
www.allitebooks.com

http://www.allitebooks.org

Ogre 3D 1.7
Beginner's Guide

Create real-time 3D applications using Ogre 3D
from scratch

Felix Kerger

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ogre 3D 1.7
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1191110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN: 978-1-849512-48-0

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Felix Kerger

Reviewers

Manuel Bua

Gregory Junker

Acquisition Editor

Usha Iyer

Development Editors

Hyacintha D'Souza

Mayuri Kokate

Technical Editor

Prashant Macha

Copy Editor

Leonard D'Silva

Indexers

Hemangini Bari

Monica Ajmera Mehta

Editorial Team Leader

Mithun Sehgal

Project Team Leader

Ashwin Shetty

Project Coordinator

Poorvi Nair

Proofreader

Sandra Hopper

Graphics

Nilesh Mohite

Production Coordinator

Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Author

Felix Kerger is a Computer Science student at the Technical University of Darmstadt
and has been developing 3D real-time applications using Ogre 3D for more than five years.
He has given several talks on software development and 3D real-time applications at
different conferences and has been working for three years as an assistant researcher at
the Fraunhofer Institute for Computer Graphics Research. He also works as a freelance
journalist and reports yearly from the Game Developer Conference Europe.

I would like to thank the following persons, without whom this book
wouldn't have been possible: Steve Streeting for devoting so much time
to Ogre 3D and creating one of the best pieces of software I have had the
pleasure to work with; my former teachers Ms. Oppel and Ms. Michel, who
helped me write a report on which this book's idea is based ; my parents,
who were a constant source of inspiration and motivation; Gregory Junker
and Manuel Bua, my technical reviewers—their comments helped me no
end and improved this book a lot; and, of course, the team at Packt for
their constant help and advice.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Manuel Bua is a software and solutions architect from Trento, Italy. He has over 17 years'
experience and has been involved in many small and large-scale software projects, at both
the design and implementation levels.

His background and experience range from software development to reverse engineering,
embracing both the desktop and the mobile platform; multithreading, parallel, and
massively-parallel computing architectures also pique his interest greatly, as well as
computational photography and games development.

In 2007, he joined Jooce's Research and Development division in Paris, France, holding the
position of Chief Architect, engineering and optimizing their in-house, Actionscript-based
virtual desktop platform connecting millions of people worldwide; during his staying, he also
designed and implemented the compositing window manager governing windows transitions
and effects, such as the well-known "Wobbly Windows," first introduced by Compiz on the
(rocking!) Linux desktop.

He loves open standards and the open source culture. His desire to learn and to share his
knowledge has led him to contribute to various projects, such as Ogre itself; he designed
and programmed the original out-of-core implementation of what is known today as the
"Compositor Framework," providing both the initial insight and the high-level concepts,
laying the foundations for further research, work, and improvements.

He is currently employed at F4F Creative Factory, a design-inspired web and advertising
agency based in Arco, Trento, in the roles of solutions architect, software engineer,
and systems administrator.

Gregory Junker is the author of the APress book "Pro Ogre 3D Programming."

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Installing Ogre 3D 7
Downloading and installing Ogre 3D 7
Time for action – downloading and installing Ogre 3D 7

Different versions of the Ogre 3D SDK 8
Exploring the SDK 9

The Ogre 3D samples 10
Time for action – building the Ogre 3D samples 11
The first application with Ogre 3D 12
Time for action – starting the project and configuring the IDE 12

ExampleApplication 15
Loading the first model 16
Time for action – loading a model 16
Summary 17

Chapter 2: The Ogre Scene Graph 19
Creating a scene node 19
Time for action – creating a scene node with Ogre 3D 19

How to work with the RootSceneNode 20
3D space 21
Scene graph 23

Setting the position of a scene node 24
Time for action – setting the position of a scene node 25
Rotating a scene node 26
Time for action – rotating a scene node 26
Scaling a scene node 29
Time for action – scaling a scene node 29
Using a scene graph the clever way 32
Time for action – building a tree using scene nodes 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Have a go hero – adding a following ninja 35
Different spaces in a scene 35
Time for action – translating in World space 36

Different spaces in a 3D scene 38
Translating in local space 40
Time for action – translating in local and parent space 40
Rotating in different spaces 42
Time for action – rotating in different spaces 42
Scaling in different spaces 45
Summary 45

Chapter 3: Camera, Light, and Shadow 47
Creating a plane 47
Time for action – creating a plane 47

Representing models in 3D 50
Adding a point light 51
Time for action – adding a point light 51
Adding a spotlight 53
Time for action – creating a spotlight 53

Spotlights 55
Directional lights 57
Time for action – creating a directional light 58
The missing thing 59
Time for action – finding out what's missing 59
Adding shadows 60
Time for action – adding shadows 60
Creating a camera 61
Time for action – creating a camera 61
Creating a viewport 64
Time for action – doing something that illustrates the thing "in action" 64
Summary 66

Chapter 4: Getting User Input and Using the Frame Listener 67
Preparing a scene 67
Time for action – preparing a scene 68
Adding movement to the scene 70
Time for action – adding movement to the scene 70

FrameListener 72
Modifying the code to be time based rather than frame based 73
Time for action – adding time-based movement 73
Adding input support 74

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Time for action – adding input support 75
Window handle 76

Adding movement to the model 77
Time for action – controlling Sinbad 77
Adding a camera 79
Time for action – making the camera work again 79

Mouse state 81
Adding wireframe and point render mode 82
Time for action – adding wireframe and point render mode 82
Adding a timer 84
Time for action – adding a timer 84
Summary 85

Chapter 5: Animating models with Ogre 3D 87
Adding animations 87
Time for action – adding animations 88
Playing two animations at the same time 91
Time for action – adding a second animation 91
Let's walk a bit 93
Time for action – combining user control and animation 94
Adding swords 97
Time for action – adding swords 97

Animations 99
Printing all the animations a model has 100
Time for action – printing all animations 100
Summary 102

Chapter 6: Scene Managers 103
Starting with a blank sheet 103
Time for action – creating a blank sheet 104
Getting the scene manager's type 105
Time for action – printing the scene manager's type 105

What does a scene manger do? 105
Octree 106

Another scene manager type 108
Time for action – using another scene manager 108

ResourceManager 109
setWorldGeometry 110

Creating our own model 110
Time for action – creating a model for displaying blades of grass 110

Manual object 113
Texture mapping 115

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Adding volume to the blades of grass 116
Time for action – using more triangles for volume 116
Creating a field of grass 118
Time for action – building a field of grass 119
Exploring the name scheme 120
Time for action – printing the names 120
Static geometry 122
Time for action – using static geometry 122

Rendering pipeline 125
Indices 126

Summary 127

Chapter 7: Materials with Ogre 3D 129
Creating a white quad 129
Time for action – creating the quad 130
Creating our own material 131
Time for action – creating a material 131

Materials 133
Texture coordinates take two 133
Time for action – preparing our quad 133
Using the wrapping mode with another texture 135
Time for action – adding a rock texture 135
Using another texture mode 137
Time for action – adding a rock texture 137
Using the mirror mode 138
Time for action – using the mirror mode 139
Using the border mode 140
Time for action – using the border mode 140
Changing the border color 141
Time for action – changing the border color 141
Scrolling a texture 143
Time for action – preparing to scroll a texture 143
Time for action – scrolling a texture 144
Animated scrolling 146
Time for action – adding animated scrolling 146
Inheriting materials 146
Time for action – inheriting from a material 147
Fixed Function Pipeline and shaders 149

Render Pipeline 150
Time for action – our first shader application 151

Writing a shader 155

Table of Contents

[v]

Texturing with shaders 156
Time for action – using textures in shaders 156

What happens in the render pipeline? 158
Interpolating color values 159
Time for action – using colors to see interpolation 159
Replacing the quad with a model 160
Time for action – replacing the quad with a model 161
Making the model pulse on the x-axis 162
Time for action – adding a pulse 162
Summary 164

Chapter 8: The Compositor Framework 165
Preparing a scene 165
Time for action – preparing the scene 166
Adding the first compositor 167
Time for action – adding a compositor 167

How the compositor works 169
Modifying the texture 170
Time for action – modifying the texture 170
Inverting the image 172
Time for action – inverting the image 172
Combining compositors 173
Time for action – combining two compositor effects 173
Decreasing the texture count 175
Time for action – decreasing the texture count 175
Combining compositors in code 177
Time for action – combing two compositors in code 177
Something more complex 178
Time for action – complex compositor 178
Changing the number of pixels 182
Time for action – putting the number of pixels in the material 183
Setting the variable in code 185
Time for action – setting the variable from the application 185
Changing the number of pixels while running the application 188
Time for action – modifying the number of pixels with user input 188
Adding a split screen 193
Time for action – adding a split screen 194
Putting it all together 197
Time for action – selecting a color channel 198
Summary 203

Table of Contents

[vi]

Chapter 9: The Ogre 3D Startup Sequence 205
Starting Ogre 3D 205
Time for action – starting Ogre 3D 206
Adding resources 208
Time for action – loading the Sinbad mesh 208
Using resources.cfg 209
Time for action – using resources.cfg to load our models 209

Structure of a configuration file 211
Creating an application class 211
Time for action – creating a class 212
Adding a FrameListener 215
Time for action – adding a FrameListener 215
Investigating the FrameListener functionality 216
Time for action – experimenting with the FrameListener implementation 216
Time for action – returning true in the frameStarted function 217

Double buffering 218
Time for action – returning true in the frameRenderingQueued function 218
Time for action – returning true in the frameEnded function 219
Adding input 220
Time for action – adding input 220
Our own main loop 222
Time for action – using our own rendering loop 222
Adding a camera (again) 224
Time for action – adding a frame listener 224
Adding compositors 226
Time for action – adding compositors 226
Adding a plane 229
Time for action – adding a plane and a light 230
Adding user control 231
Time for action – controlling the model with the arrow keys 231
Adding animation 233
Time for action – adding animation 234
Summary 236

Chapter 10: Particle Systems and Extending Ogre 3D 239
Adding a particle system 239
Time for action – adding a particle system 240

What is a particle system? 241
Creating a simple particle system 241
Time for action – creating a particle system 242
Some more parameters 244

Table of Contents

[vii]

Time for action – some new parameters 244
Other parameters 246
Time for action – time to live and color range 246
Turning it on and off again 247
Time for action – adding intervals to a particle system 247
Adding affectors 248
Time for action – adding a scaler affector 248
Changing colors 250
Time for action – changing the color 250
Two-way changing 253
Time for action – change depending on the lifetime of a particle 253
Even more complex color manipulations 255
Time for action – using complex color manipulation 255
Adding randomness 257
Time for action – adding randomness 257
Deflector 259
Time for action – using the deflector plane 259
Other emitter types 261
Time for action – using a box emitter 261
Emitting with a ring 262
Time for action – using a ring to emit particles 262
At the end, we would like some fireworks 264
Time for action – adding fireworks 264
Extending Ogre 3D 266

Speedtree 267
Hydrax 267
Caelum 267
Particle Universe 267
GUIs 267
CEGUI 267
BetaGUI 268
QuickGUI 268
Berkelium 268

Summary 268
The end 268

Appendix: Pop Quiz Answers 269
Chapter 1 269

Installing Ogre 3D 269
Chapter 2 270

Setting up the Environment 270

Table of Contents

[viii]

Chapter 3 270
Felix Gogo 270

Chapter 4 271
Felix Gogo 271

Chapter 5 271
The Book Inventory Bundle 271

Chapter 7 272
The Bookshelf: First Stab 272
Chapter 9 272

The Ogre 3D Startup Sequence 272
Chapter 10 273

How About a Graphical Interface? 273

Index 275

Preface
Creating 3D scenes and worlds is an interesting and challenging problem, but the results
are hugely rewarding and the process to get there can be a lot of fun. This book is going to
show you how you can create your own scenes and worlds with the help of Ogre 3D. Ogre
3D is one of the biggest open source 3D render engines and enables its users to create and
interact freely with their scenes.

This book can't show all the details about Ogre 3D but rather provide a solid introduction
with which you, as a reader, can start using Ogre 3D by yourself. After finishing the book,
you will be able to use the documentation and the wiki to look up for the needed
information and complex techniques, which aren't covered in this book.

What this book covers
Chapter 1, Installing Ogre 3D, shows how to get and configure Ogre 3D. We also create our
first scene and start learning the internals of Ogre 3D

Chapter 2, The Ogre Scene Graph, introduces us to the concept of a scene graph and how
it is used for describing 3D scenes

Chapter 3, Camera, Light, and Shadow, adds lights and shadows to our scene and also
experiments with different camera settings

Chapter 4, Getting User Input and using the Frame Listener, adds interactivity to our
application using user input

Chapter 5, Animating Models with Ogre 3D, will enhance our scene using animations to
add more interactivity and realism

Chapter 6, Scene Managers, will introduce us to different concepts for organizing 3D scenes
and what implication these choices will have

Preface

[2]

Chapter 7, Materials with Ogre 3D, will show us how to add a new level of detail and
flexibility to our application using materials and shaders.

Chapter 8, The Compositor Framework, will show us how to add post processing effects
to change the look of our complete scene with the knowledge about materials

Chapter 9, The Ogre 3D Startup Sequence, shows us how we can use Ogre 3D without the
help of an ExampleApplication we had used previously

Chapter 10, Particle Systems and Extending Ogre 3D, gives an introduction to some more
advanced techniques and perspectives that can be done with Ogre 3D

What you need for this book
You need a solid understanding of C++ and how to create applications using C++ for this
book. Of course, you need a compiler to compile the example applications. This book uses
Visual Studio as a reference, but any other compiler will also do. Your computer should have
a graphic card with 3D capabilities. It would be best if the graphic card supports DirectX 9.0
because Ogre 3D is an open source software and we will download it in Chapter 1. So there is
no need for you to have Ogre 3D already installed on your computer.

Who this book is for
If you ever wanted to develop 3D application with Ogre 3D, this example-driven book will
enable you to do so. Understanding of C++ is needed to follow the examples in the book.

This book is an example-driven introduction to Ogre 3D. Each example shows some new
features and you learn step-by-step to create complex scenes with different effects using
Ogre 3D. After several examples discussing one topic, there is a do-it-yourself part where
you will be challenged to solve problems on your own.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text are shown as follows: "Delete all the old code in createScene(),
except for the plane-related code."

Preface

[3]

A block of code is set as follows:

void MyFragmentShader2(float2 uv : TEXCOORD0,

 out float4 color : COLOR,

 uniform sampler2D texture)

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Press Ok and start
the Application. "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots used in
this book. The color images will help you better understand the changes in the
output. You can download this file from https://www.packtpub.com/
sites/default/files/2480_Ogre3D 1.7Beginner's Guide.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Installing Ogre 3D

Downloading and installing a new library are the first steps of learning
about and using it.

In this chapter, we shall do the following:

 � Download and install Ogre 3D

 � Have our development environment working with Ogre 3D

 � Create our first scene rendered by Ogre 3D

So let's get on with it.

Downloading and installing Ogre 3D
The first step we need to take is to install and configure Ogre 3D.

Time for action – downloading and installing Ogre 3D
We are going to download the Ogre 3D SDK and install it so that we can work with it later.

1. Go to http://www.ogre3d.org/download/sdk.

2. Download the appropriate package. If you need help picking the right package,
take a look at the next What just happened section.

3. Copy the installer to a directory you would like your OgreSDK to be placed in.

4. Double-click on the Installer; this will start a self extractor.

Installing Ogre 3D

[8]

5. You should now have a new folder in your directory with a name similar to
OgreSDK_vc9_v1-7-1.

6. Open this folder. It should look similar to the following screenshot:

What just happened?
We just downloaded the appropriate Ogre 3D SDK for our system. Ogre 3D is a
cross-platform render engine, so there are a lot of different packages for these different
platforms. After downloading we extracted the Ogre 3D SDK.

Different versions of the Ogre 3D SDK
Ogre supports many different platforms, and because of this, there are a lot of different
packages we can download. Ogre 3D has several builds for Windows, one for MacOSX, and
one Ubuntu package. There is also a package for MinGW and for the iPhone. If you like,
you can download the source code and build Ogre 3D by yourself. This chapter will focus
on the Windows pre-build SDK and how to configure your development environment. If
you want to use another operating system, you can look at the Ogre 3D Wiki, which can be
found at http://www.ogre3d.org/wiki. The wiki contains detailed tutorials on how to
set up your development environment for many different platforms. The rest of the book
is completely platform independent, so if you want to use another development system,
feel free to do so. It won't affect the content of this book besides the configuration and
conventions of your build environment.

Chapter 1

[9]

Exploring the SDK
Before we begin building the samples which come with the SDK, let's take a look at the SDK.
We will look at the structure the SDK has on a Windows platform. On Linux or MacOS the
structure might look different. First, we open the bin folder. There we will see two folders,
namely, debug and release. The same is true for the lib directory. The reason is that the
Ogre 3D SDK comes with debug and release builds of its libraries and dynamic-linked/shared
libraries. This makes it possible to use the debug build during development, so that we can
debug our project. When we finish the project, we link our project against the release build
to get the full performance of Ogre 3D.

When we open either the debug or release folder, we will see many dll files, some cfg
files, and two executables (exe). The executables are for content creators to update their
content files to the new Ogre version, and therefore are not relevant for us.

Installing Ogre 3D

[10]

The OgreMain.dll is the most important DLL. It is the compiled Ogre 3D source code we
will load later. All DLLs with Plugin_ at the start of their name are Ogre 3D plugins we can
use with Ogre 3D. Ogre 3D plugins are dynamic libraries, which add new functionality to
Ogre 3D using the interfaces Ogre 3D offers. This can be practically anything, but often it is
used to add features like better particle systems or new scene managers. What these things
are will be discussed later. The Ogre 3D community has created many more plugins, most
of which can be found in the wiki. The SDK simply includes the most generally used plugins.
Later in this book, we will learn how to use some of them. The DLLs with RenderSystem_ at
the start of their name are, surely not surprisingly, wrappers for different render systems that
Ogre 3D supports. In this case, these are Direct3D9 and OpenGL. Additional to these two
systems, Ogre 3D also has a Direct3D10, Direct3D11, and OpenGL ES(OpenGL for Embedded
System) render system.

Besides the executables and the DLLs, we have the cfg files. cfg files are config files that
Ogre 3D can load at startup. Plugins.cfg simply lists all plugins Ogre 3D should load at
startup. These are typically the Direct3D and OpenGL render systems and some additional
SceneManagers. quakemap.cfg is a config file needed when loading a level in the Quake3
map format. We don't need this file, but a sample does.

resources.cfg contains a list of all resources, like a 3D mesh, a texture, or an animation,
which Ogre 3D should load during startup. Ogre 3D can load resources from the file system
or from a ZIP file. When we look at resources.cfg, we will see the following lines:

Zip=../../media/packs/SdkTrays.zip

FileSystem=../../media/thumbnails

Zip= means that the resource is in a ZIP file and FileSystem= means that we want to
load the contents of a folder. resources.cfg makes it easy to load new resources or
change the path to resources, so it is often used to load resources, especially by the Ogre
samples. Speaking of samples, the last cfg file in the folder is samples.cfg. We don't
need to use this cfg file. Again, it's a simple list with all the Ogre samples to load for the
SampleBrowser. But we don't have a SampleBrowser yet, so let's build one.

The Ogre 3D samples
Ogre 3D comes with a lot of samples, which show all the kinds of different render effects
and techniques Ogre 3D can do. Before we start working on our application, we will take
a look at the samples to get a first impression of Ogre's capabilities.

Chapter 1

[11]

Time for action – building the Ogre 3D samples
To get a first impression of what Ogre 3D can do, we will build the samples and take a look
at them.

1. Go to the Ogre3D folder.

2. Open the Ogre3d.sln solution file.

3. Right-click on the solution and select Build Solution.

4. Visual Studio should now start building the samples. This might take some time, so
get yourself a cup of tea until the compile process is finished.

5. If everything went well, go into the Ogre3D/bin folder.

6. Execute the SampleBrowser.exe.

7. You should see the following on your screen:

8. Try the different samples to see all the nice features Ogre 3D offers.

Installing Ogre 3D

[12]

What just happened?
We built the Ogre 3D samples using our own Ogre 3D SDK. After this, we are sure to have a
working copy of Ogre 3D.

Pop quiz – which post effects are shown in the samples
1. Name at least five different post effects that are shown in the samples.

a. Bloom, Glass, Old TV, Black and White, and Invert

b. Bloom, Glass, Old Monitor, Black and White, and Invert

c. Boom, Glass, Old TV, Color, and Invert

The first application with Ogre 3D
In this part, we will create our first Ogre 3D application, which will simply render one
3D model.

Time for action – starting the project and configuring the IDE
As with any other library, we need to configure our IDE before we can use it with Ogre 3D.

1. Create a new empty project.

2. Create a new file for the code and name it main.cpp.

3. Add the main function:

int main (void)
{
return 0;
}

4. Include ExampleApplication.h at the top of the following source file:

#include "Ogre\ExampleApplication.h":

5. Add PathToYourOgreSDK\include\ to the include path of your project.

6. Add PathToYourOgreSDK\boost_1_42 to the include path of your project.

7. Add PathToYourOgreSDK\boost_1_42\lib to your library path.

Chapter 1

[13]

8. Add a new class to the main.cpp.

class Example1 : public ExampleApplication
{
public:

void createScene()
{
}
};

9. Add the following code at the top of your main function:

Example1 app;
app.go();

10. Add PathToYourOgreSDK\lib\debug to your library path.

11. Add OgreMain_d.lib to your linked libraries.

12. Add OIS_d.lib to your linked libraries.

13. Compile the project.

14. Set your application working directory to PathToYourOgreSDK\bin\debug.

15. Start the application. You should see the Ogre 3D Setup dialog.

Installing Ogre 3D

[14]

16. Press OK and start the application. You will see a black window. Press Escape
to exit the application.

What just happened?
We created our first Ogre 3D application. To compile, we needed to set different include and
library paths so the compiler could find Ogre 3D.

In steps 5 and 6, we added two include paths to our build environment. The first path
was to the Ogre 3D SDK include folder, which holds all the header files of Ogre 3D
and OIS. OIS stands for Object Oriented Input System and is the input library that
ExampleApplication uses to process user input. OIS isn't part of Ogre 3D; it's a
standalone project and has a different development team behind it. It just comes with Ogre
3D because the ExampleApplication uses it and so the user doesn't need to download
the dependency on its own. ExampleApplication.h is also in this include folder. Because
Ogre 3D offers threading support, we needed to add the boost folder to our include paths.
Otherwise, we can't build any application using Ogre 3D. If needed, Ogre 3D can be built
from the source, disabling threading support and thus removing the need for boost. And
while using boost, the compiler also needs to be able to link the boost libraries. Thus we
have added the boost library folder into our library paths (see step 7).

In step 10, we added PathToYourOgreSDK\lib\debug to our library path. As said before,
Ogre 3D comes with debug and release libraries. With this line we decided to use the
debug libraries because they offer better debug support if something happens to go wrong.
When we want to use the release versions, we have to change the lib\debug to \lib\
release. The same is true for steps 11 und 12. There we added OgreMain_d.lib and
OIS_d.lib to our linked libraries. When we want to use the release version, we need to
add OgreMain.lib and OIS.lib. OgreMain.lib, and OgreMain_d.lib contains both
the interface information about Ogre 3D and tells our application to load OgreMain.dll or
OgreMain_d.dll. Note that OIS.lib or OIS_d.lib is the same for the input system—
they load OIS_d.dll or OIS.dll. So we link Ogre 3D and OIS dynamically, enabling us to
switch the DLL without recompiling our application, as long as the interface of the libraries
doesn't change and the application and the DLL are using the same runtime library versions.
This also implies that our application always needs to load the DLLs, so we have to make
sure it can find it. This is one of the reasons we set the working directory in step 14. Another
reason will be made clear in the next section.

Chapter 1

[15]

ExampleApplication
We created a new class, Example1, which inherits from ExampleApplication.
ExampleApplication is a class that comes with the Ogre 3D SDK and is intended
to make learning Ogre 3D easier by offering an additional abstraction layer above
Ogre 3D. ExampleApplication starts Ogre for us, loads different models we can
use, and implements a simple camera so we can navigate through our scene. To use
ExampleApplication, we just needed to inherit from it and override the virtual function
createScene(). We will use the ExampleApplication class for now to save us from
a lot of work, until we have a good understanding of Ogre 3D. Later, we will replace
ExamplesApplication piece-by-piece with our own code.

In the main function, we created a new instance of our application class and called the go()
function to start the application and load Ogre 3D. At startup, Ogre 3D loads three config
files—Ogre.cfg, plugins.cfg, and resources.cfg. If we are using the debug versions,
each file needs an "_d" appended to its name. This is useful because with this we can have
different configuration files for debug and release. Ogre.cfg contains the configuration
we selected in the setup dialog, so it can load the same settings to save us from entering
the same information every time we start our application. plugins.cfg contains a list of
plugins Ogre should load. The most important plugins are the rendersystem plugins. They
are the interface for Ogre to communicate with OpenGL or DirectX to render our scene.
resources.cfg contains a list of resources that Ogre should load during startup. The Ogre
3D SDK comes with a lot of models and textures we will use in this book and resources.
cfg points to their location. If you look inside resources.cfg, you will see that the paths
in this file are relative. That's the reason we need to set the working directory.

Pop quiz – which libraries to link
1. Which libraries do you need to link when using Ogre 3D in release configuration?

a. OgreD3DRenderSystem.lib

b. OgreMain.lib

c. OIS.lib

2. What would we have to change when we want to use the debug build versions
of Ogre 3D?

a. Add an _debug after the library name

b. Add an _d at the file extension

c. Add an _d after the library name

www.allitebooks.com

http://www.allitebooks.org

Installing Ogre 3D

[16]

Loading the first model
We have a basic application with nothing in it, which is rather boring. Now we will load a
model to get a more interesting scene.

Time for action – loading a model
Loading a model is easy. We just need to add two lines of code.

1. Add the following two lines into the empty createScene() method:

Ogre::Entity* ent =
mSceneMgr->createEntity("MyEntity","Sinbad.mesh");
mSceneMgr->getRootSceneNode()->attachObject(ent);

2. Compile your application again.

3. Start your application. You will see a small green figure after starting the application.

4. Navigate the camera with the mouse and WASD until you see the green figure better.

5. Close the application.

Chapter 1

[17]

What just happened?
With mSceneMgr->createEntity("MyEntity","Sinbad.mesh");,we told Ogre that
we wanted a new instance of the Sinbad.mesh model. mSceneMgr is a pointer to the
SceneManager of Ogre 3D, created for us by the ExampleApplication. To create a new
entity, Ogre needs to know which model file to use, and we can give a name to the new
instance. It is important that the name is unique; it can't be used twice. If this happens, Ogre
3D will throw an exception. If we don't specify a name, Ogre 3D will automatically generate
one for us. We will examine this behavior in more detail later.

We now have an instance of a model, and to make it visible, we need to attach it
to our scene. Attaching an entity is rather easy—just write the following line:
mSceneMgr->getRootSceneNode()->attachObject(ent);

This attaches the entity to our scene so we can see it. And what we see is Sinbad, the mascot
model of Ogre 3D. We will see this model a lot during the course of this book.

Pop quiz – ExampleApplication and how to display a model
Describe in your own words how to load a model and how to make it visible.

Summary
We learned how the Ogre 3D SDK is organized, which libraries we needed to link, and
which folder we needed in our include path. Also, we got a first glance at the class
ExampleApplication and how to use it. We loaded a model and displayed it.

Specifically, we covered:

 � Which files are important for the development with Ogre 3D, how they interact
with each other, and what their purpose is

 � What ExampleApplication is for: How this class helps to save us work and
what happens during the startup of Ogre 3D

 � Model loading: We learned how we can create a new instance of a model with
createEntity and one way to attach the new instance to our scene

After this introduction to Ogre 3D, we will learn more about how Ogre 3D organizes scenes
and how we can manipulate the scene in the next chapter.

2
The Ogre Scene Graph

This chapter will introduce us to the concept of a scene graph and how we can
use its functions to create complex scenes.

In this chapter, we will:

 � Learn the three basic operations in 3D space

 � How a scene graph is organized

 � The different 3D spaces we can operate in

So let's get on with it.

Creating a scene node
In the last chapter, Chapter 1, Installing Ogre 3D, we loaded a 3D model and attached it to
our scene. Now we will learn how to create a new scene node and attach our 3D model to it.

Time for action – creating a scene node with Ogre 3D
We are going to use the code from Chapter 1, Installing Ogre 3D modify it to create a new
scene node, and attach it to the scene. We will follow these steps:

1. In the old version of our code, we had the following two lines in the
createScene() function:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
mSceneMgr->getRootSceneNode()->attachObject(ent);

The Ogre Scene Graph

[20]

2. Replace the last line with the following:

Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");

3. Then add the following two lines; the order of those two lines is irrelevant for
the resulting scene:

mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

4. Compile and start the application.

5. You should see the same screen you get when starting the application from
Chapter 1.

What just happened?
We created a new scene node named Node1. Then we added the scene node to the root
scene node. After this, we attached our previously created 3D model to the newly created
scene node so it would be visible.

How to work with the RootSceneNode
The call mSceneMgr->getRootSceneNode() returns the root scene node. This scene node
is a member variable of the scene manager. When we want something to be visible, we need
to attach it to the root scene node or a node which is a child or a descendent in any way. In
short, there needs to be a chain of child relations from the root node to the node; otherwise
it won't be rendered. As the name suggests, the root scene node is the root of the scene.
So the entire scene will be, in some way, attached to the root scene node. Ogre 3D uses a
so-called scene graph to organize the scene. This graph is like a tree, it has one root, the root
scene node, and each node can have children. We already have used this characteristic when
we called mSceneMgr->getRootSceneNode()->addChild(node);. There we added
the created scene node as a child to the root. Directly afterwards, we added another kind of
child to the scene node with node->attachObject(ent);. Here, we added an entity to
the scene node. We have two different kinds of objects we can add to a scene node. Firstly,
we have other scene nodes, which can be added as children and have children themselves.
Secondly, we have entities that we want rendered. Entities aren't children and can't have
children themselves. They are data objects which are associated with the node and can be
thought of as leaves of the tree. There are a lot of other things we can add to a scene, like
lights, particle systems, and so on. We will later learn what these things are and how to use
them. Right now, we only need entities. Our current scene graph looks like the following:

Chapter 2

[21]

The first thing we need to understand is what a scene graph is and what it does. A scene graph
is used to represent how different parts of a scene are related to each other in 3D space.

3D space
Ogre 3D is a 3D rendering engine, so we need to understand some basic 3D concepts. The
most basic construct in 3D is a vector, which is represented by an ordered triple (x,y,z).

The Ogre Scene Graph

[22]

Each position in a 3D space can be represented by such a triple using the Euclidean
coordination system for three dimensions. It is important to know that there are different
kinds of coordinate systems in 3D space. The only difference between the systems is the
orientation of the axis and the positive rotation direction. There are two systems that are
widely used, namely, the left-handed and the right-handed versions. In the following image,
we see both systems—on the left side, we see the left-handed version; and on the right side,
we see the right-handed one.

Source: http://en.wikipedia.org/wiki/File:Cartesian_coordinate_system_
handedness.svg

The names left-and right-handed are based on the fact that the orientation of the axis can
be reconstructed using the left and right hand. The thumb is the x-axis, the index finger
the y-axis, and the middle finger the z-axis. We need to hold our hands so that we have a
ninety-degree angle between thumb and index finger and also between middle and index
finger. When using the right hand, we get a right-handed coordination system. When using
the left hand, we get the left-handed version.

Ogre uses the right-handed system, but rotates it so that the positive part of the x-axis is
pointing right and the negative part of the x-axis points to the left. The y-axis is pointing
up and the z-axis is pointing out of the screen and it is known as the y-up convention.
This sounds irritating at first, but we will soon learn to think in this coordinate system. The
website http://viz.aset.psu.edu/gho/sem_notes/3d_fundamentals/html/3d_
coordinates.html contains a rather good picture-based explanation of the different
coordination systems and how they relate to each other.

Chapter 2

[23]

Scene graph
A scene graph is one of the most used concepts in graphics programming. Simply put, it's a
way to store information about a scene. We already discussed that a scene graph has a root
and is organized like a tree. But we didn't touch on the most important function of a scene
graph. Each node of a scene graph has a list of its children as well as a transformation in the
3D space. The transformation is composed of three aspects, namely, the position, the rotation,
and the scale. The position is a triple (x,y,z), which obviously describes the position of the node
in the scene. The rotation is stored using a quaternion, a mathematical concept for storing
rotations in 3D space, but we can think of rotations as a single floating point value for each axis,
describing how the node is rotated using radians as units. Scaling is quite easy; again, it uses a
triple (x,y,z), and each part of the triple is simply the factor to scale the axis with.

The important thing about a scene graph is that the transformation is relative to the parent
of the node. If we modify the orientation of the parent, the children will also be affected
by this change. When we move the parent 10 units along the x-axis, all children will also be
moved by 10 units along the x-axis. The final orientation of each child is computed using the
orientation of all parents. This fact will become clearer with the next diagram.

The Ogre Scene Graph

[24]

The position of MyEntity in this scene will be (10,0,0) and MyEntity2 will be at (10,10,20).
Let's try this in Ogre 3D.

Pop quiz – finding the position of scene nodes
1. Look at the following tree and determine the end positions of MyEntity

and MyEntity2:

a. MyEntity(60,60,60) and MyEntity2(0,0,0)

b. MyEntity(70,50,60) and MyEntity2(10,-10,0)

c. MyEntity(60,60,60) and MyEntity2(10,10,10)

Setting the position of a scene node
Now, we will try to create the setup of the scene from the diagram before the
previous image.

Chapter 2

[25]

Time for action – setting the position of a scene node
1. Add this new line after the creation of the scene node:

node->setPosition(10,0,0);

2. To create a second entity, add this line at the end of the createScene() function:

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","Sinbad.
mesh");

3. Then create a second scene node:

Ogre::SceneNode* node2 = mSceneMgr->createSceneNode("Node2");

4. Add the second node to the first one:

node->addChild(node2);

5. Set the position of the second node:

node2->setPosition(0,10,20);

6. Attach the second entity to the second node:

node2->attachObject(ent2);

7. Compile the program and you should see two instances of Sinbad:

The Ogre Scene Graph

[26]

What just happened?
We created a scene which matches the preceding diagram. The first new function we used
was at step 1. Easily guessed, the function setPosition(x,y,z) sets the position of the
node to the given triple. Keep in mind that this position is relative to the parent. We wanted
MyEntity2 to be at (10,10,20), because we added node2, which holds MyEntity2, to a
scene node which already was at the position (10,0,0). We only needed to set the position
of node2 to (0,10,20). When both positions combine, MyEntity2 will be at (10,10,20).

Pop quiz – playing with scene nodes
1. We have the scene node node1 at (0,20,0) and we have a child scene node node2,

which has an entity attached to it. If we want the entity to be rendered
at (10,10,10), at which position would we need to set node2?

a. (10,10,10)

b. (10,-10,10)

c. (-10,10,-10)

Have a go hero – adding a Sinbad
Add a third instance of Sinbad and let it be rendered at the position (10,10,30).

Rotating a scene node
We already know how to set the position of a scene node. Now, we will learn how to rotate a
scene node and another way to modify the position of a scene node.

Time for action – rotating a scene node
We will use the previous code, but create completely new code for the createScene()
function.

1. Remove all code from the createScene() function.

2. First create an instance of Sinbad.mesh and then create a new scene node.
Set the position of the scene node to (10,10,0), at the end attach the entity
to the node, and add the node to the root scene node as a child:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
node->setPosition(10,10,0);

Chapter 2

[27]

mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

3. Again, create a new instance of the model, also a new scene node, and set the
position to (10,0,0):

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","Sinbad.
mesh");
Ogre::SceneNode* node2 = mSceneMgr->createSceneNode("Node2");
node->addChild(node2);
node2->setPosition(10,0,0);

4. Now add the following two lines to rotate the model and attach the entity to the
scene node:

node2->pitch(Ogre::Radian(Ogre::Math::HALF_PI));
node2->attachObject(ent2);

5. Do the same again, but this time use the function yaw instead of the function pitch
and the translate function instead of the setPosition function:

Ogre::Entity* ent3 = mSceneMgr->createEntity("MyEntity3","Sinbad.
mesh");
Ogre::SceneNode* node3 = mSceneMgr->createSceneNode("Node3",);
node->addChild(node3);
node3->translate(20,0,0);
node3->yaw(Ogre::Degree(90.0f));
node3->attachObject(ent3);

6. And the same again with roll instead of yaw or pitch:

Ogre::Entity* ent4 = mSceneMgr->createEntity("MyEntity4","Sinbad.
mesh");
Ogre::SceneNode* node4 = mSceneMgr->createSceneNode("Node4");
node->addChild(node4);
node4->setPosition(30,0,0);
node4->roll(Ogre::Radian(Ogre::Math::HALF_PI));
node4->attachObject(ent4);

7. Compile and run the program, and you should see the following screenshot:

The Ogre Scene Graph

[28]

What just happened?
We repeated the code we had before four times and always changed some small details.
The first repeat is nothing special. It is just the code we had before and this instance of the
model will be our reference model to see what happens to the other three instances we
made afterwards.

In step 4, we added one following additional line:

node2->pitch(Ogre::Radian(Ogre::Math::HALF_PI));

The function pitch(Ogre::Radian(Ogre::Math::HALF_PI)) rotates a scene node
around the x-axis. As said before, this function expects a radian as parameter and we used
half of pi, which means a rotation of ninety degrees.

In step 5, we replaced the function call setPosition(x,y,z) with translate(x,y,z).
The difference between setPosition(x,y,z) and translate(x,y,z) is that
setPosition sets the position—no surprises here. translate adds the given values to the
position of the scene node, so it moves the node relatively to its current position. If a scene
node has the position (10,20,30) and we call setPosition(30,20,10), the node will
then have the position (30,20,10). On the other hand, if we call translate(30,20,10),
the node will have the position (40,40,40). It's a small, but important, difference. Both
functions can be useful if used in the correct circumstances, like when we want to position
in a scene, we would use the setPosition(x,y,z) function. However, when we want to
move a node already positioned in the scene, we would use translate(x,y,z).

Also, we replaced pitch(Ogre::Radian(Ogre::Math::HALF_PI))with
yaw(Ogre::Degree(90.0f)). The yaw() function rotates the scene node around the
y-axis. Instead of Ogre::Radian(), we used Ogre::Degree(). Of course, Pitch and
yaw still need a radian to be used. However, Ogre 3D offers the class Degree(), which has
a cast operator so the compiler can automatically cast into a Radian(). Therefore, the
programmer is free to use a radian or degree to rotate scene nodes. The mandatory use of
the classes makes sure that it's always clear which is used, to prevent confusion and possible
error sources.

Step 6 introduces the last of the three different rotate function a scene node has, namely,
roll(). This function rotates the scene node around the z-axis. Again, we could use
roll(Ogre::Degree(90.0f)) instead of roll(Ogre::Radian(Ogre::Math::HA
LF_PI)).

The program when run shows a non-rotated model and all three possible rotations.
The left model isn't rotated, the model to the right of the left model is rotated around
the x-axis, the model to the left of the right model is rotated around the y-axis, and the
right model is rotated around the z-axis. Each of these instances shows the effect of a
different rotate function. In short, pitch() rotates around the x-axis, yaw() around the
y-axis, and roll() around the z-axis. We can either use Ogre::Degree(degree) or
Ogre::Radian(radian) to specify how much we want to rotate.

Chapter 2

[29]

Pop quiz – rotating a scene node
1. Which are the three functions to rotate a scene node?

a. pitch, yawn, roll

b. pitch, yaw, roll

c. pitching, yaw, roll

Have a go hero – using Ogre::Degree
Remodel the code we wrote for the previous section in such a way that each occurrence of
Ogre::Radian is replaced with an Ogre::Degree and vice versa, and the rotation is still
the same.

Scaling a scene node
We already have covered two of the three basic operations we can use to manipulate our
scene graph. Now it's time for the last one, namely, scaling.

Time for action – scaling a scene node
Once again, we start with the same code block we used before.

1. Remove all the code from the createScene() function and insert the following
code block:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
node->setPosition(10,10,0);
mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

2. Again, create a new entity:

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","Sinbad.
mesh");

3. Now we use a function that creates the scene node and adds it automatically as a
child. Then we do the same thing we did before:

Ogre::SceneNode* node2 = node->createChildSceneNode("node2");
node2->setPosition(10,0,0);
node2->attachObject(ent2);

The Ogre Scene Graph

[30]

4. Now, after the setPosition() function, call the following line to scale the model:

node2->scale(2.0f,2.0f,2.0f);

5. Create a new entity:

Ogre::Entity* ent3 = mSceneMgr->createEntity("MyEntity3","Sinbad.
mesh");

6. Now we call the same function as in step 3, but with an additional parameter:

Ogre::SceneNode* node3 = node->createChildSceneNode("node3",Ogre::
Vector3(20,0,0));

7. After the function call, insert this line to scale the model:

node3->scale(0.2f,0.2f,0.2f);

8. Compile the program and run it, and you should see the following image:

Chapter 2

[31]

What just happened?
We created a scene with scaled models. Nothing special happened until step 3. Then we
used a new function, namely, node->createChildSceneNode("node2"). This function
is a member function of a scene node and creates a new node with the given name and adds
it directly as a child to the node which called the function. In this case, node2 is added as a
child to the node.

In step 4, we used the scale() function of the scene node. This function takes a triple (x,y,z),
which indicated how the scene node should be scaled. x, y, and z are factors. (0.5,1.0,2.0)
means that the scene node should be halved on the x-axis, kept the same on the y-axis, and
doubled on the z-axis. Of course, in a really strict sense, the scene node can't be scaled; it only
holds metadata which isn't rendered. It would be more precise to say that each renderable
object attached to this node would be scaled instead of the scene node itself. The node is only
a holder or reference frame for all attached children and renderable objects.

In step 6, we used the createChildSceneNode() function again, but this time with more
parameters. The second parameter that this function takes is a triple (x,y,z) which is so often
used. Ogre 3D has its own class for it called Ogre::Vector3. Besides storing the triple, this
class offers functions which implement the basic operations. They can be done with three
dimensional vectors in linear algebra. This vector describes the translate which should be
used when the scene node is created. createChildSceneNode() can be used to replace
the following lines of code:

Ogre::SceneNode* node2 = mSceneMgr->createSceneNode("Node2");
node->addChild(node2);

or even

Ogre::SceneNode* node2 = mSceneMgr->createSceneNode("Node2");
 node->addChild(node2);
 node2->setPosition(20,0,0);

The last piece of code can be replaced with

Ogre::SceneNode* node2 = node->createChildSceneNode("Node2",Ogre::
Vector3(20,0,0));

If we leave out the Vector3 parameter, we can replace the first piece of code. There are
more versions of this function, which we will use later. If you can't wait, take a look at the
documentation of Ogre 3D at http://www.ogre3d.org/docs/api/html/index.html.

Besides scale(), there is also setScale(). The difference between these functions is
the same as between setPosition() and translate().

The Ogre Scene Graph

[32]

Pop quiz – creating child scene nodes
1. Name two different ways of calling createChildSceneNode().

2. How could the following line be replaced without using
createChildSceneNode()?

Ogre::SceneNode* node2 = node->createChildSceneNode("node1",Ogre::
Vector3(10,20,30));

This line could be replaced with three lines. The first creates the
scene node, the second one translates it, and the third attaches it to
the node.

Ogre::SceneNode* node2 = mSceneMgr->createSceneNode("Node2");
node2->translate(Ogre::Vector3(10,20,30));
node->addChild(node2);

Have a go hero – using createChildSceneNode()
Refactor all the code you wrote in this chapter to use createChildSceneNode().

Using a scene graph the clever way
In this section, we will learn how we can use the characteristics of a scene graph to make
some tasks easier. This will also expand our knowledge about a scene graph.

Time for action – building a tree using scene nodes
This time, we are going to use another model besides Sinbad: the ninja.

1. Remove all the code from the createScene() function.

2. Create Sinbad like we always do:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
node->setPosition(10,10,0);
mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

Chapter 2

[33]

3. Now create a ninja, which will follow Sinbad everywhere he goes:

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntitysNinja","nin
ja.mesh");
Ogre::SceneNode* node2 = node->createChildSceneNode("node2");
node2->setPosition(10,0,0);
node2->setScale(0.02f,0.02f,0.02f);
node2->attachObject(ent2);

4. Compile and run the application. When you take a closer look at Sinbad, you
will see a green ninja at his left arm.

5. Now change the position to (40,10,0):

node->setPosition(40,10,0);

6. And rotate the model 180 degree around the x-axis:

node->yaw(Ogre::Degree(180.0f));

7. Compile and run the application.

The Ogre Scene Graph

[34]

8. You should see that the ninja is still at the left-hand of Sinbad and Sinbad is rotated.

What just happened?
We created a sneaky ninja who follows each step of Sinbad. We made this possible because
we added the node the ninja model is attached to as a child to the scene node Sinbad is
attached to. When we moved Sinbad, we used his scene node, so each transform we did is
also done to the ninja, because this scene node is the child of the node we modify, and as
said before, the transformation of a parent is passed to all its children. This fact about scene
nodes is extremely helpful to create the following models or complex scenes. Say, if we
wanted to create a truck which carries a complete house, we could create the house using
a lot of different models and scene nodes. At the end, we would have a scene node where
the whole house and its interior are added as children too. Now when we want to move
the house, we simply attach the house node to the truck or anything else, and if the truck
moves, the complete house moves with it.

Chapter 2

[35]

The arrows show the direction the transformations are propagated along the scene graph.

Pop quiz – even more about the scene graph
1. How is transformation information passed in a scene graph?

a. From the leaves to the root

b. From the root to the leaves

Have a go hero – adding a following ninja
Add a second ninja to the scene, which follows the first ninja.

Different spaces in a scene
In this part, we will learn that there are different spaces in a scene and how we can use
these spaces.

www.allitebooks.com

http://www.allitebooks.org

The Ogre Scene Graph

[36]

Time for action – translating in World space
We are going to move an object in a different way from what we are used to.

1. Again, start with an empty createScene() function; so delete every code you
have in this function.

2. Create a reference object:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
node->setPosition(0,0,400);
node->yaw(Ogre::Degree(180.0f));
mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

3. Create two new instances of the model and translate each one with (0,0,10):

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","Sinbad.
mesh");
Ogre::SceneNode* node2 = node->createChildSceneNode("node2");
node2->setPosition(10,0,0);
node2->translate(0,0,10);
node2->attachObject(ent2);

Ogre::Entity* ent3 = mSceneMgr->createEntity("MyEntity3","Sinbad.
mesh");
Ogre::SceneNode* node3 = node->createChildSceneNode("node3");
node3->setPosition(20,0,0);
node3->translate(0,0,10);
node3->attachObject(ent3);

4. Compile and run the application. Navigate the camera until you see the previous
models like the following:

Chapter 2

[37]

5. Replace the line:

node3->translate(0,0,10);

with

node3->translate(0,0,10,Ogre::Node::TS_WORLD);

6. Again, compile and run the application and navigate the camera like before.

The Ogre Scene Graph

[38]

What just happened?
We used a new parameter of the translate() function. The result was that the left model
in the scene moved in a different direction to the middle model.

Different spaces in a 3D scene
The reason why the model moved differently is because with Ogre::Node::TS_WORLD, we
told the translate() function that the translate should happen in world space and not in
parent space, where it is normal. There are three kinds of spaces we have in a 3D scene—
world space, parent space, and local space. Local space is where the model itself is defined.
A cube consists of eight points and can be described as in the following diagram:

The black point is the null point of local space. Each point of the cube is described as a
translate from the null point. When the scene is rendered, the cube needs to be in world
space. To get the cube in world space, all transformations of these parents in the scene graph
are applied to these points. Let's say the cube is attached to a scene node which is added to
the root scene node with a translate of (10,0,0). Then the world space with the cube would
look like this:

Chapter 2

[39]

The difference between the two cubes is that the null point has shifted its position, or to
be more precise, the cube has been moved away from the null point.

When we call the translate() function, the cube is moved in parent space if the
space to use is not defined, like we did in step 5. When no parent of the cube is rotated,
translate() behaves the same way with world space as it would when used with parent
or local space. This is true because only the position of the null point changes and not the
orientation of the axes. When we, say, move the cube (0,0,10) units, it doesn't matter where
the null point is—as long as the axes of the coordination system are orientated the same,
it won't change the outcome of the translate process. However, when a parent is rotated,
this is no longer true. When the parent is rotated, this also rotates the axis of the null point,
which changes the meaning of translate(0,0,10).

The left coordination system is not rotated and (0,0,10) means moving the cube 10 units
nearer to the viewer. This is because the z-axis is pointing out of the screen. With the 180
degree rotation, (0,0,10) means moving the cube 10 units away from the viewer because
the z-axis is pointing into the screen.

We see that it is important in what space we describe the translate() function to get the
desired effect. World space always has the same orientation of axis. To be precise, world
spaces uses the left coordination system. Parent space uses a coordination system where all
roations from the parent upwards are applied. Local space includes all rotations, from the
scene node itself to all parents. The default setting of translate() is to use parent space.
This enables us to rotate the node itself without changing the direction a node moves when
using translate(). But there are cases when we want to translate in a space different
to parent space. In such cases, we can use the second parameter from translate(). The
second parameter specifies the space we want the translate to happen in. In our code, we
used Ogre::Node::TS_WORLD to move the model in world space, which inverted the
direction the model used because we rotated the node around 180 degrees, and with this,
flipped the direction of the x-and z-axis. Again, look at the image to see the effect.

The Ogre Scene Graph

[40]

Translating in local space
We've already seen the effect of translating in parent and world space. Now we will translate
in local and parent space to see the difference and get a deeper understanding of the
differences between the spaces.

Time for action – translating in local and parent space
1. Clear the createScene() function once again.

2. Insert a reference model; this time we will move it nearer to our camera so we don't
have to move the camera so much:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","Sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
node->setPosition(0,0,400);
node->yaw(Ogre::Degree(180.0f));
mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

3. Add a second model and rotate it by 45 degrees around the y-axis and translate it
(0,0,20) units in parent space:

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","Sinbad.
mesh");
Ogre::SceneNode* node2 = node->createChildSceneNode("node2");
node2->yaw(Ogre::Degree(45));
node2->translate(0,0,20);
node2->attachObject(ent2);

4. Add a third model and also rotate it 45 degrees around the y-axis and translate it
(0,0,20) units in local space:

Ogre::Entity* ent3 = mSceneMgr->createEntity("MyEntity3","Sinbad.
mesh");
Ogre::SceneNode* node3 = node->createChildSceneNode("node3");
node3->yaw(Ogre::Degree(45));
node3->translate(0,0,20,Ogre::Node::TS_LOCAL);
node3->attachObject(ent3);

5. Compile and run the application. Then navigate the camera again so that you see
the model from above.

Chapter 2

[41]

What just happened?
We created our reference model and then added two models which were rotated 45 degrees
around the y-axis. Then we translated both with (0,0,20), one model in parent space, the
default setting, and the other model in local space. The model we translated in parent space
moved in a straight line on the z-axis. But because we rotated the models around the y-axis,
the model we translated in local space moved with this rotation and ended up moving up
and left in the image. Let's repeat this. When we translate, the default setting is parent
space, meaning that all rotations, except the rotation of the scene node we translate, are
used while translating. When using world space, no rotation is taken into consideration.
When translating, the world coordination system is used. When translating in local space,
every rotation, even the rotation from the node we translate, is used for the translation.

Pop quiz – Ogre 3D and spaces
Name three different spaces that Ogre 3D knows.

The Ogre Scene Graph

[42]

Have a go hero – adding symmetry
Change the rotation and translation of the MyEntity2 to make the image symmetric. Make
sure you use the right space; otherwise, it's difficult to create a symmetric image. Here is
how it should look afterwards:

Rotating in different spaces
We have already seen how using different spaces while translating works; we will now do
the same with rotating.

Time for action – rotating in different spaces
This time, we are going to rotate using different spaces, as follows:

1. And again, we will start with a clean createScene() function, so delete all code
inside this function.

2. Add the reference model:

Ogre::Entity* ent = mSceneMgr->createEntity("MyEntity","sinbad.
mesh");
Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
mSceneMgr->getRootSceneNode()->addChild(node);
node->attachObject(ent);

Chapter 2

[43]

3. Add a second model and rotate it the normal way:

Ogre::Entity* ent2 = mSceneMgr->createEntity("MyEntity2","sinbad.
mesh");
Ogre::SceneNode* node2 = mSceneMgr->getRootSceneNode()-
>createChildSceneNode("Node2");
node2->setPosition(10,0,0);
node2->yaw(Ogre::Degree(90));
node2->roll(Ogre::Degree(90));
node2->attachObject(ent2);

4. Add a third model using world space:

Ogre::Entity* ent3 = mSceneMgr->createEntity("MyEntity3","Sinbad.
mesh");
Ogre::SceneNode* node3 = node->createChildSceneNode("node3");
node3->setPosition(20,0,0);
node3->yaw(Ogre::Degree(90),Ogre::Node::TS_WORLD);
node3->roll(Ogre::Degree(90),Ogre::Node::TS_WORLD);
node3->attachObject(ent3);

5. Compile and run the application.

The Ogre Scene Graph

[44]

What just happened?
Like always, we created our reference model, which is the left one in the picture. We
rotated the second model—first around the y-axis and then around the z-axis. Rotation
uses the default space as the local space. This implies that after we rotated the first model 90
degrees around the y-axis, the orientation of z-axis is changed. The second model used the
world coordination system and there the orientation of the z-axis stays the same, even when
we rotated a scene node.

The model under number 1 is the original coordination system we had. Under number 2, we
see the coordination system after we rotated 90 degrees around the y-axis. Under number 3,
we rotated 90 degrees around the z-axis. Now let's look at the same rotations when we use
world space instead of local space.

Chapter 2

[45]

Here we are doing the same rotations, but because we always used world space, we didn't
use the changed coordination system, and therefore we got a different result.

Scaling in different spaces
Scaling is always done to the initial model, so there aren't different spaces for scaling. It
wouldn't make much sense to scale in different spaces because there isn't really any need
to do it.

Summary
We learned a lot in this chapter about the scene graph Ogre 3D uses and how to work with it
to create complex scenes.

Specifically, we covered the following:

 � What a scene graph is and how it works

 � Different ways for changing the position, rotation, and scaling of scene nodes

 � What different kinds of spaces we have for rotations and translation

 � How we can cleverly use the scene graph's properties to create complex scenes

After being able to create complex scenes in the next chapter, we are going to add light,
shadows, and create our own camera.

3
Camera, Light, and Shadow

We already learned how to create a complex scene, but without light and
shadow, a scene won't be complete.

In this chapter, we will learn about:

 � The types of different light sources Ogre 3D supports and how they work

 � Adding shadows to a scene and the different shadow techniques available

 � What a camera and viewport are and why we need to have them

Creating a plane
Before we can add lights to our scene, we first need to add a plane, onto which shadows and
light are projected, and therefore visible to us. A normal application wouldn't need a plane
because there would be a terrain or a floor to project light onto. Light calculation would work
without the plane, but we wouldn't be able to see the effect of the light.

Time for action – creating a plane
Until now, we have always loaded a 3D model from a file. Now we will create one directly:

1. Delete all the code inside the createScene() function.

2. Add the following line to define a plane in the createScene() function:

Ogre::Plane plane(Vector3::UNIT_Y, -10);

Camera, Light, and Shadow

[48]

3. Now create the plane into your memory:

 Ogre::MeshManager::getSingleton().createPlane("plane",
 ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
 1500,1500,20,20,true,1,5,5,Vector3::UNIT_Z);

4. Create an instance of the plane:

Ogre::Entity* ent = mSceneMgr->createEntity("LightPlaneEntity",
"plane");

5. Attach the plane to the scene:

mSceneMgr->getRootSceneNode()->createChildSceneNode()-
>attachObject(ent);

6. To get anything other than a white plane, set the material of the plane to an
existing material:

ent->setMaterialName("Examples/BeachStones");

7. Compile the application and run it. You should see some dark stones.

We have inverted the colors for ease of reading!

Chapter 3

[49]

What just happened?
We just created a plane and added it to the scene. Step 2 created an instance of
Ogre::Plane. This class describes a plane using the normal vector of the plane and
an offset from the null point using the normal vector.

A normal vector (or in short, just normal) is an often-used construct in 3D graphics.
The normal of a surface is a vector that stands perpendicular on this surface. The
length of the normal is often 1 and is used extensively in computer graphics for light
and occlusion calculation.

In Step 3, we used the plane definition to create a mesh out of it. To do this, we used
the Ogre MeshManager. This manager manages meshes, which shouldn't be a surprise.
Besides managing meshes that we loaded from a file, it can also create planes from our
plane definition, as well as a lot of other things.

Ogre::MeshManager::getSingleton().createPlane("plane",
ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
 1500,1500,20,20,true,1,5,5,Vector3::UNIT_Z);

Besides the plane definition, we need to give the plane a name. When loading meshes
from the disk, the file's name is used as the resource name, resource name. It also needs
an resource group it belongs to, resource groups are like namespaces in C++. The third
parameter is the plane definition and the fourth and fifth parameters are the size of the
plane. The sixth and seventh parameters are used to say how many segments the plane
should have. To understand what a segment is, we will take a small detour on how 3D
models are represented in 3D space.

Camera, Light, and Shadow

[50]

Representing models in 3D
To render a 3D model, it needs to be described in a way a computer can understand and render
it most effectively. The most common form to represent 3D models in real-time application is
triangles. Our plane can be represented using two triangles to form a quad. With the segment
option for the x-and the y-axis, we can control how many triangles are generated for the
plane. In the following image, we see the triangles that make up the plane with one, two, or
three segments for each axis. To see this effect, we start the application and then press the R
key. This will switch the rendering mode first to wireframe mode, where we see the triangles.
Another key press will change the mode to point mode, where we see only the points of the
triangles. Another press will set the render mode to normal.

After we have defined how many segments we want, we pass a Boolean parameter
which tells Ogre 3D that we want the normal of the plane to be calculated. As said before,
a normal is a vector which stands vertically on the surface of the plane. The next three
parameters are used for texturing. To texture something all points need texture coordinates.
Texture coordinates tell the render engine how to map the texture onto the triangle.
Because a picture is a 2D surface, the texture coordinates also consist of two values,
namely, x and y. They are presented as a tuple (x,y). The value range of texture coordinates
is normalized from zero to one. (0,0) means the upper-left corner of the texture and (1,1)
the bottom-right corner. Sometimes the values can be greater than 1. This means that the
texture could be repeated depending on the set mode. This topic will be explained in a later
chapter extensively. (2,2) could repeat the texture twice across both axis. The tenth and
eleventh parameters tell Ogre 3D how often we want the texture to be tiled across the plane.
The ninth parameter defines how many textures' coordinates we want. This can be useful
when working with more than one texture for one surface. The last parameter defines the
"up" direction for our textures. This also affects how the texture coordinates are generated.
We simply say that the z-axis should be "up" for our plane.

Chapter 3

[51]

In step 4, we created an instance of the plane that we just created with the MeshManager.
To do this, we need to use the name we gave the plane during creation. Step 5 attached the
entity to the scene.

In step 6, we set a new material to the instance of the entity. Each entity has a material
assigned to it. The material describes which texture to use, how the lighting interacts with
the material, and much more. We will learn about all of this in the chapter on materials.
The plane we created doesn't have a material yet and therefore would be rendered white.
Because we want to see the effect of lights we create later, white isn't the best color to use.
We used a material that is already defined in the media folder. This material simply adds a
stone texture to our plane.

Adding a point light
Now that we have created a plane to see the effect that the light has on our scene, we need
to add a light to see something.

Time for action – adding a point light
We will create a point light and add it to our scene to see the effect it has on our scene:

1. Add the following code after setting the material for the plane:

Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
mSceneMgr->getRootSceneNode()->addChild(node);

2. Create a light with the name Light1 and tell Ogre 3D it's a point light:

Ogre::Light* light1 = mSceneMgr->createLight("Light1");
light1->setType(Ogre::Light::LT_POINT);

3. Set the light color and position:

light1->setPosition(0,20,0);
light1->setDiffuseColour(1.0f,1.0f,1.0f);

4. Create a sphere and set it at the position of the light, so we can see where
the light is:

Ogre::Entity* LightEnt = mSceneMgr->createEntity("MyEntity","sphe
re.mesh");
Ogre::SceneNode* node3 = node->createChildSceneNode("node3");
node3->setScale(0.1f,0.1f,0.1f);
node3->setPosition(0,20,0);
node3->attachObject(LightEnt);

Camera, Light, and Shadow

[52]

5. Compile and run the application; you should see the stone texture lit by a white
light, and see a white sphere a bit above the plane.

What just happened?
We added a point light to our scene and used a white sphere to mark the position of
the light.

In step 1, we created a scene node and added it to the root scene node. We created the
scene node because we need it later to attach the light sphere to. The first interesting thing
happened in step 2. There we created a new light using the scene manager. Each light will
need a unique name, if we decide to give it a name. If we decide not to use a name, then
Ogre 3D will generate one for us. We used Light1 as a name. After creation, we told Ogre
3D that we want to create a point light. There are three different kinds of lights we can
create, namely, point lights, spotlights, and directional lights. Here we created a point light;
soon we will create the other types of lights. A point light can be thought of as being like
a light bulb. It's a point in space which illuminates everything around it. In step 3, we used
the created light and set the position of the light and its color. Every light color is described
by a tuple (r,g,b). All three parameters have a range from 0.0 to 1.0 and represent the
attribution of their assigned color part to the color. 'r' stands for red, 'g' for green, and 'b'
for blue. (1.0,1.0,1.0) is white, (1.0,0.0,0.0) is red, and so on. The function we called was
setDiffuseColour(r,g,b), which takes exactly these three parameters for the color.
Step 4 added a white sphere at the position of the light, so we could see where the light is
positioned in the scene.

Chapter 3

[53]

Have a go hero – adding a second point light
Add a second point light at (20,20,20), which illuminates the scene with a red light. Also add
another sphere to show where the point light is. Here's how it should look:

Adding a spotlight
We have created a point light and now we will create a spotlight—the second light type we
can use.

Time for action – creating a spotlight
We will use the code we created before and modify it a bit to see how a spotlight works:

1. Delete the code where we created the light and insert the following code to create
a new scene node. Be careful not to delete the part of the code we used to create
LigthEnt and then add the following code:

Ogre::SceneNode* node2 = node->createChildSceneNode("node2");
node2->setPosition(0,100,0);

Camera, Light, and Shadow

[54]

2. Again, create a light, but now set the type to spotlight:

Ogre::Light* light = mSceneMgr->createLight("Light1");
light->setType(Ogre::Light::LT_SPOTLIGHT);

3. Now set some parameters; we will discuss their meanings later:

light->setDirection(Ogre::Vector3(1,-1,0));
light->setSpotlightInnerAngle(Ogre::Degree(5.0f));
light->setSpotlightOuterAngle(Ogre::Degree(45.0f));
light->setSpotlightFalloff(0.0f);

4. Set the light color and add the light to the newly created scene node:

light->setDiffuseColour(Ogre::ColourValue(0.0f,1.0f,0.0f));
node2->attachObject(light);

5. Compile and run the application; it should look like this:

Chapter 3

[55]

What just happened?
We created a spotlight in the same manner we created a point light; we just used some
different parameters for the light.

Step 1 created another scene node to be used later. Step 2 created the light as we did
before; we just used a different light type—this time Ogre::Light::LT_SPOTLIGHT—to
get a spotlight. Step 3 is the really interesting one; there we set different parameters for
the spotlight.

Spotlights
Spotlights are just like flashlights in their effect. They have a position where they are and a
direction in which they illuminate the scene. This direction was the first thing we set after
creating the light. The direction simply defines in which direction the spotlight is pointed.
The next two parameters we set were the inner and the outer angles of the spotlight. The
inner part of the spotlight illuminates the area with the complete power of the light source's
color. The outer part of the cone uses less power to light the illuminated objects. This is
done to emulate the effects of a real flashlight. A real flashlight also has an inner part and
an outer part that illuminate the area lesser then the center of the spotlight. The inner and
outer angles we set define how big the inner and the outer part should be. After setting the
angles, we set a falloff parameter. This falloff parameter describes how much power
the light loses when illuminating the outer part of the light cone. The farther away a point to
be illuminated is from the inner cone, the more the falloff affects the point. If a point is
outside the outer cone, then it isn't illuminated by the spotlight.

Camera, Light, and Shadow

[56]

We set the falloff to zero. In theory, we should see a perfect light circle on the plane, but
it is rather blurry and deformed. The reason for this is that the lighting that we use at the
moment uses the triangle points of the plane to calculate and apply the illumination. When
creating the plane, we told Ogre 3D that the plane should be created with 20 X 20 segments.
This is a rather low resolution for such a big plane and means the light cannot be calculated
accurately enough, because there are too few points to apply in an area to make a smooth
circle. So to get a better quality render, we have to increase the segments of the plane. Let's
say we increase the segments from 20 to 200. The plane creation code looks like this after
the increase:

Ogre::MeshManager::getSingleton().createPlane("plane",
ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
1500,1500,200,200,true,1,5,5,Vector3::UNIT_Z);

Now when recompiling and restarting the application, we get a nice round circle of light from
our spotlight.

The circle still isn't perfect; if needed, we could increase the segments of the plane even
further to make it perfect. There are different lighting techniques which give better results
with a low-resolution plane, but they are rather complex and would complicate things now.
But even with the complex lighting techniques, the basics are the same and we can change
our lighting scheme later using the same lights we created here.

Chapter 3

[57]

In step 4, we saw another way to describe a color in Ogre 3D. Previously, we used three
values, (r,g,b), to set the diffuse color of our light. Here we used Ogre::ColourValue
(r,g,b), which is basically the same but encapsulated as a class with some additional
functions and thus it makes the intention of the parameter clearer.

Pop quiz – different light sources
Describe the difference between a point light and a spotlight in a few words.

Have a go hero – mixing light colors
Create a second spotlight that is at a different position as compared to the first spotlight.
Give this spotlight a red color and position it in such a way that the circles of both spotlights
overlap each other a bit. You should see that the color is mixing in the area where the green
and red light overlap.

Directional lights
We have created spotlights and point lights. Now we are going to create the last light type—
directional lights. A directional light is a light that is far away and only has a direction and
a color, but no light cone or radius like spotlights or point lights. It can be thought of as the
sun. For us, the sunlight comes from one direction, the direction of the sun.

Camera, Light, and Shadow

[58]

Time for action – creating a directional light
1. Delete all the old code in createScene(), except for the plane-related code.

2. Create a light and set the light type to directional light:

Ogre::Light* light = mSceneMgr->createLight("Light1");
light->setType(Ogre::Light::LT_DIRECTIONAL);

3. Set the light to a white color and the light direction to shine in a
down-right direction:

light->setDiffuseColour(Ogre::ColourValue(1.0f,1.0f,1.0f));
light->setDirection(Ogre::Vector3(1,-1,0));

4. Compile and run the application.

What just happened?
We created a directional light and set it to shine down and rightwards with
setDirection(1,-1,0). In the previous examples, we always had a rather black plane
and a small part of the plane was illuminated by our pointlight or spotlight. Here, we used
a directional light and hence the complete plane is illuminated. As said before, a directional
light can be thought of as the sun, and the sun doesn't have a falloff radius or anything else.
So when it shines, it illuminates everything there is; the same is true for our directional light.

Chapter 3

[59]

Pop quiz – different light types
Recall all three light types that Ogre 3D has and state the differences.

The missing thing
We already have added light to our scene, but something is missing. What's missing will be
shown in the next example.

Time for action – finding out what's missing
We are using the previously suggested code to find out what is missing in our scene.

1. After the creation of the light, add code to create an instance of Sinbad.mesh and
also create a node and attach the model to it:

Ogre::Entity* Sinbad = mSceneMgr->createEntity("Sinbad", "Sinbad.
mesh");
Ogre::SceneNode* SinbadNode = node-
>createChildSceneNode("SinbadNode");

2. Then scale Sinbad to three times his size and move him a bit upwards; otherwise, he
will be stuck in the plane. Also add him to the scene node, so he will be rendered:

SinbadNode->setScale(3.0f,3.0f,3.0f);
SinbadNode->setPosition(Ogre::Vector3(0.0f,4.0f,0.0f));
SinbadNode->attachObject(Sinbad);

3. Compile and run the application.

Camera, Light, and Shadow

[60]

What just happened?
We added an instance of Sinbad into our scene. Our scene is still lit, but we see that Sinbad
doesn't throw a shadow, which is rather unrealistic. The next step is to add shadows to
our scene.

Adding shadows
Without shadows, a 3D scene isn't really complete; so let's add them.

Time for action – adding shadows
Use the previously used code.

1. After adding all the other code in the createScene() function, add the
following line:

mSceneMgr->setShadowTechnique(Ogre:: SHADOWTYPE_STENCIL_ADDITIVE);

2. Compile and run the application.

Chapter 3

[61]

What just happened?
With just one line, we added shadows to our scene. Ogre 3D does the rest of the work
for us. Ogre 3D supports different shadow techniques. We used additive stencil shadows.
Stencil means a special texture buffer used while rendering the scene. Additive implies that
the scene is rendered once from the camera perspective and the contribution of each light
is accumulated into the final render. This technique creates good results but is also really
expensive because each light adds another rendering run. We won't go into details on how
shadows work because this is a complex field. Many books could be written about this
topic, and also, shadow techniques change rapidly and are heavily researched. If you are
interested in this topic, you can find interesting articles in the NVIDIA book series GPU Gems,
the ShaderX book series, and in the proceedings of the Siggraph conference (http://www.
siggraph.org/).

Creating a camera
So far, we have always used a camera that was created for use by the
ExampleApplication. Now let's create one for ourselves. A camera, as the name suggests,
captures a part of our scene from a certain position. There can only be one camera active
at a particular time because we only have one output medium, that is, our monitor. But it is
possible to use several cameras in one scene when each one is rendered after the other.

Time for action – creating a camera
This time we won't modify the createScene() function; so just leave it as it is with the
Sinbad instance and shadows:

1. Create a new empty function named createCamera() in the
ExampleApplication class:

void createCamera() {
}

2. Create a new camera named MyCamera1 and assign it to the member mCamera:

mCamera = mSceneMgr->createCamera("MyCamera1");

3. Set the position of the camera and let it look at the null point:

mCamera->setPosition(0,100,200);
mCamera->lookAt(0,0,0);
mCamera->setNearClipDistance(5);

Camera, Light, and Shadow

[62]

4. Now change the render mode to wireframe modus:

mCamera->setPolygonMode(Ogre::PM_WIREFRAME);

5. Compile and run the application.

What just happened?
We overrode the createCamera() function, which initially created a camera and set it
to a position. After creation, we set a position and used the lookat() function to set the
camera up to look at the origin. The next step we did was setting the near clipping distance.
A camera can only see parts of a 3D scene, so rendering it completely would be a waste of
precious CPU and GPU time. To prevent this, before rendering, large parts of the scene are
"cut out" from the scene by the SceneManager. Only objects visible to the camera are
rendered. This step is called culling. Only those objects that are before the near clipping
plane and behind the far clipping plane are rendered and then only when they are inside a
pyramid; this is called the view frustum of the camera. The view frustum is a pyramid with
the top cut off; only those objects that are inside the cut-off pyramid can be seen by the
camera. More information can be found at http://www.lighthouse3d.com/opengl/
viewfrustum/. We set the near clipping plane to 5. When you use a higher-value part of
the scene which is near the camera, it will be culled and not visible.

Chapter 3

[63]

Then we changed the render mode to wireframe. This effect that we get when we press the
R key, as suggested before, is the same as the one we got when we wanted to see the plane
triangles. With R, this effect can also be undone. When the application starts, we now see
a difference as compared to earlier; the camera is now above the instance of Sinbad and
looks down on him. Before overriding the createCamera() function, the camera started
hovering slightly over the plane looking at the origin. With setPosition(0,100,200),
we set the camera higher than before; the following screenshot shows the change.
One interesting aspect we can observe is that even after we have created our own
instance of a camera, we can still navigate the scene as before. This is possible because
we used the mCamera member variable from ExampleApplication. This keeps
ExampleApplication in control of our camera and thus it can be modified. One important
feature of a camera is that it can also be attached to a scene node and will react the same
way an entity does when attached to a scene node.

Camera, Light, and Shadow

[64]

Have a go hero – doing more with the thing
Try using different positions and look at points to see how this affects the starting position of
the camera.

Also try increasing the near clipping distance and try out what effect this has. This should
produce funny images like the following, where we can look into Sinbad's head. The
near clipping distance was set to 50 to produce this image.

Creating a viewport
Entwined with the concept of a camera is the concept of a viewport. So we will also create
our own viewport. A viewport is a 2D surface which is used for rendering. We can think of it
as the paper on which a photo is taken. The paper has a background color and if the photo
doesn't cover this region, the background color will be seen.

Time for action – doing something that illustrates
the thing "in action"

We will use the code that we used before and once again create a new empty method:

1. Remove the setShadowTechnique() function call from the createCamera()
function. We don't want our scene in wireframe mode.

2. Create an empty createViewports() method:

void createViewports() {
}

Chapter 3

[65]

3. Create a viewport:

Ogre::Viewport* vp = mWindow->addViewport(mCamera);

4. Set the background color and the aspect ratio:

vp->setBackgroundColour(ColourValue(0.0f,0.0f,1.0f));
mCamera->setAspectRatio(Real(vp->getActualWidth()) / Real(vp-
>getActualHeight()));

5. Compile and run the application.

What just happened?
We created a viewport. To do this, we needed to pass a camera to the function. Each
viewport can only render the view of one camera, so Ogre 3D enforces that one camera is
given during creation. Of course, the camera can be changed later using the appropriate
getter and setter functions. The most noticeable change is that the background color
changed from black to blue. The reason should be obvious: the new viewport has the
background color blue; we set it in step 3. Also in step 3, we set the aspect ratio—the aspect
ratio describes the ratio between the width and height of a rendered image; in math terms:
aspect ratio = width of window divided by height of window.

Camera, Light, and Shadow

[66]

Have a go hero – playing with different aspect ratio
Try playing with different aspect ratios and see how this affects the image produced. Also
change the background color. Here is an image where the width of the aspect ratio is divided
by five.

Summary
In this chapter, we added lights and shadows to our scene, created a viewport, and worked
with a viewfrustum.

Specifically, we covered:

 � What lights are and how they can modify the appearance of our scene

 � Adding shadows to our scene

 � Creating our own camera, frustum, and viewport

In the next chapter, we will learn how to process user input from the keyboard and mouse.
We will also learn what a FrameListener is and how to use it.

4
Getting User Input and Using the

Frame Listener

Until now, we always created scenes which were static and didn't have
anything moving in them. We will change this with this chapter.

In this chapter, we will:

 � Learn what a FrameListener is

 � Learn how to process user input

 � Combine both concepts to create our own camera control

So let's get on with it...

Preparing a scene
Before adding moving things to our scene, we need a scene to add them to. So let's create
a scene.

Getting User Input and Using the Frame Listener

[68]

Time for action – preparing a scene
We will use a slightly different version of the scene from the previous chapter:

1. Delete all code in the createScene() and the createCamera() functions.

2. Delete the createViewports() function.

3. Add a new member variable to the class. This member variable is a pointer to a
scene node:

private:
Ogre::SceneNode* _SinbadNode;

4. Create a plane and add it to the scene using the createScene() method:

Ogre::Plane plane(Vector3::UNIT_Y, -10);
Ogre::MeshManager::getSingleton().createPlane("plane",
 ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
 1500,1500,200,200,true,1,5,5,Vector3::UNIT_Z);

Ogre::Entity* ent = mSceneMgr->createEntity("LightPlaneEntity",
"plane");
mSceneMgr->getRootSceneNode()->createChildSceneNode()-
>attachObject(ent);
ent->setMaterialName("Examples/BeachStones");

5. Then add a light to the scene:

Ogre::Light* light = mSceneMgr->createLight("Light1");
light->setType(Ogre::Light::LT_DIRECTIONAL);
light->setDirection(Ogre::Vector3(1,-1,0));

6. We also need an instance of Sinbad; create a node and attach the instance to it:

Ogre::SceneNode* node = mSceneMgr->createSceneNode("Node1");
mSceneMgr->getRootSceneNode()->addChild(node);

Ogre::Entity* Sinbad = mSceneMgr->createEntity("Sinbad", "Sinbad.
mesh");
_SinbadNode = node->createChildSceneNode("SinbadNode");
_SinbadNode->setScale(3.0f,3.0f,3.0f);
_SinbadNode->setPosition(Ogre::Vector3(0.0f,4.0f,0.0f));
_SinbadNode->attachObject(Sinbad);

Chapter 4

[69]

7. We also want shadows in this scene; so activate them:

mSceneMgr->setShadowTechnique(SHADOWTYPE_STENCIL_ADDITIVE);

8. Create a camera and position it at (0,100,200) and let it look at (0,0,0); remember
to add the code to the createCamera() function:

mCamera = mSceneMgr->createCamera("MyCamera1");
mCamera->setPosition(0,100,200);
mCamera->lookAt(0,0,0);
mCamera->setNearClipDistance(5);

9. Compile and run the application, and you should see the following image:

Getting User Input and Using the Frame Listener

[70]

What just happened?
We used the knowledge from the previous chapters to create a scene. We should be able
to understand what happened. If not, we should go back to the previous chapters and read
them again until we understand everything.

Adding movement to the scene
We have created our scene; now let's add movement to the scene.

Time for action – adding movement to the scene
Up until now, we only had one class, namely, ExampleApplication. This time we need
another one:

1. Create a new class, name it Example25FrameListener, and let it inherit publicly
from Ogre::FrameListener:

class Example25FrameListener : public Ogre::FrameListener
{
};

2. Add a private member variable, which is an Ogre::SceneNode pointer, and name
it _node:

private:
 Ogre::SceneNode* _node;

3. Add a public constructor that takes an Ogre::SceneNode pointer as a parameter
and assigns it to the member node pointer:

public:
 Example25FrameListener(Ogre::SceneNode* node)
 {
 _node = node;
 }

Chapter 4

[71]

4. Add a new function called frameStarted(FrameEvent& evt), which translates
the member node with (0,0,0.1) and then returns true:

bool frameStarted(const Ogre::FrameEvent &evt)
{
 _node->translate(Ogre::Vector3(0.1,0,0));
 return true;
}

5. Add a new member variable to hold the pointer to the FrameListener, which we
will create later:

Ogre::FrameListener* FrameListener;

6. Add a constructor which inits the pointer with NULL and a destructor which destroys
the FrameListener when the application is closed:

Example25()
{
 FrameListener = NULL;
}
~Example25()
{
 if(FrameListener)
 {
 delete FrameListener;
 }
}

7. Now create a new function in ExampleApplication called
createFrameListener. In this function, create an instance of the
FrameListener we defined and add it using mRoot:

void createFrameListener()
{
 FrameListener = new Example25FrameListener(_SinbadNode);
 mRoot->addFrameListener(FrameListener);
}

Getting User Input and Using the Frame Listener

[72]

8. Compile and run the application. You should see the same scene as seen earlier,
but this time, the instance of Sinbad moves right and you can't move the camera or
close the application with the Escape key. To close the application, click the X button
on the console windows, or if you started the application from a console, you can
use CTRL+C.

What just happened?
We added a new class to our code which moves our scene node.

FrameListener
The new concept we have encountered here is the concept of FrameListeners. As the
name suggests, a FrameListener is based on the observer pattern. We can add a class
instance which inherits from the Ogre::FrameListener interface to our Ogre 3D root
instance using the addFrameListener() method of Ogre::Root. When this class
instance is added, our class gets notified when certain events happen. In this example,
we overrode the frameStarted() method. Before a frame (by frame, we mean a single
picture of the scene) is rendered, Ogre::Root iterates over all added FrameListeners
and calls the frameStarted() method of each one. In our implementation (see step 4) of
this function, we translated the node 0.1 units on the x-axis. This node was passed to the
Framelistener in its constructor. Therefore, each time the scene is rendered, the node is
translated a bit, and as a result, the model moves.

Chapter 4

[73]

As we have seen during the running of the application, we can't move our camera or
exit our application using the Escape key. This is because these things were done by
the FrameListener, which comes with the ExampleApplication framework. The
ExampleApplication framework comes with the SDK. Now that we have replaced it with
our own implementation, we can't use the functions the FrameListener offers any longer.
But we will reimplement most of them in this chapter, so no worries. If needed, we could still
call the functions of the base class to get our default behavior back.

In step 4, our function returns true. If it returned false, Ogre 3D would interpret this as a
signal to drop out of the render loop, and with this, the application would be closed. We will
use this fact to reimplement the "press Escape to exit the application" function.

Pop quiz – design pattern of FrameListener
1. On which design pattern is the FrameListener concept based?

a. Decorator

b. Bridge

c. Observer

Modifying the code to be time based rather than frame
based
Depending on your computer, the model in the scene might be moving quite fast or quite
slow or just at the right speed. The reason for the different speeds at which the model might
move is that, in our code, we move the model 0.1 units on the z-axis before a new frame is
rendered every time. A new computer might be able to render the scene with 100 frames
per second; this would move the model 10 units per second. When using an old computer,
we could have 30 frames per seconds, then the model would only move 3 units. This is only
one third, as compared to the new computers. Normally, we want our application to be
consistent across different platforms and capabilities so that it will run at the same speed.
This can be easily achieved with Ogre.

Time for action – adding time-based movement
We will use the previously used code and only modify one line of code:

1. Change the line where we translate the node to:

_node->translate(Ogre::Vector3(10,0,0) * evt.timeSinceLastFrame);

Getting User Input and Using the Frame Listener

[74]

2. Compile and run the application. You should see the same scene as before, only the
model might move at a different speed.

What just happened?
We changed our movement model from frame-based to time-based. We achieved this by
adding a simple multiplication. As said before, frame-based movement has some downfalls.
Time-based movement is simply superior because we get the same movement on all
computers and have much more control over the movement speed. In step 1, we used the
fact that Ogre 3D passes a FrameEvent when calling the frameStarted() method. This
class holds the time since the last frame was rendered in seconds:

Ogre::Vector3(10,0,0) * evt.timeSinceLastFrame);

This line uses this data to calculate how much we want to move our model in this frame.
We use a vector and multiply it by the time since the last frame in seconds. In this case,
we will use the vector (10,0,0). This means that we want our model to move 10 units on
the x-axis every second. Let's say we render with 10 frames per second; then for each
frame, evt.timeSinceLastFrame would be 0.1f. In each frame we multiply evt.
timeSinceLastFrame by the vector (10,0,0), which results in the vector (1,0,0). This result
is applied to the scene node of each frame. With 10 frames per second, this will add up to a
movement of (10,0,0) per second, which is exactly the value we wanted our model to move
by per second.

Pop quiz – the difference between time- and frame-based movement
Describe in your own words the difference between frame-based and time-based
movement.

Have a go hero – adding a second model
Add a second model to the scene and let it move in the opposite direction to the
current model.

Adding input support
We now have a moving scene, but we would like to be able to exit our application like
before. Therefore, we are now going to add input support, and when Escape is pressed, we
exit our application. Up until now, we only used Ogre 3D; now we will also use OIS(Object
Oriented Input System), which comes with the Ogre 3D SDK because it is used by the
ExampleFrameListener, but otherwise is totally independent from Ogre 3D.

Chapter 4

[75]

Time for action – adding input support
Again, we use the previous code and add the necessary additions to get input support:

1. We need to add a new parameter to the constructor of our listener. We need
a pointer to the render window that Ogre 3D uses to render. To add the new
parameter, the code should look like this:

Example27FrameListener(Ogre::SceneNode* node,RenderWindow* win)

2. When changing the constructor, we also need to change the instantiation:

Ogre::FrameListener* FrameListener = new Example27FrameListener(_
SinbadNode,mWindow);

3. After this, we need to add code into the constructor of the listener. First, we need
two helper variables:

size_t windowHnd = 0;
std::stringstream windowHndStr;

4. Now ask Ogre 3D for the window handle it renders to:

win->getCustomAttribute("WINDOW", &windowHnd);

5. Convert the handle into a string:

windowHndStr << windowHnd;

6. Create a parameter list for OIS and add the window handle to it:

OIS::ParamList pl;
pl.insert(std::make_pair(std::string("WINDOW"), windowHndStr.
str()));

7. Create the input system using this parameter list:

_man = OIS::InputManager::createInputSystem(pl);

8. Then create a keyboard so that we can check for user input:

_key = static_cast<OIS::Keyboard*>(_man->createInputObject(
OIS::OISKeyboard, false));

9. What we create, we must destroy. Add a destructor to the FrameListener, which
destroys our created OIS objects:

~Example27FrameListener()
{
 _man->destroyInputObject(_key);

Getting User Input and Using the Frame Listener

[76]

 OIS::InputManager::destroyInputSystem(_man);
}

10. After we have finished the initialization, add the following code into the
frameStarted() method after the node translation and before the return:

_key->capture();
if(_key->isKeyDown(OIS::KC_ESCAPE))
{
 return false;
}

11. Add the used input objects as member variables to the FrameListener:

OIS::InputManager* _man;
OIS::Keyboard* _key;

12. Compile and run the application. You should now be able to exit the application by
pressing the Escape key.

What just happened?
We created an instance of an input system and used this to capture key presses from the
user. Because we need the window handle for the creation of the input system, we changed
the constructor of the FrameListener so it gets a pointer to the render window passed.
This was done in step 1. We then converted the handle from a number into a string and
added this string into the parameter list of OIS. With this list, we created our instance of the
input system.

Window handle
A window handle is simply a number that is used as an identifier for a certain window. This
number is created by the operating system and each window has a unique handle. The
input system needs this handle because without it, it couldn't get the input events. Ogre 3D
creates a window for us. So to get the window handle, we need to ask it the following line:

win->getCustomAttribute("WINDOW", &windowHnd);

Chapter 4

[77]

There are several attributes that a render window has, so Ogre 3D implements a general
getter function. It is also needed to be platform independent; each platform has its own
variable types for window handles, so this is the only way for it to be cross platform. WINDOW
is the keyword for the window handle. We need to pass to the function a pointer to storage
for the handle value; into this pointer the value will be written. After we receive the handle,
we convert it into a string using a stringstream because this is what OIS expects. OIS
has the same problem and uses the same solution. During creation, we give OIS a list with
parameter pairs consisting of an identifier string and a value string. In step 6, we created
this parameter list and added the window handle string. Step 7 used this list to create the
input system. With the input system, we can create our keyboard interface in step 8. This
interface will be used to query the system—which keys are pressed by the user? This is done
with the code in step 9. Every time, before we render a frame, we capture the new state of
the keyboard using the capture() function. If we didn't call this function, we won't get the
newest state of the keyboard and therefore we won't receive any keyboard events ever. After
updating the state, we query the keyboard if the escape key is pressed right now. When this
is true, we know the user wants to quit the application. This means we must return false to
let Ogre 3D know that we want the application to be shut down. Otherwise, if the user wants
the application to keep running, we can return true to keep the application running.

Pop quiz – window questions
What is a window handle and how is it used by our application and the operating system?

Adding movement to the model
Now that we have the possibility to get user input, let's use it to control Sinbad's movement
on the plane.

Time for action – controlling Sinbad
We use the previous code and add this code where we need, as we did before. We will
create a WASD control for Sinbad with the following code:

1. Replace the line where we translate the node in the FrameListener with a zero
vector called translate:

Ogre::Vector3 translate(0,0,0);

2. Then add the following keyboard query after the escape query:

if(_key->isKeyDown(OIS::KC_W))
{
 translate += Ogre::Vector3(0,0,-10);
}

Getting User Input and Using the Frame Listener

[78]

3. Now add the code to the other three keys. It is basically the same, only the key code
and the direction of the vector changes:

if(_key->isKeyDown(OIS::KC_S))
{
 translate += Ogre::Vector3(0,0,10);
}
if(_key->isKeyDown(OIS::KC_A))
{
 translate += Ogre::Vector3(-10,0,0);
}
if(_key->isKeyDown(OIS::KC_D))
{
 translate += Ogre::Vector3(10,0,0);
}

4. Now use the translate vector to translate the model, and keep in mind to use
time-based and not frame-based movement:

_node->translate(translate*evt.timeSinceLastFrame);

5. Compile and run the application, and you should be able to control Sinbad with
the WASD keys

Chapter 4

[79]

What just happened?
We added a basic movement control using the WASD keys. We queried all four keys and
built the accumulative movement vector. We then applied this vector to the model using
time-based movement.

Have a go hero – using a speed factor for movement
One downside of this approach is that when we want to change the movement speed of
the model, we have to modify four vectors. A better way would be to use the vectors only
to indicate the movement direction and use a float variable as the speed factor and multiply
the translate vector by it. Change the code to use a movement-speed variable.

Adding a camera
We have our Escape key back and we can move Sinbad. Now it's time to get our camera
working again.

Time for action – making the camera work again
We have already created our camera; now we are going to use it in combination with user
input as follows:

1. Extend the constructor of the Framelistener to get a pointer to our camera:

Example30FrameListener(Ogre::SceneNode* node,RenderWindow*
win,Ogre::Camera* cam)

2. Also add a member variable for storing the camera pointer:

Ogre::Camera* _Cam;

3. Then assign the parameter to the member:

_Cam = cam;

4. Modify the instantiation of the FrameListener to add the camera pointer:

Ogre::FrameListener* FrameListener = new Example30FrameListener(_
SinbadNode,mWindow,mCamera);

5. To move the camera, we need to get mouse input. So create a new member
variable for storing the mouse:

OIS::Mouse* _mouse;

Getting User Input and Using the Frame Listener

[80]

6. In the constructor, init the mouse after the keyboard:

_mouse = static_cast<OIS::Mouse*>(_man->createInputObject(
OIS::OISMouse, false));

7. Now as we have the mouse, we also need to capture the mouse state as we did with
the keyboard. Add this line after the call for capturing the keyboard state:

_mouse->capture();

8. Remove the line to translate the node:

_node->translate(translate*evt.timeSinceLastFrame * _
movementspeed);

9. After processing the keyboard state in the frameStarted() method, add the
following code to process the mouse state:

float rotX = _mouse->getMouseState().X.rel * evt.
timeSinceLastFrame* -1;
float rotY = _mouse->getMouseState().Y.rel * evt.
timeSinceLastFrame * -1;

10 Now apply the rotations and the translation to the camera:

_Cam->yaw(Ogre::Radian(rotX));
_Cam->pitch(Ogre::Radian(rotY));
_Cam->moveRelative(translate*evt.timeSinceLastFrame * _
movementspeed);

11 We created a mouse object, so we need to destroy it in the destructor of the
FrameListener:

_man->destroyInputObject(_mouse);

12 Compile and run the application. You should be able to navigate the scene, just like
we did previously.

Chapter 4

[81]

What just happened?
We used our created camera in combination with user input. To be able to manipulate the
camera, we needed to pass it to our FrameListener. This was done in steps 1 and 2 using
the constructor. To control our camera, we wanted to use the mouse. So first we had to
create a mouse interface to use. This was done in step 6, in the same way we used to create
a keyboard. In step 7, we called the capture() function of our new mouse interface to
update the mouse state.

Mouse state
Querying the keyboard state was done using the isKeyDown() function. To get the mouse
state, we used the getMouseState() function. This function returns a mouse state struct
as an instance of the MouseState class, which contains information about the button state,
whether they are pressed or not, and how the mouse moved since the last capture call. We
want the movement information to calculate how much our camera needs to be rotated.
Mouse movement can happen on two axes, namely, the x-axis and the y-axis. Both axes'
movements are saved separately in the X and Y variable of the mouse state. We then have
the possibility to get the relative or absolute values. Because we are only interested in
mouse movement and not the position of the mouse, we are using the relative values. The
absolute values contain the position of the mouse on the screen. These are needed when
we want to test if the mouse has clicked into a certain area of our application. For camera
rotation, we only need the mouse movement, so we use the relative values. The relative
value only indicates whether the speed and direction of the mouse has moved, but not the
number of pixels.

Getting User Input and Using the Frame Listener

[82]

These values are then multiplied by the time since the last frame and by -1. -1 is used
because we get the movement in a different direction to which we want the camera to
rotate. So we simply invert the movement direction. After calculating the rotation values, we
apply them to the camera with the yaw() and pitch() functions. The last thing to do is to
apply the translation vector we created from the keyboard input to the camera. For this, we
use the moveRelative() function of the camera. This function translates the camera in the
local space without considering the rotation of the camera. This is useful, because we know
that in local space (0,0,-1) moves the camera forward. With rotations applied to the camera,
this isn't necessarily true. Refer to the chapter about the different spaces in 3D space for a
more detailed explanation.

Pop quiz – capturing the input
Why do we call the capture() method for the mouse and keyboard?

Have a go hero – playing with the example
Try removing the -1 from the rotation calculation and see how this changes the
camera controls.

Try removing the capture() function calls and see what impact this has.

Adding wireframe and point render mode
In a previous chapter, that is, Chapter 3, Camera, Light, and Shadow, we used the R key to
change the render mode to wireframe or point rendering. We want to add this feature to our
own framelistener now.

Time for action – adding wireframe and point render mode
We use the code we just created, and as always, simply add the code we need for this
new feature:

1. We need a new member variable in the framelistener to save the current
render mode:

Ogre::PolygonMode _PolyMode;

2. Init the value in the constructor with PM_SOLID:

_PolyMode = Ogre::PolygonMode::PM_SOLID;

Chapter 4

[83]

3. We then add a new if condition in the frameStarted() function, which tests
if the R key is pressed. If this is the case, we can change the render mode. If the
current mode is solid, and we want it to be wireframe:

if(_key->isKeyDown(OIS::KC_R))
{
 if(_PolyMode == PM_SOLID)
 {
 _PolyMode = Ogre::PolygonMode::PM_WIREFRAME;
 }

4. If it is wireframe, and we want it to change to point mode:

else if(_PolyMode == PM_WIREFRAME)
 {
 _PolyMode = Ogre::PolygonMode::PM_POINTS;
 }

5. And from point mode, back again to solid:

else if(_PolyMode == PM_POINTS)
 {
 _PolyMode = Ogre::PolygonMode::PM_SOLID;
 }

6. Now that we have calculated the new render mode, we can apply it and close the
if condition:

_Cam->setPolygonMode(_PolyMode);
}

7. Compile and run the application; you should be able to change the render mode by
pressing R.

Getting User Input and Using the Frame Listener

[84]

What just happened?
We used the function setPolygonMode() to change the render mode from solid to
wireframe to point. We always saved the last value, so when changing again we know which
is the current mode and what the next one will be. We also made sure that we have a circle
for the different modes. We changed from solid to wireframe to point and then back to
solid. One thing we noticed is that the modes change rather quickly when pressing the R
key. This is because at each frame we check if the R key is pressed and as we humans are
slow, chances are high that we press the R key longer than one frame. The result is that our
application thinks we have pressed the R key several times in a short period of time and
toggles the wireframe each frame. This isn't optimal and there is a better way to do it, which
we will see now.

Adding a timer
A solution for the problem of changing the render mode too fast is the use of a timer. Each
time we press the R key, a timer is started, and only after enough time has passed, will we
process another R key press.

Time for action – adding a timer
1. Add the timer as a member variable to the frame listener:

Ogre::Timer _timer;

2. Reset the timer in the constructor:

_timer.reset();

3. Now add a check to see if 0.25 seconds have passed since the last time the R key
was pressed. Only if that is true, will we continue with processing the input:

if(_key->isKeyDown(OIS::KC_R) && _timer.getMilliseconds() > 250)
{

4. If enough time has passed, we need to reset the timer; otherwise, the R key can
only be pressed once:

_timer.reset();

5. Compile and run the application; when pressing the R key now, it should only
change the render mode to the next one.

Chapter 4

[85]

What just happened?
We used another new class from Ogre 3D, namely, Ogre::Timer. This class offers, as the
name suggests, timer functionality. We reset the timer in the constructor of our listener and
every time the user presses the R key, we check if 0.25 seconds have passed since the last
time we called reset(). If this is the case, we enter the if block and the first thing we do
is reset the timer and then change the render mode like before. This makes sure that the
render mode is only changed after 0.25 seconds. When we keep pressing the R key, we see
that our application changes through all render modes with a wait of 0.25 seconds after
each change.

Have a go hero – changing the input mode
Change the render mode by changing code in such a way that the mode doesn't change after
a certain time has passed, but only when the R key is released and pressed again.

Summary
In this chapter, we learned about the FrameListener interface and how to use it. We
also covered how to start OIS, and after this, how to query the state of the keyboard and
mouse interfaces.

Specifically, we covered:

 � How to get notified when a new frame is rendered

 � The important differences between frame- and timed-based movement

 � How to implement our own camera movement using user input

 � How to change the render modes of a camera

Now that we have implemented the basic function for our FrameListener, we are going to
animate models in the next chapter.

www.allitebooks.com

http://www.allitebooks.org

5
Animating models with Ogre 3D

This chapter will focus on animations and how they work in general, and in
Ogre 3D specifically. Without animation, a 3D scene is lifeless. It's one of the
most important factors for making a scene realistic and interesting.

In this chapter, we will:

 � Play an animation

 � Combine two animations at the same time

 � Attach entities to animations

So let's get on with it...

Adding animations
In the previous chapter, we added interactivity using user input. Now we are going to add
another form of interactivity to our scene through animations. Animations are a really
important factor for every scene. Without them, every scene looks still and lifeless, but with
animations, the scene comes alive. So let's add them.

Animating models with Ogre 3D

[88]

Time for action – adding animations
As always, we are going to use the code from the previous chapter, and for once we don't
need to delete anything:

1. For our animation, we need to add new member variables in the FrameListener.
Add a pointer holding the entity we want to animate and a pointer to the used
animation state:

Ogre::Entity* _ent;
Ogre::AnimationState* _aniState;

2.	 Then change the constructor of the FrameListener to get the entity pointer as a
new parameter:

Example34FrameListener(Ogre::SceneNode* node,Ogre::Entity*
ent,RenderWindow* win,Ogre::Camera* cam)

3.	 In the function body of the constructor, assign the given entity pointer to the new
member variable:

_ent = ent;

4.	 After this, retrieve the animation state called Dance from the entity and store it in
the member variable we created for this purpose. Finally, set the animation to be
enabled and loop it:

_aniState = _ent->getAnimationState("Dance");
_aniState->setEnabled(true);
_aniState->setLoop(true);

5.	 Next, we need to tell the animation how much time has passed since it was last
updated. We will do this in the frameStarted() method; through this we know
how much time has passed:

_aniState->addTime(evt.timeSinceLastFrame);

6.	 The last thing we need to do is adjust our ExampleApplication to work with
the new FrameListener. Add a new member variable to the application to hold
a pointer to the entity:

Ogre::Entity* _SinbadEnt;

Chapter 5

[89]

7.	 Instead of assigning the newly created entity to a local pointer, store it using the
member variable. Replace

Ogre::Entity* Sinbad = mSceneMgr->createEntity("Sinbad", "Sinbad.
mesh");

with

_SinbadEnt = mSceneMgr->createEntity("Sinbad", "Sinbad.mesh");

8.	 The same needs to be done when attaching the entity to the node:

_SinbadNode->attachObject(_SinbadEnt);

9.	 And of course, when creating the FrameListener, add the new parameter to the
constructor call:

Ogre::FrameListener* FrameListener = new Example34FrameListener(_
SinbadNode,_SinbadEnt,mWindow,mCamera);

10.	Compile and run the application. You should see Sinbad dancing.

Animating models with Ogre 3D

[90]

What just happened?
With a few lines of code, we made Sinbad dance. In step 1, we added two new member
variables, which will be needed later for animating the model. The first member variable
was simply a pointer to the entity we want to animate. The second was a pointer to
Ogre::AnimationState, which is used by Ogre 3D for representing a single animation and
its associated information. Steps 2 and 3 are straightforward; we changed the constructor
to accommodate the new pointer we needed and in step 3 we stored the pointer in the
member variables we created in step 1. Interesting stuff happened in step 4; there we asked
the entity to return to us the animation named Dance. Each entity stores all the animations
it has and we can query them using a string identifier and getAnimationState(). This
function returns a pointer to this animation represented as an AnimationState or if the
animation doesn't exist, it will return a null pointer. After we got the animation state, we
enabled it. This tells Ogre 3D to play this animation. Also, we set the loop property to true
so the animation will be played again and again until we stop it. Step 5 is the important one;
with this code, we can make the animation come alive. Each time our scene is rendered,
we add a bit of time to the animation and therefore Ogre 3D plays it a bit. To be precise,
the bit corresponds to the time passed since the last frame. This could, of course, be done
by Ogre 3D itself, but this way the function is much more flexible. As an example, we could
add a second model which we want to be animated in slow motion. If Ogre 3D updated the
animation itself, it could be difficult or impossible for us to animate one model with normal
speed and one in slow motion. With the taken approach, we can add a * 0.25 to the time
passed since last frame and the model will be animated in slow motion.

The steps after this are simply small modifications of our application so that it is compatible
with the changed FrameListener constructor. For this, we needed to save the pointer to
the entity we wanted to animate.

Pop quiz – the importance of time
Why do we need to tell Ogre 3D how much time has passed since the animation was last
updated and what are the positive side effects of this architecture?

Chapter 5

[91]

Have a go hero – adding a second model
Add a second model, which stands besides the first one and let it dance in slow motion.
You should see two models at different stages of the same animation, as shown in the
following image.

Playing two animations at the same time
After adding our first animation, we are going to see why and how it is possible to play two
animations at the same time.

Time for action – adding a second animation
Here, we will use the same code that we used for creating the first example:

1. Change the animation from Dance to RunBase.

_aniState = _ent->getAnimationState("RunBase");

Animating models with Ogre 3D

[92]

2. Run and compile the application. You should see Sinbad running, but only with the
lower half of his body.

3. For our second animation, we need a new pointer for the animation state:

Ogre::AnimationState* _aniStateTop;

4. Then, of course, we need to get an animation for this state, enable it, and loop it.
The animation we want to get is called RunTop:

_aniStateTop = _ent->getAnimationState("RunTop");
_aniStateTop->setEnabled(true);
_aniStateTop->setLoop(true);

5. The last thing to do is to add the passed time to this animation, like we did for
the first one:

_aniStateTop->addTime(evt.timeSinceLastFrame);

6. Then again run and compile the application. Now you should see Sinbad running
with his whole body.

Chapter 5

[93]

What just happened?
We played two animations at the same time. Before, if you have asked yourself why
we needed to get the AnimationState to play an animation instead of calling a
function like playAnimation(AnimationName), you now have the answer. Ogre
3D supports playing more than one animation at the same time, and with a simple
playAnimation(AnimationName), this wouldn't be possible. With animation states, we
can play as many animations as we want. We can even play one animation with a different
speed than the other, using a modifier variable and the addTime() function.

Have a go hero – adding a factor to the animation speed
Add a factor to the top animation and try different values like 0.5 or 4.0 and see how this
affects the animation.

Let's walk a bit
We now have a walking animation, but our model doesn't change its position. We will now
add basic movement controls to our model and mix them with animations using all the
things we have learned.

Animating models with Ogre 3D

[94]

Time for action – combining user control and animation
And, as always, we will use the previous code as a starting point:

1. Firstly, we need two new variables in the FrameListener for controlling the
movement speed and saving our rotation:

float _WalkingSpeed;
float _rotation;

2. In the constructor, we init the new values; we want to move at 50 units per second
and start with no rotation:

_WalkingSpeed = 50.0f;
_rotation = 0.0f;

3. Then we need to change our animation states to prevent them from looping. This
time, we are going to control when a new animation has to start and not Ogre 3D:

_aniState = _ent->getAnimationState("RunBase");
_aniState->setLoop(false);

_aniStateTop = _ent->getAnimationState("RunTop");
_aniStateTop->setLoop(false);

4. In the frameStarted() method, we need two new local variables, one to indicate
if we have moved our model for this frame and a second one to store the direction
in which we have moved our model.

bool walked = false;
Ogre::Vector3 SinbadTranslate(0,0,0);

5. Also in the frameStarted() method, we add some new code to control the
movement of our model. We will use the arrow keys for movement. When a key is
pressed, we need to change the translation variable to save the direction in which
we want to move the model and we need to set the rotation variable to rotate the
model in such a way that it looks in the direction it moves:

if(_key->isKeyDown(OIS::KC_UP))
{
 SinbadTranslate += Ogre::Vector3(0,0,-1);
 _rotation = 3.14f;
 walked = true;
}

Chapter 5

[95]

6. We need the same for the other three arrow keys:

if(_key->isKeyDown(OIS::KC_DOWN))
{
 SinbadTranslate += Ogre::Vector3(0,0,1);
 _rotation = 0.0f;
 walked = true;
}
if(_key->isKeyDown(OIS::KC_LEFT))
{
 SinbadTranslate += Ogre::Vector3(-1,0,0);
 _rotation = -1.57f;
 walked = true;
}
if(_key->isKeyDown(OIS::KC_RIGHT))
{
 SinbadTranslate += Ogre::Vector3(1,0,0);
 _rotation = 1.57f;
 walked = true;
}

7. Then, after the key handling, we need to check if we walked this frame. If this is
the case, we need to check if the animation has ended. When this is true, we
restart the animation:

if(walked)
{
 _aniState->setEnabled(true);
 _aniStateTop->setEnabled(true);
 if(_aniState->hasEnded())
 {
 _aniState->setTimePosition(0.0f);
 }
 if(_aniStateTop->hasEnded())
 {
 _aniStateTop->setTimePosition(0.0f);
 }
}

Animating models with Ogre 3D

[96]

8. If we didn't walk this frame, we need to set both animation states to zero.
Otherwise, our model would be frozen in an animation half way done and this
doesn't look exactly good. So if we don't walk this frame, we set the two animations
back to the starting position. Also, we disable both animations since we aren't
moving the model of this frame and because we don't need animations:

else
{
 _aniState->setTimePosition(0.0f);
 _aniState->setEnabled(false);
 _aniStateTop->setTimePosition(0.0f);
 _aniStateTop->setEnabled(false);
}

9. The last thing we need to do is to apply translation and rotation to our model's
scene node:

_node->translate(SinbadTranslate * evt.timeSinceLastFrame * _
WalkingSpeed);
_node->resetOrientation();
_node->yaw(Ogre::Radian(_rotation));

10. Now we compile and run the application. With the mouse and WASD, we can move
the camera. With the arrow keys, we can move Sinbad and the right animation gets
played each time we move him.

Chapter 5

[97]

What just happened?
We created our first application with user input and animations combined. This could be
called the first real interactive application we created up until now. In steps 1 and 2, we
created and inited some variables we needed later. In step 3, we changed how we handle
our animations; previously, we always enabled an animation directly and let it loop. Now we
don't want to enable it directly because we want the animation only to be played when our
model moves, everything else just looks stupid. For the same reason, we disabled looping
of animations. We only want to react to user input so that there is no need for animation
looping. If needed, we will start the animation ourselves.

Most of the changes we did were inside the frameStarted() method. In step 4, we
created a couple of local variables we needed later, namely, a Boolean value that was used
as an indicator if the model moves this frame and the other was a vector representing the
movement direction. Steps 5 and 6 queried the key state of the arrow keys. When a key
is down, we change the direction vector and the rotation accordingly and set the flag for
movement to true. We used this flag in step 7, if the flag is true, meaning our model
moves this frame, we enabled the animation and checked if the animations had reached
their end. If the animations have reached their end, we reset them to their starting position
so that they can be played again. Because we don't want animations to be played when the
model isn't moving, we set them to their starting position and disable them in step 8. In
step 9, we applied the translation. Then we reset the orientation, and after this, applied the
new rotation. This is necessary because yaw adds the rotation to the already done rotations,
which in our case would be wrong because we have absolute rotation, and we need
absolute and not relative rotations. Therefore, we reset the orientation first and then
apply our rotation to the now zeroed rotation.

Adding swords
We now have a walking, animated model, which can be controlled by user input. Now we are
going to see how we can add an object to our animated model.

Time for action – adding swords
As always, we are using the code from our previous excercises:

1. At the end of the createScene() function, create two instances of the sword
model and name them Sword1 and Sword2:

Ogre::Entity* sword1 = mSceneMgr->createEntity("Sword1", "Sword.
mesh");
Ogre::Entity* sword2 = mSceneMgr->createEntity("Sword2", "Sword.
mesh");

Animating models with Ogre 3D

[98]

2. Now attach the sword to the model using a bone name:

_SinbadEnt->attachObjectToBone("Handle.L", sword1);
_SinbadEnt->attachObjectToBone("Handle.R", sword2);

3. Compile and run the application. There should be two swords in the hands
of Sinbad.

What just happened?
We created two instances of the sword model and attached them to bones. The creation of
the instances shouldn't be too difficult to understand. The difficult and interesting part is the
function called attachObjectToBone(). To understand what this function does, we need
to discuss how animations are saved and played.

Chapter 5

[99]

Animations
For animations, we are using so-called skeletons and bones. The system is inspired by nature;
in nature, almost everything has a skeleton to support it. With the help of this skeleton and
some muscles, animals and humans can move parts of their body in certain directions. As
an example, we can make a fist with our fingers using the joints in our fingers. Animations
in computer graphics work in a similar manner. The artist defines the 3D model and for this
model a skeleton is created so it can be animated. The skeleton consists of bones and joints.
The joints connect two bones and define in which direction the bones can move. Here is a
really simplified drawing of such a skeleton; normally, they have a lot more bones.

The bones are assigned which triangle they affect when moved. Each bone only affects a
part of the model: the bone for the left arm only modifies the triangles of the model which
represent the left arm; all other triangles aren't modified.

Animating models with Ogre 3D

[100]

With joints, bones, and the effect radius of the bones, an artist can create complex
animations like the animations for the Sinbad model we are using. Like animations, the
bones have names too. Ogre 3D lets us use these bones as a point to attach other entities
to. This has the huge advantage that, when attached, the entity gets transformed just like
the bone, meaning if we had an attachment point in the hands of Sinbad and attached the
swords, they would always be in his hands because when the hands get transformed for an
animation, the swords get the same transformation. If this function didn't exist, it would be
almost impossible to give models something in their hands or attach things to their backs,
like we just did with the swords.

Printing all the animations a model has
We already know that the artist defines the animation names, but sometimes it's
important to get the animation names directly from Ogre 3D. This may be needed when
you don't have the artist of the model to ask or when you want to check that the export
process was successful.

Now we will see how to print all animations of a model into the console.

Time for action – printing all animations
We will use the previous code as base to print all animations that our entity has.

1. At the end of the createScene() function, get all the animations that the
model has as a set:

Ogre::AnimationStateSet* set = _SinbadEnt-
>getAllAnimationStates();

2. Then define an iterator and init it with the iterator of the set:

Ogre::AnimationStateIterator iter = set-
>getAnimationStateIterator();

Chapter 5

[101]

3. And, finally, iterate over all animations and print their names:

while(iter.hasMoreElements())
{
 std::cout << iter.getNext()->getAnimationName() <<
std::endl;
}

4. Compile and run the application. After starting the application and loading the
scene, you should see the following text in the console of the application:

Dance

DrawSwords

HandsClosed

HandsRelaxed

IdleBase

IdleTop

JumpEnd

JumpLoop

JumpStart

RunBase

RunTop

SliceHorizontal

SliceVertical

What just happened?
We asked the entity to give us a set containing all of the animation it has. We then
iterated over this set and printed the name of the animation. We see that there are a
lot of animations we didn't use and also some we have already used.

Animating models with Ogre 3D

[102]

Summary
We learned a lot in this chapter about animation and how to use it to make a 3D scene
more interesting.

Specifically, we covered the following:

 � How to get an animation from an entity and play it

 � How we can enable/disable and loop animations and why we need to tell the
animation how much time has passed since the last update

 � How we can play two animations at the same time

 � How animations are played using a skeleton and that it is possible to attach an
entity to a single bone

 � How to query an entity for all the animation it contains.

In the next chapter, we are going to see another new aspect of Ogre 3D, mainly that it is
possible to use different scene managers and the reason for this.

6
Scene Managers

Ogre 3D offers a lot of functionalities. In this chapter, we are going to touch
on some techniques we haven't used before, but ones that are extremely
useful for creating complex 3D scenes such as SceneManagers, creating
our own models, speeding up our application, and efficiently rendering large
chunks of 3D data.

In this chapter, we will:

 � Learn how to change the current scene manager

 � Learn what an Octree is

 � Learn how to create our own entities in code

 � Learn how to speed up our application using static geometry

So let's get on with it...

Starting with a blank sheet
This time we are going to use a new blank application and build up from there.

Scene Managers

[104]

Time for action – creating a blank sheet
1. First we need to include ExampleApplication:

#include "Ogre\ExampleApplication.h"

2. Create a new application class that inherits from ExampleApplication and has an
empty createScene() function:

class Example41 : public ExampleApplication
{
public:

 void createScene()
 {

 }

};

3. Lastly, we need a main function that creates an instance of the application class and
runs it:

int main (void)
{
 Example41 app;
 app.go();
 return 0;
}

4. Compile this project with the same include and libraries directories as we did
previously, and link the same libraries. You should get a black window which can
be closed by pressing Escape.

What just happened?
We created a new application which inherits from ExampleApplication and does nothing.
It has an empty createScene() function because this is a pure virtual function in the base
class and if we don't override it we can't instantiate our class. The more interesting part of
the application will be added now.

Chapter 6

[105]

Getting the scene manager's type
In this following section, we will add a line of code which prints the name and the type of the
scene manager we are using.

Time for action – printing the scene manager's type
We are using the previous code as always for the following:

 � Printing the type and name of the scene manager using the createScene()
function:

std::cout << mSceneMgr->getTypeName() << "::" << mSceneMgr-
>getName() << std::endl;

 � Compiling and running the application. When the application has started to look
into the console, there should be the following line:

OctreeSceneManager::ExampleSMInstance

What just happened?
We added a line which prints the type and name of the SceneManager. In this case,
the scene manager's name is ExampleSMInstance, which is a straightforward name
for a scene manger used in the example application. SM stands for Scene Manager,
if you haven't guessed it. The more interesting part is the type, which in this case is
OctreeSceneManager. Before we go into detail on what an OctreeSceneManager is,
let's discuss what a scene manager in general does for Ogre 3D.

What does a scene manger do?
A scene manager does a lot of things, which will be obvious when we take a look at the
documentation. There are lots of functions which start with create, destroy, get, set, and
has. We already used some of these functions, like createEntity(), createLight(), or
getRootSceneNode(). One important task the scene manager fulfills is the management
of objects. This can be scene nodes, entities, lights, or a lot of other object types that Ogre
3D has. The scene manager acts as a factory for these objects and also destroys them. Ogre
3D works with the principle—he who creates an object, also destroys it. Every time we want
an entity or scene node deleted, we must use the scene manager; otherwise, Ogre 3D might
try to free the same memory later, which might result in an ugly application crash.

Scene Managers

[106]

Besides object management, it manages a scene, like its name suggests. This can include
optimizing the scene and calculating positions of each object in the scene for rendering. It
also implements efficient culling algorithms. Each time we move a scene node, it gets flagged
as moved. When the scene is rendered, only the position of nodes that have been moved
and all their children are calculated. For the rest, we use the positions from the last frame.
This saves a lot of computation time and is an important task of the scene manager.

For culling purposes, we need a quick way to discard all nodes that aren't visible from the
camera we are using for rendering. This means we need an easy way to traverse the scene
graph and test the nodes visibility. There are different algorithms for this and Ogre 3D comes
with a different scene manager that implements different algorithms, each specialized for
different scene types.

The scene manager we used all the time was the OctreeSceneManager. This scene
manager uses an Octree for storing the scene, thus the name. So what exactly is an Octree?

Octree
As the name suggests, an Octree is a kind of tree. Just like every tree, it has a root and each
node has a parent. What makes it special is that each node has a maximum of eight children,
hence the name Octree. The following is a diagram showing an Octree:

Chapter 6

[107]

Source: http://commons.wikimedia.org/wiki/File:Octree2.svg

So why does Ogre 3D use an Octree for storing 3D scenes? An Octree has some properties
that are extremely useful for storing 3D scenes. One of them is the fact that it can have up to
eight children. For example, if we have a 3D scene with two objects in it, we can enclose this
scene with a cube.

If we divide this cube at half of its width, height, and depth, we get eight new cubes, each
enclosing an eighth of the scene. These eight cubes can be thought of as the eight children
of the original cube.

Now the two objects of the scene are in the right upper-front cube. The seven other
cubes are empty and are therefore leaves. We will divide the cube that contains the
two objects again.

Scene Managers

[108]

Now each cube has either one or no object enclosed and is a leaf. This property of an
Octree makes culling easy and fast. While rendering a scene, we have a camera with its view
frustum inside the scene. To determine which objects have to be rendered, we start with the
root node of the Octree. If the view frustum intersects the cube, we continue. This should
always be the case, because the Octree on level 0 encloses the complete scene with the
camera. We then continue with level one of the Octree, meaning the root node's children.
We test the view frustum against each child, and if they intersect, we continue with the
children of this cube. Also, if the cube is completely inside the frustum, we don't need to go
any deeper because we know all children of the cube are in the frustum as well. We do this
till we have reached a leaf, and then continue with the next child till we only have leaves left.

With this algorithm, we discard most of a scene with each step, and after only a few steps,
we will have either empty leaves or a leaf with an object. We then know which objects are
visible and can render them. The beauty of this algorithm is that we can discard a lot of the
scene in the first few steps. If, in our example, our complete view frustum would be in the
same level 1 cube as the two objects, we could discard seven-eighths of the scene with the
first step.

This approach is similar to a binary search tree. The only difference is that it uses eight
children instead of two.

Another scene manager type
We have seen one scene manager; now let's look at another one.

Time for action – using another scene manager
Once again, we'll use the code from the previous example:

1. Remove all code inside the createScene() function.

2. Add a new function to the application class called chooseSceneManager():

virtual void chooseSceneManager(void)
{
}

3. Now add code into the new function to load an archive containing the map we want
to be rendered:

ResourceGroupManager::getSingleton().addResourceLocation("../../
media/packs/chiropteraDM.pk3", "Zip", ResourceGroupManager::getSin
gleton().getWorldResourceGroupName(), true);

Chapter 6

[109]

4. After adding the map, we need to load it completely:

ResourceGroupManager::getSingleton().initialiseResourceGroup(Resou
rceGroupManager::getSingleton().getWorldResourceGroupName());

5. Then we need to use createSceneManager():

mSceneMgr = mRoot->createSceneManager("BspSceneManager");

6. Now tell the scene manager we want to display the previously loaded map:

mSceneMgr->setWorldGeometry("maps/chiropteradm.bsp");

7. Compile and run the application. You should see a map from a famous game and
be able to navigate through the map. But because the game used a different axis
from the up vector, the level will be rotated differently and the navigation can be
a bit weird.

What just happened?
We used the chooseSceneManager() function to create a scene manager that is different
from the default one. In this case, we created a BspSceneManager. BSP stands for binary
space partition and is a technique for storing level information used by a lot of old ego
shooter games. BSP splits the level into convex parts and stores them as a tree. This makes
rendering and other tasks faster on old graphic cards. Nowadays, this isn't necessarily true
and BSP isn't used as often as it was some years ago.

ResourceManager
The first line used a new manager we haven't used before called ResourceGroupManager.
This manager has the responsibility for all assets we load during the lifetime of our
application. During startup, the manager gets a list with directories and ZIP archives we
want to load. This list can be read from a file, like resources.cfg, or it can be written into
the application code. After this, we can create an entity using only the filename to create
it. We don't need the full path of the file because the manager has already indexed it; only
when we create an instance of the index file will it really get loaded. Indexing saves us the
trouble of checking that we don't load the same model twice. When we use a model twice,
the manager loads each model exactly once, and when we need two instances of the same
model, the manager uses the already loaded model and doesn't load it again.

The addResourceLocation() function takes a path to a folder or ZIP archive, the second
parameter defines which type it is, normally it can either be a zip archive or a folder. We can,
if needed also, add our own resource types, and with them, a loader. This is useful when we
want to load our own packet format for our assets.

Scene Managers

[110]

The third parameter is the name of the resource group we want the loaded files to be added
to. Resource groups are like namespaces in C++; because we are loading a map, which is
part of the game world, we use the predefined resource group name which is returned by
WorldResourceGroup. The last parameter tells Ogre 3D if we want the path to be loaded
with recursion or not. If set to false, only the files in the directory will be loaded; files in
the subfolder won't be loaded. If set to true, Ogre 3D also loads all files in all subfolders.
The default is false.

With the function call initialiseResourceGroup(), we tell Ogre 3D to index all files in
the ResourceGroup which aren't already indexed. Of course, we have to give the name of
the resource group we want to index. After this call, we can use all files that are associated
to this ResourceGroup.

setWorldGeometry
setWorldGeometry() is a special function call telling the BspSceneManager to load a
map saved in the bsp file format. As a map, we use a BSP file that was stored inside the
.pk3 file—that's the reason why we needed to load this archive in the first place.

Creating our own model
We have seen how to use different scene managers and how to load levels using a scene
manager. Now we are going to see how to create a mesh in code without the help of the
plane class. This time, we will do everything ourselves. We are going to create a model for
rendering grass onto our plane.

Time for action – creating a model for displaying
blades of grass

This time, we want to use the OctreeSceneManager, so we don't need the
chooseSceneManager() function:

1. We need an empty application:

class Example43 : public ExampleApplication
{
private:

public:

 void createScene()
 {

 }
};

Chapter 6

[111]

2. The first thing we need in the createScene() function is a plane definition. We
will use the plane as our ground for blades of grass:

Ogre::Plane plane(Vector3::UNIT_Y, -10);
Ogre::MeshManager::getSingleton().createPlane("plane",
ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
1500,1500,200,200,true,1,5,5,Vector3::UNIT_Z);

3. Then instantiate the newly created plane and set a material. We will use the
GrassFloor material from the examples:

Ogre::Entity* ent = mSceneMgr->createEntity("GrassPlane",
"plane");
mSceneMgr->getRootSceneNode()->createChildSceneNode()-
>attachObject(ent);
ent->setMaterialName("Examples/GrassFloor");

4. Then also add a directional light to the scene; otherwise, it would be too dark to
see something interesting:

Ogre::Light* light = mSceneMgr->createLight("Light1");
light->setType(Ogre::Light::LT_DIRECTIONAL);
light->setDirection(Ogre::Vector3(1,-1,0));

5. Now create a new ManualObject and call the begin method:

Ogre::ManualObject* manual = mSceneMgr-
>createManualObject("grass");
manual->begin("Examples/GrassBlades", RenderOperation::OT_
TRIANGLE_LIST);

6. Add the first polygon with the position and texture coordinates for each vertex:

manual->position(5.0, 0.0, 0.0);
manual->textureCoord(1,1);
manual->position(-5.0, 10.0, 0.0);
manual->textureCoord(0,0);
manual->position(-5.0, 0.0, 0.0);
manual->textureCoord(0,1);

7. We also need a second triangle to make the quad complete:

manual->position(5.0, 0.0, 0.0);
manual->textureCoord(1,1);
manual->position(5.0, 10.0, 0.0);
manual->textureCoord(1,0);
manual->position(-5.0, 10.0, 0.0);
manual->textureCoord(0,0);

Scene Managers

[112]

8. We have finished defining the quad; let's tell the manual object:

manual->end();

9. Lastly, create a new scene node and attach the manual object to it:

Ogre::SceneNode* grassNode = mSceneMgr->getRootSceneNode()->create
ChildSceneNode("GrassNode2");
grassNode->attachObject(manual);

10. Compile the application and run it. The plane should have a grass texture, and there
should be some blades of grass hovering slightly above the plane.

What just happened?
We painted our plane in a different color, this time a grass green; also, we created a quad
and put an image of some blades of grass on it. Steps 1 to 4 should be easy to understand,
as we have already covered this topic. The only difference is that we used a different material
that is more appropriate for the application than the stones we had before. We will cover
materials extensively in the next chapter.

In step 5, something new happened. We created a ManualObject.

Chapter 6

[113]

Manual object
A manual object is like a new code file. In the beginning it is empty, but a lot of different
things can be created using it. Using a manual object, we can create 3D models. To create
one, we need to give single vertices to describe triangles. We have already discussed that all
objects we use in a 3D application consist of triangles. But for a quad, we need two triangles,
which we will see soon.

Step 5 created a new empty manual object and named it simply as grass. We then called
the begin method, which prepared the manual object to receive its vertex information;
a vertex is a single point in 3D space. The begin method needs a material name that the
vertex will be using, the way we are going to input the vertex information, and what we want
to create. There are six different ways for how and what we can put into a manual object.
There are three different kinds of things we can create with a manual object, namely, points,
lines, and triangles.

Points are simply stored as a list. Each time we add a new position, we create a new point. This
mode is called OT_POINT_LIST. For lines, there are two different ways to create them. The
straightforward way is to use the first and second position as the first line, the third and fourth
position for the second line, and so on. This is called OT_LINE_LIST. Another way is to use the
first two points as the first line and then each new point defines the end point of a new list and
uses the last point as the beginning point for the line; this is an OT_LINE_STRIP.

Scene Managers

[114]

As they are triangles, they can be defined in three ways. The first and simplest way is a
triangle list: the first three points are triangle one, the next three are triangle two, and so
on. This is known as an OT_TRIANGLE_LIST. Then we can use the first three points as the
first triangle and each new point defines the next triangle using the last two points of the
previous triangle. This is called OT_TRIANGLE_STRIP. The last option is to use the first three
points for the first triangle and then always the first point and the last-used point with a new
point for the next triangle.

We see that, depending on the input mode, it takes more vertices to describe 3D figures.
With a triangle list, we need three points for each triangle. With a strip or fan, we need three
for the first and then only one new point for each triangle.

During the begin function call, we defined that we are going to use a triangle list to describe
our quad. We want our quad to be 10 units long and 10 units high. Here is an image of the
quad; it has four points and each point has its position labeled beside it.

The first triangle needs points 1, 2, and 3. The second triangle needs the points 1, 2, and 4.
Step 6 defined the first triangle points with the position() function call and step 7 used
the position() function call to define triangle two. You probably noticed that after each
position() function call, there was a textureCoord() function call.

Chapter 6

[115]

Texture mapping
For Ogre 3D to be able to put an image of blades of grass onto our quad, each vertex needs
texture coordinates besides its position. These consist of two tuples (u,v). (u,v) describes
the location in the image, where u is the x-axis and v is the y-axis. (0,0) means the upper-left
corner of the image and (1,1) the bottom-right corner.

If we use values greater than 1, several effects can happen, depending on the settings in the
material. If we use the wrap mode, the texture is repeated. With clamp mode, each value
created greater than 1.0 is reduced to 1.0. The same is true for values less than zero—they
will be set to zero. In mirror mode, one becomes zero and two becomes one. This mirrors
the texture. If the values are greater than two, the original image is used again, after this
the flipped, then the original, and so on. The last mode uses the defined border color and
everything outside the [0,1] value range is rendered with the border color.

With texture coordinates applied, we have the following information for our quad:

Take a look at steps 6 and 7. Compare the lines of code with the preceding picture. The
position and texture coordinates should match.

Step 8 finished our manual object and step 9 created a scene node and attached our object
to it so that it gets rendered.

Scene Managers

[116]

Have a go hero – playing with the manual object
Try the different ways of describing an object using a manual object. Also try lines and
points. To make this process easier, use the material BaseWhiteNoLighting instead of the
grass material. With this material, you don't need texture coordinates, as you can just use
the position() function and experiment. Everything you create will be rendered as white.

Adding volume to the blades of grass
We have managed to render some blades of grass, but when moving the camera, it quickly
becomes clear that the blades are only a 2D image and don't have any volume themselves.
This problem can't be easily solved without rendering each blade of grass with our own 3D
model, which would improve the visual effect a lot but also is almost impossible because a big
grassland would slow the rendering process so much that every interactivity is lost. But there
are several techniques to make this problem less problematic. We can see one of them now.

Time for action – using more triangles for volume
We will use the previous code and we will only add two new quads to our grass blades:

1. After the first two triangles, add the third and fourth triangle for the
second quad:

//third triangle
manual->position(2.5, 0.0, 4.3);
manual->textureCoord(1,1);
manual->position(-2.5, 10.0, -4.3);
manual->textureCoord(0,0);
manual->position(-2.0, 0.0, -4.3);
manual->textureCoord(0,1);

//fourth triangle
manual->position(2.5, 0.0, 4.3);
manual->textureCoord(1,1);
manual->position(2.5, 10.0, 4.3);
manual->textureCoord(1,0);
manual->position(-2.5, 10.0, -4.3);
manual->textureCoord(0,0);

Chapter 6

[117]

2. Add the fifth and sixth triangle for the third quad:

//fifth triangle
manual->position(2.5, 0.0, -4.3);
manual->textureCoord(1,1);
manual->position(-2.5, 10.0, 4.3);
manual->textureCoord(0,0);
manual->position(-2.0, 0.0, 4.3);
manual->textureCoord(0,1);

//sixth triangle
manual->position(2.5, 0.0, -4.3);
manual->textureCoord(1,1);
manual->position(2.5, 10.0, -4.3);
manual->textureCoord(1,0);
manual->position(-2.5, 10.0, 4.3);
manual->textureCoord(0,0)

3. Compile and run the application, and then navigate around the blades of grass. With
the previous examples, it was possible to see the blades of grass only as a small line;
this is no longer the case.

Scene Managers

[118]

What just happened?
We fixed the problem where we could see that the blades of grass were only an image
projected onto a quad. To fix this problem, we simply created two new quads, rotated
them, and then stuck them into each other. It looks like the following diagram:

Each quad has the same length, so like the preceding picture, we can think of it as a circle
divided into six parts. Between two quads, there is an angle of 60 degrees. Three quads
intersecting each other at the center means we have six angles of 60 degrees, making a
total of 360 degree. This diagram also answers the only interesting question the previous
code could provoke. How did we calculate the new positions of the points for the other
two quads? It's simple trigonometry. To calculate the y value, we use sines and for the x
value, cosines. This technique that we used creates a plane and renders a texture onto it
to simulate a more detailed model, this is a wildly used technique in video games called
billboarding.

Creating a field of grass
Now that we have one blade of grass, let's build a complete field of grass.

Chapter 6

[119]

Time for action – building a field of grass
1. We need several instances of our blades of grass, so convert the manual object into

a mesh:

manual->convertToMesh("BladesOfGrass");

2. We want a field of grass which consists of 50 x 50 instances of our grass. So we need
two for loops:

for(int i=0;i<50;i++)
{
 for(int j=0;j<50;j++)
 {

3. Inside the for loops, create a nameless entity and a nameless scene node:

Ogre::Entity * ent = mSceneMgr->createEntity("BladesOfGrass");
Ogre::SceneNode* node = mSceneMgr->getRootSceneNode()->createChild
SceneNode(Ogre::Vector3(i*3,-10,j*3));
node->attachObject(ent);

4. Don't forget to close the for loops:

 }
}

5. Compile and run the application, and you should see a field of grass. Depending on
your computer, this application might be pretty slow.

Scene Managers

[120]

What just happened?
In step 1, we used a new function from a manual object which converts the manual object
into a mesh we can instantiate using the createEntity() function of the scene manager.
To be able to use the new entity, we need a name that will be used later as a parameter
for the createEntity() function. We used BladesOfGrass as a descriptive name. We
want several instances of our grass, so we created two for loops in step 2, each running 50
times. Step 3 added the body of the for loop. In the body we first created a new entity using
the mesh name we just created. An observant reader might notice that we didn't use the
createEntity()function with two parameters—one for the entity type and one for the
name we want this entity to have. This time, we only gave the entity type as a parameter,
not a name. But didn't we have to always give a name to an entity because each entity needs
a unique name? This is still true; the function we called is just a helper function, which only
needs an entity type name because it generates a unique name and then calls the function
we always called. It just saves us the trouble of appending the for loop variables to a
generic name like BladesOfGrassEntity. We used the same kind of function for scene
node creation.

Exploring the name scheme
Now let's take a quick look at the names Ogre 3D generates for us.

Time for action – printing the names
We only have to add one new line to get the names:

1. At the end of the for loop body, add the following print statement:

std::cout << node->getName() << "::" << ent->getName() <<
std::endl;

2. Compile and run the application; there should be a long list of printed names. To be
precise, there should be 2500 lines, because the for loop iterates 50 times 50 over
our code. Here are the last lines:

Unnamed_2488::Ogre/MO2487

Unnamed_2489::Ogre/MO2488

Unnamed_2490::Ogre/MO2489

Unnamed_2491::Ogre/MO2490

Unnamed_2492::Ogre/MO2491

Unnamed_2493::Ogre/MO2492

Unnamed_2494::Ogre/MO2493

Chapter 6

[121]

Unnamed_2495::Ogre/MO2494

Unnamed_2496::Ogre/MO2495

Unnamed_2497::Ogre/MO2496

Unnamed_2498::Ogre/MO2497

Unnamed_2499::Ogre/MO2498

Unnamed_2500::Ogre/MO2499

What just happened?
We just printed the names of the scene node and the entity we created to understand the
automatic naming scheme Ogre 3D uses when we don't give a name as a parameter. We
see that scene node names use the following scheme: Unnamed_Nr, where Nr is a counter
that get increased each time we create a new unnamed scene node. Entities use a similar
scheme, but they use MO instead of Unnamed_; MO is the short form for movable object.
A movable object is a class used as the base class for many different classes in Ogre 3D.
Everything that can be moved using scene nodes inherits from a movable object. There are
entities and lights, but there are a lot more classes that inherit from a movable object. Here
is a picture from the Ogre 3D documentation that shows all the classes which inherit from
MovableObject.

Source: http://www.ogre3d.org/docs/api/html/classOgre_1_1MovableObject.
html

Scene Managers

[122]

We see that even the camera is a movable object; this is necessary because otherwise we
wouldn't be able to attach it to a scene node. Only a child class of MovableObject can be
attached to a scene node. The difference in the numbers attached to the scene nodes names
and the movable object names is due to the creation of an unnamed scene node we had
done while adding our plane to the scene with the following code:

mSceneMgr->getRootSceneNode()->createChildSceneNode()-
>attachObject(ent);

Static geometry
We created a field of grass, but the application might be rather slow depending on
your computer. We will now make the application faster using an Ogre 3D class called
StaticGeometry.

Time for action – using static geometry
We are going to modify the code from the last example to make it render faster:

1. Remove the print statement; we don't need it anymore.

2. Now get back to the manual object and remove all position() function calls that
would add a point we already have added. For each quad, this should be points 4
and 6. Here is the code after removing duplicate entries:

manual->position(5.0, 0.0, 0.0);
manual->textureCoord(1,1);
manual->position(-5.0, 10.0, 0.0);
manual->textureCoord(0,0);
manual->position(-5.0, 0.0, 0.0);
manual->textureCoord(0,1);
manual->position(5.0, 10.0, 0.0);
manual->textureCoord(1,0);

manual->position(2.5, 0.0, 4.3);
manual->textureCoord(1,1);
manual->position(-2.5, 10.0, -4.3);
manual->textureCoord(0,0);
manual->position(-2.0, 0.0, -4.3);
manual->textureCoord(0,1);
manual->position(2.5, 10.0, 4.3);
manual->textureCoord(1,0);

manual->position(2.5, 0.0, -4.3);
manual->textureCoord(1,1);
manual->position(-2.5, 10.0, 4.3);

Chapter 6

[123]

manual->textureCoord(0,0);
manual->position(-2.0, 0.0, 4.3);
manual->textureCoord(0,1);
manual->position(2.5, 10.0, -4.3);
manual->textureCoord(1,0);

3. Now we describe the triangles we want to create using so-called indices. The first
quad consists of two triangles; the first triangle uses the first three points and the
second triangle uses the first, second, and fourth points. Keep in mind that, like
everything else with computers, the points are counted starting with zero:

manual->index(0);
manual->index(1);
manual->index(2);

manual->index(0);
manual->index(3);
manual->index(1);

4. Add the other two quads the same way:

manual->index(4);
manual->index(5);
manual->index(6);

manual->index(4);
manual->index(7);
manual->index(5);

manual->index(8);
manual->index(9);
manual->index(10);

manual->index(8);
manual->index(11);
manual->index(9);

5. Now let the SceneManager create a new StaticGeometry instance:

Ogre::StaticGeometry* field = mSceneMgr->createStaticGeometry("Fie
ldOfGrass");

Scene Managers

[124]

6. Now in the for loop, create the grass entity. However, this time add it to the static
geometry instance instead of the scene node:

for(int i=0;i<50;i++)
{
 for(int j=0;j<50;j++)
 {
 Ogre::Entity * ent = mSceneMgr-
>createEntity("BladesOfGrass");
 field->addEntity(ent,Ogre::Vector3(i*3,-10,j*3));

 }
}

7. To finish the static geometry, call the build function:

field->build();

8. Compile and run the application, and you should see the same field of grass, but this
time, the application should be a lot faster:

What just happened?
We created the same scene we had before, but this time it runs faster. Why? The sole reason
why it runs faster is static geometry. So how does static geometry differ from the "normal"
approach we used before?

Chapter 6

[125]

Rendering pipeline
Each time we are rendering a scene, Ogre 3D and the graphic card has to perform some
steps. We have already covered some of them, but not all. One step we covered is culling;
now let's discuss some steps we haven't met until now.

We know that there are different spaces an object can be in, like local space or world space.
We also know that to render an object, we need to transform them from local space into
world space. The transformation from local space to world space is a combination of simple
mathematical operations, but they take up some computational time. When rendering our
2,500 grass entities, Ogre 3D has to calculate the world position of every grass entity for each
frame. That's a lot of operations per frame, but what's even worse is that each grass entity is
sent separately to the GPU for rendering. This takes a lot of time and is the reason why the
application is so slow.

We can solve this problem with static geometry; we created an instance of the static
geometry class using the scene manager in step 5. However, inside the for loop, we added
the created entities, not to a scene node like we are used to doing it. Here, we added it
directly to the static geometry and gave as a second parameter the position we want the
entity to be.

After we finished adding entities to the static geometry instance, we had to call the build()
function. This function takes all entities we have added and calculates the world position. It
does even more. We can only add models that used the indices list because static geometry
tries to combine models using the same material or vertex list to optimize itself even more.
The price we pay is that we can't move an entity that has been added to static geometry. In
the case of our grass field, this isn't a huge trade-off; grass doesn't usually move. Normally,
static geometry is used for everything that isn't moving in a scene because it gives a huge
speedup with practically no disadvantages. One disadvantage is that when we have a large
part of the scene in a static geometry instance, culling is less effective because when one
part of the static geometry is inside the view frustum, all of it must be rendered.

Scene Managers

[126]

Indices
We discovered that we can only add entities that use indices to our static geometry instance.
But we haven't discussed what indices are in the first place. To understand this, let's get back
to our quad.

This quad has four points, which define the two triangles the quad is made of. When we look
at the code we used to create this quad, we notice that we added six points instead of four
and two points are added twice.

//First triangle
manual->position(5.0, 0.0, 0.0);
manual->textureCoord(1,1);
manual->position(-5.0, 10.0, 0.0);
manual->textureCoord(0,0);
manual->position(-5.0, 0.0, 0.0);
manual->textureCoord(0,1);

//Second triangle
manual->position(5.0, 0.0, 0.0);
manual->textureCoord(1,1);
manual->position(5.0, 10.0, 0.0);
manual->textureCoord(1,0);
manual->position(-5.0, 10.0, 0.0);
manual->textureCoord(0,0);

Points 1 and 2 in the picture are added twice because they are used in both triangles.
One way to prevent this information duplication is to use a two-step system for describing
triangles. First, we create a list with the points we want to use, and second, we create a list
that defines the triangles we want to build out of the points.

Chapter 6

[127]

Here we defined four points and then said that triangle one uses points 1, 2 and 3 and
triangle two uses points 1, 2, and 4. This saves us from adding some point twice or, even
more often, from using them more than twice. Here it may seem like a small difference, but
when we have models with several thousand triangles, this really can make a difference.
Static geometry demands that we only use entities with indices because, in this way, static
geometry can simply create one big list with all points (also known as vertices) and another
list with all indices. If we add entities that use the same points, static geometry only needs to
add some indices and not new points. For a big level, this can be a huge space saver.

Summary
We have changed the current scene manager, created our own field of grass, and sped up
our application with static geometry.

Specifically, we covered:

 � What a ManualObject is

 � Why we use indices for our 3D models

 � How and when to use static geometry

We have already used materials in this chapter. In the next chapter, we are going to create
our own materials.

7
Materials with Ogre 3D

Without materials, we can't add details to our scene and this chapter is going
to give us an introduction to the vast field of using materials.

Materials are a really important topic and it's necessary to understand them to
produce good-looking scenes. Materials are also an interesting topic of ongoing
research, which has a lot of undiscovered possibilities.

In this chapter, we will:

 � Learn how to create our own materials

 � Apply textures to our quad

 � Understand better how the rendering pipeline works

 � Use the shader to create effects that are impossible without it

So let's get on with it...

Creating a white quad
In the previous chapter, we created our own 3D models with code. Now, we will use this to
create a sample quad that we can experiment with.

Materials with Ogre 3D

[130]

Time for action – creating the quad
We will start with an empty application and insert the code for our quad into the
createScene() function:

1. Begin with creating the manual object:

Ogre::ManualObject* manual = mSceneMgr-
>createManualObject("Quad");

manual->begin("BaseWhiteNoLighting", RenderOperation::OT_TRIANGLE_
LIST);

2. Create four points for our quad:

manual->position(5.0, 0.0, 0.0);

manual->textureCoord(0,1);

manual->position(-5.0, 10.0, 0.0);

manual->textureCoord(1,0);

manual->position(-5.0, 0.0, 0.0);

manual->textureCoord(1,1);

manual->position(5.0, 10.0, 0.0);manual->textureCoord(0,0);

3. Use indices to describe the quad:

manual->index(0);

manual->index(1);

manual->index(2);

manual->index(0);

manual->index(3);

manual->index(1);

4. Finish the manual object and convert it to a mesh:

manual->end();

manual->convertToMesh("Quad");

5. Create an instance of the entity and attach it to the scene using a scene node:

Ogre::Entity * ent = mSceneMgr->createEntity("Quad");

Ogre::SceneNode* node = mSceneMgr->getRootSceneNode()-
>createChildSceneNode("Node1");

node->attachObject(ent);

6. Compile and run the application. You should see a white quad.

Chapter 7

[131]

What just happened?
We used our knowledge from the previous chapter to create a quad and attach to it a
material that simply renders everything in white. The next step is to create our own material.

Creating our own material
Always rendering everything in white isn't exactly exciting, so let's create our first material.

Time for action – creating a material
Now, we are going to create our own material using the white quad we created.

1. Change the material name in the application from BaseWhiteNoLighting to
MyMaterial1:

manual->begin("MyMaterial1", RenderOperation::OT_TRIANGLE_LIST);

2. Create a new file named Ogre3DBeginnersGuide.material in the media\
materials\scripts folder of our Ogre3D SDK.

3. Write the following code into the material file:

material MyMaterial1

{

 technique

 {

 pass

Materials with Ogre 3D

[132]

 {

 texture_unit

 {

 texture leaf.png

 }

 }

 }

}

4. Compile and run the application. You should see a white quad with a plant drawn
onto it.

What just happened?
We created our first material file. In Ogre 3D, materials can be defined in material files. To be
able to find our material files, we need to put them in a directory listed in the resources.
cfg, like the one we used. We also could give the path to the file directly in code using the
ResourceManager, like we did in the preceding chapter with the map we loaded.

To use our material defined in the material file, we just had to use the name during the begin
call of the manual object.

The interesting part is the material file itself.

Chapter 7

[133]

Materials
Each material starts with the keyword material, the name of the material, and then an
open curly bracket. To end the material, use a closed curly bracket—this technique should be
very familiar to you by now. Each material consists of one or more techniques; a technique
describes a way to achieve the desired effect. Because there are a lot of different graphic
cards with different capabilities, we can define several techniques and Ogre 3D goes from top
to bottom and selects the first technique that is supported by the user's graphic cards. Inside
a technique, we can have several passes. A pass is a single rendering of your geometry. For
most of the materials we are going to create, we only need one pass. However, some more
complex materials might need two or three passes, so Ogre 3D enables us to define several
passes per technique. In this pass, we only define a texture unit. A texture unit defines one
texture and its properties. This time the only property we define is the texture to be used.
We use leaf.png as the image used for our texture. This texture comes with the SDK and
is in a folder that gets indexed by resources.cfg, so we can use it without any work from
our side.

Have a go hero – creating another material
Create a new material called MyMaterial2 that uses Water02.jpg as an image.

Texture coordinates take two
In the previous chapter, we discussed that there are different strategies used when
texture coordinates are outside the 0 to 1 range. Now, let's create some materials to
see them in action.

Time for action – preparing our quad
We are going to use the quad from the previous example with the leaf texture material:

1. Change the texture coordinates of the quad from range 0 to 1 to 0 to 2. The quad
code should then look like this:

manual->position(5.0, 0.0, 0.0);

manual->textureCoord(0,2);

manual->position(-5.0, 10.0, 0.0);

manual->textureCoord(2,0);

manual->position(-5.0, 0.0, 0.0);

manual->textureCoord(2,2);

manual->position(5.0, 10.0, 0.0);

manual->textureCoord(0,0);

Materials with Ogre 3D

[134]

2. Now compile and run the application. Just as before, we will see a quad with a leaf
texture, but this time we will see the texture four times.

What just happened?
We simply changed our quad to have texture coordinates that range from zero to two. This
means that Ogre 3D needs to use one of its strategies to render texture coordinates that
are larger than 1. The default mode is wrap. This means each value over 1 is wrapped to be
between zero and one. The following is a diagram showing this effect and how the texture
coordinates are wrapped. Outside the corners, we see the original texture coordinates and
inside the corners, we see the value after the wrapping. Also for better understanding, we
see the four texture repetitions with their implicit texture coordinates.

Chapter 7

[135]

We have seen how our texture gets wrapped using the default texture wrapping mode.
Our plant texture shows the effect pretty well, but it doesn't show the usefulness of this
technique. Let's use another texture to see the benefits of the wrapping mode.

Using the wrapping mode with another texture

Time for action – adding a rock texture
For this example, we are going to use another texture. Otherwise, we wouldn't see the effect
of this texture mode:

1. Create a new material similar to the previous one, except change the used texture
to: terr_rock6.jpg:

material MyMaterial3

{

 technique

 {

 pass

 {

 texture_unit

 {

Materials with Ogre 3D

[136]

 texture terr_rock6.jpg

 }

 }

 }

}

2. Change the used material from MyMaterial1 to MyMaterial3:

manual->begin("MyMaterial3", RenderOperation::OT_TRIANGLE_LIST)

3. Compile and run the application. You should see a quad covered in a rock texture.

Chapter 7

[137]

What just happened?
This time, the quad seems like it's covered in one single texture. We don't see any obvious
repetitions like we did with the plant texture. The reason for this is that, like we already
know, the texture wrapping mode repeats. The texture was created in such a way that at the
left end of the texture, the texture is started again with its right side and the same is true for
the lower end. This kind of texture is called seamless. The texture we used was prepared so
that the left and right side fit perfectly together. The same goes for the upper and lower part
of the texture. If this wasn't the case, we would see instances where the texture is repeated.

Using another texture mode
We have seen the effect and usage for the wrapping mode. Now, let's look into another
texture mode called clamping.

Time for action – adding a rock texture
We are going to use the same project and just create a new material:

1. Create a new material called MyMaterial4, which is identical to the previous
material:

material MyMaterial4

{

 technique

 {

 pass

 {

 texture_unit

 {

 texture terr_rock6.jpg

 }

 }

 }

}

2. Inside the texture unit block, add a line that tells Ogre 3D to use the clamp mode:

tex_address_mode clamp

Materials with Ogre 3D

[138]

3. Change the material we use for our quad from MyMaterial3 to MyMaterial4:

manual->begin("MyMaterial4", RenderOperation::OT_TRIANGLE_LIST);

4. Compile and run the application. You should see the stone texture from before in
the upper-right corner of the quad. The other three parts of the quad should be
lines of different colors.

What just happened?
We changed the texture mode to clamp. This mode uses the border pixels of a texture to fill
all texture coordinates that are greater than 1. In practice, this means the border of an image
gets stretched over the model; we can see this effect in the preceding image.

Using the mirror mode
Let's get to the next texture mode that we can use.

Chapter 7

[139]

Time for action – using the mirror mode
For the mirror mode, we again create a new material:

1. Create a new material called MyMaterial5 using the previous material
as a template.

2. Change the texture mode to mirror:

tex_address_mode mirror

3. Change the texture to the leaf texture that we used before:

texture leaf.png

4. Compile and run the application, and you should see the leaf mirrored four times.

Materials with Ogre 3D

[140]

What just happened?
We again changed the texture mode—this time to mirroring. Mirror is a simple, yet effective,
mode when used for texturing big areas like a stone wall. Each time the texture coordinates
are bigger than 1, the texture gets flipped and then used as it is in wrap mode. We can see
the effect of this in the following diagram.

Using the border mode
Only one mode is left for us to try, namely, the border mode.

Time for action – using the border mode
1. Create a new material called MyMaterial6, and just like the previous five times,

base it on the material used previously.

2. Change the texture mode to border:

tex_address_mode border

3. Also remember to change the used material in the code file:

manual->begin("MyMaterial6", RenderOperation::OT_TRIANGLE_LIST);

4. Compile and run the application. Surprisingly, this time we will only see one leaf.

Chapter 7

[141]

What just happened?
Where did the other leaves go? The border mode doesn't create multiple copies of our
texture through mirroring or wrapping. When texture coordinates are greater one, this mode
paints everything in the defined border color—the default obviously is black, as black can be
seen as the zero value for colors.

Changing the border color
If we could only use black as a border color, this feature would be rather useless. Let's see
how we can change the border color.

Time for action – changing the border color
1. Copy the last material and name it MyMaterial7.

2. After setting the texture mode, add the following line to set the border color to blue:

tex_border_color 0.0 0.0 1.0

Materials with Ogre 3D

[142]

3. Compile and run the application. This time, we also see only one leaf texture, but
the rest of the quad should be in blue.

What just happened?
We changed the border color from black to blue. Similarly, we can use any color as the
border color, which can be described with an RGB value. This texture mode can be used
when putting logos onto objects like racing cars. We only need to set the border color to the
color of the car and then add the texture. If there are little errors or inaccuracies with the
texture coordinates, they won't show up because the car and the border color are the same.

Pop quiz – texture modes
1. What is the difference between the four texture modes—wrap, clamp, mirror,

and border?

a. How texture coordinates are used which have a value between 0 and 1

b. How texture coordinates are handled that are lower or higher than the
range of 0 to 1

c. How the texture color is rendered

Have a go hero – Using texture modes
Try using texture coordinates that are larger than 2 or are negative.

Chapter 7

[143]

Scrolling a texture
We have seen several texture modes, but this is only one attribute a material file can have.
Now, we are going to use another attribute that can also be quite useful.

Time for action – preparing to scroll a texture
This time, we are going to change our quad to see the effect of the new material:

1. Change the used material to MyMaterial8 and also change the texture coordinates
from 2 to 0.2:

manual->begin("MyMaterial8", RenderOperation::OT_TRIANGLE_LIST);

manual->position(5.0, 0.0, 0.0);

manual->textureCoord(0.0,0.2);

manual->position(-5.0, 10.0, 0.0);

manual->textureCoord(0.2,0.0);

manual->position(-5.0, 0.0, 0.0);

manual->textureCoord(0.2,0.2);

manual->position(5.0, 10.0, 0.0);

manual->textureCoord(0.0,0.0);

2. Now create the new material MyMaterial8 in the material file. This time, we don't
need any texture mode; just use the texture terr_rock6.jpg:

material MyMaterial8

{

 technique

 {

 pass

 {

 texture_unit

 {

 texture terr_rock6.jpg

 }

 }

 }

}

Materials with Ogre 3D

[144]

3. Compile and run the application. You should see a part of the stone texture that we
had seen before.

What just happened?
We are only seeing a part of the texture because our quad only has a texture coordinate
that is going up to 0.2; this means four-fifths of the texture isn't rendered onto our quad.
Everything that has happened in this Time for action should be easy to understand, as it's
just a repetition of the stuff we learned in this chapter up until now. If necessary, read the
chapter again.

Time for action – scrolling a texture
Now that we have prepared our quad, let's scroll the texture:

1. Add the following line into the texture block of the material to scroll the texture:

scroll 0.8 0.8

2. Compile and run the application. This time, you should see a different part of
the texture.

Chapter 7

[145]

What just happened?
The scroll attribute changes the texture coordinates with the given offset. The following is
a diagram showing the effect of scrolling. The upper-right corner was the first part of the
texture we rendered and the lower-left corner was the part of the texture we rendered with
the scroll applied.

This attribute can be used to change the texture coordinates without the need for changing
the UV coordinates of a model itself.

Materials with Ogre 3D

[146]

Animated scrolling
Being able to scroll the texture in the material isn't exactly breathtaking, but it can help
to save some time in comparison to retexturing a complete model. Let's add a bit of
dynamic scrolling.

Time for action – adding animated scrolling
We can also make the scrolling of the texture dynamic. Let's do it:

1. Create a new material and change the scroll attribute to animated scrolling:

scroll_anim 0.01 0.01

2. Remember to also change the used material of the manual object; otherwise,
you won't see any changes.

3. Compile and run the application. When you look carefully, you should see the
texture moving from the upper-right to the lower-left corner. I can't show a picture
of this because printing isn't yet able to show animations (maybe in the future).

What just happened?
We used another attribute to make the texture scroll. Besides the name, this attribute is
almost similar to the scroll attribute, with the small, but important, difference that now the
offset we set is per second.

There are many more attributes that we can use for manipulating a texture. A complete list
can be found at http://www.ogre3d.org/docs/manual/manual_17.html#SEC9.

Inheriting materials
Before we touch more complex topics like shaders, we will try inheriting from materials.

Chapter 7

[147]

Time for action – inheriting from a material
We will create two new materials and one new quad. We will also change how our quad
is defined:

1. For this example, we need a quad that simply displays one texture. Change the quad
definition to use only texture coordinates between 0 and 1 and remember to change
the used material to MyMaterial11, which we will create soon:

manual->begin("MyMaterial11", RenderOperation::OT_TRIANGLE_LIST);

manual->position(5.0, 0.0, 0.0);

manual->textureCoord(0.0,1.0);

manual->position(-5.0, 10.0, 0.0);

manual->textureCoord(1.0,0.0);

manual->position(-5.0, 0.0, 0.0);

manual->textureCoord(1.0,1.0);

manual->position(5.0, 10.0, 0.0);

manual->textureCoord(0.0,0.0);

manual->index(0);

manual->index(1);

manual->index(2);

manual->index(0);

manual->index(3);

manual->index(1);

manual->end();

2. The new material will use the rock texture and use the attribute rotate_anim,
which rotates the texture with the given speed. But the most important thing is to
name the texture unit texture1:

material MyMaterial11

{

 technique

 {

 pass

 {

 texture_unit texture1

 {

 texture terr_rock6.jpg

 rotate_anim 0.1

 }

Materials with Ogre 3D

[148]

 }

 }

}

3. Now create a second quad and translate it 15 units on the x-axis so that it doesn't
intersect with the first quad. Also use the setMaterialName() function to change
the material used by the entity to MyMaterial12:

ent = mSceneMgr->createEntity("Quad");

ent->setMaterialName("MyMaterial12");node = mSceneMgr-
>getRootSceneNode()->createChildSceneNode("Node2",Ogre::Vect
or3(15,0,0));

node->attachObject(ent);

4. The last thing to do is to create MyMaterial12. We will inherit from
MyMaterial11 and set the texture alias to another texture that we want to use:

material MyMaterial12 : MyMaterial11

{

 set_texture_alias texture1 Water02.jpg

}

5. Compile and run the application, and you should see two quads with rotating
textures—one is a rock texture and the other one is a water texture.

Chapter 7

[149]

What just happened?
We created two quads, each with its own material. Steps 1 and 2 just modified the quad
to only use texture coordinates in the range of [0,1]. In step 2, we created our material
for the quad and used the new attribute rotate_anim x, which rotates the texture x
turns per second—nothing fancy. Also we gave the texture unit the name texture1; we
need this name later. In step 3, we created another instance of the quad and used the
setMaterialName() function to change the material used by the entity. The important
part was step 4. Here we created a new material by using inheritance, a concept which
should be familiar. The syntax is the same as in C++, NewName : ParentName. In this case,
MyMaterial12 inherits from MyMaterial11. Then we use the attribute set_texture_
alias that binds the texture Water02.jpg to the texture unit texture1. In this case, we
replace terr_rock6.jpg with Water02.jpg. Because this is the only change we wanted
to make with our new material, we can stop here.

The use of texture aliases enables us to create a lot of materials that only differ in the used
texture without the need to write each material from the ground up, and we all know that
duplication should always be avoided, if possible.

We have covered a lot of things about materials, but there is a lot more that we can do. We
have covered the basics and with the help of the documentation, it should be possible to
understand most of the other attributes that can be used in materials. Just take a look here
http://www.ogre3d.org/docs/manual/manual_14.html#SEC23. We will now go a
bit deeper and learn how to program our graphics card with the so-called shaders.

Fixed Function Pipeline and shaders
In this chapter, we have used the so-called Fixed Function Pipeline. This is the rendering
pipeline on the graphics card that produces those nice shiny pictures we love looking at.
As the prefix Fixed suggests, there isn't a lot of freedom to manipulate the Fixed Function
Pipeline for the developer. We can tweak some parameters using the material files, but
nothing fancy. That's where shaders can help fill the gap. Shaders are small programs that
can be loaded onto the graphics card and then function as a part of the rendering process.
These shaders can be thought of as little programs written in a C-like language with a small,
but powerful, set of functions. With shaders, we can almost completely control how our
scene is rendered and also add a lot of new effects that weren't possible with only the Fixed
Function Pipeline.

Materials with Ogre 3D

[150]

Render Pipeline
To understand shaders, we need to first understand how the rendering process works as a
whole. When rendering, each vertex of our model is translated from local space into camera
space, then each triangle gets rasterized. This means, the graphics card calculates how to
represent the model in an image. These image parts are called fragments. Each fragment is
then processed and manipulated. We could apply a specific part of a texture to this fragment
to texture our model or we could simply assign it a color when rendering a model in only
one color. After this processing, the graphics card tests if the fragment is covered by another
fragment that is nearer to the camera or if it is the fragment nearest to the camera. If this
is true, the fragment gets displayed on the screen. In newer hardware, this step can occur
before the processing of the fragment. This can save a lot of computation time if most of the
fragments won't be seen in the end result. The following is a very simplified graph showing
the pipeline:

With almost each new graphics card generation, new shader types were introduced. It
began with vertex and pixel/fragment shaders. The task of the vertex shader is to transform
the vertices into camera space, and if needed, modify them in any way, like when doing
animations completely on the GPU. The pixel/fragment shader gets the rasterized fragments
and can apply a texture to them or manipulate them in other ways, for example, for lighting
models with an accuracy of a pixel. There are also other shader stages, such as Geometry
shaders, but we won't discuss them in this book because they are pretty new, not widely
supported, and also are out of the scope of this book.

Chapter 7

[151]

Time for action – our first shader application
Let's write our first vertex and fragment shaders:

1. In our application, we only need to change the used material. Change it to
MyMaterial13. Also remove the second quad:

manual->begin("MyMaterial13", RenderOperation::OT_TRIANGLE_LIST);

2. Now we need to create this material in our material file. First, we are going to define
the fragment shader. Ogre 3D needs five pieces of information about the shader:

 � The name of the shader

 � In which language it is written

 � In which source file it is stored

 � How the main function of this shader is called

 � In what profile we want the shader to be compiled

3. All this information should be in the material file:

fragment_program MyFragmentShader1 cg

{

 source Ogre3DBeginnersGuideShaders.cg

 entry_point MyFragmentShader1

 profiles ps_1_1 arbfp1

}

4. The vertex shader needs the same parameter, but we also have to define a
parameter that is passed from Ogre 3D to our shader. This contains the matrix
that we will use for transforming our quad into camera space:

vertex_program MyVertexShader1 cg

 {

 source Ogre3DBeginnerGuideShaders.cg

 entry_point MyVertexShader1

 profiles vs_1_1 arbvp1

 default_params

 {

 param_named_auto worldViewMatrix worldviewproj_matrix

 }

}

Materials with Ogre 3D

[152]

5. The material itself just uses the vertex and fragment shader names to reference
them:

material MyMaterial13

{

 technique

 {

 pass

 {

 vertex_program_ref MyVertexShader1

 {

 }

 fragment_program_ref MyFragmentShader1

 {

 }

 }

 }

}

6. Now we need to write the shader itself. Create a file named
Ogre3DBeginnersGuideShaders.cg in the media\materials\programs
folder of your Ogre 3D SDK.

7. Each shader looks like a function. One difference is that we can use the out keyword
to mark a parameter as an outgoing parameter instead of the default incoming
parameter. The out parameters are used by the rendering pipeline for the next
rendering step. The out parameters of a vertex shader are processed and then
passed into the pixel shader as an in parameter. The out parameter from a pixel
shader is used to create the final render result. Remember to use the correct name
for the function; otherwise, Ogre 3D won't find it. Let's begin with the fragment
shader because it's easier:

void MyFragmentShader1(out float4 color: COLOR)

8. The fragment shader will return the color blue for every pixel we render:

{

 color = float4(0,0,1,0);

}

Chapter 7

[153]

9. That's all for the fragment shader; now we come to the vertex shader. The vertex
shader has three parameters—the position for the vertex, the translated position of
the vertex as an out variable, and as a uniform variable for the matrix we are using
for the translation:

void MyVertexShader1(

 float4 position : POSITION,

 out float4 oPosition : POSITION,

 uniform float4x4 worldViewMatrix)

10. Inside the shader, we use the matrix and the incoming position to calculate the
outgoing position:

{

 oPosition = mul(worldViewMatrix, position);

}

11. Compile and run the application. You should see our quad, this time rendered
in blue.

Materials with Ogre 3D

[154]

What just happened?
Quite a lot happened here; we will start with step 2. Here we defined the fragment shader
we are going to use. As discussed before, Ogre 3D needs five pieces of information for a
shader. We define a fragment shader with the keyword fragment_program, followed
by the name we want the fragment program to have, then a space, and at the end, the
language in which the shader will be written. As for programs, shader code was written in
assembly and in the early days, programmers had to write shader code in assembly because
there wasn't another language to be used. But also, as with general programming language,
soon there came high-level programming to ease the pain of writing shader code. At the
moment, there are three different languages that shaders can be written in: HLSL, GLSL, and
CG. The shader language HLSL is used by DirectX and GLSL is the language used by OpenGL.
CG was developed by NVidia in cooperation with Microsoft and is the language we are going
to use. This language is compiled during the start up of our application to their respective
assembly code. So shaders written in HLSL can only be used with DirectX and GLSL shaders
with OpenGL. But CG can compile to DirectX and OpenGL shader assembly code; that's
the reason why we are using it to be truly cross platform. That's two of the five pieces of
information that Ogre 3D needs. The other three are given in the curly brackets. The syntax
is like a property file—first the key and then the value. One key we use is source followed by
the file where the shader is stored. We don't need to give the full path, just the filename will
do, because Ogre 3D scans our directories and only needs the filename to find the file.

Another key we are using is entry_point followed by the name of the function
we are going to use for the shader. In the code file, we created a function called
MyFragmentShader1 and we are giving Ogre 3D this name as the entry point for our
fragment shader. This means, each time we need the fragment shader, this function is
called. The function has only one parameter out float4 color : COLOR. The prefix
out signals that this parameter is an out parameter, meaning we will write a value into
it, which will be used by the render pipeline later on. The type of this parameter is called
float4, which simply is an array of four float values. For colors, we can think of it as a tuple
(r,g,b,a) where r stands for red, g for green, b for blue, and a for alpha: the typical tuple to
description colors. After the name of the parameter, we got a : COLOR. In CG, this is called a
semantic describing for what the parameter is used in the context of the render pipeline. The
parameter :COLOR tells the render pipeline that this is a color. In combination with the out
keyword and the fact that this is a fragment shader, the render pipeline can deduce that this
is the color we want our fragment to have.

Chapter 7

[155]

The last piece of information we supply uses the keyword profiles with the values ps_1_1
and arbfp1. To understand this, we need to talk a bit about the history of shaders. With
each generation of graphics cards, a new generation of shaders have been introduced. What
started as a fairly simple C-like programming language without even IF conditions are now
really complex and powerful programming languages. Right now, there are several different
versions for shaders and each with a unique function set. Ogre 3D needs to know which of
these versions we want to use. ps_1_1 means pixel shader version 1.1 and arbfp1 means
fragment program version 1. We need both profiles because ps_1_1 is a DirectX specific
function set and arbfp1 is a function subset for OpenGL. We say we are cross platform,
but sometimes we need to define values for both platforms. All subsets can be found at
http://www.ogre3d.org/docs/manual/manual_18.html. That's all needed to define
the fragment shader in our material file. In step 3, we defined our vertex shader. This part
is very similar to the fragment shader definition code; the main difference is the default_
params block. This block defines parameters that are given to the shader during runtime.
param_named_auto defines a parameter that is automatically passed to the shader by Ogre
3D. After this key, we need to give the parameter a name and after this, the value keyword
we want it to have. We name the parameter worldViewMatrix; any other name would
also work, and the value we want it to have has the key worldviewproj_matrix. This
key tells Ogre 3D we want our parameter to have the value of the WorldViewProjection
matrix. This matrix is used for transforming vertices from local into camera space. A list of all
keyword values can be found at http://www.ogre3d.org/docs/manual/manual_23.
html#SEC128. How we use these values will be seen shortly.

Step 4 used the work we did before. As always, we defined our material with one technique
and one pass; we didn't define a texture unit but used the keyword vertex_program_ref.
After this keyword, we need to put the name of a vertex program we defined, in our case,
this is MyVertexShader1. If we wanted, we could have put some more parameters into the
definition, but we didn't need to, so we just opened and closed the block with curly brackets.
The same is true for fragment_program_ref.

Writing a shader
Now that we have defined all necessary things in our material file, let's write the shader
code itself. Step 6 defines the function head with the parameter we discussed before, so we
won't go deeper here. Step 7 defines the function body; for this fragment shader, the body
is extremely simple. We created a new float4 tuple (0,0,1,0), describes the color blue and
assigns this color to our out parameter color. The effect is that everything that is rendered
with this material will be blue. There isn't more to the fragment shader, so let's move on to
the vertex shader. Step 8 defines the function header. The vertex shader has 3 parameters—
two are marked as positions using CG semantics and the other parameter is a 4x4 matrix
using float4 as values named worldViewMatrix. Before the parameter type definition,
there is the keyword uniform.

Materials with Ogre 3D

[156]

Each time our vertex shader is called, it gets a new vertex as the position parameter input,
calculates the position of this new vertex, and saves it in the oPosition parameter. This
means with each call, the parameter changes. This isn't true for the worldViewMatrix.
The keyword uniform denotes parameters that are constant over one draw call. When we
render our quad, the worldViewMatrix doesn't change while the rest of the parameters
are different for each vertex processed by our vertex shader. Of course, in the next frame,
the worldViewMatrix will probably have changed. Step 9 creates the body of the vertex
shader. In the body, we multiply the vertex that we got with the world matrix to get the
vertex translated into camera space. This translated vertex is saved in the out parameter to
be processed by the rendering pipeline. We will look more closely into the render pipeline
after we have experimented with shaders a bit more.

Texturing with shaders
We have painted our quad in blue, but we would like to use the previous texture.

Time for action – using textures in shaders
1. Create a new material named MyMaterial14. Also create two new shaders named

MyFragmentShader2 and MyVertexShader2. Remember to copy the fragment
and vertex program definitions in the material file. Add to the material file a texture
unit with the rock texture:

texture_unit

{

 texture terr_rock6.jpg

}

2. We need to add two new parameters to our fragment shader. The first is a two
tuple of floats for the texture coordinates. Therefore, we also use the semantic to
mark the parameter as the first texture coordinates we are using. The other new
parameter is of type sampler2D, which is another name for texture. Because
the texture doesn't change on a per fragment basis, we mark it as uniform. This
keyword indicates that the parameter value comes from outside the CG program
and is set by the rendering environment, in our case, by Ogre 3D:

void MyFragmentShader2(float2 uv : TEXCOORD0,

 out float4 color : COLOR,

 uniform sampler2D texture)

3. In the fragment shader, replace the color assignment with the following line:

color = tex2D(texture, uv);

Chapter 7

[157]

4. The vertex shader also needs some new parameters—one float2 for the incoming
texture coordinates and one float2 as the outgoing texture coordinates. Both
are our TEXCOORD0 because one is the incoming and the other is the outgoing
TEXCOORD0:

void MyVertexShader2(

 float4 position : POSITION,

 out float4 oPosition : POSITION,

 float2 uv : TEXCOORD0,

 out float2 oUv : TEXCOORD0,

 uniform float4x4 worldViewMatrix)

5. In the body, we calculate the outgoing position of the vertex:

oPosition = mul(worldViewMatrix, position);

6. For the texture coordinates, we assign the incoming value to the outgoing value:

oUv = uv;

7. Remember to change the used material in the application code, and then compile
and run it. You should see the quad with the rock texture.

Materials with Ogre 3D

[158]

What just happened?
Step 1 just added a texture unit with the rock texture, nothing fancy. Step 2 added a
float2 for saving the texture coordinates; also we are using sampler2D for the first time.
sampler2D is just the name for a two-dimensional texture lookup function, and because
it doesn't change per fragment and comes from outside the CG program, we declared it
uniform. Step 3 used the tex2D function, which takes a sampler2D and float2 as the
input parameter and returns a color as float4. This function uses the float2 as the
position to retrieve a color from the sampler2D object and returns this color. Basically, it's
just a lookup in the texture for the given coordinates. Step 4 added two texture coordinates
to the vertex shader—one as incoming and one as outgoing. Step 5 assigned the incoming to
the outgoing parameter. The magic happens in the render pipeline.

What happens in the render pipeline?
Our vertex shader gets each vertex and transforms it into camera space. After all vertices
have gone through this transformation, the render pipeline sees which vertices form a
triangle and then rasterizes them. In this process, the triangles get split into fragments. Each
fragment is a candidate for becoming pixels on the screen. It will become pixels if it's not
covered by another fragment and therefore can't be seen. During this process, the render
pipeline interpolates the vertex data like texture coordinates over each fragment. After this
process, each fragment has its own texture coordinate and we used this to look up the color
value from the texture. The following image is an example of a quad, which is represented
by four fragments. Each fragment has its own texture coordinates. It also shows how we can
imagine the texture coordinates, related to the pixels. In the real world, this depends on the
render pipeline and can change, but this is a helpful model we can think with, even if it's not
100 percent accurate.

The same interpolation is used when we assign each vertex a color. Let's investigate this
effect a bit more.

Chapter 7

[159]

Have a go hero – combining color and texture coordinates
Create a new vertex and fragment shader called MyVertexShader3 and
MyFragmentShader3 respectively. The fragment shader should render everything in green
and the vertex shader should calculate the position of the vertex in camera space and
simply pass the texture coordinates to the fragment shader. The fragment shader doesn't do
anything with them yet, but we will need them later.

Interpolating color values
To see the effect of interpolation better, let's replace the texture with colors.

Time for action – using colors to see interpolation
To see how color interpolation works we need to change our code a bit.

1. Again, copy the material and make sure to adjust all names.

2. The only thing we need to change in the material is that we don't need a texture
unit. We can just delete it.

3. In the application code, we need to replace the textureCoord() with color():

manual->position(5.0, 0.0, 0.0);
manual->color(0,0,1);
manual->position(-5.0, 10.0, 0.0);
manual->color(0,1,0);
manual->position(-5.0, 0.0, 0.0);
manual->color(0,1,0);
manual->position(5.0, 10.0, 0.0);
manual->color(0,0,1);

4. The vertex shader also needs some adjustments. Replace the two texture coordinate
parameters with color parameters and also change the assignment line:

void MyVertexShader4(
 float4 position : POSITION,
 out float4 oPosition : POSITION,
 float4 color :COLOR,
 out float4 ocolor :COLOR,
 uniform float4x4 worldViewMatrix)
{
 oPosition = mul(worldViewMatrix, position);
 ocolor = color;
}

Materials with Ogre 3D

[160]

5. The fragment shader now has two color parameters—one incoming and
one outgoing:

void MyFragmentShader4(float4 color : COLOR,

 out float4 oColor : COLOR)

{

 oColor = color;

}

6. Compile and run the application. You should see the quad with the right side blue
and the left side green and the colors should fade into each other in between.

What just happened?
In step 3, we saw another function of the manual object, namely, adding color to a vertex
using three float values for red, green, and blue. Step 4 replaced the texture coordinates with
color parameters—this time we wanted colors not textures. The same is true for step 5. This
example wasn't really difficult or exciting, but it shows how interpolation works. This gives us
a better understanding of how the vertex and fragment shader also work together.

Replacing the quad with a model
The quad, as an object for experimentation, gets a bit boring, so let's replace it with the
Sinbad model.

Chapter 7

[161]

Time for action – replacing the quad with a model
Using the previous code we will now use Sinbad instead of a quad.

1. Delete all the code for the quad; just leave the scene node creation code in place.

2. Create an instance of Sinbad.mesh, attach it to the scene node, and use the
MaterialManager to set the material of the entity to MyMaterial14:

void createScene()

{

 Ogre::SceneNode* node = mSceneMgr->getRootSceneNode()-
>createChildSceneNode("Node1");

 Ogre::Entity* ent = mSceneMgr->createEntity("Entity1","Sinbad.
mesh");

 ent->setMaterialName("MyMaterial14");

 node->attachObject(ent);

}

3. Compile and run the application; because MyMaterial14 uses the rock texture,
Sinbad will be made out of rock.

Materials with Ogre 3D

[162]

What just happened?
Everything that has happened here should be familiar to you. We created an instance of a
model, attached it to a scene node, and changed the material to MyMaterial14.

Making the model pulse on the x-axis
Up until now, we only worked with the fragment shader. Now it's time for the vertex shader.

Time for action – adding a pulse
Adding a pulse to our model is quite easy and only needs some changes to our code.

1. This time, we only need a new vertex shader because we are going to use the
existing fragment shader. Create a new vertex shader named MyVertexShader5
and use it in the new material MyMaterial17, but use MyFragmentShader2
because this shader only textures our model and nothing more:

material MyMaterial17

{

 technique

 {

 pass

 {

 vertex_program_ref MyVertexShader5

 {

 }

 fragment_program_ref MyFragmentShader2

 {

 }

 texture_unit

 {

 texture terr_rock6.jpg

 }

 }

 }

}

Chapter 7

[163]

2. The new vertex shader is the same as the ones we've seen before; just add a new
parameter in the default_params block called pulseTime that gets the value
from the time keyword:

vertex_program MyVertexShader5 cg

 {

 source Ogre3DBeginnerGuideShaders.cg

 entry_point MyVertexShader5

 profiles vs_1_1 arbvp1

 default_params

 {

 param_named_auto worldViewMatrix worldviewproj_matrix

 param_named_auto pulseTime time

 }

}

3. We don't need to change anything in the application itself. The only thing
left to do is to create the new vertex shader. MyVertexShader5 is based
on MyVertexShader3. Just add a new line that multiplies the x value of the
oPosition variable with (2+sin(pulseTime)):

void MyVertexShader5(uniform float pulseTime,

 float4 position : POSITION,

 out float4 oPosition : POSITION,

 float2 uv : TEXCOORD0,

 out float2 oUv : TEXCOORD0,

 uniform float4x4 worldViewMatrix)

{

 oPosition = mul(worldViewMatrix, position);

 oPosition.x *= (2+sin(pulseTime));

 oUv = uv;

}

Materials with Ogre 3D

[164]

4. Compile and run the application. You should see Sinbad pulsing on the x-axis
between his normal width and the threefold of his width.

What just happened?
We made the model pulse on the x-axis. We needed a second parameter for the vertex
shader, which contains the current time. We used the sine of the time with two added to get
a value between 1 and 3, with which we multiplied the x part of each translated vertex of the
model. In action, this changes the position of each single vertex in each frame a bit, creating
the effect of pulsing. Using this technique, we can practically pass any data into a shader to
modify its behavior. This is the basis for a lot of effects used in games.

Summary
We learned a lot in this chapter about materials and Ogre 3D.

Specifically, we covered:

 � How to create new materials

 � How to apply textures to an entity using a material

 � How to create shaders and refer to them in materials

 � How the render pipeline works and how to modify the geometry of models using
the vertex shader

In the next chapter, we are going to create post-processing effects to improve the visual
quality of our scene or create completely new visual styles.

8
The Compositor Framework

In this chapter, we are going to add post processing effects to scenes, which can
improve their visual quality and make them look more interesting. This chapter
will show you how to create compositors and how to combine them to create
new effects.

In this chapter, we will:

 � Create compositor scripts and apply them to our scene

 � Work with viewports to create split screens

 � Use user input to manipulate shader parameters, which are used by compositors

So let's get on with it...

Preparing a scene
We are going to use compositor effects. However, before using them, we are going to
prepare a scene that will be used to show the different effects we can create.

The Compositor Framework

[166]

Time for action – preparing the scene
We are going to use the last example from the previous chapter:

1. Remove the line that changes the material of the model. We want it to use its
original material:

ent->setMaterial(Ogre::MaterialManager::getSingleton().
getByName("MyMaterial18"));

2. The application class should now look like this:

class Example69 : public ExampleApplication

{

private:

public:

 void createScene()

 {

 Ogre::SceneNode* node = mSceneMgr-
>getRootSceneNode()->createChildSceneNode("Node1",Ogre::Vect
or3(0,0,450));

 Ogre::Entity* ent = mSceneMgr-
>createEntity("Entity1","Sinbad.mesh");

 node->attachObject(ent);

 }

};

3. Compile and run the application. You should see an instance of Sinbad rendered
with its normal material.

Chapter 8

[167]

What just happened?
We created a simple scene on which we will now use a compositor effect.

Adding the first compositor
Before explaining what a compositor is, let's use one and then discuss the technical details.

Time for action – adding a compositor
This is going to be our first compositor. We will use the scene and prepare to see its effect.

1. We need a new material for this, which does nothing at the moment. Add this
new material in the material file that we previously used and name it
Ogre3DBeginnersGuide/Comp1:

material Ogre3DBeginnersGuide/Comp1

{

 technique

 {

 pass

 {

 texture_unit

 {

 }

 }

 }

}

2. Next, create a new file for storing our compositor scripts. In the same directory as
the material file, create a file named Ogre3DBeginnersGuide.compositor.

3. In this file, define our compositor using the same scheme as we did for materials:

compositor Compositor1

{

 technique

 {

4. Next, define a target where our scene is rendered to before we can modify it:

texture scene target_width target_height PF_R8G8B8

The Compositor Framework

[168]

5. Define the content of our target. In this case, it's the scene that was
rendered before:

target scene

 {

 input previous

 }

6. The last step in the compositor script is to define the output:

target_output

 {

7. The compositor doesn't need any input and renders its result to a quad that
covers the whole screen. This quad uses the material Ogre3DBeginnersGuide/
Comp1 and needs our scene target as a texture input:

input none

pass render_quad

{

material Ogre3DBeginnersGuide/Comp1

input 0 scene

}

8. That's all for this compositor. Close all open curly brackets:

 }

 }

}

9. Now that we have a finished a compositor script, let's add it to our scene. For this,
we use CompositorManager and the viewport of our camera. Add the code to the
createScene() function:

Ogre::CompositorManager::getSingleton().addCompositor(mCamera-
>getViewport(), "Compositor1");

Ogre::CompositorManager::getSingleton().
setCompositorEnabled(mCamera->getViewport(), "Compositor1", true);

10. Compile and run the application, and you should see the same scene as before.

Chapter 8

[169]

What just happened?
We added our first compositor using a compositor file containing our compositor script. Step
1 just created an empty material, which simply rendered everything it got without any added
effects. Step 2 created a new file to store our compositor scripts; it's like material files just
for compositors. Step 3 is also pretty familiar: we named our first compositor Compositor1
and defined a technique to use just like materials compositors have different techniques for
different target graphic cards. The interesting part starts with step 4: here we created a new
texture named scene which has the same dimensions as the target texture we are rendering
to, and this texture used eight bits for each color part. This is defined by PF_R8G8B8.

How the compositor works
But why do we need to create a new texture in the first place? To understand this, we need
to understand how a compositor works. Compositors modify the appearance of a scene after
it has been rendered. It's like post processing in movies where they add all the computer
effects after the shooting of a movie. To be able to do this, the compositor needs the
rendered scene as a texture, so it can be modified further. We created this texture in step
4, and in step 5, we told Ogre 3D to fill this texture with the scene we rendered before. This
was done with input previous. Now we have a texture that contains our scene rendered,
the next thing our compositor needs to do is create a new image, which is displayed on the
monitor. This is done in step 6 using the keyword output in combination with a target block.
Step 7 defines this output. We don't need any input because we already have our scene in
the scene texture. To render the modified texture, we need a quad that covers the whole
monitor, onto which we can render the texture with the modified scene. This is achieved
with the pass keyword followed by the render_quad identifier. There are several other
identifiers we can use in combination with the pass keyword. They can be found in the
documentation (http://www.ogre3d.org/docs/manual/manual_32.html#SEC163).
Inside the pass block, we define several attributes we want to use for this rendering pass.
This is the first material we want the quad to use; here we just use the material we defined
beforehand, which renders the texture we are giving it to the quad without modifying it. The
next attribute defines additional input like textures; here we say the first texture we want
as input should be the scene texture. In fact, this means we want our scene rendered to a
texture and applied to a quad that covers the whole screen. With this, we won't see any
difference between the rendered scene with or without a compositor. This will change when
we add some code to our material, which modifies the incoming texture to add additional
effects.

Step 9 adds the compositor to our viewport and then enables it; we add compositors to a
viewport and not to our scene because compositors modify the appearance of a scene seen
through a camera, and what a camera sees is defined within the viewport. So if we want to
modify the appearance of a complete scene, we would add the compositor to the object that
defines the appearance of the scene itself.

The Compositor Framework

[170]

The following is a simplified diagram showing the workflow of our compositor and
an abridged version of the compositor script, which is the code for the step shown by
the diagram.

Modifying the texture
We have rendered our scene to a texture and displayed it without modifying it. This is rather
pointless, so let's spice it up.

Time for action – modifying the texture
We will use a fragment shader to modify the texture, so change the material to also make
use of a fragment shader. Also copy the material and the compositor. This compositor should
have the name Compositor2, the material Ogre3DBeginnersGuide/Comp2.

1. fragment_program_ref MyFragmentShader5

 {

 }

2. Don't forget to define the fragment program in the material file before using
the reference:

fragment_program MyFragmentShader5 cg

{

 source Ogre3DBeginnersGuideShaders.cg

 entry_point MyFragmentShader5

Chapter 8

[171]

 profiles ps_1_1 arbfp1

}

3. Also create a new fragment shader in our shader file. This shader has, as input,
the texture coordinates and a texture sample. Once the color of the fragment is
computed, this color is returned:

void MyFragmentShader5(float2 uv : TEXCOORD0,

 out float4 color : COLOR,

 uniform sampler2D texture)

{

4. Get the color of the texture at the position of the texture coordinates:

float4 temp_color = tex2D(texture, uv);

5. Convert the color to grayscale:

float greyvalue = temp_color.r * 0.3 + temp_color.g * 0.59 + temp_
color.b * 0.11;

6. And use this value as all three values of the output color:

color = float4(greyvalue,greyvalue,greyvalue,0);

7. Compile and run the application. You should see the same model, but this
time in grayscale:

The Compositor Framework

[172]

What just happened?
We added a fragment shader to our compositor. After rendering our scene, the full screen
quad got rendered with the scene texture using our fragment shader. The fragment shader
queries the texture for the color it has at its position using its texture coordinates. Then
it converts the RGB color into a grayscale color by simply adding the three-color channel
multiplied with a factor. For red, the factor is 0.3, for green 0.59, and for blue 0.11. These
values represent how much each color contributes to the brightness reception of the human
eye. Adding the color values using these factors creates a pretty good approximation for the
black and white values. After this first compositor effect, we are going to create a new one
that doesn't convert the picture to black and white, but rather inverts the colors.

Inverting the image
Now it's time to create a color-inverted version of our scene using another compositor.

Time for action – inverting the image
Using the code from the black and white compositor, we are now going to invert our image.

1. Copy the shader, the material, and the compositor because later we will need both—
the black and white compositor and this one. Then change the fragment shader of
this copy. The new fragment shader should have the name MyFragmentShader6,
the material Ogre3DBeginnersGuide/Comp3, and the compositor Compositor3.

2. This time, get the color value of the texture at the position of the fragment
and then subtract each single value from 1.0 to get the inverted value:

color = float4(1.0 - temp_color.r,1.0 - temp_color.g, 1.0 - temp_
color.b,0);

3. Compile and run the application. This time, the background should be white and
Sinbad should be in some pretty strange colors as shown in the following image:

Chapter 8

[173]

What just happened?
We changed our fragment shader to invert the color values instead of converting them to
black and white. The rest of the application hasn't changed. Converting RGB color values is
really easy: just subtract each individual value from its maximum value, in our case, 1.0. The
resulting color is the inverted version of the original color.

Combining compositors
This is getting boring rather quickly, so let's try combining two compositor effects.

Time for action – combining two compositor effects
To combine two compositors, we need to create a new one:

1. To create a new compositor, we need two textures—one for storing
the scene and one for storing some temporary results:

compositor Compositor4

{

 technique

 {

 texture scene target_width target_height PF_R8G8B8

 texture temp target_width target_height PF_R8G8B8

The Compositor Framework

[174]

2. Fill the scene texture, as done previously, and then fill the temp texture
using the scene texture and our black and white material:

target scene

 {

 input previous

 }

 target temp

 {

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp2

 input 0 scene

 }

 }

3. Then use the temporary material and our invert material to create the
output texture:

target_output

 {

 input none

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp3

 input 0 temp

 }

 }

 }

}

4. Compile and run the application; you should see a scene that first got converted to
black and white and was then inverted.

Chapter 8

[175]

What just happened?
We created a second auxiliary texture; this texture was used as the render target for the
black and white material, and then this texture with the black and white image of our scene
was used as an input for the invert material, which then got rendered to the display.

Decreasing the texture count
In the previous section, we used two textures—one for the original scene and one for storing
the intermediate result after the first of two steps have been done. Now let's try to only use
one texture.

Time for action – decreasing the texture count
By using the previous code we are going to reduce the texture count of our compositor.

1. We need a new compositor, this time with only one texture:

compositor Compositor5
{
 technique
 {
 texture scene target_width target_height PF_R8G8B8

2. Then fill the texture with the rendered scene:

target scene
{
 input previous
}

The Compositor Framework

[176]

3. Use this texture as the input texture as well as the output texture:

target scene

{

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp2

 input 0 scene

 }

}

4. Again, use this texture as input for the final rendering:

target_output

{

 input none

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp3

 input 0 scene

 }

}

5. Add the missing parenthesis:

}

}

6. Compile and run the application. The result will be the same, but this time we
only use one texture.

What just happened?
We changed our compositor to only use one texture and discovered that we can use a
texture more than once in a compositor. We also found out that we can use it as input and
output texture at the same time.

Chapter 8

[177]

Combining compositors in code
In the last two examples, we have seen how we can create more complex compositors by
combining several render steps with different materials. We had to write a new compositor
script to combine several render steps, even though we already had two compositors,
each one describing one half of the final effect. Wouldn't it be nice to combine these two
compositors to create the final effect without the need to write a new compositor script
each time we want to combine some compositors? This is exactly what we are going to
accomplish in the next example: making use of the compositor chain.

Time for action – combing two compositors in code
This time we don't need a new compositor. We are just going to modify the application a bit:

1. First add and enable the invert compositor:

Ogre::CompositorManager::getSingleton().addCompositor(mCamera-
>getViewport(), "Compositor3");

Ogre::CompositorManager::getSingleton().
setCompositorEnabled(mCamera->getViewport(), "Compositor3", true);

2. Then add the black and white compositor:

Ogre::CompositorManager::getSingleton().addCompositor(mCamera-
>getViewport(), "Compositor2");

Ogre::CompositorManager::getSingleton().
setCompositorEnabled(mCamera->getViewport(), "Compositor2", true);

3. Again compile and run the application. The result should be the same, only this time
we combined the compositor in our application code rather than in the script itself.

What just happened?
We combined two compositors using the addCompositor() function. This function can
take any number of compositors and chain them together; the output result of one will be
the input of the other. If we want to add a compositor at a certain position, we can pass
the position as the third parameter of the addCompositor() function. With this function,
we can combine all sorts of different compositors without the need to write a single line
of script. It also enables us to reuse compositors in other chains because we don't have to
hardcode chains in scripts.

The Compositor Framework

[178]

Have a go hero – swapping the green and blue color channels
Create a compositor that swaps the green and blue color channels of the scene. The result
should look like the following image:

Something more complex
Until now, we have only seen pretty simple compositors. Let's make a complex one.

Time for action – complex compositor
We need a new compositor, material, and fragment shader:

1. The compositor script itself is nothing special. We need one texture for the scene
and then directly use this texture as input for the output, which uses one material:

compositor Compositor7

{

 technique

 {

 texture scene target_width target_height PF_R8G8B8

 target scene

 {

Chapter 8

[179]

 input previous

 }

 target_output

 {

 input none

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp5

 input 0 scene

 }

 }

 }

}

2. The material itself is also nothing new; just add a fragment shader like always:

material Ogre3DBeginnersGuide/Comp5

{

 technique

 {

 pass

 {

 fragment_program_ref MyFragmentShader8

 {

 }

 texture_unit

 {

 }

 }

 }

}

3. Don't forget to add the definition of the fragment shader before using it in
the material:

fragment_program MyFragmentShader8 cg

{

 source Ogre3DBeginnersGuideShaders.cg

 entry_point MyFragmentShader8

 profiles ps_1_1 arbfp1

}

The Compositor Framework

[180]

4. Now to the interesting part. In the fragment shader, the header hasn't changed
since the last time; only the code inside it has. First, we need two variables,
namely, num and stepsize. The variable stepsize is one divided by num:

float num= 50;

float stepsize = 1.0/ num;

5. Then use both these variables and the texture coordinates to calculate the new
texture coordinates:

float2 fragment = float2(stepsize * floor(uv.x * num),stepsize *
floor(uv.y * num));

6. Use the new texture coordinates for retrieving the color from the texture:

color = tex2D(texture, fragment);

7. Change the program to use only this compositor and not the combined
compositors anymore. Then compile and run the application. You should
see some pixels of different colors instead of the normal instance of Sinbad.

Chapter 8

[181]

What just happened?
We created another compositor that really changed the appearance of our scene. It's almost
unrecognizable. Step 1 and 2 are known and shouldn't be any challenge to understand.
Step 3 sets to values we needed later. One is the number of pixels we want our dimensions
to have, so we set this value to 50. This means each axis, x and y, will have 50 pixels. The
second value was stepsize, which is 1 divided by the number of pixels. We need this value to
calculate the texture coordinates.

In step 4, we calculated our new texture coordinates using the old ones and our two values
we defined before. So how did we reduce the number of pixels using the fragment shader?
Let's say our display resolution would be 100 X 100 pixels. If we render our scene in this
resolution, the scene would look normal and we couldn't see the single pixel like we did in
our previous example. To get this effect of using fewer pixels as the display, we need several
neighbor pixels to have the same color. We do this in step 4 using simple math. The first step
is to multiply the original texture coordinates with the number of pixels we want to have at
the end and then the next step is to round this floating point number to the lower integer
value. This will give us the number of the final pixel this pixel belongs to.

Let's say we have a scene with 4x4 resolution and we want the final image to have only
2x2. If we have the original texture coordinates (0.1,0.1), we multiply them with destination
resolution and get (0.2,0.2). Then we round each of these values to the lower integer,
which results in (0,0). This tells us that this pixel is in the final pixel (0,0). If the pixel has the
coordinates (0.75,0.75), this would result in (1.5,1.5) and rounded in (1,1). With this simple
operation, we can calculate to which final pixel each original pixel belongs.

The Compositor Framework

[182]

After we know to which final pixel each original pixel belongs, we need to calculate the
texture coordinates to retrieve the color value from the original scene texture. For this, we
need our second value called stepsize. The stepsize for our example is 0.5 because we divide
1 by the number of pixels we want, in this case 2. We then multiply the different texture
coordinates with the stepsize to get the final texture coordinates.

Using these values, we retrieve the color values from the scene texture and use the values
as new color values. We can do this because four pixels have the same texture coordinate
as the same color value, and therefore can be seen as one pixel. This is the magic to making
a scene seem to have less pixels than it actually has. Of course, this technique isn't perfect.
A much better approach would be to calculate the average overall original pixels that
contribute to the final pixel.

Changing the number of pixels
We now have a compositor that can make our scene look like it has a lot less pixels than
it actually does, but the number of pixels is hardcoded inside the fragment shader. When
we want to use the compositor with a different number of pixels, we need to create a new
compositor, material, and fragment shader, which isn't really efficient. The first step we will
carry out is to define the number of pixels in the material and not in the fragment shader.
This way, we can at least reuse the pixel shader for a different number of pixels we want the
complete image to have.

Chapter 8

[183]

Time for action – putting the number of pixels in the material
Now, we are going to control the number of pixels from our material rather than the
shader itself.

1. Create a new fragment shader that has all the old parameters, a new one, which is
uniform, and a float value named numpixels.

void MyFragmentShader9(float2 uv : TEXCOORD0,

 out float4 color : COLOR,

 uniform sampler2D texture,

 uniform float numpixels)

{

2. Then, inside the fragment shader, use the new parameter to set the num variable:

float num = numpixels;

3. The rest of the shader is the same as the fragment shader before:

float stepsize = 1.0/num;

float2 fragment = float2(stepsize * floor(uv.x * num),stepsize *
floor(uv.y * num));

 color = tex2D(texture, fragment);

}

4. The material is a copy, which is almost the same as the original. Only the fragment
program declaration needs to be changed a bit; or to be more precise, something
new needs to be added such as a default param block. In this block, define the
named parameter numpixels, which should be a float and has the value 500:

fragment_program MyFragmentShader9 cg

{

 source Ogre3DBeginnerGuideShaders.cg

 entry_point MyFragmentShader9

 profiles ps_1_1 arbfp1

 default_params

 {

 param_named numpixels float 500

 }

}

The Compositor Framework

[184]

5. Now create a new compositor, which uses the new material, and change the
program code to use the new compositor. Later, compile and run the application.
You should see an instance of Sinbad being rendered, as there was less resolution
than the usually well-defined meshes.

6. Now change the value of the numpixels to 25 and run the application again.
There's no need to recompile because we just changed a script and not the code file.

Chapter 8

[185]

What just happened?
We moved the definition of the number of pixels we wanted from the fragment shader to
the material, allowing us to change the number without the need to change or duplicate the
fragment shader.

To get there wasn't that complicated; we just needed to add a new uniform variable to the
fragment shader and add a default_params block to the material, in which we declared
the variable name and the type and value using the param_named keyword. For Ogre 3D to
be able to map the parameter in the material and the parameter in the fragment shader, it is
necessary that the type and name are the same.

Have a go hero – trying different numbers of pixels
Also run the application with the values 50, 100, and 1000 for numpixels.

Setting the variable in code
We have moved the numpixels variable from the fragment shader into the material script
code. Now, let's try to set the value from the application code itself.

Time for action – setting the variable from the application
We can use the compositor, material, and fragment shader from the last example. Only the
application itself must be modified:

1. We can't directly interact with the material of the quad that is rendered because
our application doesn't know about the quad. The only way to interact with
a compositor rendering process is through listeners. Ogre 3D provided an
interface for the compositor listener. We can use this to create a new listener:

class CompositorListener1 : public Ogre::CompositorInstance::Liste
ner

{

public:

2. Override this method, which is called when the material is set up:

void notifyMaterialSetup (uint32 pass_id, MaterialPtr &mat)

{

The Compositor Framework

[186]

3. Use the given pointer to the material to change the numpixels parameter to 125:

 mat->getBestTechnique()->getPass(pass_id)-
>getFragmentProgramParameters()->setNamedConstant("numpixels",125.
0f);

}

4. Add the following code to get the compositor instance after the code we
added to enable the compositor in the createScene() function:

Ogre::CompositorInstance* comp = Ogre::CompositorManager:
:getSingleton().getCompositorChain(mCamera->getViewport())-
>getCompositor("Compositor8");

5. We need a private variable to store the listener instance later on:

private:

 CompositorListener1* compListener;

6. When the application is created, we want the pointer to be NULL:

Example78()

{

 compListener = NULL;

}

7. What we create, we also need to destroy. Add a destructor to the application,
which destroys the listener instance:

~Example78()

 {

 delete compListener;

 }

8. Now create the listener and add it to the compositor instance:

compListener = new CompositorListener1();

comp->addListener(compListener);

9. Compile and run the application. You should see a scene with some pixels,
as shown in the following image:

Chapter 8

[187]

What just happened?
We changed our application to be able to set the number of pixels from the application code
rather than the material script. Because compositors create materials and render passes, we
don't have direct access to the quads that we use for rendering during runtime, which we need
to change properties of materials like the fragment shader attributes. In order to still be able to
access them, Ogre 3D offers a listener interface from which we inherited our own listener. This
listener then overrode a method that is called when the material of the quad is generated. The
function gets the ID of the pass it generated and a pointer to the material itself.

With the material pointer, we could select the technique that was going to be used, and
using this technique, we got the pass and with it the parameter of the fragment shader.
Once we had the parameter, we could change the number of pixels. This is a rather long call
list because the parameter we wanted is deep down in the class hierarchy. As a side note,
we can define parameters and change them in the application with normal materials like
the compositor; we don't even need a listener, because when using entities we can get the
material of an entity directly.

The Compositor Framework

[188]

Changing the number of pixels while running the
application
We can already change the number of pixels in the application code; let's go one step
further and make it possible to change the number of pixels using user input.

Time for action – modifying the number of pixels with user input
We are going to use the knowledge about user input and frame listeners that we have seen
in Chapter 3, Camera, Light, and Shadow:

1. Our application needs FrameListener. Add a new private variable to store
the pointer to the application:

Ogre::FrameListener* FrameListener;

2. In the same way, FrameListener should also be inited with NULL:

Example79()

{

 FrameListener = NULL;

 compListener = NULL;

}

3. And it should be destroyed in the same way:

~Example79()

{
 if(compListener)
 {
 delete compListener;
 }
 if(FrameListener)
 {
 delete FrameListener;
 }
}

4. Lets add it and then implement it. The rest of the application class doesn't change:

void createFrameListener()

{

 FrameListener = new Example79FrameListener(mWindow,compListe
ner);

 mRoot->addFrameListener(FrameListener);

}

Chapter 8

[189]

5. Before creating the FrameListener, we need to modify the compositor listener.
It needs a private variable to store the number of pixels that we want our
scene to have:

class CompositorListener1 : public Ogre::CompositorInstance::Liste
ner

{

private:

 float number;

6. Init this variable with 125 in the constructor:

public:

 CompositorListener1()

 {

 number = 125.0f;

 }

7. Now change the function name of the overridden function from
notifyMaterialSetup to notifyMaterialRender and use the
number variable instead of a fixed value to set the number of pixels:

void notifyMaterialRender(uint32 pass_id, MaterialPtr &mat)

{

 mat->getBestTechnique()->getPass(pass_id)-
>getFragmentProgramParameters()->setNamedConstant("numpixels",numb
er);

}

8. Also implement a getter and setter function for the number variable:

void setNumber(float num)

{

 number = num;

}

float getNumber()

{

 return number;

}

The Compositor Framework

[190]

9. Now add FrameListener, which has three private variables—the input manager
and the keyboard class, which we already know about, and a pointer to our
compositor listener:

class Example79FrameListener : public Ogre::FrameListener

{

private:

 OIS::InputManager* _man;

 OIS::Keyboard* _key;

 CompositorListener1* _listener;

10. In the constructor, we need to create our input system and save the pointer
to the compositor listener:

Example79FrameListener(RenderWindow* win,CompositorListener1*
listener)

{

 _listener = listener;

 size_t windowHnd = 0;

 std::stringstream windowHndStr;

 win->getCustomAttribute("WINDOW", &windowHnd);

 windowHndStr << windowHnd;

 OIS::ParamList pl;

 pl.insert(std::make_pair(std::string("WINDOW"),
windowHndStr.str()));

 _man = OIS::InputManager::createInputSystem(pl);

 _key = static_cast<OIS::Keyboard*>(_man->createInputObject(
OIS::OISKeyboard, false));

}

11. And, as before, we need to destroy the input system we created:

~Example79FrameListener()

{

 _man->destroyInputObject(_key);

 OIS::InputManager::destroyInputSystem(_man);

}

Chapter 8

[191]

12. Override the frameStarted() method, and in this function, capture the keyboard
input and close the application if the user pressed Escape:

bool frameStarted(const Ogre::FrameEvent &evt)

{

 _key->capture();

 if(_key->isKeyDown(OIS::KC_ESCAPE))

 {

 return false;

 }

13. If the user pressed the up arrow key, get the number of pixels we use right now
 and increase it by one. Then set and print this new value:

if(_key->isKeyDown(OIS::KC_UP))

{

 float num = _listener->getNumber();

 num++;

 _listener->setNumber(num);

 std::cout << num << std::endl;

}

14. Perform the corresponding steps if the down key was pressed:

if(_key->isKeyDown(OIS::KC_DOWN))

{

 float num = _listener->getNumber();

 num--;

 _listener->setNumber(num);

 std::cout << num << std::endl;

}

15. That's all. Now close the frame started function:

 return true;

}

The Compositor Framework

[192]

16. Compile and run the application. Also try out the effect with different
numbers of pixels.

Chapter 8

[193]

What just happened?
We extended our application to be able to control the number of pixels used for the scene
with the arrow keys. Step 1 and step 4 added and created the frame listener. Step 2 inited
the FrameListener and CompositorListener with NULL and step 3 is responsible for
their destruction. Steps 5 and 6 inserted a new variable into the compositor listener, which
stores the number of pixels we want our scene to have.

In step 4, we changed the method we overrode from notifyMaterialSetup to
notifyMaterialRender. This was necessary because notifyMaterialSetup gets called
only after the material has been created, but notifyMaterialRender gets called each
time the material is going to be rendered. Because we want to be able to change the number
of pixels during runtime, we need to adjust the number of pixels before each draw call. Of
course, a better solution would be to only modify the parameter when the number of pixels
changes. This would save some CPU time, but not that much that we need to care about it in
this example.

Step 8 implemented the getter and setter methods for the number of pixels, and step 9
began implementing the frame listener. We needed the compositor listener to be able to
change the number of pixels and therefore we added a private pointer variable to store it to
the frame listeners.

Step 10 got the CompositorListener pointer and stored in the variable and initialized the
input system, as we already have covered in a previous chapter. Step 11 didn't do anything
new. Steps 13 and 14 used the getter and setter to manipulate the number of pixels in the
compositor visitor. At the end, step 15 finished the frame listener and that was all we needed
to do.

Have a go hero – reducing parameter changes
Change the application so that only when the number of pixels is changed, the parameter
in the material is set to a new value. Also, don't use notifyMaterialRender; instead,
use notifyMaterialSetup.

Adding a split screen
Up until now, we have seen how to add a compositor to a viewport, but there are several
other interesting things that can be done with a viewport, like creating a split screen.

The Compositor Framework

[194]

Time for action – adding a split screen
After playing a bit with our pixels we are now going to add a split screen

1. We don't need the whole code from the previous example. So delete the
compositor listener and the frame listener.

2. We need a second camera, so create a pointer to hold it:

private:

 Ogre::Camera* mCamera2;

3. The createScene() function just needs to create an instance
of Sinbad.mesh and attach it to a scene node:

void createScene()

{

 Ogre::SceneNode* node = mSceneMgr->getRootSceneNode()-
>createChildSceneNode();

 Ogre::Entity* ent = mSceneMgr->createEntity("Sinbad.mesh");

 node->attachObject(ent);

}

4. Now we need a createCamera() function in which we create a camera that
looks at our model at (0,0,0) from (0,10,20):

void createCamera()

{

 mCamera = mSceneMgr->createCamera("MyCamera1");

 mCamera->setPosition(0,10,20);

 mCamera->lookAt(0,0,0);

 mCamera->setNearClipDistance(5);

5. Now use the new camera pointer to store another camera, which looks at the
same point but now from the position (20,10,0):

 mCamera2 = mSceneMgr->createCamera("MyCamera2");

 mCamera2->setPosition(20,10,0);

 mCamera2->lookAt(0,0,0);

 mCamera2->setNearClipDistance(5);

}

Chapter 8

[195]

6. We have the cameras, but we need the viewports, so override the
createViewport() method:

void createViewports()

{

7. Create a viewport that covers the left half of the render window using the
first camera:

Ogre::Viewport* vp = mWindow->addViewport(mCame
ra,0,0.0,0.0,0.5,1.0);

vp->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

8. Then create a second viewport that covers the right half of the render window
using the second camera:

Ogre::Viewport* vp2 = mWindow->addViewport(mCame
ra2,1,0.5,0.0,0.5,1.0);

vp2->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

9. Both cameras need the correct aspect ratio; otherwise the image
would look strange:

mCamera->setAspectRatio(Real(vp->getActualWidth()) / Real(vp-
>getActualHeight()));

mCamera2->setAspectRatio(Real(vp2->getActualWidth()) / Real(vp2-
>getActualHeight()));

10. Compile and run the application. You should see the same instance from two
different directions.

The Compositor Framework

[196]

What just happened?
We created an application with two viewports; each has a camera that looks at our model
instance from a different direction. Because we want to view our model from different
directions, each viewport needs its own camera. Therefore, we created a new pointer in
step 2 to hold our second camera. Step 3 just created a simple scene containing one model
to look at. Step 4 overrode the createCamera() function and created our first camera,
which was created at position (0,10,20) and looks at (0,0,0). This means this camera looks
along the z-axis, for example, at the front of the model. Step 5 created a camera at (20,10,0),
which looks along the x-axis. Step 6 overrode the createViewports() function, which
was filled by later steps. Step 7 created the first viewport and added the first camera to the
RenderWindow. This was done using the addViewport() function. As the first parameter,
this function takes the camera that will deliver the image to be displayed. The second
number defines which viewport has higher priority, should two viewports overlap. The
viewport with the highest number is rendered if two viewports overlap. The third and fourth
parameters define the beginning point of the viewport and the fifth and sixth parameters
define the height and width. Each is in the range 0 to 1. The following is an image showing
how our render window and viewports are set up.

Step 9 just set the aspect ratios of each camera using the view port to get the width and
height information.

Also, if we tried moving the camera with the mouse and keyboard, we might have noticed
that we can only control the camera on the left viewport. This is because only the camera
pointer mCamera is controlled from the default frame listener. If we wanted to control all
cameras, we would need to modify ExampleFrameListener.

Chapter 8

[197]

Have a go hero – doing more with viewports
Create an application that has four viewports—one for the front, one for the rear, one for the
left, and one for the right. The result should look like the following image:

Putting it all together
We have seen how to create and apply compositors and how to create split screens using
different viewports. Now we are going to combine both. In order to use the four viewports,
we have to apply a compositor that multiplies the outgoing color with a float4 as factors,
and with this as the parameter, we will create a scene where we see each color channel on
its own, and then the final picture, which combines them all.

The Compositor Framework

[198]

Time for action – selecting a color channel
We are going to use the previous code, but we have to add and delete a lot:

1. Start with the fragment program. Besides the normal parameter, add a
float4 uniform parameter to store the color channel factors. Use these
factors to multiply the color we retrieved from the original scene texture:

void MyFragmentShader10(float2 uv : TEXCOORD0,

 out float4 color : COLOR,

 uniform sampler2D texture,

 uniform float4 factors

)

{

 color = tex2D(texture, uv);

 color *= factors;

}

2. Create a new material that uses the fragment shader and add the parameter with
the default value of (1,1,1,0). This means that without changing the parameter,
the scene will be rendered normally:

fragment_program MyFragmentShader10 cg

{

 source Ogre3DBeginnerGuideShaders.cg

 entry_point MyFragmentShader10

 profiles ps_1_1 arbfp1

 default_params

 {

 param_named factors float4 1 1 1 0

 }

}

material Ogre3DBeginnersGuide/Comp7

{

 technique

 {

 pass

 {

 fragment_program_ref MyFragmentShader10

 {

Chapter 8

[199]

 }

 texture_unit

 {

 }

 }

 }

}

3. Then add a compositor that uses this material:

compositor Compositor9

{

 technique

 {

 texture scene target_width target_height PF_R8G8B8

 target scene

 {

 input previous

 }

 target_output

 {

 input none

 pass render_quad

 {

 material Ogre3DBeginnersGuide/Comp7

 input 0 scene

 }

 }

 }

}

4. We have three color channels, so we will need three compositor listeners to
change the parameters accordingly. First, add the one for the red color channel.
Only set the color factors in the setup of the material and we don't need them to
change during runtime:

class CompositorListener2 : public Ogre::CompositorInstance::Liste
ner

{

public:

 void notifyMaterialSetup (uint32 pass_id, MaterialPtr &mat)

The Compositor Framework

[200]

 {

 mat->getBestTechnique()->getPass(pass_id)-
>getFragmentProgramParameters()->setNamedConstant("factors",Ogre::
Vector3(1,0,0));

 }

}

5. Now, add the compositor for the green and blue color channels:

class CompositorListener3 : public Ogre::CompositorInstance::Liste
ner

{

public:

 void notifyMaterialSetup (uint32 pass_id, MaterialPtr &mat)

 {

 mat->getBestTechnique()->getPass(pass_id)-
>getFragmentProgramParameters()->setNamedConstant("factors",Ogre::
Vector3(0,1,0));

 }

};

class CompositorListener4 : public Ogre::CompositorInstance::Liste
ner

{

public:

 void notifyMaterialSetup (uint32 pass_id, MaterialPtr &mat)

 {

 mat->getBestTechnique()->getPass(pass_id)-
>getFragmentProgramParameters()->setNamedConstant("factors",Ogre::
Vector3(0,0,1));

 }

};

6. Instead of the camera pointer, add four viewport pointers to the application:

class Example83 : public ExampleApplication

{

private:

 Ogre::Viewport* vp;

 Ogre::Viewport* vp2;

 Ogre::Viewport* vp3;

 Ogre::Viewport* vp4;

Chapter 8

[201]

7. Create the camera we are going to use and position it so that it looks
at the front of Sinbad:

void createCamera()

{

 mCamera = mSceneMgr->createCamera("MyCamera1");

 mCamera->setPosition(0,10,20);

 mCamera->lookAt(0,0,0);

 mCamera->setNearClipDistance(5);

}

8. Adjust the createViewport() function to only use one camera
and add the needed code for the two new viewports:

void createViewports()

{

 vp = mWindow->addViewport(mCamera,0,0.0,0.0,0.5,0.5);

 vp->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

 vp2 = mWindow->addViewport(mCamera,1,0.5,0.0,0.5,0.5);

 vp2->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

 vp3 = mWindow->addViewport(mCamera,2,0.0,0.5,0.5,0.5);

 vp3->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

 vp4 = mWindow->addViewport(mCamera,3,0.5,0.5,0.5,0.5);

 vp4->setBackgroundColour(ColourValue(0.0f,0.0f,0.0f));

 mCamera->setAspectRatio(Real(vp->getActualWidth()) /
Real(vp->getActualHeight()));

}

9. Add three pointers for storing the Compositor Listeners we have created above
the application:

CompositorListener2* compListener;

CompositorListener3* compListener2;

CompositorListener4* compListener3;

10. Init each of them with NULL in the constructor:

Example83()

{

 compListener = NULL;

 compListener2 = NULL;

 compListener3 = NULL;

}

The Compositor Framework

[202]

11. And, of course, delete them in the destructor:

~Example83()

{

 if(compListener)

 {

 delete compListener;

 }

 if(compListener2)

 {

 delete compListener2;

 }

 if(compListener3)

 {

 delete compListener3;

 }

}

12. In the createScene() function, after the creation of the model instance and
the scene node, add the code needed to add the compositor to our first viewport ,
enable it, and attach to it the compositor listener that only allows the red color
channel to be rendered:

Ogre::CompositorManager::getSingleton().addCompositor(vp,
"Compositor9");

Ogre::CompositorManager::getSingleton().setCompositorEnabled(vp,
"Compositor9", true);

Ogre::CompositorInstance* comp = Ogre::CompositorManager::getSing
leton().getCompositorChain(vp)->getCompositor("Compositor9");

compListener = new CompositorListener2();

comp->addListener(compListener);

13. Do the same for the second and third viewports using
the green and blue only compositor listeners:

Ogre::CompositorManager::getSingleton().addCompositor(vp2,
"Compositor9");

Ogre::CompositorManager::getSingleton().setCompositorEnabled(vp2,
"Compositor9", true);

Ogre::CompositorInstance* comp2 = Ogre::CompositorManager::getSin
gleton().getCompositorChain(vp2)->getCompositor("Compositor9");

compListener2 = new CompositorListener3();

comp2->addListener(compListener2);

Chapter 8

[203]

Ogre::CompositorManager::getSingleton().addCompositor(vp3,
"Compositor9");

Ogre::CompositorManager::getSingleton().setCompositorEnabled(vp3,
"Compositor9", true);

Ogre::CompositorInstance* comp3 = Ogre::CompositorManager::getSin
gleton().getCompositorChain(vp3)->getCompositor("Compositor9");

compListener3 = new CompositorListener4();

comp3->addListener(compListener3);

14. Now run and compile the application. You should see the four identical images, only
with different color channels rendered. At the top left, there is only the red color
channel visible; on the top right, only the green; on the bottom left, the blue; and on
the bottom right, the image with all the color channels:

What just happened?
We used the knowledge we gathered from the examples in this chapter to create an
application that uses four viewports and one compositor in combination with three
compositor listeners to see each color channel on its own and the combined result.
Nothing really new has happened in this example; if needed, consult the other examples
to understand this one.

Summary
We learned a lot in this chapter about compositors and viewports.

Specifically, we covered:

 � How to create compositor scripts and how to add them to our scene

 � How to manipulate our scene using compositors and fragment shaders

 � The parameters for shaders and how to change their values in material scripts
or directly in the application code

 � How to combine compositors to save us the work of rewriting the same code
over and over again

 � Combining topics we have learned previously to create a compositor that is
controlled by user input

We now have covered a lot of Ogre 3D; only one really important topic is left. Up until now,
we have relied on ExampleApplication. In the next chapter, we are going to write our
own ExampleApplication.

9
The Ogre 3D Startup Sequence

We have covered a lot of ground in the progress of this book. This chapter is
going to cover one of the few topics left: how to create our own application
without relying on the ExampleApplication. After we have covered this
topic, this chapter is going to repeat some of the topics from the previous
chapters to make a demo of the things we have learned using our new open
application class.

In this chapter, we will:

 � Learn how to start Ogre 3D ourselves

 � Parse resources.cfg to load the models we need

 � Combine things from the previous chapters to make a small demo application
showing off the things we have learned

So let's get on with it...

Starting Ogre 3D
Up until now, the ExampleApplication class has started and initialized Ogre 3D for us;
now we are going to do it ourselves.

The Ogre 3D Startup Sequence

[206]

Time for action – starting Ogre 3D
This time we are working on a blank sheet.

1. Start with an empty code file, include Ogre3d.h, and create an empty
main function:

#include "Ogre\Ogre.h"

int main (void)
{

 return 0;
}

2. Create an instance of the Ogre 3D Root class; this class needs the name of the
"plugin.cfg":

Ogre::Root* root = new Ogre::Root("plugins_d.cfg");

3. If the config dialog can't be shown or the user cancels it, close the application:

if(!root->showConfigDialog())
{
 return -1;
}

4. Create a render window:

Ogre::RenderWindow* window = root->initialise(true,"Ogre3D
Beginners Guide");

5. Next create a new scene manager:

Ogre::SceneManager* sceneManager = root-
>createSceneManager(Ogre::ST_GENERIC);

6. Create a camera and name it camera:

Ogre::Camera* camera = sceneManager->createCamera("Camera");
camera->setPosition(Ogre::Vector3(0,0,50));
camera->lookAt(Ogre::Vector3(0,0,0));
camera->setNearClipDistance(5);

7. With this camera, create a viewport and set the background color to black:

Ogre::Viewport* viewport = window->addViewport(camera);
viewport->setBackgroundColour(Ogre::ColourValue(0.0,0.0,0.0));

Chapter 9

[207]

8. Now, use this viewport to set the aspect ratio of the camera:

camera->setAspectRatio(Ogre::Real(viewport->getActualWidth())/
Ogre::Real(viewport->getActualHeight()));

9. Finally, tell the root to start rendering:

root->startRendering();

10. Compile and run the application; you should see the normal config dialog and then
a black window. This window can't be closed by pressing Escape because we haven't
added key handling yet. You can close the application by pressing CTRL+C in the
console the application has been started from.

What just happened?
We created our first Ogre 3D application without the help of the ExampleApplication.
Because we aren't using the ExampleApplication any longer, we had to include
Ogre3D.h, which was previously included by ExampleApplication.h. Before we can do
anything with Ogre 3D, we need a root instance. The root class is a class that manages
the higher levels of Ogre 3D, creates and saves the factories used for creating other objects,
loads and unloads the needed plugins, and a lot more. We gave the root instance one
parameter: the name of the file that defines which plugins to load. The following is the
complete signature of the constructor:

Root(const String & pluginFileName = "plugins.cfg",const String &
configFileName = "ogre.cfg",const String & logFileName = "Ogre.log")

Besides the name for the plugin configuration file, the function also needs the name of the
Ogre configuration and the log file. We needed to change the first file name because we are
using the debug version of our application and therefore want to load the debug plugins. The
default value is plugins.cfg, which is true for the release folder of the Ogre 3D SDK, but
our application is running in the debug folder where the filename is plugins_d.cfg.

ogre.cfg contains the settings for starting the Ogre application that we selected in the
config dialog. This saves the user from making the same changes every time he/she starts
our application. With this file Ogre 3D can remember his choices and use them as defaults
for the next start. This file is created if it didn't exist, so we don't append an _d to the
filename and can use the default; the same is true for the log file.

The Ogre 3D Startup Sequence

[208]

Using the root instance, we let Ogre 3D show the config dialog to the user in step 3.
When the user cancels the dialog or anything goes wrong, we return -1 and with this the
application closes. Otherwise, we created a new render window and a new scene manager
in step 4. Using the scene manager, we created a camera, and with the camera we created
the viewport; then, using the viewport, we calculated the aspect ratio for the camera. The
creation of camera and viewport shouldn't be anything new; we have already done that in
Chapter 3, Camera, Light, and Shadow. After creating all requirements, we told the root
instance to start rendering, so our result would be visible. Following is a diagram showing
which object was needed to create the other:

Adding resources
We have now created our first Ogre 3D application, which doesn't need the
ExampleApplication. But one important thing is missing: we haven't loaded
and rendered a model yet.

Time for action – loading the Sinbad mesh
We have our application, now let's add a model.

1. After setting the aspect ratio and before starting the rendering, add the zip archive
containing the Sinbad model to our resources:

Ogre::ResourceGroupManager::getSingleton().
addResourceLocation("../../Media/packs/Sinbad.zip","Zip");

2. We don't want to index more resources at the moment, so index all added
resources now:

Ogre::ResourceGroupManager::getSingleton().
initialiseAllResourceGroups();

Chapter 9

[209]

3. Now create an instance of the Sinbad mesh and add it to the scene:

Ogre::Entity* ent = sceneManager->createEntity("Sinbad.mesh");
sceneManager->getRootSceneNode()->attachObject(ent);

4. Compile and run the application; you should see Sinbad in the middle of the screen:

What just happened?
We used the ResourceGroupManager to index the zip archive containing the Sinbad
mesh and texture files, and after this was done, we told it to load the data with the
createEntity() call in step 3.

Using resources.cfg
Adding a new line of code for each zip archive or folder we want to load is a tedious task
and we should try to avoid it. The ExampleApplication used a configuration file called
resources.cfg in which each folder or zip archive was listed, and all the content was
loaded using this file. Let's replicate this behavior.

Time for action – using resources.cfg to load our models
Using our previous application, we are now going to parse the resources.cfg.

1. Replace the loading of the zip archive with an instance of a config file pointing at
the resources_d.cfg:

Ogre::ConfigFile cf;
cf.load(«resources_d.cfg»);

The Ogre 3D Startup Sequence

[210]

2. First get the iterator, which goes over each section of the config file:

Ogre::ConfigFile::SectionIterator sectionIter =
cf.getSectionIterator();

3. Define three strings to save the data we are going to extract from the config file
and iterate over each section:

Ogre::String sectionName, typeName, dataname;
while (sectionIter.hasMoreElements())
{

4. Get the name of the section:

sectionName = sectionIter.peekNextKey();

5. Get the settings contained in the section and, at the same time, advance the section
iterator; also create an iterator for the settings itself:

Ogre::ConfigFile::SettingsMultiMap *settings = sectionIter.
getNext();
Ogre::ConfigFile::SettingsMultiMap::iterator i;

6. Iterate over each setting in the section:

for (i = settings->begin(); i != settings->end(); ++i)
{

7. Use the iterator to get the name and the type of the resources:

typeName = i->first;
dataname = i->second;

8. Use the resource name, type, and section name to add it to the resource index:

Ogre::ResourceGroupManager::getSingleton().
addResourceLocation(dataname, typeName, sectionName);

9. Compile and run the application, and you should see the same scene as before.

Chapter 9

[211]

What just happened?
In the first step, we used another helper class of Ogre 3D, called ConfigFile. This class
is used to easily load and parse simple configuration files, which consist of name-value
pairs. By using an instance of the ConfigFile class, we loaded the resources_d.
cfg. We hardcoded the filename with the debug postfix; this isn't good practice and
in a production application we would use #ifdef to change the filename depending
on the debug or release mode. ExampleApplication does this; let's take a look at
ExampleApplication.h line 384:

#if OGRE_DEBUG_MODE
 cf.load(mResourcePath + "resources_d.cfg");
#else
 cf.load(mResourcePath + "resources.cfg");
#endif

Structure of a configuration file
The configuration file loaded by the helper class follows a simple structure; here is an
example from resource.cfg. Of course your resource.cfg will consist of different paths:

[General]
FileSystem=D:/programming/ogre/ogre_trunk_1_7/Samples/Media

[General] starts a section, which goes on until another[sectionname] occurs in the file.
Each configuration file can contain a lot of sections; in step 2 we created an iterator to iterate
over all the sections in the file and in step 3 we used a while loop, which runs until we have
processed each section.

A section consists of several settings and each setting assigns a key a value. We assign the
key FileSystem the value D:/programming/ogre/ogre_trunk_1_7/Samples/
Media. In step 4, we created an iterator so we can iterate over each setting. The settings are
internally called name-value pairs. We iterate over this map and for each entry we use the
map key as the type of the resource and the data we use as the path. Using the section name
as resource group, we added the resource using the resource group manager in step 8. Once
we had parsed the complete file, we indexed all the files.

Creating an application class
We now have the basis for our own Ogre 3D application, but all the code is in the main
function, which isn't really desirable for reusing the code.

The Ogre 3D Startup Sequence

[212]

Time for action – creating a class
Using the previously applied code we are now going to create a class to separate the Ogre
code from the main function.

1. Create the class MyApplication, which has two private pointers, one to a Ogre 3D
SceneManager and the other to the Root class:

class MyApplication
{
private:
 Ogre::SceneManager* _sceneManager;
Ogre::Root* _root;

2. The rest of this class should be public:

public:

3. Create a loadResources() function, which loads the resources.cfg
configuration file:

void loadResources()
{
 Ogre::ConfigFile cf;
 cf.load(«resources_d.cfg»);

4. Iterate over the sections of the configuration file:

Ogre::ConfigFile::SectionIterator sectionIter =
cf.getSectionIterator();
Ogre::String sectionName, typeName, dataname;
while (sectionIter.hasMoreElements())
{

5. Get the section name and the iterator for the settings:

sectionName = sectionIter.peekNextKey();
Ogre::ConfigFile::SettingsMultiMap *settings = sectionIter.
getNext();
Ogre::ConfigFile::SettingsMultiMap::iterator i;

6. Iterate over the settings and add each resource:

 for (i = settings->begin(); i != settings->end(); ++i)
 {
 typeName = i->first;
 dataname = i->second;

 Ogre::ResourceGroupManager::getSingleton().
addResourceLocation(
 dataname, typeName, sectionName);

Chapter 9

[213]

 }
 }

 Ogre::ResourceGroupManager::getSingleton().
initialiseAllResourceGroups();
}

7. Also create a startup() function, which creates an Ogre 3D root class instance
using the plugins.cfg:

int startup()
{
 _root = new Ogre::Root(«plugins_d.cfg»);

8. Show the config dialog and when the user quits it, return -1 to close
the application:

if(!_root->showConfigDialog())
{
 return -1;
}

9. Create the RenderWindow and the SceneManager:

Ogre::RenderWindow* window = _root->initialise(true,"Ogre3D
Beginners Guide");
_sceneManager = root->createSceneManager(Ogre::ST_GENERIC);

10. Create a camera and a viewport:

Ogre::Camera* camera = _sceneManager->createCamera("Camera");
camera->setPosition(Ogre::Vector3(0,0,50));
camera->lookAt(Ogre::Vector3(0,0,0));
camera->setNearClipDistance(5);

Ogre::Viewport* viewport = window->addViewport(camera);
viewport->setBackgroundColour(Ogre::ColourValue(0.0,0.0,0.0));
camera->setAspectRatio(Ogre::Real(viewport->getActualWidth())/
Ogre::Real(viewport->getActualHeight()));

11. Call the function to load our resources and then a function to create a scene; after
that, Ogre 3D starts rendering:

loadResources();
createScene();
_root->startRendering();
return 0;

The Ogre 3D Startup Sequence

[214]

12. Then create the createScene() function, which contains the code for creating the
SceneNode and the Entity:

void createScene()
{
 Ogre::Entity* ent = _sceneManager->createEntity(«Sinbad.mesh»);
 _sceneManager->getRootSceneNode()->attachObject(ent);
}

13. We need the constructor to set both the pointers to NULL so we can delete it even if
it hasn't been assigned a value:

MyApplication()
{
 _sceneManager = NULL;
_root = NULL;
}

14. We need to delete the root instance when our application instance is destroyed, so
implement a destructor which does this:

~MyApplication()
{
 delete _root;
}

15. The only thing left to do is to adjust the main function:

int main (void)
{
 MyApplication app;
 app.startup();
 return 0;
}

16. Compile and run the application; the scene should be unchanged.

What just happened?
We refactored our starting codebase so that different functionalities are better organized.
We also added a destructor so our created instances would be deleted when our application
is closed. One problem is that our destructor won't be called; because startup() never
returns, there is no way to close our application. We need to add a FrameListener to tell
Ogre 3D to stop rendering.

Chapter 9

[215]

Adding a FrameListener
We have already used the ExampleFrameListener; this time we are going to use our own
implementation of the interface.

Time for action – adding a FrameListener
Using the code from before we are going to add our own FrameListener implementation

1. Create a new class called MyFrameListener exposing three publicly visible
event handler functions:

class MyFrameListener : public Ogre::FrameListener
{
public:

2. First, implement the frameStarted function, which for now returns false
to close the application:

bool frameStarted(const Ogre::FrameEvent& evt)
{
 return false;
}

3. We also need a frameEnded function, which also returns false:

bool frameEnded(const Ogre::FrameEvent& evt)
{
 return false;
}

4. The last function we implement is the frameRenderingQueued function,
which also returns false:

bool frameRenderingQueued(const Ogre::FrameEvent& evt)
{
 return false;
}

5. The main class needs a point to store the FrameListener:

MyFrameListener* _listener;

6. Remember that the constructor needs to set the initial value of the listener to NULL:

_listener = NULL;

The Ogre 3D Startup Sequence

[216]

7. Let the destructor delete the instance:

delete _listener;

8. At last, create a new instance of the FrameListener and add it to the root object;
this should happen in the startup() function:

_listener = new MyFrameListener();
_root->addFrameListener(_listener);

9. Compile and run the application; it should be closed directly.

What just happened?
We created our own FrameListener class, which didn't rely on the
ExampleFrameListener implementation. This time we inherited directly from the
FrameListener interface. This interface consists of three virtual functions, which we
implemented. We already knew the frameStarted function, but the other two are new.
All three functions return false, which is an indicator to Ogre 3D to stop rendering and
close the application. Using our implementation, we added a FrameListener to the root
instance and started the application; not surprisingly, it closed directly.

Investigating the FrameListener functionality
Our FrameListener implementation has three functions; each is called at a different point
in time. We are going to investigate in which sequence they are called.

Time for action – experimenting with the FrameListener
implementation

Using the console printing we are going to inspect when the FrameListener is called.

1. First let each function print a message to the console when it is called:

bool frameStarted(const Ogre::FrameEvent& evt)
{
 std::cout << «Frame started» << std::endl;
 return false;
}

bool frameEnded(const Ogre::FrameEvent& evt)
{
 std::cout << «Frame ended» << std::endl;
 return false;
}

bool frameRenderingQueued(const Ogre::FrameEvent& evt)

Chapter 9

[217]

{
 std::cout << «Frame queued» << std::endl;
 return false;
}

2. Compile and run the application; in the console you should find the first string—
Frame started.

What just happened?
We added a "debug" output to each of the FrameListener functions to see which function
is getting called. Running the application, we noticed that only the first debug message is
printed. The reason is that the frameStarted function returns false, which is a signal for
the root instance to close the application.

Now that we know what happens when frameStarted() returns false, let's see what
happens when frameStarted() returns true.

Time for action – returning true in the frameStarted function
Now we are going to modify the behavior of our FrameListener to see how this changed
its behavior.

1. Change frameStarted to return true:

bool frameStarted(const Ogre::FrameEvent& evt)
{
 std::cout << «Frame started» << std::endl;
 return true;
}

2. Compile and run the application. Before the application closes directly, you will see
a short glimpse of the rendered scene and there should be the two following lines in
the output:

Frame started

Frame queued

The Ogre 3D Startup Sequence

[218]

What just happened?
Now, the frameStarted function returns true and this lets Ogre 3D continue to render
until false is returned by the frameRenderingQueued function. We see a scene this time
because directly after the frameRenderingQueued function is called, the render buffers
are swapped before the application gets the possibility to close itself.

Double buffering
When a scene is rendered, it isn't normally rendered directly to the buffer, which is
displayed on the monitor. Normally, the scene is rendered to a second buffer and when
the rendering is finished, the buffers are swapped. This is done to prevent some artifacts,
which can be created if we render to the same buffer, which is displayed on the monitor. The
FrameListener function, frameRenderingQueued, is called after the scene has been
rendered to the back buffer, the buffer which isn't displayed at the moment. Before the buffers
are swapped, the rendering result is already created but not yet displayed. Directly after the
frameRenderingQueued function is called, the buffers get swapped and then the application
gets the return value and closes itself. That's the reason why we see an image this time.

Now, we will see what happens when frameRenderingQueued also returns true.

Time for action – returning true in the frameRenderingQueued
function

Once again we modify the code to test the behavior of the Frame Listener.

1. Change frameRenderingQueued to return true:

bool frameRenderingQueued (const Ogre::FrameEvent& evt)
{
 std::cout << «Frame queued» << std::endl;
 return true;
}

Chapter 9

[219]

2. Compile and run the application. You should see Sinbad for a short period of time
before the application closes, and the following three lines should be in the console
output:

Frame started

Frame queued

Frame ended

What just happened?
Now that the frameRenderingQueued handler returns true, it will let Ogre 3D continue
to render until the frameEnded handler returns false.

Like in the last example, the render buffers were swapped, so we saw the scene for a short
period of time. After the frame was rendered, the frameEnded function returned false,
which closes the application and, in this case, doesn't change anything from our perspective.

Time for action – returning true in the frameEnded function
Now let's test the last of three possibilities.

1. Change frameRenderingQueued to return true:

bool frameEnded (const Ogre::FrameEvent& evt)
{
 std::cout << «Frame ended» << std::endl;
 return true;
}

The Ogre 3D Startup Sequence

[220]

2. Compile and run the application. You should see the scene with Sinbad and an
endless repetition of the following three lines:

Frame started

Frame queued

Frame ended

What just happened?
Now, all event handlers returned true and, therefore, the application will never be closed;
it would run forever as long as we aren't going to close the application ourselves.

Adding input
We have an application running forever and have to force it to close; that's not neat.
Let's add input and the possibility to close the application by pressing Escape.

Time for action – adding input
Now that we know how the FrameListener works, let's add some input.

1. We need to include the OIS header file to use OIS:

#include "OIS\OIS.h"

2. Remove all functions from the FrameListener and add two private members to
store the InputManager and the Keyboard:

OIS::InputManager* _InputManager;

Chapter 9

[221]

OIS::Keyboard* _Keyboard;

3. The FrameListener needs a pointer to the RenderWindow to initialize OIS,
so we need a constructor, which takes the window as a parameter:

MyFrameListener(Ogre::RenderWindow* win)
{

4. OIS will be initialized using a list of parameters, we also need a window handle
in string form for the parameter list; create the three needed variables to store
the data:

OIS::ParamList parameters;
unsigned int windowHandle = 0;
std::ostringstream windowHandleString;

5. Get the handle of the RenderWindow and convert it into a string:

win->getCustomAttribute("WINDOW", &windowHandle);
windowHandleString << windowHandle;

6. Add the string containing the window handle to the parameter list using the key
"WINDOW":

parameters.insert(std::make_pair("WINDOW", windowHandleString.
str()));

7. Use the parameter list to create the InputManager:

_InputManager = OIS::InputManager::createInputSystem(parameters);

8. With the manager create the keyboard:

_Keyboard = static_cast<OIS::Keyboard*>(_InputManager-
>createInputObject(OIS::OISKeyboard, false));

9. What we created in the constructor, we need to destroy in the destructor:

~MyFrameListener()
{
 _InputManager->destroyInputObject(_Keyboard);
 OIS::InputManager::destroyInputSystem(_InputManager);
}

10. Create a new frameStarted function, which captures the current state of the
keyboard, and if Escape is pressed, it returns false; otherwise, it returns true:

bool frameStarted(const Ogre::FrameEvent& evt)
{
 _Keyboard->capture();
 if(_Keyboard->isKeyDown(OIS::KC_ESCAPE))

The Ogre 3D Startup Sequence

[222]

 {
 return false;
 }
 return true;
}

11. The last thing to do is to change the instantiation of the FrameListener to use a
pointer to the render window in the startup function:

_listener = new MyFrameListener(window);
_root->addFrameListener(_listener);

12. Compile and run the application. You should see the scene and now be able to close
it by pressing the Escape key.

What just happened?
We added input processing capabilities to our FrameListener the same way we did in
Chapter 4, Getting User Input and using the Frame Listener. The only difference is that this
time, we didn't use any example classes, but our own versions.

Pop quiz – the three event handlers
Which three functions offer the FrameListener interface and at which point is each of
these functions called?

Our own main loop
We have used the startRendering function to fire up our application. After this, the only
way we knew when a frame was rendered was by relying on the FrameListener. But
sometimes it is not possible or desirable to give up the control over the main loop; for such
cases, Ogre 3D provides another method, which doesn't require us to give up the control
over the main loop.

Time for action – using our own rendering loop
Using the code from before we are now going to use our own rendering loop.

1. Our application needs to know if it should keep running or not; add a Boolean
as a private member of the application to remember the state:

bool _keepRunning;

2. Remove the startRendering function call in the startup function.

Chapter 9

[223]

3. Add a new function called renderOneFrame, which calls the renderOneFrame
function of the root instance and saves the return value in the _keepRunning
member variable. Before this call, add a function to process all window events:

void renderOneFrame()
{
 Ogre::WindowEventUtilities::messagePump();
 _keepRunning = _root->renderOneFrame();
}

4. Add a getter for the _keepRunning member variable:

bool keepRunning()
{
 return _keepRunning;
}

5. Add a while loop to the main function, which keeps running as long as the
keepRunning function returns true. In the body of the loop, call the
renderOneFrame function of the application.

while(app.keepRunning())
{
 app.renderOneFrame();
}

6. Compile and run the application. There shouldn't be any noticeable difference to
the last example.

What just happened?
We moved the control of the main loop from Ogre 3D to our application. Before this change,
Ogre 3D used an internal main loop over which we hadn't any control and had to rely on the
FrameListener to get notified if a frame was rendered.

Now we have our own main loop. To get there, we needed a Boolean member variable,
which signals if the application wishes to keep running or not; this variable was added in step
1. Step 2 removed the startRendering function call so we wouldn't hand over the control
to Ogre 3D. In step 3, we created a function, which first calls a helper function of Ogre 3D,
which processes all window events we might have gotten from the operating system. It then
sends all messages we might have created since the last frame, and therefore makes the
application "well-behaved" in the context of the host windowing system.

The Ogre 3D Startup Sequence

[224]

After this we call the Ogre 3D function renderOneFrame, which does exactly what the name
suggests: it renders the frame and also calls the frameStarted, frameRenderingQueued,
and frameEnded event handler of each registered FrameListener and returns
false if any of these functions returned false. Since we assign the return value of the
function to the _keepRunning member variable, we can use this variable to check if the
application should keep running. When renderOneFrame returns a false, we know some
FrameListener wants to close the application and we set the _keepRunning variable to
false. The fourth step just added a getter for the _keepRunning member variable.

In step 5, we used the _keepRunning variable as the condition for the while loop. This
means the while loop will run as long as _keepRunning is true, which will be the case
until one FrameListener returns false, which then will result in the while loop to
exit and with this the whole application will be closed. Inside the while loop we call the
renderOneFrame function of the application to update the render window with the
newest render result. This is all we needed to create our own main loop.

Adding a camera (again)
We have already implemented a camera in Chapter 4, Getting User Input and Using the
Frame Listener, but, nevertheless, we want a controllable camera in our own implementation
of the frame listener, so here we go.

Time for action – adding a frame listener
Using our FrameListener we are going to add a user controlled camera.

1. To control the camera we need a mouse interface, a pointer to the camera, and a
variable defining the speed at which our camera should move as a member variable
of our FrameListener:

OIS::Mouse* _Mouse;
Ogre::Camera* _Cam;
float _movementspeed;

2. Adjust the constructor and add the camera pointer as the new parameter and set
the movement speed to 50:

MyFrameListener(Ogre::RenderWindow* win,Ogre::Camera* cam)
{
 _Cam = cam;
 _movementspeed = 50.0f;

Chapter 9

[225]

3. Init the mouse using the InputManager:

_Mouse = static_cast<OIS::Mouse*>(_InputManager-
>createInputObject(OIS::OISMouse, false));

4. And remember to destroy it in the destructor:

_InputManager->destroyInputObject(_Mouse);

5. Add the code to move the camera using the W, A, S, D keys and the movement
speed to the frameStarted event handler:

Ogre::Vector3 translate(0,0,0);
if(_Keyboard->isKeyDown(OIS::KC_W))
{
 translate += Ogre::Vector3(0,0,-1);
}
if(_Keyboard->isKeyDown(OIS::KC_S))
{
 translate += Ogre::Vector3(0,0,1);
}
if(_Keyboard->isKeyDown(OIS::KC_A))
{
 translate += Ogre::Vector3(-1,0,0);
}
if(_Keyboard->isKeyDown(OIS::KC_D))
{
 translate += Ogre::Vector3(1,0,0);
}
_Cam->moveRelative(translate*evt.timeSinceLastFrame * _
movementspeed);

6. Now do the same for the mouse control:

_Mouse->capture();
float rotX = _Mouse->getMouseState().X.rel * evt.
timeSinceLastFrame* -1;
float rotY = _Mouse->getMouseState().Y.rel * evt.
timeSinceLastFrame * -1;
_Cam->yaw(Ogre::Radian(rotX));
_Cam->pitch(Ogre::Radian(rotY));

7. The last thing to do is to change the instantiation of the FrameListener:

_listener = new MyFrameListener(window,camera);

The Ogre 3D Startup Sequence

[226]

8. Compile and run the application. The scene should be unchanged but now we can
control the camera:

What just happened?
We used our knowledge from the previous chapters to add a user-controlled camera.
The next step will be to add compositors and other features to make our application
more interesting and to leverage some of the techniques we learned along the way.

Adding compositors
Previously, we have created three compositors, which we are now going to add to our
application with the capability to turn each one off and on using keyboard input.

Time for action – adding compositors
Having almost finished our application, we are going to add compositors to make the
application more interesting.

1. We are going to use compositors in our FrameListener, so we need a member
variable containing the viewport:

Ogre::Viewport* _viewport;

2. We also are going to need to save which compositor is turned on; add three
Booleans for this task:

bool _comp1, _comp2, _comp3;

Chapter 9

[227]

3. We are going to use keyboard input to switch the compositors on and off. To be able
to differentiate between key presses, we need to know the previous state of the key:

bool _down1, _down2, _down3;

4. Change the constructor of the FrameListener to take the viewport as a
parameter:

MyFrameListener(Ogre::RenderWindow* win,Ogre::Camera*
cam,Ogre::Viewport* viewport)

5. Assign the viewport pointer to the member and assign the Boolean value their
starting value:

_viewport = viewport;

_comp1 = false;
_comp2 = false;
_comp3 = false;

_down1 = false;
_down2 = false;
_down3 = false;

6. If the key number 1 is pressed and it wasn't pressed before, change the state of the
key to pressed, flip the state of the compositor, and use the flipped value to enable
or disable the compositor. This code goes into the frameStarted function:

if(_Keyboard->isKeyDown(OIS::KC_1) && ! _down1)
{
 _down1 = true;
 _comp1 = !comp1;
 Ogre::CompositorManager::getSingleton().setCompositorEnabled(_
viewport, "Compositor2", _comp1);
}

7. Do the same for the other two compositors we are going to have:

if(_Keyboard->isKeyDown(OIS::KC_2) && ! _down2)
{
 _down2 = true;
 _comp2 = !comp2;
 Ogre::CompositorManager::getSingleton().setCompositorEnabled(_
viewport, "Compositor3", _comp2);
}
if(_Keyboard->isKeyDown(OIS::KC_3) && ! _down3)
{
 _down3 = true;
 _comp3 = !comp3;

The Ogre 3D Startup Sequence

[228]

 Ogre::CompositorManager::getSingleton().setCompositorEnabled(_
viewport, "Compositor7", _comp3);
}

8. If a key is no longer pressed, we need to change the state of the key:

if(!_Keyboard->isKeyDown(OIS::KC_1))
{
 _down1 = false;
}
if(!_Keyboard->isKeyDown(OIS::KC_2))
{
 _down2 = false;
}
if(!_Keyboard->isKeyDown(OIS::KC_3))
{
 _down3 = false;
}

9. In the startup() function, add the three compositors to the viewport to the end
of the function:

Ogre::CompositorManager::getSingleton().addCompositor(viewport,
"Compositor2");
Ogre::CompositorManager::getSingleton().addCompositor(viewport,
"Compositor3");
Ogre::CompositorManager::getSingleton().addCompositor(viewport,
"Compositor7");

10. Remember to change the instantiation of the FrameListener to add the viewport
pointer as parameter:

_listener = new MyFrameListener(window,camera,viewport);

11. Compile and run the application. Using the 1, 2, 3 keys, you should be able to turn
different compositors on and off. The 1 key is for making the image black and white,
the 2 key inverts the image, and the 3 key makes the image look like it has a smaller
resolution; you can combine all of the effect the way you like:

Chapter 9

[229]

What just happened?
We added the compositors we wrote in the chapter about and made it possible to turn
them on and off using the 1, 2, and 3 keys. To combine the compositors, we used the fact
that Ogre 3D automatically chains compositors if more than one is enabled.

Adding a plane
Without a reference to where the ground is, navigation in 3D space is difficult, so once again
let's add a floor plane.

The Ogre 3D Startup Sequence

[230]

Time for action – adding a plane and a light
Everything we are going to add this time is going in the createScene() function:

1. As we already know we need a plane definition, so add one:

Ogre::Plane plane(Ogre::Vector3::UNIT_Y, -5);
Ogre::MeshManager::getSingleton().createPlane("plane",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
 1500,1500,200,200,true,1,5,5,Ogre::Vector3::UNIT_Z);

2. Then create an instance of this plane, add it to the scene, and change the material:

Ogre::Entity* ground= _sceneManager->createEntity("LightPlaneEnti
ty", "plane");
_sceneManager->getRootSceneNode()->createChildSceneNode()-
>attachObject(ground);
ground->setMaterialName("Examples/BeachStones");

3. Also we would like to have some light in the scene; add one directional light:

Ogre::Light* light = _sceneManager->createLight("Light1");
light->setType(Ogre::Light::LT_DIRECTIONAL);
light->setDirection(Ogre::Vector3(1,-1,0));

4. And some shadows would be nice:

_sceneManager->setShadowTechnique(Ogre::SHADOWTYPE_STENCIL_
ADDITIVE);

5. Compile and run the application. You should see a plane with a stone texture and
on top the Sinbad instance throwing a shadow on the plane.

Chapter 9

[231]

What just happened?
Again, we used our previously gained knowledge to create a plane, light, and add shadows
to the scene.

Adding user control
We have our model instance on a plane, but we can't move it yet; let's change this now.

Time for action – controlling the model with the arrow keys
Now we are going to add interactivity to the scene by adding the user control to the
movements of the model.

1. The FrameListener needs two new members: one pointer to the node we
want to move, and one float indicating the movement speed:

float _WalkingSpeed;
Ogre::SceneNode* _node;

2. The pointer to the node is passed to us in the constructor:

MyFrameListener(Ogre::RenderWindow* win,Ogre::Camera*
cam,Ogre::Viewport* viewport,Ogre::SceneNode* node)

The Ogre 3D Startup Sequence

[232]

3. Assign the node pointer to the member variable and set the walking speed to 50:

_WalkingSpeed = 50.0f;
_node = node;

4. In the frameStarted function we need two new variables, which will hold the
rotation and the translation the user wants to apply to the node:

Ogre::Vector3 SinbadTranslate(0,0,0);
float _rotation = 0.0f;

5. Then we need code to calculate the translation and rotation depending on which
arrow key the user has pressed:

if(_Keyboard->isKeyDown(OIS::KC_UP))
{
 SinbadTranslate += Ogre::Vector3(0,0,-1);
 _rotation = 3.14f;
}
if(_Keyboard->isKeyDown(OIS::KC_DOWN))
{
 SinbadTranslate += Ogre::Vector3(0,0,1);
 _rotation = 0.0f;
}
if(_Keyboard->isKeyDown(OIS::KC_LEFT))
{
 SinbadTranslate += Ogre::Vector3(-1,0,0);
 _rotation = -1.57f;
}
if(_Keyboard->isKeyDown(OIS::KC_RIGHT))
{
 SinbadTranslate += Ogre::Vector3(1,0,0);
 _rotation = 1.57f;
}

6. Then we need to apply the translation and rotation to the node:

_node->translate(SinbadTranslate * evt.timeSinceLastFrame * _
WalkingSpeed);
_node->resetOrientation();
_node->yaw(Ogre::Radian(_rotation));

7. The application itself also needs to store the node pointer of the entity we want to
control:

Ogre::SceneNode* _SinbadNode;

Chapter 9

[233]

8. The FrameListener instantiation needs this pointer:

listener = new MyFrameListener(window,camera,viewport,
SinbadNode);

9. And the createScene function needs to use this pointer to create and store the
node of the entity we want to move; modify the code in the function accordingly:

_SinbadNode = _sceneManager->getRootSceneNode()-
>createChildSceneNode();
_SinbadNode->attachObject(sinbadEnt);

10. Compile and run the application. You should be able to move the entity with the
arrow keys:

What just happened?
We added entity movement using the arrow keys in the FrameListener. Now our entity
floats over the plane like a wizard.

Adding animation
Floating isn't exactly what we wanted; let's add some animation.

The Ogre 3D Startup Sequence

[234]

Time for action – adding animation
Our model can move but it isn't animated yet, let's change this.

1. The FrameListener needs two animation states:

Ogre::AnimationState* _aniState;
Ogre::AnimationState* _aniStateTop;

2. To get the animation states in the constructor, we need a pointer to the entity:

MyFrameListener(Ogre::RenderWindow* win,Ogre::Camera*
cam,Ogre::Viewport* viewport,Ogre::SceneNode* node,Ogre::Entity*
ent)

3. With this pointer we can retrieve the AnimationState and save them for later
use:

_aniState = ent->getAnimationState("RunBase");
_aniState->setLoop(false);

_aniStateTop = ent->getAnimationState(«RunTop»);
_aniStateTop->setLoop(false);

4. Now that we have the AnimationState, we need to have a flag in the
frameStarted function, which tells us whether or not the entity walked this
frame. We add this flag into the if conditions that query the keyboard state:

bool walked = false;

if(_Keyboard->isKeyDown(OIS::KC_UP))
{
 SinbadTranslate += Ogre::Vector3(0,0,-1);
 _rotation = 3.14f;
 walked = true;
}
if(_Keyboard->isKeyDown(OIS::KC_DOWN))
{
 SinbadTranslate += Ogre::Vector3(0,0,1);
 _rotation = 0.0f;
 walked = true;
}
if(_Keyboard->isKeyDown(OIS::KC_LEFT))
{
 SinbadTranslate += Ogre::Vector3(-1,0,0);
 _rotation = -1.57f;
 walked = true;
}
if(_Keyboard->isKeyDown(OIS::KC_RIGHT))

Chapter 9

[235]

{
 SinbadTranslate += Ogre::Vector3(1,0,0);
 _rotation = 1.57f;
 walked = true;
}

5. If the model moves, we enable the animation; if the animation has ended,
we loop it:

if(walked)
{
 _aniState->setEnabled(true);
 _aniStateTop->setEnabled(true);
 if(_aniState->hasEnded())
 {
 _aniState->setTimePosition(0.0f);
 }
 if(_aniStateTop->hasEnded())
 {
 _aniStateTop->setTimePosition(0.0f);
 }
}

6. If the model didn't move, we disable the animation and set it to the start position:

else
{
 _aniState->setTimePosition(0.0f);
 _aniState->setEnabled(false);
 _aniStateTop->setTimePosition(0.0f);
 _aniStateTop->setEnabled(false);
}

7. In each frame, we need to add the passed time to the animation; otherwise, it
wouldn't move:

_aniState->addTime(evt.timeSinceLastFrame);
_aniStateTop->addTime(evt.timeSinceLastFrame);

8. The application now also needs a pointer to the entity:

Ogre::Entity* _SinbadEnt;

9. We use this pointer while instantiating the FrameListener:

listener = new MyFrameListener(window,camera,viewport,
SinbadNode,_SinbadEnt);

The Ogre 3D Startup Sequence

[236]

10. And, of course, while creating the entity:

_SinbadEnt = _sceneManager->createEntity("Sinbad.mesh");

11. Compile and run the application. Now the model should be animated when
it moves:

What just happened?
We added animation to our model, which is only enabled when the model is moved.

Have a go hero – looking up what we used
Look up the chapters where we discussed the techniques we used for the last examples.

Summary
We learned a lot in this chapter about creating our own application to start and run Ogre 3D.

Specifically, we covered the following:

 � How the Ogre 3D startup process works

 � How to make our own main loop

 � Writing our own implementation of an application and FrameListener

Chapter 9

[237]

Some topics we have already covered, but this time we combined them to create a more
complex application.

We have now learned everything needed to create our own Ogre 3D applications. The next
chapter will focus on extending Ogre 3D with other libraries or additional features to make
better and prettier applications.

10
Particle Systems and Extending

Ogre 3D

This is the last chapter in this book, in which we are going to learn about a topic
we haven't touched yet—particle systems. After this, the chapter is going to
present some possible extensions and techniques for Ogre 3D, which might be
helpful in the future, but aren't needed necessarily for every application.

In this chapter, we will:

 � Learn what a particle system is and how it's used

 � Create several different particle systems

 � Get to know some Ogre 3D extensions

 � Be proud that we finished reading this book

So let's get on with it...

Adding a particle system
We are going to attach a smoke particle system to Sinbad, so we will always know
where he is hiding.

Particle Systems and Extending Ogre3D

[240]

Time for action – adding a particle system
We are going to use the code from the last example:

1. Create a particle system that uses a predefined particle script. Add the particle
system to the same scene node that the Sinbad entity is attached to:

Ogre::ParticleSystem* partSystem = _sceneManager->createParticleSy
stem("Smoke","Examples/Smoke");
_SinbadNode->attachObject(partSystem);

2. Compile and run the application. There should be a large amount of smoke coming
from Sinbad.

What just happened?
We used an already defined particle script to create a particle system, which we attached
to the same node that our entity was attached to. This way, the particle system follows our
entity around when it moves.

Chapter 10

[241]

What is a particle system?
Before we create our own particle system instead of loading a predefined one, we need to
discuss what exactly a particle system is. We have seen the effect a particle system creates—
in our case, a smoke cone; but how does it create this?

A particle system consists of two to three different constructs—an emitter, a particle, and
an affector (optional). The most important of these three is the particle itself, as the name
particle system suggests. A particle displays a color or textures using a quad or the point
render capability of the graphics cards. When the particle uses a quad, this quad is always
rotated to face the camera. Each particle has a set of parameters, including a time to live,
direction, and velocity. There are a lot of different parameters, but these three are the most
important for the concept of particle systems. The time to live parameter controls the life
and death of a particle. Normally, a particle doesn't live for more than a few seconds before
it gets destroyed. This effect can be seen in the demo when we look up at the smoke cone.
There will be a point where the smoke vanishes. For these particles, the time to live counter
reached zero and they got destroyed.

The direction and velocity parameters describe the moving behavior of the particle. In our
case, the direction was up.

An emitter creates a predefined number of particles per second and can be seen as the
source of the particles. Affectors, on the other hand, don't create particles but change some
of their parameters. We haven't seen any affectors in this scene, but we will later. An affector
could change the direction, velocity, or color of the particles created by the emitter.

Now that we know the basics, let's create some particle systems on our own.

Creating a simple particle system
To create a particle system, we need to define the behavior of the system at large and the
behavior of emitters in particular.

Particle Systems and Extending Ogre3D

[242]

Time for action – creating a particle system
We are going to use the code from the previous example:

1. Particle systems are defined in .particle files. Create one in the
media/particle folder.

2. Define the system and name it MySmoke1:

particle_system MySmoke1
{

3. Each particle should use the Example/Smoke material and be 10 units
long and high:

material Examples/Smoke
particle_width 10
particle_height 10

4. We want a maximum of 500 particles at the same time and each particle
should be a point that always faces the camera:

quota 500
billboard_type point

5. We want an emitter that emits the particles from a single point at a rate of
3 particles per second:

emitter Point
 {
emission_rate 3

6. The particles should be emitted in the direction (1,0,0) with a velocity of 20 units
per second:

direction 1 0 0
velocity 20

7. That's all for this script. Close the brackets:

 }
}

Chapter 10

[243]

8. In the createScene function, change:

Ogre::ParticleSystem* partSystem = _sceneManager->createParticleSy
stem("Smoke","Examples/Smoke");

to:

Ogre::ParticleSystem* partSystem = _sceneManager->createParticleSy
stem("Smoke","MySmoke1");

9. Compile and run the application. You should see Sinbad and a trail of smoke that
emerges from him.

What just happened?
We created our first own particle system. For this, we need a .particle file to store
the script. In this script, we started the definition of the particle system with the keyword
particle_system and then the name we want it to have, like we did for all the other
scripts. In step 3, we defined which material each particle should use. We used a material
that ships with the SDK. This material just attaches a texture and combines this texture with
the vertex color and ignores any lighting. The following is the complete material script:

material Examples/Smoke
{
 technique
 {
 pass
 {
 lighting off
 scene_blend alpha_blend
 depth_write off
 diffuse vertexcolor

 texture_unit
 {
 texture smoke.png
 tex_address_mode clamp

Particle Systems and Extending Ogre3D

[244]

 }
 }
 }
}

We gave each particle the length and width of 10 units. Step 4 defined the maximum number
of particles we want at any given point in the existence of the particle system; this number is
helpful in preventing one wrongly defined particle system to slow the complete application
down. If this number is reached, no emitter is allowed to create new particles. This step
also defined that we want points as particles that always face the camera. Step 5 added an
emitter that emits three particles from exactly one point. Step 6 set the direction and speed
at which the particles move. We then changed our program to use this new particle system
and then saw it in action.

Some more parameters
Now that we have a particle system to experiment with, let's try some other parameters.

Time for action – some new parameters
We will add some new parameter.

1. Add to the point emitter the following three new parameters:

angle 30
time_to_live 10
color 1 0 0 1

2. Compile and run the application. You should see red particles flying in slightly
different directions.

Chapter 10

[245]

What just happened?
We added three parameters that changed the behavior of our particle system. Now the
particles are red and fly in different directions. The parameter angle defines how many
degrees each created particle can differentiate from the given direction. Ogre 3D used
a random generator to generate the direction, which is in the given range. Because the
direction can be moved up to 30 degrees, some of our particles can fly into the ground.

The parameter time_to_live sets the lifetime of each particle, in our case, to 10 seconds.
The default is 5. And with this, we doubled the life expectations of each particle so we can
observe their behavior longer.

The color parameter sets the vertex color of the particles to the given color vector, in our
case, red.

Particle Systems and Extending Ogre3D

[246]

Pop quiz – what makes a particle system
Name the three components that make a particle system; which of them is optional?

Other parameters
There are a lot of different parameters a particle system can have. Here are some more.

Time for action – time to live and color range
Again we are going to add some parameters to our particle system to see the effect they have.

1. Change time_to_live to be a range with a minimum and maximum:

time_to_live_min 1
time_to_live_max 10

2. Do the same for the color:

color_range_start 1 0 0
color_range_end 0 0 1

3. Adjust your application code; then compile and run it. You should see different
colored particles and some will disappear before others.

Chapter 10

[247]

What just happened?
Instead of using single value parameters, we used parameters that described a range of
values and let Ogre 3D pick the exact values. This added diversity to our particle system and
can be used to model natural effects more realistically, because, in nature, there is seldom
something that doesn't have a slightly different appearance over time and space.

Pop quiz – time to live
In your own words, describe the difference between time_to_live and time_to_live_
min.

Turning it on and off again
And even more parameters to try out.

Time for action – adding intervals to a particle system
We will now see that there are also some parameters that don't affect the appearance
of the particles, and only affect the way they are emitted.

1. Remove the added parameters of the point emitter and only keep the
emission_rate, direction, and velocity:

emitter Point
{
 emission_rate 30
 direction 1 0 0
 velocity 20

2. Then add the parameters that define how long a particle should be emitted
and how long to wait before starting over:

 duration 1
 repeat_delay 1
}

Particle Systems and Extending Ogre3D

[248]

3. Compile and run the application. You should see a stream of white particles,
which is briefly interrupted each time the emitter stops emitting.

What just happened?
We added the parameter duration, which defines how long the emitter will emit particles
before ceasing to do so. repeat_delay sets the time the emitter will wait before starting
to emit particles again. With these two parameters, we have defined an emitter that emits
a particle for one second, and then waits for one second and starts over.

Pop quiz – emitter parameters
Try to name all 12 emitter parameters we have used up until now and how they affect
the emitter.

Adding affectors
We have changed the behavior and appearance of particles while they were created using
the emitter. Now we will use affectors, which change the appearance and behavior during
the complete lifetime of a particle.

Time for action – adding a scaler affector
1. To show what an affector does, we need a simple Point emitter that emits 30

particles per second with a speed of 20 units and 100 seconds of life:

emitter Point
{
 emission_rate 30
 direction 1 0 0
 velocity 20

 time_to_live 100
}

Chapter 10

[249]

2. During the whole lifetime of a particle, we want it to grow five times its size per
second. For this, we add a Scaler affector:

affector Scaler
{
 rate 5
}

3. Compile and run the application. You should see particles that get bigger with each
second they live.

Particle Systems and Extending Ogre3D

[250]

What just happened?
We added an affector that changed the size of our particles for their complete lifetime. The
Scaler affector scales each particle per second using the given value. In our case, each
particle's size was scaled by a factor of five each second.

Changing colors
We have changed the size. Now let's change the color of our particles.

Time for action – changing the color
1. Instead of the scaler, add a ColorFader affector that subtracts 0.25 of each

color channel per second:

affector ColorFader
{
 red -0.25
 green -0.25
 blue -0.25
}

2. Compile and run the application. You should see how the white particles get
darker with each second they live.

Chapter 10

[251]

What just happened?
We added an affector that changes each color channel during the existence of a particle,
using the predefined values.

Particle Systems and Extending Ogre3D

[252]

Have a go hero – change the color to red
Change the colorfader code so the particles fade from white to red. The result should look
like this:

Chapter 10

[253]

Two-way changing
We have changed one color to another, but sometimes we want the change to depend on
the lifetime of the particle. This can be useful when modeling fire or smoke.

Time for action – change depending on the lifetime of a particle
We are now going to introduce more colors by using particle affectors.

1. We don't want our particle to live 100 seconds for this example, so change the
lifetime to 4:

emitter Point
{
 emission_rate 30
 direction 1 0 0
 velocity 20
 time_to_live 4
}

2. Because we want a slightly different behavior, we are going to use the second
available colorfader. This should fade each color channel by one unit per second:

affector ColorFader2
 {

 red1 -1
 green1 -1
 blue1 -1

3. Now, when the particle only has two seconds to live, instead of subtracting the color
channel, add the same value we removed beforehand:

 state_change 2

 red2 +1
 green2 +1
 blue2 +1
}

Particle Systems and Extending Ogre3D

[254]

4. Compile and run the application.

Chapter 10

[255]

What just happened?
We used the ColorFader2 affector. This affector first changed each particle with the given
values for red1, green1, and blue1, when the particle only had the number of seconds
given as the state_change parameter to live. Values such as red2, green2, and blue2 were
used to modify the particles until they died. In this example, we used this affector to first
change the particle from white to black and then when it is two seconds away from dying,
we changed the black to white, hence creating the effect seen in the preceding image.

Even more complex color manipulations
There is a way to create even more complex manipulation in regards to the particle color.

Time for action – using complex color manipulation
Once again, we play with particle colors and how we can affect them.

1. We are going to use a new affector called ColorInterpolator:

affector ColorInterpolator
{

2. We then define which color the pixel should have at its creation. We will use white:

time0 0
color0 1 1 1

3. When the particle has lived for one quarter of its lifetime, it should be red:

time1 0.25
color1 1 0 0

4. In the second quarter of its lifetime, we want it to be green:

time2 0.5
color2 0 1 0

5. At three quarters, it should be blue and at the end, white again:

time3 0.75
color3 0 0 1

time4 1
color4 1 1 1

Particle Systems and Extending Ogre3D

[256]

6. Compile and run the application using the new affector, and you should see the
stream of particles and they should change from white to red to green to blue and
back to white.

Chapter 10

[257]

 What just happened?
We used another affector to create a more complex color manipulation.
ColorInterpolator manipulated the color of all particles. We defined the manipulation
using the keywords timeX and colorX, where X must be between 0 and 5. time0 0 means
we want the affector to use the color color0 at the moment the particle is created. time1
0.25 means we want the affector to use color1 when the particle has lived one quarter
of its lifetime. Between these two points in time the affector interpolates the values. Our
example defined five points and each one had a different color. The first and last point used
white as the color, the second point used red, the third one green, and the fourth blue. Each
point was distanced one quarter of the lifetime apart, so over the complete lifetime, each
color was used to the same extent.

Adding randomness
To create a better-looking effect, it can sometimes help to add a bit of randomness to a
particle system, so it doesn't look unnatural.

Time for action – adding randomness
Adding randomness can improve the visual quality of a scene, so let's do it.

1. Remove the ColorInterpolator affector.

2. Add a different affector called DirectionRandomiser:

affector DirectionRandomiser
{

3. First we define how much influence the affector should have on each axis of
our particles:

randomness 100

4. Then we say how many of our particles should be affected each time the affector is
applied. 1.0 stands for 100 percent and 0 for 0 percent. Then we define if we want
our particles to keep their velocity or if it should also be changed:

 scope 1
 keep_velocity true
}

Particle Systems and Extending Ogre3D

[258]

5. Compile and run the application. This time, you shouldn't see a single stream
of particles but, rather, a lot of particles flying in not exactly the same way, but
generally in the same direction.

What just happened?
The DirectionRandomiser affector changed the direction of our particles, using a
different value for each particle. With this affector, it is possible to add a random component
to the movement of our particles.

Chapter 10

[259]

Deflector
The last affector we are going to try out is a plane that deflects particles to simulate an
obstacle in their way.

Time for action – using the deflector plane
Being able to let particle bounce of some surface can be helpful, so that is what we are going
to do here.

1. Instead of the randomizer, use the DeflectorPlane affector:

affector DeflectorPlane
{

2. The plane is defined using a point in space and the normal of the plane:

plane_point 0 20 0
plane_normal 0 -1 0

3. The last thing to define is how the plane should affect the particles that hit it. We
want them to keep their original velocity, so we select 1.0 as the value:

 bounce 1.0
}

4. To see the effect of the deflector plane, we need our particles to travel in slightly
different directions. So modify the emitter such that the particles' directions differ
with a maximal value of 30 degrees. Moreover, as the plane hovers in the sky, our
particles should have the up vector as the initial direction.

emitter Point
{
 emission_rate 30
 direction 0 1 0
 velocity 20
 time_to_live 4
 angle 30
}

Particle Systems and Extending Ogre3D

[260]

5. Compile and run the application. The particles bounce off the invisible plane in
the sky.

What just happened?
We added an invisible plane that hovers in the sky and deflects our particles while keeping
their velocity.

Have a go hero – doing more with the thing
Create a new application where a second plane at point (0,0,0) deflects the particles that are
deflected by the first plane. Also add the ColorInterpolator affector. The result should
look like the following screenshot:

Chapter 10

[261]

Other emitter types
We have always used a point emitter for our examples, but, of course, there are different
emitter types that we can use.

Time for action – using a box emitter
Only emitting from one point is boring, using a box is much more fun.

1. Change the emitter type from Point to Box:

emitter Box
{

2. Define the box in which the particles should be created:

height 50
width 50
depth 50

3. Let the emitter create 10 particles per second and they should move up with a
speed of 20:

 emission_rate 10
 direction 0 1 0
 velocity 20
}

Particle Systems and Extending Ogre3D

[262]

4. Use the new particle system. Compile and run the application. You should see that
particles are created all around the Sinbad instance and fly upwards.

What just happened?
We used another type of emitter, in this case, the Box emitter. We defined a box, and the
emitter used random points inside this box as the starting position for the created particles.
This emitter can be used to create particles systems that don't emit particles from exactly
one point, but rather from an area. If we just need a plane where particles are emitted or
even a line, we only need to set the box parameters accordingly.

Emitting with a ring
Besides the box, there are other emitter types, like the ring.

Time for action – using a ring to emit particles
Instead of a point or box we can even use a ring as emitter.

1. Change the emitter type to Ring:

emitter Ring
{

Chapter 10

[263]

2. Define the Ring using width and height:

height 50
width 50

3. Now, to create a ring and not a circle, we need to define how much of the inner
part shouldn't emit particles. Here we use percentages:

inner_height 0.9
inner_width 0.9

4. The rest stays untouched, as follows:

 emission_rate 50
 direction 0 1 0
 velocity 20
}

5. Compile and run the application. Fly with the camera over the model instance and
you should see where the ring emits particles.

Particle Systems and Extending Ogre3D

[264]

What just happened?
We used the ring emitter to only emit particles in a defined ring. To define the ring, we used
height and width, not a point and radius. Width and height describe the largest width and
height the circle will have. Here, the following small diagram shows how the circle is defined.
With the inner_width and inner_height, we define how much of the circle's inner area
shouldn't emit particles. Here we don't use space units, but percentages.

At the end, we would like some fireworks
This will be the last example in this book, so fireworks are appropriate.

Time for action – adding fireworks
It's always nice to see a firework after a special event.

1. Create a particle system that bursts different-colored particles in all directions
at a steady interval:

particle_system Firework
{
 material Examples/Smoke
 particle_width 10
 particle_height 10
 quota 5000
 billboard_type point

 emitter Point
 {
 emission_rate 100
 direction 0 1 0
 velocity 50
 angle 360
 duration 0.1
 repeat_delay 1

 color_range_start 0 0 0
 color_range_end 1 1 1
 }
}

Chapter 10

[265]

2. Create five instances of this particle system:

Ogre::ParticleSystem* partSystem1 = _sceneManager->createParticleS
ystem("Firework1","Firework");
Ogre::ParticleSystem* partSystem2 = _sceneManager->createParticleS
ystem("Firework2","Firework");
Ogre::ParticleSystem* partSystem3 = _sceneManager->createParticleS
ystem("Firework3","Firework");
Ogre::ParticleSystem* partSystem4 = _sceneManager->createParticleS
ystem("Firework4","Firework");
Ogre::ParticleSystem* partSystem5 = _sceneManager->createParticleS
ystem("Firework5","Firework");

3. Then five nodes at different positions in the sky:

Ogre::SceneNode* node1 = _sceneManager->getRootSceneNode()->create
ChildSceneNode(Ogre::Vector3(0,10,0));
Ogre::SceneNode* node2 = _sceneManager->getRootSceneNode()->create
ChildSceneNode(Ogre::Vector3(10,11,0));
Ogre::SceneNode* node3 = _sceneManager->getRootSceneNode()->create
ChildSceneNode(Ogre::Vector3(20,9,0));
Ogre::SceneNode* node4 = _sceneManager->getRootSceneNode()->create
ChildSceneNode(Ogre::Vector3(-10,11,0));
Ogre::SceneNode* node5 = _sceneManager->getRootSceneNode()->create
ChildSceneNode(Ogre::Vector3(-20,19,0));

4. Finally, attach the particle systems to their nodes:

node1->attachObject(partSystem1);
node2->attachObject(partSystem2);
node3->attachObject(partSystem3);
node4->attachObject(partSystem4);
node5->attachObject(partSystem5);

Particle Systems and Extending Ogre3D

[266]

5. Compile and run the application for the last time and enjoy the show

What just happened?
We created a firework-like particle system and duplicated it so it would look like there are
several fireworks in the sky.

Pop quiz – different types of emitter
Name all emitter types we have used in this chapter and a few of their differences
and similarities.

Extending Ogre 3D
We have seen a lot of different functionalities that Ogre 3D offers, but Ogre 3D also makes
it quite easy to extend it with new functions. That's the reason there are a lot of different
libraries that can be used to add some new functions to Ogre 3D. We will discuss some of
these libraries to get a feeling for what add-ons are out there. A complete list can be found
in the wiki at http://www.Ogre3D.org/tikiwiki/OGRE+Libraries.

Chapter 10

[267]

Speedtree
Speedtree is a commercial solution used to render a lot of good-looking trees and grass.
It is widely used by several commercial games and the founder of Ogre 3D Sinbad offers
a binding for Ogre 3D. Speedtree and the binding for Ogre 3D must be bought and aren't
freely available. More information can be found at http://www.ogre3d.org/tikiwiki/
OgreSpeedtree.

Hydrax
Hydrax is an add-on that adds the capability of rendering pretty water scenes to Ogre 3D.
With this add-on, water can be added to a scene and a lot of different settings are available,
such as setting the depth of the water, adding foam effects, underwater light rays, and so on.
The add-on can be found at http://www.ogre3d.org/tikiwiki/Hydrax.

Caelum
Caelum is another add-on, which introduces sky rendering with day and night cycles to Ogre
3D. It renders the sun and moon correctly using a date and time. It also renders weather
effects like snow or rain and a complex cloud simulation to make the sky look as real as
possible. The wiki site for this add-on is http://www.ogre3d.org/tikiwiki/Caelum.

Particle Universe
Another commercial add-on is Particle Universe. Particle Universe adds a new particle
system to Ogre 3D, which allows many more different effects than the normal Ogre 3D
particle system allows. Also, it comes with a Particle Editor, allowing artists to create
particles in a separate application and the programmer can load the created particle
script later. This plugin can be found at http://www.ogre3d.org/tikiwiki/
Particle+Universe+plugin.

GUIs
There are a lot of different GUI libraries available for Ogre 3D, each of which has its reason to
exist, but there isn't one GUI library everyone should use. The best thing is to try out some of
them and then decide for ourselves which library suits our needs best.

CEGUI
CEGUI is probably the first GUI library that has been integrated into Ogre 3D. It offers all
functions expected from a GUI system and a lot more. There is a GUI editor to create your
GUI outside of code and a lot of different skins to customize your GUI. More information
can be found at http://www.cegui.org.uk/wiki/index.php/Main_Page.

Particle Systems and Extending Ogre3D

[268]

BetaGUI
BetaGUI is an extremely small library, which comes in one header and one cpp file. The only
dependency is Ogre 3D and it offers basic functionality like creating windows, buttons, text
fields, and static text. It is not a complete GUI, but it offers basic functionality without any
dependencies, so it can be used when a simple and quick solution is needed. More can be
found at http://www.ogre3d.org/tikiwiki/BetaGUI.

QuickGUI
QuickGUI is a more complex and powerful solution than BetaGUI. Though QuickGui offered
a lot more widgets, it also made the integration process a bit more difficult. QuickGUI is a
full-blown GUI solution that can be used for all kinds of different projects and is updated
regularly. The wiki site can be found at http://www.ogre3d.org/tikiwiki/QuickGUI.

Berkelium
Berkelium isn't a GUI library as such, as it doesn't have any widgets or anything similar.
Instead, it enables Ogre 3D to render websites using the Google Chromium library. With the
help of this library, it is possible to build an in-game web browser. The website can be found
at http://www.ogre3d.org/tikiwiki/Berkelium.

Summary
We learned a lot in this chapter.

Specifically, we covered:

 � How to create a particle system using different emitter types

 � How affectors can affect particles

 � Which add-ons for Ogre 3D are available

The end
This is the end of this book and I would like to congratulate you. I know it is a lot of work to
read a complete programming book and do all the examples to understand a new topic, but
it is also really rewarding and the new knowledge will be yours forever. I hope you enjoyed
this book and it taught you enough to be able to create your own interactive 3D applications,
because, in my opinion, this is one of the most interesting and fast-moving areas of
programming and computer science in general.

Pop Quiz Answers

Chapter 1

Installing Ogre 3D

1 a which post effects are shown
in the samples

Bloom, Glass, Old TV, Black and White, and Invert

2.1 b
and
c

which libraries to link OgreMain.lib and OIS.lib

2.2 which libraries to link Add _d after the library name

3 c ExampleApplication
and how to display a model

Create an entity using the createEntity()
function of the SceneManager and then attach
this entity to a scene node

Pop Quiz Answers

[270]

Chapter 2

Setting up the Environment

1 a finding the
position of
scene nodes

MyEntity will be at (60,60,60) and MyEntity2 will be at (0,0,0)

2 b playing with
scene nodes

(10,-10,10)

3 b rotating a
scene node

pitch, yaw, roll

4 creating child
scene nodes

4.1)One way is to only give a name for the scene node and the other
one is to give a name and a position where the scene node should be
created.

4.2) Please refer the code.

5 b even more
about the
scene graph

From the root to the leafs

6 Ogre3D and
spaces

The three spaces are world, parent, and local.

Chapter 3

Felix Gogo

1

different
light
sources

A point light is like a light bulb and a spotlight is like a flashlight

2 different
light types

Point, Spot, and Directional.

Appendix

[271]

Chapter 4

Felix Gogo

1

c design pattern of
FrameListener

Observer pattern

2 the difference between
time- and frame-based
movement

When using frame-based movement, the entity is
moved the same distance each frame, by time passed
movement, the entity is moved the same distance
each second.

3 window questions A window handle is a unique identifier used and
created by the operating system to manage its
windows, we need the handle of our application
window to receive the input events our window
gets in focus.

4 capturing the input To get the newest state the keyboard has

Chapter 5

The Book Inventory Bundle

1 the
importance
of time

Because this way the animation is independent from the real time that
has passed. This also enabled us to run the same animation at different
speeds.

Pop Quiz Answers

[272]

Chapter 7

The Bookshelf: First Stab

1 texture
modes

How texture coordinates are handled that are lower or higher than the
range of 0 to 1

Chapter 9

The Ogre 3D Startup Sequence

1 the three
event
handlers

frameStarted which gets called before the frame is rendered

frameRenderingQueued which is called after the frame is rendered
but before the buffers are swapped and

frameEnded which is called after the current frame has been rendered
and displayed.

Appendix

[273]

Chapter 10

How About a Graphical Interface?

1 what makes a
particle system

Particle, Emitter, and optional Affector

2 emitter
parameters

emission_rate: How many particles should be emitted
per second

direction: In which direction the particles should move

velocity: At which speed they should move

duration: How long does the emitter emit particles

repeat_delay: How long until it start emitting again

time_to_live: The length of the life of a particle

time_to_live_min: The minimum lifespan of a particle

time_to_live_max: The maximum lifespan of a particle

angle: How much the particles' movement direction can
differ from the direction given

colour: The color of a particle an particle has

colour_range_start: Beginning point for the particle's
color interpolation

colour_range_end: End point for the particle's color
interpolation

Index
Symbols
3D model

rendering 50, 51
3D scene

animations, adding 87-90
basic movement control, adding using WASD

keys 77, 78
camera, creating 61, 79, 80
camera, making work 79, 80
creating 67, 68
input support, adding 75, 76
movement, adding 70-72
plane, adding 47
point light, adding 51, 52
second point light, adding 53
shadows, adding 60, 61
spot light, adding 53, 55
swords, adding 97, 98
time-based movement, adding 73
timer, adding 84
two animations, playing at the same

time 91, 92
3D space 21, 22
_keepRunning variable 224

A
addCompositor() function 177
add-ons

list 267, 268
addResourcesLocation() function 109
addTime() function 93
addViewport() function 196

affectors
adding 248
scalar affector, adding 248-250

animated scrolling 146
animation

adding 233-236
animations

about 87, 99
adding, to 3D scene 87-90
printing 100, 101
skeleton, using 99, 100

application class
creating 211-214

attachObjectToBone() function 98

B
basic movement control

adding, to 3D scene 77, 78
begin method 113
Berkelium 268
BetaGUI 268
billboarding 118
blank sheet

creating 103, 104
border color

changing 141, 142
border mode

border color, changing 141, 142
using 140, 141

box emitter
using 261, 262

BSP 109
BspSceneManager

creating 108
build() function 125

[276]

C
Caelum 267
camera

adding 224
creating 61

capture() function 77
CEGUI 267
child scene nodes

creating 32
chooseSceneManager() function 108
clamp mode

using 135-138
color

changing 250, 251
changing, particle life time dependent 253, 255
changing, to red 252
complex color manipulation 256, 257

color channel
selecting 198-203

ColorFader2 affector 255
ColorInterpolator 255
ColorInterpolator affector 260
color parameter 245
colorX 257
compositors

adding 167, 168, 226-229
combining 173-175
complex compositors 178-182
green and blue color channels, swapping 178
in code, combining 177
working 169

ConfigFile class 211
configuration file

structure 211
createCamera() function 61, 194, 196
createChildSceneNode() function 31
createEntity() function 120
createScene() function 19, 47, 97, 100, 130, 168,

186, 194, 202, 230, 233, 243
createScene() method 16
createViewport() function 201
createViewport() method 195
createViewports() function 196
createViewports() method 64
culling 62

D
default_params block 155
deflector plane

using 259, 260
directional lights

about 57
creating 58

DirectionRandomiser 257
DirectionRandomiser affector 258

E
ExampleApplication 15
ExampleApplication class 205

F
falloff parameter 55
field of grass

creating 118-120
fireworks

adding 264-266
fixed function pipeline 149
fragment_program keyword 154
fragments 150
frameEnded function 215, 219

true, returning 219, 220
FrameEvent 74
FrameListener

about 72
adding 215, 216, 224, 225
frameStarted function, true returning in 217
implementation, experimenting with 216, 217

FrameListener class 216
FrameListener function 217, 218
frameRenderingQueued function

about 215, 218
true, returning 218, 219

frameStarted function 215, 216, 218,
221, 227, 234

frameStarted() method 74, 94, 191

G
getAnimationState() function 90
getMouseState() function 81
GUIs 267

[277]

grass field
creating 118-120

H
Hydrax 267

I
image

inverting 172, 173
initialiseResourceGroup() function 110
input

adding 220-222
input support

adding, to 3D scene 75, 76
intervals

adding, to particle system 247, 248
isKeyDown() function 81

K
keepRunning function 223

L
light

adding 229-231
loadResources() function 212
local and parent space

translating in 40
local space 38, 39
lookat() function 62

M
manual object

about 113
creating 111
lines 113
playing, with 116
points 113
triangles 114

material
another material, creating 133
creating 131, 132
inheriting 146-149

mirror mode
using 138-140

model
creating, for displaying blades of grass 110, 111
loading 16
quad, replacing with 160

models
loading, resources.cfg used 209, 210

MouseState class 81
movement

adding, to 3D scene 70-72
moveRelative() function 82
MyVertexShader3 159

N
name scheme

about 120
names, printing 120, 121

number of pixels
changing 182
changing, while running application 188-193
putting, in material 183-185

O
Object Oriented Input System(OIS) 14
Octree

about 106
diagrammatic representation 106
example 107, 108
features 107

OctreeSceneManager 110
Ogre 3D

downloading 7
extending 266
installing 7
name scheme 120
starting 205-207
texture mapping 115

Ogre 3D application
IDE, configuring 12-14
project, starting 12-14

Ogre 3D samples
building 11

Ogre 3D SDK
downloading 7
installing 8

[278]

versions 8
Ogre scene graph

about 19, 23, 24
local space, translating in 40
RootSceneNode, working with 21
scene node, creating 19, 20
scene node position, setting 25-27
scene node, rotating 26
scene node, scaling 29
spaces 35
spaces, rotating 42
spaces, scaling 45
transformation information 35
tree, building using scene nodes 32, 33
using 32

oPosition parameter 156
OT_LINE_LIST 113
OT_LINE_STRIP 113
OT_POINT_LIST 113
OT_TRIANGLE_LIST 114
OT_TRIANGLE_STRIP 114
out parameter 155, 156

P
parameters 244, 245
particles

emitting, ring used 262, 264
particle system

about 241
adding 239, 240
creating 241, 243
intervals, adding 247, 248

particle universe 267
pitch() function 28, 82
plane

adding 229-231
adding, to scene 48
creating 47, 48

point light
adding, to scene 51, 52

position() function 114, 122
pulse

adding 162, 164

Q
quad

preparing 133, 134
replacing, with model 160

QuickGUI 268

R
randomness

adding 257, 258
rendering loop

using 222, 223
renderOneFrame function 223, 224
render pipeline 150
ResourceGroup 110
ResourceGroupManager 109
resources

adding 208
resources.cfg

using, to load models 209, 210
ring

used, for emitting particles 262, 264
roll() function 28
Root class 206
root instance 208
RootSceneNode

working with 20, 21

S
scalar affector

adding 248-250
scale() function 31
scene

preparing 165, 166
scene graph. See Ogre scene graph
scene manager

about 103, 105
creating 108
functions 105
using 108

scene manager’s type
printing 105

[279]

scene node
3D space 21
creating, with Ogre3D 19, 20
RootSceneNode, working with 20, 21
rotating 26-28
scaling 29, 31

scene node position
setting 24-27

SDK
exploring 9, 10

setMaterialName() function 148, 149
setPolygonMode() function 84
setPosition() function 30
setShadowTechnique() function 64
setWorldGeometry() function 110
shaders

about 149
shader application 151-155
textures, using 156-158
writing 155

shadows
adding, to scene 60, 61

Sinbad
controlling 77

Sinbad mesh
loading 208, 209

spaces, 3D scene
local space 38, 40
rotating in 42-45
scaling 45
world space 36

Speedtree 267
split screen

adding 193-196
spot light

about 55, 57
adding, to scene 53, 55
light colors, mixing 57

startRendering function 222, 223
startup() function 213, 216, 222, 228
state_change parameter 255
static geometry

about 122
indices 126, 127
pipeline, rendering 125
using 122-124

swords
adding, to 3D scene 97, 98

T
tex2D function 158
texture

modifying 170, 171
scrolling 143-145

textureCoord() function 114, 159
texture count

decreasing 175, 176
texture mapping 115
texture modes

using 142
time-based movement

adding, to 3D scene 73
timer

adding 84
time_to_live

changing 246, 247
timeX 257
translate() function 38
two animations

playing, at the same time in 3D scene 91, 92

U
user control

adding 231
model, controlling with arrow keys 231-233

user input and animation
combining 94-96

V
variable

in code, setting 185
setting, from application 185-187

vertex 113
viewport

about 64, 197
creating 64, 65

volume
adding, to blades of grass 116, 117

[280]

W
white quad

creating 130, 131
window handle 76, 77
wireframe and point render mode

adding, to framelistener 82-84
world space

translating in 36, 37
wrapping mode

using, with another texture 135, 137

Y
yaw() function 28, 82
y-up convention 22

Thank you for buying
Ogre 3D 1.7 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue
its focus on specialization. This book is part of the Packt Open Source brand, home to books published
on software built around Open Source licences, and offering information to anybody from advanced
developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty
Scheme, by which Packt gives a royalty to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity Game Development Essentials
ISBN: 978-1-847198-18-1 Paperback: 316 pages

Build fully functional, professional 3D games with realistic
environments, sound, dynamic effects, and more!

1. Kick start game development, and build
ready-to-play 3D games with ease

2. Understand key concepts in game design including
scripting, physics, instantiation, particle effects, and
more

3. Test & optimize your game to perfection with
essential tips-and-tricks

3D Game Development
with Microsoft Silverlight 3: Beginner's
Guide
ISBN: 978-1-847198-92-1 Paperback: 452 pages

A practical guide to creating real-time responsive online 3D
games in Silverlight 3 using C#, XBAP WPF, XAML, Balder,
and Farseer Physics Engine

1. Develop online interactive 3D games and scenes in
Microsoft Silverlight 3 and XBAP WPF

2. Integrate Balder 3D engine 1.0, Farseer Physics
Engine 2.1, and advanced object-oriented
techniques to simplify the game development
process

Please check www.PacktPub.com for information on our titles

Papervision3D Essentials
ISBN: 978-1-847195-72-2 Paperback: 428 pages

Create interactive Papervision 3D applications with
stunning effects and powerful animations

1. Build stunning, interactive Papervision3D
applications from scratch

2. Export and import 3D models from Autodesk 3ds
Max, SketchUp and Blender to Papervision3D

3. In-depth coverage of important 3D concepts with
demo applications, screenshots and example code.

Blender 3D 2.49 Incredible Machines
ISBN: 978-1-847197-46-7 Paperback: 316 pages

Modeling, rendering, and animating realistic machines
with Blender 3D

1. Walk through the complete process of building
amazing machines

2. Model and create mechanical models and vehicles
with detailed designs

3. Add advanced global illumination options to the
renders created in Blender 3D using YafaRay and
LuxRender

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Installing Ogre 3D
	Downloading and installing Ogre 3D
	Time for action – downloading and installing Ogre 3D
	Different versions of the Ogre 3D SDK
	Exploring the SDK

	The Ogre 3D samples
	Time for action – building the Ogre 3D samples
	The first application with Ogre 3D
	Time for action – starting the project and configuring the IDE
	ExampleApplication

	Loading the first model
	Time for action – loading a model
	Summary

	Chapter 2: The Ogre Scene Graph
	Creating a scene node
	Time for action – creating a scene node with Ogre 3D
	How to work with the RootSceneNode
	3D space
	Scene graph

	Setting the position of a scene node
	Time for action – setting the position of a scene node
	Rotating a scene node
	Time for action – rotating a scene node
	Scaling a scene node
	Time for action – scaling a scene node
	Using a scene graph the clever way
	Time for action – building a tree using scene nodes
	Have a go hero – adding a following ninja
	Different spaces in a scene
	Time for action – translating in World space
	Different spaces in a 3D scene

	Translating in local space
	Time for action – translating in local and parent space
	Rotating in different spaces
	Time for action – rotating in different spaces
	Scaling in different spaces
	Summary

	Chapter 3: Camera, Light, and Shadow
	Creating a plane
	Time for action – creating a plane
	Representing models in 3D

	Adding a point light
	Time for action – adding a point light
	Adding a spotlight
	Time for action – creating a spotlight
	Spotlights

	Directional lights
	Time for action – creating a directional light
	The missing thing
	Time for action – finding out what's missing
	Adding shadows
	Time for action – adding shadows
	Creating a camera
	Time for action – creating a camera
	Creating a viewport
	Time for action – doing something that illustrates
	the thing "in action"
	Summary

	Chapter 4: Getting User Input and Using the Frame Listener
	Preparing a scene
	Time for action – preparing a scene
	Adding movement to the scene
	Time for action – adding movement to the scene
	FrameListener

	Modifying the code to be time based rather than frame based
	Time for action – adding time-based movement
	Adding input support
	Time for action – adding input support
	Window handle

	Adding movement to the model
	Time for action – controlling Sinbad
	Adding a camera
	Time for action – making the camera work again
	Mouse state

	Adding wireframe and point render mode
	Time for action – adding wireframe and point render mode
	Adding a timer
	Time for action – adding a timer
	Summary

	Chapter 5: Animating models with Ogre 3D
	Adding animations
	Time for action – adding animations
	Playing two animations at the same time
	Time for action – adding a second animation
	Let's walk a bit
	Time for action – combining user control and animation
	Adding swords
	Time for action – adding swords
	Animations

	Printing all the animations a model has
	Time for action – printing all animations
	Summary

	Chapter 6: Scene Managers
	Starting with a blank sheet
	Time for action – creating a blank sheet
	Getting the scene manager's type
	Time for action – printing the scene manager's type
	What does a scene manger do?
	Octree

	Another scene manager type
	Time for action – using another scene manager
	ResourceManager
	setWorldGeometry

	Creating our own model
	Time for action – creating a model for displaying
	blades of grass
	Manual object
	Texture mapping

	Adding volume to the blades of grass
	Time for action – using more triangles for volume
	Creating a field of grass
	Time for action – building a field of grass
	Exploring the name scheme
	Time for action – printing the names
	Static geometry
	Time for action – using static geometry
	Rendering pipeline
	Indices

	Summary

	Chapter 7: Materials with Ogre 3D
	Creating a white quad
	Time for action – creating the quad
	Creating our own material
	Time for action – creating a material
	Materials

	Texture coordinates take two
	Time for action – preparing our quad
	Using the wrapping mode with another texture
	Time for action – adding a rock texture
	Using another texture mode
	Time for action – adding a rock texture
	Using the mirror mode
	Time for action – using the mirror mode
	Using the border mode
	Time for action – using the border mode
	Changing the border color
	Time for action – changing the border color
	Scrolling a texture
	Time for action – preparing to scroll a texture
	Time for action – scrolling a texture
	Animated scrolling
	Time for action – adding animated scrolling
	Inheriting materials
	Time for action – inheriting from a material
	Fixed Function Pipeline and shaders
	Render Pipeline

	Time for action – our first shader application
	Writing a shader

	Texturing with shaders
	Time for action – using textures in shaders
	What happens in the render pipeline?

	Interpolating color values
	Time for action – using colors to see interpolation
	Replacing the quad with a model
	Time for action – replacing the quad with a model
	Making the model pulse on the x-axis
	Time for action – adding a pulse
	Summary

	Chapter 8: The Compositor Framework
	Preparing a scene
	Time for action – preparing the scene
	Adding the first compositor
	Time for action – adding a compositor
	How the compositor works

	Modifying the texture
	Time for action – modifying the texture
	Inverting the image
	Time for action – inverting the image
	Combining compositors
	Time for action – combining two compositor effects
	Decreasing the texture count
	Time for action – decreasing the texture count
	Combining compositors in code
	Time for action – combing two compositors in code
	Something more complex
	Time for action – complex compositor
	Changing the number of pixels
	Time for action – putting the number of pixels in the material
	Setting the variable in code
	Time for action – setting the variable from the application
	Changing the number of pixels while running the
application
	Time for action – modifying the number of pixels with user input
	Adding a split screen
	Time for action – adding a split screen
	Putting it all together
	Time for action – selecting a color channel
	Summary

	Chapter 9: The Ogre 3D Startup Sequence
	Starting Ogre 3D
	Time for action – starting Ogre 3D
	Adding resources
	Time for action – loading the Sinbad mesh
	Using resources.cfg
	Time for action – using resources.cfg to load our models
	Structure of a configuration file

	Creating an application class
	Time for action – creating a class
	Adding a FrameListener
	Time for action – adding a FrameListener
	Investigating the FrameListener functionality
	Time for action – experimenting with the FrameListener
	implementation
	Time for action – returning true in the frameStarted function
	Double buffering

	Time for action – returning true in the frameRenderingQueued
	function
	Time for action – returning true in the frameEnded function
	Adding input
	Time for action – adding input
	Our own main loop
	Time for action – using our own rendering loop
	Adding a camera (again)
	Time for action – adding a frame listener
	Adding compositors
	Time for action – adding compositors
	Adding a plane
	Time for action – adding a plane and a light
	Adding user control
	Time for action – controlling the model with the arrow keys
	Adding animation
	Time for action – adding animation
	Summary

	Chapter 10: Particle Systems and Extending Ogre 3D
	Adding a particle system
	Time for action – adding a particle system
	What is a particle system?

	Creating a simple particle system
	Time for action – creating a particle system
	Some more parameters
	Time for action – some new parameters
	Other parameters
	Time for action – time to live and color range
	Turning it on and off again
	Time for action – adding intervals to a particle system
	Adding affectors
	Time for action – adding a scaler affector
	Changing colors
	Time for action – changing the color
	Two-way changing
	Time for action – change depending on the lifetime of a particle
	Even more complex color manipulations
	Time for action – using complex color manipulation
	Adding randomness
	Time for action – adding randomness
	Deflector
	Time for action – using the deflector plane
	Other emitter types
	Time for action – using a box emitter
	Emitting with a ring
	Time for action – using a ring to emit particles
	At the end, we would like some fireworks
	Time for action – adding fireworks
	Extending Ogre 3D
	Speedtree
	Hydrax
	Caelum
	Particle Universe
	GUIs
	CEGUI
	BetaGUI
	QuickGUI
	Berkelium

	Summary
	The end

	Appendix: Pop Quiz Answers
	Chapter 1
	Installing Ogre 3D

	Chapter 2
	Setting up the Environment

	Chapter 3
	Felix Gogo

	Chapter 4
	Felix Gogo

	Chapter 5
	The Book Inventory Bundle

	Chapter 7
	The Bookshelf: First Stab
	Chapter 9
	The Ogre 3D Startup Sequence

	Chapter 10
	How About a Graphical Interface?

	Index

