016, Miroslav Lichvar of Red Hat reported a 
vulnerability that wound up being CVE-2016-4955, which allowed an attacker 
sitting in a network to force a dissociation between two peers with AutoKey 
enabled. This bug was resolved in June 2016.

This bug impacts all version of NTP before 4.2.8p8. This bug only impacted 
NTP hosts that had a peering relationship secured with AutoKey. An attacker 
could send a packet with spoofed crypt-NAKs or a bad MAC, which would 
eventually force the target host to call the peer_clear() function and discon-
nect from all associated peers, causing time between those peers to eventually 
fall out of synchronization.

Unlike the previous example, this is not a coding error; this is the way AutoKey 
is designed to work. The problem is that the AutoKey implementation did 
not take into account that these types of attack might happen. In this case, 
the problem was fixed by adjusting the order of operations. Prior to call-
ing the peer_clear() function, NTP now checks to make sure the packets 
aren’t spoofed by checking that the origin timestamp matches the transmit 
timestamp.

CVE-2014-9750 is another vulnerability involving AutoKey that was poten-
tially so dangerous that the NTP developers recommended disabling AutoKey 
until the patch could be released. This vulnerability impacted versions of NTP 
prior to 4.2.8p1 and could possibly have resulted in the NTP daemon crashing 
or an information leak.

The vulnerability existed in the vallen packets within the NTP cryptographic 
libraries. There was no proper validation of the data, which could result in an 
incorrect processing of the packets, as the data would not necessarily be in 
the proper format as it is passed through the cryptographic libraries.

NTP Use in DDoS Attacks
The most well-publicized vulnerability in NTP is not necessarily a vulnerability. 
The fact that NTP is susceptible to DDoS attacks is due in large part to the 
fact that NTP runs over UDP. UDP is a connectionless protocol that can be 
easily forged, making it easy to trick one or more hosts on the Internet to 
send massive amounts of traffic to a target host with very little bandwidth 
expenditure on the part of the attacker.
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The difference between a DoS, like the attacks described to this point in the 
chapter, and a DDoS attack is that the purpose of a DoS attack is to make a 
service or host unavailable remotely from a single attack point. A DDoS attack 
uses multiple remote hosts, spread across the Internet, and one or more 
intermediary hosts to launch a large, bandwidth-consuming attack on a target 
host or network.

The monlist query attack, documented in Chapter 2, is one example of this, 
but really any query that produces results which are significantly larger than 
the original query will do. This is known as a DDoS amplification attack.

These types of DDoS amplification attacks are not limited to NTP. DNS and 
the Simple Service Discovery Protocol (SSDP) are among the other UDP-
based protocols that are often used to attack target hosts. Any service that 
relies on UDP and offers the ability for small queries to return large amounts 
of data can be used to launch a DDoS attack.

In fact, along with monlist, the ntpdc commands support a number of com-
mands that generate more traffic than the incoming query, such as:

	1.	 Peers

	2.	 Iostats

	3.	 Sysinfo

None of these commands will generate as much traffic as the monlist com-
mand, but they can still do a lot of damage if remote hosts are allowed to run 
the commands and redirect the traffic.

The same problem pops up with the ntpq command. There are a number of 
queries ntpq can make that will output more traffic than generated by the 
original request—often substantially more. For example, a command like ntpq 
–c lpeers, shown in Listing 3-9.

Listing 3-9.  Output of the lpeers command

root@server:~# ntpq -c lpeers
     remote           refid     st t when poll reach   delay  offset jitter
============================================================================
 206.246.118.250 .INIT.         16 u    - 1024    0    0.000  0.000    0.000
 clock.via.net   199.102.46.73   2 u 167m 1024    0   80.112  -5.708   0.000
+darkcity.cerias .GPS.           1 u  995 1024  377  105.427  -42.965 53.991
*clock.fmt.he.ne .CDMA.          1 u  305 1024   77   69.033   -7.751  4.495

Another example would be the command ntpq –c readlist, demonstrated in 
Listing 3-10

http://dx.doi.org/10.1007/978-1-4842-2412-0_2
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Listing 3-10.  Output of the readlist command

root@server:~# ntpq -c readlist
associd=0 status=0615 leap_none, sync_ntp, 1 event, clock_sync,
version="ntpd 4.2.6p5@1.2349-o Thu Feb 11 18:30:40 UTC 2016 (1)",
processor="x86_64", system="Linux/3.13.0-93-generic", leap=00, stratum=2,
precision=-22, rootdelay=69.033, rootdisp=108.479, refid=216.218.192.202,
reftime=db9713b4.47962e8d  Thu, Aug 11 2016  5:14:44.279,
clock=db97191d.73a7ebb8  Thu, Aug 11 2016  5:37:49.451, peer=14122,
tc=10, mintc=3, offset=-17.827, frequency=-1.365, sys_jitter=18.267,
clk_jitter=9.533, clk_wander=1.069

Not only is this command a potential vector for a DDoS attack, but it also 
reveals a great deal of data about the intermediary system. So, if the server 
allows remote queries, there is a twofold danger of a data leak and the server 
acting as a redirect for a DDoS attack.

■■ Note  Often, system administrators will configure NTP so that it does not allow these types 

of queries from remote hosts, but will allow the queries to be made from the local host. That is 

perfectly acceptable—they are often useful queries for troubleshooting purposes. However, a big 

mistake many administrators make is to allow queries from 127.0.0.1 (the loopback address).

On many systems, the loopback address can be spoofed, so allowing queries from 127.0.0.1 gives 

attackers an obvious source IP address to use in the spoofing part of their amplification attack. 

Allow configuration from the host address, but not the loopback address.

Primarily because of the monlist query vulnerability, DDoS attacks saw a 
resurgence in 2014 and have continued to rise. Many of the largest networks 
have taken steps to protect potential victims from being targeted by NTP 
DDoS attacks, or being used as a redirector. But that still leaves millions of 
vulnerable hosts, primarily home routers that are rarely patched, that can be 
used to launch these attacks.

Make no mistake: these attacks can be massive, and they can overwhelm even 
the most robust network. In 2014, the largest DDoS attack ever launched 
(to that point) was reported by CloudFlare to be more than 400 gigabits per 
second and was based on the NTP monlist reflection attack4.

There are also a number of tools that make it easy to launch these attacks 
with very little effort on the part of the attacker. These so-called NTP-AMP 
(short for NTP amplification) toolkits come in a range of formats, from nicely 
developed tools with a slick GUI interface, such as Lizard Stresser [sic], to 
simpler, Python-based tools, such as ntpdos.

4Schwartz, Mathew. "DDoS Attack Hits 400 Gbit/s, Breaks Record." Dark Reading, UBM, 
Nov. 2, 2014. Accessed Aug. 31, 2016.
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Most of the Python NTP-AMP toolkits rely on the Scapy Python library to 
create the forged packets. According to its developer, “Scapy is a powerful 
packet manipulation program”—in other words, it can be used to forge pack-
ets and launch attacks.

It should be noted that Scapy is a great tool for system administrators. It helps 
administrators troubleshoot network problems, recreate traffic flow in the 
network, decode a number of common protocols, and more. So, even though 
in this use case it is used to launch an attack, it is actually a very good tool for 
day-to-day network troubleshooting.

However, like most powerful administrative tools, it can also be used for 
attacking hosts. Using the ntpdos code in Listing 3-11, which is typical of NTP-
AMP toolkits, from GitHub5 the attack is fairly routine.

Listing 3-11.  Running the ntpdos toolkit

root@server:/tmp# python ntpdos.py 
NTP Amplification DOS Attack
By DaRkReD
Usage ntpdos.py <target ip> <ntpserver list> <number of threads>
ex: ex: ntpdos.py 1.2.3.4 file.txt 10
NTP serverlist file should contain one IP per line
MAKE SURE YOUR THREAD COUNT IS LESS THAN OR EQUAL TO YOUR NUMBER OF SERVERS

The Python code only requires a user to enter a target host and provide a 
file with a list of redirect servers, plus a thread count—the script takes care 
of everything else.

Creating each spoofed packet is relatively simple in the code, and relies on the 
capabilities built into Scapy, shown in Listing 3-12 (line break in line 4 inserted 
for readability)

Listing 3-12.  Output of the Scapy command

ntpserver = ntplist[currentserver] #Get new server
currentserver = currentserver + 1 #Increment for next 
packet =IP(dst=ntpserver,src=target)/UDP(sport=random.randint(2000,65535),
        dport=12        3)/Raw(load=data) #BUILD IT
send(packet,loop=1) #SEND IT

The Scapy calls build the forged packet, but it still requires the monlist request 
to be inserted:

#Magic Packet aka NTP v2 Monlist Packet
data = "\x17\x00\x03\x2a" + "\x00" * 4

5Ntpdos code retrieved from GitHub at: https://github.com/vpnguy/ntpdos, accessed 
August 31, 2016.

https://github.com/vpnguy/ntpdos


Chapter 3 | Vulnerabilities in NTP52

All the attacker has to do at that point is scan the Internet looking for hosts, 
most likely unpatched home routers, that are still vulnerable to the monlist 
command—or return data from any of the remote queries. The attacker can 
use these hosts to build the redirect list and then launch the attack against 
the target. To simplify the process even further, an attacker can use a bot-
net builder, like Mirai, to scan Internet-accessible home routers and other 
devices and attempt to connect to those devices using default usernames and 
passwords. Once successfully connected, the botnet builder will temporarily 
install the botnet software and ping the command and control server, awaiting 
instructions on who to attack.

The good news is that more and more Internet Service Providers (ISPs) are 
taking the threat of NTP-based DDoS attacks seriously and are taking steps to 
protect their clients, and targets who aren’t their clients, from these attacks. 
NTP DDoS attacks are still very common, but appear to have fallen out of 
favor as other protocols gain popularity. As ISPs continue to make it harder 
for attackers to find vulnerable hosts, these attacks will become less common.

However, because of the nature of UDP, NTP will remain a potential source of 
DDoS attacks. Organizations cannot just rely on their ISPs to fix the problems 
associated with NTP DDoS attacks—the organization itself must take action 
to ensure the latest version of NTP is installed on public-facing systems and 
that secure NTP configurations are deployed throughout the network.

Conclusions
It is easy to read through this chapter and come to the conclusion that NTP 
is the most insecure program ever written and no one should use it. Nothing 
could be further from the truth.

Like any program with a 30+ year history, NTP has definitely had major secu-
rity vulnerabilities over the years. However, the reference code has gotten 
more secure over the years, and the maintainers of the code have gotten 
more responsive to fixing reported bugs.

So, while there will undoubtedly continue to be vulnerabilities announced in 
NTP, it is getting more secure, and major vulnerabilities are becoming less 
frequent.

Instead, the biggest problem with NTP at this point is with insecure configu-
rations and installations that are never upgraded. The next two chapters will 
address these issues and offer practical tips for securing NTP.
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C H A P T E R 

Securing NTP 
This chapter gets to the meat of NTP security: actually securing an NTP instal-
lation, and protecting an organization from insecure NTP installations. As pre-
viously discussed, this is not always as easy as it sounds, especially given the 
many platforms in an organization’s network that make use of the protocol.

Some platforms, such as Linux or BSD servers, give the administrator a lot 
more control over the NTP configuration than other systems, such as rout-
ers and workstations. Because of this disparity, it is important to understand 
which systems are making use of NTP and what level of control the adminis-
trators have over those systems.

Knowing these two important pieces of information will enable security teams, 
in conjunction with the various system administrators, to develop a security 
plan for NTP implementation. It will also help the security team track poten-
tial vulnerabilities in the platforms and take appropriate steps to make sure 
that new vulnerabilities are appropriately prioritized and patched accordingly.

Collecting NTP Information
Unsurprisingly, many organizations have never given NTP security a thought. 
Unless an organization has been the victim of an NTP Distributed Denial of 
Service (DDoS) attack, been used as a redirector in one of those attacks, or 
had an attacker gain access to their network through an NTP vulnerability, 
there probably has not been much reason to think specifically about NTP 
security. This means that NTP security may not even be part of an organiza-
tion’s security plan.

4
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Often, NTP is thought of as simply an administrative protocol, and very little 
consideration is given to NTP security. In fact, in many platforms, there are no 
options for administrators to add security enhancements to the built-in NTP 
facility.

For example, most home routers and other so-called Internet of Things (IoT) 
devices offer limited or no ability to configure NTP settings, at least through 
the Graphical User Interface (GUI). Some of these devices do offer more con-
trol through the command line, but most users are unaware of how to access 
the command line for these devices.

Apple desktops have ported the reference version of NTP to their plat-
form, offering full configuration options. Microsoft does offer a command line 
Windows Time client, called w32tm, that enables some of the features of the 
reference NTP implementation, but not all.

Most organizations opt to simply set the reference clocks through the respec-
tive GUI interfaces and leave it at that. Though, for Microsoft Windows desk-
tops connected to a domain controller (DC), the reference clock is the DC 
and it is set automatically.

This policy makes sense from a security perspective. In fact, in an Active 
Directory environment that contains a mix of Microsoft Windows and Apple 
OS X end points, both platforms can use the DC as their NTP server. This 
keeps the majority of NTP traffic within the network and allows administra-
tors, working with the security team, to set a security policy around NTP 
connections at a single source.

Forcing desktop systems to connect to an internal domain controller also 
makes the process of isolating rogue NTP traffic in the network easier. If the 
majority of hosts in the network are connected to a known internal NTP host, 
then there should be very little NTP traffic leaving the network.

Remember, maintaining accurate time is important for many types of net-
work communications. So, a lot of connected devices automatically try to 
connect to pre-configured NTP servers (using pool.ntp.org or other well-
known NTP addresses). This, along with the fact that most organizations allow 
NTP requests to flow out of their network with little interference, means 
that there may be a large number of potential security risks on the network 
of which no one is aware.

However, this also allows security analysts to learn what devices on the net-
work are connecting to NTP servers that are not in direct control of the 
organization. Not only does this give security teams the opportunity to iden-
tify potential security risks associated with poor NTP configurations, but it 
also may identify rogue systems on the network.
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The easiest way to understand what type of NTP traffic is attempting to leave 
an organization’s network is to simply set a firewall rule monitoring for any 
traffic on UDP port 123 (NTP does not have a fallback mechanism to TCP 
port 123 the way some other UDP protocols do). Any traffic to an unauthor-
ized NTP server should be flagged and investigated.

■■ Note  In an ideal security world, the best way to do this would be to block all NTP traffic at the 

edge of the network which does not originate from stratum 2 NTP servers within the organization 

and alert on blocked traffic. This would still have the benefit of identifying rogue NTP traffic while 

simultaneously significantly reducing the risk of an NTP attack. However, the ideal security solution 

is not always politically practical.

Of course, not all hosts identified using this method will be rogue. Most of 
them will be servers that were set up long before an NTP security policy was 
put in place. But this will be a good place to start cataloguing those systems 
who do not conform to the policy and, hopefully, putting a plan in place to 
bring them into compliance.

The first thing that needs to be done, especially with older systems that are 
running vulnerable versions of NTP, is point those hosts to an internal NTP 
server. If the servers cannot be immediately upgraded, this will at least keep 
the NTP communication within the network. As outlined in Chapter 3, this 
will not stop an advanced attacker, but it does limit the damage from more 
commonplace and less sophisticated attacks.

Secondly, a plan needs to be put in place to upgrade vulnerable NTP servers. 
Systems that have vulnerabilities which would potentially allow an attacker to 
gain remote access should be prioritized, especially if those systems are public 
facing.

Finally, once the organization has identified and upgraded these systems, the 
next step is to keep up with any updates to the NTP daemon on the systems. 
Using a Governance, Risk, and Compliance (GRC) solution like RSA’s Archer 
or Lockpath’s GRC solution will allow organizations to track the version of 
different packages (not just NTP) on those systems. Marrying the GRC data 
with updated vulnerability data from a company like Qualys or Rapid7 will 
allow an organization to know what is currently installed on their system and 
access information about new vulnerabilities against NTP on those systems.

Having both sets of intelligence allows organizations to prioritize patching 
new systems as new NTP vulnerabilities are uncovered. If patching is not pos-
sible in a timely manner, knowing that the vulnerability is out there will allow 
security teams to take additional steps to secure those unpatched systems.

http://dx.doi.org/10.1007/978-1-4842-2412-0_3
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So far, this discussion has revolved around identifying and securing existing 
systems with NTP installed. But modern organizations are generally much 
more dynamic, which means new systems are connecting to the network all 
the time. How should those new systems be secured?

That is the point of adding a section on NTP security to the existing security 
plan. An NTP security plan allows the security team, in conjunction with the 
system administrators, to set a base set of guidelines around NTP that a new 
system must meet in order to connect to the organization’s network.

As with any security plan, an NTP security plan does not have to be one size 
fits all. There may very well be different standards for desktops versus servers, 
and there will undoubtedly be a different set of rules for internal systems 
compared to those that are Internet-facing.

A security plan should be flexible enough to allow it to meet the business 
needs of the organization, while still protecting the organization from known 
and unknown threats around NTP.

The first step in putting together a plan is to talk about how to harden a 
server running NTP.

Hardening an NTP Installation
This will sound obvious, but the most effective way to secure an NTP instal-
lation is to make sure that it is fully patched, running the latest version of the 
software.

But that is not always possible. Often NTP is running on closed systems that 
don’t allow administrators to update individual components. Even when it is 
possible to update individual components, it is not always easy.

For example, as of this writing, the Ubuntu Linux distribution version 16.0.4—
one of the most popular distributions—delivers an NTP package with version 
4.2.8p4 as the most current version. The most current, non-developer version 
of NTP is 4.2.8p8, meaning that system administrators relying on Ubuntu 
package developers for the most recent version of NTP are several iterations 
behind, and will remain that way.

Even worse is version 14.0.4.5 of Ubuntu, which is not expected to reach end 
of life (EOL) until April of 2019. That version of the distribution includes ver-
sion 4.2.6p5 of NTP, which is not only several releases behind the current ver-
sion, but also includes a number of vulnerabilities that could allow an attacker 
remote access to the system.
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■■ Note  The intent here is not to pick on the developers of Ubuntu, who have one of the best 

Linux distributions available. It doesn’t matter which Linux distribution is being discussed—any 

operating system that relies on a package manager for delivery of updates is going to lag behind 

the developers of NTP (and other packages) in delivering the most up-to-date applications.

This creates a dilemma for system administrators: run an out-of-date version 
of NTP or compile and install the most recent NTP package? That may be an 
easy question to answer for system administrators creating an NTP server, 
but that is not the most common reason for installing NTP on a server.

If a server is being built to serve primarily as a file server, web server, mail 
server, or any of hundreds of other functions, NTP is going to be a second-
ary service. The administrators will most likely have their hands full with the 
operation and security of the primary services on the server. NTP mainte-
nance (along with any other secondary services) is going to be largely ignored.

There are a number of ways to deal with this. For many organizations, the 
answer is to build custom images that have the most up-to-date versions of 
the applications that are running in their environment. Any newly provisioned 
servers are built on this image and updated appropriately. This way, when new 
versions of these programs come out, they can be quickly tested and added 
to the “gold image.”

This method keeps the organization up to date with the latest versions of 
applications used in their environment. Even existing servers can be wiped 
and rebuilt using an updated image whenever a new gold image is released. 
This type of maintenance was extremely difficult in environments that relied 
on physical servers, but as more organizations are moving to virtual servers, it 
is easier to maintain, update, and test gold images across different teams and 
applications in the organization.

Other organizations lack the resources to maintain a gold image, and are 
forced to rely on their chosen Linux distribution to provide updates. Many 
times, these organizations are unaware that there may be a security risk in 
this method.

In the second case, it is important to take steps to secure the NTP installation 
as much as possible. This starts with running NTP in a chroot jail.



Chapter 4 | Securing NTP 58

Running NTP in a Chroot Jail
Chroot is a Unix process that changes the root directory of a process to one 
designated by the system administrator. The process, and its children, see the 
new directory as root and cannot access other files or programs outside of 
that directory.

The idea here is that even if an attacker is able to use a vulnerability in NTP 
to gain root access to the server, all that attacker will have access to is the 
NTP daemon and its child processes. The chroot jail is often used to isolate a 
program that poses a potential security risk, but needs to run on the system.

■■ Warning  The chroot jail is not a security panacea. A skilled enough attacker can break out of 

a chroot jail, so it should never be the ONLY security step enabled. Instead, the chroot jail should 

be one of several security steps.

Fortunately, NTP has a built-in facility for running chroot jail (assuming it is 
compiled with this facility). The command to enable a chroot jail is:

allan@server:~# ntpd –i [chroot jail directory] –u [user:group that NTP will 
run as]

This is an example of a basic implementation of the command:

allan@server:~# ntpd –i /chroot/usr/sbin/ntpd –u ntp:ntp

The NTP daemon must be compiled with the following flags in order to run 
the NTP daemon in a chroot jail:

•	 enable-clockctl

•	 enable-linuxcaps

•	 enable-solarisprivs

In order for NTP to run in a chroot jail, the operating system must allow NTP 
to run as a non-root user. This is why the second example above includes the 
ntp:ntp user:group combination. Running a process as root in a chroot jail 
defeats the purpose of the jail. A root user can easily break the jailed directory 
structure and access the rest of the system.

Run NTP As an Unprivileged User 
Even when not running in a chroot jail, NTP (and other services) should never 
be run as root. Always create a user for each service and only give that user 
the permissions needed to run the service. Anything more than that creates 
an unnecessary security risk.
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This risk is most apparent in attacks that may allow remote access, whether 
those are buffer overflow attacks or attacks that allow an attacker to execute 
a remote command. If the NTP daemon is running as root, the attacker will be 
able to run any command as root once access is gained. By creating a user for  
NTP with limited permissions and no shell access even if an attacker does gain 
access to the server the damage they can do will be limited, like this from an 
Ubuntu /etc/passwd file:

ntp:x:105:112::/etc/ntp:/bin/false

Some system administrators also use /bin/nologin to accomplish the same 
thing. The difference between /bin/false and /bin/nologin is that the nologin tag 
presents a message letting the user know that they are not allowed to log in 
to the system, whereas the false flag just immediately disconnects. Some secu-
rity professionals consider the latter more secure, as it does not provide an 
affirmation that the user exists. This limits the ability of an attacker who does 
gain access to execute any commands on the system. This is often called the 
Principle of Least Privilege (POLP). POLP states that a user should have the 
access needed to perform its required tasks, but no more than that.

While securing the NTP daemon is important, as is restricting unauthorized 
access, most of the NTP attacks discussed in this book have involved com-
munication. The next step in securing NTP is to secure communication to and 
from the NTP hosts in the network.

Protecting NTP Communication
Protecting NTP communication does not start at the server—it starts at the 
edge of an organization’s network. For most organizations, there is no reason 
to run a publicly accessible NTP server. Therefore, blocking all inbound traffic 
to UDP port 123 is a good place to start.

It is certainly reasonable to maintain a centralized NTP infrastructure for use 
by systems on the network—in fact, this is an excellent security practice. In an 
ideal world, organizations would maintain a stratum 1 NTP server in a core 
data center with stratum 2 servers spread throughout the network. This allows  
all NTP communication to stay within the network. It also means that an orga-
nization can block all incoming and outgoing NTP traffic at the edge firewalls. 
There would never be a need for any NTP traffic to enter or leave the network.

None of the NTP servers on the network should be receiving requests 
from external networks. NTP traffic can easily be tunneled through VPNs for 
remote employees, and for office-to-office traffic NTP communication can  
be routed over a Multiprotocol Label Switching (MPLS) network that never 
touches the public Internet. This type of setup improves the NTP security of 
the network and reduces the risk to an organization that its NTP servers will 
be used as redirectors in an NTP DDoS attack.
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For most organizations, this type of infrastructure is simply not feasible. 
Managing a stratum 1 NTP server is an ongoing process that requires a level 
of expertise that is not always available. It also requires additional time and 
employee resources, which are always in short supply.

A much more likely scenario is for an organization to maintain a number of 
stratum 2 servers on the network, usually in a peered relationship. These serv-
ers are able to reach out to select stratum 1 servers. Or, ideally, one or two 
stratum 2 servers in the network can reach out to stratum 1 servers. These 
NTP servers, again in a peering relationship, then become the reference clocks 
for the other servers in the network, meaning that an organization, depending 
on its size, may maintain both stratum 2 and stratum 3 servers.

This scenario is significantly less resource intensive and, with modern systems, 
will not result in significant time drift. It also has the benefit of being easy to 
secure. The same rules as the first scenario still apply: NTP systems within 
the organization never need to connect to external NTP servers, and no 
external servers need to call in to the network. The difference in this case is  
that the original “deny all in and out on UDP port 123” rule has to be modi-
fied. The IP addresses/domain names of the two stratum 2 NTP servers should 
be allowed to call out to specific stratum 1 NTP servers (not to pool.ntp.org, 
time.apple.com, or any of the myriad NTP services). For redundancy pur-
poses, at least four stratum 1 servers should be listed in each configuration.  
All other NTP traffic, in and out of the network, should be blocked.

This does create some additional administrative work. Stratum 1 NTP servers 
are listed that way in part because of their reliability, not just in terms of their 
directly connected time source, but also because of their uptime. However, 
servers are retired, and IP addresses and domains change over time. When 
selecting a stratum 1 time source, try to identify sources that offer a mailing 
list or, at the very least, a website that provides regular updates on the status 
of that NTP server. Appropriate teams within the organization should know 
when one of the stratum 1 NTP servers is making changes that require config-
uration updates. Losing one or two stratum 1 servers from the rotation won’t 
impact the reliability of the stratum 2 servers inside the network, but if they 
aren’t replaced, eventually all of the stratum 1 servers could become unreach-
able. If that were to happen, it would obviously have a significant impact on the 
ability of the organization to synchronize time.

Conversely, the stratum 2 servers inside the network should be monitored 
and alerts should be generated when one of the stratum 1 servers is unreach-
able for a significant amount of time. These types of alerts should be threshold 
based (the next section will cover this in more detail). Because NTP commu-
nication is carried out using UDP, the connections are inherently unreliable. 
Alerting every time a stratum 1 server is unresponsive would be a waste of 
time for the team that has to monitor those alerts. Instead, alerts should be 
generated if a stratum 1 server is unreachable for hours, or even days.
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■■ Note  Keep in mind that stratum 1 severs are considered Internet infrastructure, and are often 

targeted for attack in the same way that the root DNS servers are, but unlike the root DNS servers, 

most stratum 1 servers don’t have significant DDoS protections in place. It is possible for a stratum 

1 server to be down for days as it experiences an extended DDoS attack and return to service when 

the attack has ended.

Of course, even if an organization manages to prevent external traffic from 
reaching NTP servers in the network, that doesn’t mean steps shouldn’t 
be taken to secure the NTP servers inside the network. Hardening the 
server itself, as discussed earlier, is one step. The second step is securing the 
configuration.

Securing the ntp.conf File
Even in well-secured networks, it is important to maintain a secure NTP con-
figuration, which is primarily done through the ntp.conf file. There are a num-
ber of configuration points within the ntp.conf file that can be adjusted to 
improve security.

Most of the security settings are found in the Access Control section of the 
ntp.conf file. The access control commands allow NTP server administrators 
to restrict access to certain requests from remote hosts. A typical set of 
secure restrictions look like this:

restrict -4 default limited kod notrap nomodify nopeer noquery version
restrict -6 default limited kod notrap nomodify nopeer noquery version

The first line lists restrictions for incoming IPv4 requests, and the second line 
lists restrictions for IPv6 requests. This is what each of the restrict commands 
does:

•	 Default – Make this the default policy. Any hosts that are 
allowed to make these queries will need a separate allow 
statement.

•	 Limited – Tell the NTP daemon to deny requests from 
hosts that are in violation of the discard policy set sepa-
rately (note: this command does nothing if the discard 
access control is not configured).

•	 Kod – Send a kiss of death (KoD) packet to any hosts that 
are in violation of the discard policy (the kod flag requires 
both a discard access control policy and the limited flag 
to be set).
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•	 Notrap – Do not send mode 6 control message trap 
message service responses to requesting hosts.

•	 Nomodify – Do not allow any remote host to modify the 
NTP configuration.

•	 Nopeer – Deny any packets that attempt to set up a 
peering or other types of association, unless those pack-
ets are authenticated.

•	 Noquery – Deny any queries not specifically related to 
time service. This is to prevent some of the DDoS tricks 
discussed in Chapter 3. This flag helps to prevent attacks 
using the monlist query, as well as other attacks.

•	 Version – Deny packets that have a different version 
of NTP set in the packet header. This works well in a 
closed network that has standardized on NTPv4. There 
shouldn’t be any stray NTPv3 or NTPv2 hosts hiding on 
the network—if there are, they should not be allowed to 
synchronize with the NTP server.

The discard command allows NTP administrators to set a minimum and aver-
age number of incoming packets from a host before the NTP server starts 
to limit the server. Both minimum and average values are represented in log2 
format (factor of 2). A sample discard line looks like this:

discard average 3 minimum 1 

This line discards packets from any host that has sent packet requests on aver-
age every eight seconds, with at least some of the packets being two seconds 
apart.

The restrict command can also be used as an Access Control List (ACL), only 
allowing internal hosts to make queries, as in Listing 4-1.

Listing 4-1.  Creating an ACL in NTP

restrict 127.0.0.1
restrict -6 ::1
restrict [Internal Network/24]

Using the restrict command in this manner allows organizations to limit que-
ries to NTP servers from only trusted hosts.

■■ Note  The big caveat here, and the reason that ACLs within the ntp.conf file should not be the 

primary method of restriction, is that NTP packets can be easily forged to either attack an NTP host 

or use it as a redirector. That is why, whenever possible, ACL restrictions should be in the firewall, 

not the NTP server.

http://dx.doi.org/10.1007/978-1-4842-2412-0_3
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Secure Configurations on Juniper and Cisco
Both Juniper and Cisco make it easy to secure their NTP configuration. Neither 
Juniper nor Cisco maintain a reference implementation of NTP, meaning they 
don’t fully support all the features that the NTP daemon on a Linux or UNIX 
system does.

Because of that, network administrators can simplify their NTP security pro-
file by putting both platforms in client-only mode. In client-only mode, the 
NTP daemon on the platform will update from a selected server, or servers, 
but will not respond to remote queries. Whenever possible, it makes sense to 
configure routers in this manner, using a fully functioning NTP server as the 
main time synchronization device, which will allow for more robust security.

The process to configure Juniper to be an NTP client is shown in Listing 4-2.

Listing 4-2.  Configuring an NTP client on a Juniper router

system {
    ntp {
        server [Server IP Address]
        boot-server [Address]
        �[optional] authentication-key [key-id] type md5 value  

"[pass-phrase]";
        trusted-key [key-id];
          }
}

Configuring a Cisco router to be an NTP client is just as simple, shown in 
Listing 4-3.

Listing 4-3.  Confguring an NTP client on a Cisco router

conf t
ntp server [IP Address]

Both Juniper and Cisco also support symmetric authentication, which will be 
discussed in Chapter 5, but neither support AutoKey.

Monitoring NTP Traffic
While NTP is a relatively noisy protocol, it actually generates very little log 
traffic by default. A typical NTP log will look something like what is shown in 
Listing 4-4.

http://dx.doi.org/10.1007/978-1-4842-2412-0_5
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Listing 4-4.  NTP logs

Aug 14 18:47:51 server ntpd[1001]: proto: precision = 0.277 usec
Aug 14 18:47:51 server ntpd[1001]: ntp_io: estimated max descriptors: 1024, 
initial socket boundary: 16
Aug 14 18:47:51 server ntpd[1001]: Listen and drop on 0 v4wildcard 0.0.0.0 
UDP 123
Aug 14 18:47:51 server ntpd[1001]: Listen and drop on 1 v6wildcard :: UDP 
123
Aug 14 18:47:51 server ntpd[1001]: Listen normally on 2 lo 127.0.0.1 UDP 123
Aug 14 18:47:51 server ntpd[1001]: Listen normally on 4 lo ::1 UDP 123
Aug 14 18:47:51 server ntpd[1001]: peers refreshed

Not a lot of security-related information is generated via NTP logging. 
However, NTP also includes the capability to send additional log data using 
the logconfig command in the ntp.conf file.

The logconfig command consists of four logging classes:

•	 clock

•	 peer

•	 sys

•	 sync

Each class can be paired with a different logging level depending on the need 
of the organization. There are four event levels to go with the logging classes:

•	 info

•	 events

•	 statistics

•	 status

To create the proper logging level, combine the logging class with the logging 
level to create a single word, such as clockstatus or sysinfo. If an organization 
wants to log all event classes, the word “all” can be appended to the logging 
class. So, to maximize the logs collected by the NTP server, the following line 
could be added to the ntp.conf file:

logconfig =clockall +peerall +sysall +syncall

Or, this can be simplified to just:

logconfig =all
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In addition to the logging facility, NTP maintains a number of optional stats 
files. Unfortunately, the data in the stats files is not sent to a centralized logging 
facility, like syslog, so it has to be examined manually. NTP is able to keep stats 
on the following information:

•	 clockstats

•	 cryptostats

•	 loopstats

•	 peerstats

•	 rawstats

•	 sysstats

While most of the stats files contain interesting data, they generally do not 
contain anything of security value. The sysstats file, on the other hand, can con-
tain potentially valuable security information. The output of a typical systats 
file is shown in Listing 4-5.

Listing 4-5.  Output of a systats file

57646 67671.210 3600 412704 6 351942 60762 1 0 39 0 18209 8871575
57646 71271.210 3600 576690 5 440408 136282 1 0 103 0 37207 8882021
57646 74871.210 3600 661329 5 489401 171927 2 2 267 0 59467 8897683
57646 78471.210 3600 583562 4 445575 137984 7 0 75 0 54384 8908898
57646 82071.210 3600 673489 5 495913 177576 0 0 268 0 57170 8922985
57646 85671.210 3600 655043 6 482748 172295 2 0 157 0 57531 8936466

What might initially look like gibberish actually contains potentially valuable 
security information, once the fields are properly processed. To better under-
stand the fields, take a look at the last line:

57646 85671.210 3600 655043 6 482748 172295 2 0 157 0 57531 8936466

The first two fields are the date and the time (in seconds and fractions of a 
second). The third field is the time, in hours, since the server was last rebooted. 
The fourth field, 655043, is the number of packets received. The fifth field is 
the number of packets processed. The sixth field, 482748, is the number of 
NTP requests that matched the current NTP version, while the seventh field, 
172295, is the number of NTP requests that matched the previous NTP ver-
sion. The eighth field, 2, is the number of incoming NTP requests that contain 
a version of NTP that is no longer supported.

The ninth field, 0, is the number of denied requests. The 10th field, 157, is the 
number of incoming requests that had a bad length or format. The 11th field, 
0, contains the number of packets that had bad authentication. Field 12 is the 
number of packets discarded due to rate limitation. The final field contains 
the number of KoD packets sent to persistent hosts. The final field will not be 
there if KoD has not been configured.
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Because each line in the sysstats file represents an hour’s worth of statistical 
information, there is a lot of potential security value that can be gleaned by 
hunting through the files. For example, notice the number of requests is fairly 
steady hour to hour. If there is a sudden spike in the number of requests, 
that may indicate that the NTP server is being used as a redirector for a 
DDoS attack. Similarly, in a homogenous network that has standardized on 
NTP version 4, seeing a number of NTP version 3 or bad version requests to 
the server may indicate the server is being probed, or someone has already 
launched an attack on the server.

While the data in the sysstats file may be very useful for detecting anomalous 
events and initiating a security investigation, it doesn’t do the security team 
any good if the file is unreachable. Syslog events are limited, but have the 
advantage that they can be forwarded to a centralized server for monitoring 
and analysis. In order to take advantage of the data in the sysstats file, there 
has to be a way to alert on it.

Alerting on NTP Security Issues
Logging is not very useful if there isn’t corresponding alerting on the logs 
being generated. Syslog has the benefit of allowing security teams to create 
rules, especially in a Security Information and Event Manager (SIEM). Sending 
NTP logs to the SIEM allows security teams to write rules that will alert on 
things like an NTP daemon restarting, de-peering with one of its peers, or 
attempting to make a large clock adjustment. All of these are potential signs 
of attack.

Some of the more advanced SIEMs can even process unstructured data, like 
that in the sysstats file, and allow security teams to create alert thresholds 
based on behavior that is odd for that particular NTP server.

But the NTP server simply does not provide enough information in its logs or 
stats to determine whether or not an attacker is really targeting the server. 
Instead, in order to alert with confidence, the logs and statistics from the NTP 
server must be correlated with other security tools.

Correlating Alerts
Firewall rules were discussed earlier in this chapter, and they make a good 
correlation point with the server logs. If suspicious activity occurs over UDP 
port 123 on the firewall and a few minutes later suspicious activity occurs on 
the NTP server itself, the security team now has a clearer picture of what the 
attack looks like. Of course, these two log sources leave out an important bit 
of context: the content of the attack.

That is why Intrusion Detection/Prevention System (IDS/IPS) logs should be 
added to the mix. The Talos team at Cisco, which now maintains the snort 
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community signature base, has developed a number of signatures that detect 
malicious NTP behavior. See Listing 4-6.

Listing 4-6.  Two snort signatures to detect malicious NTP traffic

# alert udp $EXTERNAL_NET any -> $HOME_NET 123 (msg:"DELETED EXPLOIT ntpdx 
overflow attempt"; flow:to_server; dsize:>128; reference:arachnids,492; 
reference:bugtraq,2540; reference:cve,2001-0414; reference:nessus,10647; 
classtype:attempted-admin; sid:312; rev:9;)

# alert udp $EXTERNAL_NET any -> $HOME_NET 123 (msg:"SERVER-OTHER ntp 
monlist denial of service attempt"; flow:to_server; content:"|17 00 03 
2A|"; depth:4; detection_filter:track by_dst, count 1000, seconds 5; 
metadata:service ntp; reference:cve,2013-5211; classtype:attempted-dos; 
sid:29393; rev:3;)

The first rule detects an older buffer overflow attack against NTP, while the 
second rule is looking for monlist activity. Both of these rules provide context 
to the alerts being generated by the other devices. By correlating NTP server 
and router logs with firewall and IDS/IPS alerts in a centralized location, the 
security team can not only be alerted, but also have a great deal of context 
around the attack and whether or not it was successful. That allows the secu-
rity team to effectively prioritize the alerts and respond appropriately.

Conclusions
NTP security is not just about securing the NTP installation itself. Rather, NTP 
security really involves multiple systems and groups within an organization. 
For an effective NTP security plan, the security team has to work with system 
and network administrators to get their support and implement a standard 
NTP deployment across the network.

Before any of this can be done, an organization must take stock of the net-
work and learn which systems on the network are running NTP, which ver-
sion of NTP they are running, and which NTP servers on the Internet these 
systems are using.

Once all of that information is in place, an NTP security plan can be put 
together with the goal of helping the organization improve security, without 
inconveniencing the workforce.

Once the plan is in place, it is important to monitor security systems within 
the organization to ensure that new devices that come online stay compliant 
to the new policy and that the infrastructure stays up and running.

This process includes incorporating NTP monitoring into the existing moni-
toring system and knowing what to look for in NTP alerts. It also means being 
able to correlate NTP logs with the firewall, IDS/IPS logs, and any security 
system that touches the NTP protocol.
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C H A P T E R 

Securing NTP 
Infrastructure 
NTP security is not just a matter of protecting the infrastructure—it is 
also requires making sure that infrastructure has a high level of availability. 
Availability is especially important for those organizations that choose to run 
their own NTP infrastructure rather than use publicly available NTP servers.

One of the most important features of NTP is that it is designed to be robust 
and redundant. This resiliency is part of the reason why the protocol has out-
lived many of the competing standards that have developed over the years.

Unfortunately, when operating NTP in a closed environment, it may become 
necessary to replicate that robustness on a much smaller scale. Fortunately, 
NTP offers a number of options that allow organizations to deploy a robust 
NTP infrastructure without a lot of capital expenditure.

On top of a redundant infrastructure, there are steps that organizations can 
take within their infrastructure to limit or eliminate the potential damage 
caused by NTP-based Distributed Denial of Service (DDoS) attacks.

BCP38
As discussed in several places in this book, one of NTP’s biggest security 
threats is NTP traffic being used in DDoS attacks. As a protocol, UDP is trivi-
ally easy to forge. This means that attackers can send large amounts of NTP 
traffic from victim NTP hosts to targeted servers by making those victims 
think that the original request came from those targeted servers.

5
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That is where Best Current Practice 38 (BCP38) comes in. BCP38 is outlined 
in RFC 3704, which describes ways in which operators can configure their 
network infrastructure to deny spoofed packets the ability to traverse the 
network and ensure that all network traffic can be traced back to its actual 
original network.

Originally, this type of configuration was not implemented on edge networks, 
but primarily used on transit networks. However, organizations have begun 
adopting BCP38 on edge networks as a way to prevent their organization 
from being used to redirect DDoS attacks to other networks and as a low-
cost way to keep bad traffic from targeting their network.

In addition, to the standard amplification DDoS attacks, BCP38 can be used to 
help prevent NTP broadcast attacks, which is another type of NTP DDoS attack.

■■ Note  More information, and the most up-to-date information, about BCP38 is available at 

www.bcp38.info.

Broadcast Attacks
Chapter 1 discussed the option of configuring NTP in broadcast mode. 
Broadcast mode flips the client-to-server model that NTP normally uses, and 
instead the NTP server broadcasts the time to an entire network. The clients, 
also configured to listen in broadcast mode, pick up the time from the NTP 
server and, as long as the origin timestamp from the server is correct, it will 
update its time.

This is the way it is supposed to work in theory, but there are some problems 
with the way broadcast mode is implemented, as documented in an NTP bug 
and patched in version 4.2.8p6, which could allow an attacker to disrupt time 
on an entire broadcast network.

As a refresher, when NTP is configured in broadcast mode, the NTP adminis-
trator adds a line like this to the NTP configuration file:

broadcast 10.100.255.255

In Chapter 1, the same example used a smaller Class C network block, but the 
broadcast command is not limited to just Class C network blocks—any size 
network block will work.

In this particular case, the NTP server is sending NTP updates to all hosts in 
the 10.100.0.0/16 netblock. When the host sends out its request, it does so in 
Mode 5, which is the broadcast server mode. When the clients are negotiat-
ing broadcast mode, they will send responses in Mode 6, the client broadcast 
mode. After that, they will listen for updates.

http://www.bcp38.info/
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But if an attacker sent a legitimate time query to one of the clients on the 
network their reply will include the IP address of the broadcast server. Now 
an attacker can send a spoofed broadcast packet with bad data that appears 
to come from the legitimate broadcast server. The broadcast server will also 
be sending out legitimate updates while the attacker is carrying out the attack. 
This will create confusion among the NTP clients on the network, and they 
will eventually disassociate themselves from the broadcast server, severing the 
relationship and causing a disruption in time services.

BCP38 is one way to defeat this type of attack as well as other NTP-based 
DDoS attacks.

Implementing BCP38
BCP38 is not a special command on a router or firewall, but rather a series of 
access control lists (ACLs) that Internet engineers at the Internet Engineering 
Task Force (IETF) recommend putting in place, after a lot of testing, to ensure 
that the traffic leaving an organization’s network or traversing across an 
Internet provider’s backbone is only allowed to do so if the source IP address 
matches the network origin of that IP address.

This means that the configuration is going to vary from network to network, 
but the implementation is going to be the same. There are at least five ways 
that BCP38 can be implemented in a network:

	1.	 ingress access lists

	2.	 Strict Reverse Path Forwarding

	3.	 Feasible Path Reverse Path Forwarding

	4.	 Loose Reverse Path Forwarding

	5.	 Loose Reverse Path Forwarding ignoring default routes

The simplest method of implementing BCP38 is by using ingress access lists. 
Ingress access lists are designed for smaller, largely static networks. Setting 
up an ingress access list involves gathering all networks that are owned by 
the organization. Network administrators then create ACLs that don’t allow 
any traffic that does not have a source address from one of those networks 
to leave the network. In other words, the organization prevents any poten-
tially spoofed traffic from ever jumping from their network to that of their 
upstream provider or to the target of the attack.
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■■ Note  Any and all of the solutions for BCP38 should include preventing any traffic with a 

source address from a reserved netblock, the so-called RFC1918 IP address space, from leaving 

the network. Reserved IP address space are network blocks that are meant to be used as 

internal IP addresses and never routed across the Internet. Those addresses include 10.0.0.0 - 

10.255.255.255; 172.16.0.0 - 172.31.255.255; and 192.168.0.0 - 192.168.255.255.

Of course, in a dynamic organization with constantly changing network alloca-
tions, the ingress access list solution can be a challenge to manage, and it does 
not scale for really large organizations or transit providers.

An alternative to ingress access lists is Strict Reverse Path Forwarding (SRPF). 
The concept behind SRPF is similar to that of ingress access lists, but instead 
of using static ACLs, SRPF uses dynamic access lists.

Under SRPF, the source IP address of every packet is looked up in the 
Forwarding Information Base (FIB) to see if the incoming packet is on the 
interface that would be used to forward a responding packet. If the packet 
is considered good, it is then forwarded to the next hop—otherwise, it is 
dropped. For example, if an NTP packet hits the edge router with a source 
IP address of 208.12.34.82, the router will query the FIB and determine if 
its routing tables would normally forward packets with that destination IP 
address along that same interface. If the answer is yes, the packet is sent to 
the next hop.

Unsurprisingly, this additional lookup does increase the load on the router, 
especially compared to the simpler ingress access list model. What is surpris-
ing is that the load increase is not always that significant. Obviously, some-
thing like SRPF should be thoroughly tested in a lab environment before being 
deployed. But many organizations have seen success with SRPF, without having 
to sacrifice network performance.

Both ingress access lists and SRPF run into a problem in multi-homed environ-
ments where there may be multiple paths that a packet can take to reach its 
final destination. This type of asymmetric routing is common in large enter-
prises and transit networks that have more than one connection or use the 
Border Gateway Protocol (BGP) to manage routing.

In cases like that, organizations can use Feasible Path Reverse Path Forwarding 
(FRPF). FRPF works the same way as SRPF, except the FIB returns multiple 
paths for an incoming source IP address. The router ensures that the interface 
on which a packet arrives is one of many possible paths for return traffic of 
the source IP address.
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This allows for better control in large networks, and while it may result in 
some malicious traffic being improperly routed, it still cuts down on most 
malicious activity.

Loose Reverse Path Forwarding (LRPF) is rarely used, except in the largest 
transit providers. LRPF works like SRPF and FRPF, except that it only checks to 
see if there is a feasible route to a source IP address. In other words, if there 
is a return path to the source IP address of an incoming packet on any of 
the router’s interfaces, the router will send the packet to the next hop. LRPF 
is primarily useful for weeding out incoming packets that have an RFC1918 
source IP address. Those addresses are not commonly used in DoS or DDoS 
attacks, especially not in amplification-style DDoS attacks. So, while LRPF does 
provide some level of protection, it is not fully adequate to stop DDoS attacks.

The final option, LRPF ignoring default routes, is LRPF that gives priority to 
default routes. So, if a source IP address is looked up in the FIB and a router 
sees there is no route in the FIB but there is a default route to the IP address, 
that default route is given precedent and the packet is forwarded on to its 
destination. LRPF ignoring default routes is primarily used at exchanges, where 
one transit provider peers with one or more other transit providers to pass 
traffic.

BCP38 is a potentially powerful tool that can be used to add a layer of protec-
tion to an organization without additional cost. A network or security team 
can query an organization’s upstream ISP about whether or not it has imple-
mented BCP38 as part of the security plan that has to do with NTP.

Though BCP38 does not just impact NTP, it really is a protection against any 
sort of DoS or DDoS attack that uses a UDP-based protocol as part of the 
attack.

NTP Pooling
BCP38 provides a way to secure an organization from a DDoS attack, and 
also prevent the organization from being used to launch a DDoS attack. But 
BCP38 does not help to improve the resiliency of an internally hosted NTP 
infrastructure. One way to improve the robustness of an NTP infrastructure 
is to use the NTP pooling facility.

To this point in the book, whenever the discussion has revolved around adding 
NTP servers to the configuration file, the server command has always been 
used, as in Listing 5-1.
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Listing 5-1.  Listing NTP servers in the ntp.conf file

server [Server 1]
server [Server 2]
server [Server 3]
server [Server 4]

There are other commands that can be used to add servers, in this case the 
pool command, as shown in Listing 5-2.

Listing 5-2.  A list of pool servers in the ntp.conf file

pool 0.pool.ntp.org
pool 1.pool.ntp.org
pool 2.pool.ntp.org
pool 3.pool.ntp.org

At first glance, the commands don’t look all that different, but the underlying 
capability is very different. The server command is designed to define static, 
unchanging servers, almost always using IP addresses, whereas the pool com-
mand is more dynamic. NTP uses DNS to update the servers it is reaching out 
to, rotating through many more servers more often.

The example above uses the most well-known NTP pool addresses—pool.
ntp.org—but the process works for any domain as long as the DNS back end 
is set up properly.

Using pool addresses allows a large organization to maintain a number of 
servers running NTP as a secondary service and distribute the traffic to those 
services evenly. NTP already uses a number of “foot race” algorithms designed 
to distribute the load between the NTP servers listed in the configuration file, 
to ensure that no one server sees the bulk of the traffic. By switching to pool 
addresses, that distribution effect can be multiplied.

The way this works is that an organization identifies a number of servers in 
the network that are going to also serve as NTP servers. They can be mail 
servers, file servers, web servers, even routers and switches. These machines 
will all synchronize with stratum 1 servers, either on network or off.

Each of the newly identified servers will be clustered into one of the pool 
addresses. Using the format from the example above, an organization might 
have a DNS record that looks like Listing 5-3.

Listing 5-3.  DNS listing for 0.ntp.example.com

allan:~ allan$ dig 0.ntp.example.com
0.ntp.example.com.              150      IN      A      10.100.152.87
0.ntp.example.com.              150      IN      A      10.100.5.32
0.ntp.example.com.              150      IN      A      192.168.7.45
0.ntp.example.com.              150      IN      A      192.168.23.58
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Note that querying for 0.ntp.example.com returns four IP addresses, so if 
there are four pool addresses loaded into the NTP configuration, that means 
there are actually 16 servers participating in the NTP foot race at any time, 
meaning each NTP server is seeing a small portion of the NTP traffic.

The second part of the DNS configuration to note is the low Time to Live 
(TTL) for the A record for 0.ntp.example.com. The TTL is set to 150 seconds, 
which means that a new set of NTP servers will be sent out every 2.5 minutes. 
Assuming an organization maintains 0.ntp.example.com, 1.ntp.example.com, 
2.ntp.example.com, and 3.ntp.example.com, as in the pool.ntp.org example 
above, dozens of servers could be masked behind each of those addresses and 
the rotation would ensure that no one server ever experienced a significant 
load while keeping a robust infrastructure in place, allowing the organization 
to deliver effective NTP service at a low cost both in terms of resource utili-
zation and expenditure.

The pool.ntp.org has more than 3800 servers participating in their pool proj-
ect as of October 2016. Each one of those servers receives millions of con-
nections each day, with no disruption in the overall service. Creating an NTP 
pool can be a very cost-effective way for a large organization to deliver a 
robust NTP infrastructure.

NTP Over Multicast/Manycast
Another way to provide redundant NTP infrastructure is to use either multi-
cast or manycast addressing. Both of these services allow NTP clients to dis-
cover NTP servers in different ways, but both serve the purpose of somewhat 
automating the NTP discovery process across an entire network.

Multicast
Multicast is a “one to many” form of communication between hosts on a net-
work. Originally designed as a broadcasting protocol, multicast is used to offer 
a range of services, including NTP.

The Internet Assigned Numbers Authority (IANA) has reserved two addresses 
for NTP to be used in multicast addressing. For IPv4 networks, the address 
is 224.0.1.1, and for IPv6 networks, the address is FF05::101 for site-local and 
FF08::101 for organization-local. These addresses should only be used in net-
works where the multicast span is well contained, to avoid leakage into other 
networks.

In cases where using the reserved multicast address might result in bleed-
ing into other networks, using the multicast addresses defined in RFC 2365 
(239.0.0.0-239.255.255.255) is an alternative.
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Configuring multicast is very similar to configuring NTP for broadcast mode—
in fact, on the server side, it is the same. Simply add the following line to the 
ntp.conf file:

broadcast 224.0.1.1

On the client side, the command to enable multicast configuration is multi-
castclient. Again, the configuration would look similar. Instead of a server or 
pool statement, the configuration would look like this:

multicastclient 224.0.1.1

For an additional layer of redundancy, some hosts can be configured as both 
multicast clients and broadcast servers. Again, this allows an organization to 
distribute the load of NTP requests across multiple systems.

Given that the security risks in a multicast environment are similar to those of 
a broadcast environment, symmetric authentication should be used for client 
and server communication.

Manycast
NTP also supports the use of manycast to create a redundant environment. 
Manycast was first introduced into NTPv4 and is not the same as the anycast 
protocol, though NTP can be configured to run over anycast as well.

Manycast allows for automatic discovery of clients and servers on a closed 
network. It also allows for the clients to make intelligence choices about which 
servers it is going to use for time synchronization.

A manycast client is configured with the manycastclient command and a 
broadcast IP address, instead of a server or pool address:

manycastclient 192.168.1.255

The manycast client only reaches out to the network when it is in need of an 
update, based on the current minclock and tos stats. When the client sends 
the update request, it is a normal client mode message, but sent to the broad-
cast address.

Servers listening to the same broadcast address and that meet the minimum 
requirements listed in the client mode packet sent out, including being at a 
lower numbered stratum level (for instance, a stratum 3 server cannot reply 
to a stratum 3 client), send a unicast response to the client and are added to 
the NTP server rotation for that client.

As with normal NTP communication, the client engages in the footrace with 
its current NTP servers until they drop out and the manycast process starts 
up again.
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As with the multicast configuration, manycast clients can also double as serv-
ers, allowing organizations to maximize redundancy within their NTP infra-
structure. Also, as with multicast and broadcast traffic, manycast should be 
implemented with proper symmetric key authentication to avoid spoofing 
attacks.

Conclusions
It is not enough to secure the NTP server and the configuration. System 
administrators and security teams must also secure NTP communication at 
the network level. Part of that is ensuring that spoofed NTP packets don’t 
enter or leave the network.

But securing NTP communication also means providing a robust and redun-
dant NTP infrastructure that can be used throughout the network. Using 
multicast and manycast as ways to create an auto discovery process in the 
network helps to improve the reliability of an internal NTP infrastructure 
and, if configured properly, can also help to improve the security of that NTP 
infrastructure.

When configured properly, an organization can improve their overall NTP 
security by managing all or most of the infrastructure in-house. If NTP traffic 
never leaves the organization and outside NTP requests can be dismissed at 
the edge of the network, then a potential threat to the organization has been 
removed.
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Alternatives to 
NTP
Given the number of security problems discussed in this book and that have 
been discovered and published over the years, it is not surprising that some 
organizations opt to run alternatives to the NTP reference client. There are a 
number of different options available.

In addition to using alternative code bases, it is also possible to install NTP 
appliances. Companies like TimeTools, Microsemi, and Galleon Systems pro-
vide purpose-built NTP servers. These servers are designed to be stratum 
1 servers with direct connections to either GPS or radio clocks, and can 
provide a source of accurate time and possibly improve the security of an 
organization’s NTP infrastructure.

The challenge with using an appliance vendor is that they may provide limited 
insight into the code that is running on the appliance. For all of its flaws, the 
NTP reference code is constantly being reviewed by some of the best security 
experts in the industry. Before choosing to go with an NTP appliance, it is a 
good idea to understand what code is running on the server, how that code is 
maintained, what security precautions are in place, and how often (and how) 
it is updated. Many NTP appliances simply run the NTP reference code, which 
is not a bad thing, unless the appliance cannot be easily updated or requires 
waiting for the vendor to release a patch.

6
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Again, NTP appliances can increase the NTP security of an organization by 
keeping all NTP traffic internal to the network, but there are potential risks 
that need to weighed against the benefits of creating an NTP wall within the 
organization.

Separate from the appliance, there are also a number of different NTP builds 
that may be worth investigating as alternatives to the NTP reference code.

NTPSec
Probably the most popular alternative to the NTP reference code is NTPSec 
(www.ntpsec.org). NTPSec is actually built on the NTP reference code, but 
it has removed many of the most problematic features of NTP.

Overall, the developers of NTPSec claim to have removed more than 140,000 
lines of code. This significantly reduces the attack surface of their NTP instal-
lation, but it goes deeper than that. The developers behind NTPSec have 
removed a number of the legacy features from the NTP code that they feel 
should no longer be supported.

This is the problem with a code base that is almost 30 years old—even the 
most recent version of NTP is more than 15 years old. The developers of NTP 
have also tried very hard to maintain backward compatibility with older ver-
sions of NTP. This means there is older code and there are older capabilities 
that someone developing NTP would never deliver today.

The code that has been removed from NTP includes:

•	 The ntpdc utility—instead, its functionality has been 
merged into the still-included ntpq utility.

•	 Not all features of ntpq have been maintained. Commands 
that were prone to use by attackers, such as the savecon-
fig command and other commands used to show the run-
ning config, have all been removed.

•	 The NTPSec developers have removed the ntpdate com-
mand as well or, more accurately, they have repurposed 
it as a wrapper around ntpdig, so the functionality is still 
there.

•	 Given the complexity and lack of real-world deployment 
of AutoKey, that has been removed as well.

Overall, the developers have removed 60% of the legacy reference NTP code. 
At the same time, they have done a thorough review of the code, looking 
for boundary errors, buffer overflows, and common security bugs that have 
plagued NTP, to put patches in place and harden the code itself.

http://www.ntpsec.org)
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By removing unnecessary features and hardening the code, the hope of the 
developers is to provide an easier-to-use but more secure NTP server that is 
still compatible with NTP servers around the world.

Because the underlying code is the same, the installation and configuration 
of the NTPSec daemon is the same. While NTPSec does not include support  
for AutoKey, it does include support for symmetric key authentication. It also 
sets a default policy that unauthenticated packets that may consume signifi-
cant resources, such as broadcast packets, require authentication. This adds 
a layer of security against broadcast and other types of NTP DDoS attacks.

The NTPSec team has made some great strides in improving the security of 
the base NTP code. They have also done an important thing by breaking with 
legacy NTP systems. While the reference code must continue to support out-
dated versions of NTP, the NTPSec team does not. Being forced to maintain 
compliance with outdated codebases has caused many security problems over 
time, not just with NTP, but with a host of other platforms such as DNS, and 
even software such as Microsoft Windows. Starting fresh and forcing compli-
ance with a more secure code base is a good way to start.

Unfortunately, based on GitHub numbers, it does not look like NTPSec has 
garnered a lot of attention at this point. Given time and more NTP secu-
rity announcements, this will most likely change, and more organizations will 
choose to adopt it and contribute to its success. In the meantime, the devel-
opment is very active and making constant improvements to the code.

Ntimed
Ntimed (nwtime.org/ntimed) is a completely new NTP daemon, written from 
scratch and redesigned to operate more efficiently and securely while still 
operating over UDP port 123 and retaining the ability to communicate with 
existing NTP infrastructure.

Ntimed is being developed by Poul-Henning Kamp and is funded by the Linux 
Foundation’s Core Infrastructure Initiative. According to Kamp, the reason for 
completely re-writing NTP rather than trying to fix the reference NTP code 
is simple:

“…after studying the 300,000+ lines of source-code in NTPD, I concluded 
that while it could be salvaged, it would be more economical, much faster 
and far more efficient to start from scratch.”

Ntimed actually breaks down into three different components: ntimed-client, 
ntimed-slave, and ntimed-master. The ntimed-client sits on hosts and servers 
and exists only to reach out to upstream NTP servers to get the current time 
and update the local clock.
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The ntimed-slave acts as middleware, serving as a conduit for the ntimed-cli-
ents to get updates on time while also getting updated time from the ntimed-
masters. The final host type, the ntimed-master, is connected to reference 
clocks and provides updates to the ntimed-slaves.

This three-tiered system greatly simplifies the layers in a typical NTP chain, 
and by providing a client-only option, ntimed can help to provide better secu-
rity for the NTP endpoints.

Ntimed is also unique in that it is not beholden to just NTP. Users will even-
tually be able to overlay Ntimed on other network time protocols, such as 
precision time protocol (PTP).

The early releases of Ntimed look promising. The code base is clean and 
doesn’t have some of the problems that the NTP reference daemon does. 
Setup and configuration have also been simplified. Rather than using a configu-
ration file, everything appears to run from the command line. Ntimed can be 
downloaded from GitHub (github.com/bsdphk/Ntimed)

However, it is not a full-featured client at this point. Some of the security fea-
tures in the NTP daemon are not implemented in Ntimed. Most notably, there 
is no authentication capability at this point. It will most likely be added in the 
future, but it is not there today.

At this point, Ntimed is a project worth keeping an eye on and testing in a 
lab environment, but it is not ready for live deployment. Given time, it could 
become a valuable tool for organizations that want a lightweight and secure 
way of synchronizing time in their network.

tlsdate
One of the concerns about NTP is that it does not provide a mechanism to 
encrypt traffic between server and client, or even between peers. Part of the 
reason for this is the nature of NTP traffic requires it to be encrypted, and 
part of it is because the maintainers of the NTP reference code want to use 
as few resources as possible on NTP servers.

Remember, unlike other protocols such as HTTP, SMTP, or DNS, NTP gener-
ally does not run on a standalone server. Instead, NTP is run on a server that 
has a main function. This means that keeping the queries as lightweight as 
possible is imperative. Even though an encryption extension could be added 
to the protocol, as DNS has done with DNSSEC, it is not likely to happen in 
the near future.
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For most organizations, that is fine. Generally, organizations that are con-
cerned about this level of security implement a fully redundant NTP infra-
structure that exists entirely in their network. It doesn’t encrypt the NTP 
communication, but it does keep non-encrypted traffic from leaving the orga-
nization’s network.

Other organizations don’t have that luxury. This is where tlsdate may fill a 
niche. Tlsdate is an application that updates local time over a transport layer 
security (TLS) connection, more commonly referred to as HTTPS. A version 
of tlsdate is available on GitHub (github.com/ioerror/tlsdate)

Tsdate bypasses the NTP protocol entirely and takes advantage of the fact 
that that a byproduct of an HTTPS connection to a server is that it provides 
the client with the current time on that server. Using two functions built in to 
TLS, ClientHello and ServerHello—both of which provide the date of their 
respective hosts—tlsdate can synchronize the time of the client to that server.

The date stamp provided by a TLS server is nowhere near as accurate as that 
provided by NTP, but for many organizations, it may be enough. Using tlsdate 
would allow an organization to completely disable NTP on all systems and 
rely on TLS, a protocol that is encrypted and already allowed on almost every 
network, to manage their time synchronization needs.

That being said, there are some potential downfalls of using this method. The 
most obvious is that TLS is not designed for this function, and at any point, this 
method could disappear from future versions of TLS. It is also not as robust 
as NTP infrastructure—there are not necessarily redundant services in place 
to support this type of time synchronization. Tlsdate also does not have any 
functions in place to ensure that the reference clock actually keeps accurate 
time. Because there is no concept of layers or stratums in tlsdate, the client 
has to trust that the server has an accurate and updated clock.

Tlsdate is an interesting idea, and if more people implement tlsdate it is pos-
sible for the TLS standard to change to support this type of time synchroniza-
tion (see the current move to deliver DNS requests over HTTP). Until then, it 
is probably best to play with the concept but not implement it in a production 
environment.

Precision Time Protocol (PTP)
Rather than try to create updates to software that uses NTP, some develop-
ers have created alternatives to NTP, the most well-known being the Precision 
Time Protocol (PTP). PTP was introduced by the Institute of Electrical and 
Electronic Engineers (IEEE) in 2002 as IEEE-1588-2002, has been updated with 
IEEE-1588-2008, and is being updated again as IEEE-1588-2013.
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PTP is a time synchronization protocol capable of running in an IPv4 or IPv6 
environment that uses UDP ports 319 and 320 for communication. PTP deliv-
ers sub-microsecond accuracy in clock timing.

PTP is designed by the IEEE to be lightweight using minimal computing 
resources and able to run equally well on small microcomputers and large 
mainframes or industrial systems, and it must do so with minimal traffic. It 
is extensible, with the ability to communicate over a wide range of mecha-
nisms using whatever available networking infrastructure is in place. It is also 
designed to be easily managed both locally and remotely.

PTP uses a three-tiered clock system: grandmaster clock, master clock, and 
slave clock. The grandmaster clock is designed to be the reference clock for 
the entire network. The master clock gets its time from the grandmaster 
clock. In turn, the master clock provides time updates for the slave clock.

Unlike NTP, in PTP systems, communication between master and slave clocks 
is reversed, with the master sending updates to the slave letting them know 
what the current time is on the master and the slave responding with any 
delays between the master clock and the slave clock. The process is similar to 
running NTP in broadcast mode—in fact, broadcast mode is one of the meth-
ods of communication for IEEE-1588-2008. Master clocks can receive updates 
from other master clocks that are not grandmaster clocks. In cases where this 
happens, the master clock must decide if it wants to remain a master clock or 
become a slave clock.

With so many similarities between NTP and PTP, why the two different pro-
tocols? NTP is designed to work over large, wide area networks on a variety 
of different systems, while PTP is designed to work in a more controlled net-
work environment on a number of heterogeneous systems. Because of this 
more controlled environment, it is easier to operate a protocol like PTP that 
has minimal configuration options and is very lightweight.

There is a Linux-based implementation of PTP on GitHub called ptpd (github.
com/ptpd/ptpd) that is available for download and is a full-reference imple-
mentation. The ptpd code is well-maintained and kept up to date.

One word of caution about PTP is that it has not currently implemented any 
security features. Security is a big part of the update to IEEE-1588-2013, so it 
should be a much more secure protocol once that is complete. However, run-
ning PTP as an NTP alternative on an internal network poses minimal security 
risk, with the caveat that whatever code base is used is carefully reviewed for 
potential security flaws.
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Conclusions
While there are a number of steps that organizations can take to improve 
the security of their NTP installation, some organizations prefer to use other, 
more secure clients. Some may even prefer to use different mechanisms for 
synchronizing time.

While NTP has been the gold standard for 30 years, and the NTP team has 
made great improvements to NTP (and is continuing to do so), the refer-
ence NTP daemon may not be right for every organization. It doesn’t hurt to 
explore some of the alternatives.

That being said, organizations should be wary about falling into some of the 
traps that NTP fell into several years ago with regard to security. Remember 
that the NTP code base is constantly being inspected by security researchers 
around the world, looking for and reporting vulnerabilities. A smaller code 
base with fewer users may not get the same attention, and serious security 
flaws could be overlooked. Finding serious security flaws is not necessarily a 
bad thing—the problem comes when it takes months to get those flaws fixed, 
or worse, they never get fixed, leaving organizations who have deployed that 
code vulnerable to attack.

No matter which route your organization chooses, when it comes to network 
time synchronization, you should make sure the deployment is added to the 
existing security plan. This will allow the security team to make sure it is track-
ing for new vulnerabilities in the platform and the protocol, monitoring for 
changes in best practice for deployment and configuration, and watching out 
for new exploits in the wild against the platform.
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