Objective-C for
Absolute Beginners

iPhone, iPad and Mac Programming
Made Easy

Third Edition

Gary Bennett
Brad Lees
Mitchell Fisher

APress’

http://www.allitebooks.org

Objective-C for Absolute
Beginners

Gary Bennett
Brad Lees
Mitchell Fisher

Apress®

[vww allitebooks.cond

http://www.allitebooks.org

Objective-C for Absolute Beginners: iPhone, iPad and Mac Programming Made Easy

Gary Bennett Brad Lees
Scottsdale, Arizona, USA Phoenix, Arizona, USA
Mitchell Fisher

Boston, Massachusetts, USA

ISBN-13 (pbk): 978-1-4842-1903-4 ISBN-13 (electronic): 978-1-4842-1904-1
DOI10.1007/978-1-4842-1904-1

Library of Congress Control Number: 2016960200
Copyright © 2016 by Gary Bennett, Brad Lees and Mitchell Fisher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Aaron Black

Technical Reviewer: Stefan Kaczmarek

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at waw.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

[vww allitebooks.cond

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Gary would like to dedicate this book to his wife, Stefanie, and children,
Michael, Danielle, Michelle, and Emily, for always supporting him.

Mitch would like to dedicate this book to his family that supported him
through all the long nights, especially his wife Heather,
and his children, Jade, Eric, and Matthew

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOrS.........ccsmiemmsmis s ——————————__ XV
About the Technical REVIEWETccusesmsmmsssmssmsssmsssmssmsssssssssssssssssssssssssssnsssssssnsns Xvii
INtroductioncccuvesnesmnss s ———————————— Xix
Chapter 1: Becoming a Great i0OS or Mac Programmercccussessessssssssssssssssssssss 1
Chapter 2: Programming BaSiCS.....ccouuusssmmnssssssnnnsssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 11
Chapter 3: It’s All About the Data............cccoiinnemmmnnnesnmmses s —————————— 35
Chapter 4: Making Decisions About...and Planning Program Flow............ccceeues 59
Chapter 5: Object-Oriented Programming with Objective-C.........ccccussneenrrssssnnnnns 83
Chapter 6: Learning Objective-C and Xcode.......ccuseemmnssssnmnmsssssnnsssssssnsnsssssnnnnns 101
Chapter 7: Objective-C Classes, Objects, and Methodsccccccunrnsssnnnnsssssnnnns 127
Chapter 8: Programming Basics in Objective-Cccccunsemmmnsssnnnnssssssnnssssssnnns 153
Chapter 9: Comparing Datacccrmunnmmmmmmsssnnmmmssssnmsssssssnmsssssssnsssssssnnsssssnnnns 207
Chapter 10: Creating User Interfacesc..cccuusmmmsssmsmsssnsmsssssssssnsssssssssssssssssnnnnas 223
Chapter 11: Storing Information...........ccccinniemmmnnnsennmmnsenss—————————— 243
Chapter 12: Protocols and Delegatescccuseemmmssssnmnmmssssnnnmsssssnnnssssssnnnsssssnnnnns 273
Chapter 13: Introducing the Xcode Debuggercccuremmmsmmmsssmnssssssssssssssssansnas 277
INdeX..iiiiiirninnr e —————————_———_——_———_—_ 291
v

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUtNOIS.....ccuuiiissemmmssssssnmmssssssnmmssssssnmmsssssnmesssssnnssssnsnnsssssnnneesssnnnnessssnnnnss XV
About the Technical REVIEWETccuussessssssnssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xvii
LT LT T | Xix
Chapter 1: Becoming a Great i0OS or Mac Programmercccussessessssssssssssssssssssss 1
Thinking liKe @ DEVEIOPETccceeerceriririrser st sn e sn s snennenenan 1
Completing the Development CYCIEcocevererererrrcrer s ses e sae s e e s s sne s 4
Introducing Object-Oriented Programmingc.ccooeeiernienesniesnscse s sesesessessesessens 5
Working with the Alice INterfacecccvererrrcrcrsr s 8
1111 0P 2SS 10
oy 1= L S 10
Chapter 2: Programming BaSiCS.....ccouuusssmensmsssssnnsssssssnnsssssssnsssssssssnsssssssnnssssssnnnnss 11
Taking @ TOUr With AlICE.......c.cveereerrersersessesses s s s e e e s snssnssnssnssnssnssnsnnnnnns 11
NaVIGALION MENU........oeeee e e r e r e e e n e n e e n e e nnennnnens 12
EQITING @ SCENE.....ccuieetccccr et e e e e et e e e p s 13
Classes, Objects, and INStANCES INAlICE........ccceiiereririererer e r e p s 15
00 T= T - OO 16
EQIOr AFBQ. ...t a e e b e R e e Re e Re e E e e R e e R e e ene e nRnnnnnnas 17
DELAIIS AFBAccveeeeeciree e e R R R e AR R e Re e R e e eRennnanas 17
EVENTS ATA.... .ttt e e e se e e s R e R e e Re e e Re e e Re e e e e a e e e Renennnnnnanas 17
Creating an Alice App—To the Mo0oN, AliCEccoeeeeeererrre e 17
Your First Objective-C Program..........cccvcvvervensensensessessessesssssessesssssssssssessssssssasssssssssssnns 26
Launching and USING XCOEccceererererrerrererrerereeseresessessesessesessessssessssessssesssssssessssessssessesesssnssasasaens 26

vii

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

SUMMAIY ...ttt e s e e e s a e e R e s e eae e s ne e n e nnennnnnas 33
EXBICISES ..uvueererrrseressesse s s s s s se s e e a s se s s e n e e e a e e s ae e e Re e e R e e Renn e ne 33
Chapter 3: It’s All About the Data............ccccriiemmmnnnemmses————————— 35
Numbering Systems Used in Programmingccccocevereresrnnennnsessssssssssssssesssssessessessens 35
BiLS . e e e 35
By S ..ttt e e A e A SR e A e A e A e R e A e A e e e ne et e e e e e neenen 37
3L T T 1 39
0o 40
DAtA TYPLSeiererireri s e n e n e nn e n e nnennnnan 40
Using Variable and Data Types With AliCE..........c.cceveererriersninesnsesessse s 4
Data Types and ObJECLIVE-C..........ccvvrverrerrerrerserrer s se s sn s sn e e 50
Identifying ProDIBMS ..o n e sn e snen s 95
SUMMAIY ...ttt e s a s e e s ae e s ae e s ae e s e ene e s ne e n e nnennnnnas 57
EXBICISES ..uviueererrrreresessess s rs s e se s e a s se s s ee s s e e R e e s e ae e e n e e e Renn e e 57
Chapter 4: Making Decisions About...and Planning Program Flowcussees 59
BOOIEAN LOGIC......eiuereereereereerereeree e sae e saesaesaesaesaesae s e sae s e sassaesaesaesassnssassassaesassasssssnssssnns 59
L 1L =0 3 60
COMPAriSON OPEIALOIS.....ceerreereerereererersrsersesersesersesessessssessesessessssessssessssessesessessssessssessssessessssessssesansens 62
DESIGNING APPS...cieierrrrirsersisse s s s s se s e e s sr s e s e s e e e e e e nr e nn e r e nn e nnenn e nr e nennennennan 63
PSBUUO-COUR......cciiiiiiiiiii i 63
DeSign REQUITBMENTScooieieeiieerieee it e e n s 65
FIOWCRAMING......coveeecre e e s e e e a e p e e n e e aennnnens 68
Designing and Flowcharting an EXample APP ..o s sessssessssessssssssssssens 69
THE ADPP’S DESIGN ...ttt r e e e e A b e e R e R e e R e e R e R e e Re e nnan 70
Using Loops to Repeat Program Statements..........cccooonncecicnniccee s 72
Coding the Example APP iN AlICE......coeeererereeree e rse e ss e snesa s sr s saesne e 74
Coding the Example App in ODJECHIVE-C......cceoevererrrrrr s 75
Nested if Statements and else-if Statements..........cocoeeerrrnsrererr s 79
RemOVING EXIra CRATACIEIScceeeeuererererereerersesersesessesessessesessesessessssessssessssesssssssessssessssessesesssnssssanaens 79
viii

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Improving the Code Through Refactoring........ccoceveeververerierererererseresesssessesessesessesessessssessesessessssssassens 80

T LT T T TC AT o] oSSR 80
Moving Forward Without AliCE..........cccvererrercrcrcr s 81
SUMMEAIY ...ttt e e ae e se e s e s a e e ae e s e eae e nae e s e nnennnnnas 81
EXEICISES ..cuvuiutirisct it 82
Chapter 5: Object-Oriented Programming with Objective-C.........ccccusseenrrssssnnnnns 83
LT 0 1< e PSS 83
WHaL IS @ ClaSS?......cccrviciriieirine s 84
PlAaNNING CIASSEScceverererreirreressessesssesssssssessssessesssssssssessessssesssssssssssssssssssssssssssssssnsenns 85
Planning PrOPEILIESueeeeererreeseresssesesssssssessssssssessssssssesesss s s sssssssssssssssssssssssssssnssssssssnssssssssnsssssssenes 85
Planning METOUS ..o e e s e np s 87
IMPIEMENTING the CIASSEScovvveeeerrrreerererire e nn s s 89
INNEIIEANCE ...t ————————— 96
WHY USE QOP?......oeeererer sttt sn s sn s nn e sn e nr e nn e sn e nn e nn e nnnnn 97
LIS EVEIYWHREIE ...ttt e e e e p e s 97
Eliminate Redundant Code ... 97
EQSE Of DEDUGGING.coervrreirererreeisesie e ss s se s se e s et e s e e e s s e e e e nennn s 97
Ease 0f REPIACEMENT...........ccoiiieicr et p s e e n e e aenn e 98
AdVANCEA TOPICS....eiuerrerrerrerrerersersessersessessessessessessessessssassassassasssesassasssssassaessssassssssssssnsnns 98
0 3 98
POIYMOIPRISIN....c.ctieceeetereesir e a e e e s e e e R e e s pe e e e s e e e e e nrnnn s 98

E3 1141 1P 2SS 98
EXBICISES ...vuiutieice i 99
Chapter 6: Learning Objective-C and Xcode.......ccuuseerrrssssnnnssssssnssssssssnnssssssnnnnss 101
A Brief History of ODJECtiVe-C........ccceeereeercre e 101
Understanding the Language Symbols and Basic Syntax..........ccceeevevrrrsernensensennnnns 102
Create @VArADIE ..o 102
Begin and End @ SECtiON 0F COUEceceeererrriererirrresesesssseese s sss e ses e sessssssssessssssssesssssssssnnns 102
Signify the End of @ LiNe 0f COUE.........ccvreerererrrereseriresesesis e ssssssssssesssssssssssssssenes 103

ix

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Write @ COMMENT.....c.oviiiiri b 103
DEFINE @ CIASS...c.ccuirirriissssssisis s bbb 104
Define @ MEthod ... ————————————— 104
Define an Objective-C Variableccccvvieverierereresere s sse e sessesassesas e ssssesssssssssassesassesssnenes 105
0 | 1T 1 o O 105
Putting the “Objective” into ODjECtive-Ccccocrcrcrcrcr e 105
Writing Another Program in XCOUEceoueerererserresesesensessesesessssessesessessssessessssssssssssens 108
Creating the PrOJECL.........ccccerrecrcr et n s p e nn s e e 109
E3 1111 1P 7SS 125
EXBICISES ...vvceirisiciri st 126
Chapter 7: Objective-C Classes, Objects, and Methodsccccccenrissnnnnrnsssnnnns 127
Creating an ODJECtive-C ClaSS........cocvererereresressessesse e e ssesssssesssssessssnssnsssssssssssssnsnns 127
Declaring Interfaces and Properties (Instance Variables)...........ccooreoennnncncnnsecerereeescreeeeeens 128
Calling METNOAS ...t s e e n e 129
Working with the Implementation File............cconreieer s 131
Coding YOUF METNOUS ...t et n s 132
USING YOUFr NEW ClaSS......ccerereerrernenrseressessesssessssessessssessessssessssssssssssessssssssssssssssssnsens 133
UPAAting MYFIFSTADD ...coveveeeereririesesessss e sss s ses e ss s s e s ss e s sse s snssssssesssnssssnsnnes 133
AdAING ODJECES ...vveeeerreeeserrse s e s e s s e e s e s s e e e p e e e e s e e nnnrans 135
Writing the Implementation File ..o s 139
Updating the USer INEITACE..........cceerieiererrrneserissse e sns e sns s s nnnns 140
HOOKING UP the COUEcveeeeerrriceerrrre s sas e sss e ss s sn s sessssssssssssssssnnnnes 143
Accessing the Xcode Documentation...........cccoccevirieninsencn s 150
1111 112 SRS 151
EXBICISES ...vvereurrrereserse st ses s rse e s s s e e e s e s s e sae e p e e re e e e nn e e nnn 152
Chapter 8: Programming Basics in Objective-Cccccunmmmmmssssnmnmnssssnnnssssssnnns 153
00] 1= (0] TSRS 153
USING NSSEL ...t e b e s s ne e s s e e ne e e e nnnnnnes 154
USING NSAITAY.....coviveerereressesesessssesssesssssesesssssssssssssssssssssssssssssssssssessssssasensssssassnsssssssessssssssesessssssssssnnns 155
ST 0] (0] 1 - T OSSPSR 156

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Using the Mutable Container CIASSES..........ccouverermreresnersesrssessssssesessessesessessssessesessens 157
NSMULADIESEL.......eeveeeeerteecrer e s et s s s s ne e e snnnnnns 157
NSMULADIEAITAY........ceeeeereeeeeresessesesesesseeseses s e e e se e e s ss e s se e e e s s e e e e s ese e e s s sse e e ssnsasn e nsnsnnnannnes 158
NSMULADIEDICTIONATY ...t se e s nense e nnns 159

Creating the BookStore AppliCation...........ccccevevereereresessesses s s ssssesssessssessessessesenns 160

Introducing Instance Variables...........ccoeeeeerececcse e 166
ACCESSING PrOPEITIES ...t e et n s 167
Custom Getter and SELEET ... ——————————— 168

Finishing the MyBooKstore Program...........cccoceennennsesssssssessesssssseses s sssennes 169
Creating the INItAl VIEW........c.o et 175
The BOOKSTOIE ODJECTccceererueerererseesesesseesesessee s se s se s e ss s e sse e s e snsssensnsans 180
Using the BOOKSTOre ODJECTcccoererueeriririeeserissee s e e sa e ne s eens 183

Preparing the Table VIEW........ccocvcrrierrrerseren et se s s s e e e sassassnsnns 184

The B0k Detail VIEW..........ccocrcrcircerciris s sn e snssne s 185
Setting Up the QULIETS..........oe ettt e 199
Plugging in the BOOK DEtailS..........ccceeererererenicrinscre s ss e s se s e s s s 202

SUMMEAIY ...ttt ae s e s ae e s e r e e s e n e e ne e n s nnnnnnns 204

EXBICISES ...viuereeuersereserse s s st s se s sn s r e s e s ae e n e ne e e R e nnn 205

Chapter 9: Comparing Datacccimmmmmmmmmmsssssnmmsssssnmmsssssnmmsssssesssssnessssnnn 207

Revisiting BOOIEAN LOGICc.ccvverrerrerrerserersessessessessessessessessessessssssssssssssssssssssssssssssssnnns 207

Using Relational OPerators..........ccccoeeeeeeesessessessessessesssssessssssssssssssssssssssssssssssssssssnsens 208
ComMPArING NUMDEIS......c.ceeeeeee ettt npsn s 208
Creating an EXample XCOUE APD....co e sesss s e sse e se s st ss e sse s e s sessessssesssnenns 209

Using Boolean EXPreSSIONSccceerrerensersesessessesssesessesssens 214
COMPANING STNGS....coeerieeeererireesi e e s e s s se et ssse e e s e se e e e nnnnnnnnnes 215
COMPANING DALESceeeeeecriririceer e s s e s s s ne e e s e e e e 217
ComMDBINING COMPAIISONS........coururreererrrreeseresseesesessssssesessssssesessssassns 219

Using the switch Statement ... 220

SUMIMAIY ...ttt s s s s e s s s sn e sa s s s s s sn s s e sns s s nrenr s nr e e e nnenn e s e nnenn e s e nnennennnnnennannan 221

EXBICISES ..eueiirercre sttt sttt e e e e e e e e nn e e e e e e nn e e e nnenen 221

xi

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Chapter 10: Creating User INterfacesccccuueemmmssssmnnmmssssnnnmsssssssnsssssssssssssssnnnns 223
Understanding Interface BUIlErcccoeeeeerecenc e sse s s e e snssnnnens 224
The Model-View-Controllerccocvvrverierserser s se e e e s 224
Human Interface GUIAEIINEScceeviererieresirerre e 226
Creating an Example iPhone App with Interface Builder........cccccoceevvvenncerrccsesnnnenn 227
USing INTErface BUIIE ..o e 232
The DOCUMENT QULINEcoeeereeieccre e e r s a e r e s sr e n e n e n e nnas 233
The ODJECE LIDIAIYcoveeceecerceir e s n s s a e r e e e n s p e n e nnas 234
Creating the VIBW ... s s n s s nn s nn s p s 235
USING OULIBTS ...t e e b p e e e n e e nn e n e s 237
Connecting Actions and ODJECTSccceeriierniererere e sr e 239
IMPIEMENTALION FilB...cecee e e s a e r e se e n e e s 239
1111 112 2SSOSR 240
EXBICISES ...vruereerreresersesesse s st e e s s e e s e ne e s s e ae e e r e e e n e ne e e e ennnrnnn 241
Chapter 11: Storing Information...........cccnnneemmmmmnnnnmmssssn i ——————————— 243
Storage ConsSiderations.........cocuveeererrerserses s sa e s 243
Lo £ (=T 0] 1 [0SR 243
WHEING PrefereNCEScucc et s r e r e e s p e p e p e nenrnnas 244
ReadiNg PrEfErENCEScovieeeecrrccrrcir et r s e p e e e e e n e n s 245
DAtADASEScerceririririr s nr e n e r e nn e nn e nnennennan 245
Storing Information in @ Database...........cccevrrrrerrrrrsr s ———— 245
Getting Started with Core Data............ccccocveercernnrcrr s 246
THE MOUEL.......ceceeeririr st se e n e sr e r e n e sr e nr e nn e nnen s 248
Managed ODJECT CONTEXL ..ot 258
Setting Up the INTEIACE.cccoeeererer e e e e a e s a e 258
E3 1111 1P 7SS 270
EXBICISES ...eiueiererire st e e e e r e e e nr e nn e nn e nn e n e nn e nnnnnnnnnnan 271

xii

CONTENTS

Chapter 12: Protocols and Delegatesccusemmmnssssnnnmmssssnnnssssssssnsssssssnssssssnnnnss 273
Multiple INNEFILANCEccceveerceriererer s sr s sr s sn s r e nn e sn e nnennnnnns 273
Understanding ProtoCOIS..........coceeeeeiererese e sse e s sse s s e snesnesnssnssassnennns 274
PrOTOCOI SYNTAX......cvceiecerieeccrerire e e s e s s s s ne e e snnnneas 275
Understanding Delegatesccocvverererererrreessesee s sse s seessesesssssssssssessassassassssssssssssnns 275
NEXE STEPS ... r e a e e e e e en s 276
1111 11 SRS 276
Chapter 13: Introducing the Xcode Debuggercccurmmmmsmmmsssmnsssssssssssnssssansnas 277
Getting Started with DEbUQGQINGcceeeeeeeecceece e 277
Setting BreakpoiNtso e s 278
Using the Breakpoint NaVIgator...........ccccceriienennrnesesesise e sessssssssesasssssnsnens 280
DEDUQGGING BASICS......coeereeeeereririeeirisre e e s e s e s ne e nennennnnas 282
Working with the Debugger CONIOIS.........ouoeerereiererree s sessans 283
USiNG the STEP CONTIOIScoveeeeecee e 284
Looking at the Thread Window and Call STACKcocvurererererenenesinreesesesssee s sesessssseens 286
Debugging Vari@hlEs..........cocerurueieririreieiriree e p e 286
Dealing with Code Errors and Warnings..........cccververrersessessessessessessessessessessesssssssssssenns 288
L1 T 1 T 3 288
SUMMEAIY ...ttt ae s e e e e e e a e e s A e e ae e e e ne e naens 290
EXBICISES . eueiirerirer sttt e e e e e e e nn e e e e e nnennennenan 290
INA@X.ueitiiisnnnnnnasssnnnnnssssnnnnnsssnnnnesssnsnnessssnnnnsssssnnnnessssnnnnsssssnnnsssssnnnnnssssnnnnesssnnnnssssn 291

xiii

About the Authors

Gary Bennett is president of xcelMe.com. xcelMe teaches iPhone/iPad
programming courses online. Gary has taught hundreds of students

how to develop iPhone/iPad apps and has several popular apps on the
iTunes Apps Store. Gary’s students have some of the best-selling apps

on the iTunes App Store. Gary also worked for 25 years in the technology
and defense industries. He served 10 years in the U.S. Navy as a nuclear
engineer aboard two nuclear submarines. After leaving the Navy, Gary
worked for several companies as a software developer, CIO, and president.
As CIO, he helped take VistaCare public in 2002. Gary also co-authored
Swift 3 for Absolute Beginners for Apress. Gary lives in Scottsdale, Arizona,
with his wife, Stefanie, and their four children.

Brad Lees has more than 12 years of experience in application
development and server management. He has specialized in creating

and initiating software programs in real-estate development systems and
financial institutions. His career has been highlighted by his positions

as information systems manager at the Lyle Anderson Company;

product development manager for Smarsh; vice president of application
development for iNation; and IT manager at the Orcutt/Winslow
Partnership, the largest architectural firm in Arizona. A graduate of
Arizona State University, Brad and his wife, Natalie, reside in Phoenix with
their five children.

XV

ABOUT THE AUTHORS

xvi

Mitchell Fisher is a software developer in the Boston, Massachusetts area.
He was introduced to PCs in the 1980s when 64 KB was a lot of memory
and 1 MHz was considered a fast computer. Over the last 25 years, Mitch
has worked for several large and medium-sized companies in the roles

of software developer and software architect and has led several teams of
developers on multimillion-dollar projects. Mitch now divides his time
between writing i0S applications and server-side UNIX technologies.

About the Technical Reviewer

Stefan Kaczmarek has more than 15 years of software development
experience specializing in mobile applications, large-scale software
systems, project management, network protocols, encryption algorithms,
and audio/video codecs. As chief software architect and cofounder

of SKJM, LLC, Stefan has developed a number of successful mobile
applications including iCam (which has been featured on CNN, Good
Morning America, and The Today Show, and which was chosen by Apple
to be featured in the “Dog Lover” iPhone 3GS television commercial) and
iSpy Cameras (which held the #1 Paid iPhone App ranking in a number of
countries around the world including the United Kingdom, Ireland, Italy,
Sweden, and South Korea). Stefan resides in Phoenix, Arizona, with his
wife, Veronica, and their two children.

xvii

Introduction

Over the past seven years, we've heard this countless times: “I've never programmed before, but I have a
great idea for an iPhone/iPad app. Can I really learn to program the iPhone or iPad?” We always answer,
“Yes, but you have to believe you can.” Only you are going to tell yourself you can’t do it.

For the Newbie

This book assumes you may have never programmed before. It was also written for people who may
have never programmed before using object-oriented programming (OOP) languages. There are lots of
Objective-C books, but all of these books assume you have programmed before and know OOP. We wanted
to write a book that takes readers from knowing nothing about programming to being able to program in
Objective-C.

Over the last seven years we have taught thousands of students at xcelMe.com to be iPhone/iPad
developers. We have incorporated what we have learned in our first two courses, “Introduction to
Object-Oriented Programming and Logic” and “Objective-C for iPhone/iPad Developers,” into this book.

For the More Experienced

There are lots of developers who programmed years ago or programmed in a non-OOP language and need
the background in OOP and logic before they dive into Objective-C. This book is for you. We gently walk you
through OOP and how it is used in iPhone/iPad development.

Why Alice: An Innovative 3D Programming Environment

Over the years, universities have struggled with several issues with their computer science departments:
e High male-to-female ratios
e High drop-out rates
e Longer than average time to graduation

One of the biggest challenges to learning OOP languages like Java, C++, or Objective-C is the steep
learning curve from the beginning. In the past, students had to learn the following topics all at once:

e Object-oriented principles
e A complexintegrated development environment (IDE)
e The syntax of the programming language

e Programming logic and principles

Xix

INTRODUCTION

Carnegie Mellon University received a grant from the U.S. government and developed Alice. Alice is an
innovative 3D programming environment that makes it easy to create rich graphical applications for new
developers. Alice is a teaching tool for students learning to program in an OOP environment. It uses 3D graphics
and a drag-and-drop interface to facilitate a more engaging, less frustrating first programming experience.

Alice enables you to focus on learning the principles of OOP without having to focus on learning a
complex IDE and Objective-C principles all at once. You get to focus on each topic individually. This helps
readers feel a real sense of accomplishment as they progress.

Alice removes all the complexity of learning an IDE and programming language syntax. It is drag-and-drop
programming. You'll see it is actually fun to do, and you can develop really cool and sophisticated apps in Alice.

After the OOP topic has been introduced and you feel comfortable with the material, we then move into
Xcode, where you will get to use your new OOP knowledge in writing Objective-C applications. This enables
you to focus on the Objective-C syntax and language without having to learn OOP at the same time.

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and logic concepts in Alice
and then move those concepts into Xcode and Objective-C. Most students are visual and learn by doing. We
use both of these techniques. We’ll walk you through topics and concepts with visual examples and then
take you step-by-step examples reinforcing these.

Often we will repeat previous topics to reinforce what you have learned and apply these skills in new
ways. This enables new programmers to re-apply development skills and feel a sense of accomplishment as
they progress.

The Formula for Success

Learning to program is an interactive process between you and your program. Just like learning to play
an instrument, you have to practice. You must work through the examples and exercises in this book. Just
because you understand the concept doesn’t mean you will know how to apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises in this book.
But you will really learn when you debug your programs. Spending time walking through your code and
trying to find out why it is not working the way you want is a learning process that is unparalleled. The
downside of debugging is it can be especially frustrating to the new developer. If you have never wanted to
throw your computer out the window, you will. You will question why you are doing this and whether you
are smart enough to solve the problem. Programming is humbling, even for the most experienced developer.

Like a musician, the more you practice the better you get. You can do some amazing things as a
programmer. The world is your oyster. One of the most satisfying accomplishments you can have is seeing
your app on the iTunes App Store. However, there is a price, and that price is time spent coding.

Here is our formula for success:

e Believe you can do it. You'll be the only one who says you can’t do this. Don’t tell
yourself that.

e Work through all the examples and exercises in this book.
e Code, code, and keeping coding. The more you code, the better you'll get.

e Be patient with yourself. If you were fortunate enough to have been a 4.0 student
who can memorize material just by reading it, this will not happen with Objective-C
coding. You are going to have to spend time coding.

e Don’tgive up!

XX

INTRODUCTION

The Development Technology Stack

We will walk you through the process of understanding the development process for your iPhone/iPad apps
and what technology is needed. However, it is helpful to briefly look at all the pieces together, in other words,
a sample iPhone app, in a Table View. See Figure I-1.

Required Software, Materials, and Equipment

One of the great things about Alice is it is available on the three main operating systems used today.
e Windows
e Mac
e Linux

The other great thing about Alice is it is free! You can download Alice atwww.Alice.org.

Operating System and IDE

Although you can use Alice on many platforms, the IDE that developers use to develop iPhone/iPad apps is
Xcode. The IDE is free and is available in the Mac App Store.

Dual Monitors

It is highly recommended that developers have a second monitor connected to their computer. It is great
to step through your code and watch your output window and iPad simulator at the same time on dual,
independent monitors. Apple hardware makes this easy. Note it is not required to have dual monitors; you
will just have to organize your open windows to fit on your screen if you don't.

To access the dual-monitor set up feature, go to Apple System Preferences and select Displays
(see Figure I-1).

xxi

http://www.alice.org/

INTRODUCTION

OO0 6 Color LCD

<[> | Showall | Q

| Display = Arrangement Color '

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

| Mirror Displays

v Show displays in menu bar (' Gather Windows) (Detect Displays) ®

FigureI-1. Dual monitors
Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you can ask us
questions while you are learning Objective-C. See Figure I-2.

xxii

http://forum.xcelme.com/

INTRODUCTION

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

{; Board index

How Access Your Course Webinars And How To Use The Forum

New students need to download the attached pdf and follow instructions to register for your
webinars after you purchase the class. Additionally, there are directions and updates on how to
access your course and forum, post questions, navigate the message board, watch training videos,
etc.

Moderator: gary.bennett

Book -> Objective-C for Absolute Beginners: iPhone and Mac Programming Made Easy
Coming Summer 2010!! This forum contains all the assignments and questions readers may have
for each chapter.

Moderator: gary.bennett

Free Live Webinars for iPhone Developers

This forum lists the schedule for upcoming live webinars for iPhone developers. Webinars are live
and have limited seats. Current and former students get first notifications. Seats for all others is
first-come-first serve.

The sessions are recorded and will be made available to current and former students on this forum.
Moderator: gary.bennett

Current Student & Alumni Recorded Webinars and More
This Forum is for current and former students
Moderator: gary.bennett

Interesting Technical News
News related to iPhone Development
Moderator: gary.bennett

Student/Instructor AppStore Applications
Applications that xcelme instructors and students have successfully posted on iTunes AppStore.
Moderator: gary.bennett

Marketing your app (Students Only)
Ideas on how to market your iPhone applications.
Moderator: gary.bennett

Intro to OOP and Logic (Students Only)

Introduction to Object Oriented Programming and Logic

Moderator: gary.bennett

Objective-C 2.0 for iPhone Developers (Students Only)

Objective-C 2.0 course for iPhone Developers. The 2nd Course in the series.
Moderator: gary.bennett

)

@ | @

®® OO

Figure I-2. Reader forum for accessing answers to exercise and posting questions for authors

xxiii

CHAPTER 1

Becoming a Great iOS or Mac
Programmer

Now that you're ready to become a software developer and have read the introduction of this book, you
need to become familiar with several key concepts. Your computer program will do exactly what you tell it
to do—no more and no less. It will follow the programming rules that were defined by the operating system
and programming language. Your program doesn’t care if you are having a bad day or how many times you
ask it to perform something. Often, what you think you've told your program to do and what it actually does
are two different things.

Key to Success If you haven’t already, take a few minutes to read the introduction of this book. The
introduction shows you where to go to access the free webinars, forums, and YouTube videos that go with each
chapter. Also, you'll better understand why we are using the Alice programming environment and how to be
successful in developing your i0S and Mac apps.

Depending on your background, working with something absolutely black and white may be
frustrating. Many times, programming students have lamented, “That’s not what I wanted it to do!” As you
begin to gain experience and confidence programming, you'll begin to think like a programmer. You will
understand software design and logic, and you will experience having your programs perform exactly as you
want and the satisfaction associated with this.

Thinking like a Developer

Software development involves writing a computer program and then having a computer execute that
program. A computer program is the set of instructions that you want the computer to perform. Before
beginning to write a computer program, it is helpful to list the steps that you want your program to perform,
in the order you want them accomplished. This step-by-step process is called an algorithm.

If you wanted to write a computer program to toast a piece of bread, you would first write an algorithm.
This algorithm might look something like this:

1. Take the bread out of the bag.

2. Place the bread in the toaster.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 1
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_1

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

3. Press the toast button.
4. Wait for the toast to pop up.
5. Remove the toast from the toaster.

At first glance, this algorithm seems to solve our problem. However, the algorithm leaves out many
details and makes many assumptions. Here are some examples:

e What kind of toast does the user want? Does the user want white bread, wheat, or
some other kind of bread?

e How does the user want the bread toasted? Light or dark?

e What does the user want on the bread after it is toasted: butter, margarine, honey, or
strawberry jam?

e Does this algorithm work for all users in their cultures and languages? Some cultures
may have another word for toast or not know what toast is.

Now, you might be thinking we are getting too detailed for just making a simple toast program. Over
the years, software development has gained a reputation of taking too long, costing too much, and not being
what the user wants. This reputation came to be because computer programmers often start writing their
programs before they have really thought through their algorithms.

The key ingredients to making successful applications are design requirements. Design requirements
can be formal and detailed or as simple as a list on a piece of paper. Design requirements are important
because they help the developer flesh out what the application should do and not do when complete. Design
requirements should not be completed in a programmer’s vacuum but should be produced as the result of
collaboration between developers, users, and customers.

Note If you take anything away from this chapter, take away the importance of considering design
requirements and user interface design before starting software development. This is the most effective (and least
expensive) use of time in the software development cycle. Using a pencil and eraser is a lot easier and faster than
making changes to code because you didn’t have others look at the designs before starting to program.

Another key ingredient to your successful app is the user interface (Ul) design. Apple recommends you spend
more than 50 percent of the entire development process focusing on the Ul design. The design can be done
using simple pencil and paper or using Xcode’s storyboard feature to lay out your screen elements. Many
software developers start with the Ul design, and after laying out all the screen elements and having many
users look at paper mock-ups, they then write the design requirements from their screen layouts.

After you have done your best to flesh out all the design requirements, laid out all the user interface
screens, and had the client(s) or potential customers look at your design and give you feedback, coding can
begin. Once coding begins, design requirements and user interface screens can change, but the changes are
typically minor and easily accommodated by the development process. See Figures 1-1 and 1-2.

Figure 1-1 shows a mock-up of a mobile banking app screen prior to development using OmniGraffle.
Developing mock-up screens along with design requirements forces developers to think through many of
the applications usability issues before coding begins. This enables the application development time to be
shortened and makes for a better user experience and better reviews on the App Store. Figure 1-2 shows how
the view for the mobile banking app actually appears when completed.

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

Balances Transfer Money Pay Bills

vings (xx1772)
Business Accounts vailable Balance $1234.21
Present Balance $2123.22
Business Checking (xx4327)
Available Balance $2100.22
Present Balance $4201.35 IRA (xx177)
Available Balance $1234.21
Business Savings (xx1234) Present Balance $2123.22
Available Balance $1234.21
p Car Loan (xx172)
FrsemL Semnce o Outstanding Principle $1234.21
Next Payment Amount $2123.22
Personal Accounts Due Date 08/17/2009
) Last Pay Amount $452.99
Checking (xx3423) : Last Pay Date 07/17/2009
Available Balance
Present Balance

Home Locations Contact Us FAQ Log Out
Home Equity Loan (xx7672)

Qutstanding Principle $12,34.21
Next Payment Amount §2123.22
Due Date 08/17/2009
O Last Pay Amount $452.99
Last Pay Date 07/17/2009

Figure 1-1. This is a UI mock-up of the account balance screen for an iPhone mobile banking app before
development begins on the original iPhone in 2010. This Ul design mock-up was completed using OmniGraffle

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

Accounts Log Off

Checking & Savings

Checking (...1175)
Current Balance: $9,103.29
Available Balance: $9,103.29

Checking (...3859)
Current Balance: $21.87
Available Balance: $21.87

Checking (...4982)
Current Balance: $1.74
Available Balance: $11.74

Checking (...5884)
Current Balance: $78,709.76
Available Balance: $78,563.71

Savings (...5114)
Current Balance: $1.08
Available Balance: $1.08

13}

£

{»

A $

Figure 1-2. This is a completed iPhone mobile banking application as it appeared on the App Store after
several revisions in 2015. This app is called Woodforest Mobile Banking

Completing the Development Cycle

Now that you have your design requirements and user interface designs and have written your program,
what'’s next? After programming, you need to make sure your program matches the design requirements and
user interface design and ensure that there are no errors. In programming vernacular, errors are called bugs.
Bugs are undesired results of our programming and must be fixed before the app is released to the App Store.
The process of finding bugs in programs and making sure the program meets the design requirements is
called testing. Typically, someone who is experienced in software testing methodology and who didn’t write
the app performs this testing. Software testing is commonly referred to as Quality Assurance (QA).

Note When an application is ready to be submitted to the App Store, Xcode gives the file an .app or .ipa
extension, for example, appName. app. That is why iPhone, iPad, and Mac applications are called apps. This
book uses program, application, and app to mean the same thing.

During the testing phase, the developer will need to work with QA staff to determine why the
application is not working as designed. The process is called debugging. It requires the developer to step
through the program to find out why the application is not working as designed. Figure 1-3 shows the
complete software development cycle.

4

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must occur to make
the application more usable for the customer. After the design requirements and user interface changes are
made, the process begins over again.

At some point, the application that everyone has been working so hard on must be shipped to the App
Store. Many considerations are taken into account when this happens.

e Cost of development

e Budget

e Stability of the application
e Return on investment

There is always the give-and-take between developers and management. Developers want the app
perfect and management wants to start realizing revenue from the investment as soon as possible. If the
release date were left up to the developers, the app would likely never ship to the App Store. Developers
would continue to tweak the app forever, making it faster, more efficient, and more usable. At some point,
however, the code needs to be pried from the developers’ hands and uploaded to the App Store so it can do
what it was meant to do.

Introducing Object-Oriented Programming

As discussed in detail in the introduction, Alice enables you to focus on object-oriented programming
(00P) without having to cover all the Objective-C programming syntax and complex Xcode development
environment in one big step. Instead, you can focus on learning the basic principles of OOP and using those
principles quickly to write your first programs.

For decades, developers have been trying to figure out a better way to develop code that is reusable,
manageable, and easily maintained over the life of a project. OOP was designed to help achieve code reuse
and maintainability while reducing the cost of software development.

OOP can be viewed as a collection of objects in a program. Actions are performed on these objects to
accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or screen/view on the iPad
can all be objects. You may want to act on the plane by making the plane bank. You may want the person to
walk or to change the color of the screen of an app on the iPad. Actions are all being applied to these objects;
see Figure 1-4.

5

CHAPTER 1 © BECOMING A GREAT 10S OR MAC PROGRAMMER

ece ice 3.1, %

B Starting Camera View ¥

Figure 1-4. There are three objects in this Alice application: UFO, Rover, and Alien. The UFO object can have
actions applied—takeoff and landing, turn right and turn left

Alice will run a program, such as the one shown in Figure 1-4, for you if you click the play button. When
you run your Alice applications, the user can apply actions to the objects in your application. Similarly,
Xcode is an integrated development environment (IDE) that enables you to run your application from
within your programming environment. You can test your applications on your computers first before
running them on your iOS devices by running the apps in Xcode’s iPhone simulator, as shown in Figure 1-5.

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

iPhone 4s - iPhone 4s [i0S 9.3 (13E230)
Carrier = 3:30 PM -—
xcelMe Home

& e

Yeed differeriyl

Objective-C Course

Cocoa Touch/Xcode Course
iPhone SDK Course 1
iPhone SDK Course 2

Game Programming Course

]]]] &

xcelMe Home

Figure 1-5. This sample iPhone app contains a table object to organize a list of courses. Actions such as “rotate
left” or “user did select row 3” can be applied to this view object

Actions that are performed on objects are called methods. Methods manipulate objects to accomplish
what you want your app to do. For example, for a jet object, you might have the following methods:

goup

goDown

bankLeft
turnOnAfterburners
lowerLandingGear

The table object in Figure 1-5 is actually called UITableView when you use it in a program, and it could
have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

Most objects have data that describes those objects. This data is defined as properties. Each property
describes the associated object in a specific way. For example, the jet object’s properties might be as follows:

altitude =10,000 feet

heading = North

speed = 500 knots

pitch =10 degrees

yaw = 20 degrees

latitude =33.575776

longitude =-111.875766
For the UITableView object in Figure 1-5, the following might be the properties:

backGroundColor = Red

selectedRow=3

animateView=No

An object’s properties can be changed at any time when your program is running, when the user
interacts with the app, or when the programmer designs the app to accomplish the design requirements.
The values stored in the properties of an object at a specific time are collectively called the state of an object.

Working with the Alice Interface

Alice offers a great approach in using the concepts that we have just discussed without all the complexity
of learning Xcode and the Objective-C language at the same time. It takes only a few minutes to familiarize
yourself with the Alice interface and begin writing a program.

The introduction of this book describes how to download Alice. After it's downloaded and installed, you
need to open Alice. It will look like Figure 1-6.

ene
[ile Ednt Project Bun Window Help

CHAPTER 1

Akce 3.1 *

Figure 1-6. Alice IDE running

BECOMING A GREAT 10S OR MAC PROGRAMMER

Technically speaking, Alice is not a true IDE like Xcode, but it is pretty close and much easier to learn
than Xcode. A true IDE combines code development, user interface layout, debugging tools, documentation,
and simulator/console launching for a single application; see Figure 1-7. However, Alice offers a similar look,
feel, and features to Xcode. This will serve you well later when you start writing Objective-C code.

BRQAOE

¥ [TableExample Find &

¥ [Classes "y

* Models 164

¥ 1 Views. e

et

¥ 1 Controliers b

¥ [Objective-C Course 148

¥ | CocoaCourse 14

h CocoaClasses.h ::‘3

m CocoaClasses.m 153

h CocoaClassiControfer.h 153

m CocoaClassiControlier.m 15

CocoaClassiControteras | 1

h CocoaClass2Controlier.h 157

m CotoaClass2Controller.m 158

CocoaClass2Controlier.xit 158

h CocoaClassSController.h o)

m CocoaClassController.m 152

h CocoaClassBController.h L]

m CocoaClassBControlier.m ok

CocoaClasseControlier.xib L

166

h CocoaClass?Controllerh 187

m CoccaClass?Controller.m 1w

CocoaClass?Controlier.xit e

m

W carrier = 318 PM

= @ @< > [B TableExample) 1 Classes) 1 Controliers)

Q-
?N'l(cﬂ L1ngexratn, section) F |

case kTopSection:
switch (indexPath.ro
{

case kHome:

cell.textLaby
//cell, image!
break;

case kSecond:

cell. textLab
//cell, image!
break;

case kThird:
cell.textlaby
//cell, image!
break;

case kFourth:
cell.textLab
//cell. image!
break;

case kFive:
cell.textLab

break;

Figure 1-7. The Xcode IDE with the iPhone simulator

xcelMe Home

B e

Objective-C Course

Cocoa TouchfXcode Course
iPhone SDK Course 1
iPhone SDK Course 2

Game Programming Course

L] L] L] L]

-

s-C Course", @"");
r Image.png"];

ich/Xcode Course”, @"");
r Imaged.png”];

) Course 1", @"");
r Image.png"];

XK Course 2", @");
r Image.png"];

gramming Course", @"");
r Image.png"];

In the next chapter, you will go through the Alice interface and write your first program.

CHAPTER 1 © BECOMING A GREAT I0S OR MAC PROGRAMMER

Summary

Congratulations, you have finished the first chapter of this book. It is important that you have an
understanding of the following terms because they will be reinforced throughout this book:

e Computer program

e Algorithm

e Design requirements

e Userinterface

e Bug

e Quality assurance (QA)

e Debugging

e Object-oriented programming (OOP)

e Object
e Property
e Method

e State of an object

e Integrated development environment (IDE)

Exercises

e Answer the following questions:
e Why s it so important to spend time on your user requirements?
e Whatis the difference between design requirements and an algorithm?
e Whatis the difference between a method and a property?
e Whatis abug?
e Whatis state?
e Write an algorithm for how a soda machine works from the time a coin is inserted
until a soda is dispensed. Assume the price of a soda is 80 cents.

e Write the design requirements for an app that will run the soda machine.

10

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2

Programming Basics

This chapter will focus on the building blocks that are necessary to become a great Objective-C programmer.
This chapter will go over how to use the Alice user interface, how to write your first Alice program, and how

to write your first Objective-C program; it will also explore some new OOP terms.

Note

We want to introduce new concepts in Alice and later, in this chapter, enable you to use these

concepts in Objective-C. We have used this approach for the last eight years and know, from personal
experience, that this approach helps you learn the concepts quickly, without discouragement, and gives you a

great foundation to build upon.

Taking a Tour with Alice

Alice’s 3D programming environment makes it easy to write your first program, as it applies some of the
principles that you learned in Chapter 1. First, you need to learn a little more about Alice’s user interface.
When you first launch Alice, you are presented with a screen that looks like Figure 2-1.

Eile Help

Select Project

Select any template

SEA_FLOOR

SNOW

WONDERLAND

Figure 2-1. Opening screen in Alice

© Gary Bennett, Brad Lees and Mitchell Fisher 2016
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_2

SEA_SURFACE

Cance l OKI

11

http://dx.doi.org/10.1007/978-1-4842-1904-1_1

CHAPTER 2 PROGRAMMING BASICS

You can start with the blue sky and green grass template or pick another template with a different
background. Feel free to explore and have fun. This is where you will spend most of your time and write your
first Alice application.

The Alice user interface is set up to help you efficiently write your applications. The user interface is
similar in form and function to the Xcode IDE. You will now explore the major sections of Alice.

Navigation Menu

The Navigation menu, shown in Figure 2-2, enables you to open and close files, set your application
preferences, and view world statistics. You can also access example worlds and Alice Help from the
Navigation menu.

LN] Alice 3.2 Book i 3
Eie £dit Project Run Window Melp

| aser | s Editable Procedures (0}
| Biped | s Editable Procedures (0}

Coxang or Ednor Aroa

=l
Rhiaber say | text: ST

Code Helpers.
| _alien orientTa rarget
CHhis_aben orientTolpright

(his.alien polntAt rarger #

position & orientation doinorder| { count | while | foreachin | [if]| ['.wamh_m}-{ variable... | assign] [/icomment |

Figure 2-2. This shows the main sections of the Alice user interface. Take some time to explore the user
interface. You will see in this chapter how it compares with Xcode and how it will help you learn Objective-C

12

CHAPTER 2 PROGRAMMING BASICS

Note Itis important that you save your program frequently when using Alice. If Alice crashes and
you haven’t saved your work, you will lose all your code or changes since you last saved. Additionally, we
recommend that you close Alice completely and reopen it when you want to open a new Alice program.

Editing a Scene

One of the most important Alice controls is the Setup Scene control. See Figure 2-3. When you click the Edit
Scene button, you launch Alice’s Scene Editor.

[] ® Alice 3.2 *
Eile Edit Project Run Window Help

declare procedure MyFirstMethod

'do in order

| drop statement here

4 this.cliffwall2
Procedures

group by category ']

{ ciiffwall) 's Editable Procedures (0)
('Prop) ’s Editable Procedures (0)

say, think :
| Cthis.cliffwall2 say text: A7) |
| Cthis.cliffWall2) think text: Am) |

position

Cthis.cliffwall2) move direction: =22) , amount: =722) |

Figure 2-3. The Setup Scene button. This button will launch Alice’s Scene Editor and enable you to add objects
to your Alice world

Itis important to learn how to move the camera around your world in order to get the view you want the
users to see.
By moving the camera around, you can provide the prospective you want with your app. See Figure 2-4.

13

CHAPTER 2 © PROGRAMMING BASICS

ace Alice 3.2 *
Eie fda Project Bun Wedow Help

. 2 | .‘- Undo | ¥
B Starting Camera View | -
handi e: g! E SB g

DEFALLT ROTATION TRANSLATION RESZE
| use snap B Snap details

4 this.cliffwall2 ¥/

one shots ¥

¥ & this.cliffWall2's Properties

Ccnmwal | cliffWall2 - Cnew Cidtwan |

Paint = Moew Cobor) 0518, 0

Opacity = 10
Vehicle = e

[Position = (= :0.60 b 0.00 h& 547)

Wdii 1020

Size = Iﬁﬂ_t'usr -{ Reset
Depthc 14,00 (=
Show Joints:

|+ Object Markers
* Camera Markers (0)

:.l ail classes (V)

Biped classes | Fiyer classes

Prop classes | | Ouadruped classes | Swimemer clastes | Tranaport classes

Figure 2-4. These are camera manipulation arrows to control the camera in the Edit Scene window
Take a minute to familiarize yourself with the Scene Editor shown in Figure 2-5. The Scene Editor
enables you to do the following:
e Add objects to your world from the gallery
e Add objects to your world from the Internet
e Position the objects in your world
e Adjust the camera for viewing your world

You will spend a lot of time adding objects and setting the camera in your worlds by using the Scene
Editor.

14

CHAPTER 2 PROGRAMMING BASICS

ene Mice 3.2 * Loyowt Toaks

il [dit Project Bum Window [Help \ - —
Undao [od
Wk Starting Camera View |3} ﬂ U ey :
handesyier B D EEE I g

DEFAULT ROTATION TRANSLATION RESIZE
e sap B Snap detaih

| €@ this.uFO ¥
one shots ¥
¥ £ this.uFO's Properties

{uro JUFQ = lrew uro |
Paint = WHITE

Opacity = 10
Vehicle =

Position = (= 088 [y 0.00 L -0.54)
Wk ;04
Stzasme] : v I nese |
Dept 5 37 [

Show Joints:
> Object Markers ()
* Camera Markers (0)

lmmﬂlnr_ Class Hierarchy |

| anclasses [V v
_Biped classes l Fiyer classes Prop classes. | _Quadruped classes Swimemer clasies Transport classes ‘

Figure 2-5. Alice’s Scene Editor

Classes, Objects, and Instances in Alice

A group of objects with the same properties and same methods (actions) are called a class. For example, you
could have a class called Airplane. In this class, you could have five objects.

boeing747
lockheedSR71
boeing737
citation10
f18Fighter

These objects are nearly identical. They are from the same Airplane class. They all have the same
following methods:

land()

take0Off()
lowerLandingGear()
raiselandingGear()
bankRight()
bankLeft()

15

CHAPTER 2 © PROGRAMMING BASICS

The only thing that differentiates the objects is the values of their properties. Some of the properties of
the values might be as follows:

winglength = 20ft
maxThrust = 200,0001bs
numberOfEngines = 2

In your world, you may have two objects that are exactly the same. You may want two Boeing 737s in
your view. Each copy of a class is called an instance. Adding an instance of a class to your program is called
instantiation.

Object Tree

The Object Tree (see Figure 2-6) enables you to view all the objects in your Alice world. Additionally, if the
object has subparts, you can view these subparts by clicking the plus sign, and you can collapse the subparts
by clicking the minus sign.

File Edit Project Run Window Help

™

Object Tree

Figure 2-6. The Object Tree

16

CHAPTER 2 PROGRAMMING BASICS

Many of the Alice worlds come with several built-in objects that you will need for your apps. The world
in Figure 2-5 comes with the Camera and g round objects.

Editor Area

The Editor Area, the largest area of the Alice interface, is where you write your code. With Alice, you don’t
have to actually type code; you can drag and drop your code to manipulate your objects and properties. See
Figure 2-2.

Note Don't forget the bottom of the Editor Area. The bottom contains a row of control and logic tiles for
looping, branching, and other logical structures that you can use to control the behavior of your objects.

Details Area

The Details Area of the Alice interface contains the tabs for properties, procedures, and functions that make
up the object that is selected in the Object Tree. See Figure 2-2.

e Properties contain the specific information of your selected object (e.g., weight,
length, and height).

e Procedures (methods and functions) perform actions upon the object (e.g., takeoff
and land).

e Functions and methods are similar. In Alice, the difference between the two is that a
method does not return a value. A function will return a value.

Events Area

The Events Area of the Alice interface contains a listing of all the existing events used by your app and
provides you with the opportunity to create new events. Events are conditions that trigger your methods.
Methods (or procedures) that react to these events are called event handlers. When a specific event occurs,
it triggers a signal that the event handler receives and handles.

Creating an Alice App—To the Moon, Alice

We have covered some new terms and concepts, and now it is time to do what programmers do—write code.
It is customary for new developers to write a HelloWorld app as their first program. You will do something
similar, but Alice makes it more interesting. You will then follow up your first Alice app with your first
Objective-C app.

This Alice app will have three objects on the screen, the UFO object and two Aliens. One Alien will say,
“The Eagle has landed.” The other Alien will say, “That’s one small step for man, one giant leap for mankind.”

17

CHAPTER 2

PROGRAMMING BASICS

Alice really makes apps like this easy and fun to do. Make sure you follow these steps:
1.
2.
3.

P You must select project to open.

Click File and then New.
Click the Blank Slates tab.
Choose the Moon project, and click the OK button. See Figure 2-7.

Select Project

SEA_FLOOR

SNOW WONDERLAND SEA_SURFACE

—

Figure 2-7. Select the Moon project

Now, you need to add your objects. Click Setup Scene. It was the important
button in the World window shown in Figure 2-3.

In the Object Gallery, select the UFO Class from Tansport > Aircraft classes.

Left-click UFO to view some of the information about the object. See Figure 2-8.
You can click OK to add your objects to your world, or you can drag and drop
them from the gallery to the world.

Note

You can see in this example why an instance is a copy of an object. You are making a copy of the

object and putting it in your world. Instantiation is a big word for the process of making a copy of and initializing
your object.

18

CHAPTER 2 PROGRAMMING BASICS

Eile Edit Broject Run Window Help

$B starting Camera View d

® @ Add Scene Property From Gallery

Figure 2-8. Viewing and adding objects to your world from step 6

7. Add two Aliens from the Biped classes to your world. See Figure 2-9.

19

CHAPTER 2 PROGRAMMING BASICS

Figure 2-9. Adding two Aliens to your world

8. Use the Camera Adjustment and Objects Adjustment tools, outlined in boxes in
Figure 2-10, to achieve the look and perspective you desire.

Tip Sometimes when you add two objects, Alice places one object over the other. Drag the top Alien to the
side of the other Alien if this occurs. Your world should look like Figure 2-10.

20

CHAPTER 2 PROGRAMMING BASICS

[ile Edn Project Run Wedow Help

|an casses (W) | A Boed casses |7
» A\
\

!

Figure 2-10. Use the Camera Adjust tool to control the user perspective of the world. Use the Object
Adjustment tools to shape and orientate your objects in your world

9. Atthe top-right corner are the Handle Style tools. Hover the mouse over each tile
to discover what each tile tool will do to the object.

10. Notice the Object Tree in Figure 2-10. The ground, UFO, camera, alien, and
alien2 objects are in the Object Tree.

11. Click the Edit Code button at the bottom right of the screen. This will return you
to the editor view.

12. Click the left alien in the World window. Make sure the Procedures tab is
selected in the Details Area. See Figure 2-11.

21

CHAPTER 2 PROGRAMMING BASICS

|eoe Alice 3.2 *

flle Edit Project Bun Window Help

doinorder) [count | whie | for eachin

Figure 2-11. Select the left Alien and Procedures tab

13. You are now going to make your Aliens say something. Remember, to apply
actions on an object, you need to use methods or procedures. From the
Procedures tab, drag the Alien|turn tile from the Details Area to your Editor area.
Select turn left, 0.25 rotation from the parameter list. See Figure 2-12. When you

run your app, the left Alien will turn to the left one-quarter of a rotation and face
the other Alien.

22

CHAPTER 2 PROGRAMMING BASICS

(o080 .
Ele Edit Project Run Window Help

Figure 2-12. Making the left Alien’s methods and parameters

14. Let’s do the same thing for the other Alien. Click the right Alien. Drag the
Alien|turn tile from the Details Area to your Editor. Select turn right, 0.25
rotation from the parameter list. See Figure 2-13.

23

CHAPTER 2 PROGRAMMING BASICS

LK
Eile Edit Project Run Window Help

i

‘this.alien2

..-.er.ﬁis,alienz say text
| Cthis.alien2) think text:

 Cthis.alien2) move direction: £ 177 , amnl:i@_]
~ (this.alien2) moveToward target: @ . amount:
P

~ Cthis.alien2) moveAwayFrom target: @ amount:

- (this.alienZ) moveTo target: @_
- (this.alienZ] place spatialRelation: . target: C@_I

Alice 3.2 *

declare procedure myFirstMethod
| doin order

{ Chisafien” turn CLEFT), £0.25)' add dewil’ |
add detail]

{ Cthis.alienZ turn CRIGHT)' , 50.25

Figure 2-13. Making the right Alien’s methods and parameters

15. A parameter is the information a method needs to act upon the object.
A method may need one or more parameters for a method.

16. Click the left Alien, drag the Alien|say tile to the Editor area, select Custom
TextString, and then type The Eagle has landed. Place the tile between the other

two tiles.

17. Click the right Alien, drag the Alien|say tile to the Editor area, select Custom
TextString, and then type That’s one small step for man. . . One giant leap for
mankind. Your app should look like Figure 2-14.

24

CHAPTER 2 PROGRAMMING BASICS

ene Alice 3.2 *
Eile Edit Project Run Window Help

~ (this.alien turn CLEFT , £0.25 add detail

 (this.alien say J(The Eagle has landed’ add detail
i turn [RIGHT) , 0.25|' add deail’

% ' say .l"‘_l‘_ hat's one small step ?ﬁ_ﬂm...ﬁm giant leap for mankind.]® add detail]

| '|'p_--.m \
. Cihis.alien move direction: C177) , ,@

Figure 2-14. Your Editor area should have these methods within the listed parameters

18. Let’s run your first program by clicking the Run button. If you have completed
everything correctly, your app should look like Figure 2-15 when it runs. If not,
you have some debugging to do.

[BN Run

_P_J speed: 1x Q) | restart ILE

Figure 2-15. From the top portion of the World Running window, you can rerun your program, pause, stop,
and take a picture of your app. You can also speed up or slow down your app, depending on how slow or fast
your application is running

25

CHAPTER 2 PROGRAMMING BASICS

19. Save the app as toTheMoonAlice.a3p. You will be using this app later. Click File
» Save or File » Save As.

Your First Objective-C Program

Now that you have learned a little about OOP and you have your first Alice program completed, it’s time to
write your first Objective-C program and begin to understand the Objective-C language, Xcode, and syntax.
First, you have to install Xcode. Xcode is the IDE that you use when developing Objective-C apps. It is
equivalent to Alice’s interface.

Launching and Using Xcode

Xcode is available for download from the Mac App Store for free. See Figure 2-16.

Xcode

Xcode
L Essenuais 3

Xcode

What's New in Version 7.3.1
Xcode 7.3.1 includes Swift 2.2 and SDKs for iDS 9.3, watchDS 2.2, vOS 9.2, and OS X 10.11 EI Capitan

More

W Nesde Fin bt Vew Fied Seges Gt ot Dwbg Seurce Coirs Widow b 2 . o =

"B

AONEaldriOrOGRe®®™ my

-l BT A =

Figure 2-16. Xcode is available for download from the Mac App Store for free

26

CHAPTER 2 PROGRAMMING BASICS

Note This package has everything you need to write Objective-C i0S, tv0S, watchO0S, and macOS apps. To
run your apps on your iOS device, submit apps to the App Store, and have access to beta apps, you will need to
apply for the Apple Developer Program and pay $99 per year. See Figure 2-17.

@ Developer ver Desigr op Sistribute pport Account Q

Support Distribution Membership

Development

View topics and find the tools and resources you need to develop
apps on Apple platforms.

[Xcode [Centificates
Y Development Resources [Code Signing
[Beta Software [Debugging
Y Advanced App Capabilities [Requesting Code-level Support
Developer Forums Bug Reporter Contact Us
Post questions and share thoughts Post questions and share thoughts Get personalized help with
with fellow developers and Apple with fellow developers and Apple enroliment, membership, tools,
engineers. engineers, and more.

Discuss with other developers > Report Bugs > Contact Apple Developer Support »

Figure 2-17. Ifyou paid $99 and joined the Apple Developer Program, beta versions of Xcode and the iOS
SDK are available to download. You also have the ability to submit apps to the App Store

Now that you have installed Xcode, you need to begin writing Objective-C applications, so let’s get
started. After launching Xcode, follow these steps:

1. Click Create a new Xcode Project. See Figure 2-18.

27

CHAPTER 2 PROGRAMMING BASICS

No Recent Projects

Welcome to Xcode

Get started with a playground
L Explore new ideas quickly and easily.

A Create a new Xcode project
7"%] Start building a new iPhone, iPad or Mac application.

m Check out an existing project
Start working on something from an SCM repository.

Open another project...

Figure 2-18. Creating your first Objective-C project

2. Select OS X > Application in the left-side pane, select the Command Line Tool
template, and then click Next. See Figure 2-19.

Choose a template for your new project:

i0s *
Application A AR

Framework & Library

Cocoa Game Command Line
watchOS Application Tool
Application
Framework & Library
tvOS
Application

Framework & Library

System Plug-in
Other

Cocoa Application
This I a Cocoa

Cancel Next

Figure 2-19. Select Command Line Tool. You may have to navigate to an equivalent screen with other
versions of Xcode. The bottom line is to navigate to the command-line tool

28

CHAPTER 2 PROGRAMMING BASICS

3. Let’s name the app HelloWorld and select Objective-C as the language, as shown
in Figure 2-20. Then click Next and save your app in the directory of your choice.

Choose options for your new project:

Product Name: HeiIoWorId
Organization Name: xcelMe
Organization Identifier: com
Bundle Identifier: com.HelloWorld

Language: Objective-C B

Cancel Previous m

Figure 2-20. Name your app HelloWorld, and select Objective-C as the language
4. Inthe Project Navigator, click the main.mfile. See Figure 2-21.

Toolbar

" Navigator Selecior Ba
ece » B W Heiollord) BB My Mac HelloWarld: Ready | Today at 7:07 PM ‘ = ® <lOo o
main.m =)
B A A © 3o B3 B|< B Helloworid HelloWorld | m main.m | No Selection & Jump Bar O e
v [§ Helloworld 1 I/ Quick Help
2 // main.m
HelloWorl
S s // HelloWorld
&t No Quick Help
¥ [Products 5 f/ Created by Gary Bennett on 7/18/16.
& f/ Copyright © 2016 xcelMe. All rights reserved.
s

9 #import <Foundation/Foundation.h>
1 int main{int argc, const char = argvi]) {
@autoreleasepool {
1 // insert code here...
NSLog(@"Hello, World!"); D OO

return @;

Navigator Area Editor Area No Matches

o] Filter Bar OE B @

Figure 2-21. You can run the app right after creating the project by clicking the Run button and seeing “Hello,

World!” printed out in the console
29

CHAPTER 2 © PROGRAMMING BASICS

Xcode does a lot of work for you and creates a directory with files and code ready for you to use. That is
what Xcode templates do—they save you a lot of time.

You need to become familiar with the Xcode IDE. Let’s look at two of the most often used features
(see Figure 2-21):

e The Navigator area
e The Editor area

These sections should look similar to what you used in Alice. The Navigator area contains files needed
to build your apps. It will contain your classes, methods, and resources.

The Editor area is the business end of the Xcode IDE—where our dreams are turned into reality. The
Editor area is where you write your code. You will notice that as you write your code it will change color.
Sometimes, Xcode will even try to auto-complete words for you. The colors have meanings that will become
apparent as you use the IDE. The Editor area will also be the place where you debug your apps.

Note Even if we’ve mentioned it already, it is worth saying again: you will learn Objective-C programming
by reading this book, but you will really learn Objective-C by debugging your apps. Debugging is where
developers learn and become great developers.

The Run button turns your code from plain text to an .app that your Macs, iPhones, or iPads know how
to execute. With the Alice interface, you used the Run button to run your Alice app.

To run your first program, simply click the Run button. Xcode checks your code syntax, compiles your
app, and if no errors are found, makes an .app file and runs it. This application runs in a console (also
known as a terminal).

When the app runs, it prints out Hello, World! in the console. Also, in the Debugger Console window,
you can see whether the application terminated and why it terminated. In this case, it terminated normally.
You can see this with the message Program ended with exit code: 0, which means your app didn’t crash.
See Figure 2-22.

30

vww allitebooks.conl

http://www.allitebooks.org

ece » B W Hesoworid) Bl My Mac Finished running HelloWorld : HellsWorld
BERAQAACED BB L B = mainm) No §
w [Hesoword LI/

// main.m
loWarid

ML 7/ Helloworld Compier and Fun Res
%

¥ [Products ff Created by Gary Bennett on 7/18/16.

Copyright © 2016 xcelMe. All rights reserved.

#import <Foundation/Foundation.h>

int main({int argec, const char = argv(]) {
@Bautoreleasepool
// insert code here...
NSLog(@"Hello, World!");

CHAPTER 2 PROGRAMMING BASICS

return 8;
= -
2016-07-10 19:13:37.859 HelloWorld[43437:18128548] Hello, World!
Program ended with exit code: @
Detug Area . .
Console View Selector
+[® OHE|| Mot ® Fil Al Output & ® 00
Figure 2-22. The app executing in the Debugger Console
Let’s modify the application to do what we did with the Aliens:
1. Navigate to the main.mfile.
2. Change lines 14 and 15 to look like Figure 2-23.
ene » B W Hetoworid) Bl My Mac Finished running HelloWarld : HelloWorld (1
main.m
BRAOACEHOo BRE|C B relowond Helloworid | [l mainm) [maing) 0>
o B P H main.m
3 He'l Low
i A ,‘::: el loWorld
[Products // Created by Gary Bennett on 7/108/16.
& // Copyright © 2016 xcelMe. All rights reserved.
'L
#import <Foundation/Foundation.h>
int mainlint argc, const char = argv(]) {
@autoreleasepool {
// insert code here...
NSLog(@"The Eagle has landed.");
NSLog(@"That's one small step for man...One giant leap for mankind."); 10 Expected 7 after expression

return @;

=

O Expected *;' after expression

Figure 2-23. The app with a syntax error caught by the Objective-C compiler

31

CHAPTER 2 © PROGRAMMING BASICS

3. You are going to intentionally misplace a semicolon at the end of line 8. This will
cause a compiler error.

4. Click the Run button.

You can see that something will go wrong when you try to compile and run your app. You have a
compiler error, a red pointer, and the notices in the Xcode IDE denote this. See Figure 2-23.

When you write Objective-C code, everything is important—even semicolons, capitalization, and
parentheses. The collection of rules that enable your compiler to compile your code to an executable app is
called syntax.

NSLog is a function that will print out the contents of its parameters in the console.

Now, let’s fix the app by adding the semicolon at the end of line 15. Building and running the app will
enable you to see the output to the debug console. See Figure 2-24.

ece p M Hosoworid | L My Mac Finished running Mesowond | Hellaworld
main.m
BRa = B < B Hetoworid | (1] Hedowerid | m main.m | No Selection
¥ 3 HelloWorid /"
v heloorid ’;
m mainm 7"
» [Products // Created by Gary Bennett on 7/18/16
! Copyright © 2016 xcelMe. ALl rights reserved.
!

{ &
e .;Ilanneﬂ.“h:
small

step for man...One giant leap for mankind.");

2016-87-10 19:40:56.584 HelloWorld[46030:18269857] The Eagle has landed.
2016-87-10 19:40:56.585 HelloWorld[468308:18269857] That's one small step
for man...One giant leap for mankind.

Program ended with exit code: @

Ao & = All Output 2 0O

Figure 2-24. The app compiled with no compiler errors, and completion executed successfully with the output
you wanted

Feel free to play around and change the text that is printed out. Have fun!

32

CHAPTER 2 PROGRAMMING BASICS

Summary

In this chapter, you built your first Alice app. You also installed Xcode and compiled, debugged, and ran your
first Objective-C app. We also covered new OOP terms that are key to your understanding of Objective-C.
The terms that you should understand are as follows:

Classes
Objects
Methods
Parameters
Instances

Instantiation

Exercises

Extend your toTheMoon.a3p Alice app. Place another object of your choosing in the
world and have the object say something to the two Aliens, when they have finished
speaking.

Extend your Objective-C HelloWorld.app by adding a third line of code that prints
any text of your choosing to the console.

33

CHAPTER 3

It's All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory. However, zeros and
ones are not very useful to developers or app users, so you need to know how your program uses data and
how data is stored on your computer.

In this chapter, you will look at how data is stored on computers and how you can manipulate that
data. Then you'll write a fun Alice app illustrating data storage and afterward write the same Alice app in
Objective-C. So let’s get started!

Numbering Systems Used in Programming

Computers work with information differently than do humans. This section covers the various ways
information is stored, tallied, and manipulated by devices such as your Mac, iPhone, and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and manipulate data. A bit has a
value of either 0 or 1. When computers were first introduced, transistors and microprocessors didn'’t exist.
Data was manipulated and stored by vacuum tubes being turned on or off. If the vacuum tube was on, the
value of the bit was 1, and if the vacuum tube was off, the value was 0. The amount of data a computer was
able to store and manipulate was directly related to how many vacuum tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator And Computer (ENIAC).
It took up more than 136 square meters and had 18,000 vacuum tubes. It was about as powerful as your
handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a computer processor
depends on how many transistors are placed on its chip or CPU. Like the vacuum tube, transistors have an
off or on state. When the transistor is off, its value is 0. If the transistor is on, its value is 1. At the time of this
writing, the A9 processor powers the iPhone 6s, 6s Plus, and SE, and it has a dual-core ARM processor with
approximately 4 billion transistors, up from 149 million transistors on the A4 processor that was in iPhone 4
and the first iPad. See Figure 3-1.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 35
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_3

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Figure 3-1. Apple’s proprietary A9 processor (source: Wikipedia)

Moore’s Law

The number of transistors on your iPhone’s or iPad’s processor is directly related to your device’s processing
speed, memory capacity, and sensors (accelerometer, gyroscope, compass) available in the device. The
more transistors, the more powerful your device is.

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a processor. He
observed that the number of transistors in a processor doubled every 18 months from 1958 to 1965 and
would likely continue “for at least 18 months.” The observation became famously known as Moore’s law and
has proven accurate for more than 55 years. See Figure 3-2.

36

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Six-Core Core |

2,600,000,0004 Six-Core Xeon 7"'00\. ®10-Core Xoon Westmere-EX
Dual-Core Itanium 28
1,000,000,000- Ao 1o, . _\l”g?mcﬁn lwml Tuots
Itanium 2 with 9MB 7%, _Six-Core Opteron 2400
AMDK108" “Core i7 (Quad)
Itanium 2@ / :Eo[e 20w
100,000,000 ______..:;Mm
Pentium W " @Barkn ®Atom
- curve shows transistor "'mKE R
€ 10,000,000~ s ey e ehatm
8 ®AMD KS
_ @ Pentium
E=] p
R72) 1,000,000 W“/’/
w S
.
I: 803668/
100,000 So———
680000 /e80186
sosce wboss
10,000 8% eesoo
8080, | /ezs0
aooae 7 @MOS 6502
2,300~ 4004®,Reatane
I 1 1] 1
1971 1980 1990 2000 2011

Date of introduction

Figure 3-2. Moore’s law (source: Wikipedia)

Note

There is a downside to Moore’s law, and you have probably felt it in your pocketbook. The problem

with rapidly increasing processing capability is that it renders technology obsolete quickly. So when your
iPhone’s two-year cell phone contract is up, the new iPhones on the market will be twice as powerful as the
iPhone you had when you signed up. How convenient for everyone!

Bytes

A byte is another unit used to describe information storage on computers. A byte is composed of 8 bits and
is a convenient power of 2. Whereas a bit can represent up to two different values, a byte can represent up to
28 or 256 different values. A byte can contain values from 0-255.

37

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Note In Chapter 13, we discuss the base-2, base-10, and base-16 number systems in more detail. However,
it is necessary to have an introduction to these systems in this chapter in order to understand data types.

The binary number system represents the numerical symbols 0 and 1. To illustrate how the number 71
would be represented in binary, we will use a simple table of 8 bits (1 byte), with each bit represented as a
power of 2. To convert the byte value 01000111 to decimal, simply add the on bits. See Table 3-1.

Table 3-1. The Number 71 Represented as a Byte

Power to 2 2 26 2° 2 2° 2? 2! 20
Value for “on” 128 64 32 16 8 4 2 1
bit

Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or 00010110. See Table 3-2.

Table 3-2. The Number 22 Represented as a Byte

Power to 2 2 26 2° 2 28 2? 2! 20
Value for “on” 128 64 32 16 8 4 2 1
bit

Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or 11111111. See Table 3-3.

Table 3-3. The Number 255 Represented as a Byte

Power to 2 2 26 2° 2 2° 22 2! 20
Value for “on” 128 64 32 16 8 4 2 1
bit

Actual bit 1 1 1 1 1 1 1 1

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000. See Table 3-4.

Table 3-4. The Number 0 Represented as a Byte

Power to 2 2 26 25 2 28 22 2! 20
Value for “on” 128 64 32 16 8 4 2 1
bit

Actual bit 0 0 0 0 0 0 0 0

38

http://dx.doi.org/10.1007/978-1-4842-1904-1_13

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized by computers,
namely, a hexadecimal format. Hexadecimal is just an easier (more compact) way for humans to

parse binary data. You will encounter hexadecimal numbers when you are debugging your apps. The
hexadecimal system is a base-16 number system. It uses 16 distinct symbols, 0-9, to represent values 0 to
9and A, B, C, D, E, and F to represent values 10 to 15. For example, the hexadecimal number 2AF3 is equal
in decimal to (2 x 16°) + (10 x 16) + (15 x 16%)+ (3 x 16°), or 10,995. Figure 3-3 shows the ASCII table of
characters. Because 1 byte can represent 256 characters, this works well for Western characters. For example,
hexadecimal 20 represents a space. Hexadecimal 7D represents a }.

Dec HxOct Char Dec Hx Oct Html Chr Hx ml Chr H ml_Chr
00 {nall) 32 20 040 «#32; Space| 64 40 100 &«#64; B | 96 60 140 `
11 (start of heading) 33 21 041 «#33; ! 65 41 101 «¥65; A | 97 61 141 &«#97; =
2 2 (start of text) 34 22 042 «#34:; " 66 42 102 «#66; B | 98 62 142 «#98; b
3 3 . {end of text) 35 23 043 «#35; # 67 43 103 «#67; C | 99 63 143 «#99; C
4 4 (end of transmission) 36 24 044 «#36; § 68 44 104 «¥68; D [100 64 144 &«#100; ¢
5 5 {enquiry) 37 25 045 % % 69 45 105 «#69; E |101 65 145 e =
6 6 006 ACK (acknowledge) 38 26 046 «#38; ¢ 70 46 106 «#70; F |102 66 146 &«#102; €
7 7 007 BEL (bell) 39 27 047 «#39; ' 71 47 107 «#71; G [103 67 147 &«#103: ¢
8 8 5 (backspace) 40 28 050 «#40; | 72 48 110 &«#72; H |104 68 150 h h
9 9 i (horizontal tab) 41 29 051 «#4l;:) 73 49 111 «#73; I [105 69 151 «#105; 1
10 & (NL line feed, new line)| 42 24 052 * * 74 4k 112 «#74; J |106 6A 152 «#106;]
11 B (vertical tab) 43 2B 053 + + 75 4B 113 «#75; K |107 6B 153 «#107; k
12 ¢ (NP form feed, new page)| 44 2C 054 &«#44; , 76 4C 114 «#76: L [108 6C 154 «#108; 1
13 D (carriage return) 45 2D 055 «#45; - 77 4D 115 «#77; M [109 6D 155 &«#109; m
14 E (shift out) 46 2E 056 «#46; . 78 4E 116 «#78; N [110 6E 156 l10; n
15 F (shift in) 47 2F 057 «#47: / 79 4F 117 «#79: 0 [111 6F 157 &«#lll; o
16 10 . (data link escape) 48 30 060 «#48: 0 80 S0 120 &«#80; P [112 70 160 p p
17 11 (device control 1) 49 31 061 1 1 81 S1 121 «#¥81: 0 [113 71 161 &«#113: 4
18 12 {device control 2) 50 32 062 &«#50: 2 82 52 122 &«#82; R |114 72 162 «#114; ¢
19 13 (device control 3) 51 33 063 l; 3 83 53 123 «#83; 5 [115 73 163 &#llS; =
20 14 (device control 4) 52 34 064 «#52; 4 84 54 124 «#84: T [116 74 164 «#ll6; ©
21 15 (negative acknowledge) 53 35 065 «#53: 5 85 55 125 «#¥85; U [117 75 165 «#117; u
22 16 (synchronous idle) 54 36 066 «#54; 6 86 56 126 «#86; V [118 76 166 &«#1ll8: v
23 17 (end of trans. block) 55 37 067 &«#55; 7 87 §7 127 &«#87; W |119 77 167 &«#119; v
24 18 {cancel) 56 38 070 «#56; & 88 58 130 «#88; X [120 78 170 x x
25 19 (end of medium) 57 39 071 «#57: 9 89 59 131 «#89: ¥ [121 79 171 &«#¥l2l1: ¥
26 1A (substituce) 58 3A 072 «#58; : 90 SA 132 «#90; Z (122 7A 172 «#l22; =
27 1B (escape) 59 3B 073 «#59; ; 91 5B 133 «#91; [(123 7B 173 &#l23; |{
28 1C (£ile separator) 60 3C 074 «#60; < 92 SC 134 «#92; \ [124 7C 174 &«#124; |
29 1D (group separator) 61 3D 075 &«#6l; = 93 5D 135 «#93;] [125 7D 175 &#l25;)

30 1E ({record separator) 62 3E 076 &«#62: > 94 SE 136 «#94; ~ [126 7E 176 &#l26; ~

31 IF {unit separator) 63 3F 077 «#63; 7 95 5F 137 &«#95; _ |127 7F 177 DEL

Source: www.LookupTables.com

122 ¢ 144 E 161 § 177§ 193 L 209 & 225 B 241 =%

129 4 145 &= 162 o 178 & 194 + 210 226 T 242 >

130 ¢ 146 £ 163 179 | 195 | 211 L 27 = 43 <

131 & 147 & 164 [180 9% - 212 b 28 T 244 [

132 & 14 o 165 I 181 4 197 + 213 F 229 o 245

133 a 149 o 166 ° 122 4 198 F 214 230 p 46 -

134 & 150 6 167 ° 183 4 19 | 25 4 231 1 247 =

135 ¢ 151 u 168 184 4 200 L 216 # 232 & 243 ¢

136 & 152 _ 169 _ 185 4 00 27 4 233 @ 249

137 ¢ 153 0O 170 o 186 | 200 & 218 r 234 Q 250

138 & 154 U 1710, % 187 5 208 5 219 B 235 &8)

139 i 156 £ 172 % 188 4 204 | 220 m 26 o 252 _

140 1 157 ¥ 173 189 4 205 = 221 | 237 253 ¢

141 i 158 % 174 « 190 4 206 4 222 1 238 = 254 =

142 A 159 5 175 » 191 4 207 <+ 23 = 239 A 255

143 & 160 4 176 5 192 L 208 L 224 5 240 =

Source: www.LookupTables.com

Figure 3-3. ASCII characters (source: www. LookupTables . com)
39

http://www.lookuptables.com/

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Unicode

Representing characters with a byte worked well for computers until about the 1990s, when the personal
computer became widely adopted in non-Western countries where languages have more than 256
characters. Instead of a 1-byte character set, Unicode can have up to a 4-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII character table. Unicode
can have different character encodings. The most common encoding used for Western text is called UTF-8.
As an iPhone developer, you will probably use this character encoding the most.

Data Types

Now that we've discussed how computers manipulate data, we need to cover an important concept called
data types. Humans can generally just look at data and the context in which it is being used to determine
what type of data it is and how it will be used. Computers need to be told how to do this. The programmer
needs to tell the computer the type of data it is being given. For example, a computer needs to know you
want to add these two numbers together:

2+ 2= 4.

In this example, they are integers. You might first believe that adding these numbers is obvious to even
the most casual observer, let alone a sophisticated computer. However, it is common for users of iPhone
apps to store data as a series of characters, not a calculation. For example, a text message might read

"Everyone knows that 2 + 2 = 4".

In this case, we are using our previous example in a series of characters called a string. A data type is simply
the declaration to your program that defines the data you want to store. A variable is used to store your data and
is declared with an associated data type. All data is stored in a variable, and the variable needs to have a variable
type. For example, in Objective-C, the following are variable declarations with their associated data types:

int x = 10;
inty = 2;
int z = 0;

char prefix = 'c';
NSString *submarineName = @"USS Nevada SSBN-733";

Data types cannot be mixed with one another. You cannot do the following:
z = X + submarineName;

Mixing data types will cause either compiler warnings or compiler errors and your app will not run.

Most data you will use in your programs can be classified into three different types—Booleans, numbers,
and objects. We will discuss how to work with numbers and object data types in the remainder of this chapter. In
Chapter 4, we will talk more about Boolean data types when you learn how to write apps with decision-making.

Note Localizing your app is the process of writing your app so users can buy and use it in their native
language. This process is too advanced for this book, but it is a simple one to complete when you plan from the
beginning. Localizing your app greatly expands the total number of potential customers and revenue for your
app without your having to rewrite it for each language. Be sure to localize your app. It is not hard to do and can
easily double or triple the number of people who buy it.

40

http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Using Variable and Data Types with Alice

Now that you have learned about data types, let’s write an Alice app that adds two numbers and displays the
sum using an object and methods.

1. Open Alice and select File » New.
2. Select the Grass template and click OK. See Figure 3-4.

Select Project

SEA_SURFACE

| ° ‘You must select project to open.

Figure 3-4. Choosing the Grass template

Next, you need to make your variables and select the data types.

1. Click and drag the variable tile on the bottom of your editor to the Editor area,
as shown Figure 3-5.

2. Name your first variable firstNumber and define the variable as shown Figure 3-5.

41

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Eile Edin Project Run Window Help

s 2020 e

deciare procedure MyFirstMethod
do in order

| N] Insert Variable

(®) variable
i/ constant

value type: { WholeNumber) [is array

Is variable:

name: | TEOETS

initializer: 52|

audio
e — e —T | [donorder] [count | whie | for eachin.| [if.] [do together | each in. together | [variabie... | assign| [//commen]

Figure 3-5. Creating a new local variable

3. The variable’s value type is Whole Number. It is initialized with the value of 2.
It is always good programming practice to initialize your variables when they are declared.

4, Create another variable called secondNumber, as shown in Figure 3-6 and as
done in step 5. The variable’s value type is Whole Number and is initialized with
the value of 3.

42

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Eile Edit Project Run Window Help

[ounber < frintss = 2 |

e o Insert Variable

preview: | (WholeNumber = secondlumber <<= =3

(®) variable
i) constant

value type: { WholeNumber) [is array

s variable:

innializer: =3

vehicle
E Cthus.cameral setVehicle vehicle: Zg I
| ————— - COTD BB ACEIE §8) T I T @I

Figure 3-6. Creating a second local variable

5. Create another variable called totalSum, as shown in Figure 3-7 and as done
in step 5. The variable’s value type is Whole Number and is initialized with
the value of 0. This variable will eventually hold the sum of firstNumber and
secondNumber.

43

CHAPTER 3 " IT’S ALL ABOUT THE DATA

_Ele Edn Project Run Window Help

moveToward targer .
moveAwayFrom u:rl_CﬂL amount:

moveTo targer
place spatialRelation’ o target Cm

C
i turnToFace targer
|| (this.cameral orientTo target
0

this.cameral erientTolpright
this.camera POINTAL targer

s variable:

value type:
name:
Initializer:

prevew: [(WhleNmBer) wilion <5 £

Ingart Variable

® variable
i) constant

{ WholeNumber) [is array
fosin]
5

Figure 3-7. Creating the variable totalSum

{"doinorder| | count | while | for eachin_| [if _| [dotogether | each in_together | [variable... | assign| | //comment]

6. Add your two variables together. Drag the totalSumtile to the last row. Right
now, 0 is assigned to the local variable totalSum. Click the 0 and assign
firstNumber to totalSum. See Figure 3-8.

44

CHAPTER 3 " IT’S ALL ABOUT THE DATA

LER y . Alice 3.2 *
File Edic Project Bun Widow Help

Figure 3-8. Creating the variable totalSum

7. Now that firstNumber is assigned to totalSum, click the firstNumber tile.

8. Select secondNumber to add to firstNumber. See Figure 3-9.

45

CHAPTER 3 " IT’S ALL ABOUT THE DATA

L] L] Alice 3.2 *
Eile Edit Project Rum Window Help
b
declare procedure myFirstMethod
do In order

{ WholeNumber = firstNumber <1 =3 |
pieNumber) secondNumber) <8 =3)
totatsum <¢= =0 |
22 sen scene] = Fromeroel |

= hirstNumber (current value)

R this.camera

group by category vi

Random L3
move direction: E0) , amount =171) | Decimal to Whole Number »
amera moveToward target <7 . amount = 1 S TR
(his.camera moveAwayFrom targer ©77) , amount Custom WholeNumber...

HfirstNumber] — =90

J SrotalSumi
This.camera place spatialRelation: & 71) , target <170 econdumbel
RrkntHon SirstNumber
‘_'.'"'g.éamel_'af turn direction: I . amount @“]
“this.camera roll dicection E0) , amount. S 00)
“this.camera turnToFace targer ©
(this.camera orientTo rarger ©
“this.camera orientToUpright
Cthis.camera polntAt rarger 17

Division, Remainder
& absoluteValueOf =7}

position & orientation
{ (this.camera moveAndOrientTo target: "@-]
| Cihis.cameral AndO

wehicle
| (ihis.cameral setVehicle vehicle: fm

audio
| (this.camera playAudio audiosource: £ 171) |

timing

| {"doinorder| { count I while | foreachin | [if | [dotogether i eachin together! [variable...! assian| | //comment|
Figure 3-9. Setting the value to math expressions

9. totalNumber is now assigned to the total of firstNumber and secondNumber.
See Figure 3-10.

e0e Alice 3.2 *
File Edit Project Bun Window Help
myFirstMethod
declare procedure myFirstMethod
do in order

[(WholeNumber i firstNumber <&
secondNumber <5 =3)

J

| { WholeNumber
&7 =

@ this.camera

|;‘;5_w category .vi

Cthis.cameral move dhcﬂun:@ . amount: m
s.camera moveToward target @ . amount: =10

Procedures
position

ral moveTo taroet

Figure 3-10. Selecting totalSum
46

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Now you need to add a character to your world to display your total.

10. Click Setup Scene and then add any object of your choosing from the Gallery at
the bottom of the screen. We have selected an Alien. See Figure 3-11.

File .‘_ ...;_.. P———

" " Add Scene Property From Gallary [- —

| P> gun. | l unto |

preview: constant | Alen) alien <o (new _Asen)

handie st & | &
S e DEFALLT ROTA
i |‘ﬁ‘ :L__Jmémb Snap details
RRREERN (o 2en)] B, this.camer:
| one shows ¥ |

v @B, this.camera's Py
|(scamera) camera
Vehicle = | ths
Cancel @ Position = 0% 0.00 0y 1.
ect kers
mera ers (0

i.-alcusse;.];] | ._*_Do!o dasses E"i_

new Adultl ...) new Teen! ... |

| I
| '
new Elder ...) | newChidl..) l new Toddlert .0 ||

Figure 3-11. Adding a bunny to your world

You need to declare a variable of type String. The variable will hold the “The sum of 2 + 3 is:5” string.
11. Click Edit Code in the bottom right of the scene to go back to your Editor area.

12. Select the Alien instance. From the Procedures tab, drag the this.alien say
text:??? procedure tile to the editor. See Figure 3-12.

47

CHAPTER 3 " IT’S ALL ABOUT THE DATA

ene Alice 3.2 *
File Edit Project Run Window Help

deciare procedure myFirstMethod

B this.alien

Procedures Jfhelio)
| aroup by category ¥ Custom TextString...
| Alien) % Editable Procedures (0) I
| Biped) s Editable Procedures (0)
say, think

is.alien) say text: S
alien think rext:

| Cthis.aben move direction: E7%) , amount =77
| Cihis.aben moveToward targer <17, amount:
m moveAwayFrom rarget "'@ . amount: .'.-f‘_l'l

moveTo target: C'm I
place spatialRelation: = 170) , target @] |

Figure 3-12. Adding the procedure (method) say to the editor

13. Click Custom TextString and enter the string The sum of 2 + 3 is: as the
parameter value. See Figure 3-13.

ene Alice 3.2 *
File Edit Project Run Window Help
[R . G
deciare procedure myFirstMethod
do in order K -
[(WholeNumber = firstNumber, <¢=

B this.alien

Procedures Jfhelio)
| aroup by category ¥ Custom TextString...
| Alien) % Editable Procedures (0) I
| Biped) s Editable Procedures (0)
say, think

alien say text: J

E this.alieni move direction: E17F) , amount:
E this.alien moveToward rarger: <77 | amount:
Cthis.alien moveAwayFrom target @), amount: .'.-f‘_l'l

i moveTo target: C'm] II

n place spatalRelation), targer <T)

Figure 3-13. Entering the string parameter
48

CHAPTER 3 " IT’S ALL ABOUT THE DATA

14. Click OK and then click the first parameter for the say procedure. Append

totalSum to your first parameter String. See Figure 3-14.

LN
Eile Edm Project Eun Window Help

; . SfThe sumof 2 + 3 i5: 7 (current value)
Procedures fhelia)

Custom TextString...
| Alien) s Editable Procedures (0}

| Biped | 's Editable Procedures 0)

* | Custom Textstring...

say, think .
| Cihis.aben say text ST

This.aben| think text 00 |

| Cihis.aben move direction ©7) , amoune Z701) |
This.aker| moveToward targer (00, amoune =10

Custom WholeNumber...

this.aben moveAwayFrom targer <10 | amount <1 C SHotalum

this.aben moveTo target .:_m_ | TS umbar|

this aben place spatialelation CHF) , targer C00F) | Hirsthumbern
arientation

this.aben turn direction. 17 , amount 1‘“‘7‘
“this.aben roll direction. CO1) , amount "E_|
this.aken turnToFace targer E_M il

e

Figure 3-14. Adding the totalNumber to your customized string to display to the user

Alice did something very nice for you in the last step. It automatically converted the data type totalSum
from an integer to a string when it appended its value to the “The sum of 2 + 3 is:” string. You will learn how
to do this using Objective-C.

You can run the program now and will notice the customized string doesn’t display for very long.

To increase the display time of your customized string, click the add detail second parameter of the
say procedure and change the duration to 2 seconds or any other value you like. See Figure 3-15.

[XX] Alice 3.2 *
Eibe Edan Project Bun Yindow Help

decare procedure myFirstMethod

oo orees T
| WholeNumber i1 firsiNumber <5 i

firstNumber ' + ZsecondNumber] |

| (ihis.aben’ say fThesumof 2 + 315 7' + totabem | , Gura

¥ this.alien
Procedures

son 2.07) add detail

| Aben) 's Editable Procedures (0)
| Biped | s Ediable Procedures (0)

[Cinis.alen say texe A7) |
| Cthis.aben think text AT |

Figure 3-15. The Editor area

49

CHAPTER 3 " IT’S ALL ABOUT THE DATA

15. Click the play button, and if you've done everything correctly, your app should
look like Figure 3-16 when it runs.

| O Run
» | speed: 1xQ) | restart ||
(o

Thesumof2+3is:5.

Figure 3-16. The app has run successfully!

Data Types and Objective-C

Now that we have covered the principles of data types and have written an Alice app to help show how these
principles apply, let’s write an Objective-C app that accomplishes what you just did in Alice.

In Objective-C, you have similar data types as you did in Alice. Some of the most frequently used data
types for storing numbers are integers, doubles, floats, and longs. Table 3-5 lists many of the basic data types.
Many of these will be covered in later chapters.

50

CHAPTER 3 ' IT'S ALL ABOUT THE DATA
Table 3-5. Objective-C Basic Data Types
Type Examples Specifiers
char 'a', 'o","\n' %c
int 42, -42,550 0xCCEO %1, %d
unsigned int 20u, 101U, OXFEu %u, %X, %0
long int 13, -2010, oxfefel %1d,
unsigned long int 12UL, 100ul, oxffeeUL %1u, %1x, %1lo
long long int Oxe5e5e5LL, 50111 %11d

unsigned long long int
float

double

long double

id

11ull, oxffeeULL

12.30f, 3.2e-5f, 0x2.2p09
3.1415

3.1e-51

nil

%11u, %11x, %110
%, %e, %g, %a

%f, %e, %g, %a

%L, %Le, %Lg, %La
%@

The Objective-C app will add two integers and display their sum to the console. The app will also
display the text “The program has successfully terminated.” This will be fun and easy, so let’s get started.

1. AsiOS developers, Xcode is where you make your living, so open up Xcode

and create a new project. To do this, select File » New » Project and select the
options shown in Figure 3-17. Click Next.

51

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Choose a template for your new project:

ios 3
Application A \X;

Framework & Library

Command Line
Tool

Cocoa Game
watchOS ﬁ.pp!ication

Application

Framework & Library
tv0S

Application

Framework & Library
0s X

Framework & Library

System Plug-in

Other -
Cocoa Application

This template creates a Cocoa application.

Cancel

Figure 3-17. Opening a new project

2. Save the product name as Chapter 3 (see Figure 3-18). Then select the directory
to save your project and click Next.

52

http://dx.doi.org/10.1007/978-1-4842-1904-1_3

CHAPTER 3 " IT’S ALL ABOUT THE DATA

Choose options for your new project:

Product Name: Chapter3

Organization Name: | xcelMd

Organization Identifier: com
Bundle Identifier: com.Chapter3

Language: Objective-C B

Cancel Previous Next

Figure 3-18. Project settings

3. After you create the project, you need to open your source code file in your
editor. Open the main.m source file (see Figure 3-19).

ooe » B W Chapter3) Bl My Mac Chapter3: Ready | Today at 4:03 PM
main.m
B R A A © m o &3 [88|< [E) Chapter3) [Chapter3) m main.m) No Selection
v [Chapter3 14
v [Chapter3 z // main.m

i // Chapter3
BT .

» || Products // Created by Gary Bennett on 7/16/16.
// Copyright © 2016 xcelMe. All rights reserved.
9 #import <Foundation/Foundation.h>
11 int main(int argc, const char = argv(]) {
12 @autoreleasepool {
13 // insert code here...
1% NSLog(@"Hello, World!");
}

16 return 8;

Figure 3-19. After you create your project and select the main.m file, your Xcode project should look this

53

CHAPTER 3 " IT’S ALL ABOUT THE DATA

If you haven’t seen // used in computer programming before, it enables the programmer to comment
about the code. Comments are not compiled by your applications and are used as notes for the programmer
or, more importantly, for programmers who follow the original developer. Comments help both the original
developer and follow-up developers understand how the app was developed.

Sometimes it is necessary for comments to span several lines or just part of a line. This can be
accomplished with /* and */. All the text between /* and */ is treated as a comment and is not compiled.

In this example, you first need to declare and initialize your variables firstNumber and secondNumber. It
is good practice to always initialize variables when they are declared or soon afterward.

You'll increment the variables firstNumber and secondNumber by 1. You'll print the sum of firstNumber
and secondNumber. See Figure 3-20.

@ [] > M Chapter3) Bl My Mac Finished running Chapter3 : Chapter3
main.m
BEZEamMeé=Eoo < |5 chapter3 Chapter3) m main.m) [7] main()
v E‘ Chapter3 1l A
// main.m
v Chapter3
p, // Chapter3
m main.m 4 f;
» [Products 5 [/ Created by Gary Bennett on 7/16/16.
6 [// Copyright © 2016 xcelMe. All rights reserved.
1/

#import <Foundation/Foundation.h>

int main(int argc, const char * argv(]) {
@autoreleasepool {
// insert code here...
int firstNumber = 2;
int secondNumber = 3;
int totalSum = @;
firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;
5 NSLog(@"The sum is: Jsd",totalSum);

return @;

Figure 3-20. Code for printing to the console

NSLog is a function that can take one or more parameters. The first parameter is generally the string that
is to be printed to the console. The @ symbol in front of the string tells the compiler this is an Objective-C
type string and not a C string. The @ symbol is typically used in front of all your strings for iPhone apps. If you
don’t use the @ symbol, you will probably get a compiler error. NSLog is a helpful function used by developers
to test the execution of their code.

%d tells the compiler an integer will be printed and to substitute the value of the integer for the %d. See
Table 3-5 for other NSLog formatting specifiers. Finally, your second parameter is the integer to be printed.

Figure 3-21 shows the completed executed output of your application.

54

CHAPTER 3 " IT’S ALL ABOUT THE DATA

B | < [& chapter3 Chapter3) m main.m) [J] main()

1/

// main.m

// Chapter3

L

// Created by Gary Bennett on 7/16/16.

// Copyright © 2016 xcelMe. All rights reserved.
1/

#import <Foundation/Foundation.h>

int main(int argc, const char x argv[]) {
@autoreleasepool {
// insert code here...
int firstNumber = 2;
int secondNumber = 3;
int totalSum = @;
firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;
3 NSLog(@"The sum is: fsd",totalSum);

return @;

2016-07-16 16:16:58.281
Chapter3[29334:2638829@0] The sum is: 7
Program ended with exit code: @

Figure 3-21. Console log displaying the results of your Objective-C app

To compile and run your application, click the Run button on your toolbar. You can see that you printed
out the NSLog string.

Note If your editor doesn’t have the same menus or gutter (the left column that contains the line numbers
of the program) you saw in the previous screenshots, you can turn these settings on in the Xcode preferences.
You can open the Xcode preferences by clicking the Xcode menu in the menu bar and then selecting
Preferences.

Identifying Problems

Believe it or not, your program may not run the way you thought you told it to. The process of hunting down
problems with your app is called debugging. To track down bugs in your apps, you can set breakpoints

and inspect your variables to see the contents. To do this, simply click in the gutter where you want to set a
breakpoint (see Figure 3-22). A breakpoint will stop your application from executing at that line and enable
you to inspect your variables.

55

CHAPTER 3 " IT’S ALL ABOUT THE DATA

L] ® > B W Chapter3) BBl My Mac Finished running Chapter3 : Chapter3
main.m
IR AMAC=Eo BB & cnapter3 Chapter3) m main.m) [main()
v [B Chapter3 1/
2 // main.m
v Chapter3
i 3 // Chapter3
m main.m il 77
»] Products 5 // Created by Gary Bennett on 7/16/16.
// Copyright © 2016 xcelMe. All rights reserved.
I/

#import <Foundation/Foundation.h>

int main({int argc, const char * argv(]) {
@autoreleasepool {
// insert code here...
4 int firstNumber = 2;
15 int secondNumber = 3;
16 int totalSum = @;
firstNumber = firstNumber + 1;
8 secondNumber = secondNumber + 1;
19 totalSum = firstNumber + secondNumber;

ED NSLog(@"The sum is: fd",totalSum);
2 }
return @;

Figure 3-22. Setting debugging breakpoints

A blue pointer in the gutter of your editor denotes a breakpoint. When you run your application and
your app hits a line of code that contains a breakpoint, your app will halt and display a green line across the
line of code with a breakpoint (see Figure 3-23). Additionally, you can inspect each variable by hovering over
it with your mouse.

56

CHAPTER 3 " IT’S ALL ABOUT THE DATA

@ (=] [3 [| B Chapter3) JlL My Mac Running Chapter3 : Chapter3
main.m
B s aaf m & chapter3 Chapter3) m mainm) [l main()
D ; I
v [l Chapter3 PID ;
M Chaaer © 2 // main.m
cPU 0% 3 // Chapter3
Al IS
2 Memory 3 A s // Created by Gary Bennett on 7/16/16.
! 6 [/ Copyright © 2016 xcelMe. All rights reserved.
> Energy Impact Zero 7
[C] Disk Zero KBJ! ; : "
L,=] o O #import <Foundation/Foundation.h>
@ Network Zero KBJs) L
1 int main(int argc, const char x argv(]) {
v) Thread 1 Queu._.(seria 12 @autoreleasepool {
) 1 0 main // insert code here...

int firstNumber = 2;
: int secondNumber = 3;
2 start 16 int totalSum = 0;
17 firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
19 totalSum = firstNumber + secondNumber;
| 20} NSLog(@"The sum is: fd",totalSum); Thread 1: breakpoint 1.1

1 start

return @;

E ®» I & & I | < | M chapter3)@ Thread 1) FT 0main

[0 firstNumber = (in1) 3 11db
secondNumber = (01 4 ()
totalSum = (71 7

Figure 3-23. Breakpoint hit

We will talk more about debugging your apps in Chapter 14.

Summary

In this chapter, you learned about how data is used by your apps. You saw how to initialize variables and how
to assign data to them. We explained that when variables are declared, they have a data type associated with
them and that only data of the same type can be assigned to variables.

Finally, we showed you how to use variables in your first Alice app and finished by using variables with
an Objective-C app.

Exercises

e Write an Objective-C console app (command-line tool) that multiples two integers
together and displays the result to the console.

e Write an Objective-C console app that squares a float. Display the resulting float in
the console.

e Write an Objective-C console app that subtracts two floats, with the result being
stored as an integer. Note that rounding does not occur.

57

http://dx.doi.org/10.1007/978-1-4842-1904-1_14

CHAPTER 4

Making Decisions About...and
Planning Program Flow

One of the cool things about being an iPhone/iPad/Mac developer is you get to tell your devices exactly
what you want them to do and it will be done—your devices will do tasks over and over again without getting
tired. That’s because iPhones/iPads/Macs don’t care how hard they worked yesterday, and they don’t let
feelings get in the way. These devices don’t need hugs.

There is a downside to being a developer: you have to think of all possible outcomes when it comes to
your apps. Many students love having this kind of control. They enjoy focusing on the many details of their
apps; however, it can be frustrating having to handle so many details. As we mentioned in the introduction
to this book, there is a price to pay for developing apps...and that price is time. The more time you spend
developing and debugging, the better you will get with all the details, and the better your apps will run. You
have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce results, many of
which are based on true and false conditions.

In this chapter, you will learn about computer logic and controlling the flow of your apps. Processing
information and arriving at results is at the heart of all apps. Your apps need to process data based on values
and conditions. To do this, you need to understand how computers perform logical operations and execute
code based on the information your apps have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators like AND, OR, and
the unary operator NOT to determine whether your conditions have been met. Binary operators take two
operands. Unary operators take one operand; AND and OR are binary operators, and NOT is a unary operator.

We just introduced a couple of new terms that can sound confusing; however, you probably use Boolean
logic every day. Let’s look at a couple of examples of Boolean logic with the binary operators AND and OR in a
conversation parents sometimes have with their teenage children.

“You can go to the movies tonight if your room is clean AND the dishes are put away.”

“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced the Boolean
data type. A variable that is defined as Boolean can only contain the values TRUE and FALSE.

BOOL seeMovies = YES;
In the preceding example, the AND operator takes two operands: one to the left and one to the right of

AND. Each operand can be evaluated independently with a TRUE or FALSE.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 59
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_4

http://dx.doi.org/10.1007/978-1-4842-1904-1_3

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In our first example,
the teenager has to clean his or her room AND have the dishes done. If either one of the conditions is FALSE,
the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both conditions can be TRUE
to yield a TRUE result. In our second example, just a clean bedroom would result in the ability to go to the movies.

Note Behind the scenes, your iPhone/iPad/Mac defines a FALSE as a 0 and a TRUE as a 1. To be technically
correct, a TRUE is defined as any nonzero value; so, values of 0.1, 1, and 2 would be evaluated as a TRUE when
evaluated in a Boolean expression.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result. Here’s an example:

“You can NOT go to the movies.”

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and a FALSE
operand to a TRUE. Here, the result is a FALSE.

Note Performing a NOT operation is commonly referred to as flipping-the-bit, or negating. A TRUE is defined
asa1,aFALSE is defined as a 0, and zeros and ones are referred to as bits. A NOT operation turns a TRUE to a
FALSE and a FALSE to a TRUE, hence flipping-the-bit or negating the result.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need to use more complex
operators. XOR, NAND, and NOR are common operations for iPhone/iPad/Mac developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR operator works is
the XOR operator will return a TRUE result if only one argument is TRUE, not both.

Objective-C does not have these operators built in, but consider that NAND and NOR mean “NOT AND”
and “NOT OR! After evaluating the AND or the OR arguments and results, simply negate the results.

Truth Tables

Let’s use a tool to help you evaluate all the Boolean operators. A truth table is a mathematical table used
in logic to evaluate Boolean operators. They are helpful when trying to determine all the possibilities of a
Boolean operator. Let’s look at some common truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.

e TRUE AND TRUE = TRUE

e TRUE AND FALSE = FALSE
e FALSE AND TRUE = FALSE
e FALSE AND FALSE = FALSE

Placing these combinations in a truth table results in Table 4-1.

60

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Table 4-1. An AND Truth Table

A B AAND B
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

An AND truth table only produces a TRUE result if both of its operands are TRUE.
Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.
Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table

NOT RESULT
TRUE FALSE
FALSE TRUE

ANOT flips-the-bit or negates the original operand’s Boolean value.
Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B AXORB
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

61

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Table 4-5. A NAND Truth Table

A B ANAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

A B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results from the AND and OR
truth tables, respectively.

Comparison Operators

In software development, the comparison of different data items is accomplished with comparison operators.
These operators produce a logical TRUE or FALSE result. Table 4-7 shows the list of comparison operators.

Table 4-7. Comparison Operators

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Equal to

1= Not equal to

Note If you're constantly forgetting which way the greater-than and less-than signs go, use a crutch |
learned in grade school: if the greater-than and less-than signs represent the mouth of an alligator, the alligator
always eats the bigger value. It may sound silly, but it works.

62

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Designing Apps

Now that we've introduced Boolean logic and comparison operators, you can start designing your apps.
Sometimes it's important to express all or parts of your apps to others without having to write the actual code.

Writing out code helps a developer think out loud and brainstorm with other developers regarding sections
of code that are of concern—this helps to analyze problems and possible solutions before coding begins.

Pseudo-code

Pseudo-code refers to writing out code that is a high-level description of an algorithm you are trying to
solve. Pseudo-code does not contain the necessary programming syntax for coding; however, it does express
the algorithm that is necessary to solve the problem at hand.

Pseudo-code can be written by hand on paper (or a whiteboard) or typed on a computer.

Using pseudo-code, you can apply what you know about Boolean data types, truth tables, and
comparison operators. Refer to Listing 4-1 for pseudo-code examples.

Listing 4-1. Pseudo-code Examples Using Conditional Operators in If-Then-Else Code

X = 5;
y = 6;
isComplete = TRUE;
if (x<y)
// in this example, x is less than y
do stuff;
}
else
{
do other stuff;
}

if (isComplete == TRUE)

// in this example, isComplete is equal to TRUE

do stuff;
}
else
{
do other stuff;
}

// another way to check isComplete == TRUE
if (isComplete)
{

// in this example, 1isComplete is TRUE
do stuff;

}

// two ways to check if a value is false
if (isComplete == FALSE)
{

}

do stuff;

63

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

else

{

}
// another way to check isComplete == FALSE

if (!isComplete)

// in this example, isComplete is TRUE so the else block will be executed

do stuff;
}
else
{
// in this example, isComplete is TRUE so the else block will be executed
}

Note Pseudo-code is a programming notation resembling a simplified programming language, used in
program design. Pseudo-code will not compile and run. It is for illustrative purposes only.

Note that the ! switches the value of the Boolean it’s applied to; so, using ! makes a TRUE value into a
FALSE and makes a FALSE value into a TRUE.

Often, it is necessary to combine your comparison tests. A compound relationship test is one or more
simple relationship tests joined by either the && or the || (two pipe characters).

&& and || are verbalized as logical-and and logical-or, respectively. Pseudo-code in Listing 4-1
illustrates logical-and and logical-or operators.

Listing 4-2. Using && and || Logical Operators Using Pseudo-code

X = 5;
y = 6;

isComplete = TRUE;

// using the logical and

if (x < y 8% isComplete == TRUE)

// in this example, x is less than y and isComplete == TRUE
do stuff;

if (x <y || isComplete == FALSE)

// in this example, x is less than y.
// Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table
do stuff;
}
// another way to test for TRUE
if (x < y &% isComplete)

// in this example, x is less than y and isComplete == TRUE
do stuff;

}

// another way to test for FALSE

if (x <y & !isComplete)

64

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

{
do stuff;
}
else
{
// isComplete == TRUE
do stuff;
}

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development life cycle is writing code.
The least expensive process in the software development life cycle is gathering the requirements for your
application; yet, this latter process is the most overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and stakeholders how the application
should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions, screen mock-
ups, and formulas. It is far easier to open your word processor and change the requirements and screen
mock-ups before coding begins than it is to modify an iPhone/iPad/Mac app. The following is the design
requirement for one view of an iPhone mobile banking app:

° View: Accounts view.

e Description: Displays the list of accounts the user has. The list of accounts will be in
the following sections: Business Accounts, Personal Accounts and Car Loans, IRA,
and Home Equity Loans.

e Cells: Each cell will contain the account name, the last four digits of the account, the
available balance, and the current balance.

A picture is worth a thousand words. Screen mock-ups are helpful to developers and users because they
can visualize how the views will look when they are completed. There are many tools that can quickly design
mock-ups; one of these tools is OmniGraffle. Another popular tool is InVision. See Figure 4-1 for an example
of a screen mock-up used for the design requirements generated by OmniGraffle.

65

http://dx.doi.org/10.1007/978-1-4842-1904-1_1

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

|6 CANVASES

-

Canvas 14

=

B: conTenTs

&

E=4 2

¥ Layeri
[3> Adjustable Arrow
0 Group
U Group
ol Group
1 Group

=]

Group

Text: Personal Accounts
! Group

Group

Rectangle

ol > of

(o]l
=

Text: Wed Jul 14 2010
Text: Page 14 of 23
Text: Business Accounts
Group

Rectangle

Text: Native

Text: Account Page
Rectangle

))HQ__‘E))))H

{J_I’j

0 Group

2l

o5a

Text: Modified by: Gary B -

ol

Modified by: Gary Bennett

Account Page

—all ATET =

alances Transfer Money

Business Checking (xx4327)
Available Balance $2100.22
Present Balance 54201.35

Business Savings (xx1234)
Avadable Balance $1234.21
Present Balance $212322

Personal Accounts

Present Balance

Checking (xx3423)
Available Balance szmu.%/

Home Locations Contact Us FAQ Log Out

Native

Page 14 of 23

5 Ts 7
vings (xx1772)

vadable Balance s124.

resent Balance snxma22
IRA (xx177)
Avadable Balance s1234.21
Present Balance s2123.22
Car Loan (xx172)
Outstanding Principle $1234.21
Next Payment Amount §212322
Due Date 0an 72009
Last Pay Amount 5452 99
Last Pay Date OTNT2008

Home Equity Loan (xx7672)

Outstanding Principle $12.34.21
Mot Paymant Amount s212322
Due Date oanzzo09
Last Pay Amount $452.99
Last Pay Date 07TN7/2009

Wed Jul 14 2010

Figure 4-1. Original screen mock-up for a mobile banking app using OmniGraffle

Many developers believe that design requirements take too long and are unnecessary. There is a lot
of information presented on the Accounts screen in Figure 4-1. Many business rules can determine how

information is displayed to the user, along with all of the error handling when things go bad. When designing

your app, working with all the business stakeholders at the beginning of the development process is critical
to getting it right the first time.

66

Figure 4-2 is an example of all stakeholders being involved in your app’s development. Having all
stakeholders involved in every view from the beginning will eliminate multiple rewrites and application bugs.

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

App Store » Finance > Woodforest Financial Group

Woodforest Mobile Banking [

Woodforest Financial Group >
Detalls Ratings and Reviews Related

iPhone Screenshots

m Accounts Transter
Checking & Savings Schedule Account Transher
Download v 4‘ WOODFOREST,, it
Checking (...1175) From: Checking (...1175)
™ © Accounts Current Balance: $9,103.29
L2 & & (52 Available Balance: $9.103.29 To: Checking (...3859)
Rating: 4+ -:" Transfers Checking (...3859)
o = 3167 Transfer Amount: $200.00
% Pay Bills Available Balance: $21.87
LINKS Memo: Woekly Savings
A 3 s Mobile Deposit Checking (...4982]
;rualcy P:al:.'n : - pa Eg (;) $1.74 Transfer By: February 13, 2014
b Locations Avallable Balance: $1.74
- Occurs: Woekly
Woodforest Nation Ak 701 " Checking (...5884)
© Woodforest National Bank 2013 &% Gift Cards Cutront Balance: $76.709.76 Number O1 Times:
Available Balance: $78,563.71
k Contact Us
) m
@) Frequently Asked Questions Current Balance: $1.08
Avalable Balance: s1.08

© 2014 Woodiorest National Bank
Member FDIC

@
P
i

L S s 2 == L] $ s 2 ==] S

Figure 4-2. The Woodforest Mobile Banking app as it appears on the iTunes Connect app store. Compare this
with the app requirements Accounts screen in Figure 4-1.

Additionally, Apple recommends that developers spend at least 50 percent of their development time
on the user interface’s design and development.

InVision is a great tool for laying out your iOS app’s look and feel and seeing the prototypes on your
iPhone. See Figure 4-3.

67

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Battery

Battery Volts Battery Power

Figure 4-3. A prototype view using InVision

Flowcharting

After design requirements are finalized, you can pseudo-code sections of your app to solve complex
development issues. Flowcharting is a common method of diagramming an algorithm. An algorithm is
represented as different types of boxes connected by lines and arrows. Developers often use flowcharting to
express code visually. See Figure 4-4.

68

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Internet
— Process Cloud

Yes

e

No

Process ::> Disk :>

!

Yes

S
<

Process

Figure 4-4. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an end without a stop.
This helps developers make sure all of the branches in their code are accounted for and that they cleanly
stop execution.

Designing and Flowcharting an Example App

We have covered a lot of information about decision-making and program flow. It’s time to do what
programmers do best: write apps!

The app you have been assigned to write generates a random number between 0 and 100 inclusive and
asks users to guess the number. Users have to do this until the number is guessed. You can use any object
from the Alice gallery to ask users for their guess, and you can also choose any world for your object to be in.
The object will provide a visual queue for each high, low, and correct guess. When users guess the correct
answer, they will be asked if they want to play again. See Figure 4-5.

69

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

@ speed: 1x

It
I

Figure 4-5. An Alien object asking the user to guess a number between 0 and 100

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-6.

70

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

=
—

getRandomNumber
roundRandomNumber
printRandomNumber

)

Ask user to guess

number bet =5

0-100

Yes
Guess correct?

Guess too high?

JL :
Ask user if they want

Display guess
to continue playing

too low : e

Display guess

too high >

Yes
Keep playing

Figure 4-6. Flowchart for guessing a random number app

71

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Reviewing Figure 4-6, you'll notice that as you approach the end of a block of logic in your flowchart,
there are arrows that go back to a previous section and repeat that section until some condition is met. This
is called looping. It enables you to repeat sections of programming logic—without having to rewrite those
sections of code over—until a condition is met.

Using Loops to Repeat Program Statements

Aloop is a sequence of program statements that is specified once but can be repeated several times in
succession. A loop can repeat a specified number of times (count-controlled) or until some condition
(condition-controlled) occurs.

In this section, you'll learn about count-controlled loops and condition-controlled loops. You will also
learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop is a loop that repeats a specified number of times. In Objective-C and Alice, this is
a for loop. A for loop has a counter variable. This variable enables the developer to specify the number of
times the loop will be executed. See Listing 4-3.

Listing 4-3. A Count-Controlled Loop

int i;
for (i = 0; i < 10; i++)

{
}

....continue

// repeat all code in braces 10 times

The loop in Listing 4-3 will loop ten times. The variable 1 starts at zero and increments at the end of the
} by one. The incrementing is done by the i++ in the for statement; i++, which is equivalenttoi = i +1. i
is then checked to see whether it is less than ten. This for loop will exit when i = 9 and the } is reached.

Note It is common for developers to confuse the number of times they think their loops will repeat. If the
loop started at 1 in Listing 4-3, the loop would repeat nine times instead of ten.

In Objective-C, for loops can have their counter variables declared in the for loop declaration itself.
See Listing 4-4.
Listing 4-4. Counter Variable Is Initialized in for Loop Declaration
for (int i = 0; 1 < 10; i++)

{
}

....continue

// repeat all code in braces 10 times

Occasionally, you will need to repeat just one line of code in a for loop. This can be accomplished by
not using any { }. The first line of code encountered after the for loop declaration is repeated, as specified in
the for loop declaration. See Listing 4-5.

72

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Listing 4-5. Counter Variable Is Initialized in the for Loop Declaration

for (int i = 0; 1 < 10; i++)
do this line of code 10 times;
....continue

Condition-Controlled Loops

Objective-C and Alice have the ability to repeat a loop until some condition changes. You may want to repeat
a section of your code until a false condition is reached with one of your variables. This type of loop is called
a while loop. Awhile loop is a control flow statement that repeats based on a given Boolean condition. A
while loop can be thought of as a repeating if statement. See Listing 4-6.

Listing 4-6. An Objective-C while Loop Repeating

BOOL isTrue = TRUE;
while (isTrue)

// do something;
isTrue = FALSE; // a condition occurs that sometimes sets isTrue to FALSE

}

....continue

The while loop in Listing 4-6 first checks whether the variable isTrue is TRUE—which it is—so the {1oop
body} is entered where the code is executed. Eventually, some condition is reached that causes isTrue to
become FALSE. After completing all the code in the loop body, the condition (isTrue) is checked once more,
and the loop is repeated again. This process is repeated until the variable isTrue is set to FALSE.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that causes termination
or because of the loop having a terminating condition that can never be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of a side effect of a
bug in either the code or the logic.

Listing 4-7. An Example of an Infinite Loop

X = 0;
while (x !=5)
{

do something;
X =X+ 2;

..continue
Listing 4-7 is an example of an infinite loop caused by a terminating condition that can never be met.
The variable x will be checked with each iteration through the while loop but will never be equal to 5. The

variable x will always be an even number because it was initialized to zero and incremented by 2 in the loop.
This will cause the loop to repeat endlessly. See Listing 4-8.

73

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Listing 4-8. An Example of an Infinite Loop Caused by a Terminating Condition That Can Never Be Met
while (TRUE)
{

}

....continue

do something;

Coding the Example App in Alice

Now that you have your design requirements and flowchart completed and you understand looping, you're
ready to write your Alice application. See Figure 4-7.

fie Edit Eroject Bun Window Help

Figure 4-7. Random number generator app

Itis not possible to list the source code for this Alice program in one screenshot. However, if you print
out the source code, you can view all the code. See Figure 4-8.

74

dectare proceaure myFirstMethod

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

do in order

((Boolean)~ keepPlaying <<= rirue |

 while TkeepPlaying " s true

WholeNumber = randomNumber, <& = nextRandomintegerFromAUpToAndincluding8 =0/ , 5100 |]

{ Boolean I continueGuessing <<= Itrue]

while TcontinueGuessing " is true

(WholeNumber /= userGuess) <& = (this.alien getintegerFromUser . Guess a number from 0 up to and including 1009 |]

i I SuserGuess|

== ErandomNumber] is true then

: [Cthis.alien say .Correct Guess!] , d

52.0 add detail]

if _Tiﬁuserﬂuess] > ErandomNumber I is true then

Cthis.alien” say J(Your guess was to high.y' , duration 52.0)

add detail]

~ Cthis.alien say J{Your guess was too low] add derail]

17 keepPlaying <t }i[:j:his,alieni getBooleanFromUser iPlay Again?}]

Figure 4-8. Random number generator; complete program listing

Figure 4-8 shows the entire program listing for your random number generator code.

Note You can download the complete random number generator app at http://forum.xcelme.com. The

code will be under the Chapter 4 topic.

Coding the Example App in Objective-C

Using your requirements and what you learned with your Alice app, try writing your random number

generator in Objective-C.

Your Objective-C app will run from the command line, as it asks the user to guess a random number.

1. Open Xcode and start a new project. Choose Command Line Tool. See Figure 4-9.

75

http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Choose a template for your new project:

i0S :
Application A * .
Framework & Library
Cocoa Game Command Line
Application Tool

watchOS
Application
Framework & Library
tvOS
Application
Framework & Library
0os X
Application
Framework & Library
System Plug-in

Other .
Command Line Tool

This template creates a command-line tool.

Cancel Next

Figure 4-9. Start a new Command Line Tool project

2. Call your project RandomNumber (see Figure 4-10). Save the project anywhere
you prefer on your hard drive.

76

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Choose options for your new project:

Product Name: | RandomNumber|
Organization Name: xcelMe
Organization Identifier: com
Bundie Identifier: com.RandomNumber

Language: Objective-C B

Cancel Previous m

Figure 4-10. Project options for RandomNumber

Now, you need to open the implementation file in the Source group. This is where you will write your
Objective-C code.

3. Openthemain.mfile. Delete the following line of code:
NSLog(@"Hello, World!");

4. You are ready to write your app. Start writing the code under this:
// insert code here...

See Figure 4-11.

77

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

g3 | € |5 RandomNumber RandomNumber } m main.m) No Selection
//
2 f/ main.m
I 3 // RandomNumber
&l 7/

// Created by Gary Bennett on 7/16/16.
// Copyright © 2816 xcelMe. All rights reserved.
//
#import <Foundation/Foundation.h>
int main(int argc, const char % argv[]) {
@autoreleasepool {
// insert code here...
NSLog(@"Hello, World!");

return @;

Figure 4-11. The editor

Following your Alice code, you will write your random number generator app. You will notice that most
of the code is similar to your Alice app. See Listing 4-9.

Listing 4-9. Source Code for Your Random Number Generator App

11 int main(int argc, const char * argv[]) {

12 @autoreleasepool {

13 // insert code here...

14 int randomNumber = 1;

15 int userGuess = 1;

16 BOOL continueGuessing = YES;

17 BOOL keepPlaying = YES;

18 char yesNo = " ';

19

20 while (keepPlaying) {

21 randomNumber = (arc4random() % 101);

22 NSLog(@"The random number to guess is: %d",randomNumber);
23 while (continueGuessing) {

24 NSLog (@"Pick a number between 0 and 100. ");
25 scanf ("%d", &userGuess);

26 fgetc(stdin); // remove CR/LF i.e extra character
27 if (userGuess == randomNumber) {

28 continueGuessing = NO;

29 NSLog(@"Correct number!");

30 }

31 // nested if statement

32 else if (userGuess > randomNumber){

33 // user guessed too high

34 NSLog(@"Your guess is too high");

35 }

36 else {

78

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

37 // no reason to check if userGuess < randomNumber. It has to be.
38 NSLog(@"Your guess is too low");

39 }

40 // refactored from our Alice app. This way we only have to code once.
41 NSLog(@"The user guessed %d",userGuess);

42 }

43 NSLog (@"Play Again? Y or N");

44 yesNo = fgetc(stdin);

45 if (yesNo == 'N' || yesNo == 'n") {

46 keepPlaying = FALSE;

47

48 continueGuessing = TRUE;

49 }

50 }

51

52 return 0;

53 }

In Listing 4-9, there is new code that we haven’t discussed before. The first new line of code (line 21) is
randomNumber = (arc4arandom() % 101);

This line will produce a random number between 0 and 100; arc4random() is a function that returns a
random number. Although this will not generate a truly random number, it will work for this example.

The % is called the modulus operator. This operator returns the remainder of its two operands; in this
case, it’s the remainder of arc4random() divided by 101. This is what will return a number between 0 and 100.

The next line of new code is

scanf ("%d", 8userGuess);

The function scanf reads a value from the keyboard and stores it in userGuess.

Note The source code for this Objective-C project is available for download at http://forum.xcelme.com.

Nested if Statements and else-if Statements

Sometimes, it is necessary to nest if statements. This means that you need to have if statements nested
inside an existing if statement. Additionally, it is sometimes necessary to have a comparison as the first step
in the else section of the if statement. This is called an else-if statement (recall line 32 in Listing 4-9).

else if (userGuess > randomNumber)

Removing Extra Characters

Line 26 is another new line of code.

fgetc(stdin); // remove CR/LF i.e extra character

79

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

The function scanf can be difficult to work with. In this case, scanf leaves a remnant in your input
buffer that needs to be flushed, so you can read a Y or N from the keyboard to determine whether the user
wants to play again.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient ways to write it.
The process of rewriting your code to make it more efficient, maintainable, and readable is called code
refactoring.

As you were reviewing your code in Objective-C, you noticed that you could eliminate some
unnecessary code. Your code had the following line repeated in the if-else statement:

// refactored from our Alice app. This way we only have to code once.
NSLog(@"The user guessed %d",userGuess);

Note As developers, we have found that the best line of code you can write is the line that you don’t
write—Iless code means less to debug and maintain.

Running the App

Click the Play button in your Objective-C project and run your app. See Figure 4-12.

tath d Locatien
EULUSU=L0 L0i43i33.0L0 NANUUENUNUET [J0/ /L7 UF3TLT] FLILA @ NUNIUEI UELWEEN U aliu iou.

2016-87-16 18:19:38.293 RandomNumber[36772:27873929] Your guess is too high
2016-07-16 18:19:38.293 RandomNumber[36772:27073929] The user guessed 94

2016-07-16 18:19:38.293 RandomNumber[36772:27073929] Pick a number between @ and 100.
a3

2016-087-16 18:19:44.063 RandomNumber[36772:270673929] Correct number!

2016-087-16 18:19:44.063 RandomNumber[36772:27073929] The user guessed 93

2016-07-16 18:19:44.063 RandomNumber([36772:27073929] Play Again? Y or N

y
2016-07-16 18:19:48.215 RandomNumber[36772:27073929] The random number to guess is: 5
2016-87-16 18:19:48,215 RandomNumber[36772:27873929] Pick a number between @ and 100.
3

2016-07-16 18:19:51.365 RandomNumber[36772:27073929] Your guess is too low

2016-07-16 18:19:51.365 RandomNumber[36772:27073929] The user guessed 3

2016-07-16 18:19:51.365 RandomNumber[36772:27073929] Pick a number between @ and 100. . o)
6 L =
2016-07-16 18:19:53.897 RandomNumber[36772:27073929] Your guess is too high

2016-07-16 18:19:53.897 RandomNumber[36772:27073929] The user guessed 6

2016-07-16 18:19:53.897 RandomNumber[36772:27073929] Pick a number between @ and 100.

5

2016-07-16 18:19:56.483 RandomNumber([36772:27073929] Correct number!

2016-07-16 18:19:56.483 RandomNumber[36772:27073929] The user guessed 5

2016-07-16 18:19:56.483 RandomNumber[36772:27073929] Play Again? Y or N

n

Program ended with exit code: @

ANl Output 3 E(G)

Figure 4-12. The console output of the Objective-C random number generator app

Note If you're not seeing the output console when you run your app, make sure you have selected (blue)
the same options at the top-right and bottom-right corners of the editor (see Figure 4-12).

80

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Moving Forward Without Alice

You've used Alice to learn object-oriented programming. It has enabled you to focus on OOP concepts
without having to deal with syntax and a compiler; however, it is necessary to become more familiar with the
specifics of the Objective-C language. Alice has served you well, and you can now focus on using Objective-C
and Xcode for the remainder of the book.

Summary

In this chapter, we've covered a lot of important information on how to control your applications; program
flow and decision-making are essential to every iPhone/iPad/Mac App. Make sure you have completed the
Objective-C example in this chapter. You might review these examples and think you understand everything
without having to write this app. This will be a fatal mistake that will prevent you from becoming a successful
iPhone/iPad/Mac developer. You must spend time coding this example.

The terms in this chapter are important. You should be able to describe the following:

e AND
e OR

e XOR
e NAND
e NOR
e NOT

e Truth tables

e Negation

e All comparison operators
e Application requirement
e Logical AND (&&)

e Logical OR (]|)

e Flowchart

e Loop

e Count-controlled loops

e forloop

e Condition-controlled loops
e Infinite loops

e whileloops

e Nested if statements

e Code refactoring

81

CHAPTER 4 © MAKING DECISIONS ABOUT...AND PLANNING PROGRAM FLOW

Exercises

82

Extend the random number generator app to print to the console how many times
the user guessed before he or she guessed the correct random number. Do this in
both Alice and Objective-C.

Extend the random number generator app to print to the console how many times
the user played the app. Print this value when the user quits the app. Do this in both
Alice and Objective-C.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 5

Object-Oriented Programming with
Objective-C

Over the past 20 years, the programming world has been focusing on the development paradigm
of object-oriented programming (OOP). Most modern development environments and languages
implement OOP. Put simply, OOP forms the basis of everything you develop today.

You may be asking yourself why we waited until Chapter 5 to present OOP using Objective-C if it is the
primary development style of today. The simple answer is that it is not an easy concept for new developers.
We will spend this chapter going into detail about the different aspects of OOP and how this will affect your
development.

Implementing OOP into your applications correctly will take some front-end planning, but you will save
yourself a lot of time throughout the life of your projects. OOP has changed the way development is done.

In this chapter, we will look at what OOP is. OOP was initially discussed in the first chapter of this book, but
we will go into more detail here. We will revisit what objects are and how they relate to physical objects we
find in our world. We will also look into what classes are and how they relate to objects. We will also discuss
steps you will need to take when planning your classes and some visual tools you can use to accomplish
this. When you have read this chapter and have worked through the exercises, you will have a better
understanding of what OOP is and why it is necessary for you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but the hope is that
as we progress through this chapter, it will begin to make sense.

The Object

As discussed in Chapter 1, OOP is based on objects. Some of our discussion about objects will be a review,
but we will also go into more depth. An object is anything that can be acted upon. To better explain what a
programming object is, we will first look at some items in the physical world around us. A physical object
can be anything around you that you can touch or feel. Take, for example, a television. Some characteristics
of a television include type (plasma, LCD, or CRT), size (40 inches), brand (Sony, Vizio), weight, and cost.
Televisions also have functions. They can be turned on or off. You can change the channel, adjust the
volume, and change the brightness.

Some of these characteristics and functions are unique to televisions, and some are not. For example,
a couch in your house would probably not have the same characteristics as a television. You would want
different information about a couch, such as material type, seating capability, and color. A couch might have
only a few functions, such as converting to a bed.

Now let’s talk specifically about objects as they relate to programming. An object is a specific item. It
can describe something physical like a book, or it could be something such as a window for your application.
Objects have properties and methods. Properties describe certain things about an object such as location,

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 83
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_5

http://dx.doi.org/10.1007/978-1-4842-1904-1_5
http://dx.doi.org/10.1007/978-1-4842-1904-1_1

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

color, or name. Conversely, methods describe actions the object can perform such as close or recalculate.
In our example, a TV object would have type, size, and brand properties, while a Couch object would have
properties such as color, material, and comfort level. In programming terms, a property is a variable that is part
of an object. For example, a TV would use a string variable to store the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The commands are called
methods. Methods are the way that other objects interact with a certain object. For example, with the
television, a method would be any of the buttons on the remote control. Each of those buttons represents
a way you can interact with your television. Methods can and often are used to change the values of
properties, but methods do not store any values themselves.

As we described in Chapter 1, objects have a state, which is basically a snapshot of an object at any
given point in time. A state would be the values of all the properties at a specific time.

In previous chapters, we used the example of a bookstore. A bookstore contains many different objects.
It contains book objects that have properties such as title, author, page count, and publisher. It also contains
magazines with properties such as title, issue, genre, and publisher. A bookstore also has some nontangible
objects such as a sale. A sale object would contain information about the books purchased, the customer,
the amount paid, and the payment type. A sale object might also have some methods that calculate tax,
print the receipt, or void the sale. A sale object does not represent a tangible object, but it is still an object
and is necessary for creating an effective bookstore.

Because the object is the basis of OODP, it is important to understand objects and how to interact with
them. We will spend the rest of the chapter describing objects and some of their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which properties and methods

an object will have. A class is basically a cookie cutter that can be used to create objects that have similar
characteristics. All objects of a certain class will have the same properties and the same methods. The values
of those properties will change from object to object.

A class is similar to a species in the animal world. A species is not an individual animal, but it does
describe many similar characteristics of the animal. To understand classes more, let’s look at an example of
classes in nature. The Dog class has many properties that all dogs have in common. For example, a dog may
have a name, an age, an owner, and a favorite activity. An object that is of a certain class is called an instance
of that class. If you look at Figure 5-1, you can see the difference between the class and the actual objects that
are instances of the class. For example, Lassie is an instance of the dog class. In Figure 5-1, you can see we
have a Dog class that has four properties (Breed, Age, Owner, Favorite Activity).Inreallife, a dog will have
many more properties, but we decided to use four for this demonstration.

84

http://dx.doi.org/10.1007/978-1-4842-1904-1_1

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Class Objects

Lassie

Breed: Collie
Age: 5
Owner: Jeff

Favorite Aclivi2: Helﬁng Peoﬁ

- —

b e Spot
Breed Breed: Dalmation

Age f—————- >l Age: 2

Owner Owner: Fire Department

Favorite Acﬁvﬁ ol T s Favorite Acliviz: Ridiﬁ in a Fire Truck
Scooby Doo
Breed: Great Dane
Age: 10
Owner: Shaggy
Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process. While it is possible to
go back and add properties and methods after the fact (and you will definitely need to do this), it is important
that you know which classes are going to be used in your application and which basic properties and methods
they will have. Spending time planning your different classes is important at the beginning of the process.

Planning Properties

Let’s look at the bookstore example and some of the classes you would need to create. First, it is important
to create a Bookstore class. A Bookstore class contains the blueprint of the information each Bookstore
object stores, such as the bookstore name, address, phone number, and logo (see Figure 5-2). Placing this
information in a class rather than hard-coding it in your application will allow you to easily make changes to
this information in the future. We will discuss the reasons for using OOP methodologies later in this chapter.
Also, if your bookstore becomes a huge success and you decide to open another one, you will be prepared
because you can create another object of class Bookstore.

Bookstore
Name
Address1
Address2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class 85

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been broken into First Name
and Last Name. This is important to do. There will be times in your project when you may want to use only
the first name of a customer, and it would be hard to separate the first name from the last if you didn’t plan
ahead. Let’s say you want to send a letter to a customer letting them know about an upcoming sale. You do
not want your greeting to say, “Dear John Doe.” It would look much more personal to say, “Dear John.”

Customer

 First Name

Last Name
Address Line 1
Address Line 2
City

State

Zip

Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

You will also notice how we have broken out the address into its different parts instead of grouping it
all together. We separated the Address Line 1,Address Line 2, City, State, and Zip. This is important
and will be used in your application. Let’s go back to the letter you want to send informing your customers
of a sale in your store. You might not want to send it to all the customers who live in different states. By
separating the address, you can easily filter out those customers you do not want to include in your mailings.

We have also added the attribute of Favorite Book Genre to the Customer class. We added this to show
you how you can keep many different types of information in each class. This field may come in handy if you
have a new mystery title coming out and you want to send an e-mail alerting customers who are especially
interested in mysteries. By storing this type of information, you will be able to specifically target different
portions of your customer base.

A Book class is also necessary to create your bookstore (see Figure 5-4). You will store information
about the book such as author, publisher, genre, page count, and edition number (in case there are multiple
editions). The Book class will also have the price for the book.

Book
Author
Publisher
Genre
Year Published
Number of Pages
Edition
Price

Figure 5-4. The Book class

86

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

We also added another class called the Sale class (see Figure 5-5). This class is more abstract than
the other classes we have discussed because it does not describe a tangible object. You will notice how we
have added a reference to a customer and a book to the Sale class. Because the Sale class will track sales of
books, you will need to know which book was sold and to which customer.

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The Sale class

Now that you have planned out the properties of the classes, you will need to look at some methods that
each of the classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the beginning, the easier it will be
for you down the line. Not all of your classes will have many methods. Some may not have any methods at all.

Note When planning your methods, remember to have them focus on a specific task. The more specific
the method, the more likely it is that it can be reused.

For the time being, you will not add any methods to the Book class or the Bookstore class. You will focus
on our other two classes.

For the Customer class, you will add methods to list the purchase history of that client. There may be
other methods that you will need to add in the future, but you will add just that one for now. Your completed
Customer class diagram should look like Figure 5-6. You will notice the line near the bottom separates the
properties from the methods.

87

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Customer

 First Name

Last Name

Address Line 1
Address Line 2

City

State

Zip

Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed Customer class

For the Sales class, we have added three methods: Charge Credit Card, Print Invoice, and Checkout
(see Figure 5-7). For the time being, you do not need to know how to implement these methods, but you
need to know that you are planning on adding them to your class.

Sale
Customer
Book
Date
Time
Amount
Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed Sale class

Now that you have finished mapping out the classes and the methods you are going to add to them,
you have the beginnings of a Unified Modeling Language (UML) diagram. Basically, this is a diagram used
by developers to plan out their classes, properties, and methods. Starting your development process by
creating such a diagram will help you significantly in the long run. An in-depth discussion of UML diagrams
is beyond the scope of this book. If you would like more information about this subject, smartdraw.com has
a great in-depth overview of them here:

www. smartdraw.com/resources/tutorials/uml-diagrams/

Figure 5-8 shows the complete diagram.

88

http://www.smartdraw.com/resources/tutorials/uml-diagrams/

CHAPTER 5

Genre

Year Published
Number of Pages
Edition

Price

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice

Checkout
Book Customer
Author First Name
Publisher Last Name

Address Line 1
Address Line 2

City

State

Zip

Phone Number
Email Address
Favorite Book Genre

List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create your first object. To do

so, you will start with a new project.

1. Please launch Xcode. Click File » New » Project...

OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

2. Select Application under the heading iOS on the left side. On the right side, select
Master-Detail Application. For what you are doing in this chapter, you could
have selected any of the application types (see Figure 5-9). Click Next.

89

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Choose a template for your new project:
i0s
Application - eo 1 o
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application

= iy

Framework & Library

tvOS

Application Game

Framework & Library
0S X

Application

Framework & Library

System Plug-in

Other . L
Master-Detail Application

This template provides a starting point for a master-detail application, using a split view
controller to display a list of items and a detail view.

Cancel CNext |

Figure 5-9. Creating a new project

3. Enter a product name. For this example, we will use BookStore. By default,
Xcode will fill in the Organization Name and Organization Identifier fields. Make
sure Language is set to Objective-C. Leave the check boxes on this screen as they
appear by default. You will not be worrying about these items right now. Click
Next and select a location to save your project and then save your project.

4. Select the BookStore folder on the left side of the screen (see Figure 5-10). This is
where the majority of your code will reside.

90

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

ecse) B A BookStore) B MineSs Indexing | Processing files -
BR aa H o ® (B8 L Bookstore 0O ®
¥ L BookStore [3eners Capabilities Resource Tags Into Build Settings Build Phases Builg) 'dentity and Type
¥ [BookStore Name BookStore
PROJECT
h AppDelegate.n i ¥ Wiy R
m AppDelegate.m = BookStors e 's = |
h MasterViewControlier.h TARGETE Bundle Identifier com.inno.BookStore Full Path usars/bradiees/Dropbos]
D o e = s pepnaiiig
h ODetailViewController.h ; Chapter EfBockStore] °
m DetailViewControlier.m 2 =
+ Main.storyboard Project Documant
- Te None
Assetsacassets - B Project Format Xcode 3.2-compatile [
+. LaunchScreen.storyboard Organization Inno
info.plist ¥ Deployment Info s
* [Supporting Files Class Prefix
» 1 Products Deployment Target n Text Settings
Devices iPhone B Indent Using _ Spaces %Y
Main Interface Main [~ O 0@
Device Orientation Partrait
Upside Down
Landscape Left
@ Landscape Right 4
No Matches
Status Bar Style Default a
Hide status bar
Requires full screen
¥ App lcons and Launch images o

Figure 5-10. Selecting the BookStore folder

5. Select File » New » File...

6. From the pop-up window, select Source under the iOS header and then click
Cocoa Touch Class on the right side (see Figure 5-11). Then click Next.

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Choose a template for your new file:
i0s
Source [@

User Interface

Core Data Cocoa Touch Ul Test Case Unit Test Case Playground
Class Class Class

Apple Watch
Resource
Other N | m h C
watchOS Swift File Objective-C File Header File C File
Source
User Interface
Core Data C N\
Resource
Other C++ File Metal File
tvOS
Source Cocoa Touch Class
User Interface A Cocoa Touch class.
Core Data
Daemieseo
Cancel a———

Figure 5-11. Creating a new Objective-C class

7. On the next screen, you will need to select the superclass for your object. This is
what determines what properties and methods your object will have by default.
You will select NSObject for now (see Figure 5-12).

Note NSObject is the base class in Objective-C. It contains properties and methods required for most
objects used.

92

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Choose options for your new file:

Class: Customer

Subclass of: NSObject ﬂ
Language: Objective-C [T}
Cancel Previous (CIN

Figure 5-12. Selecting the superclass

8. You will now be given the opportunity to name your class. For this exercise, we
will create the Customer class. For now, name the class Customer. Now click Next
and then Create.

Note For ease of use and for understanding your code, remember that class names should always
be capitalized in Objective-C. Object names should always start lowercase. For example, Book would be
an appropriate name for a class, and book would be a great name for an object based on the Book class.
For a two-word object, such as the book author, an appropriate name would be bookAuthor. This type of
capitalization is called lower camelcase.

9. Nowlook in your main project folder; you should have two new files. One is
called Customer.h, and the other is called Customer.m. The .h file is the header
or interface file that will contain information about your class. The header file
will list all of the properties and methods in your class, but it will not actually
contain the code related to them. The .mfile is the implementation file, which is
where you write the code for your methods.

93

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

10. Click the Customer.h file and you will see the window shown in Figure 5-13. You
will notice it does not contain a lot of information currently. The first part, with
the double slashes (//), is all comments and is not considered part of the code.
Comments allow you to tell those who might read your code what each portion
of code is meant to accomplish. We will not go into more detail now about the
other portions of the header file, except to say that all of the instance variables of
a class need to be inside the braces ({}) of the @interface portion.

® ® »> #h BookStore) l MineSs BookStore: Ready | Today at 3:20 PM W « 1 — I
B 8 a =351 H | < & Bockstore | 11 BookStore | [l Customer.h | No Selection 0D ®
v B BookStore f'-::- Customer: b Identity and Type
v BookStore // BookStore Name Customer.h
h! AppDelegate.h :: Created by Thornuke| on 8/5/16. Type Default - C Header
m AppDelegate.m /7 Copyright © 2016 Inno. ALl rights reserved.

MasterViewController.h Location Relative 1o Group

fBo

Customer.h
m MasterViewController.m #import <Foundation/Foundation.h>
2 M Full Path [Users/bradlees/Dropbox/
h DetailviewController. ginterface Custoser : NSObject Apress Obj C 3jcode/
m DetailViewController.m Chapter B/BookStore/
nd BookStore/Customer.h
Main._storyboard . e
Assets xcassets On Demand Resource Tags
LaunchScreen, storyboard
tnfo.plist
» [Supporting Files Target Membership
W customer.h &, BookStore
m Customer.m
» [Products O 0@

Figure 5-13. Your empty customer class

Now let’s transfer the properties from our UML diagram to our actual class.

Tip Properties should always start with a lowercase letter. There can be no spaces in a property name.

For the first property, First Name, you will add this line to your file:
NSString* firstName;
This creates a string object in your class called firstName. Because all of the properties for the Customer

class are strings also, you will just need to repeat the same procedure for the other ones. When that is
complete, your @interface portion should look like Figure 5-13.

94

B s aa e

¥ & bookstore
v bookstore

AppDelegate.h
AppDelegate.m
MasterViewController.h
MasterViewController.m
DetailViewController.h
DetailViewController.m

Main.storyboard

1 Assets.xcassets

b

n

LaunchScreen.storyboard
Info.plist

Supporting Files
Customer.h

Customer.m

> Products

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

h © h

(7 @interface Customer

Customer.h
bookstore

Created by Thornuko on 4/9/16.
Copyright © 2016 Innovativeware. All rights reserved.

7 #import <Foundation/Foundation.h>

1 @interface Customer :

NSObject {
NSString
NSString
NSString
NSString

*firstName;
*lastName;
*addressLinel;
*addressLine2;
*city;

g *state;
NSString *zip;

N55tring *phoneNumber;
NSString =emailAddress;
NSString *favoriteGenre;|

Figure 5-14. The customer class interface with instance variables

Now that the @interface portion is complete, you will need to add your method. Methods need to go
outside of the parenthesis portion but still inside of the @interface portion of the header file. You will add
a new method that returns an NSArray. This code will look as follows:

- (NSArray *)listPurchaseHistory;

Note

NSString is a class that holds and performs actions on a string. A string is a set of characters.
NSString can hold letters, numbers, and punctuation.

That is all that needs to be done in the header file to create your class. Figure 5-15 shows the final
header file. In the next chapter, we will go into more detail about the implementation file.

95

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

[] i) | 2 A\ bookstore | Jil§ iPhone 65 Plus Finished running bookstore on iPhone 6s Plus
B R A4 A & & o £ 2 bookstore bookstore | h Customer.h @interface Customer
/f

¥ & bookstore

¥

bookstore

AppDelegate.h
AppDelegate.m
MasterViewController.n
MasterViewController.m
DetailViewController.h

DetailViewController.m

// Customer.h
// bookstore

// Created by Thornuko on 4/9/16.
// Copyright © 2016 Innovativeware.

#import <Foundation/Foundation.h>

@interface Customer : NSObject {
NSString =firstName;

All rights reserved.

5 ng *lastName;
Main.storyboard g xadnressL:'\nel;
Assets xcassets ng *addressLine2;

g *city;
LaunchScreen.storyboard *state;
Info.plist ng zip;
)) q *phoneNumber;
Supporting Files ing *emailAddress;
I Customer.h y ing =favoriteGenre;
m Customer.m

» | Products -(NSArray *) listPurchaseHistory;

@end

Figure 5-15. The finished customer class header file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to genetic inheritance.
You might have inherited your eye color from your mother or hair color from your father, or vice versa.
Classes can, in a similar way, inherit properties and methods from their parent classes. In OOP, a parent
class is called a superclass, and a child class is called a subclass.

In Objective-C, all classes created by a programmer have a superclass that is similar in properties and
methods to itself. The class will inherit characteristics from that parent class. So, just as in all other OOP
languages, the class is called a subclass of the parent class. In this chapter, all of our classes are subclasses
of the NSObject. In Objective-C, many classes will be subclasses of NSObject. In the previous example, the
Customer class was a subclass of NSObject.

You could, for example, create a class of printed materials and use subclasses for books, magazines,
and newspapers. Printed materials can have many things in common, so you could assign properties to the
superclass of printed materials and not have to redundantly assign them to each individual class. By doing
this, you further reduce the amount of redundant code that is necessary for you to write and debug.

In Figure 5-16, you will see a layout for the properties of a Printed Material superclass and how that
will affect the subclasses of Book, Magazine, and Newspaper. The properties of the Printed Material class
will be inherited by the subclasses, so there is no need to define them explicitly in the class. You will notice
that the Book class now has significantly fewer properties. By using a superclass, you will significantly reduce
the amount of redundant code in your programs.

96

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Book

Author

Genre

Edition

T ——

| Printed Material
Title
Publish Date | ISSUM:QGZI ne
Page Count > o
Price
Publisher
Newspaper
Date

Figure 5-16. Properties of the super- and subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and we have even discussed how to create
classes and objects. However, I think it is important to discuss why you want to use OOP principles in your
development.

If you take a look at the popular programming languages of the day, all of them use the OOP principles
to a certain extent. Objective-C, Swift, C++, Visual Basic, C#, and Java all require the programmer to
understand classes and objects to successfully develop in those languages. To become a developer in today’s
world, you will need to understand OOP. But why use it?

It Is Everywhere

Just about any development you choose to do today will require you to understand object-oriented
principles. On Mac OS X and in iOS, almost everything you interact with will be an object. For example,
simple windows, buttons, and text boxes are all objects and have properties and methods. If you want to be
successful as a programmer, you will need to understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code to print a receipt
when a customer checks out, you will want that same code available when you need to reprint a receipt. If
you placed your code to print the receipt in the Sales class, you will not have to rewrite this code. This not
only saves you time but often helps you eliminate mistakes. If you do not use OOP and there is a change to
the invoice (even something as simple as a graphic change), you have to make sure you make the change in
your desktop application and the mobile application. If you miss one of them, you run the risk of having the
two interfaces behave differently.

Ease of Debugging

By having all the code relating to a book in one class, you know where to look when there is a problem with
the book. This may not sound like such a big deal for a little application, but when your application gets to
hundreds of thousands or even millions of lines of code, it will save you a lot of time.

97

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can change out classes
and give your new class completely different functionality. However, it can interact with the rest of the
application in the same way as your current class. This is similar to car parts. If you want to replace a muffler
on a car, you do not need to get a new car. If you have code related to your invoice scattered all over the
place, it makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other topics that are
important to your understanding.

Interface

As we have discussed in this chapter, the way the other objects interact through each other is with methods.
We discussed the header files created when you create a class. This is often called the interface because it
tells other objects how they can interact with your objects. Implementing a standard interface throughout
your application will allow your code to interact with different objects in similar ways. This will significantly
reduce the amount of object specific code you need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object of another class.
This is usually done by creating methods and properties that are similar to those of another class. A great
example of polymorphism that we have been using is the bookstore. In the bookstore, you have three similar
classes: Book, Magazine, and Newspaper. If you wanted to have a big sale for your entire inventory, you could
go through all of the books and mark them down. Then you could go through all of the magazines and mark
them down and then go through all of the newspapers and mark them down. That would be more work than
you would need to do. It would be better to make sure all of the classes have a markdown method. Then
you could call that on all of the objects without needing to know which class they were as long as they were
subclasses of a class that contained the methods needed. This would save a bunch of time and coding.
Asyou are planning your classes, look for similarities and methods that might apply to more than one
type of class. This will save you time and speed up your application in the long run.

Summary

You've finally reached the end of the chapter! Here is a summary of the things that were covered:
e Object-oriented programming (OOP)

e We discussed the importance of OOP and the reasons why all modern code
should use this methodology.

e Object

e Youlearned about objects and how they correspond to real-world objects. You
learned that many programming objects relate directly to real-world objects.
You also learned about abstract objects that do not correspond to real-world
objects.

98

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

e (Class

e Youlearned that a class determines the types of data (properties) and the
methods that each object will have. Every object needs to have a class. It is the
blueprint for the object.

e (Creatinga class
e Youlearned how to map out the properties and methods of our classes.
e Youused Xcode to create a class file.

¢ You edited the class header file to add your properties and methods.

Exercises

e Try creating the class files for the rest of the classes you mapped out.

e Map out an Author class. Choose the kind of information you would need to store
about an author.

For the daring and advanced:

e Trycreating a superclass called PrintedMaterials. Map out the properties that a
class might have.

e Create classes for the other types of printed materials a store might carry.

99

CHAPTER 6

Learning Objective-C and Xcode -

For the most part, all computer languages perform the typical tasks any computer needs to do—store
information, compare information, make decisions about that information, and perform some action based
on those decisions. Objective-C is a language that makes these tasks easier to understand and accomplish.
The real trick with Objective-C (actually, the trick with any C language) is to understand the symbols and
keywords used to accomplish these tasks. This chapter continues our examination of Objective-C and Xcode
so you can become even more familiar with them.

A Brief History of Objective-C

Objective-C is really a combination of two languages, the C language and a lesser-known language called
Smalltalk. In the 1970s, several bright engineers from Bell Labs created a language named C that made it
easy to port their pet project, the Unix operating system, from one machine to another. Prior to C, people
had to write programs in assembly languages. The problem with assembly languages is that each is specific
to its machine, so moving software from one machine to another was nearly impossible. The C language,
created by Brian Kernighan and Dennis Ritchie, solved this problem by providing a language that wrote
out the assembly language for whatever machine it supported, a kind of Rosetta Stone for early computer
languages. Because of its portability, C quickly became the de facto language for many types of computers,
especially early PCs.

Fast-forward to the early 1980s and the C language is on its way to becoming one of the most popular
languages of the decade. Around this time, an engineer from a company called Stepstone was mixing the C
language with another up-and-coming language called Smalltalk. The C language is typically referred to as
a procedural language, that is, a language that uses procedures to divide up processing steps. Smalltalk, on
the other hand, was something entirely different. It was an object-oriented programming language. Instead of
processing things procedurally, it used programming objects to get its work done. This new superset of the C
language became known as “C with Objects” or, more commonly, Objective-C.

In 1985, Brad Cox sold the Objective-C language and trademark to NeXT Computer, Inc. NeXT was the
brainchild of Steve Jobs, who had been fired from his own company, Apple Computer, that same year. NeXT
used the Objective-C language to build the NeXTSTEP operating system and its suite of development tools.
In fact, the Objective-C language gave NeXT a competitive advantage with all of its software. Programmers
using NeXTSTEP and Objective-C could write programs faster than those writing in the traditional C
language. While the hardware part of NeXT computers never really took off, the operating system and tools
did. Quite interestingly, NeXT was purchased by Apple Computer in late 1996 with the intention of replacing
its aging operating system, which had been in existence since the first Macintosh was developed in 1984.
Four years after the acquisition, what had been NeXTSTEP reemerged as Mac OS X—with Objective-C still
at the heart of the system. In 2014 Apple introduced Swift as its new language for i0OS/Mac development.
However, Objective-C is still the most common language used in the majority of iOS and Macintosh apps
and will continue to be so in the near future.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 101
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_6

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Understanding the Language Symbols and Basic Syntax

Even though Objective-C integrates a great deal of object-oriented language, at the heart of Objective-C is
C. Here are some of the symbols and language constructs used in Objective-C, some of which are part of the
C language and most of which you've already encountered in previous chapters. It’s not important to know
which are pure C and which are not; just know that the old and newer symbols/constructs together make the
Objective-C language.

Pretty much every language shares at least the following concepts:

e Create a variable and assign it a value.
e Begin and end a section of code.
e Signify the end of a line of code.
e Write a comment.
Objective-C has these syntactical differences from other object-oriented languages:
e Define aclass.
e Define a method.
e Define an Objective-C variable.

e (Call amethod.

Create a Variable

A variable is something that stores a value that can change (i.e., vary). Creating a variable requires at least
two parts.

int count;

In the previous code, a variable is declared. The first word, int, indicates that the variable is an integer.
An integer is a whole number that can range from negative to positive values (there are other variable types
that will be described when Objective-C properties are descried in Chapter 7).

The second word is the actual variable name, count. It’s always proper form to name the variable with
what it is intended to store. From the looks of the name, it’s going to store the count of something.

Note As a standard, an integer in most operating systems, including i0S, can range from -2,147,483,648
10 2,147,483,647.

Begin and End a Section of Code

Every language needs some way to indicate where the code begins and ends. Objective-C has a few different
ways to designate this. The first is the most common in Objective-C (and standard C as well).

e {and }: The begin and end brace. This specifies the beginning and ending of a
section of code. A good example is the conditional, or if statement, shown here:

102

http://dx.doi.org/10.1007/978-1-4842-1904-1_7

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

1 if (a ==b) {
2 *** do something cool if a is equal to b ***

3}

First, there is a conditional: if (a == b). This simply tests to see whether the value of a is equal to the
value of b. The block of code for the conditional is surrounded by the braces ({ and }) and is executed if the
conditional is true (conditionals are described in more detail in Chapter 9).

Signify the End of a Line of Code

C and therefore Objective-C are free-form languages. This means that the code can be formatted however
the programmer likes. This gives the programmer a lot of flexibility as far as how the code looks. Because of
this, Xcode needs to know when there is an end of a line of code.

e ;isused torepresent the end of a line of code.

1 cost = 100.0; // Assign a value to something
2 NSLog(@"Hello!"); // Call a function/method (described later)

Note Because Objective-C is free format, it is possible to write Objective-C as one really loooooooong
single line. Yes, it will work and, yes, your co-workers and everyone on the planet will hate your code.

There is an exception to this general rule, and that is code that requires a block to define it. Using our
example from earlier again, look at this code:

1 if (a ==Db) {
2 *** do something cool if a is equal to b ***

3}

In this code, there is no semicolon after if (a == b) or after any of the braces. There are other
statements that you will see in upcoming chapters that are similar to this one. The takeaway is that if the
code you're writing requires braces, don’t add a semicolon at the end of the line.

Write a Comment

Comments in any language are useful to document or explain a piece of code. Actually, you've already seen
a comment in some sample code:

1 cost = 100.0; // Assign a value to something
2 NSLog(@"Hello!"); // Call a function/method (described later)

The // characters indicate that the text that follows is a comment and should not be treated as code.
The thing with the // comment is that it only is good until the end of that line. What if you have a lot to write
and want the comment to span multiple lines? In this case, there are more special characters: /* is used to
begin the comment, and */ is used to end the comment. This is referred to as a block comment.

1 /* This is a block comment

2 and can span multiple lines.

3 This is useful if I have a lot to say!
4 *

103

http://dx.doi.org/10.1007/978-1-4842-1904-1_9

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Notice that /* or */ can appear on lines all by themselves or be combined with text. It doesn’t really
matter how it’s formatted, even like this: /* This is a block comment too */.A block comment doesn’t
mean that the comment has to span multiple lines.

Note Itis a good habit to write and maintain comments within your code. Comments are not so much
about writing what the code does but why it’s doing it. This code may seem obvious: cost = 100.0. It’s a
variable assignment. What’s important here is not that there is a variable assignment but why the variable is
being assigned 100.0.

Define a Class

In all object-oriented languages there is the concept of a class. The definition of that class is also generally
different from language to language, and Objective-C is no exception.

Objective-C divides the definition of a class within two distinct sections. The first section is what is
called the interface. The interface simply defines the methods and properties that make up the class. It also
indicates the superclass to your object. (You'll learn more about this in Chapter 7.)

1 @interface MyObject : NSObject
2 B Stuff explained in Chapter 7 here
3 @end

The interface to an object is defined by @interface..@end. This object has the unique and creative name
of MyObject. The : NSObject part denotes the superclass, meaning MyObject acts just like NSObject but
builds upon it with the methods and properties defined in MyObject. You call NSObject your superclass;
conversely, MyObject is a subclass of NSObject.

1 @implementation MyObject
2 *** Styuff explained in Chapter 7 here
3 @end

The implementation as denoted by @implementation..@end is the part of the class that actually has the
code that does all the stuff MyObject is supposed to do. This is where all the coding of a class really takes place.
It's common to see the @interface..@end part in a separate file from the @implementation..@end part, but
they don’t have to be separate. Also important to note is that since the @interface and @implementation sections

are just like code blocks, they don’t require a ; at the end of the line (see “Signify the End of a Line of Code”
earlier). That said, it is a best practice to put the @interface in an . h file and the @implementation in an .mfile.

Define a Method

A method is defined in two ways. The first is the definition of the method in the @interface part of the class.

1 @interface MyObject : NSObject
2 - (int)howMany;
3 @end

Here is the interface to the MyObject class, and what you see on line 2 is the method definition. It's
called a definition because all it does is define the method’s name (howMany) and what value it returns—in
this case an int (as in integer, like used when defining a variable). And, of course, you need to end the
definition of the method with a semicolon. A return value is like asking an object a question. So, if you

104

http://dx.doi.org/10.1007/978-1-4842-1904-1_7

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

ask the object the question howMany, it responds with a number (int). Methods that don’t need to return
anything would have a (void) in place of the (int).

Chapter 7 will detail the actual code of the howMany method that is found in the @implementation
part of the code.

Define an Objective-C Variable
Objective-C variables aren’t too different from other variables (like you saw earlier in “Create a Variable”)
with the exception of a special character.
MyObject *myObjectInstance;
While this may look a little odd, it’s not too different than this:

int count;

In line 1, you see the Objective-C class name of MyObject being used, but it has an asterisk (¥) character
after it. We won’t go into technical details on what * actually does; just know that when a variable is defined
and that variable is an Objective-C class, you always put an asterisk after it (sometimes * is referred to as a
splat or star). If you don’t do this, Xcode will point it out as an error and you will have to fix it.

Call a Method

Once a class has a method defined, there needs to be a way to actually call it. So, when you have an instance
(or object) of the MyOb7ject class, the count object can be called and used as such:

1 int value;
2 value = [myObjectInstance howMany];

Line 1 defines a variable that is an integer called value.

Line 2 calls the howMany method from the object named myObjectInstance. Now, how you define
myObjectInstance is shown in the next chapter, but what’s more important here is the odd-looking [and]
characters. These characters are used to surround Objective-C code that deals with objects calling methods.

Note Technically in Objective-C you don’t call a method but instead send a message to an object. In the
previous example, the howMany message is being sent to the myObjectInstance object. There are technical
details in how Objective-C has been built as to why there is this difference in semantics. However, for simplicity’s
sake, the term method is used in order to maintain similar terms as other object-oriented languages.

Putting the “Objective” into Objective-C

The majority of what makes Objective-C, well, objective, is its basis in Smalltalk. Smalltalk is a 100 percent
object-oriented language, and Objective-C borrows heavily from Smalltalk concepts and syntax. Here are a
few of the high-level concepts borrowed from Smalltalk. Don’t worry if some of these terms seem unfamiliar;
they will be discussed in later chapters (Chapters 7 and 8 cover the basics).

e Aclass defines an object. That definition is made up of methods and properties.

e Objects can contain instance variables.
105

http://dx.doi.org/10.1007/978-1-4842-1904-1_7
http://dx.doi.org/10.1007/978-1-4842-1904-1_7
http://dx.doi.org/10.1007/978-1-4842-1904-1_8

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

e Instance variables (and variables in general) have a defined scope.

e (lasses hide details of an implementation.

Note Asyou saw in Chapter 5, the term class is used to represent, generically, the definition or type of
something. An object is what is created from the class. For example, a recipe is like a class as it defines how to
create a certain dish. The result of following a recipe is the completed meal. You can’t eat a recipe, but you can eat
what that recipe creates, just like you can’t use a class, but you can use what it creates, and that is an object.’

Let’s look at a simple example of the complete definition of an Objective-C class called HelloWorld. The
following is the interface file (HelloWorld.h):

1 @import Foundation;

; @interface HelloWorld : NSObject
g - (void)printGreeting;

? @end

And this is the implementation file (HelloWor1ld.m):
8 #import "HelloWorld.h"

10 @implementation HelloWorld
11

12 - (void)printGreeting

13

14 NSLog(@"Hello World!");
15 }

16

17 @end

In the preceding example, a class, HelloWorld, is being defined. This class has only one method
defined—printGreeting. What do all these strange symbols mean? Using the line numbers as a reference,
you can review this code line by line.

Line 1 contains the compiler directive @import Foundation;.For the program to know about certain
other objects (for example, the NSObject on line 3), importing Foundation defines the objects and interfaces
to the Foundation framework. This framework contains the definition of most non-user-interface base
classes of the i0S and Mac OS X systems. The actual start of the object is on line 3, as follows:

@interface HelloWorld : NSObject
HelloWorld is the object, but what does : NSObject mean? Well, the colon (:) after the class’s name

indicates you plan to derive additional functionality from another class. In this case, NSObject is that class.
HelloWorld is now a subclass of NSObject.

'There are some general exceptions to this. We mean exceptions to the class/object example. No, you still can’t eat a recipe.

106

http://dx.doi.org/10.1007/978-1-4842-1904-1_5

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Fun Fact Why the name NSObject and not just object? Well, do you recall that Mac OS X actually started
out as a port from the NeXTSTEP system? NS is an abbreviation for NeXTSTEP and is used in many of the base
objects in Mac 0S X and i0S— NSObject, NSString, NSDictionary, and so on.

Line 5 contains a message definition for this class, as follows:
- (void)printGreeting;

When you're defining a method, the definition line must start with either a - or + character. In the case
of the HelloWor1ld object, we are using - to indicate this message can be used after the object is created. The
+ character is used for messages that can be used before the object is created (more on this in Chapter 7).

On line 7, @end indicates the definition of the object’s interface is complete.

That’s the complete description of the interface of the HelloWorld object; there’s not a whole lot here.
More complicated objects simply just have more methods and properties.

For the implementation, the source code is stored in a different file, He11oWord.m. For starters, line 8
starts with the statement #import "HelloWorld.h". This simply allows the object to know its own interface.
While the separation of the interface and implementation files might seem a little odd at first, this convention
is consistent in Objective-C programming. Whenever an object is to be used, simply include its interface.

Line 10 is the start of the implementation of the object, as follows:

@implementation HelloWorld

Line 12 is the definition of the object’s method, printGreeting. It looks identical to the method
definition in the interface file. The only difference here is that code is being defined that implements the
printGreeting method.

Lines 13-15 form the block of code that implements the method printGreeting. For this simple
method, the function NSLog is called. This base-level function simply takes in a formatted NSString object
and outputs the result to the console. The NSString class is an Objective-C class that implements the
behavior of a string of characters. Why have a class for this? For one thing, it gives the framework a consistent
class for representing a string. Plus, there is a lot of functionality in NSString that can be used to manipulate,
compare, and convert the actual string.

The NSString object is specified here in a shorthand method. The @"Hello World!" partisa way of
quickly declaring an NSString object. The at sign (@) is the symbol used to indicate the text in quotes is an
NSString object.

Line 17 indicates to the compiler the definition of the implementation section is finished.

But wait, there is more. Now that you have a new Objective-C class defined, how is it used? The
following is another piece of code that uses the newly created class, the main program (main.m):

1 #import "HelloWorld.h"

2

3 void main(void)

4o

5 HelloWorld *myObject = [HelloWorld new];
6 [myObject printGreeting];

7}

In this new file, the program first starts by including the HelloWorld. h file, which allows this piece of the
application access to the HelloWor1ld object.
In line 3 is the main function. Remember, every Objective-C program must have amain function.

107

http://dx.doi.org/10.1007/978-1-4842-1904-1_7

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Line 5 is a complicated one. It defines and creates, or instantiates, a new object of the Hel1loWor1ld
class. You first see the text HelloWorld* myObject. This defines a variable named myObject of the type
HelloWorld, which is the new class.

The next part of the line is [HelloWorld new]. This creates a new HelloWorld object. Wait a second; you
never defined the message new, so how is this going to work? Well, when the HelloWor1ld class was defined,
it was defined as a subclass of NSObject. When you call the new method of the HelloWorld object, the system
knows that HelloWorld doesn’t know that particular message, so it automatically checks the superclass; in
this case, this is the NSObject class.

Now that you've created a new object, you can use it. Line 6, [myObject printGreeting], putsthe
object to use. In this piece of code, you use the newly instantiated object by calling the printGreeting
method. The program will output the text Hello World!.

Line 7 ends the code block that defines main and the end of the program.

Note Methods can also accept multiple arguments. Consider, for example, [myCarObject
switchRadioBandTo:FM andTuneToFrequncy:104.7];. The message here would be switchRadioBandTo:a
ndTuneToFrequency:. After each colon, the argument values are placed when a message is actually sent. You
might also notice these messages are named in such a way as to make interpreting what they actually do easy
to understand. Using helpful message names is an ideal convention to follow when developing classes because
it makes using the classes much more intuitive. Being consistent in naming messages is also critical.

Writing Another Program in Xcode

When you first open Xcode, you'll see the screen shown in Figure 6-1.

s MyBookstore
~[Downloads/2nd Ed code

“» MyBookstore
~/Documents/iOSDev/Apress

[P FlickrSearch

== ~/Documents/iOSDev

e blink

@ ..rancing-Pony/Development/immedia/Blink2

Welcome to Xcode

= Get started with a playground
P L ; 2
' Explore new ideas quickly and easily.

(;\L] Create a new Xcode project
#*%| start building a new iPhone, iPad or Mac application.

’Y- Check out an existing project
)| Start working on something from an SCM repository.

Show this window when Xcode launches Open another project...

Figure 6-1. Xcode opening screen
108

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Figure 6-1 shows a great screen to always keep visible at the launch of Xcode. Until you are more
comfortable with Xcode, keep the Show this window when Xcode launches check box selected. This
window allows you to select the most recently created projects or start a new project.

Creating the Project

You are going to start a new project, so click the Create a new Xcode project icon. Whenever you want to
start a new iOS or Mac OS X application, library, or anything else, use this icon. Once a project has been
started and saved, the project will appear in the Recents list on the right side of the display.

For this Xcode project, you're going to choose something simple. Make sure iOS Application is chosen.
Then select Single View Application, as shown in Figure 6-2. Then simply click the Next button.

Choose a template for your new project:

ios
Application - aeE 1 T
Framework & Library
cocos2d Master-Detail Page-Based Tabbed
Application Application Application
watchOS
Application {iL
Framework & Library —
tvOs Game

Application

Framework & Library
0sX

Application

Framework & Library

System Plug-in
Single View Application

Other

This template provides a starting point for an application that uses a single view. It provides

a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel [Next |

Figure 6-2. Choosing a new project from a list of templates

There are several different types of templates. These templates make it easier to start a project from
scratch in that they provide a starting point by automatically creating simple source files.

Once the template has been chosen and the Next button clicked, Xcode presents you with a dialog box
asking for the project’s name and some other information, as shown in Figure 6-3. Type a product name of
MyFirstApp. The Company Identifier field needs to have some value, so just enter MyCompany. Also make
sure the Device Family selection is set to iPhone and Language is set to Objective-C.

109

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Choose options for your new project:

Product Name: MyFirstApp
Organization Name: MyCompany

Organization Identifier: com.mycompany

Bundle Identifier: com.mycompany.MyFirstApp
Language: Objective-C ﬂ
Devices: iPhone ﬂ

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel ZEVICR Next |

Figure 6-3. Setting up the product name, company, and type

The Use Core Data, Include Unit Tests, and Include Ul Tests check boxes can be left as the default
(unchecked). In our example, we don’t have any checked, but it doesn’t matter if they are checked or not.
Once all the information has been supplied, click the Next button. Xcode will ask you where to save the
project. You can save it any place, but the desktop is a good choice because it’s always easy to find.

110

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

enve p /A ... Wl Phone 65 Plus MyFirstApp: Ready | Today at 10:15 PM @ e O30
MyFirstApp.xcodeproj +
B R A M & @ o E 2 MyFirstApp
¥ & MyFirstApp [m] Genera Capabilities Resource Tags Info Build Settings Build Phases Build Rules
v MyFirstA)
Y - PROJECT
h AppDelegate.h ¥ Identity
L MyFirsta
m AppDelegate.m st
k ViewController.h TARGETS Bundie Identifier com.mycompany.MyFirstApp
m Vi i A
m ViewController.m U | Version 1.0
Main.storyboard
Assets.xcassels Build |1
LaunchScreen.storyboard i
Info.plist Team None H
» Supporting Files
» [Products ¥ Deployment Info
Deployment Target n
Devices iPhone B
Main Interface Main n
Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right
Status Bar Style Default B
Hide status bar
Requires full screen
¥ App lcons and Launch Images
App lcons Source Applcon Bo
Launch Images Source Use Asset Catalog
= + — [@ Launch Screen File LaunchScreen “

Figure 6-4. The Xcode 7.3 main screen

When the project is initially created, Xcode will display details about your project. Everything can be
left as is except for Device. Change the device from Universal to iPhone. A universal device means that it will
run on an iPad, an iPhone, or anything new Apple thinks up. For simplicity’s sake, we’re just going to stick to
the iPhone.

In the leftmost pane is the list of source files. The main area of the screen is dedicated to the context-
sensitive editor. Click a source file, like an .h or .m, and the editor will show the source code. Clicking a
.storyboard file will show the user interface editor.

Your first app is going to be simple. This iPhone app will simply contain a pushbutton and a label. When
the button is pushed, your name will appear on the screen. So, let’s start by first looking more closely at
some of the stub source code that Xcode built for you. The nice thing with Xcode is that it will create a stub
application that will execute without any modification. Before you start adding some code, let’s look at the
main toolbar of Xcode, as shown in Figure 6-5.

@ L] > A MyfirstApp) Phone 8 MyfrstApp Busid Succeeded Today at 6 45 PM -’ ! - |

Figure 6-5. The Xcode 7.3 toolbar

111

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

At first glance, there are three distinct areas of the toolbar. The left area is used to run/debug the
application. The middle window displays the status as a summary of compiler errors and/or warnings. The
far-right area contains a series of buttons that customize the editing view.

As shown in Figure 6-6, the left portion of the toolbar contains a Play button (similar to iTunes) that will
compile and run the application. If the application is running, the Stop button will not be grayed out. Since
it’s grayed out, you know the application is not running. The last part of the toolbar is the build status. This is
where you can see what application (or target) is being built, in this case MyFirstApp. The “Build Succeeded”
indicates that, well, the build worked!

@& & > A MyFirstApp ' i} iPhone 6 MyFirstApp | Build Succeeded | Today at 6:45 PM
Figure 6-6. Close-up of the left portion of the Xcode toolbar

The right side of the Xcode toolbar contains buttons that change the editor. The three buttons represent
the Standard Editor (selected), the Assistant Editor, and the Version Editor. For now, just choose the
Standard Editor, as shown in Figure 6-7.

© <« L] L1

(li

Figure 6-7. Close-up of the right portion of the Xcode toolbar

Next to the editor choices are a set of View buttons. These buttons represent which panes of the Xcode
workplace are visible—left, bottom, and right. Blue indicates that a pane is active, and gray indicates that it is
inactive. These buttons can be toggled on and off. Figure 6-8 shows all three panes. Figure 6-9 shows Xcode
when no panes are used.

112

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

@ < D0QO

(i

ece B A MyFirstApp) i iPhone 6 MyFirstApp | Build Succeeded | Today at 6:45 PM

| sosoegsen i S
B R QA M © @ o B @ < > [MFistp) I MyFistApp) | AppDelegate.n) No Selection D e
| 77 | 1dentity |
| ¥ B MyFirstaon M | 2 U7 Appbetegate.n bl
¥ [0 MyFirstApp 3 /! MyFirstApp Name AppDelegate.h
4
5 /f/ Created by M. R. Fisher on 7/1/16. Type Default - C Header B|
& // Copyright © 2016 MyCompany. ALl rights reserved. .
1 7] Location _Relative to Group B
m ViewControler.m s #import <UIKit/UIKit.h> . ran PoDSGRA -
10 [Users/Strider/Desktop/
. Main.storyboard 11 @interface AppDelegate : UIResponder <UIApplicationDelegates MyFirstApp/MyFirstApp/
3 Assots.xcassets 1 AppDelegate.h L]
11 @property [strong, nonatoamic) UIWindow swindow;
* LaunchScreen. storyboard 1 |
 Info.plist o | On Demand Resource Tags
» [Supporting Files :: o
¥ [Products - | |
| Target Membership |
s |
iy MyFirstApp.app | A MyFirstapp
Left Pane !
| Toxt Settings |
Text Encoding Detault - Unicode (UTF-8) [|
Line Endings Default - 05 X / Unix (LF) [
S -~
b 0Oeo
Right Pane
E = No Matches
Bottom Pane
+® OHE| Ao @Fi All Qutput & W00 B8 ©riner

Figure 6-8. The three panes of Xcode

113

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

eoe » 5\ MyFirstApp) [l iPhone 6 MyFirstApp | Build Succeeded | Today at 6:45 PM

AppDelegate.n
L4 & MyFirstApp MyFirstApp | |, AppDelegate.h | No Selection

/! Copyright © 2016 MyC

fimport <UIKit/UIKit.h>
erface AppDelegate : UIResponder <UIApplicationDelegates

sproperty (strong, nonatosic) UIWindow swindow;

No Panes

Figure 6-9. No panes selected. Just one big editor!

Generally, when Xcode starts up with a new project, the left and right panes are selected.
So what are these different panes?

e Theleft pane is called the Navigator. This is because the pane contains different

“tabs” that allow you to navigate the source (among other things).

The right pane is the Utilities pane. It has all the tools that are used to configure the
app and build the interface, which is what the user sees.

The bottom pane is the Debug area. It appears when Xcode is debugging the app.
Debugging is discussed in Chapter 14.
Let’s now get into your iOS app.

Click the ViewController.h file once, as shown in Figure 6-10. The editor shows some Objective-C code
in what is called an Interface file. You can tell it’s an interface file because of the @interface Objective-C
directive on line 11. We'll discuss the importance of the .h and .m files in the next chapter.

114

http://dx.doi.org/10.1007/978-1-4842-1904-1_14

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

® ® o MyFirstApp) il iPhone 8 MyFirstApp | Build Succeeded | Today at 6:45 PM @ <00 i
ViewController.h
B2 Q . = 8| < L& MyFirstApp MyFirstApp | | ViewController.h | No Selection
v & MyFirstApp M A
e /¢ ViewController.h
v MyFirstApp // MyFirstApp
A " "
h AppDel te.h
i s /f Created by M. R. Fisher on 7/1/16.
m AppDelegate.m ff Copyright © 2816 MyCompany. ALl rights reserved.
. lerh "
m ViewController.m #import <UIKit/UIKit.h>

Main.storyboard sinterface ViewController : UIViewController
Assots.xcassets
Lauﬂ:nScmn.stor\"bnam send
Info.plist ;
(3 Supparting Files
v Products

s MyFirstApp.app

Figure 6-10. Looking at the source code in the Xcode editor

Note For now, we’re simply going to add a few lines of code and see what they do. It’s not expected
that you understand what this code means right now. What’s important is simply going through the motions
to become more familiar with Xcode. Chapter 7 goes into more depth about what makes up an Objective-C
program, and Chapter 10 goes into more depth about building an iPhone interface.

Next, you're going to add two lines of code into this file, as shown in Figure 6-11. Line 12 defines an
iPhone label on the screen where you can put some text. Line 15 tells the compiler this object has a method
named showName:. You'll be calling this method to populate the iPhone label. A label is nothing more than
an area on the screen where you can put some text information.

Caution Type the code exactly as shown in the example. For instance, UILabel can’t be uilabel or
UILABEL. Objective-C is a case-sensitive language, so UILabel is completely different from uilabel.

115

http://dx.doi.org/10.1007/978-1-4842-1904-1_7
http://dx.doi.org/10.1007/978-1-4842-1904-1_10

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

= O 0 MO W R -

12
13
14
15
16
17
18
19

i

// ViewController.h

// MyFirstApp

1/

// Created by M. R. Fisher on 7/1/16.

// Copyright © 2016 MyCompany. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (nonatomic, strong) IBOutlet UILabel =nameLabel;
- (IBAction)showName: (id)sender;

@end

Figure 6-11. Code added to the ViewController.h interface file

Next, you're going to add the code to make the message showName: do something. First, click the

ViewController.m file on the left once. This file is an implementation file. You can tell it’s an implementation
file because of the @implementation Objective-C directive on line 11, as shown in Figure 6-12.

//

/! ViewController.m

// MyFirstApp

1/

// Created by M. R. Fisher on 7/1/16.

// Copyright © 2816 MyCompany. All rights reserved.
1/

#import "ViewController.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
}
- (void)didReceiveMemoryWarning {

[super didReceiveMemoryWarningl;
// Dispose of any resources that can be recreated.

@end

Figure 6-12. The ViewController.m implementation file

Notice there is a warning symbol on line 15. Clicking the warning will show the warning “Method

definition for ‘showName:” not found.” This basically means you've added a new method in the interface file,
but it’s not to be added to the implementation file.

116

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

What may appear wrong are lines 11-13. This is what is called a class extension and is meant to be only
in the .mfile. This is meant to contain properties that are strictly kept private to the ViewController class.

Figure 6-13 is the updated implementation file. Now, the warning disappears since the showName:
method is now in the implementation file. Xcode is nice that way. If a method is defined in the interface file,
it will generate a warning if it’s not in the implementation file. Xcode does make things easier, but it’s still up
to the programmer (you) to make any necessary corrections.

// ViewController.m
// MyFirstApp

/! Created by M. R. Fisher on 7/1/16.

// Copyright © 2816 MyCompany. All rights reserved.
#import "ViewController.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {

18 [super viewDidLoad];
19 // Do any additional setup after loading the view, typically from a nib.

(void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

270 - (IBAction)showName: (id)sender {
}

31 @end
Figure 6-13. Code added to the ViewController.m implementation file

Once lines 27-29, as shown in Figure 6-13, have been added, the warning message will disappear. The
nice thing with Xcode is that it will report any warnings or errors with the code typed in without first having
to try to compile and run the program. This immediate feedback can sometimes be a pain, but it does save
time. You now have the necessary code in place, but you don’t yet have a user interface on the iPhone. Next,
you're going to create the user interface to your app.

To edit the iPhone’s interface, you need to click the Main.storyboard file once. You will use Xcode’s
interface editor to connect a user interface object, such as a label, to the code you just created. Connecting is
as easy as click, drag, and drop.

One thing that may stand out is that big square in the center of the screen doesn’t look like any iPhone
currently made by Apple—and it isn’t. No, this isn’t some new secret device that Apple has yet to sell but is
something done deliberately. As you get into more complicated interfaces, it’s a good practice to not design
for an iPhone or an iPad but any device screen size. So, to get developers thinking in that mind-set, Xcode
puts up a square interface: neither an iPhone nor an iPad. For our first app, we're going to keep things simple.

Note that the right pane is visible, as shown in Figure 6-14. This opens up the Utilities pane for the
interface. Among other things, this utilities pane shows you the various interface objects you can use in your
app. You're going to be concerned with only two: Button and Label.

117

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

L] e p Sy MyFirstApp |) Phone 6 MyFirstApp | Build MyFirstApp: Succeeded | Today at 10:40 PM | -
Main storyboard
BRQ o< & MyFirstApp MyFirstApp Main.storyboard Main. storyboard (Base) | No Selection) B T 0
v B wyFistapp M » [View Controller Scene
¥ [MyFirstaApp P
AppDeisgate h ¢ =
AppDelegate.m
ViewControllerh ™
ViewController.m M
B Mainstoryboard "]
Assets.xcassets
LaunchSer__storyboard M
Info.plist
» [Supporting Files
¥ [Products
A MyFirstApp.app
Label

= [n] Any ~Any 2B ol s =

Figure 6-14. The iPhone interface that youre going to modify

The first step is to click the Button control once from the Utilities pane; you may have to scroll the list of
controls to find the Button control. Next, drag the object to the iPhone view, as shown in Figure 6-15. Don’t

worry; dragging the object doesn’t remove it from the list of objects in the Utilities pane. Dragging it out will
create a new copy of that object on your iPhone interface.

118

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

[] e » [] oy MyFirstApp | [iPhone & il oo | Build My P Today at 10:40 PM D « [1
Mair.storyboard
BRAa ¢ o B o £ 2 MyFirstApp MyFirstApp Main.s_board Mains_(Base) | [View_r Scere View Controlier View Dem o0 a
v B wFistao M | ¥ [View Controller Scene View
¥ [MyFirstApp ¥ () View Controlar P— Mode Scale To Fil %]
. .. ® E
h AppDelegate. Top Layout Guide i = Semactic Urspecified B
AppDelegate.m Bottom Layout G, Tag [1
h ViewControllerh M View
ViewControler.m M @ First Responder interaction) User Intevaction Ensbled
B Main storyboard ™ B Exn Multiple Toueh
3 Assets xcatsats aryans ety Pk Aigha (1=
LaUNCASCY... DIYDoard M Bachground) White Color B
Info.plist Tint EEEE Defoult [+
> I Supporting Flles Drawieg) Opagque Hidden
¥ I Products [Clears Graphics Context
A\ MyFirstApp.app Clip Subviews
18 Autoresize Subviews
Stretehmg 0z 0
x ¥
1 1
Width Height
] @ C
Label
gton | [l 2] [Text| -
= = | m) wAny rAny H B ol E

Figure 6-15. Moving a Button object onto the iPhone view

Next, double-click the Button that was just added to the iPhone interface. This allows the title of the
button to be changed. So, change the title from Button to Name, as shown in Figure 6-16. Many different
interface objects work just like this. Simply double-click and the title or text of the object can be changed.
Changing the text of a button can also be done in the actual code, but it’s much simpler doing as much as
possible in the interface editor.

119

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

0 whny nAny E3 & tof taf

Figure 6-16. Modifying the button’s title

Once the title has been changed, drag and drop a Label object and place it right below the button, as
shown in Figure 6-17.

120

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

MyFirstApp) B Main....card) [l Main...ase)) [View...cene View...troller View) L Label 0O ® O 0 6
Label

Text Plain
-
w [=

Label
Ceolor EEEE Default

Font System 17.0

n”m <>

Alignment = = =

i

Name

-
(%]

Lines

Behavior {3 Enabled
Highlighted

Baseline Align Baselines
Line Breaks Truncate Tail
Autoshrink Fixed Font Size
Tighten Letter Spacing
Highlighted WEEEN Default
Shadow [——1 Default

O <> 1 <>l >l <> <)

[
-

Shadow Offset 0.
Horizontal Vertical

r

06
Label
Button Text | =
O wAny hAny B3 12 o] tai

Figure 6-17. Adding a Label object to the iPhone interface

For now, you can leave the label’s title as Label as you're going to make it change within the program.
You also want to leave something in the title so you can actually see it on the screen. If you clear the label’s
text, the object will still be there, but there is nothing visible to click in order to select. Expand the size of the
label by dragging the center handle ball to the right, as shown in Figure 6-18.

® BE

Name

g.abel

T

Figure 6-18. Expanding the label’s size
121

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Now that you have both the button and the label, you can connect these visual objects to your program.
You start by Control-clicking (or right-clicking) the button control and dragging the blue line to the yellow
view controller icon at the top of the screen, as shown in Figure 6-19.

View Controller

Figure 6-19. Start the connection from the button to the view controller

At this point, just stop dragging and release the mouse. You will see a list of things related to the button.
In this case, you care only about selecting the showName: event, as shown in Figure 6-20. It’s called an event
because something happens when, in this case, the button is touched.

Action Segue
Show
Show Detail
Present Modally
Present As Popover

Custom
Sent Events
showName:
Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

Figure 6-20. Select the showName: event

What just happens once the showName: is selected is that it connects the touch-up inside button event
to the showName: method inside the implementation. The event is called touch-up inside since the event
is sent only when the button is released (touch-up) and only when the touch-up occurs inside the button
(versus if you drag your finger oufside the button and then release).

122

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

Next, you need to create a connection for the Label object. In this case, you don’t care about the label
events; instead, you want to connect the ViewController’s nameLabel outlet to the object on the iPhone
interface. This connects the label shown on the iPhone interface to the property in the program.

Start by Control-clicking or right-clicking the Label object on the iPhone interface. This brings up the
connection menu for the label, as shown in Figure 6-21. There are not as many options for a Label object as
there were for the Button object.

View Controller View

Name
Ext

Label

Outlet Collections
gestureRecognizers
Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-21. Connection menu for the Label object

As mentioned, you are not here to connect an event. Instead, you connect what'’s referred to as a
Referencing Outlet. The Outlet is the property in your program. Just like the button, drag and drop the
connection to the view controller icon, as shown in Figure 6-21.

Once the connection is dropped on the view controller icon, a list of possible outlets in your
ViewController object will be displayed, as shown in Figure 6-22. Of the two choices, you want to choose
nameLabel. This is the name of the variable in the ViewController object you are using.

View Controller

namelLabel
view

Figure 6-22. Connecting the Referencing Outlet to the object

Lastly, you need to add the code that will put something into your new label. In Figure 6-23, line 28
sets the text to the nameLabel property. Notice that you're adding code to the showName : method. If you
recall, this is the method that is called during the touch-up inside event. Don’t worry too much about

understanding everything, but some things should look familiar based upon what you've learned in this
chapter.

123

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

// ViewController.m
// MyFirstApp

5 // Created by M. R. Fisher on 7/1/16.
6 // Copyright © 2016 MyCompany. All rights reserved.
7

1/
8
9 #import "ViewController.h"
10
11 @interface ViewController ()
12
12 @end

15 @implementation ViewController

17 = (void)viewDidLoad {

18 [super viewDidlLoad];
19 // Do any additional setup after loading the view, typically from a nib.
200 }
s
22 - (void)didReceiveMemoryWarning {
23 [super didReceiveMemoryWarningl;
24 // Dispose of any resources that can be recreated.
25
27 = (IBAction)showName: (id)sender {
28 [self.nameLabel setText:@"My Name is Awesome!"];
%8)
30
31 @end
32

Figure 6-23. Setting the text to the new label

Now you're ready to run the program. Click the Run button (it looks like a play button) at the top-
left corner of the Xcode window (see Figure 6-6). This will automatically save your changes and run the
application in the iPhone emulator, as shown in Figure 6-24.

124

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

iPhone 6 - iPhone 6 /i0S 9.3 (1... iPhone 6 - iPhone 6 /i0S 9.3 (1...
Carrier T 12:09 AM - Carrier & 12:09 AM ==
Name Name
Label My Name is Awesome!

Figure 6-24. Your app running, before and after the button is pressed

Clicking the Name button, the label’s text will change from its default value of “Label” to “My Name is
Awesome!” or whatever text you put in. If you want to, go back into the interface and clear the default label
text. Changing the default of “Label” to something more appropriate will give the user interface a more
polished look.

Summary

The examples in this chapter were simple, but we hope they’ve whetted your appetite for more complex
applications using Objective-C and Xcode. In later chapters, you can expect to learn more about object-
oriented programming and more about what Objective-C can do. Pat yourself on the back because you've
learned a lot already. Here is a summary of the topics discussed in this chapter:

e The origins and brief history of the Objective-C language
e Some common language symbols used in Objective-C
¢ An Objective-C class example

e The@interface and @implementation sections of a program

125

CHAPTER 6 * LEARNING OBJECTIVE-C AND XCODE

e Using Xcode a bit more, including entering and compiling the MyFirstApp.msource
file

e Connecting visual interface objects with methods and properties in the application
object

Exercises

e Change the size of the Label object on the interface to be smaller in width. How does
that affect the text message?

e Delete the Referencing Outlet connection of the label and rerun the project. What
happens?

e Ifyoufeel you have the hang of this, add a new button and label both to the
ViewController object and to the interface. Change it from displaying your name to
displaying something else.

126

CHAPTER 7

Objective-C Classes, Objects, and
Methods

If you haven’t already read Chapter 6, please do so before reading this chapter because it provides a great
introduction to some of the basics of Objective-C. This chapter builds on that foundation. By the end of this
chapter, you can expect to have a greater understanding of the Objective-C language and how to use the
basics to write simple programs. For Mitch personally, the best way to learn is to take small programs and
write (or rewrite) them in Objective-C just to see how the language works.

This chapter will cover what composes an Objective-C class and how to interact with Objective-C
objects via methods. We will use a SimpleLabelData class as an example of how an Objective-C class is
written. This will impart an understanding of how an Objective-C class can be used. This chapter will teach
you how to formulate a design for objects that are needed to solve a problem. We'll touch on how to create
custom objects, as well as how to use existing objects provided in the Foundation classes.

If you're coming from a C-like language, you'll find that Objective-C shares several similarities. As
described in Chapter 6, Objective-C’s roots are firmly planted in the C language. This chapter will expand on
Chapter 6’s topics and incorporate some of the concepts described in Chapter 8.

Creating an Objective-C Class

Chapter 6 introduced some of the common elements of the Objective-C language, so let’s quickly review them.

e An Objective-C class is divided into two parts: a class interface and a class
implementation.

e The @interface keyword is used to define an interface to a new Objective-C class.
This is written in an . h, or header, file.

e Methods are the blocks of code defined in the @interface section of a class and
implemented in the @implementation section in an .mfile.

e The @implementation keyword is used to define the actual code that implements the
methods defined in the interface. This is written in an .m, or Objective-C class, file.

As explained in Chapter 6, an Objective-C class consists of an interface and a corresponding
implementation. For now, let’s concentrate on the interface. At the most basic level, the interface of a class
tells you the name of the class, what class it’s derived from, and what methods the class understands.

Note It was mentioned in Chapter 6 that technically an Objective-C object sends and receives methods.
However, for simplicity sake, we’re going to stick to the more common term method instead.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 127
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_7

http://dx.doi.org/10.1007/978-1-4842-1904-1_6
http://dx.doi.org/10.1007/978-1-4842-1904-1_6
http://dx.doi.org/10.1007/978-1-4842-1904-1_6
http://dx.doi.org/10.1007/978-1-4842-1904-1_8
http://dx.doi.org/10.1007/978-1-4842-1904-1_6
http://dx.doi.org/10.1007/978-1-4842-1904-1_6
http://dx.doi.org/10.1007/978-1-4842-1904-1_6

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Here is a sample of the first line from a class’s interface:
@interface SimpleLabelData : NSObject

Here, the class name is SimpleLabelData. The colon (:) after the class name indicates that the class
is derived from another class; that is, the SimpleLabelData object inherits functionality from the UILabel
class. Put another way, in the example shown in Listing 7-1, the SimpleLabelData class is derived from the
NSObject class, which is the base class for all classes.

Tip If your object is not inheriting from any other Foundation or UIKit class (like UILabel), always inherit
from NSObject; without it, your class will be worthless. NSObject provides the base functions that make
new objects behave correctly. NSObject is the base class for all foundation classes. So, inheriting from any
foundation or UIKit class is also fine.

Once the class name is defined, the rest of the interface file contains the main components of the class
(see Figure 7-1).

/f SimpleLabelData.h
// MyFirstApp

// Created by M. R. Fisher on 8/17/16.
// Copyright © 2016 MyCompany. ALl rights reserved.

#import <Foundation/Foundation,h>
1 rid_lr:e_rf;cr_: Ei;pfezagerﬂa_ta_ :_N_S[il_]_et_t K
2)

I

1 __ #—————— (lass interface and properties

" Bproperty (nonatomic) NSString =title; 1

j @property (nonatomic) NSString =value; | (Instance variabled)

1
+ (instancetype)simpleLabelDataWithTitle: (NSString *)title 14 Class method

I
! andValue: (N55tring =)value;

Figure 7-1. An interface file: SimpleLabelData.h

Declaring Interfaces and Properties (Instance Variables)

An Objective-C class is defined by its interface. Since objects, for the most part, are communicated with
using methods, the interface of an object defines what methods the object will respond to. Line 9 imports the
Foundation class definitions (more on that in a bit). Line 11 is the start the definition of the class’s interface
by defining its name (SimpleLabelData) (sometimes called the type) and the superclass (NSObject). Next,
there are two @property lines. These are properties of the class and are sometimes called instance variables.
Whenever the SimplelLabelData class is instantiated, the resulting SimpleLabelData object has
access to these properties. If there are ten SimplelLabelData objects, each object has its own properties
independent of the other objects. This is also referred to as scope, in that the object’s properties are specific
to that object only. Other objects manage their own properties and so on.

128

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Calling Methods

Every object has methods. In Objective-C, the common concept to interact with an object is to call methods.
[aSimpleLabelData combinedString];

The preceding line will call a method of an instance of the SimpleLabelData class from a variable
named aSimpleLabelData. The method (combinedString) is the name of the method to call.

If a class does not have that method defined, the parent object checks for it, and its parent object checks
for it, and so on, until the method is either found or not. This behavior is called dynamic binding, which
means the method is found at runtime instead of compile time. Dynamic binding allows an Objective-C
program to react to changes while the program is running—this is one of the huge advantages Objective-C
has over other languages.

Methods can also have parameters passed along with them. Parameters are used to control behavior or
are simply passed to the object to store for later use. So, the following method accepts some parameters:

someLabelData = [SimplelLabelData simplelLabelDataWithTitle:@"Name"
andTitleText:@"What's in a name?"];

It's important to understand the method and how it’s structured, especially once you actually
implement the code. In your code, you'll need to make sure you implement the simpleLabelDataWithTit
le:andTitleText: method; otherwise, the program won’t work. Please note that this is the name that the
example uses. A method name can be pretty much any combination of words.

In the preceding example, the method consists of two parameters: the title and a title value. What's
interesting about Objective-C relative to other languages is that the methods are essentially named
parameters. It's easy to understand simpleLabelDataWithTitle:andTitleText: in thatit’s obvious what the
method is looking for as input. Here are a few other examples:

[NSDictionary dictionaryWithContentsOfFile:filename];
[myString characterAtIndex:1];
[myViewController addChildViewController:otherViewController];

Using Class Methods

A class doesn’t have to be instantiated to be used. In some cases, classes have methods that can actually
perform some simple operations and return values. These methods are called class methods. In Listing 7-1,
the method names that start with a plus sign (+) are class methods—all class methods must start with a +
sign.

Class methods have limitations. One of their biggest limitations is that none of the instance variables
can be used. Well, technically, Xcode allows instance variables to be coded in a class method. The code will
compile with a warning, but accessing or using the instance variable does nothing—just don’t do it. Being
unable to use instance variables makes sense since we haven'’t instantiated anything. A class method can
have its own local variables within the method itself but can’t use any of the variables defined as instance
variables.

A call to a class method would look like this:

[SimpleLabelData new];
Notice that the call is similar to how a method is passed to an instantiated object. The big difference

is that instead of a class instance, the class name itself is used. Class methods are used quite extensively in
the Mac OS X and iOS frameworks. They are used mostly for returning some fixed or well-known types or

129

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

values or for returning a new instance of an object. These types of class methods are sometimes referred to
as factory methods since, like factories, they create something new (in this case, a new instance of a class).
Here’s a factory method example:

1. [NSDate timeIntervalSinceReferenceDate]; // Returns a number
2. [NSString stringWithFormat:@"%d", 1000]; // Returns a new NSString object
3. [NSDictionary new]; // Returns a new NSDictionary object.

All of the preceding methods are class methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1, 2001, which is the
reference date.

Line 2 returns a new NSString object that has been formatted and has a value of 1000.

Line 3 is a form that is commonly used because it actually allocates a new object. Typically, the line is
not used by itself but in a line, like this:

myDict = [NSDictionary new];

So when would you use a class method? As a general rule, a class method is used in two ways.
e To create a new instance of the class
e When the method being called does not require an instance of the class
In our sample class, the second way doesn’t apply but an example would be as follows:
[NDate date];
This class method returns the current date/time and doesn’t require an instance of NSDate.
There are also a few things that are important to note.
e Every class needs a class method to create itself.
e In most cases you don’t have to create one since it’s handled by NSObject for you.

It would be entirely possible to write the SimpleLabelData class without a class method, but we're
adding one for instructive purposes.

Using Instance Methods

Instance methods (line 22 in Listing 7-1) are methods that are available only once a class has been
instantiated. Here’s an example:

1. SimplelabelData *mylLabel;
2. mylLabel = [SimpleLabelData simpleLabelDataWithTitle:@"My Title"
andValue:@"A Value"];

w

[myLabel combinedString];
4. NSString *title = mylabel.title;

Line 1 declares the variable to hold the instance of the class.

Line 2 calls the class method to create the object, set its properties, and return it as an instance to be
stored in the myLabel variable.

Line 3 calls an instance method to combine the title/value into a combined string.

Line 4 gets the title property from the instance and stores it into a new variable called title.

130

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Another thing of note is that the code in the Class method cannot access the properties, which are the
instance variables, until after the class is instantiated. You will see this when we go over the implementation file.

All instance methods must start with a hyphen (-); this easily distinguishes them from class methods,
which use a plus (+) sign.

Working with the Implementation File

Now that you've seen what an interface file looks like, let’s take a look at the implementation file. First, the
interface file had an . h extension, as in SimpleLabelData.h. The implementation file has an .m extension, as
in SimplelLabelData.m, as shown in Listing 7-2.

Another important thing to note is that the interface and implementation files have the same
name (excluding the extension). This convention is used universally: while there is nothing preventing
an interface and an implementation file from having different file names, having different names can
cause much confusion, and tools like Xcode won’t work as well. For example, the Xcode key sequence
Control+Command+up-arrow key (» + 38 + AN) moves between implementation and interface files, and it
will not work if the two file names are not the same.

When Xcode creates a class, it creates a rudimentary stub of an implementation file. Figure 7-2 starts
with the #import statement to your interface file. The #import statement reads in your interface file for
the class. As the compiler goes through your implementation (.m) file, it needs to know what class it’s
implementing, and the interface file provides all the information that it needs.

// SimplelLabelData.m
// MyFirstApp

5 // Created by M. R. Fisher on 8/17/16.

// Copyright © 2016 MyCompany. All rights reserved.
#import "SimpleLabelData.h"

@implementation SimpleLabelData

12+ (instancetype)simpleLabelDataWithTitle: (NSString)initialTitle
andValue: (NSString *)initialvalue
158 {

16 SimpleLabelData *newLabel = [self new];
17 newLabel.title = initialTitle;
18 newLabel,value = initialvalue;
19
return newLabel;
}

- (NSString *)combinedString

{

26 NSMutableString *newString = [NSMutableString new];
[newString appendString:self.titlel;

28 [newString appendString:@": "1;

i [newString appendString:self.valuel;

2 return [NSString stringWithString:newStringl;
2 }
” @end

Figure 7-2. Your implementation file

131

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

An #import statement tells the compiler to read in the specified file because the compiler needs to
know about certain predefined things. For example, in your interface file, the SimpleLabelData classis a
subclass of NSObject. The NSObject class needs to be defined for the program to compile successfully. All of
these objects are part of the i0S Foundation framework and are included via line 9 in the interface file from
Listing 7-1.

#import <Foundation/Foundation.h>

Note Look at the #import statements: one uses angle brackets (< »), and the other uses plain double
quotation marks (" "). The difference is that a file in the angle brackets indicates a system-level file, which
is located using a predefined path that Xcode automatically sets up for your project. Any file that has double
quotation marks is searched for in the current project. In this example, the SimpleLabelData.h interface file is
part of our project, so we use double quotation marks, whereas the Foundation.h file is a system file and uses
the angle brackets.

Coding Your Methods

Figure 7-2 is a simple example, but it demonstrates what many methods look like in a class. First, if you
look at the implementation and interface files for one of the class methods, you can see the similarities. The
following line is from the interface file:

+ (instancetype)simplelabelDataWithTitle: (NSString *)initialTitle
andValue: (NSString *)initialValue;

Asyou can seg, it’s a class method because it starts with a +. The next item, (NSString*), is a parameter
called initialTitle, and the second item is initialValue, another NSString*. These will be used by the
instance to set its own title and value.

Listing 7-2 is from the implementation file.

Listing 7-2. The Implementation of a Class Method

1. + (instancetype)simplelLabelDataWithTitle:(NSString *)initialTitle
andValue: (NSString *)initialvalue

2. |

3. SimpleLabelData *newLabel = [SimplelLabelData new];
4. newlLabel.title = initialTitle;

5. newlLabel.value = initialValue;

6. return newlabel;

7. }

This line represents an implementation of the method defined in the interface. The word
implementation indicates that the method is coded here. It looks almost identical to the interface file but
now contains a block with some code, rather than simply ending with a semicolon.

Generally, a class has a definition of a method in an interface file and the actual code of the method in
an implementation file.

So what does this class method do?

132

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Line 1 is the class method declaration and is the implementation of the class method defined in the
interface file.

Line 2 and line 7 begin and end the method.

Line 3 looks a little odd. It creates a new instance of the object by calling [SimpleLabelData new]. The
new class method is defined in NSObject and creates a new instance of a class.

Remember, class methods cannot use the instance variables defined in the class but in the case of lines
4 and 5, you're using the newLabel variable, which is now the instance of the new class.

Line 6 returns the instance of the class to the caller.

Now, you will look at the implementation of an instance method (see Listing 7-3). There are some
significant differences between an instance and a class method; for one, instance methods have the option
to use the instance variables defined in the interface file, in this case two properties that represent the title
and value. Also, instance methods are available only once the class has been instantiated.

Listing 7-3. The Implementation of an Instance Method

1. - (NSString *)combinedString

2

3. NSMutableString *newString = [NSMutableString new];
4. [newString appendString:self.title];
5
6

[newString appendString:@": "I;
[newString appendString:self.value];

~

return [newString copy];

o]

}

Listing 7-3 illustrates the implementation of one of the instance methods of your SimpleLabelData
class. In this case, the instance method combines the title and value properties with a : between them.

Line 1 is the start of the implementation of the method defined in the interface file.

Line 3 declares a new variable called newString. In this case, it’s a variable that is an NSMutableString.
This is a string that you can modify, as you will see next.

Line 4 appends the instance’s property title to the newString, which is blank up to now.
appendString: simply adds the string in the argument to the newString variable.

Lines 5 and 6 do the same as line 4 but use different string values.

Line 7 returns a copy of the new string. A copy is returned since you don’t want to return the modifiable
temporary string to the caller since the caller could modify it and that would be bad.

What's important to mention is the use of the name self in lines 4 and 6. When working in an instance
method, the “instance” of the class is referred to as self.

Using Your New Class

You've created a simple SimpleLabelData class, but by itself, it doesn’t accomplish a whole lot. In this
section, you will create the Radio class and have it maintain a list of SimpleLabelData classes.

Updating MyFirstApp

Let’s start up Xcode and load the project from Chapter 6, MyFirstApp.

133

http://dx.doi.org/10.1007/978-1-4842-1904-1_6

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

MyFirstApp

~/Downloads

Welcome to Xcode

Version 7.3.1 (TD1014)

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project

Start building a new iPhone, iPad or Mac application.

Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches Open another project...

Figure 7-3. Open Xcode so you can load an existing project

134

You may have to click Open another project... if the file isn’t listed. Once you've
loaded the file, you should see the project screen. If not, just click MyFirstApp
with the blue icon at the top of the project navigator window.

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ene M A MyFirstApp |) iPhane B MyFirstApp | Build MyFirstApp: Succeeded | 7/3/16 at 12:08 AM =@ S0 0
MyFirstApp.xcodeproj or
ARAACEHCB® 8« B MyFirstapp 0O oe®
L Genera Capabisties Resource Tags Infa Build Settings Build Phases Build Ryl Quick Help
v M
by PROJECT
h AppDelegate.n a ¥ Mentity No Quick Help
m AppDelegate.m W MyFirstApp
h ViewController.h] TARDETR Bundie Identifier com.mycompany.MyFirstApp
m ViewController.m M A MyFirstApp —
Main.storyboard M
[Assots xcassets Build 1
LaunchScreen storyboard M
Info.plist Team None B
> Supporting Files
¥ [Products ¥ Deployment info
#y MyFirstApp.app
Deplayment Target ﬂ
Devices Phane B
Main Interface Main B
Device Orientation) Portrait
Upside Down
15 Landscape Left
18 Landscape Right
Status Bar Style Default B OD0OeOo
Hide status bar
Requires full screen <
¥ App lcons and Launch Images
App lcons Source Applcon Be .
Launch images Source Use Asset Catalog
Launch Screen File LaunchScreen n LabEI
DEl+ — (@ ¥ Embedded Binaries 2

Figure 7-4. The workspace window in Xcode

Adding Objects

Now, you can add your new objects.

1.

First, create your SimpleLabelData object.

Click the MyFirstApp group folder and

click the + button at the bottom. Next, choose File... (as shown in Figure 7-5).

135

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

BRQAO=o 8
v & MyFirstApp]
h AppDelegate.h
m AppDelegate.m
h ViewController.h M

=

m ViewController.m
B Main.storyboard M
9 Assets.xcassets
LaunchScreen.storyboard M
Info.plist
> Supporting Files
v Products
MyFirstApp.app

Click the
plus (+) first

Then select File...

+|® OH

| File..
New Playground...

Add Files to "MyFirstApp“..

Figure 7-5. Adding a new file

Note There are a few other ways to add a new file instead of just clicking the + sign. Alternatively, you can
right-click in the MyFirstApp folder or even on top of one of the files and the new file (or files) will be inserted
right below the right-click.

The method shown here is an easy and consistent way to add items to the Xcode project. There are + signs in
other areas where right-clicks don’t work as expected.

136

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

2. The next screen, shown in Figure 7-6, asks for the new file type. Simply choose
Cocoa Touch Class from the list of templates and then click Next.

Choose a template for your new file:
i0s
Source {(’:‘3

User Interface

Core Data Ul Test Case Unit Test Case Playground
Class Class

Apple Watch

Resource

Other - m h c
watchOS Swift File Objective-C File Header File C File

Source

User Interface

Core Data Ce N\

Resource

Other C++ File Metal File
tvOS

Source Cocoa Touch Class

User Interface A Cocoa Touch class.

Core Data

Daemiesn

Cancel T

Figure 7-6. Selecting the new file type

3. On the next screen, enter SimpleLabelData as the class and select NSObject
(you can just start typing NSO and Xcode will find it) for “Subclass of” This
means your new class will be a subclass of NSObject, as shown in Figure 7-7.

137

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Choose options for your new file:

Class: SimpleLabelData

Subclass of: = NSObiject] ﬁ

Language: Objective-C

©

Cancel Previous Next

Figure 7-7. Choosing your new object’s subclass

4. The next screen asks you where to put the files. Simply click the Create button
since the location in which Xcode chooses to save the files is within the current
project.

5. Your project window should now look like Figure 7-8. Click the
SimplelLabelData.h file. Notice that the stub of your new SimplelLabelData class
is already present. Now, fill in the empty class so it looks like Figure 7-1, which is
the filled-out SimpleLabelData interface file.

138

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ene » I A MyFirstApp) [IPhone 6 MyFirstApp | Build MyFirstApp: Succeeded | 7/3/16 at 12:08 AM = © o000
SimpteLabeiData.h +
BRAAG o @ 8| < B myFirstapp MyFirstApp | | SimpleLabelData.h | No Selection 0D ®
v B MyFirstA " " Guick He
it /7 SinpleLabelData.h okt
¥ [MyFirstApp /1 MyFirstApp

b AppCeiegate.h /7 Created by M. R. Fisher on B/17/16. No Quick Help
m AppDelegate.m s 4/ Copyright © 2016 MyCompany. ALL rights reserved.
b ViewControlierh M "
m ViewController.m M #import <Foundation/Foundation.h>
Main.storyboard M

face SimpleLabelData : NSObject

B Assets.xcassets
LaunchScreen.storyboard M

Info.pilst
» Supporting Flles
h SimpleLabelData.h A
m SimpleLabelData.m A

¥ [Products

MyFirstApp.app

D@D

Label

Figure 7-8. Your newly created file in the workspace window

Writing the Implementation File

The SimplelLabelData.h file now defines the properties, class methods, and instance methods of your
new class. Let’s move on to the implementation file, SimpleLabelData.m, which looks quite empty, as in
Figure 7-9. Fill out the implementation file just like Figure 7-2.

139

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

B R Q o @ = | < & simpleLabels SimpleLabels | m SimpleLabelData.m | No Selection 4 >
v & SimpleLabels M " Quick Help

i R ? // SimpleLabelData.m
¥ [SimpleLabels i SimpleLabels

I AppDelegate.h i

e // Created by M. R. Fisher on 8/14/16.

m AppDelegate.m // Copyright © 2016 MyCompany. ALl rights reserved.

h ViewControfier.h "

m ViewController.m ¥ #import “SimpleLabelData.h”

Mestorybosns ginplesentation SispleLabelData

Assets xcassets

pend
LaunchScreen.storyboard

Info.plist
> Supporting Files
h SimpleLabeiData.h A
» [Products

Figure 7-9. The SimpleLabelData implementation file template

DO @O

Label

Note Xcode is intelligent enough to highlight issues in the interface or implementation file as you type (or
soon after you stop typing). Issues can be warnings or errors and are represented by a yellow or red highlight,
respectively. After filling out the interface and implementation files, there should not be any errors or warnings.

If they are, carefully look at Figures 7-1 and 7-2.

Next, you need to update the storyboard so you can move SimpleLabelData to some new labels. You're

going to be adding two new labels and then hook them up to your new class.

Updating the User Interface

To start off, click the Main. storyboard file; the screen should now look like Figure 7-10. This file is the main

iPhone screen.

140

one »
B R B €
v B MyFirstapp M
¥ [MyFirstApp
h AppDelegate.h
m AppDelegate.m
h ViewController.h M

m ViewController.m M
BN Assels.xcassets
LaunchScreen.storyboard M
Info.plist
» 1 Supporting Files

h SimpleLabelData.h A
m SimpleLabelData.m A
¥ [Products

i MyFirstApp.app

iy MyFirstApp | [iPhone 6

B wyFirstapp

v [7] view Controller Scene

View Controller
Top Layout Guide
Bottom Layout Guide
View
B Name
L Name Label
L |Label

@ First Responder

[E Exit

Storyboard Entry Point

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

MyFirstApp | Bulld MyFirstApp: Succeeded | 7/3/16 at 12:08 AM

Main.storyboard

My..po | [l Ma_ard) [Ma_se) | [Vie_ne Vie_lher

® B

Name

Label

dabel?

Drag a Label from the
Obiject Library and
drop it here.

View | L Label

(m] ARy b ARy

B B ol fai B

E0<ol000
7
DoemoDno
Qutlet Collections

ariteRpcagiers (o]

Referencing Outlets

Maw Ratesancing Cutiet

Referencing Outlet Collections
Haw Ruterancing Cutlet Colecticn (o]

bel

Figure 7-10. The main storyboard

1. Draganew Label view from the left list of objects (called the Object Library), as
shown in Figure 7-10.

2. Next, you need to resize the label to be the width of the view, as shown in
Figure 7-11. You want to resize the labels to be long enough to hold some of the
text you add. Any text added to the label will by default truncate with an ellipsis
(...) at the end of the text. Something also to note is that as you drag and get close
to the edge of the view, a blue line will be displayed. This is the default margin.
The label can go further (to the very edge of the display if you want), but leaving
the margin is a little more aesthetically pleasing than text that would end right at

the edge of the phone’s display.

141

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ece » u

BRAA©EC @

v B MyFirstApp
¥ [0 MyFirstApp
h AppDelegate.h
m AppDelegate.m
b ViewController.h
m ViewController.m
B Main.storyboard
0 Assets.xcassets
LaunchScreen.storyboard
Info.plist
» [Supporting Files
¥ I Products
iy MyFirstApp.app

A\ MyFirstApp | [IPhone &

B < B myFirstapp

¥ [1] view Controller Scene
v () View Controlier
Top Layout Guide
Battom Layout Guide
v | View
B Name
L Name Label
L Label
& First Responder
[exit

* Storyboard Entry Point

Figure 7-11. Resizing the second label

My_pp

B Ma.ord) B Ma.se) | [Viene

N/

MyFirstApp | Build MyFirstApp: Succeeded

Main.storyboard

T/3M6 at 12:08 AM =

Vie...ller View | L Label

Label

@ < 00

Dem$ie

® B

Teat Plain

Name

Label

Label

- Label
| Color W Default
Font System 17.0

Lines

nigrmer: = = = m IR
=

Behavior B Enabled

Baselng

whny oAy

| Line Breaks

Drag

Autoshrink

Highighted
Shadow

Shadew Offset

Highlighted

Align Baselines
Truncate Tail

Fixed Font Size

Tighten Letter Spacing

E— Oefault

0 Default
0

«oE Doo

Horizontal Vertical

Label

B B ol s B E

3. Lastly, add the third label to the view, as shown in Figure 7-12, and resize it just
like the previous label. All three labels should now be the same width (less the
side margins). The spacing between the labels isn’t critical, and what is done in
the figures is just one way of spacing out the labels. They could even be stacked
on top of each other, which would make for one messy view! (Don’t do that.)

142

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ece » A MyFirstApp) [iPhone 6 MyFirstApp | Build MyFirstApp: Succeeded | 7/3/16 at 12:08 AM = O S0 00
Main.storyboard
BRAA:- o G H | £ B wmyFirstapp My...pp Ma..ard Ma.se) | [vie..ne Vie...ller View | L Label Dem <0 e
v B MyFirstpp M v [view Controller Scene Labal
" - |31 N
¥ I MyFistApp v () View Controlier | 9 = | Text Piain B
h AppDelegate.h Top Layout Guide - Label
m AppDelegate.m Battom Layout Guide Color WEEE Default B
h ViewControlier.h M ¥ View
2 ¢ System 17.0 -
m ViewController.m ™ B Name Name Font Sys
ame
B Main.storyboard L Name Label sgrment = = = m B
Assets.xcassols L Labed Unes 1
L Label
LaunchScreen.storyboard M i Label Behavior) Enabled
&) First Responder i
Info.plist B ext Highlighted
¥ [Supporting Files Storyboard Entry Point Label Baseline Align Baselines
¥ [Products Line Breaks Truncate Tail B
A, MyFustApp.app C o o
abel # g Autosheiek Fined Font Size B
Tighten Letter Spacing
Mighlighted IS Default B
Shadow 1 Default B
Shadow Offset 02 1.2
Horizontal WVertical
2]
Label
= q|||S [m} whAny rAny B R oflal B =

Figure 7-12. Adding a third and final label

4. Repeat adding and sizing a Label object next to the existing Frequency and Band
labels. It’s OK to leave the default text of the labels set to “Label” for now.

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these interface elements to the
variables in your program. As you saw in Chapter 6, you do this by connecting the user interface objects with
the objects in your program.

1. Let’s start by adding two more variables that represent the two new labels added.
The original MyFirstApp already had a nameLabel variable that represented the
first label. You're going to change its name to firstLabel. But before you do that,
you need to unhook the Name Label item on the storyboard with the nameLabel
variable in the code. To do this, select the Name Label item on the storyboard
and then choose the Connections Inspector tab on the right, as shown in
Figure 7-13.

143

http://dx.doi.org/10.1007/978-1-4842-1904-1_6

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ea8® > =&

BARAACEDB®
|'w B myFirstapp
¥ [MyFirstApp
h AppDelegate.h
m AppDelogate.m
h ViewController.h
m ViewController.m
; + Main.storyboard
[0 Assets xcassets
- LaunchScreen.storyboard
Info.plist
* [Supporting Files
h SimpleLaboiData.h
m Simplelabeilata.m
¥ [Products
iy MyFirstApp app

MyFirstApp | i} iPhone 6

M

App | Build My pp: 7736 a1 12:08 AM
Main storyboard
B < & wmyFirstapp M_pp Mard)« M.se)) [viine Vi_ller
¥ [7] view Controlier Scene
¥ [} View Controller
Top Layout Guide a
Bottom Layout Guide
v View
B Name
L
L Label Name
L Label
@ First Responder :-Label
[exit ;-
* Storyboard Entry Point
Label
Label
Select either the Name Label
in the view controller sceen
or the Label on the stroyboard. >
They do the exact same thing.
=) | (] whAny nAny

Figure 7-13. Viewing the connection of the nameLabel variable

=

View | L Name Label

BE il =

Second, select the
Connections Inspector
tab and then click on the (X)
highlighted above.

D O0O@O

Label

2. Clicking the X in Figure 7-13 will delete the connection between the storyboard
and the variable. Even though you are just renaming the variable, the storyboard
knows it as nameLabel and not the new name you are going to use.

3. Next, go into the ViewController.h file and change the variable nameLabel to
firstlabel, as shown in Figure 7-14.

ViewController.h
MyFirstApp

Created by M. R. Fisher on 7/1/16.
Copyright © 2016 MyCompany. All rights reserved.

#import <UIKit/UIKit.h>

DOmNOME W -
-~
.

DU R ® M

2

@end

@interface ViewController :

- (IBAction)showName: (id)sender;

UIViewController

@property (nonatomic) IBOutlet UILabel *firstLabel;
@property (nonatomic) IBOutlet UILabel xsecondLabel;
@property (nonatomic) IBOutlet UILabel *thirdLabel;

Figure 7-14. Viewing the connection of the nameLabel variable

144

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

4. Now it’s time to connect the variables that you've just defined in the
ViewController.h file to the three labels in the storyboard. Start by going back to

the Main.storyboard to select the first label, as shown in Figure 7-15. Also make
sure that the Connections Inspector is selected.

|| < & MyFirstApp My..ep) B Ma..ard) [Ma..se)) [Vie..ne Vie...ller View) L Label D ea ¢ 0 6

¥ [7] view Controller Scene Outlet Collections

gestureRecognizers
i View Controller - E} Referencing Outlets
) L] =
Top Layout Guide 1 New Referencing Outlet
Satktom Layout Gukie ==} || Referencing Outlet Collections
v View New Referencing Outlet Collection Q
B Name
| L
L Label J Name
L Label "
) First Responder| Label
[Exit Make sure that the
Storyboard Entrly Point Labiel Connections II‘ISDE‘CtOr
apel :
is selected.
Label
Select either label first.
DO @O

Label

2 fil 0 wAny nAny HI = o] ha] | B =

Figure 7-15. Preparing the connection

5. Once the first label is selected, drag a line from the New Referencing Outlet in
the Referencing Outlets section and then drop it on the View Controller object
(represented by the small yellow square at the top of the view), as shown in
Figure 7-16. Once you drop it, a small menu will display asking what variable

to connect the label to. For this example, you're going to select firstLabel, as
shown in Figure 7-17.

145

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

B9 < > | B myFirstapp

¥ [Z] View Controller Scene

¥ [View Controlier
Top Layout Guide
Bottom Layout Guide

My..pp | B Ma..ard | [l Ma..se)) [vie.ne | () Vie..ller |

View Controller

View | L Label

bDem v Qo

| ‘Outlet Collections

gestureRecognizers (@)

| Referencing Outlets

New Referencing Outiet

Referencing Outlet Collections
¥ View Drop Mew Referencing Outlet Collection QO
B Mame
[Lobe
L Label Name
L Label
@ First Responder g_abe| g Drag
Exit 0
— Storyboard Entry Point
Label
Label
00O e O
Vi W=
Ly L Q\\ ('::é\
I- =, (f_“\ ==
= “Wpwn SE |
©) B P Ll
@ Filter] wAny HAny B3 & ol laf | @ rn
Figure 7-16. Creating a connection
View Controller Outlet Collections
B peshm Rucogni e)
| tstabel Reterancing Outits
iLabel |- New il 9 Outlet
thirdLabel ferencing Outlet Coll
view New Referencing Outlet Collection (@)
Name
o a
a.abel = g
Label
Label

Figure 7-17. Showing which possible variables you can connect to

146

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

6. Repeatsteps 4 and 5 for the second and third labels. Of course, the second label
will connect to the variable secondLabel and so on.

7. Next, you're going to add some new code that will create three SimpleLabelData
objects and then place that data into the labels. Start by selecting
ViewController.m, deleting some old code, and adding some new. Start by
deleting line 28 in the ViewController.m file. When you open the file, you'll notice
an error on line 28. This error is basically letting you know that the nameLabel is
not a valid variable name as you changed nameLabel to firstLabel. At this point,
it doesn’t matter; delete line 28 since you're going to rewrite this method.

v & MyFirstAp, M 1 4
S : ¥ 2/ ViewController.m
¥ [MyFirstApp 3/ MyFirstApp
AppDelegate.h) LA
b} AppDetegats // Created by M. R. Fisher on 7/1/16.
m AppDelegate.m & // Copyright © 2016 MyCompany. All rights reserved.
h ViewController.h M "
h ViewController.m M » #import "ViewController.h"
Main.storyboard M i

@interface ViewController ()
" Assets.xcassets

@end
LaunchScreen.storyboard M 4 e
Info.plist 15 @implementation ViewController
» Il Supporting Flies i - (void)viewdidLoad {
h SimpleLabelData.h A [super viewDidLoad];
1% // Do any additional setup after loading the view, typically from a nib.
m SimpleLabelData.m A 20 }

v Product
ot = (void)didReceiveMemoryWarning {

¥ MyFirstApp.app 73 [super didReceiveMemoryWarning];
2 // Dispose of any resources that can be recreated.

o ® 27 - (IBAction)showName: (id)sender {
Delete this line ——» 0 [self.nameLabel setText:@"My Name is Awesome!"];
20}

@end

Figure 7-18. Cleaning up the old code

8. You can add the new code now; refer to Figure 7-19. The first thing you need to
do is add an import of the SimpleLabelData class so that the ViewController
class knows about it. This is done on line 10.

147

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

// ViewController.m
// MyFirstApp

// Created by M. R. Fisher on 7/1/16.
// Copyright © 2016 MyCompany. All rights reserved.

#import "ViewController.h"
#import "SimpleLabelData.h"

@interface ViewController ()

@end

@implementation ViewController

= (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

- (IBAction)showName: (id)sender {

SimpleLabelData *one = [SimpleLabelData simplelLabelDataWithTitle:@"First Name:

andvalue:@"John"];

self.firstLabel.text = [one combinedString];

@end

Figure 7-19. Using the SimpleLabelData class

® 28

10.

11.

Now that the ViewController knows about the SimplelLabelData class, you
can use it in the showName: method. Lines 29 and 30 define a SimpleLabelData
variable called simply one. Also, the class method you defined in Figure 7-2
(line 13) is called to create a new instance of the SimpleLabelData class. The
object (or instance) is then stored in the one variable.

Line 31 calls the combinedString instance method, which combines the title and
value and returns it as a new NSString. That new string is stored directly into the
self.firstlabel.text property. This property sets the text of the label so you
can then see it in the view.

Repeat steps 9 and 10 for the remaining two labels. You can put your own
values in or use what is in the example. Figure 7-20 shows the completed
ViewController.mimplementation that sets all three labels.

- (IBAction)showName: (id)sender {

SimpleLabelData *one = [SimpleLabelData simpleLabelDataWithTitle:@"First Name"
andValue:@"John"];
self.firstLabel.text = [one combinedStringl;

SimpleLabelData »two = [SimpleLabelData simpleLabelDataWithTitle:@"Last Name"
andvalue:@"Snow"];
self.secondLabel.text = [two combinedStringl;

SimpleLabelData *three = [SimplelLabelData simpleLabelDataWithTitle:@"Age"
andValue:@"Unknown"] ;
self.thirdLabel.text = [three combinedString];

Figure 7-20. The filled-out method

148

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

12. Now, you can run our app and see what happens! Click the Build and Run icon
(P) atthe top left of the Xcode window, and you should see something like

Figure 7-21.

Carrier = 9:52 PM -

Name «—— Tap the button
Label
Label

Label

Figure 7-21. Running the newly updated app

149

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Carrier ¥ 9:54 PM -

Name

First Name: John

Last Name: Snow

Age: Unknown

Figure 7-22. Click the button!

Now you have a running app that uses a new class (SimpleLabelData) and stores that data into a label
on the screen. While it doesn’t seem like much, this is how a lot of applications start: very simple and then
improved upon. Don’t be afraid to make changes!

Accessing the Xcode Documentation

We cannot emphasize enough the wealth of information provided in the Xcode Developer Documentation
dialog. When a new project is created or an existing project opened, Xcode will have a Help menu, as shown
in Figure 7-23.

150

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Search |

Documentation and API Reference 30

Xcode Overview
Release Notes
What's New in Xcode

Quick Help for Selected Item ~3?
Search Documentation for Selected Text ~"\(3§/

Figure 7-23. The Xcode Help menu

Once you open the Help documentation, you can use the search window to look up any of the classes
you've used in this chapter, including the NSString class documentation, as shown in Figure 7-24.

@0® < > [J = o-Nssuing [us
¥ NSString .
¥ Overview NSStnng
¥ String Objects Inherits from: NSObject
Understanding Characters Conforms to: NSObject, NSMutableCopying, NSSecureCoding, NSCopying
Interpreting UTF-16-Encoded Data Framework: Foundation in iOS 2.0 and later. More related ltems
¥ Subclassing Motes
Methods to Override The NSString class and its mutable subclass, NSMutableString, provide an extensive set of APIs for
Alternatives to Subclassing

working with strings, including methods for comparing, searching, and modifying strings. NSString objects

¥ Tasks
v Gioati T . are used extensively throughout Foundation and other Cocoa frameworks, serving as the basis for all
reating and Initializing Strings e - 2
string textual and linguistic functionality on the platform.
init

NsString is “toll-free bridged" with its Core Foundation counterpart, CFStringRef. See "Toll-Free Bridging”

initwithBytes:length:encoding:
initwit for more information.

initwithCharacters:length:
initWithC

initWithString: String Objects

initWithCString:encoding:

initWithUTF8String: An NSString object encodes a Unicode-compliant text string, represented as a sequence of UTF-16 code

IRARNEonmat: units. All lengths, character indexes, and ranges are expressed in terms of 16-bit platform-endian values,

il g with index values starting at o.

initwithFormat:locale:

f"f‘:f‘:;:’""“”::'“““”m"“‘ An NsString object can be initialized from or written to a C buffer, an NSData object, or the contents of an
tWitl ta: :

:‘ﬁwm.‘;ml_ i NSURL. It can also be encoded and decoded to and from ASCII, UTF-8, UTF-16, UTF-32, or any other

localizedStringWithFormat: string encoding represented by NSSt ringEncoding.

stringWithCharacters:length: m

Figure 7-24. The developer documentation window

There are several different things to discover about the NSString class shown in Figure 7-24. Go through
the documentation and the various companion guides that Apple provides. This will give you a more
thorough understanding of the various classes and the various methods supported by them.

Summary

Here we are at the end of another chapter. Once again, congratulate yourself for being able to single-
handedly stuff your brain with a lot of information! Here is a summary of what was covered in this chapter:

e Objective-C classes review

e Interface files
151

CHAPTER 7 © OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

e Instance variables
e (Class methods

e Instance methods

Implementation files

e Defining the method’s interface in the interface file and putting code to that
interface in the implementation file

e Limitations of using class methods versus instance methods

e Initializing the class and making use of the instance variables

Making use of your new SimplelLabelData object
e Building an iPhone app that uses your new object
e Connecting interface classes to instance variables

e Connecting user interface events to methods in your class

Exercises

152

Change the code that creates your SimplelLabelData class and make the title and/or
value much longer than what can appear on the screen. What happens?

Modify the SimpleLabelData class to have a new method, similar to combinedString,
that will do something different with the two strings instead of combining the two
strings with a :.

Change the combinedString method to take an NSString* parameter that will be the
separator between the two strings (instead of a hard-coded colon).

Change the text color or font of a label using the Attributes Inspector.

Clean up the interface a little by making sure that the user doesn’t see the text
“Label” when the iPhone application first starts.

e You can either change this in the storyboard (note, you can’t completely clear
the label or it may be difficult to find on the screen) or write some new code that

will set the . text property of the label to @"".

CHAPTER 8

Programming Basics in
Objective-C

Objective-C is an elegant language. It mixes the efficiency of the C language with the object-oriented goodness

of Smalltalk. This combination was introduced in the mid-1980s and is still powering the fantastic applications

behind the iPhone, iPad, and Mac OS X. How does a language that is more than 20 years old stay relevant and

useful after all that time? Well, some of its success is because the two languages that make up Objective-C are

well-tested and well-designed. Another reason is less obvious; the various frameworks available for iOS and

Mac OS X make developing full-featured applications much easier. These frameworks benefit from the fact

that they have been around a long time, which equates to stability and high functionality. Lastly, Objective-C

is highly dynamic. While we won't be focusing on that particular feature in this chapter, the dynamic nature

of Objective-C provides a flexibility not found in many compiled languages. With all of these great features,

Objective-C and the corresponding frameworks provide an excellent palette from which to create a masterpiece!
This chapter will introduce some of the more common concepts of Objective-C, such as properties and

collection classes. This chapter will also show how properties and instance variables are used from within

Xcode when dealing with user interface elements. This sounds like a lot to accomplish, but Objective-C,

the Foundation framework, and the Xcode tool provide a wealth of objects and methods and a way to build

applications with ease.

Collections

Understanding collections is a fundamental part of learning Objective-C. In fact, collection objects are
fundamental constructs of nearly every modern object-oriented language library—sometimes they are referred
to as containers. Simply put, a collection is a type of class that can hold and manage other objects. The whole
purpose of a collection is that it provides a common way to store and retrieve a collection of objects efficiently.

There are several different types of collections. While they all fulfill the same purpose of being able to
hold other objects, they differ mostly in the way objects are retrieved. Here are the most common collections
used in Objective-C:

NSSet

NSArray

e NSDictionary

e NSMutableSet

e NSMutableArray

e NSMutableDictionary

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 153
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_8

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Notice that, among the three collection classes listed, there is one that contains the word Mutable. A
mutable (versus nonmutable) class allows the collection object to change the order and add or remove
items. Collection class names without the word Mutable are nonmutable, meaning that the contents of
the collection cannot change. This means that items cannot be added or removed at all. Because of this
restriction, a nonmutable collection, like NSArray, for example, must be initialized with all of its values at
once or initialized to point to an existing array.

Another thing to stress is that the collections store only objects and not simple values. So, it’s not
possible to store the integer value of 10, but it’s possible to store a number object that represents 10. The
notation for this is @(10); this creates an NSNumber object that represents the number 10.

Using NSSet

The NSSet class is used to store an unordered list of objects. Unordered means exactly that—the objects are
stored in the set without regard to order. The advantage of the NSSet class is performance; it’s the fastest
collection class available. Use NSSet when it is necessary to store a collection of objects and the order in
which they are stored or retrieved is not crucial.

Here is a typical NSSet initialization method:

NSSet *mySet = [NSSet setWithObjects:@"String 1", @"String 2", @"Whatever", nil];
Asyou can see, the set is initialized with a list of objects, in this case a list of strings. The last object

must be nil to indicate the end of the list of objects. Also, the example uses strings, but an NSSet can be
comprised of any object or even different types of objects, including other collections!

Tip All collection classes have the ability to store and manage any type of object at once. However, in
typical cases, most programmers tend to store a single type of object in any one particular collection class to
make the code less complicated.

To go after data in the NSSet, a few typical methods of accessing the elements within an NSSet are used.
One method, as shown in Listing 8-1, is to use what is referred to as a fast enumerator and retrieve each
object one by one. Note that the fast enumeration (in lines 3-5) works on all collection classes.
Listing 8-1. Tterating Through an NSSet via an Enumerator

NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];

1

2

3 for (id value in mySet) {
4 NSLog(@"%@", value);
5}

Note On line 3, the class of the value is id. Recall that an id is a generic type that represents any
Objective-C class. The reason that id is used is that the value that you store in the NSSet can be of any
type. For example, if the NSSet were to contain a class called Animal and another class called Zoo, the code
would fail because you don’t have a class that is both a Zoo and an Animal type. On the other hand, if the
NSSet always had the same class, you could substitute that class for the id on line 3.

154

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Another common method of accessing an NSSet, especially when programming for an iOS device
capturing touches, is to use the code in Listing 8-2.

Listing 8-2. Selecting Any of the Objects in the NSSet Collection

1 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
2
3 NSString *value = [mySet anyObject];

Line 3 calls the method anyObject. This does exactly as it says; it returns any object from the set. The
object returned is determined at the set’s convenience, so there can be no guarantee that the first item
will be returned. Of course, using the anyObject method assumes that any object will do. As previously
mentioned, when dealing with touches on an iOS device, sometimes all that’s necessary is to know that at
least one finger has touched the screen. Each touch to the screen is stored as an entry in the NSSet, one for
each finger. Using anyObject will return any one of the touches.

There are many other ways to actually get objects from an NSSet—far too many to cover in this chapter.!
However, there is one particular method that involves the next collection: the NSArray class.

Using NSArray

The NSArray class is like any other collection, in that it allows the programmer to manage a group of objects.
The NSArray differs from the NSSet in that the NSArray allows an object to be retrieved by its index into the
array. An index is the numeric position that an object would occupy in the NSArray. For example, if there are
three elements in the NSArray, the objects can be referenced by an index from 0 to 2. As with most things in
the C and Objective-C languages, an index starts at 0.

With the NSArray (and NSDictionary covered next), there is a nice feature called a collection literal. A
collection literal allows a collection to be represented by simple syntax. For an NSArray, this syntax is simply
@ ..., ...].Whileit's still possible to initialize the NSArray class the older, original way, it's best to use
the new collection literal instead.

Listing 8-3. Creating an NSArray Object

1 // 0ld out-of-fasion way of doing things.

2 NSArray *oldStyle = [NSArray arrayWithObjects: @"Zero", @"One", @"Two", nil];
3 // New way is much better:

4 NSArray *newStyle = @[@”Zero”, @”0One”, @”Two”];
5

6 // 0ld way of accessing an element of an NSArray
7 NSLog([newStyle objectAtIndex:0]);

8 NSLog([newStyle objectAtIndex:1]);

9 NSLog([newStyle objectAtIndex:2]);

10

11 // New way of accessing an element of an NSArray
12 NSLog(newStyle[0]);

13 NSLog(newStyle[1]);

14 NSLog(newStyle[2]);

'http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/
NSSet_Class/Reference/Reference.html

155

http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSSet_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSSet_Class/Reference/Reference.html

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

As you can see, objects within the NSArray can be retrieved via the index. The index starts at 0 and
can’t exceed the size of the array—1. You can find the size of the array by accessing the count property of the
NSArray object.

int entries = myArray.count;

Another thing that is important to know about an array is that it stores the objects added to the array in the
order they were added. This is what’s called an ordered collection. So, using the example in Listing 8-3, the
NSArray object at the index of 1 (that is, newStyle[1]) will always be the value of @"One". Collection classes that
don’t specifically mention that they are an ordered collection are unordered collections. The NSDictionary in
the next section is an example.

Before you look at the NSDictionary, it’s important to take a quick look at how you can use the NSArray
collection literal to initialize an NSSet. While this method isn’t necessary, it makes the code a little cleaner.

Listing 8-4. Using an NSArray to Create an NSSet

1 // Not using an NSArray Collection Literal

2 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
3

4 // Using an NSArray Collection Literal

5 NSSet *anotherSet = [NSSet setWithArray:@[@"One", @"Two", @"Three"]];
NSDictionary

...and how the NSDictionary is different than the NSArray

The NSDictionary class is also a useful type of collection class. It allows the storage of objects, just like
the NSSet and NSArray, but the NSDictionary is different in that it allows a key to be associated with any
value. For example, an NSDictionary could be created that stores a list of Animal objects. A list of animals
could be stored in an NSArray, but it’s accessed by index. Somehow you would, for example, have to know
that the Monkey object is stored in index 2.

With an NSDictionary, you are able to store the monkey with some key that is more descriptive.
Because of this, an entry in an NSDictionary consists of a key and a value. You can “look up” the value by
simply providing a key. While this seems like just a different way of simply using an index into an array, it’s
actually something completely different as the key used can be any object that makes sense, like a string. So,
you could store your Monkey object in a dictionary with the key of Monkey instead of an index into an array. If
the monkey were in the array, the program would have to go through each element of the array searching for
the monkey, and the problem becomes even more complicated if there are tens of thousands of animals.

An NSDictionary Example

Just as with the NSArray, there is a way to define (and access) an NSDictionary using a collection literal.
Remember that a dictionary entry consists of a key and a value and is represented as shown in Listing 8-5.

Listing 8-5. Defining an NSDictionary

@{@"Key" . @"Value",
@"Key2": @"Value2"};

156

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

It’s a little different from the NSArray literal. It uses curly braces, { }, instead of square brackets. Also,
the key is separated from the value by a colon, :. Again, this is much simpler and cleaner than previous older
ways. Because of this, we're only going to show how to use a dictionary with a literal.

NSDictionary Access, Order, and Uniqueness

An NSDictionary object is an unordered collection object, which means that the order in which the
elements are stored are not guaranteed to be in the order represented in code. This is generally not a
problem since the program will look something up by the key’s name, like Monkey. It doesn’t matter what
order Monkey appears in the dictionary, just that it can be found or not.

How is an entry looked for in an NSDictionary? It’s resembles how elements are accessed in an
NSArray. This similarity makes it easy to remember.

Listing 8-6. Accessing an Element of a Dictionary

// Create a simple dictionary:

NSDictionary *animalCountInZoo = @{@"Monkeys": @(10),
@"Birds": @(1199),
@"Fish": @(356)};

// Retrieving a value in the dictionary

1
2
3
4
5
6
7 NSLog(@"%@", animalCountInZoo[@"Birds"]);
8

9

// Prints the value of 1199

Using the Mutable Container Classes

Up to this point, we've only discussed collection objects that are initialized once and can never change.
While there are definitely places this is useful, what’s even more useful is a collection class that can be
modified. Each of the collection classes has a mutable version—we’ve talked only about the nonmutable
classes. The classes are fundamentally the same except that elements can be added and removed from the
mutable versions.

NSMutableSet

This can be initialized the same as the NSSet or can be initialized without any values and then values added.
Consider the code in Listing 8-7.
Listing 8-7. Adding Objects to an NSMutableSet

NSMutableSet *mySet = [NSMutableSet new];

[mySet addObject:@"One"];

1

2

3

4 [mySet addObject:@"Two"];

5 [mySet addObject:@"Three"];
6

7

8

9

for (id val in mySet) {

NSLog(@"%@", val);
}

157

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

The nice thing about any of the mutable classes is that elements can be added and removed
programmatically instead of having to declare the class with all the values at once. All objects in a set can be
removed with the following line:

[mySet removeAllObjects];
A specific object can also be removed as long as you have a reference to that object, as shown in Listing 8-8.

Listing 8-8. Removing a Specific Object in an NSMutableSet

10 NSString *testString = @"Zero";

11

12 [mySet addObject: testString];

13 [mySet addObject: testString]; // Just a test

14

15 for (id val in mySet) {

16 NSLog(@"%@", val);

17 }

18

19 [mySet removeObject:testString];
20

21 for (id val in mySet) {

22 NSLog(@"%@", val);

23}

In Listing 8-8, line 19 will remove the string "Zero". You can do this only because you have a reference
to the object already in the testString variable. This brings up another good point: the NSSet and
NSMutableSet will store only unique objects. Two objects that are the same (that is, identical) cannot be
added more than once. For example, line 13 effectively replaces the first testString added on line 12.

Hint Adding the same object means that the pointer to that object is the same. There is no comparison to
see whether the value of the object being added is identical to what’s already in the set—it’s the pointers that
are checked. Pointers are discussed in depth in Chapter 11.

NSMutableArray

As with the NSMutableSet, the NSMutableArray is similar to its parent, the NSArray. In fact, an object can
be added to the NSMutableArray object exactly as it’s done in the NSMutableSet, which is by using the
addObject: method. However, unlike the NSMutableSet, the NSMutableArray can also insert elements into
the array—the NSMutableSet can add only objects to the set. Take a look at Listing 8-9.

Listing 8-9. Adding and Inserting Values into an NSMutableArray

NSMutableArray *myArray = [NSMutableArray new];

[myArray addObject:@"One"];
[myArray addObject:@"Two"];
[myArray addObject:@"Three"];

AUV~ W N

158

http://dx.doi.org/10.1007/978-1-4842-1904-1_11

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

7 for (id val in myArray) {

8 NSLog(@"%@", val);

9 1}

10

11 [myArray insertObject:@"One and a Half" atIndex:1];
12

13 for (id val in myArray) {

14 NSLog(@"%@", val);

15 }

In Listing 8-9 a new array is created similarly to the NSMutableSet. However, on line 11 a new element
is being inserted into the array at position 1. Remember, position 0 is the first element of the array. The
contents of the array after the insert would look like this:

Index Value

0 One

1 One and a Half
2 Two

3 Three

Line 11 inserted a new element—the remaining elements were moved up in the array to make room.
This is critical to know, especially if there is a code assumption that a particular index into an array will have
a specific value.

With the NSMutableArray, there are several ways to remove an object. The following are a few of the
more commonly used methods:

e removeAllObjects: This method does exactly as advertised. It removes all objects
from a given NSMutableArray.

e removelastObject: This method removes the last object at the end of the array. The
array size is reduced by one.

e removeObjectAtIndex: (NSUInteger)index: This method removes an object at a
given index. The value is from 0 to the length of the array—1.

NSMutableDictionary

By this point, it must be pretty obvious to you how the mutable versions of the collection classes work,
and the NSMutableDictionary is no different. The NSMutableDictionary provides all the capabilities of
NSDictionary, but, of course, elements can be added and removed, as shown in Listing 8-10.

Listing 8-10. Adding Objects to an NSMutableDictionary
NSMutableDictionary *myDict = [NSMutableDictionary new];
myDict[@"1"] = @"Number One";

myDict[@"2"] = @"Number Two";
myDict[@"3"] = @"Number Three";

~No U WN R

for (id val in myDict) {

159

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

8 NSLog(@"%@", val);

9 }

10

11 myDict[@"1.5"] = @"One and a Half";
12

13 for (id val in myDict) {

14 NSLog(@"%@", val);

15 }

In the previous example, the object @"One and a Half"is being added to the dictionary. It’s different
from an array since an object can’t be inserted into the dictionary at a specific position, as can be done with
an NSMutableArray.

Creating the BookStore Application

Let’s start by creating the base application project. You start by opening Xcode and creating a new project
starting with the Single-View template. In this project, you will create a few simple objects for what is to
become a bookstore application: a Book object and the Bookstore object itself. You'll visit instance variables
again and see how to get and set the value of one during this project. Lastly, you'll put your bookstore objects
to use, and you'll learn how to make use of objects once you've created them.

Fire up Xcode, and start by creating a new project, as shown in Figure 8-1.

Choose a template for your new project:

ios
Application - soo 1 e
Framework & Library
cocos2d Master-Detail Page-Based Tabbed
Application Application Application
watchOS

Application E—%

Framework & Library
tvOS Game

Application
Framework & Library
0SS X
Application
Framework & Library
System Plug-in !) o
Single View Application

Other
This template provides a starting point for an application that uses a single view. It provides

a view controller to manage the view, and a storyboard or nib file that contains the view.

Cancel [Net

Figure 8-1. Creating the initial project
160

1. Click the Next button, and name the project MyBookstore, as shown in Figure 8-2.
The company name is required—any company name, real or otherwise, can be
used. The example uses com.mycompany, which is perfectly fine. Make sure the
device family is iPhone and that the option Use Automatic Reference Counting is

checked.

Choose options for your new project:

Product Name:
Organization Name:

Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

MyBookstore
MyCompany

com.mycompany

com.mycompany.MyBookstore
Objective-C

iPhone

BE

Use Core Data
Include Unit Tests
Include Ul Tests

Previous

Figure 8-2. Selecting the product (application) name and options

2. Once everything is filled out, click the Next button. Xcode will prompt you to
specify a place to save the project. Anywhere you can remember is fine—the

desktop is a good place too.

3. Once you decide on a location, click the Create button to create the new project.

This will create the boilerplate bookstore project, as shown in Figure 8-3.

" Next

161

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

[] [] [3 n #y MyBoockstone | [l iPhone B Plus MyBockstore: Ready | Today at 5:54 PM

MyBookstore. xcodepro]
BRAACEDE # < B MyBookstore
o Gerersl Copabilties ResowceTags Info BuldSetings Buld Phases
v MyBook:
Lome ey PROJECT
h AppDelegate.h = ¥ identity
" i B myBookstore
h ViewController.h TARGETS Bundie Identifier com.mycompany MyBeokstore
iy
m ViewCoritroller.m i MyBookstore o
Main storyboard
N Assets scassets Build 1
LaunchScreen storyboard
Info.plist Team Mome B
» [0 Supporting Files
* [Products ¥ Deployment Info
Deployment Target]
Devices [Phone B
Main Interfsce Main B
Device Orientation [Portrait
Upside Dawn
{8 Landscape Left
@ Landscage Right
Status Bar Style Detault B
Hede status bar
Reguires full screen
¥ App lcons and Launch Images
App icons Source Applcon Be
Launch images Source Use Asset Catalog
Launch Screen File LaunchScreen (-]
— T 571
- (L) I
=+ | (=) (O] L
File... '

Add Files to “MyBookstore”...

Figure 8-3. The source listing of the boilerplate project

Name MyBookstore

Location Absolute

MyBookstore scodepa)

Full Pach [Users/Strides/Desktop)
MyBookst

one/
MyBookstone. scotepre O
Project Document
Project Format Xcode 3.2-compatiie |5
Organiration MyCompary

Class Prafie
Text Settings
indent Using Spaces B
Widths 4z 4
Tsb ingers
Wrap lines
Source Centrol
Repository -
DO@LC

4. Click the plus (+) sign in the lower left of the screen in the Navigation pane to
add a new object to the project. Choose File and then Cocoa Touch under the
iOS section on the left and then choose Objective-C Class on the right, as shown
in Figure 8-4. It’s also possible to right-click in the Navigation area and then
select the New File menu option. There is no difference between this approach

and clicking the plus sign—do whatever feels more natural.

162

Choose a template for your new file:

i0S

User Interface
Core Data
Apple Watch
Resource
Other
watchOS

Source
User Interface
Core Data
Resource
Other

tvOS
Source
User Interface

Core Data

DaenLirsas

Cocoa Touch
Class

Swift File

Cr+

C++ File

Ul Test Case
Class

m

Objective-C File

AN

Metal File

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Unit Test Case Playground
Class
h C
Header File C File

Cocoa Touch Class

A Cocoa Touch class.

Cancel

Figure 8-4. Creating a new Cocoa Touch class

5. Here you're choosing a plain Cocoa Touch class, which will create a new empty
Objective-C object that you're going to use for your Book class. After selecting
this, click the Next button.

6. Xcode will now prompt for the object name and which main object it’s going to
be a subclass of. Choose the name Book and make Book a subclass of NSObject, as

shown in Figure 8-5, and then click the Next button.

163

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Choose options for your new file:

Class: Bnold
Subclass of: NSObject ﬁ
Language: Objective-C a

Cancel Previous "~ Next

Figure 8-5. Givingyour new class a name and parent class

7. Finally, Xcode will ask to which folder it should save the new class files. To
keep things simple, just add the file to the MyBookstore subfolder, as shown in
Figure 8-6. This is where all the other class files for the project are stored.

Note The Book and Bookstore classes are what are referred to as data model classes. Data model
classes are just used to store information and have nothing to do with the interface of the app.

164

m | < s Bo =
Devices Name
[analytical

[_] The-Prancing-Pony =
(©) Remote Disc
Favorites
Recents
2} strider
y"}é: Applications
=] Desktop
M Documents

] Development

Group

MyBookstore

Assets.xcassets
Base.lproj

2 MyBookstore

Targets A. MyBookstore

New Folder Options

Figure 8-6. Choosing the place to save your new class files

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

<>

Date Modified

Today, 5:53 PM
Today, 5:53 PM

Cancel

8. Double-click the MyBookstore folder and then click the Create button. You'll see
the main edit window for Xcode and your new class files, Book.m and Book. h, in

the Navigation pane, as shown in Figure 8-7.

Create

165

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

@] [3 S My..ore | i} Phone Bs Plus MyBookstore: Ready | Today at 812 PM
Book_h
BRa » B 8| < & MyBookstore MyBookstore | 1 Book.h | No Selection
¥ & MyBookstore M "
- /f Book.h
¥ [MyBookstore // MyBookstore
h AppDelegate.h /"

/f Created by M. R, Fisher on 8/1/16.
m AppDelegate.m // Copyright © 2016 MyCompany. ALl rights reserved.
h ViewController.h /"
m ViewController.m #import <Foundation/Foundation.h>
Kinl morylso @interface Book : NSObject
Assets xcassets
send
LaunchScreen.storyboard
Info.plist
> Supporting Files
[
m Book.m
h Bookstore.h

> » >

m Bookstore.m

» [Products

Figure 8-7. Viewing your new class

D ®
Identity and Type

Name Book.h

Type Default - C Header B
Location Relative to Group E
Book.h -
Full Path [Users/Strider/Desktop/
MyBookstore/MyBookstore/
Baook.h o
On Demand Resource Tags
Target Membarship
Ay MyBookstore
Text Settings
Text Encoding Unicode (UTF-8) E

Line Endings Defoutt - S X | Unix (LF) [
Indent Using Spaces E

DO®0O

9. Repeat these steps and create a second class called Bookstore. This will create
aBookstore.mfile and a Bookstore.h file. You'll be using this class later in this

chapter. For now, you'll concentrate on the Book class.

10. Click the Book.h file and let’s start defining your new class!

Introducing Instance Variables

The class is simply called Book and is a subclass of NSObject. True, you have a class, but it doesn'’t store
anything at this point. For this class to be useful, it needs to be able to hold some information, which is done
with instance variables. When an object is used, it has to be instantiated. Once the object is instantiated, it
has access to its instance variables. These variables are available to the object as long as the object stays in
scope. As you know from Chapter 7, scope defines the context in which an object exists. In some cases, an
object’s scope may be the life of the program. In other cases, the scope might be just a function or method. It
all depends on where the object is declared and how it’s used. Scope will be discussed more later. For now,

let’s add some instance variables to your Book class to make it more useful.

Listing 8-11. Adding Properties to the Book.h File

1 //

2 // Book.h

3 // MyBookstore
4 //

166

http://dx.doi.org/10.1007/978-1-4842-1904-1_7

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

5 // C(reated by M. R. Fisher on 8/1/16.

6 // Copyright © 2016 MyCompany. All rights reserved.

7 /1

8 #import <Foundation/Foundation.h>

9 @interface Book : NSObject

10 @property (nonatomic, strong) NSString *title;

11 @property (nonatomic, strong) NSString *author;

12 @property (nonatomic, strong) NSString *bookDescription;
13 @end

This is the same Book object from before, but now, there are three new instance variables placed inside the
brackets, lines 10-12. These are all NSString objects, which means that they can hold text information for the Book
object. So, the Book object now has a place to store the title, the author, and the book’s description information.

Lines 10-12 may not look familiar. These properties are constructs in Objective-C uses to store data, in
this case NSStrings. Properties are available to the class only once it’s instantiated as an object. Instantiating
an object is the same as creating an object: Book *myBook = [Book new];.

Accessing Properties

Now that you have some properties, how can you use them? How are they accessed? As you learned in
previous chapters, Objective-C objects respond to messages. There are two ways to access these properties.

e One way is, of course, within the Book object.

e The second way is from outside of the object—that is, another part of the program
that uses the Book object.

If you are writing the code for a method within your Book object, accessing a property is quite simple.
For example, you could simply write the following:

self.title = @"Test Title";

The preceding line is written within the Book class. The variable self represents the instance of the class
(aka object). When accessed outside of the class instead of self, you use the variable that holds the object.

1 Book *theBook
2 theBook.title

[Book new];
@"Test Title";

This code pattern should look a little familiar. Line 1 creates a new Book object and stores it in the
variable theBook. Line 2 then uses the variable theBook to access the title property.

Note You may have noticed that the variables or properties take on a naming convention called camel case
(or CamelCase) that uses an uppercase letter to distinguish different words in a method, variable, or class name.
The text is suggestive of a camel, since the uppercase letters tend to form humps. It makes the label easier to
read. For example, stringWithContentsOfURL is much easier to read than stringwithcontentsofurl.

Once a property has been specified in both the interface and implementation files, using the properties
is straightforward and simple.

myBookObject.title = newTitle; // Setting the property to a value. In this case the newTitle
variable.

167

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Something important to note is that the object access is not within brackets ([...]). Accessing a
property does not require them. On the surface, the property seems just like a variable attached to the object.
Internally, it’s a little different. In fact, the compiler automatically creates two internal methods to manage
the property. One method is called the setter, and the other is the getter. Under most circumstances, it’s
not necessary to even have to deal with the getter or setter. But, sometimes it may be necessary to perform
something like validation on what the property is being set to.

Custom Getter and Setter

As mentioned, a property consists of two methods that are normally hidden. But, it’s possible to override the
default behavior of the getter or setter. If you haven’t guessed by now, a getter returns (or gets) a value from
the property. A setter stores (or sets) a value in the property. Here is an example of a setter and why it may
be necessary. As an example, in the custom setter, you are cutting off the title of a book if it’s more than 20
letters long.

Listing 8-12. A Custom Setter

1 - (void)setTitle:(NSString *)newTitle

2 A

3 if (newTitle.length > 20) {

4 _title = [newTitle substringToIndex:20];
5 } else {

6 _title = newTitle;

7 }

8 }

In Listing 8-12, you create a setter method that overrides the default one. A setter always starts with
the word set and then is followed by the property name with the first character capitalized. So, the method
setTitle: means that you are overriding the setter for the property title. Another thing to note is the
variable title. This is important to understand. The “real” property is internally stored in a variable named
the same as the property but with an underscore (_). You might be wondering why you simply don’t just
write self.title = newTitle onlines 4 and 6. If you remember, the setter is the internal method used to set
the property. Calling self.title will then call the custom setter. So, calling self.title will continue to call
the setter until the app crashes. Using _title avoids this problem.

168

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

1 Book *theBook = [Book new];
2 theBook.title = @"This is a really long book title.";

The previous code will call your own custom setter instead of the standard one. The same would be
true had you written your own getter method. So, given that new setter, when you set the theBook title
to something that long, the actual book title is shortened (line 4) to be only 20 characters long. So, the
following:

"This is a really long book title."
becomes this:
"This is a really lon"

Without using a custom setter, your app may end up with a book title that is longer than you want.

Finishing the MyBookstore Program

With the understanding of instance variables and properties, you are going to now venture forth to create the
actual bookstore program. The idea is simple enough—create a class called Bookstore that will be stocked
with a few Book objects.

When you first created the initial application, it was a plain single-view application. Choosing that
template creates just enough of what you want. The only problem is that you're going to redo the single-
view part. So, you're going to delete a few things from the MyBookstore project and then create the initial
storyboard. A storyboard is just a collection of views that your app will use. The storyboard allows for all the
views to be displayed in one big canvas.

You first need to clean up the template so you can build your app.

1. You first start the cleanup by deleting the ViewController.h and .mfiles. This is
done by highlighting them in the Project Navigator, as shown in Figure 8-8, and
then pressing the Delete key.

169

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

BRQAC=ED B
v & MyBookstore M|
¥ | MyBookstore
h AppDelegate.h
m AppDelegate.m
m ViewController.h
+ Main.storyboard

W Assets.xcassets
+ LaunchScreen.storyboard

Info.plist
» Supporting Files
h Book.h
m Book.m
h Bookstore.h
m Bookstore.m
P Products

> » > >

+[® ~ OH|

Figure 8-8. Deleting the old ViewController files

170

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

2. Once the Delete key is pressed, Xcode will put up a message that asks if the files
should be moved to the trash or if you just want to remove their references. In
this case, it’s OK to click the Move to Trash button since you really don’t want
these files anymore, as shown in Figure 8-9.

= Do you want to move the 2 selected items to the Trash, or only
i remove the references to them?

Cancel Move to Trash

Figure 8-9. Prompt to move to trash

3. Next, you want to change the Main.storyboard file. A storyboard is basically
a collection of views that your app consists of. In this case, you're going to
delete the single view that was created by the Single View template used when
the project was first created. So, select the Main.storyboard file in the Project
Navigator, as shown in Figure 8-10. Once you've selected this, you will see the

blank View Controller.
tore) I IPhone € tyBook Ready
v & MyBookstore M 7] view Controlier Scene
v MyBookstore
b AppDelegate.h
n AppDelegate.m D B
Main.storyboard M \ -
Assets xcassets =
LaunchScreen.storyboard Tﬁp ht‘l’e
Intopiist and press Delete.
> Supporting Files
h Book.h A
n Book.m A
b Bookstore.h A
n Bookstore.m A
L3 Products
= = O Any hAny 4B s

Figure 8-10. The selected Main.storyboard file
171

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

4. From here, tap View Controller Scene and press the Delete key, as shown in
Figure 8-10. Now you'll have a blank Main.storyboard from which you can begin
your app. Click the Show/Hide Utilities Pane button so you can add a new view
control, as shown in Figure 8-11.

® ® ’ S MyBookstore | [l iPhone 6 MyBookstore: Ready | Today at 2202 PM F B s | — |
Main storyboard
B s A E # | < & MyBookstore MyBoakstore) [l Main.storyboard | [l) Main.storyboard (Base) | No Selection @@Ll @

v B MyBookstore M

¥ [MyBookstore /

AppDelegate.h = LAt

= AppDelegete.n Show/Hide the
Main.storyboard M Utilities Pane
Assets xcassets
LaunchSereen storyboard
Info.plist

> Supporting Files

Boakh

m Book.m

Bookstore.h

> » > »

m Bookstore.m

» [Products

Label

= = [m} Any nAny BB o bal =

Figure 8-11. A clean slate and the Utilities pane displayed

5. Next, you're going to add a new controller scene with what is called a Navigation
Controller. A Navigation Controller allows the user to navigate from one view
to another. Just click and drag the Navigation Controller view object from the
Utilities pane to the empty storyboard canvas, as shown in Figure 8-12. While
you drag and drop, the little icon with an arrow will expand to two views; one is
the base Navigation Controller, and the second one is an empty View Controller.
It can be placed anywhere on the storyboard window (which is the one with the
words Any Any at the bottom).

172

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

® ® > &y MyBookstore | [iPhone 6 MyBookstore: Ready | Today at 2:22 PM 3B 4 i maEn
Main_storyboard
PR Q - H| < [B wain B main (Base) | No Selection DR ¥ 0 @
v B MyBookstore M
v MyBookstore
AppDelegate.h
m AppDelegate.m
Main_storyboard ™M

Assets xcassets
LaunchScreen. storyboard
Info.plist

> Supporting Files

b Book.h
m Book.m
b Bookstore.h

> »

m Bookstore.m
* Products <

Drag and
drop this.

Label

= .‘ .ﬂ Any nAny £ E.h:ll}ai.- =
Figure 8-12. A clean slate and the Utilities pane displayed

6. This step isn’t necessary, but it simplifies things because it makes the views in
your storyboard fit on the screen. To do this, simply highlight the Navigation
Controller scene and then the other items in the Utilities pane, as shown in
Figure 8-13. Again, the purpose of this is just to shrink the views so that they
appear on the screen completely (and in the figures). If you have a display where
the larger views can be viewed completely, then you can ignore this step.

Important: Make sure that the Is Initial View Controller check box is selected.

173

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

B < & MyBookstore My..ore) [l Ma..ard) [Ma..se)) [B] Navigation Controller Scene | (€ Navigation Controller €

» [Root View Controller...

¥ (£ Navigation Controller
Navigation Bar
@ First Responder

& exit Click this first.

Relationship “root vi...

=) Filt 0

Figure 8-13. (Optional) Shrinking the views

Select the Attributes Inspector.

B 2=

Then choose iPhone 4-inch.

Make sure this

» D @ A @
Wzﬂ®

Size {_IPhone 4-inch

itus Bar Inferred
Top Bar Inferred

Bottom Bar Inferred

Mavigation Controller
Bar Visibiity @) Shows Navigation Bar
Shows Toolbar
Hide Bars | On Swipe
On Tap
When Keyboard Appears
‘When Vertically Compact

View Controller
Title
1 Is Initial View Controlier
yout B3 Adjust Scroll View Insets
Hide Bottom Bar on Push
B Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges @] Under Top Bars
& Under Bottom Bars

is checked. T
- - _— - PRI -
bOe@o
Label
wAny HAny BB ol ha B E

7. Next, click the Root View Controller scene, which will then switch over to that
view, as shown in Figure 8-14. This is the view where you will be starting all your
work. You now have something called a Root View Controller, which is the first
screen that will show up in your app. Initially, this View Controller is completely
set up as the default, meaning that it’s not to any of your code. In the next section
you will create a new View Controller class and associate it with this new view.

174

{ & MyBookstore My..ore) [l Ma.ard) [} Ma_se)

]

v [Navigation Controller...
¥ (£) Navigation Controller
Navigation Bar
T First Responder
[E Exit

Relationship "root vi...

= 0

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

I Root View Controller Scene

Qo =

Root View Controller

Prototype Cells

Figure 8-14. (Optional) Shrinking the views

Creating the Initial View

Root View Controller ¢

>

B ol taf | W

DY 0e
Simulated Metrics
Size Inferred
Orientation Inferred
Status Bar Inferred

Top Bar Inferred

(o] ol of o] o)

Bottom Bar Inferred

Table View Controller
Selection [Clear on Appearance

Refreshing Disabled

View Controller
Title
Is Initial View Controller
Layout B Adjust Scroll View Insets
Hide Bottom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges [Under Top Bars
Under Bottom Bars
Under Opaque Bars

Transition Style Cover Vertical H
Presentation Full Screen B
Defines Context
} @I
Label

The first view you will be creating is the view that will contain your list of books. This is a view called a Table
View, and it displays rows of information in a single column. You have your view in the storyboard, but you
now need to create your controller class. The controller class is responsible for taking information, in this
case the list of books, and placing it into the Table View.

First, you need to create the BookstoreTableViewController class. Do this by highlighting the
MyBookstore group in the Project Navigator and then clicking the + button to add a new file, as shown in
Figure 8-15. Then, select Cocoa Touch Class, as shown in Figure 8-16, and click Next.

175

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

B2 QAC = B

v & MyBookstore M

¥ B MyBookstore
h AppDelegate.h
m AppDelegate.m
* Main.storyboard M
Assets.xcassets
+ LaunchScreen.storyboard

1 Info.plist
| Supporting Files
h Book.h A
m Book.m A
Bookstore.h A
Bookstore.m A+
> Products

Click here first.

Then here.

+ (@ O
File...
New Playground...

Add Files to "MyBookstore”..

Figure 8-15. Adding a new file

176

Choose a template for your new file:
i0s
Source @ T
User Interface
| Ul Test Case
Core Data Class
Apple Watch
Resource

Other 3 m
watchOS Swift File Objective-C File

Source
User Interface

Core Data C+ Ny

Resource
Other
tvOS

Source Cocoa Touch Class
User Interface A Cocoa Touch class.

C++ File Metal File

Core Data

Darnoren

Cancel

Figure 8-16. Selecting Cocoa Touch Class

&

Unit Test Case
Class

h

Header File

CHAPTER 8

Playground

C

C File

PROGRAMMING BASICS IN OBJECTIVE-C

Next, Xcode will prompt you for a file to create. Type MainViewController as the class name, with this
being a subclass of UITableViewController, as shown in Figure 8-17. From here, click Next. Xcode will then
ask you where to save the file. Just click Create from here.

177

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Choose options for your new file:

Class: MainViewControlled
Subclass of: UlTableViewController a
Also create XIB file

Language: Objective-C

©

Cancel Previous Next

Figure 8-17. Creating the MainViewController class

Now that the new file has been created, the Xcode screen should look something like Figure 8-18.
You can ignore the warnings. By default, Xcode adds these warnings because these methods need to be
completed or things won’t work.

Note View Controller classes are common and are used to control the flow of information from the data
model to the actual view. It’s also responsible for handling any view-specific actions, like a user selecting a row
in your Table View. It’s important to keep the data model separate from the View Controller only because it’s a
better way of partitioning programs.

178

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

ene » B A MyBookstore) i) iPhone 8 MyBookstore: Ready | Today at 4:23 PM 4 = o < O3
MainViewController.m +
B s C io® B« B m Mak m | No Selection <a>
v [MyBookst M R
& my s @ /) MainViewController.m
v MyBookstore 1/ MyBookstore
L
Delegate.h
b AppDsiagets 5 {f Created by M, R. Fisher on 8/2/16.
m AppDelegate.m & f/ Copyright © 2016 MyCompany. All rights reserved.
Main.storyboard A 7"
19 Assets xcassels 7 #import "MainViewController.h"
LaunchScreen.storyboard @interface MainViewController ()
Info.plist
» 1 Supparting Files e
h Book.h A @implesentation MainViewController
m Book.m A - (void)viewdidLoad {
b Bookstore h M [super viewDidLoad);
m Bockstore.m A /7 Uncomment the following line to preserve selection between presentations.
b MairViewController.h A ff self.clearsSelectionOnViewWillAppear = NO;
m MainViewController.m A 2 // Uncomment the following line to display an Edit button in the navigation bar for this view controller.
» Products " /f self.navigationItem. rightBarButtonItes = self.editButtonItem;

}
- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning] ;
// Dispose of any resources that can be recreated.

}
#pragma mark - Table view data source

- (NsInteger)numberOfSectionsInTableview: (UITableView =)tableView {

m"niﬂe Incomplete implementation, return the number of sections
return 8;

}

= (NSInteger)tableView: (UITableView =)tableView numberDfRowsInSection: (NSInteger)section {
#warning Incosplete implementation, return the nusber of rows

return 8;
}

wll o

Figure 8-18. The Xcode screen for the MainViewController class

There is a lot of commented-out code in this class because it’s a template. It will actually work but
doesn’t display anything. Before you continue, you need to first let your storyboard Root View Controller
know about this new class. This is done back on the storyboard. So, select the Main.storyboard file and
make sure that the Root View Controller scene is selected. You should see something like Figure 8-19.

179

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

ene p B A MyBookstore) [iPhone & MyBookstore: Ready | Today at 4:46 PM 4 E 9 Q0030
Main.storyboard eH
BRERAACEDE 8| < & wmyBookstore 1) Root View Contralier Scene) () Root View Controller < [> De@EdlIe
¥ & myBookstore M ¥ "l Root View Controller Scene Custom Class
¥ 3 Myonkston v () Root VielControlier Pt Wi el Class] - |
h AppDelegate.h v | | Table fiew Mokis B
m AppDelegate.m * Table View Cell =
Main.storyboard M € Root View Controlier - Identity
um Assetdfcassets @ First Resphnder Storyboard 10
LauncHscreen.storyboard B ex Rogt View Controller
TR B > Bl Hevigetion dentroter Sasra Restoration ID
R PETION QO Prototype Cells Use Storybeard 1D
» 129 Suppodfing Files
b Book.h A 5 User Defined Runtime Attributes
m Book.r] A Select th|5 Key Path Type Value
b Booksthre.h A+ second
m Bookstbre.m A . iT: h| icon
h MainVigwControllerh A ap t S Icon.
m MainVigwControlier.m A +
» 1 Products .
Labed
x
Ooject ID pem-fY-IVG

Select this first. " ok bcted-sucvws I}

Notes B 3K W W -] @ -

Label

= RIS _E| wAny ~Any BB o m_'::: =
Figure 8-19. Selecting the Root View Controller

Next, you can change the custom class to be the MainViewController class, as shown in Figure 8-20.
Now, your new class, MainViewController, is the controller for the Root View Controller. In the next
section, you can add the data model to your new View Controller and get it ready to display something.

O @ 8 & B ©

Custom Class Hide

Class MainViewController ()

Module l
UlTableViewController

Figure 8-20. Setting your class as the custom class

The Bookstore Object

Before you can display anything on your new view, you will need to create the data model. In this case,
this is the Bookstore object. You've already built the Book object; you can find that back in the section that
introduced instance variables and properties.

180

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

The Bookstore object is a simple data model that is used to store a list of Book objects. Each Book object
contains a title, the author (or the authors), and a brief description. So, let’s take a look at the heart of the
Bookstore object. Note that the line numbers represent the line number from the source file Bookstore.min
the source code provided with this book.

Listing 8-13. Setting Up the Bookstore Object

13 -(instancetype)init

14

15 self = [super init];

16 if (self) {

17 self.books = [NSMutableArray new];

18

19 /7

20 // Add book requires an array of dictionaries. Each element of the
21 // array contains a dictionary that describes a book.
22 //

23 NSArray *arrayOfBooks = @[// This starts the array
24

25 //

26 // This is the first book as a dictionary.

27 // It's the first element in the array

28 //

29 @{@"title": @"Objective-C for Absolute Beginners",
30 @"author": @"Bennett, Fisher and Lees",

31 @"description": @"i0S Programming made easy."},
32

33 /7

34 // Now we're creating the second dictionary as

35 // the second element of the array.

36 /7

37 @{@"title": @"A Farewell To Arms",

38 @"author": @"Ernest Hemingway",

39 @"description”: @"The story of an affair between"
40 " an English nurse and an"

41 " American soldier on the Italian"
42 " front during World War I."}
43

44 15 7/ End of the array

45

46 [self addBooks:arrayOfBooks];

47 }

48

49 return self;

50 }

This method of the Bookstore.mfile is called when the Bookstore object is created. In this method, you
set up the data for the model; in this case, you are creating two books and storing them in an NSArray. Please
refer to the section “Collections” if you need a refresh.

Line 23 begins by creating the NSArray and using the collection literal syntax for an NSArray, which is @

[...];.TheNSArray contains two NSDictionary objects. These objects are created with the NSDictionary
collection literal syntax, whichis@{ ... };.Lines 29-31 represent the first book, and lines 37-42 are the
second book. Remember that an NSDictionary is stored as a key: value pair.

181

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Line 46 is the call to a method named addBooks : that accepts the newly created array. Let’s look at that
method now.

Listing 8-14. The addBooks: Method
57 - (void)addBooks:(NSArray *)bookArray

58 {

59 for (NSDictionary *bookInfo in bookArray) {
60 Book *newBook;

61

62 // Create a new book object.

63 newBook = [Book new];

64 newBook.title = bookInfo[@"title"];

65 newBook.author = bookInfo[@"author"];
66 newBook.info = bookInfo[@"description"];
67

68 [self.books addObject:newBook];

69 }

70 }

This method will go through the array that was created in the init method and create the number of
Book objects that are in the array. While you know that there are only two in the init method, the addBooks:
method is designed to take in as many as are in the array, making it flexible if more books are added in the
init method.

Line 59 is what is called a for-in fast enumerator in that it goes through the array one element at a time.
You know that the NSArray that is passed to this method is an array of dictionaries with each dictionary
containing information for a book.

for (NSDictionary *bookInfo in bookArray)

The first argument here is an NSDictionary object. This object is assigned the NSDictionary thatis in
each element of the array. So, the first element in the array will be the dictionary containing the “Objective-C
for Absolute Beginners” book information.

Now that you have the dictionary, lines 63-66 create the Book object and set the Book object’s properties
to the values from the dictionary.

Line 68 takes the newly created Book object and adds it to the self.books property, which is an
NSMutableArray. Remember a mutable object is one that can be modified. In this case, you're adding new
elements to what is now an empty array. Once the for/in enumerator has gone through all the elements in
the array, the addBooks : method finishes and returns. In this case, it returns to line 46 in the init method of
the Bookstore class.

The last part of this class is the method shown in Listing 8-15.

Listing 8-15. The addBooks: Method

52 - (NSInteger)numberOfBooks
53
54 return self.books.count;

55 }

This method simply returns the number of books stored in the self.books array.

182

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Using the Bookstore Object

Now that you have a view set up, you can start adding in your data model. As mentioned earlier, the data
model manages your data, which is the bookstore and the books in that bookstore. Here you are adding
a property to hold the Bookstore object. The numbers to the side represent the line numbers that can be
found in the MainViewController.m file provided in the source code for this book.

Listing 8-16. Setting Up the Bookstore Object

9 #import "MainViewController.h"

10 #import "Bookstore.h" // <-- This is our Bookstore object include file.
11

12 @interface MainViewController ()

13 @property (nonatomic, strong) Bookstore *theBookstore;

14 @end

This snippet of code is at the top of the MainViewContoller.mfile. Line 10 imports the information for
your Bookstore class. That allows MainViewController to use the Bookstore class. If it’s not included, then
Xcode will flag line 13 in error. Speaking of line 13, this line is where you are creating a property that will hold
the Bookstore object.

Listing 8-17. Setting Up the Bookstore Object
18 - (void)viewDidLoad {

19 [super viewDidLoad];

20 self.theBookstore = [Bookstore new];

21 self.title = @"My Bookstore"; // This is the title of our main view.
22}

Here is the viewDidLoad method. This method is called whenever the view is starting up and loaded by
iOS. Line 20 creates a new Bookstore object and stores it in the property that you defined on line 13. After
this method is done, you're all set.

Listing 8-18. Returning the Number of Rows to Display
39 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section

40 {

41 //

42 // you want to return the number of books we have in the bookstore.
43 // you don't care about the section since there is only one!

44 /7

45 return self.theBookstore.number0OfBooks;

46 }

Another method that’s important to your Table View is to return the number of rows you have to
display. The method tableView:numberOfRowsInSection: is called by the Table View to get this number.
This number becomes more important in the following section.

183

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Preparing the Table View

One thing that you need to do is to set up the Table View in the storyboard. In this case, you're going to give
arow in the Table View an identifier. In the storyboard, the Table View has just a single row shown. This is a
template row that will be used for each row in the Table View. To help manage multiple rows, the Table View
uses this identifier, as shown in Figure 8-21.

< & MyBookstore M.e) B Md) B M) BIRe R..er Table View BookTitleRow | ¢ >

v [*] Root View Controller Scene SE‘| ect th | 5 SECOI"Id. Table View Cell
v () Root View Controller Style Custom K
= To0le View e & I identifier BookTitleRow I
' 4 l -
Content Vie Selection Default a
£1 ftoot View Control| Root View Controller Accessory None
@) First Responder Editing Acc. None e
=] Exit t 5
pIOtOtvpe Cells Focus Style Default H
» [Navigation Controller Sgene
Indentation 0~ 10 2
Level width
Indent While Editing
Select this first. Shows Re-order Controls
Set th|s f|e|d to Separator Default Insets H
BookTitleRow.
View
Mode Scale To Fill 2]
Semantic Unspecified B

Tag 1]

Interaction User Interaction Enabled
Multiple Touch

Alpha 1

<> IO

D O0eO

<

Label

= (] vAny hAny B R 1of taf | BB E

Figure 8-21. Setting up the Table View Row

This identifier, BookTitleRow, now needs to be added in the MainViewController class so that the Table
View knows what identifier to look for.

Listing 8-19. Reusing the Row and Getting a Book Title
48 - (UITableViewCell *)tableView:(UITableView *)tableView

49 cellForRowAtIndexPath: (NSIndexPath *)indexPath

50 {

51 //

52 // A UITableViewCell is a row in the UITableView. We want to display

53 // a book title in each row. This method is called for every book

54 // in the bookstore (see tableView:numberOfRowsInSection:). That method

184

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

55 // returns the number of rows that the UITableView should show - this
56 // is the number of books in the Bookstore object.

57 //

58 // We start by getting the cell from our Main.storyboard file. This is
59 // the UITableViewCell "Identifier" found in the Storyboard.

60 UITableViewCell *cell =

61 [tableView dequeueReusableCellWithIdentifier:@"BookTitleRow"];

62

63 //

64 // Get the book in the Bookstore. The indexPath.row is set to the row
65 // we are going to display.

66 Book *book = self.theBookstore.books[indexPath.row];

67

68 //

69 // Once we have the book, we want to show its title in the UITableViewCell.
70 // There is a titlelabel already built in to the UITableViewCell so we use
71 // that. The titlelabel has a text attribute we can set to an NSString.
72 cell.textLabel.text = book.title;

73

74 //

75 // Return the cell that has been setup for this row.

76 return cell;

77 '}

Lines 60-61 dequeue the cell. This is the way that the Table View manages and reuses rows. The
important part of this line is the BookTitleRow identifier being used. It’s important that the name that is use
here is the same as the one added to the Table View Row in the storyboard, as shown in Figure 8-21.

Line 66 gets a Book object from the Bookstore object stored in the self.theBookstore property. The
Bookstore object has a property named books that represents the NSArray of Book objects that were created
when you loaded your Table View. If you look back at Listing 8-15, you can see that the Table View knows
the number of rows to display based upon the number of books in your Bookstore object. This count
applies directly here. In the method from Listing 8-16, the NSIndexPath object will contain a row number.
This row number will be from 0 to self.theBookstore.numberOfBooks-1 (refer to Listing 8-15). This makes
indexPath.row a direct correlation between a row in the Table View and a row in the Bookstore object.

Line 72 sets the title of the cell (which is a row in a Table View) to the title of the book.

The Book Detail View

Now that you have the list of books in the Table View complete, it’s time to go to the next step and create the
Detail View. This is a view that displays more information about the book when the user taps it.
The first step is to add a new view into the storyboard.

185

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

B« ﬁ MyBookstore

¥] Root View Controller...

¥ _ Root Vie

> Tabl \‘

< Root
@ First Res

[E] Exit

» [Navigation|Controller...

w Controlier
Tew

ponder

Select this

fir

st.

iew Contro...

B ' B 9 root view Controller Scene Root View Controller € > OheéEa o 40 @

Custom Class

Class MainViewController o n

| Module B
@ B I
! { Identity
—
Storyboard ID
w Controller Restoration ID
Use Storyboard ID
User Defined Runtime Attributes
Key Path Type Value
+
Document
Label
X8
Object ID pem-jY-IVG
Lock Inherited - (Nothing)
Notes E === [JEF -
Then
0D 0O E O
drag and drop e
this. <
Label |
(] whAny hAny BB ol ha i @

Figure 8-22. Adding in the details view

Once the View Controller is dropped onto the storyboard canvas, it will expand to a large square, and
that’s OK. Just drag the new View Controller around the canvas until things look like Figure 8-23.

186

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

88| < & MyBookstore M.re) B M.rd) B M..e)) I Rone Root View Controller Table View < 4 > D@ 90 &
v [} Root View Controller... Table View
¥ () Root View Controller Content Dynamic Prototypes B
¥ |_|Table View \ | Prototype Colls 12
) -
v BookTitleRow ® B
- — - | Style Plain
Content Vi... P— <
< Root View Contro... ' Separator Default 2]
@) First Responder Root View Controller 3 Default a
[=] Exit
T LT T T Separator Inset Default 2]
v [View Controller Scene totype Cells
" -~
w () view Controller Selection Single Selection

Top Layout Guide Editing Mo Selection During Editing [

L]
L]
1
i
i
Bottom Layout G.. ! Show Selection on Touch
1
1
1
L]
L

= View Index Row Li... (1]
&0) First Responder
B ot Text =1 Default &
e iatat Background [—J Default %]
» | Navigation Controller... Normal
— Defaul 2]
Tracking
Scroll View
Style Default i
Scroll indicat... @ Shows Horizontal Indicator
Shows Vertical Indicator
DO @O
.
Label
=) Filt [(m] wAny hAny B3 & tof taf | BB (@Fn

Figure 8-23. The newly added View Controller

You will notice that there is a new scene in the storyboard; it’s just called the View Controller scene, and
it represents the view you just added to the storyboard. The next step for you to do is to link this new View
Controller to be displayed whenever you click the Table View Row. You do this by Control-dragging from the
BookTitleRow to the blank area of the new View Controller, as shown in Figure 8-24. This means you press
and hold the Control key on the keyboard and click and drag the mouse from the BookTitleRow to anywhere
on the empty area of the new View Controller.

187

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

< & MyBookstore M.e) B M.d) B M) B Re R...er Table View BookTitleRow = ¢ [> Deém 0
¥ [Root View Controller... Table View Cell
v Root View Controller Style Custom H
v Table View . -
= B dentifier BookTitleRow
- - u
*mler\[Vi e s — Selection Default B
i < Root Vipw Contro...) Accessory None ke
- £ . -
E:j :.r:t Respbnder Root View Controller Editing Acc. None K
=) Exi
Focus Style Default
¥ [7] View Controjler Scene totype Cells
v View Condeoller Indentation 0js Wi~
% Level width
Top Lagout Guide 4 Indent While Editing
5_°"°" Layout G... Shows Re-order Controls
View
@ First Resphnder Separator Default insets B
@ Fi
[Exit
View
: ...To here.
» [Navigation Controller... \scda Scate To Fill 2
Semantic Unspecified
Control-drag 0:
Interaction User Interaction Enabled
from here... o
Alpha 1

Label

[LE€ [} wAny hAny BB ol haf |3 @
Figure 8-24. Connecting the Table View to the Detail View

Once the mouse reaches the new area, release it. What you're doing here is creating a link between the
Table View Row to the new View Controller, which will become your Book Details View. This link will make it
so that when the user taps one of the books from the main view, the details view will be shown.

Once the drop on the view occurs, a menu will be displayed. This menu contains, among other things,
items for what is called the selection segue, as shown in Figure 8-25. First, a segue is basically a transition
from one thing to another. In this case, it’s a transition from the main Root View Controller Scene to the View
Controller Scene.

188

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

£ & MyBookstore Moe) B M) B M) Bl Ree R..er Table View BookTitleRow < [> ODe@a 06
v I] Root View Controller... Table View Cell
v () Root View Controller Style Custom 2]
v e Vi
Table View ® B identifier BookTitleRow
Content Vi... — Default)
< Root View Contro... None B
E‘:I :i':t Reapondar Root View Controller Nane)
)] Exi
Default 2]
v [view Controller Scene totype Cells
ojls 103
v () View Controller . Level Width
Top Layout Guide 3 Indent While Editing
9_°"°'“ Layout G... Shows Re-order Controls
View
— Default Insets
%4 First Responder a
= Exit
» [0 Navigation Controller... Scale To Fill
Unspecified B
0:
Interaction [User Interaction Enabled
Multiple Touch
Alpha] e
DO @O
.
Label
= [m] «Any hAnY EE B o]l B =

Figure 8-25. The Selection Segue menu

The Selection Segue menu is the only thing you are concerned with here. It deals with transitioning
between two scenes because of a selection. In this case, it’s the user selecting a row in the Table View. Click
the Show option in the Selection Segue menu, and you will see something like Figure 8-26. You can move the
View Controller around so that it matches Figure 8-26 just to keep the lines straight, but this is completely

optional.

189

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

< & MyBookstore MyBookstore Main.storyboard
¥ [Root View Controller...
v () Root View Controller
v Table View
, { BookTitleRow
Content Vi... -

< Root View Contro... Controll
@) First Responder ontroller

=] Exit

Show segue to “View...

|

v [¥] View Controller Scene
v View Controller
Top Layout Guide
Bottom Layout G...
View
) First Responder

= Exit

» [Z] Navigation Controller...

[m} wAny ARy

Figure 8-26. The segue is now connecting the two views

Main.storyboard (Base)) No Selection De®m ¢ 0 c

O]

View Controll

Label

B2 1o | B E

At this point, you can run the application to see how things are shaping up. Just click the Run button
(or press Command-R) to build and run the application. It should look something like Figure 8-27. And by
tapping one of the titles, the view should transition from the main view to what is now a blank view.

190

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Carrier = 7:55 PM -— Carrier = 7:55 PM -_—
My Bookstore < My Bookstore
Objective-C for Absolute Beginners -

Tap this to transition.
A Farewell To Arms

Figure 8-27. A firstlook at your app

So, the next step is to make the details view actually do a little more work. First, you need to give the
segue you created earlier an identifier. Before you do this, make sure the application that is running is
stopped. To do this, just press the Stop icon in the Xcode window. Next, click the segue so the identifier can
be added.

Name the segue identifier BookDetailsSegue, as shown in Figure 8-28. The identifier can be anything,
but it’s best to make the segue identifier meaningful. While you have just one segue in this example, you can
create an app that has many segues. Naming is very important.

191

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

1| < & MyBookstore ~ 1 [F1 Root View Controller Scene Show segue to "View Controller” ODb® @a(e)d @
| v 1 Root View Controller Scene Storyboard Segue
» () Root View Controller \dentifier| BookDetailsSegue|
i 4
@ F"_ﬂ Respouder sontroller Vie Class o8
E Bt . Module n
Show segue to "View Controller (=)
| Kind Show (p.g. Push) 2]
» [view Controller Scene controller Animptes
» [Navigation Controller Scene Peok & Pop Previpw & Commit Segues

Then Add the Identifier.

Click the Segue
First. D0OGDo

Label

|[©Fir 0 ANy hAny B2 B lol jal| B @ Fie
Figure 8-28. Setting the segue identifier

Next, you need to create a new ViewController class that will be used for the details view, which is
the blank View Controller. To do this, click the + in the Project Navigator and add a new class to the project
named BookDetailViewController, as shown in Figure 8-29.

192

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Choose a template for your new file:

i0s

1
]
]
User Interface :
1
]

Cocoa Touch
Core Data S
AppleWatch |======== I
Resource
Other -
WatchOS Swift File

Choose options for your new file:

Class: | BookDetailViewController
Subclass of: UlViewController B
Also create XIB file

Language: Objective-C B

Cancel Previous m

Figure 8-29. Adding the BookDetailViewController class

Make sure that the new file is a subclass of UIViewController.

Next, you are going to add some Label views to your detail view so you can see more of the information
of the book. But, before you can do this, the detail View Controller needs to be set to use the new
BookDetailViewController class, as shown in Figure 8-30. Make sure that the Main.storyboard file is
selected in the Project Navigator.

193

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

B« & MyBookstore) | My..ore) [l Ma..ard) [l Ma...se)) [Book Detail W o0 0
» [Root View Controller Scene Select this second. [cions
cossll oo O
v n\n-_vmﬂ-rm o Module jBooKDetailViewController |
g First Redbonder ® o = GLKViewController
Exit I | | | MainViewController
¥ () View Coptroller - 1 | GLPreviewControlier |
Top Upyout Guide | UiCaliectionviewController
Bottam Layout Guide Restoration 1D T
View Use Storyboard ID
r B Scene I
User Defined Runtime Attributes
Key Path Type Value
Select this first. Choose _
g +
BookDetailViewController. [
Label
XN
% Object ID r67-2y-W@
Lock Inherited - (Nothing)
Notes I = = = —] & -
DOE@D
Label
Button nE] Text | | =
@ Filte [m] whAny b Any B B o] fad | 1B | @ Fine

Figure 8-30. Setting the BookDetailViewController

Now that you have the class assigned, you need to add some labels so that you can display the title,
authors, and description of the book.

To start this, drag and drop some Label views from the palette of controls to the Book Details View
Controller, as shown in Figure 8-31.

194

CHAPTER 8

PROGRAMMING BASICS IN OBJECTIVE-C

» [Root View Controller Scene

¥ [¥] Book Detail View Controller Scene
@ First Responder
= exit
v Book Detail View Controller
Top Layout Guide
Bottom Layout Guide
View

» [Z] Navigation Controller Scene

O o

Figure 8-31. Adding your first label

@
L
Label
Drag an
drop th
.-‘Anv rAﬂy {'.%1 =

Mode Scale To Fill
Semantic Unspecified

ol <)

Tag [+]
Interaction @ User Interaction Enabled
Multiple Touch
Alpha 1
Background [White Color
Tint EEEE Default

prawing B Opaque Hidden
Clears Graphics Context
Clip Subviews
Autoresize Subviews
Stretching 0 02
x ¥

1 1~
Width Height

suton f2)

o} tai | 18 | @ Fie

Expand the label’s size by dragging the “handles” so that it is roughly half the width of the view, as

shown in Figure 8-32.

g.abel

Figure 8-32. Expanding the label

o
EH— Drag This.

This will provide enough room for the titles of the fields. Repeat this process until your view looks like

Figure 8-33.

195

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

E

=

Label

Label

Label

Figure 8-33. Three labels

Next, change the titles of these labels to be Title, Author(s), and Description. To do this, click a label
and change the text, as shown in Figure 8-34.

196

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Label

Second,changethsﬂﬁhh_‘__““ | Pt 2
o | T Titie|

Color I

C_1]
Font System 17.0 @ -

Alignment =

L]

Lines 1

Behavior Enabled
Highlighted

oEo
1V
D
®
.
u]
ooo

Baseline Align Baselines

Line Breaks Truncate Tail

(O o])

Label Autoshrink Fixed Font Size

Tighten Letter Spacing
Highlighted HEEE Default
Label Shadow [— Default

Shadow Offset (1] -1
% F”.St C“Ck a Iabel Horizontal Vertical

Mode Left

Al ol o

Semantic Unspecified

0D 0 @ &8

(o])

Label

(] wAny hAny B3 12 o] Al | B2 @ Filter

Figure 8-34. Changing the label text

After changing all the labels, they should now contain all of the titles (Title, Author(s), and Description),
as shown in Figure 8-35.

197

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Title

Author(s)

Description

Figure 8-35. Changing the label text

Repeat the steps of creating and sizing labels and add them to the view so there are three more labels
that are sized as shown in Figure 8-36. You also want to expand the bottom label to be slightly larger, as
shown in Figure 8-37.

198

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Title
abel

ooo

Author(s)
Label

Description
Label

Figure 8-36. Adding the remaining labels

Description

a w] u]
dabel o
a] w]

Figure 8-37. Making the description label larger

Setting Up the Outlets

Now that the view is all set up, it needs to have real book data. It just has a bunch of placeholder

labels. To do this, you need to dive back into the code. Go into the Project Navigator and select the
BookDetailViewController.h file. You are going to add three properties that will hold the book details but
also show this detail information.

199

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-20. Adding in Outlets to Show the Information

1 //

2 // BookDetailViewController.h

3 // MyBookstore

4 7/

5 // Created by M. R. Fisher on 8/3/16.

6 // Copyright © 2016 MyCompany. All rights reserved.

7 /1

8

9 #import <UIKit/UIKit.h>

10

11 @interface BookDetailViewController : UIViewController
12 @property (nonatomic, weak) IBOutlet UILabel *bookTitle;
13 @property (nonatomic, weak) IBOutlet UILabel *bookAuthor;
14 @property (nonatomic, weak) IBOutlet UILabel *bookInfo;
15 @end

BookDetailViewController doesn’t contain much at this point, but you need to add something that
will link the actual book data with the labels that are shown on the screen. To do this, you are adding three
new properties, as shown in Listing 8-17’s lines 12-14.

These properties look almost like other properties that you have created except for two items: IBOutlet
and UILabel. Put simply, the IBOutlet lets Xcode know that this property is an outlet for an element on the
view. The UILabel is the class that represents a Label object; you're really only concerned with three labels
that you added to the Book Details View Controller.

Also, when looking at Xcode, there are three empty circles to the left of the property declarations, as
shown in Figure 8-38. These circles represent that these are items that can be hooked up to something on the
storyboard. Since they're empty, it means they haven’t been connected to anything. Let’s do that next.

@interface BookDetailViewController : UIViewController
@property (nonatomic, strong) IBOutlet UILabel xbookTitle;
@property (nonatomic, strong) IBOutlet UILabel xbookAuthor;
@property (nonatomic, strong) IBOutlet UILabel xbookInfo;

Figure 8-38. Empty outlet circles

From the Book Detail View Controller, Control-drag from the center icon (which represents the
BookDetailViewController class) to the first label, as shown in Figure 8-39. When dropped, the outlet menu
is displayed as shown in Figure 8-40. For the label under “Title,” choose the bookTitle outlet. Repeat this
same process for the other labels, choosing bookAuthor for the second label and bookInfo for the third label.

200

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Title
Label /
=
Author(s)
Label

Description

Label

Figure 8-39. Connecting up the first label

QOutlets
bookAuthor

bookinfo
bookTitle
view

Figure 8-40. Available outlets

Going back to the BookDetailViewController.h file, the connection circles should now be filled as
shown in Figure 8-41.

@interface BookDetailViewController : UIViewController
@property (nonatomic, strong) IBOutlet UILabel *bookTitle;
@property (nonatomic, strong) IBOutlet UILabel *bookAuthor;
@property (nonatomic, strong) IBOutlet UILabel *bookInfo;
5 (@end

P ® @
o

Figure 8-41. The outlets are now connected

201

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Plugging in the Book Details

Now that the outlets are all connected, you can add the necessary code that will put the book information
into the labels you added in the previous steps. To start, go to the Project Navigator and select the
MainViewController.m file.

You need to add the code that will determine which book the user selected and then store that into
the details view. To accomplish this, you add a method called prepareForSegue:. This method is called
whenever a segue is chosen.

Listing 8-21. Plugging in the Book Details

80 - (void)prepareForSegue: (UIStoryboardSegue *)segue sender:(id)sender
81 {

82 if ([segue.identifier isEqualToString:@"BookDetailsSegue"]) {

83 BookDetailViewController *detailViewController = segue.destinationViewController;
84 [detailViewController view];

85 NSIndexPath *selectedRow = [self.tableView indexPathForSelectedRow];
86

87 Book *selectedBook = self.theBookstore.books[selectedRow.row];

88

89 detailViewController.bookTitle.text = selectedBook.title;

90 detailViewController.bookAuthor.text = selectedBook.author;

91 detailViewController.bookInfo.text = selectedBook.info;

92

93 detailViewController.bookInfo.numberOfLines = 0;

94 }

95 }

The lines of importance are really lines 89-91. These lines put the fields from the Book object
to the labels on the details view via the outlets you created earlier. When you see the code of
detailViewController.bookTitle.text, the .text represents the property of the UILabel that you
need to set in order to see the value in the actual label on the view. You assign the label’s text property to
selectedBook.title, author, or info.

Line 93 is used to let the UILabel know that it can span multiple lines. This is necessary so that you can
see the information of a book that is long. Otherwise, the label will simply keep it to one line and not display
the remainder of the information.

So now, when the app is run, you should see Figure 8-42.

202

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Carrier 10:47 PM |

My Bookstore
Objective-C for Absolute Beginners

A Farewell To Arms

Figure 8-42. The main view

203

CHAPTER 8 © PROGRAMMING BASICS IN OBJECTIVE-C

Carrier ¥ 10:47 PM L]

< My Bookstore

Title
A Farewell To Arms

Author(s)
Ernest Hemingway

Description

The story of an affair between an
English nurse and an American
soldier on the ltalian front during
World War |.

Figure 8-43. A Farewell to Arms detail

Summary
You've finally reached the end of this chapter! Here is a summary of the things we covered:

e Understanding collection classes: Collection classes are a powerful set of classes
that come with the Foundation and allow you to store and retrieve information
efficiently.

e Using instance variables: Instance variables are variables that are defined in the
interface file of the class and are accessible once the class has been instantiated.

e Working with properties: Properties are short ways of creating getters and/or setters.
Getters and setters get or set the values of an instance variable.

e Looping with for...in: This feature offers a new way to iterate through an enumerated
list of items.

204

CHAPTER 8 = PROGRAMMING BASICS IN OBJECTIVE-C

Using a storyboard to build an interface: The storyboard is nothing more than a
collection of views that makes it easy to create an app.

A simple data model: Using the Collection classes you learned about, you used an
NSMutableArray to construct a Bookstore object and used it as a data source in your
bookstore program.

Connect data to the view: You connected your Book object’s data to the interface
fields using Xcode.

Exercises

Add more books to the bookstore using the original program as a guide.

Enhance the Book class so it can store another attribute—a price or ISBN number, for
example.

Modify BookDetailViewController so that the new fields are displayed. Remember
to connect an interface control to an outlet.

Change the Bookstore object so that a separate method is called to initialize the list
of Book objects (instead of putting them all in the init method).

There is another attribute of a UITableViewCell called the detailTextLabel. Try to
make use of this by setting its text property to something.

Using Xcode to modify the interface, play with changing the background color of the
DetailViewController.xib file.

For a tougher challenge:

Sort the books in the Bookstore object so they appear in ascending order on the
MasterDetailView.

205

CHAPTER 9

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will perform as you
program: comparing data. In our bookstore example, you may need to compare book titles if your clients are
looking for a specific book. You may also need to compare authors if your clients are interested in purchasing
books by a specific author. Comparing data is a common task performed by developers. Many of the loops
you learned about in the previous chapter will require you to compare data so that you know when your
code should stop looping.

Comparing data in programming is like using a scale. You have one value on one side and another value
on the other side. In the middle, you have an operator. The operator determines what kind of comparison is
being done. Examples of operators are “greater than,” “less than,” and “equal to.”

The values on either side of the scale are usually variables. You learned about the different types of
variables in Chapter 3. In general, the comparison functions for different variables will be slightly different.
Itis imperative that you become familiar with the functions and syntax to compare data, as this will form a
basis for your development.

For the purpose of this chapter, we will use an example of a bookstore application. This application
will allow users to log in to the application, search for books, and purchase them. We will try to relate the
different ways of comparing data to show how they would be used in this type of application.

Revisiting Boolean Logic

In a previous chapter in this book, we introduced Boolean logic. Because of its prevalence in programming,
we will revisit this subject in this chapter and go into more detail.

The most common comparison that you will program your application to perform is Boolean logic.
Boolean logic usually comes in the form of if then statements. Boolean logic can have only one of two
answers: yes or no. The following are some good examples of Boolean questions that you will use in your
applications:

e Is5larger than 3?
e Does “now” have more than five letters?
e Is6/1/2010 later than today?

Notice that there are only two possible correct answers to these questions: yes and no. If you are asking
a question that could have more than two answers, that question will need to be worded differently for
programming.

Each of these questions will be represented by an if then statement (for example, if 5 is greater than 3,
then print a message to the user). Each if statement is required to have some sort of relational operator. A
relational operator can be something like “is greater than” or “is equal to.”

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 207
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_9

http://dx.doi.org/10.1007/978-1-4842-1904-1_3

CHAPTER 9 © COMPARING DATA

To start using these types of questions in your programs, you will first need to become familiar with the
different relational operators available to you in the C and Objective-C languages. We will cover those first.
After that, we will look into how different variables can behave with these operators.

Using Relational Operators

Objective-C uses six standard relational operators. These are the standard algebraic operators with only one
real change: in the Objective-C language, as in most other programming languages, the “equal to” operator
is made by two equal signs (==). In Chapter 4, Table 4-7, we described the different operators available to
you as a developer.

Note A single equal sign (=) is used to assign a value to a variable. Two equal signs (==) are needed to
compare two values. For example, if(x=9) will assign the value of 9 to the variable x and return “yes” if 9 is
successfully assigned to x, which will be in most, if not all, of the cases. if(x==9) will actually do a comparison
to see if x equals 9.

Comparing Numbers

One of the difficulties developers have had in the past was dealing with different data types in comparisons.
Earlier in this book, we discussed the different types of variables. You may remember that 1 is an integer. If you
wanted to compare an integer with a float such as 1.2, this could cause some issues. Thankfully, Objective-C helps
with this. In Objective-C, you can compare any two numeric data types without having to typecast (typecasting

is still sometimes needed when dealing with other data types, and we cover this later in the chapter). This allows
you to write code without worrying about the numeric data types that need to be compared.

Note Typecasting is the conversion of a variable from one type to another.

In the bookstore application, you will need to compare numbers in many ways. For example, let’s say
that the bookstore offers a discount for people who spend more than $30 in a single transaction. You will
need to add the total amount the person is spending and then compare this to $30. If the amount spent is
larger than $30, you will need to calculate the discount. See the following example:

float totalSpent;
int discountThreshold;
int discountPercent;

discountThreshold = 30;
discountPercent = 0;
totalSpent = calculateTotalSpent();

if (totalSpent > discountThreshold) {
discountPercent = 10;
}

208

http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 9 © COMPARING DATA

Let’s walk through the code. First, you declare the variables (totalSpent, discountThreshold, and
discountPercent). As we discussed in Chapter 3, if the number can contain decimals, you should declare it
as a float rather than as an int. You know that discountThreshold and the discountPercent will not contain
decimals, so you can declare these as ints. In this example, let’s assume that you have a function called
calculateTotalSpent, which will calculate the total spent in this current order. You then simply check to see
whether the total spent is larger than the discount threshold; if it is, you set the discount percent. Also notice
that it was not necessary to tell the code to convert the data when comparing the different numeric data
types. As mentioned earlier, this is all handled by Objective-C.

Another action that requires the comparison of numbers is looping. As discussed in Chapter 4, looping
is a core action in development, and many loop types require some sort of comparison to determine when to
stop. Let’s take a look at a for loop.

int numberOfBooks;
number0fBooks = 50;

for (int y = 1; y <= numberOfBooks; y++) {

doSomething();
}

In this example, you iterate, or loop, through the total number of books that you have in the bookstore.
The for statement is where the interesting stuff starts to happen. Let’s break it down.
inty = 1;

This portion of the code is declaring y as an int and then assigning it a starting value of 1.
y <= numberOfBooks;

This portion is telling the computer to check to see whether the counting variable y is less than or equal
to the total number of books you have in the store. If y becomes larger than the number of books, the loop
will no longer run.

y++

This portion of code increases y by 1 every time the loop is run.

Creating an Example Xcode App
Now let’s create an Xcode application so that you can start comparing numeric data.

1. Launch Xcode. From Finder, go to the Applications folder. Drag Xcode to the
Dock, as you will be using it throughout the rest of this book. See Figure 9-1.

209

http://dx.doi.org/10.1007/978-1-4842-1904-1_3
http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 9 © COMPARING DATA

[BN " Applications
< =v Hi= m ol =y v Q Search
Favorites)'I
£2 Dropbox - O s ﬁ
51 Chapter 7 /
E All My Fil Steam Stickies System TextEdit
— Ll Preferences
¢ iCloud Drive
@) AirDrop &
#% Applications »
(X Desktop Time Machine Unclutter Utilities VLC
@ Documents
© Downloads [
Unclutter Files
[M rc1windows 71
Wunderlist Xcode Xcode Tools
Devices
Voo NN ——a
99 items, 144.32 GB available —

Figure 9-1. Launching Xcode

2. Click Create a New Xcode project to open a new window. On the left side of that
window, under iOS, select Application. Then select Single View Application on
the right side. Click Next.

Note The Single View Application template is the most generic and basic of the i0S application types.

210

CHAPTER 9 © COMPARING DATA

Choose a template for your new project:

i0s
Application
Framework & Library
watchOS
Application
Framework & Library
tvOS
Application
Framework & Library
0sX
Application
Framework & Library
System Plug-in

= 1

e00 X soe
Master-Detail Page-Based Single View Tabbed
Application Application Application Application
Game

Other . : s

Single View Application

This template provides a starting point for an application that uses a single view. It provides

a view controller to manage the view, and a storyboard or nib file that contains the view.
cancel o]

Figure 9-2. Creating a new project

3. On the next page, enter the name of your application. We used Comparison as
the name, but you can choose any name you like. This is also the window where
you will select which device you would like to target. Leave it as Universal for the
time being. See Figure 9-3.

211

CHAPTER 9 © COMPARING DATA

Choose options for your new project:

Product Name: Comparison
Organization Name: Innovativewarel

Organization Identifier: com.innovativeware

Bundie Identifier: com.innovativeware.Comparison

Language: Objective-C E

Devices: Universal @

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 9-3. Selecting the project type and name

Note Xcode projects, by default, are saved in the Documents Folder in your user home.

4, Click Next and choose a location to save your project. Once the new project
is created, you will see the standard Xcode window. Select the expand arrow
next to the Comparison folder to expand it. You will see several files including
AppDelegate.mand AppDelegate.h. The .hfile is a header file, and you will
not be changing anything in that file at this moment. For the purpose of these
examples, you are going to be focusing on the AppDelegate.mfile.

5. Click the AppDelegate.mfile and you will see the following code:

#import "AppDelegate.h"
@interface AppDelegate ()
@end
@implementation AppDelegate
- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)1launchOptions {
// Override point for customization after application launch.
return YES;

212

CHAPTER 9 © COMPARING DATA

6. At this point, the application will just launch and display a window. You are
going to add a little “Hello World” to our application. After the line // Override
point for customization after application launch., youneed to add the
following code:

NSLog(@"Hello World");

This line creates a new NSString with the contents "Hello World" and passes it to the NSLog function
that is used for debugging.
Let’s run the application to see how it works.

1. Click the Run button in the default toolbar.

2. TheiOS simulator will launch. This will just display a window. Back in Xcode, a
debug window will appear at the bottom of the screen, as shown in Figure 9-4. You
can always toggle this window by selecting View » Debug Area » Activate Console.

O @ [L /A Comparison) i iPhone 6s Plus
Deactivate breakpoints

=1 = [: | </ Comparison
2016-04-18 21:09:26.962 Comparison[3737:544150] Hello World

Figure 9-4. Debugger window

Most of the information in this window will mean very little to you. The most important line is the bold
section that shows the output of your application. The first part of the line shows the date, time, and name of
the application. The “Hello World” part was generated by the NSLog line that you added before.

1. Goback and open the AppDelegate.m file.

2. Goto the beginning of the line that begins with NSLog. This is the line that is
responsible for printing the “Hello World” section. You are going to comment
out this line by placing two forward slashes (//) in front of the line of code.
Commenting out code tells Xcode to ignore it when it builds and runs the
application. Code that is commented out will not run.

3. Once you comment out the line of code, you will no longer see the line in bold if
you run the program because the application is no longer outputting that text.

4. For the application to output the results of the comparisons, you will have to add
one line.

NSLog(@"The result is %@", (6>5 ? @"True" : @"False"));

Note The previous code (655 ? @"True" : @"False"); is called a ternary operation. It is essentially just a
simplified way of writing an if then statement.

213

CHAPTER 9 © COMPARING DATA

5. Place this line into your code. This line is telling your application to print out
“The result is” Then it will print “True” if 6 is greater than 5, or “False” if 5 is
greater than 6.

Because 6 is greater than 5, it will print out “True.”

You can change this line to test any of the examples you have put together thus far in this chapter, or any
of the examples you will see later.

Let’s try another example.

int 1 = 5;
int y = 6;
NSLog(@"The result is %@", (y>i ? @"True" : @"False"));

In this example, we created an integer and assigned its value to 5. We then created another variable
and assigned the value to 6. We then changed the NSLog example to compare the variables i and y instead of
using actual numbers. When you run this example, you will get the result shown in Figure 9-5.

@® ® > = /A Comparison) i§ iPhone 6s Plus

= =» [0| <7 Comparison
2016-04-18 21:13:41.829 Comparison[3932:550481] The result is True

Figure 9-5. NSLog output

You will now explore other kinds of comparisons, and then you will come back to the application and
test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to determine whether a
value is true or false. False is defined as 0 and true as non-zero. Here’s an example:

int j = 5;
if (3) 1

some_code();
}

The if statement will always evaluate to true because the variable j is not equal to zero. Because of
that, the program will run the some_code () method.
int j = 0;

if (3) {

some_code();
}

214

CHAPTER 9 © COMPARING DATA

If you change the value of j, the statement will evaluate to false, because j is now 0. This can be used
with BOOL and number variables.

int j = 0;

if (13) {
some_code();

}

Placing an exclamation point in front of a Boolean expression will change it to the opposite value
(a false becomes a true and a true becomes a false). This line now asks “if not j,” which, in this case,
is true because j is equal to 0. This is an example of using an integer to act as a Boolean variable. As we
discussed earlier, Objective-C also has variables called BOOL that have only two possible values: YES or NO.

Note Many programming languages use the terms TRUE and FALSE instead of YES and NO used by
Objective-C. When Objective-C was developed, the C language did not have true Boolean variables.

Let’s look at an example related to the bookstore. Say you have a frequent buyers club that entitles
all members to a 15 percent discount on all books they purchase. This is easy to check. You simply set the
variable clubMember to YES if they are a member and NO if they are not. The following code will apply the
discount only to club members:

int discountPercent;
BOOL clubMember;

clubMember = FALSE;

discountPercent = 0;

if (clubMember) {
discountPercent = 15;

}

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string is just an array of
characters. Objective-C has taken the development of the string even further and made it an object called
the NSString. Many more properties and methods are available when working with an object. Fortunately,
NSString has many methods for comparing data, which makes your job much easier.

While developing for the Mac, iPad, Apple TV, and iPhone, you will be able to use both NSStrings and
standard C strings. For the purposes of this book, you will be focusing on comparing the NSString objects.
If you have C type strings in your application, they will need to be converted to NSStrings in order to use the
code included in this book. Fortunately, this conversion is simple.

char *myCString;
NSString *myNSString;

myCString = "testing a string";
myNSString = [NSString stringWithUTF8String: myCString];

The first two lines are code you have seen before. They are your variable declarations. You are declaring
a standard C string called myCString and an NSString called myNSString. The third line is just a simple
initialization of your standard C string. You are assigning a value to it.

215

CHAPTER 9 © COMPARING DATA

The last line is where everything happens. You are assigning your NSString object to be equal to
creating a new NSString object, with the value coming from a UTF8String and passing it to the standard
C string you created. Once you have converted all of your standard C strings to NSStrings, you can take
advantage of the powerful comparison features provided by the class.

Let’s look at another example. This is a much easier and cleaner way to create an NSString. Here, you
will compare passwords to see whether you should allow a user to log in.

NSString *enteredPassword, *myPassword;

myPassword = @"duck";
enteredPassword = @"Duck"”;
BOOL continuelogin = NO;

if ([enteredPassword isEqualToString:myPassword]) {
continuelogin = YES;
}

The first line just declares two NSStrings. The next two lines initialize the strings. Remember, before you
use any objects, they need to be initialized. In your actual code, you will need to get the enteredPassword
string from the user. These lines use a shortcut. Notice the @ symbol before the C style string. The @ symbol
creates a new NSString from the C-style string that follows it.

The next line is the part of the code that actually does the work. You are sending a message to the
enteredPassword object asking it if it is equal to the myPassword string. The method always needs to
have an NSString passed to it. The example code will always be false, because of the capital D on the
enteredPassword versus the lowercase d on the myPassword.

Note If you need to compare two NSStrings, regardless of case, you would simply use the
caseInsensitiveCompare method instead of the isEqualToString.

There are many other different comparisons you might have to perform on strings. For example, you
may want to check the length of a certain string. This is easily done.

NSString *enteredPassword;
NSString *myPassword;
myPassword = @"duck";
enteredPassword = @"Duck"”;
BOOL continuelogin = NO;

if ([enteredPassword length] > 5) {
continuelogin = YES;
}

This code checks to see whether the entered password is longer than five characters.

There will be other times when you will have to search within a string for some data. Fortunately,
Objective-C makes this easy to do. NSString provides a function called range0OfString, which allows you to
search within a string for another string. The function range0fString takes only one argument, which is the
string for which you are searching.

NSString *searchTitle, *bookTitle;
searchTitle = @"Sea";

216

CHAPTER 9 © COMPARING DATA

bookTitle = @"2000 Leagues Under the Sea";

if ([bookTitle rangeOfString:searchTitle].location != NSNotFound) {
// Calling a method to add it to results
addToResults();

This code is similar to other examples you have examined. This example takes a search term and checks
to see whether the book title has that same search term in it. If it does, it adds the book to the results. This
can be adapted to allow users to search for specific terms in book titles, authors, or even descriptions.

Note All string searches are case sensitive by default. If you want to search inside of a string, regardless of
the case, you can change the preceding call from this:

[bookTitle rangeOfString:searchTitle]
1o the following:

[bookTitle rangeOfString:searchTitle options:NSCaseInsensitiveSearch]

For a complete listing of the methods supported by NSString, see the Apple documentation at
http://developer.apple.com/mac/library/documentation/cocoa/ reference/Foundation/Classes/
NSString Class/Reference/NSString.html.

Comparing Dates

Dates are a fairly complicated variable type in any language; unfortunately, depending on the type of
application you are writing, they are common. Objective-C previously used the NSCalendarDate class, but it
has been replaced with a more up-to-date NSDate. The NSDate has a lot of nice methods that make comparing
dates easy. We will focus on the compare function. The compare function returns an NSComparisonResult,
which has three possible values: NSOrderedSame, NSOrderedDescending, or NSOrderedAscending

NSDate *today = [NSDate date];

// Sale Date as of 10/15/2016

NSString *saleDateString = @"2016-10-15";

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat:@"yyyy-MM-dd"];

NSDate *saleDate = [dateFormatter dateFromString:saleDateString];

NSComparisonResult result;
BOOL saleStarted;

result = [today compare:saleDate];

if (result == NSOrderedAscending) {
// Sale Date is in the future
saleStarted = NO;

} else if (result == NSOrderedDescending) {
// Sale Date is in the past

217

http://developer.apple.com/mac/library/documentation/cocoa/

CHAPTER 9 © COMPARING DATA

saleStarted = YES;

} else {
// Sale Date and Today are the same
saleStarted = YES;

This may seem like a lot of work just to compare some dates. Let’s walk through the code and see
whether you can make sense of it.

NSDate *today = [NSDate date];

NSString *saleDateString = @"2016-10-15";

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat:@"yyyy-MM-dd"];

NSDate *saleDate = [dateFormatter dateFromString:saleDateString];

Here, you declare two different NSDate objects. The first one, named today, is initialized with the system
date or your computer or iPad date. The second one, named saleDate, is created from an NSDateFormatter
with a date sometime in the future. You will use this date to see whether this sale has begun. We will not go
into detail about the initialization of NSDates, but they can be initialized using the NSDateFormatter class
similar to what you saw previously.

Note In most programming languages, dates are dealt with in a specific pattern. They usually start out with
the four-digit year followed by a hyphen, then a two-digit month followed by a hyphen, then a two-digit day. If you
are using a data format with a time, this data is usually presented in a similar manner. Times are usually presented
with the hour, minute, and second, each separated by a colon. Objective-C also has time zone support. The -0700
tells Objective-C that the time is seven hours less than Greenwich Mean Time or Mountain Standard Time.

NSComparisonResult result;

The results of using the compare function of an NSDate object is an NSComparisonResult. You have to
declare an NSComparisonResult to capture the output from the compare function.

result = [today compare:saleDate];

This simple line runs the comparison of the two dates. It places the resulting NSComparisonResult into
the variable called result.

if(result == NSOrderedAscending) {
// Sale Date is in the future
saleStarted = NO;

} else if (result == NSOrderedDescending) {
// Sale Date is in the past
saleStarted = YES;

} else {
// Sale Date and Today are the same
saleStarted= YES;

218

CHAPTER 9 © COMPARING DATA

Now you need to find out what value is in the variable result. To accomplish this, you perform an if
statement that compares the result to the three different options for the NSComparisonResult. The first line
finds out if the sale date is greater than today’s date. This means that the sale date is in the future, and thus
the sale has not started. You then set the variable saleStarted to NO. The next line finds out whether the
sale date is less than today. If it is, then the sale has started and you set the saleStarted variable to YES.
The next line just says else. This captures all other options. You know, though, that the only other option is
NSOrderedSame. This means that the two dates are the same, and thus the sale is just beginning.

There are other methods that you can use to compare NSDate objects. Each of these methods will be
more efficient at certain tasks. We have chosen the compare method because it will handle most of your
basic date comparison needs.

Note Remember that an NSDate holds both a date and a time. This can affect your comparisons with dates
as it not only compares the date but the time.

Combining Comparisons

As we discussed in Chapter 4, sometimes something more complex than a single comparison is needed.
This is where logical operators come in. Logical operators enable you to check for more than one different
requirement. For example, if you have a special discount for people who are members of your book club and
who spend more than $30, you can write one statement to check this.

float totalSpent;

int discountThreshold;
int discountPercent;
BOOL clubMember = YES;

discountThreshold = 30;
discountPercent = 0;
totalSpent = calculateTotalSpent();

if (totalSpent > discountThreshold &3 clubMember) {
discountPercent = 15;
}

We have combined two of the examples from earlier. The new comparison line reads as follows: if
totalSpent is greater than discountThreshold AND clubMember is true, then you set the discountPercent
to 15. For this if statement to return YES, both items need to be true. | | can be used instead of 8& to signify
“or” You can change the earlier line to this:

if (totalSpent > discountThreshhold || clubMember) {
discountPercent=15;
}

Now this reads as follows: if totalSpent is greater than discountThreshold OR clubMember is true,
then set the discount percent. This will return YES if either of the options is true.

You can continue to use the logical operations to string as many comparisons together as you need. In
some cases, you may need to group comparisons together using parentheses. This can be more complicated
and is beyond the scope of this book.

219

http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 9 © COMPARING DATA

Using the switch Statement

Up to this point, we've had several example of comparing data by simply using the if statement or the
if/else statements.

if (some_value == SOME_CONSTANT) {

} eléé.if (some_value == SOME_OTHER_CONSTANT) {

} elé(-e.if (some_value == YET_SOME_OTHER_CONSTANT) {
} .

If you need to compare a specific ordinal type to several constant values, you can use a different method
that can simplify the comparison code: the switch statement.

Note An ordinal type is a built-in C data type that can be ordered. Examples are int, long, char, and BOOL.

The switch statement allows the comparison of one or more constant values against the ordinal data
type. This is important to understand. The switch statement does not allow the comparison of the ordinal
type to a variable. Here is an example of a proper switch statement:

char value;
value = 'd';

switch (value)
{ // The switch statement followed by a begin brace
case 'a': // Equivalent to if (value == 'a")
// Call functions and put any other statements here after the case.

break; // This indicates that this is the end of the “case 'a':"
case 'b':

break;

case 'c': // If there is a case without a break, the program continues.

case 'd': // If value is a 'c' or a 'd', this code will be executed.

break;

default: // Default is optional and is only used if there is no case statement
// for 'value'. So, if value was equal to 'x', the default part of the switch
// statement will be executed since there is no “case 'x':" present.

break;

} // End of the switch statement.

The switch statement is powerful, and it simplifies and streamlines comparisons of an ordinal type to
several possible constants. That said, this is also the limiting factor of the switch statement. It is not possible,
for example, to use the switch statement to compare an NSString variable to a series of string constants.
This is because an NSString value is not an ordinal type. The switch statement also must compare an
ordinal type to a constant. Therefore, it is not possible to write this:

220

CHAPTER 9 © COMPARING DATA

switch (value) {
case variable: // case must be a constant, not a variable.
break;
While it does seem that these are severe limitations to the switch statement, the switch statement is
still a powerful statement that can be used to simplify certain if/else statements.

Summary

You've reached the end of the chapter! Here is a summary of the things that were covered:
e Comparisons
e Comparing data is an integral part of any application.
e Relational operators
e Youlearned about the six standard relational operators and how each is used.
e Integers

e Integers are the easiest pieces of information to compare. You learned how
comparison of integers will be used in your programs and how to implement it.

e Example

® You created a sample application where you could test your comparisons and
make sure that you are correct in your logic.

e Youlearned how to change the application to add different types of
comparisons.
e Boolean
e Youlearned how to check Boolean values.
e Strings

e Youlearned how strings behave differently from other pieces of information you
have tested. You learned some of the pitfalls of comparing strings.

e Objects

¢ Youlearned how difficult it can be to compare objects and that care must be
taken to make sure you are getting the response you desire.

Exercises

e Modify the example application to compare some string information. This can be in
the form of either a variable or a literal.

e (Create aloop in your application to display a number using the methods you learned
in the Boolean portion of the chapter.

e Write an Objective-C app that determines whether the following years are leap years:
1800, 1801, 1899, 1900, 2000, 2001, 2003, and 2010. Output should be written to the
console in the following format: “The year 2000 is a leap year” or “The year 2001 is
not a leap year”
221

CHAPTER 10

Creating User Interfaces

Interface Builder is an application that enables iOS and macOS developers to easily create their user
interfaces using a powerful graphical user interface. It provides the ability to build user interfaces by simply
dragging objects from Interface Builder’s library to your app’s user interface.

Interface Builder stores your user interface design in one or more resource files, called storyboards and
XIBs. These resource files are related to interface objects and their relationships.

To build a user interface, simply drag objects from Interface Builder’s Library pane onto your view. Actions
and outlets are two key components of Interface Builder that help you streamline the development processes.

Actions that your objects trigger in your views are connected to your methods in the app’s code. Outlets
(pointers) declared in your object’s interface file are connected to specific instance variables. See Figure 10-1.

Note Interface Builder was once a stand-alone application that developers used to design their user
interfaces. Starting with Xcode 4.0, Apple integrated Interface Builder within Xcode.

ene » oty Rsrceemsimber | Gl Phoce B3 Piut (93] Randombiomber | Build Randembiomber Succoaded | Toduy st 14 PM 2 23ad =
ViewContrater.xt
B R a B RarcomNumber RangomNumier Controtiers | = ViewControter x| [l ViewControter.xib (Erglisn View {ad Domo0 e
v (&) Randomsimber D) Pracehoiders Simatated watries
bl L File's Cwner e Freetorm
¥ [Controters @ First Responder
N ViewControter.n T
= ViewControder.m
| ViewControter.xt
T vew
> Models
h AppDelegate
m AppDeiegate. m
v [Supporting Files
Rangombiusicer. 10 a1

oooom

il]

IndoPs ¥
- main. :!“I il - Witge Tauch
h Randombusser. Prefin pen asgha 12
b Framewores e ———————— 1"
b Products . Detaut B
Seed Random Number Generator
ol La bE| Label - A waradly $260 amoun of
— Butten - r‘.uusl\':_cn(m-'lr-e
[e Bulton i e s tepe e
Segmented Control - Drigliyt
Bl 2] r%ow sesmers oener s
s
Label z
Text Field - Cepliys eanatie text
Text | and sencs an action message 10 8
TRt DORICT when BTN I8 taDDeD.
Shider - Dagiays 3 COMPLOLS range
- of values 300 J0WS the selecton of 3
e value
Switch - Suplays an sement
showing the bodless state of 4 value
Aot e e ot s o
Figure 10-1. Interface Builder
© Gary Bennett, Brad Lees and Mitchell Fisher 2016 223

G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_10

CHAPTER 10 CREATING USER INTERFACES

Understanding Interface Builder

The operating system is responsible for the memory management of the objects it creates for iPhone and
iPad apps. This relieves the developer of having to allocate memory if the developer used Interface Builder to
create the object.

Interface Builder saves the user interface file as a bundle that contains the interface objects and
relationships used in the application. These bundles have the file extension . storyboard and .XIB. With
version 3.0 of Xcode, a new XML file format was used, and the file extension changed from .NIB to .XIB.
However, developers still call these files “nib” files when saying or referring to the file name.

Unlike most other graphical user interface applications, storyboards and XIBs are often referred to as
freeze-dried because they contain the archived objects themselves and are ready to run.

The XML file format is used to facilitate storage with source control systems like Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller. This design
pattern enables developers to more easily maintain code and reuse objects over the life of an app.

The Model-View-Controller

Model-View-Controller (MVC) is the most prevalent design pattern used in iPhone, iPad, and macOS
development, and learning about it will make your life as a developer much easier. MVC is used in software
development and is considered an architectural pattern.

Architectural patterns describe solutions to software design problems that developers can use in their
code. The MVC pattern is not unique to Apple OOP developers; it is being adopted by many makers of IDEs,
including those running on Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses. Frequently, apps
take longer than expected to write, come in over budget, and don’t work as promised. OOP produced a lot
of hype and gave the impression that companies would realize savings if they adopted its methodology,
primarily because of the reusability of objects and easier maintainability of the code. Initially, this didn’t
happen.

As engineers looked at why OOP wasn’t living up to these expectations, they discovered a key
shortcoming with how developers were designing their objects: developers were frequently mixing objects
together in such a way that the code became difficult to maintain as the application matured, as the
application moved to different platforms, or as hardware displays changed.

Objects were often designed so that, if any of the following changed, it was difficult to isolate the objects
that were impacted:

e Businessrules
e Userinterface
e C(Client-server versus Internet-based

Objects can be broken down into three task-related categories. It is the responsibility of the developer to
ensure that each of these categories keeps their objects from drifting across other categories.

e Models: Business objects
e Views: User interface objects
e Controllers: Objects that communicate with both the models and the views

As objects are categorized in these groups, apps can be developed and maintained more easily over
time. The following are examples of objects and their associated MVC category for an iPhone banking
application:

224

CHAPTER 10 ' CREATING USER INTERFACES

Model
e Accountbalances
e User encryption
e Account transfers

e Accountlogin

e Accountbalances table cell
e Accountlogin spinner control
Controller
e Account balance view controller
e Account transfer view controller
e Logon view controller
The easiest way to remember and classify your objects in the MVC paradigm is the following:
Model: Unique business or application rules or data that represent the real world
View: Unique user interface code

Controller: Anything that controls or communicates with the model or view
objects

Figure 10-2 represents the MVC paradigm.

Model } > View

Figure 10-2. MVC paradigm

Neither Xcode nor Interface Builder force developers to use the MVC design pattern. It is up to the
developer to organize their objects in such a way to use this design pattern.

It is worth mentioning that Apple strongly embraces the MVC design pattern and all of the frameworks
are designed to work in an MVC world. This means that if you also embrace the MVC design pattern,
working with Apple’s classes will be much easier. If you don’t, you'll be swimming upstream.

225

CHAPTER 10 CREATING USER INTERFACES

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you need to learn some
of the ground rules. Apple has developed one of the most advanced operating systems in the world with the
iOS operating system. Additionally, Apple’s products are known for being intuitive and user-friendly. Apple
wants users to have the same experience from one app to the next.

To ensure a consistent user experience, Apple provides developers guidelines on how their apps should
look and feel. These guidelines, called the Human Interface Guidelines (HIGs), are available for macOS,
watchOS, tvOS, iPhone, and iPad. You can download these docs at http://developer.apple.com. See
Figure 10-3.

0F riran Fetace udeine L. Of X Human rietecs Cusdeirat e
U1 Design Basics R U8 Design Basics

T Designing for i0S — Designing for Yosemite

L L L]

oL e P P of 6 18 e Toe Sy OF Poe U1 i B Lk e, Ak etnds, acg)

Figure 10-3. Apple’s HIGs for iOS devices and Macs

Note Apple’s HIGs are more than recommendations or suggestions. Apple takes them seriously. While the
HIGs don’t describe how to implement your user interface designs in code, they are great for understanding the
proper way to implement your views and controls.

The following are the top reasons apps are rejected in Apple’s iTunes App Store:
e The app crashes.
e Itviolates the HIGs.
e TItusesApple’s private APIs.

e Itdoesn’t function as advertised on iTunes App Store.

226

http://developer.apple.com/

CHAPTER 10 ' CREATING USER INTERFACES

You can read, learn, and follow the HIGs before you develop your app, or you can read, learn, and follow
the HIGs after your app gets rejected by Apple and you have to rewrite part or all of it. Either way, all iOS
developers will end up becoming familiar with the HIGs.

Many new iOS developers find this out the hard way, but if you the follow the HIGs from day one, your
i0S development will be a far more pleasurable experience.

Creating an Example iPhone App with Interface Builder

Let’s get started by building an iPhone app that generates and displays a random number. See Figure 10-4.
This app will be similar to the app you created in Chapter 4, but you'll see how much more interesting the
app becomes with an iOS user interface (UI).

Carrier ¥ 8:25 PM L]

Generate Random Number

76

Figure 10-4. Completed iOS random number generator app

1. Open Xcode and select Create a new Xcode project. Make sure you select a
Single View Application for the iPhone. See Figure 10-5.

227

http://dx.doi.org/10.1007/978-1-4842-1904-1_4

CHAPTER 10 CREATING USER INTERFACES

Choose a template for your new project:

i0S
Application - 5o 1 ——
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application
Framework & Library ﬁ;
tvOS
Application Game
Framework & Library
0S X
Application

Framework & Library
System Plug-in

Other . . L
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel Next

Figure 10-5. Selecting the iPhone Single View Application template

2. Name your project RandomNumber, select the language, Objective-C, and save
the project. See Figure 10-6.

228

CHAPTER 10 ' CREATING USER INTERFACES

Choose options for your new project:

eroduct Name: | RandomNumber]

Organization Name: xcelMe

Organization Identifier: com

Bundle Identifier: ar
Language: Objective-C D

Devices: Universal

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 10-6. Naming your iPhone project

3. Your project files and settings are created and displayed. See Figure 10-7.

229

CHAPTER 10 CREATING USER INTERFACES

eane » B A Rendombiumber | [l Phone 83 Plus Randombiumber; Ready | Today a1 848 AM

AandomNumter odepes) +
B R a/ = B RancomNumper D ®
¥ = Randombumber O 3 e Capabiinies [— - o Buid Semtings Bukd Phases B Rules. Mentity snd Type
¥ Randombumber Mams Rangombumber
AL — Location Absolut
= AppOelegate.m
Randombhamber ncodepn]
PR Buncte identifier com Randomhlumber Ful Path [Usersigwbennett/Dropoan
- WiewConteoliesm Acrens Book/Otiective-C
Versicn 10
Wasin sorybosrd oie 3EChaptar 10/
Buld 1
 Musets scassens scodepral ©
LaunchScresn.sorybosnd
et plst Team hone 2] Praject Documant
B Supportieg Fles Project Format Xcode 32-compatitie [
b RandomtumoeTests Deployment infe Degasieanien sceile
> RandombumberiTests Clats Prafin
i Deployment Target -]
Devices Univeesal B Tost Suttings
et Space
Mhain interface Lisin B Unrg " B
wiens 4 NE
Device Orientation [Portrait Tab ndes
Upside Down Wrap e
1B Landscape Left
Landscape Right ottt
Beooutory +-
Statos Bar Style Defaot B Tyoe ==
Current Branch -
Vide wanas Bar
Feures fus screen T
Stats No changes
Locatan
¥ App lcons and Launch images
Agplcons Source Appicon Be 1 0@ o
Launch images Source Use Asset Catalog
Launch Scroen File LaunchScreen B

Figure 10-7. Source files

Although you have only one controller in this project, it’s good programming practice to make your
MVC groups at the beginning of your development. This helps remind developers to keep the MVC
paradigm and not put all of their code unnecessarily in their controller.

4. Right-click the RandomNumber project and then select New Group. See
Figure 10-8.

230

o0) #% RandomNumber) i} iPhone 6s Plus RandomNumber: Ready | Today at 8:50 AM
RandomMNumber.xcodeproj
B2 Q A © @ o B 88 & RandomMumber
v & RandomNumber O General Capabilities Resource Tags Info Build Settings
» AppDelegati SNOW in Finder ¥ Identity
m AppDel gpen :;th External Editor < nber
h ViewControl S:en File | i Bundle com b
~ o ow File Inspector B :
iewControl Version 1.0
Mainstorybt New File... berTe..
W Assets.xcast Add Files to “RandomNumber”.. sperul... Pt 11
LaunchScre
Info.plist Delete Team None
» Supporting
» RandomNumb¢ New Group from Selection ¥ Deployment info
» RandomNumbe
» B Products Sort by Name Deployment Target
Sort by Type Devices Universal
Find in Selected Groups... halo iiteiface Vel
| >
Source Control Device Orientation Portrait
| Project Navigator Help > Upside Down
————— Landscape Left

Figure 10-8. Creating new groups

CHAPTER 10 ' CREATING USER INTERFACES

Status Bar Style

5. Create a Models Group, Views Group, and Controllers Group.

Landscape Right

Default

6. Dragthe ViewController.mand .h files into the Controllers Group. See
Figure 10-9.

Build Ph

oo o

Developers have found it helpful to keep their storyboard and XIB files with their controllers as their
projects grow. It is not uncommon to have dozens of controllers, storyboards, and XIB files in your project.
Keeping them together helps keep everything organized.

231

CHAPTER 10 CREATING USER INTERFACES

@ ®) /A RandomNumber) ji§ iPhone 6s Plus RandomNumber: Ready

B 2 Q A © = o B 2@« B Main.storyboard) No Selection
v & RandomNumber » [Z] view Controller Scene
v RandomNumber

v Controllers

h ViewController.h
m ViewController.m
> Views
> Models
B Main.storyboard
B LaunchScreen.storyboard
h AppDelegate.h
m AppDelegate.m
' Assets.xcassets
Info.plist

> Supporting Files
> RandomNumberTests
RandomNumberUITests
> Products

v

Figure 10-9. MVC groups with Controller and XIB files organized

7. Clickthe Main.storyboard file to open Interface Builder.

Using Interface Builder

The most common way to launch Interface Builder and begin working on your view is to click the storyboard
or XIB file related to the view. See Figure 10-10.

232

CHAPTER 10 ' CREATING USER INTERFACES

Finished running RandomNumber on iPhone Bs Plus = 9 < O 0O
Main.storyboard il
RandomNumber | [lj Main.storyboard) [l Main.storyboard (Base) | No Selection D@ o0 &
Quick Help

View Controller - A controller that
manages 8 view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

Mavigation Controller - A
(controller that manages navigation
through a hierarchy of views.

Table View Controller - A
controlier that manages a table view.

Collection View Controller - &
controller that manages a collection
view,

Tab Bar Controller - A controlier
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
‘compasite view controller that
manages left and right view controll_.

Page View Controller - Presents a
seguence of view controllers as
pages.

GLKit View Controller - A
controller that manages a GLKit view.

Figure 10-10. Interface Builder window

When Interface Builder opens, you can see your view displayed in the canvas. You are now able to
design your user interface. First you need to understand some of the subwindows within Interface Builder.

The Document Outline

The Document window shows all the objects that your view contains. Here are some examples of these
objects:

e Buttons

e Labels

e Textfields

e Web views

e Map views

e Picker views
e Tableviews

233

CHAPTER 10 CREATING USER INTERFACES

Note You can expand the width of the Document Outline to see a detailed list of all your objects. See
Figure 10-11. To get more real estate for the canvas, you can shrink or remove your file list window.

ene » A RandomNumber (B IPhone 85 Plus RandomNumber: Ready | Today at 856 AM D <000
Main storybosr
OR Q B < B Msin ssoryboard | No Sewection DoaPi0
¥ & Randombumber ¥ [T View Controller Scene
¥ Aandombimber View Controier
¥ " Comtroters @ Frs v
0 Firdd Rt View Controtier
| ViewCoetretier [it
ViewCoraroter.m Storyboard Entry Point o
b Views
b Moden

@

View Controlier - & conoies that
e 8 vew

Storyboard Reference - Frovaes &
placencider for & view controlier i e
...... sorpcar

Navigation Controller - &
R o o e
TVDgh & Nerarchy of v

o Ary ARy (=

Figure 10-11. The Document window’s width is expanded to show a detailed view of all the objects
in your scene

The Object Library

The Object Library is where you can exploit your creativity. It's a smorgasbord of objects that you can drag
and drop into the view window.

e The Object Library pane can grow and shrink by moving the window splitter. See
Figure 10-12.

234

=

CHAPTER 10 ' CREATING USER INTERFACES

heaE ¥ E O

No Selection

. =

- oo o

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

controller that manages navigation

< Navigation Controller - A
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Collection View Controller - A
controller that manages a collection
view.

Tab Bar Controller - A controller
that manages a set of view controllers

Figure 10-12. Expand the Object Library pane to see more controls. Slide the splitter with the mouse
to resize the window

Creating the View

The random number generator will have two objects in the view: one Label object and one Button object. The
button will generate the random number, and the label shows the random number generated by the app.

1. Draga Label object from the Object Library pane to the View window.
2. Drag a Button object from the Object Library pane to the View window.

3. Double-click the button and change the name of it to Generate Random
Number. See Figure 10-13.

235

CHAPTER 10 CREATING USER INTERFACES

1

Generate Random Number

Label

Figure 10-13. Placing objects in the view

You now have the ability to quickly and easy connect your outlets and actions to your code. All you have
to do is drag and drop.

4. Click the Assistant Editor icon at the top right of the screen. This will display the
.mfile for the scene you are working on. See Figure 10-14.

236

v B Randombumber
*) Rancmbumber
122 Coraroiiers
b ViewControber b
B viewControterm
[Views
v Wocen
Main storyboard
LaunchSor storyboard
o ApcDwiegate h
= AppOelegate m
T Avsets acassets
into ping
¥ [Supporting Fles
> BarccmtumberTens
o arccmhumbensTests
> 19 Products

¥ [View Controlier Seans

Top Layout Ouice

Bottom Layout Guide

¥ & Gerwrate Rands.
» [conmrainns
L Fandom Numie
Y T—
@) First Responder
B e
Staryboard Entry Point

Uain storytosrd

Generate Random Number

CHAPTER 10 ' CREATING USER INTERFACES

R tetace - 2

i ff ViewController.m
3 // RandoshNumber

// Created by Gary Bennett on 6/22/16.
/f Copyright © 2016 xcelMe. ALl rights
reserved,

* wimport “ViewController.h”

! ginterface ViewController ()

: Bend

; Bimplesentation ViewController

1 = (void)viewDidLoad {
[super viewDidload];
/f Do any additional setup after
loading the view, typically from
a nib.

}

- {void)didReceiveMenaryWarning {
[super didReceiveMemoryWarningl;
/7 Dispose of any resources that can
be recreated.

Figure 10-14. Using the Assistant Editor to display the .m file for the scene you are working with

Using Outlets

Now you can connect your label to your code by creating an outlet.

1. Control-drag from the label in the view to inside the @interface. See Figure 10-15.

Seed Random Number Generator

Generate Random Number /

dabet

]
1

1

o
end

13

by |
2
23

2%
26
27
m

// ViewController.m
// RandomNumber

// Created by Gary Bennett on 6/22/16.
// Copyright © 2016 xcelMe. All rights reserved.
#import "ViewController.h"

@interface ViewController
Insert Outlet or Outlet Coll

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the
view, typically from a nib.

}

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
// Dispose of any resources that can be
recreated.

}
@end

Figure 10-15. Control-drag and drop to create the code for randomNumberLabel outlet

A pop-up window will appear. This enables you to name and specify the type of outlet.

2. Complete the pop-up as in Figure 10-16 and click the Connect button.

237

CHAPTER 10 CREATING USER INTERFACES

3 // RandomNumber

o B
5 // Created by Gary Benn
® B 6 [/ Copyright © 2016 xce
: //
Connection | Outlet <
Object Viow Contraior #import "ViewController.

Name | randomNumberLabe| @interface ViewControlle

1 Type UlLabel B "

ym Number G Storage | Weak < Ll
| [_cancel Connect | ¢ @implementation ViewCont

) - (void)viewDidLoad {
18 [super viewDidLoad];
e Random Number 19 // Do any additional
T ! view, typically
1o 1

Figure 10-16. Pop-up for randomNumber outlet

This creates a private property, accessible from only the class.

The code is now created for the outlet, and the outlet is now connected to the Label object in the storyboard
file. The shaded circle next to line number 12 indicates the outlet is connected to an object in the storyboard file.
See Figure 10-17.

// Created by Gary Bennett on 6/22/16.
// Copyright © 2016 xcelMe. All rights
reserved.

0o = 2 27

- % #import "ViewController.h"

1 @interface ViewController ()
#12 @property (weak, nonatomic) IBOutlet
UILabel *randomNumberLabel;

@end
@implementation ViewController

16 = (void)viewDidLoad {
Generate Random Number 19 [super viewDidLoad];
) // Do any additional setup after
loading the view, typically from a
nib.

Label - (void)didReceiveMemoryWarning {

[super didReceiveMemoryWarning];
// Dispose of any resources that can be
recreated.

@end

Figure 10-17. Outlet property code generated and connected to the Label object

There is also a declaration that may be new to you called an IBOutlet, commonly referred to as an
outlet. Outlets signal your controller that this property is a pointer to another object that is set up in Interface
Builder. IBOutlet will enable Interface Builder to see the outlet and enable you to connect the property to
the object in Interface Builder.

238

CHAPTER 10 ' CREATING USER INTERFACES

Using the analogy of an electrical wall outlet, these outlets are connected to objects. Using Interface
Builder, you can connect these properties to the appropriate object.

Connecting Actions and Objects

User interface object events, also known as actions, trigger methods.
Now you need to connect the object actions to the buttons.

1. Control-drag from the Generate Random Number button to above the @end and
drop. Complete the pop-up as indicated in Figure 10-18 and click the Connect
button.

912 @property (weak, nonatomic) IBOutlet
UILabel *randomNumberLabel;

@end
@implementation ViewController

o Q 18 - (void)viewDidLoad {

Generate Rarjdom Number] 19 [super viewDidLoad];

i or // Do any additional setup after
loading the view, typically from a
nib.

o-0-0

}

= (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];

) // Dispose of any resources that can be
Object View Controller recreated.

Label

Connection = Action

Name generate i}
Type UlButton >
Event | Touch Up Inside

Arguments | Sender

Cancel Connect

@end

Figure 10-18. Complete the pop-up for the generate: method

Implementation File

All that is left is to complete the code for your outlet and actions in the implementation file for the controller.
Open the ViewController.mfile and complete the generate: method. See Figure 10-19.

239

CHAPTER 10 CREATING USER INTERFACES

. - (IBAction)generate: (UIButton x*)sender {
int randomNumber;
randomNumber = (arc4random() % 101) + 1;
[_randomNumt setText: [NSString stringWithFormat:@"%i", randomNumber]];

Figure 10-19. The generate: method is complete

The generate method generates a random number between 1 and 101 inclusive.

Line 30 generates a randomNumber from 1 to 101 inclusive.

The method setText: sets the UILabel text in your view. The connections you established in Interface
Builder from your outlet to the Label object do all the work for you.

That’s it!

To run your iPhone app, click the Play button, and your app should launch in the simulator. See
Figure 10-20.

Carrier ¥ 8:25 PM —

Generate Random Number

76

Figure 10-20. The completed random number generator app running in the iPhone simulator

To generate the random number, tap Generate Random Number.

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You have a powerful set
of objects to use in your application and are responsible for a minimal amount of coding. Interface Builder
handles many of the details you would normally have to deal with.

240

CHAPTER 10 ' CREATING USER INTERFACES

You should be familiar with the following terms:
e Storyboard files
e Model-View-Controller
e Architectural pattern
e Human Interface Guidelines
e Outlets

e Actions

Exercises

e Extend the random number generator app to show a date and time in a Label object
when the app starts.

e After showing a date and time label, add a button to update the data and time label
with the new time.

241

CHAPTER 11

Storing Information

As a developer, there will be many different situations in which you will need to store data. Users will expect
your application (app) to remember preferences and other information each time they launch it. Previous
chapters discussed the BookStore app. With this app, users will expect your application to remember all
of the books in the bookstore. Your application will need a way to store this information, retrieve it, and
possibly search and sort this data. Working with data can sometimes be difficult. Fortunately, Apple has
provided methods and frameworks to make this process easier.

This chapter will discuss two different formats in which data will need to be stored. It will discuss how to
save a preference file for an iOS device and then discuss how to use a SQLite database in your application to
store and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these differences will affect
how you work with data. Let’s start by discussing the Mac and how you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user has their own
home folder where preferences and information related to that user are stored. Not all of the users will have
access to write to the Applications folder or to the application bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every person who uses
the iPhone has the same permissions and the same folders. There are some other factors to consider with
the iPhone, though. Every application on an iOS device is in its own sandbox. This means that files written
by an application can be seen and used only by that individual application. This makes for a more secure
environment for the iPhone, but it also presents some changes in the way you work with data storage.

Preferences

There are some things to consider when deciding where to store certain kinds of information. The easiest
way to store information is within the preferences file, but this method has some downsides.

e All of the data is both read and written at the same time. If you are going to be writing
often or writing and reading large amounts of data, this could take time and slow
down your application. As a general rule, your preferences file should never be larger
than 100KB. If your preferences file starts to become larger than 100KB, consider
using Core Data as a way to store your information.

e The preferences file does not provide many options when it comes to searching and
ordering information.

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 243
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_11

CHAPTER 11 © STORING INFORMATION

The preferences file is really nothing more than a standardized XML file with accompanying classes and
methods to store application-specific information. A preference would be, for example, the sorting column
and direction (ascending/descending) of a list. Anything that is generally customizable within an app should
be stored in a preferences file.

Note Sensitive data should not be stored in the preference file or in a database without additional
encryption. Luckily, Apple does provide a way to store sensitive information. It is called the keychain. Securing
data in the keychain is beyond the scope of this book.

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it easy to read and write
preferences for iOS and Mac OS X. The great thing is that, in this case, you can use the same code for iOS and
Mac OS X. The only difference between the two implementations is the location of the preferences file.

Note For Mac OS X, the preferences file is named com.yourcompany.applicationname.plist and is
located in the /Users/username/Library/Preferences folder. On i0S, the preferences file is located in your
application bundle in the /Library/Preferences folder.

All you need to do to write preferences is to create an NSUserDefaults object. This is done with the
following line:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

This instantiates the prefs object so you can use it to set preference values. Once you have instantiated
the prefs object, you need to set the preference keys for the values that you want to save. The BookStore
app example will be used to demonstrate specific instructions throughout this chapter. When running a
bookstore, you might want to save a username in the preferences. You also might want to save things such as a
default book category or recent searches. The preferences file is a great place to store this type of information
because this is the kind of information that needs to be read only when the application is launched.

Also, on 0§, it is often necessary to save your current state. If a person is using your application and then
gets a phone call, you want to be able to bring them back to the exact place they were in your application when
they are done with their phone call. This is less necessary now with the implementation of multitasking, but your
users will still appreciate it if your application remembers what they were doing the next time they launch it.

Once you have instantiated the object, you can just call setObject:forKey: to set an object. If you
wanted to save the username of sherlock.holmes, you would call the following line of code:

[prefs setObject:@"sherlock.holmes” forKey:@"username"];

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of setObject, depending
on the type of information you are storing in the preferences file. Let’s say you store the number of books a
user wants to see in the list. Here is an example of using setInteger to store this preference:

[prefs setInteger:10 forKey:@"booksInList"];

After a certain period of time, your app will automatically write changes to the preferences file. You can
force your app to save the preferences by calling the synchronize method, but this is not necessary in most
cases. To call the synchronize method, you would write the following line:

[prefs synchronize];

244

CHAPTER 11 STORING INFORMATION

With just three lines of code, you are able to create a preference object, set two preference values, and
write the preferences file. It is an easy and clean process. Here is all of the code:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];
[prefs setObject:@"sherlock.holmes” forKey:@"username"];
[prefs setInteger:10 forKey:@"booksInList"];

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step is to obtain the
NSUserDefaults object. This is done in the same way as it was done in the writing process:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

Now that you have the object, you are able to access the preference values that are set. For writing, you
use the setObject syntax; for reading, you use the stringForKey method. You use the stringForKey method
because the value you put in the preference was an NSString. In the writing example, you set preferences for
the username and for the number of books in the list to display. You can read those preferences by using the
following simple lines of code:

NSString *username = [prefs stringForKey:@"username"];
NSInteger booksInList = [prefs integerForKey:@"booksInList”];

Pay close attention to what is happening in each of these lines. You start by declaring the variable
username, which is an NSString. This variable will be used to store the preference value of the username you
stored in the preferences. Then, you just assign it to the value of the preference username. You will notice
that in the read example you do not use the synchronize function. This is because you have not changed the
values of the preferences; therefore, you do not need to make sure they are written to a disk.

Databases

You have learned how to store some small pieces of information and retrieve them at a later point. What
if you have more information that needs to be stored? What if you need to conduct a search within this
information or put it in some sort of order? These kinds of situations call for a database.

A database is a tool for storing a significant amount of information in a way that it can be easily searched
or retrieved. When using a database, usually small chunks of the data are retrieved at a time rather than the
entire file. Many applications you use in your daily life are based on databases of some sort. Your online
banking application retrieves your account activity from a database. Your supermarket uses a database to
retrieve prices for different items. A simple example of a database is a spreadsheet. You may have many
columns and many rows in your spreadsheet. The columns in your spreadsheet represent different types of
information you want to store. In a database, these are considered attributes. The rows in your spreadsheet
would be considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate databases with
enterprise database servers such as Microsoft SQL Server or Oracle. These applications can take time to set
up and require constant management. For most developers, a database system like Oracle would be too
much to handle. Luckily, Apple has included a small database engine called SQLite in iOS and OS X. This
allows you to gain many of the features of complex database servers without the overhead.

245

CHAPTER 11 © STORING INFORMATION

SQLite will provide you with a lot of flexibility in storing information for your application. It stores the
entire database in a single file. It is fast, reliable, and easy to implement in your application. The best thing
about the SQLite database is that there is no need to install any software; Apple has taken care of that for you.

However, SQLite does have some limitations that, as a developer, you should be aware of.

e SQLite was designed to be used as a single-user database. You will not want to use
SQLite in an environment where more than one person will be accessing the same
database. This could lead to data loss or corruption.

e Inthe business world, databases can grow to become very large. It is not surprising
for a database manager to handle databases as large as half a terabyte, and in some
cases databases can become much larger than that. SQLite should be able to handle
smaller databases without any issues, but you will begin to see performance issues if
your database starts to get too large.

e SQLite lacks some of the backup and data restore features of the enterprise database
solutions.

For the purposes of this chapter, you will focus on using SQLite as your database engine. If any of the
mentioned limitations are present in the application you are developing, you may need to look into an
enterprise database solution, which is beyond the scope of this book.

Note SQLite (pronounced “sequel-lite”) gets its name from Structured Query Language (SQL, pronounced
“sequel”). SQL is the language used to enter, search, and retrieve data from a database.

Apple has worked hard to iron out a lot of the challenges of database development. As a developer, you
will not need to become familiar with SQL because Apple has taken care of the direct database interaction
for you through a framework called Core Data that makes interacting with the database much easier. Core
Data has been adapted by Apple from a NeXT product called Enterprise Object Framework, and working
with Core Data is a lot easier than interfacing directly with the SQLite database. Directly accessing a
database via SQL is beyond the scope of this book.

Getting Started with Core Data

Let’s start by creating a new Core Data project.

1. Open Xcode and select File » New » Project. To create an iOS Core Data
project, select Application from the menu on the left. It is located underneath
the iOS header. Then select Single View Application, as shown in Figure 11-1.

246

Choose a template for your new project:

i0s
Application
Framework & Library
watchOS
Application
Framework & Library
tvOS
Application
Framework & Library
0s X
Application
Framework & Library
System Plug-in
Other

Cancel

Master-Detail
Application

Game

CHAPTER 11 STORING INFORMATION

1

0O X see

Page-Based Single View Tabbed
Application Application Application

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Figure 11-1. Creating a new project

2. Click the Next button when done. The next screen will allow you to enter the
name you want to use. For the purposes of this chapter, you will use the name

BookStore.

3. Make sure Language is set to Objective-C. Near the bottom, you will see the
check box Use Core Data. Make sure this is checked and then click Next, as
shown in Figure 11-2.

Note Core Data can be added to any project at any point. Checking that box when creating a project will
add the Core Data frameworks and a default data model to your application.

247

CHAPTER 11 © STORING INFORMATION

Choose options for your new project:

Product Name: BookStore
Organization Name: Inno

Organization Identifier: = com.inno
Bundle Identifier: com.inno.BookStore

Language: Objective-C

Devices: iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous "~ Next

Figure 11-2. Using Core Data

4, Selectalocation to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a standard application,
except now you will have a BookStore.xcdatamodeld file. This file is called a data model and will contain
the information about the data that you will be storing in Core Data.

The Model

In your BookStore folder on the left, you will see a file called BookStoreCoreData.xcdatamodeld. This file
will contain information about the data you want stored in the database. Click the model file to open it. You
will see a window similar to the one shown in Figure 11-3.

248

CHAPTER 11 STORING INFORMATION

ookStore: Mandy | Today a2 11:38 AM 2
idartity and Tyza
Nams BocSions sostamodsl
Tree Detwut - Core Duta Mosel [

ane » A BocaSton) Prone Ba Pua
H < B Bocksione BookStone BookStors scdatamodeld | g BookSiore sodatamesel (@) Defaun
" Cotties

Entiey

@ Detmst
Ful P [Uinars fbeadiens Dropbox

BookSiore sodatamodel

On Demand Besourte Tags

Supparting Fies
Corw Data Mndal

[r—
Toais Version

Wi dotomate (xcode 781 [

Fasget Mamparanip
B A Bocasion

(=) O. :
A Ariute Edor Sty

Figure 11-3. The blank model

The window is divided into four sections. On the left you have your entities. In more common terms,

these are the objects or items that you want to store in the database.
The top-right window contains the attributes. Attributes are pieces of information about the entities.

For example, a book would be an entity, and the title of the book would be an attribute of that entity.

Note In database terms, entities are your tables, and the attributes of the entities are called columns. The
objects created from those entities are referred to as rows.

The middle window on the right will show you all the relationships of an entity. A relationship connects
one entity to another. For example, you will create a Book entity and an Author entity. You will then relate them
so that every book can have an author. The bottom-right portion of the screen deals with fetched properties.
Fetched properties are beyond the scope of this book, but they allow you to create filters for your data.

Let’s create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select Editor »
Add Entity from the menu, as shown in Figure 11-4.

249

CHAPTER 11

ene

[l
¥ B Socksie
BookStore
AopDeiegae h
m AppOsiegate.m

wControler h

STORING INFORMATION

A BockSton | [l Prore B4 P BockStore: Meady | Today ot 1136 AM D+

Do e
idamtity and Type
Nams BockStom srdstemoss
Tre Detmat - Core Duta Mosel |5

" < & sooxstone BookStors " BookSione scdatamoseld [} BookStore saatamodel [Entiry

v Mtributes

Loeation

@ Dot BookSiore castamodel

* Relationships

Outire Styie

Ad Entity Add Mribute Exior Style

Figure 11-4. Adding a new entity

2.

On the left side, name the entity Book.

Note

It is required to capitalize your entities’ names.

ENTITIES
3 Book

FETCH REQUESTS

Now let’s add some attributes. Attributes would be considered the details of a
book, so you will store the title, author, price, and year the book was published.
Obviously, in your own applications, you may want to store more information,
such as the publisher, page count, and genre, but you want to start simple here.
Click the plus sign at the bottom right of the window, or select Editor » Add
Attribute, and a new attribute will be created, as shown in Figure 11-5. If you
do not see the option to add an attribute, make sure you have selected the Book
entity on the left side.

CONFIGURATIONS

@ Default

=Y o =Y o _— =Y ™~ . a, 4 4 B Book < o)
¥ Attributes
[auioute
+

Figure 11-5. Adding a new attribute

250

CHAPTER 11 STORING INFORMATION

4. Youwill be given only two options for your attribute, the name and the data type.
Let’s call this attribute title. Unlike entities, attribute names must start with a
lowercase letter.

5. Now, you will need to select a data type. Selecting the correct data type is
important. It will affect how your data is stored and retrieved from the database.
The list has 12 items in it and can be daunting. We will discuss the most common
options and, as you become more familiar with Core Data, you can experiment
with the other options. The most common options are String, Integer 32,
Decimal, and Date. For the title of the book, select String.

String: This is the type of attribute used to store text. This generally should
be used to store any kind of information that is not a number or a date. In
this example, the book title and author will be strings.

Integer 32: There are three different integer values possible for an attribute.
Each of the integer types differs only in the minimum and maximum

values possible. Integer 32 should cover most of your needs when storing

an integer. An integer is a number without a decimal. If you try to save a
decimal in an integer attribute, the decimal portion will be truncated. In this
example, the year published will be an integer.

Decimal: A decimal is a type of attribute that can store numbers with
decimals. A decimal is similar to a double attribute, but they differ in their
minimum and maximum values and precision. A decimal should be able to
handle any currency values. In this example, you will use a decimal to store
the price of the book.

Date: A date attribute is exactly what it sounds like. It allows you to store
a date and time and then performs searches and lookups based on these
values. You will not use this type in this example.

6. Let’s create the rest of the attributes for the book. Now, add price. It should
be a Decimal. Add the year the book was published. For two-word attributes,
it is standard to make the first word lowercase and the second word start with
a capital letter. For example, an ideal name for the attribute for the year the
book was published would be yearPublished. Select Integer 32 as the attribute
type. Once you have added all of your attributes, your screen should look like
Figure 11-6.

Note Attribute names cannot contain spaces.

251

CHAPTER 11 © STORING INFORMATION

ENTITIES v Attributes
@ Book
Attribute
FETCH REQUESTS
N yearPublished Integer 32
CONFIGURATIONS B price Decimal ¢

(@ Default B title String

¥ Relationships

¥ Fetched Properties

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did not add a primary key. A
primary key is a field (usually a number) that is used to uniquely identify each record in a database. In Core
Data databases, there is no need to create primary keys. The framework will manage all of that for you.

Now that you have finished the Book entity, let’s add an Author entity.
1. Add anew entity and call it Author.

2. To this entity, add lastName and firstName as attributes, both of which are
strings.

Once this is done, you should have two entities in your relationship window. Now you need to add the
relationships.

1. Click the Book entity, and then click and hold on the plus sign that is located on
the bottom right of the screen. Select Add Relationship, and a new relationship
will be created as shown in Figure 11-7. (You can also click the plus under the
Relationships section of the Core Data model.)

252

CHAPTER 11 STORING INFORMATION

ENTITIES

¥ Attributes
@ Author
I3 Book .
rice i <
FETCH REQUESTS m D I Decinel .
B titie String <
CONFIGURATIONS [yearPublished Integer 32 <

(® Default +

¥ Relationships

P oa

[relationstin

+

¥ Fetched Properties

Figure 11-7. Adding a new relationship

2. You will be given the opportunity to name your relationship. You usually give a
relationship the same name as the entity to which it derived from. Type in author
as the name and select Author from the Destination drop-down menu.

3. You have created one half of your relationship. To create the other half, click the
Author entity. Click the plus sign located at the bottom right of the screen and
select Add Relationship. You will use the entity name that you are connecting
to as the name of this relationship, so you will call it books. (You are adding an
s to the relationship name because an author can have many books.) Under
Destination, select Book, and under Inverse, select the relationship you made
in the previous step. In the Utilities window on the right side of the screen, select
Data Model Inspector. Select To Many for the type of the relationship. Your
model should now look like Figure 11-8.

Note Sometimes in Xcode, when working with models, it is necessary to hit the Tab key for the names of
entities, attributes, and relationships to update. This little quirk can be traced all the way back to WebObjects tools.

253

CHAPTER 11 STORING INFORMATION

ENTITIES

¥ Attributes

@ Author
@ ook Attribute .

firstName String]
FETCH REQUESTS

B tasthame String <
CONFIGURATIONS
@ Default e

¥ Relationships

0 books Book author

S A

¥ Fetched Properties

Fetched Property .

Figure 11-8. The final relationship

Now you need to tell your code about your new entity. To do this, hold down Shift and select the
Book entity and the Author entity and then select Editor » Create NSManagedObject Subclass from the
Application menu. Your screen should look like Figure 11-9.

254

CHAPTER 11 STORING INFORMATION

Select the data models with entities you would like to manage

Select Data Model

v BookStore

Cancel " Next

Figure 11-9. Adding the managed objects to your project

This screen allows you to select the data model you would like to create managed objects for. In this
case, you have only a single data model. In some complicated applications, you may have more than one.
Managed objects represent instances of an entity from your data model. Select the BookStore data model
and hit Next.

You will now be presented with a screen to select the entities to create managed objects, as shown in
Figure 11-10. Select both and click Next.

255

CHAPTER 11 STORING INFORMATION

Select the entities you would like to manage

Select Entity
Book

v Author

Cancel Previous

Figure 11-10. Select the entities to create managed objects

256

CHAPTER 11 STORING INFORMATION

O 22 E 0D v [BookStore < Q
Favorites Hide MName Size
[E) Recents ©
[
£2 Dropbox
L]
£ Chapter 7 ©
E) Al My Files ©
= . L]
5 iCloud Drive P
¥~ Applications ©
ﬁ Desktop » || BookStore ?
Language = Objective-C e
Options Use scalar properties for primitive data types
Group [& BookStore 5y
Targets 4% BookStore
New Folder Options Cancel Create

Figure 11-11. Select the save location for your new managed objects

Select the storage location and add it to your project. You will need to select the Options button on the
bottom to show you more information. Make sure your language is set to Objective-C. By default, it is Swift.
You should not need to change any other defaults on this page. Then click Create. You will notice that eight
files have been added to your project. Book+CoreDataProperties and Author+CoreDataProperties.h and
.m files contain the information about your books and authors entities you just created. Book.h and Author.h
will be used for logic relating to your new entities. These files will need to be used to access the entities and
the attributes you added to your data model. These files are fairly simple because Core Data will do most of
the work with them. You should also notice that if you go back to your model and click Book, it will have a
new class in the Data Model Inspector. Instead of an NSManagedObject, it will have a Book class.

257

CHAPTER 11 © STORING INFORMATION

Let’s look at some of the contents of Book+CoreDataProperties.h:
#import "Book.h"
NS_ASSUME_NONNULL_BEGIN
@interface Book (CoreDataProperties)

@property (nullable, nonatomic, retain) NSString *title;
@property (nullable, nonatomic, retain) NSDecimalNumber *price;
@property (nullable, nonatomic, retain) NSNumber *yearPublished;
@property (nullable, nonatomic, retain) Author *author;

@end

NS_ASSUME_NONNULL_END

You will see that the file starts by including Book . h, which includes the Core Data framework. This
allows Core Data to manage your information. This file contains an extension to the Book class. An extension
allows you to add new properties and functionality to an existing class. By creating the Book class and the
Book+CoreDataProperties extension files, Xcode allows the developer to separate the attributes from the
basic logic. The superclass for the new Book object is NSManagedObject. NSManagedObject is an object that
handles all of the Core Data database interaction. It provides the methods and properties you will be using in
this example. Later in the file, you will see the three attributes and the one relationship you created.

Managed Object Context

You have created a managed object class called Book. The nice thing with Xcode is that it will generate

the necessary code to manage these new data objects. In Core Data, every managed object should exist
within a managed object context. The context is responsible for tracking changes to objects, carrying out
undo operations, and writing the data to the database. This is helpful because you can now save a bunch of
changes at once rather than saving each individual change. This speeds up the process of saving the records.
As a developer, you do not need to track when an object has been changed. The managed object context will
handle all of that for you.

Setting Up the Interface
The following steps will assist you in setting up your user interface:

1. Inthe BookStore folder in your project, you should have a Main.storyboard
file. Click this file and Xcode will open it in the editing window, as shown in
Figure 11-12.

258

CHAPTER 11 STORING INFORMATION

v a View Controller Scene
> View Controlier
70 First Responder
[exit 3
Storyboard Entry Point

View Controller

Figure 11-12. Creating the interface

2. There should be a blank window. To add some functionality to your window, you
are going to need to add some objects from the Object Library. Type table into
the search field on the bottom right of the screen. This should narrow the objects,
and you should see Table View Controller and Table View. Drag the Table View to
the view, as shown in Figure 11-13.

259

CHAPTER 11 STORING INFORMATION

idartity and Type
Name Main. steyboard
Type | Default - intertace Buider_. [

w [B View Controller Scene
v () View Contralier
5 Top Layout Guide

Botiom Layout Guide Location | Rutative 1o On
v [l view - 1
o a0 | Base jproj/Main. storyboard
€ @ E
[T Twble iew = Fut Patn, [Users foradieesDrogbox
0 First Responder - Agress Ob) © 3/Chapter 1V
= et BosaStereBoauStorel

Storyboard Dntry Poim Base jproi/Main storybosed &

On Demans Ressurce Tags

Intertace Bullder Decument
Opensie Detout (701
sutas for | Degloyment Target (9.3) [
Wiew 28| O 7.0 and Later B
18 Use Auto Layout
1B Use Size Classes
Use a8 Lounch Screen

Giobal Tint | EEEN Defautt B

Lecalization
8 b
Engisn Lotalizasie Suings ©

Target Momsarinia
B 5A BockSoe

Soures Costrel
Reposnory -«
Type ==
Curvent Branch -
Vs
Sutus No changes
Location

O eo
Table View

Contrafier - &
Eontrolier that manages 3 tatée view

Table View - Displays sata in a st
o phain, sectioned, of Grouped rows.

Table View Call - Defines me
ATTIDUTES 30 BENIviOr of Cells [Fows)
.3 tabae view,

= [u] wikny hAny B B ol el B Sube (]

Figure 11-13. Adding the Table View

3. You now have a Table View. To create cells in your Table View, you need to add
aUITableViewCell. Search for cell in your Object Library and drag a Table View
Cell to your table. You now have a table and a cell on your view, as shown in
Figure 11-14.

260

¢ & Bookstone BockSiore | [l Mainstoryboard | [Main storyboard (Base)) [View Comtroter Scene

v [View Controller Scene
v View Cortroter

Top Layout Guice

Bottom Layout Guide
v [l view
- Takie View

v Bl |
» [l Contant View Prototype Cells

T Frst Resporcer .+
E:! ey Title

Storyioard Entry Peint

Figure 11-14. Adding the Table View Cell

Ary Aay

CHAPTER 11 STORING INFORMATION

Demv0 s
Table View Conl

Saple | Basic

Image

Wiew Controter ||| View Tabte View | [conl

et | Call
1 Selecion Default
- Accessory_Nore
Rating ace. Nore
Focus Seyle | Defaut

wosetation alz
Level wem

8 wroent Whie Editirg
‘Shows Re-crder Controls

Separatse | Default Insots

view
Mode | Scale Ta F B
Semuntic Unepociied B
™ 02
interaction () User interaction Enaied
Matigie Toueh
sagha =
Bacigroune C——————1
Teer B Default -]
Drawing B Opsque Hidaen
£ Clears Graphics Context
B o Sutriews
B Autoresize Subviews

Sueining (15 0z

Table View Controller - 4
ontrolier Ehat manages & Sable v,

Tabile View - Ditsiays cats i 8 list
O PSS, $OCTENDS, OF GIOVERS 1wt

Table View Cell - Detines the.
attributes and behavior of Cells (rows)
In a table view

B B iof el | B B)table -]

4. Select the cell, and in the Attributes Inspector on the right side, set Style to Basic.
Also, set the Identifier to Cell. The identifier is used for when your Table View
contains multiple styles of cells. You will need to differentiate them with unique
identifiers. For most of your projects, you can set this to Cell and not worry about

it, as shown in Figure 11-15.

261

CHAPTER 11 STORING INFORMATION

De&E ¢ 0 0

Table View Cell

Style Basic
Image
Identitier | Cell

Selection Default

Accessory None

ololo Nl <o

Editing Acc. None

Indentation 0. 10 2
Level width
Indent While Editing
| Shows Re-order Controls

Separator Default Insets B

Figure 11-15. Changing the style of the cell

5. When using a Table View, it is usually a good idea to put it in a Navigation
Controller. You will be using the Navigation Controller to give you space to put an
Add button on your Table View. To add a Navigation Controller, select your View
Controller in the Scene box, which is the window to the left of your storyboard
that shows your View Controllers (your View Controller will have a yellow icon
next to it). From the Application menu, select Editor » Embed In » Navigation
Controller, as shown in Figure 11-16.

262

CHAPTER 11 STORING INFORMATION

File Edit View Find Navigate Product Debug Source Control Window Help

Canvas » . Ready | Today at 3:31 PM

] BookS! iPhone 65 Pl
fh_ tore | il i e 65 usJ oo Class > |

6 ©=o @ .&' < |H Hide Document Outline
v [view Contr Reveal in Document Outline

| B Main.storyboard (Base)) Bl View Controller Scene) (L) View Cor

‘eDataProperties.h v) view cd -
‘eDataProperties.m — Top L Align -
1] Bottor Arrange >
v [view Size to Fit Content #=
DataProperties.h Y o :_Ta' v Snap to Guides | u ® E
DataProperties.m | Guides > ‘ Prototype Cells
= exit e
» Storyboa = - * Ctarl i
Sainh Localization Locking > | Stack View
gate.m v Automatically Refresh Views Navigation Controller
troller.h Refresh A W Tab Bar Controller
troller.m L 1 View !
Saasats Resolve Auto Layout Issues (2
creen.storyboard Refactor to Storyboard...
< :
re.xcdatamodeld
ng Files

Figure 11-16. Embedding in a Navigation Controller

6. You will have a navigation bar at the top of your view. You will now add a button
to the bar. This type of button is called a UIBarButtonItem. Search for bar button
in your Object Library and drag a Bar Button Item to the top right of your view on
the navigation bar, as shown in Figure 11-17.

263

CHAPTER 11 © STORING INFORMATION
@
-
Item
Prototype Cells
Title

wAny nAny

System ftem Custom B
Tint, 0 Default B
[Bar item
Title | Item
Image n
Tag L]
@ Enabled
DO 6o

Bar Button ltem - Represents an
Item | iem on a UiToolbar or
UiNavigationitem object.

Fixed Space Bar Button Item -
Jssseres] RoOpresents a fiued space iem ona
UiTeclbar object.

Flexible Space Bar Button Item -

densh Represents a flexible space fem on 2

UiTeolbar object.

ES B iof taf | 8 @ barbut

<]

Figure 11-17. Adding a Bar Button Item to the navigation bar

264

7. Select the Bar Button Item and change System Item to Add. This will change
the look of your Bar Button Item from the word Item to a plus icon, as shown in

Figure 11-18.

CHAPTER 11 STORING INFORMATION

i

H

5
oof o)

Bar Item
Title | |
lmage[tmagc
Tag | 0/s
Enabled

Figure 11-18. Changing the Bar Button Item

8. Now you have the interface created, you need to hook it up to your code. Hold
down the Control key and drag your Table View to the View Controller in the
Document Outline, as shown in Figure 11-19.

IU)-IPM!I.BOM!, BookStore: Ready | Today at 3:42 PM i

3 | 89 < > | [B BookStore) [0 BookStore) [l Main.storyboard) [lj Main.storyboard (Base)) [View Controlier Scene) () View Contralier) [| View |

w [E] cenl
» [content View
¥ [< Navigation tem
[~| Lett Bar Button Items
v || Right Bar Button items
[=] Add
{0 First Responder
= Exit

@

Figure 11-19. Connecting the Table View

265

CHAPTER 11 STORING INFORMATION

9. Apop-up will appear allowing you to select either the dataSource or delegate
outlet, as shown in Figure 11-20. You will need to assign both to the View
Controller. The order in which you select the items does not matter, but you will
have to Control-drag the Table View twice.

g8 | < [& Bookstore BookStore) [Main.storyboard) [Main.storyboard (E

¥ [& View Controller Scene

MY Outlets
dataSource

delegate
v [[] View
¥ |=| Cell
» [content View
¥ | < | Navigation Item

Left Bar Button Items

v Right Bar Button Items Proto!
Add
@i First Responder Title
[Exit

v Navigation Controller Scene

Figure 11-20. Hooking up the Table View

10. Now your Table View should be ready to go. You need to hook up your button to
make it do something. In the top right of your Xcode window, click the Assistant
Editor icon (it looks like two circles). This will open your code on the right side
and your storyboard on the left side. Now Control-drag your Add button to the
View Controller code on the right, as shown in Figure 11-21.

BockStore: Ready | Today at 11:32 AM E ® <O n
B B0 Right Bn Items | [~ Add | 5 2 Automatic | . ViewController.swift | No Selection + x D@ Q06
L Bar Button item
ntroller Scene —— 2/ ViewController.swift
Controlier 1 // BookStore Style Bordered
—_— "
P Layout Guide L // Created by Brad Lees on B/8/15. System item _Add
ittom Layout Guide . & // Copyright © 20815 Inn. ALl rights reserved. Tint =" Default
& Ly "
Table View | s ? irport UIKit Bar tem
Cell 1
» [Content View 1 class ViewController: UIViewController { Tide
wigation item N\ 1 override func viewdidLoad() { gt i
Left Bar Button ltems super.viewDidLoad() Tog 0"
5 1 // Do any additional setup after loading the view,
Right Bar Button ltems typically from a nib. Enabled
- | Add }
Pyl N override func didReceiveMemaryWarning() {
L, A super.didReceiveMemoryWarning()
2 // Dispose of any resources that can be recreated.
ion Controller Scene n %
n .
tion Controller e Insert Outlet, Action, or Qutlet Collection
vigation Bar ™} pusllllsi i
Rwesporder 2
board Entry Point
neship “root view controlier...

Figure 11-21. Adding an action for your Button object

266

CHAPTER 11 STORING INFORMATION

11. It does not matter where you place the Add button in your code as long as it
is within your class definition and outside of any methods. It should be after
your variables just for organization. You should also place it outside your other
methods. When you let go, you will be prompted for the type of connection you
are creating. Set Connection to Action. Then add a name for your new method,
such as addNew, as shown in Figure 11-22.

// Do any adaitional setup arter Loading the view, T)
}
Connection Act 22 = (void)didReceiveMemoryWarning {
[super didRe veM 11:
Object View Controller 2 // Dispose of any resources that can be recreated.
Name | addNew }
Type id n 27 @end

Cancel Connect
|

Figure 11-22. Changing the type and name of the connection

12. TheUITableView that was added previously will need to be accessible through
code. To accomplish this, drag the UITableView from the left pane to the top of
the code on the right and create an outlet named tableView.

The interface is complete now, but you still need to add the code to make the interface do something.
Go back to the Standard editor (click the list icon to the left of the two circles icon in the top right of the
Xcode toolbar) and select the ViewController.h file from the file list on the left side. Because you now have
a Table View you have to worry about, you need to tell your class that it can handle a Table View. Change
your class declaration at the top of your file to the following:

@interface ViewController : UIViewController <UITableViewDataSource, UITableViewDelegate>
You added UITableViewDelegate and UITableViewDataSource to your declaration. This tells your
controller that it can act as a Table View Delegate and data source. These are called protocols. Protocols
tell an object that they must implement certain methods to interact with other objects. For example, to
conform to the UITableViewDataSource protocol, you need to implement the following method in the
ViewController.m file:
- (NSInteger)tableView: (UITableView *)tableView numberOfRowsInSection:(NSInteger)section {
Without this method, the Table View will not know how many rows to draw.
Before continuing, you need to tell your ViewController.h file about Core Data. To do this, you add the
following line to the top of the file just under the #import <UIKit/UIKit.h> statement:

#import <CoreData/CoreData.h>

You also need to add a managed object context to your ViewController class. Add the following line
right after the class ViewController line:

@interface ViewController : UIViewController <UITableViewDataSource, UITableViewDelegate> {
NSManagedObjectContext *managedObjectContext;
}

267

CHAPTER 11 © STORING INFORMATION

Notice, you also have to add the parentheses. Now that you have a variable to hold your
NSManagedObjectContext, you need to instantiate it so you can add objects to it. To do this, you need to add
the following lines to your viewDidLoad method in the ViewController.mfile:

AppDelegate *appDelegate = (AppDelegate *)[[UIApplication sharedApplication] delegate];
managedObjectContext = appDelegate.managedObjectContext;

The first line creates a variable that points to your application delegate. The second line points your
managedObjectContext variable to the application delegate’s managedObjectContext. It is usually a good
idea to use the same managed object context throughout your app. Also, at the top of ViewController.m,
add the following line under the #import "ViewController.h" line:

#import "AppDelegate.h"
#import "Book.h"

The first new method you are going to add is one to query your database records. Call this method
loadBooks.

32 - (NSArray *)loadBooks {

33 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] initWithEntityName:@"Book"];

34 NSArray *bookArray = [[managedObjectContext executeFetchRequest:fetchRequest
error:nil] mutableCopy];

35

36 return bookArray;

37

38 }

This code is a little more complex than what you have seen before, so let’s walk through it. Line 32
declares a new function called loadBooks, which returns an NSArray. This means you will receive an array
that can contain any type of objects you want. In this case, the objects will be Books. You then return the
array once you have it loaded.

You will now need to add the data source methods for your Table View. These methods tell your Table
View how many sections there are, how many rows are in each section, and what each cell should look like.
Add the following code to your ViewController.m file:

41 - (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView {

42 return 1;

43 }

44

45 - (NSInteger)tableView: (UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{

46

47 return [[self loadBooks] count] ;

48 }

49

268

CHAPTER 11 STORING INFORMATION

50 - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPa
th *)indexPath {
51
52 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:@"Cell"];
53 if (cell == nil) {
54 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseldentifier:@"Cell"];

55 }

56

57 Book *myBook = [[self loadBooks] objectAtIndex:indexPath.row];
58

59 cell.textlabel.text = myBook.title;

60

61 return cell;

62 }

In line 42, you tell your Table View that it will contain only a single section. In line 47, you call a count
on your array of Books for the number of rows in your Table View. In lines 51 to 61, you create your cell and
return it. Line 52 creates a cell for you to use. This is standard code for creating a cell. The identifier allows you
to have more than one type of cell in a Table View, but that is more complex. Line 57 grabs your Book object
from your loadBooks () array. Line 59 assigns the book title to your textLabel in the cell. The textLabel is the
default label in the cell. This is all you need to do to be able to display the results of your loadBooks method in
the table view. You still have one problem. You do not have any books in your database yet.

To fix this issue, you will add code to the addNew method you created earlier. Add the following code
inside the addNew method you created:

66 - (IBAction)addNew: (id)sender {

67 Book *myBook = [NSEntityDescription insertNewObjectForEntityForName:@"Book" inManaged
ObjectContext:managedObjectContext];

68 myBook.title = [NSMutableString stringWithFoxmat:@"My Book%lu", (unsigned long)[self
loadBooks].count];

69 [managedObjectContext save:nil];

70 [self.tableView reloadData];

71}

Line 67 creates a new Book object for your book in the database from the entity name and inserts
that object into the managedObjectContext you created before. Remember that once it is inserted into the
managed object context, its changes are tracked, and it can be saved. Line 68 sets the book title to My Book
and then sets the number of items in the array. Obviously, in real life, you would want to set this to a name
either given by the user or from some other list. Line 69 saves the managed object context. Line 70 tells the
UITableView to reload itself to display the newly added Book. Now build and run the application. Click the +
button several times. You will add new Book objects to your object store as shown in Figure 11-23. If you quit
the app and relaunch it, you will notice that the data is still there.

269

CHAPTER 11 © STORING INFORMATION

iPhone Ss - iPhone 5s [i0S 9.0 (13A4...
Carrier ¥ 12:05 PM

=
-+
My Book1

My Book2

My Book3

My Book4

Figure 11-23. The final app

This was a cursory introduction to Core Data for i0S. Core Data is a powerful AP, but it can also take a
lot of time to master.

Summary

Here is a summary of the topics this chapter covered:

e Preferences

e Youlearned to use NSUserDefaults to save and read preferences from a file, on
both iOS and OS X.

e Databases

e Youlearned what a database is and why using one can be preferable to saving
information in a preferences file.

e Youlearned about the database engine that Apple has integrated into OS X and
iOS and the advantages and limitations of this database engine.

270

CHAPTER 11 STORING INFORMATION

e (Core Data

e Apple provided a framework for interfacing with the SQLite database. This
framework makes the interface much easier to use.

e Bookstore application
e You created a simple Core Data application.

e Youused Xcode to create a data model for your bookstore. You learned how to
create a relationship between two entities.

¢ Youused Xcode to create a simple interface for your Core Data model.

Exercises

e Add anew view to the app for allowing the user to enter the name of a book.
e Provide a way to remove a book from the list.

e Create an Author object and add it to a Book object.

271

CHAPTER 12

Protocols and Delegates

Congratulations, you are acquiring the skills to become an iOS developer! However, there are two additional
topics that iOS developers need to understand to be successful: protocols and delegates. It is not uncommon
for new developers to get overwhelmed by these topics, so we thought it best to introduce the foundation
topics of the Objective-C language first.

Multiple Inheritance

We discussed object inheritance in Chapter 1. In a nutshell, object inheritance means that a child can inherit
all the characteristics of its parent. See Figure 12-1.

Object A

Object B

Figure 12-1. Typical Objective-C inheritance

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 273
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_12

http://dx.doi.org/10.1007/978-1-4842-1904-1_1

CHAPTER 12 © PROTOCOLS AND DELEGATES

C++, Perl, and Python each have a feature called multiple inheritance. Multiple inheritance enables a
class to inherit behaviors and features from more than one parent. See Figure 12-2.

Object A

Object B Object D

Figure 12-2. Multiple inheritance

However, problems can arise with multiple inheritance because it allows for ambiguities to occur.
Because of this, Objective-C does not implement multiple inheritances. Instead, it implements something
called a protocol.

Understanding Protocols

Apple defines a protocol simply as a list of method declarations, unattached to a class definition. A protocol
is similar to a class interface with the exception that it is not defining a particular class. For example, the
methods that report user actions for the mouse on your Mac could be placed into a protocol.

Any class that wants to respond to mouse events could adopt the protocol and implement its methods.
Protocols are easy to use since they are not related to the class hierarchy and any class can implement them.

Throughout the book, we have used the example of a bookstore. Previously, we discussed the fact that
our bookstore may sell different types of media and have discussed how inheritance would help in that
situation. For the purpose of explaining protocols, let’s say that our bookstore also sells gum and candy. We
would want to create a class for those items. Call it EdibleItem. It would not make sense to have gum inherit
the same methods as a book or magazine, but all of the items would need to be sold, and the inventory
would need to be tracked. In this case, it would make sense to add the methods to a protocol that could be
shared by each of the items.

Note A protocol is much different than inheritance. When a class inherits from another class, it not only
receives the method declarations, but it also receives the methods themselves. When using a protocol, the
declarations are brought over, but the methods themselves need to be written.

274

CHAPTER 12 © PROTOCOLS AND DELEGATES

Protocol Syntax

The interface example for a protocol is
@protocol InventoryItem
- (void)removeFromInventory;
- (void)addToInventory;
@end

The interface file for this protocol example would be

@interface MyClass : SomeSuperClass <InventoryItem>
@end

Any object that wants to implement the InventoryItem protocol would include <InventoryItem> after
the object definition.
For example, you could create the interface for the edible objects you sell.

@interface Edible : NSObject <InventoryItem>
@end

It is not uncommon for iOS developers to have multiple protocols for their objects. This adds real power
to your objects when needed. Additional protocols are placed after the first one followed by a comma.

@interface EditbleItem : UITableViewController <InventoryItem, SaleItem>
@end

This example illustrates the power of protocols. Class EditableItem now has all of the method
declarations from InventoryItemand SaleItem.
Methods that are defined for the object’s delegate are called delegate methods.

Understanding Delegates

Delegates are helper objects. They enable you to control the behavior of your objects. The methods listed in
the protocol become helpers to your MyClass.

Note The key to understanding delegates is to know that a delegate is a separate object consulted in order
to augment the behavior of a host object. Thus, you can create an application delegate object that can affect
the behavior of the i0S NSApplication object without subclassing or changing the NSApplication class. The
object you create is the delegate object, and the messages that NSApplication will send your object are called
delegate methods. These are typically defined in a protocol (<UIApplicationDelegate>) that your class must
adopt. To work, a delegate object must be set as the delegate property of the host.

You can now use these methods in your object. For example, implementing the
<CLLocationManagerDelegate> protocol in your MyClass interface definition enables your object to be
notified by the iPhone’s GPS of our new location. The following example shows the method that you will
include and define inside your object’s implementation file:

275

CHAPTER 12 © PROTOCOLS AND DELEGATES

- (void)locationManager: (CLLocationManager *)manager didUpdatelocations:(nonnull
NSArray<ClLLocation *> *)locations

......

The locationManager delegate method automatically gets called as your GPS location changes,
allowing your code to process coordinates.

Next Steps

You will be well prepared to begin writing your own iOS apps. Don't take time off—keep moving forward!
The faster you begin using what you have learned, the better you will get. Whatever you do, don’t stop now!

Summary

In this chapter, we covered why multiple inheritance is not used in Objective-C and how protocols and
delegates work. There is still a lot to learn and know on your journey. Keep it up and help others along their
way.

276

CHAPTER 13

Introducing the Xcode Debugger W,

Xcode is fantastic! Not only is this tool provided free of charge on Apple’s developer site, but it is actually
really good. Aside from being able to create the next great Mac OS X, iPhone, or iPad app, Xcode has a
fantastic debugger built right into the tool.

So, what exactly is a debugger? First, let’s get something straight—programs do exactly what they are
written to do. Sometimes what is written isn’t exactly what the program is really meant to do. Sometimes
this means the program crashes or just doesn’t do something that is expected. Whatever the case, when a
program doesn’t work as planned, the program is said to have bugs. The process of going through the code
and fixing these problems is called debugging.

There is still some debate as to the real origin of the term “bug,” but one well-documented case from
1947 involved the late Rear Admiral Grace Hopper, a Naval reservist and programmer at the time. Hopper
and her team were trying to solve a problem with the Harvard Mark IT computer. One team member found a
moth in the circuitry that was causing the problem with one of the relays. Hooper was later quoted as saying,
“From then on, when anything went wrong with a computer, we said it had bugs in it.”!

Regardless of the origin, the term stuck, and programmers all over the world use debuggers, such
as Xcode, to help find bugs in programs. People are the real debuggers; debugging tools merely help
programmers locate problems. No debugger, whatever the name might imply, fixes problems all on its own.

This chapter will highlight some of the more important features of the Xcode debugger and will explain
how to use them. Once you have finished this chapter, you should have a good enough understanding of the
Xcode debugger and of the debugging process in general to allow you to search for and fix the majority of
programming issues.

Getting Started with Debugging

If you've ever watched a movie in slow motion just so you can catch a detail you can’t see when the movie
is played at full speed, you've used a tool to do something a little like debugging. The idea that playing the
movie frame by frame will reveal the detail you are looking for is the same sort of idea you apply when
debugging a program. With a program, sometimes it becomes necessary to slow things down a bit to see
what’s happening. The debugger allows you to do this using two main features: setting a breakpoint and
stepping through the program line by line (more on these two features in a bit). Let’s first look at how to get
to the debugger and what it looks like.

First, you need to load an existing program. This examples in this chapter use the MyBookstore project
from Chapter 8, so open Xcode and load the MyBookstore project.

Second, a debug device needs to be selected. Xcode provides several device simulators for debugging
purposes. So, it becomes possible to test the app on an iPad, iPhone 5s, iPhone 6 Plus, and so on—basically
on whatever iOS device you want (Figure 13-1).

'Michael Moritz, Alexander L. Taylor III, and Peter Stoler, “The Wizard Inside the Machine,” Time, Vol.123, no. 16: pp. 56-63

© Gary Bennett, Brad Lees and Mitchell Fisher 2016 277
G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1_13

http://dx.doi.org/10.1007/978-1-4842-1904-1_8

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

ece » = IENTTTITNEN e

| D No devices connected to 'My Mac'.. I
Edit Scheme... }depmj
New Scheme...
B 22 Q & O Manage Schemes...)‘ Generic i0S Device L
¥ &5 MyBookstore . I | source

v MyBookstore
k
m AppDelegate.m

PROJEC i iPad Air

AppDelegate.h :
B 8 iPad Air 2

h MainViewController.h TARGET] !Pad Pro (8.7 lijh] .
m MainViewController.m M AN] !F’ad Pm‘(12-9 inch) -»
h BookDetailsViewController.h : ;E::::Zna undle
m BookDetailsViewControllerm M
@ iPhone 5s
:1 ::::1 8 iPhone 6
h Bookstore.h #8 iPhone 6 Plus
m Bookstore.m M] fPhone 6s
B Main.storyboard M 8 iPhone 6s Plus

¥ Wl iPhone SE
"1 Assets.xcassets

LaunchScreen.storyboard Add Additional Simulators...
Info.plist Download Simulators...
> Supporting Files |
v
roduicte ¥ Deployment Info
MyBookstore.app

L

Figure 13-1. Selecting the iOS simulator

A simulator works just like the actual device and has the correct screen size based upon the chosen
device. It’s even possible to rotate and simulate a touch! The examples use the iPhone 6, but any i0OS
simulator can be used.

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain points that you as a
programmer are interested in. A breakpoint allows you to do this. In Figure 13-2, we’ve set a breakpoint on
line 18 of the program. To do this, simply place the cursor over the line number (not the program text but the
number 18 to the left of the program text) and click once.

278

¥ & MyBookstore
v MyBookstore

h AppDelegate.h

m AppDelegate.m

h MainViewController.h

m MainViewController.m L]

h BookDetailsViewController.h

m BookDetailsViewControllerm M

h Book.h

m Book.m

h Bookstore.h

m Bookstore.m

B Main.storyboard

[Assets xcassols
LaunchScreen. storyboard
Info.plist

4

M

> ‘Supporting Files
¥ [Products
MyBookstore.app

CHAPTER 13

Main\ViewController.m

[-1ableView-celForRo

MyBookstore MainViewController.m
/1 MainViewController.m
/! WyBookstore

// Created by M. R. Fisher on 6/29/16.
/! Copyright ® 281s Apress. All rights reserved.

#import "MainViewController.h®
#import "BookDetailsViewController.h®

#implementation MainViewController
= linstancetype}initWithCoder: (NSCoder s)aDecoder
{

self = [super initwWithCoder:aDecoder];

if (self) {
self.bookst
self.title

}

= [[Bookstore allec) init);
@*My Bookstore®;

roturn self;
= (void)prepareForSegue: (UIStoryboardSegue =)segue sender:(id)sender
if ([segue.identifier isEqualToString:@~BookDet
BookDetailsViewController sbookDetailsVC =
NSIndexPath sselectedRow = [self.tableView

ailSegue]) {
segue.destinationViewController;
indexPathForSelectediow];

Book sselectedBook = self.bookstore.books[selectedRow.row];

Figure 13-2. Your first breakpoint

INTRODUCING THE XCODE DEBUGGER

If line numbers are not being displayed, simply choose Xcode » Preference from the main menu, click
the Text Editing tab, and check the Line Numbers check box.

You can also remove the breakpoint by simply dragging the breakpoint to the left or right of the line
number column and then dropping it. In Figure 13-3, the breakpoint has been dragged to the left of the
column. During the drag-and-drop process, the breakpoint will turn into a puff of smoke. Breakpoints can
also be disabled by just clicking the breakpoint once. The breakpoint will turn from dark blue (enabled) to
light, translucent blue (disabled). Clicking again will reenable the breakpoint.

® ® | 2 #% MyBookstore) i§ iPhone 6 Finished running MyBook on iPhone 6
MainViewController.m
2 Q A © = o B |8 < > [MyBookstore MyBookstore | m MainViewController.m
[By MyBookstore it A st
k . 2 f/ MainViewController.m
¥ | MyBookstore 3 // MyBookstore
& I
| .h .
k}AppOstecate 5 [/ Created by M. R. Fisher on 6/29/16.
m AppDelegate.m & // Copyright © 2016 Apress. All rights reserved.
h MainViewController.h B
m MainViewController.m M 9 #import "MainViewController.h®
b BookDetailsViewControfier.h #import “"BookDetailsViewController.h
m BookDetailsViewController.m M 2 @implementation MainViewController
h Book.h 4 = (instancetype)initWithCoder:(NSCoder *)aDecoder
m Book.m []
16 self = [super initwithCoder:aDecoder];
h Bookstore.h 17 if (self) { '
m Bookstore.m 18 self.bookstore = [[Bookstore alloc] initl;|
- 19 self.title = @My Bookstore";
Main.storyboard F
I Assets.xcassets z
2 return self;
LaunchScreen.storyboard 20}

Figure 13-3. The breakpoint disappears in a puff of smoke

[-initwithCoder:

279

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

Setting and deleting breakpoints are pretty straightforward tasks. There are other ways to delete
breakpoints, but this way is the most entertaining!

Using the Breakpoint Navigator

With small projects, knowing where all the breakpoints are isn’t necessarily hard. However, once a project
gets larger than, say, our small MyBookstore application, managing all the breakpoints could be a little more
difficult. Fortunately, Xcode 7 provides a simple method to list all the breakpoints in an application called
the Breakpoint Navigator. This can be found by clicking the Breakpoint Navigator icon in the navigation
selection bar, as shown in Figure 13-4.

enve » A MyBookstore) I iPhone & Finished running MyBookstore on iPhone 6 @ S0 EIDD
BookDetailsViewController.m ar
B B « m D & o < & myBookstore MyBookstore | BookDetallsViewController.m) [-tableView:celiForRowAtindexPath:
¥ [MyBookstore .:’-’ BookDetailsViewController.m
¥ m MainViewController.m :-: MyBookstore
[0 -initwithCoder: line 1 = . 7/ Created by M. R. Fisher on 6/29/16.

[-tableview-cellFerRo. . line & Copyright ® 2814 Apress. All rights reserved.
¥ m BookDetailsViewController.m

[0 -tableview-celForRo... line 32 [#import "BookDetailsViewController.h®

@implementation BookDetailsViewController

// We are using static cells which means they are already defined in our storyboard.

/ In the MainViewController we had an example of dynamic cells where the class
defined the cells in code. Normally, this is how a UlTableView class would do it's work.

/{ However ¢ in our litte app, we kow we have three items for a book. Plus, the last cell

f/ is a lot larger than the others and more complicated since it has a UITextView. While all

/f of this can also be done in code (anything can be done in code) for simplicity's sake, we

// keeping the rows static.

'

= {UITableViewCell s)tableView:(UITableView =)tableView cellForRowAtIndexPath:(NSIndexPath =)indexPath
i

UITableViewCell =cell = [super tableView:tableView cellForRowAtIndexPath:indexPath];
NSInteger row = indexPath.row;

i

// There are three rows. They are nusbered as @ to 2, not 1 - 3.

'

5 if (row == @) {

l.text
.detailTextLabel.t

1 {

Figure 13-4. Accessing the Breakpoint Navigator in Xcode 7

Once clicked, it will list all the breakpoints currently defined in the application. From here, clicking
a breakpoint will take you to the source file with the breakpoint. You can also easily delete and disable
breakpoints from here.

To disable/enable a breakpoint, simply click the blue breakpoint icon in the list (or wherever it
appears). Don't click the line; it has to be the little blue icon, as shown in Figure 13-5.

280

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

[] ® A, MyBookstore | i) IPhone 8 Finished running MyBookstore on iPhone 6 = @ = O
BookDetailsViewController.m +
2 Q m o 3 o < & myBookstore MyBookstore | BookDetailsViewControlier.m | [I] -tableView:celiForRowatindexPath:
" E L
¥ & MyBookstore F R 1 // BookDetailsViewController.m
¥ m MainViewController.m FE /I WyBookstore
it 3]] [A ;
[0 -initwithCader L -l // Created by M. R. Fisher on 6/29/16.
[0 -tableView-cellForRo... | F -‘ f/ Copyright ® 2014 Apress. All rights reserved.
'
¥ m BookDetallsViewController.m | 1
I i rt *BookDetailsViewCo al h*
[-tableView-cellForRa... 3 D, #import *BookDetailsViewController.h
¥ 2
Xt 1 @implementation BookDetailsViewController
f/ We are using static cells which means they are already defined in our storyboard.
In the MainViewContr er we had an example of dyna cells where the class
/ defined the cells in code. Normally, this is how a UlTableView class would do it's work.
1
" er since in our litte app, we kow we have three items for a book. Plus, the last cell
i"i lot larger than the others and mo mplicated since it has a UlTextView. While all
" is can also be done in code (anything can be done in code) for simplicity's sake, we
/f keeping the rows static.
/"
= {UITableViewCell s)tableView:(UITableView =)tableView cellForRowAtIndexPath:(NSIndexPath =)indexPath
{
UITableViewCell #»cell = [super tableView:tableView cellForRowAtIndexPath:indexPath);
NSInteger row = indexPath.row;
i
// There are three rows. They are numbered as @ to 2, not 1 - 3.
1
ED if (row == @) {
»
= } 8

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan to put the
breakpoint back in the same place again. Disabling a breakpoint is actually quite simple. Just click the
existing breakpoint and it will turn from a dark blue color to a faded blue. The debugger will not stop on
these faded breakpoints, but they remain in place so they can be conveniently enabled and act as a marker
to an important area in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select one or more
breakpoints and press the Delete key. Make sure you select the correct breakpoints to delete since there is
no undo feature.

It's also possible to select the file associated with the breakpoints. In this case, if you delete the file listed
in the Breakpoint Navigator and press Delete, all breakpoints in that file will be deleted.

Please note that breakpoints are the lines with the small breakpoint icon, as shown in Figure 13-5.
The file is outdented from the breakpoint; in Figure 13-5, the files are BookDetailsViewController.m and
MainViewController.m. Figure 13-6 shows an example of what a file looks like with more than a single
breakpoint.

281

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

oce » A MyBookstore |) iPhone 6 Finished running MyBaokstore on iPhone 6 =E o <000
BookDetallsViewController.m +|
i < & MyBookstore MyBookstore) m BookDetailsViewControlier.m | [-tableView:cellForRowAtindexPath:
v B MyBookstore & sreakponts 7

/I We are using static cells which means they are already defined in our storyboard.
¥ m MainViewController.m

[-intwithCoder: line 18 -

[-tableview-cellForRo... line 66 I

In the MainViewController we had an example of dynamic cells where the class
defined the cells in code. Normally, this is how & UITableView class would do it's work.

" However since in our litte app, we kow we have three items for a book. Plus, the last cell
¥ m Bool il g ~ A 4 : . ¢ -
" AOeislsViswControlerm o \ is a lot larger than the others and more complicated since it has a UlTextView. while all
[0 -tableView-cellForRo... line 3 [, of this can also be done in code (anything can be done in code) for simplicity's sake, we
. 7 // keeping the rows static.
[-tableViewceliForRo... fine ‘f - 2

[0 -tableView-cellForRo.. (ine 35 [, 2+ - (UITableviewCell *)tableView: (UlTableview +)tableview cellForRowAtIndexPath:(NSIndexPath =)indexPath

UITableViewCell scell = [super tableView:tableView cellForRowAtIndexPath:indexPath];
NSInteger row = indexPath.row;

1

{f There are three rows. They are numbered as @ to 2, not 1 - 3.

H

if (row == @) {

| =) cell.textlabel.text = @*Title";
g cell.detailTextLabel.text = self.book.title;

} else if (row == 1) {
[%] cell.textlabel.text = @"Author®;
1 cell.detailTextLabel.text = self.book.author;

} else if (row == 2) {

= cell.textlabel, text
cell.detailTextLabe.

@"Synopsis®;

-number0fLines = 8
cell.detailTextLabel.lineBreakMode = NSLineBreakByWordwrapping;

v cell.detailTextLabel.text = self . book.info;

s 3

return cell;

Figure 13-6. A file with several breakpoints
Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2. Next, as shown in Figure 13-7, click the Run button
to compile the project and start running it within the Xcode debugger.

o) ® »r #\ M_re) @i iPhone 6 Finished running MyBookstore on iPhone 6 & D L]

Figure 13-7. The Build and Debug button in the Xcode toolbar

Once the project builds, the debugger will start; the screen will show the debugging windows, and the
program will stop execution on the line statement, as shown in Figure 13-8.

282

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

[* >] Ay MyBookstore | i) iPhone 6 Running MyBookstore on iPhone 6 D] ||

MainViewController.m +
m o G ¥ < & MyBookstore MyBookstore | MainViewController.m [} -initwithCoder:
¥ MyBookstore PID 4024 @ lainViewController.h®
ptailsViewController.h®
W cru s
o on MainviewController
) Memory B
= ! Stack ' - linstancetype)initWithCoder: (NSCoder =)aDecoder
S v % o {
= Disk b oy oy KBl s er initwithCoder:aDecoder];
el if (self) {
@ Metwork ,!4 = Zero KBis NNy self.bookstore = [Bookstore newl; Trread 1: beaakpoirt 1.1
e self.title = @*My Bookstore®;
v (@ Theead 1 Quoue 1 [se }
& 0 -[MainViewController initWithC...
®k T Wit }
o: = [void)prepareForSegue: (UlStoryboardSegue =)segue sender:(id)sender
Y 29 main {
if ([segue.identifier isEqualToString:@"BookDetailSegue®]) {
t Aot nllar shonkharaileUr = sanue dactinatinniissCanrrallars
» @ Thread 2 D > MyBaockstore | () Thread 1) I 0 -[MainViewController initWithCoder:)
» @ Thread 3 > [selt = (v wCont ") Ox7ta132d1a500 (11db)
» D Tvead 4 0 t r » [_cmd = (siL) "initWithCoder:* | e
» @ Theead 5 » [aDecoder = (LN u0ecoder *| 0x71a137021800 f Text I
» @ com.apple.ulkit.eventfetch-thread |... - S, 1 OUtDLIt :
» @) Thwead 7 e : g] EEREREEEE
Variables !
. ’
e -
= EOE | At S Al Output 3 = W Oa

Figure 13-8. The debugger view with execution stopped on line 18

The debugger view adds some additional windows. Let’s go over the different parts of the debugger
shown in Figure 13-8:

e Debugger controls (solid oval in red): The debugging controls can pause, continue,
step over, step into, and step out of statements in the program. The stepping controls
are used most often. The first button on the left is used to show or hide the Debug
area. In Figure 13-8, the Debug area is shown.

e Variables: The variables window displays the variables currently in scope. Clicking
the little triangle just to the left of a variable name will expand it.

e Output window: The output window will show useful information in the event of a
crash or exception. Also, any NSLog output goes here.

e Stack trace: The stack shows the object stack as well as all the threads currently active
in the program. The stack is a hierarchical view of what methods are being called.
For example, main calls UIApplication, and UIApplication calls the AppDelegate
class. These method calls “stack” up until they finally return, which is where it gets its
name.

Working with the Debugger Controls

As mentioned, once the debugger starts, the view changes. What appears are the debugging controls (item B
in Figure 13-8). The controls are fairly straightforward and are explained in Table 13-1.

283

CHAPTER 13

INTRODUCING THE XCODE DEBUGGER

Table 13-1. Xcode Debugging Controls

Control

Description

B

>

Ve

[«

-

Clicking the Stop button will stop the execution of the program. If the iPhone or
iPad emulator is running the application, it will also stop as if the user pressed
the Home button on the device. Clicking the Run button starts debugging. If the
application is currently in debug mode, clicking the Run button again will restart
debugging the application from the beginning; it’s like stopping and then starting
again.

Clicking the Pause or Continue button causes the program to pause or continue
execution. The program will continue running until it ends, the Stop button is
clicked, or the program runs into another breakpoint.

When the debugger stops on a breakpoint, clicking the Step Over button will cause
the debugger to execute the current line of code and stop at the next line of code. If
the debugger encounters a breakpoint while stepping over code, the debugger will
go to the breakpoint instead of skipping over it. In Figure 13-5, clicking this icon will
cause the debugger to go to the next line.

Clicking the Step Into button will cause the debugger to go into the specified
function or method. If you clicked this control, the debugger would go into the init
method shown in Figure 13-5. This is important if there is a need to follow code into
specific methods or functions. Only methods for which the project has source code
can be stepped into.

The Step Out button will cause the current method to finish executing and the
debugger will go back to the caller. Using Figure 13-5 as an example, if you were to
step into line 25 and then immediately click Step Out, the init method would finish
executing, and the debugger would then go back to line 25, effectively finishing the
current method (init) and stepping back out.

Using the Step Controls

To practice using the step controls, let’s step into a function. As the name implies, the Step Into button
follows program execution into the method that is highlighted. Make sure there is a breakpoint set

on the line statement shown in Figure 13-8 (line 18 of the example; yours may be different) of the
MainViewController.m file and click the Run button. Your screen should look similar to Figure 13-9.

284

CHAPTER 13

INTRODUCING THE XCODE DEBUGGER

oeve » M A MyBookstore) i iPhone 8 Running MyBookstore on iPhone & E 9 y0Qgan
MainViewController.m +
B QAASEeEeBD B (-] m [-initwithCoder:
S T
¥ MyBookstore PI0 420 Q@ /1 MainViewController.m
& ceu : .’:i MyBookstore
& // Created by M. R. Fisher on &/29/16.
= Memory & // Copyright ® 2016 Apress. All rights reserved.
A Y
| Disk Zero KB/s 8
9 mimport "MainViewController.h"
® Network Zero KB/s 0 #import “BookDetailsViewController.h®
v @ Thvead 1 Queve: com... hread (serial) @implesentation MainViewController
] Y 0 -[MainViewController IntWithC... - (instancetype)ini 1(NSCoder =) aDecodk
[1 -ViCiassSwapper initWithCod self = [super initwithCoder:aDecoder];
[28 wiAppiicationMa 17 if (self) {
|10] self.bookstore = [[Bookstore alloc] initl; ‘Thread 1: besakpoint 5.1
1 29 main m self.title = @"My Bookstore";
[30 stant }
» @ Thread 2 E e o i L0 > MyBookstore) ([} Thread 1) I 0 -[MainViewController initWithCoder:]
» @ Thread 3 » [sl = (usicviewControlier *) OxPlcB0ABI0 DB, header sequence number = 284 :
M com._nager (serieD) p 5 - 2016-87-10 20:07:12.441588 My [
» @ Thread 4 Queue: com.__nager (serial) | » [E] _emd = (5EL) “initWithCoder: psapfinelt enable_level: 9,
> @ Thead 5 > [aDecoder = (UinsDecoder *) 0x71ct60828000 pervist_level: ¢, default ttl: 4, infe. m. @, debug_ttl: @

» ([com.apple.ulkit.eventfetch-thread (...
» [Thwead 7

=) EnE

@, privacy, nntti.nu-

4+ enable_level: 8,

: Common,
persist_level: @, doflulgtt].' 0 info_ttl: @, debug_ttl: ..

8, enable_s
(11db)

Auto 3 = Fin

Al Qutput &

Figure 13-9. The debugger stopped on line 18

@, privacy_setting:

00

Click the Step Into button * ; this will cause the debugger to go into the init method of the Bookstore
object. The screen should look like Figure 13-10.

one »
BRQAAHNOECRBE
[+ MyBookstore PID 4201 Q®
& cru 0%
0 Memory 1.3 MB
':_'_ Disk Zoro KB/s
@ Network Zero KB/s

v @ Thead 1 Queue: com....hread (serial)
] Y 0 -[Bookstore init]
I 1 -[MainViewControlier initWithC ..

[2 -[uictassSwapper initWithCod.
[29 ulApplicationMain
nwm.lm
[31 stant

> (@ Thread 2

» (@ Thread 4 Cueus
» () com.apple.ulkit.eventfetch-thread (...

om...nager (serial)

M A MyBookstore) i IPhone &

Running MyBookstore on iPhone 6

// Bookstore.m
/{ MyBookstore

f/ Created by M. R. Fisher on &/29/16.

/! Copyright ® 2016 Apress. All rights reserved.
¥ #import "Bookstore.h®
@implementation Bookstore

= (instancetypelinit
{

self = [super initl;

if (self) {
self.books = [NSMutableArray new];
[self addBooks];

}

E ™ o & 1| 0D 50 9
» [self = (Bocksioe *) Ox7Mel60406020

MyBookstore) ([} Thread 1) I 0 -[Bookstore init]

DB, header sequence number = 284
20146-87-10 20:07:12.441508

Theead 1: step in

» £ _emd = (SEL) init 3

enable_level: ©,

persist_level: @, default_ttl: l. inr; ttl: 8, umo_tu: 0.
@, enable_;

2016-67-18 20:07:12.461590

0. prxi\rlql ilttti.n.

com.apple

persist_level: @, d.flulg“].' 0

enable_level: 8,

i Common,
info_ttl: @, debug_ttl: @,

8, enable_s
(11db)

Auto $ @ Fin All Dutput 2 @ Fine

Figure 13-10. Stepping into the init method of the Bookstore object

@, privacy_setting: @

w00

285

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

It's important to note that not only is the debugger in the Bookstore object, but the debugger has also
moved to the Bookstore.mfile (it used to be in the MainViewController.mfile).

The Step Over control <+ continues execution of the program but doesn’t go into a method. It simply

executes the method and continues to the next line. The Step Out control .. is a little like the opposite of

Step Into. If the Step Out button is clicked, the current method continues execution until it finishes. The
debugger then returns to the line before Step Into was clicked. For example, if the Step Into button is clicked
on the line shown in Figure 13-9 and then the Step Out button is clicked, the debugger will return to the
MainViewController.m file on the statement shown in Figure 13-9 (line 25 in the example), the line where
the Step Into was made.

Looking at the Thread Window and Call Stack

As mentioned earlier, the thread window displays the current thread (there is only one in the example
program). However, it also displays the call stack. If you look at the difference between Figures 13-9 and
13-10 as far as the thread window goes, you can see that Figure 13-10 now has the [Bookstore init] method
listed because [MainViewController initWithCoder:] calls the [Bookstore init] method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a list of functions
that are currently being called. That’s an important distinction. Once the init method is finished and returns
(line 21), [Bookstore init] will no longer appear in the call stack. You can think of a call stack almost like a
breadcrumb trail. The trail shows you how to get back to where you started.

Debugging Variables

It is possible to view information about a variable by hovering over the variable as well as viewing them in
the variables section. Let’s do this by starting from scratch. To do this, click the Stop icon to stop debugging
the app and then clear all breakpoints by going to the Breakpoint Navigator (see Figure 13-11, highlighting
the project, and then pressing the Delete button on the keyboard.

® @ > #% MyBookstore | |i§ iPhone 6 Finished running MyBookstore on iPhone 6
m MainViewController.m
2 Q A o > | | B8 < & MyBookstore MyBookstore) m MainViewController.m) No Select

B
v & MyBookstore 5 Breakpoiny L1 4 o
- // MainViewController.m
¥ m MainViewController.m // MyBookstore
Tt . . e - l,fllr
o r: line 2
m LIRS // Created by M. R. Fisher on &6/29/16.
[-tableview:cellForRo... // Copyright © 2016 Apress. All rights reserved.
¥ m BookDetailsViewController.m

/!
[3 -tableView:cellForRo... line
[0 -tableview:cellForRo...
[0 -tableView:cellForRo... line 39

#import “MainViewController.h"
#import “BookDetailsViewController.h"

@implementation MainViewController

- (instancetype)initWithCoder:(NSCoder *)aDecoder

Figure 13-11. Deleting all breakpoints

286

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

So, now let’s add a new breakpoint so you can see some variables. Change to the Project Navigator by
clicking the Folder icon. Select the Bookstore.m file and set the breakpoint on line 35, as shown in Figure 13-12.

@ ® > #\ MyBookstore | i} IPhone 8 Finished running MyBookstore on iPhone 6 = Q<0 0
Bookstore.m +
B2 aso©Ec @ B< -] m m @
v & MyBooksts
s 2 return self;
¥ | MyBookstore all)
h AppDelegate.h
m AppDelegate.m = (void)addBooks
a i
h MainViewController.h Book snewBook;
m MainViewController.m M

// Create a new book object.

: BookDetailsViewController.h nowBook = [8ock newl;

= BookDetsilsViewController.m ™ newBook . lo bjective-C for Absolute Baginners®;
newBook. aut @*Bennett, Fisher and Lees®;
h Book.h newBook.info = @*i0S Programming made easy.";
m Book.m (.]
e E» self.books addObject:newBook];
// Create a new book object. We can re-use the same variasble. The current value of newBook is
/I saved in the self.books array.
Main. storyboard newBook = [Book newl;
W Assets xcassets = »
LaunchScreen.storyboard =rry .
Info.plist enable_ l.tul l. nouist level: 8, default_ttl: @, inro ttl
» Sui ting Fil 8, debug_ttl: @, g _SY! @, enable_
RO v e privacy_ uttin‘ L]
v Products. 2016-87-10 20:43:48.734710 MyBookstore[4323:577222]
A com.apple. Common,
g MySookelon.app lnnhll level: @, pﬂuht level: @, dlflnll ttl: @, inﬂ: ttl:
®, debug_ttl: @, - 8, enable_ "o,
privacy_setting: @
= OE| Auves = All Output & = oo

Figure 13-12. Setting the new breakpoint

Next, run the application. When the debugger stops on line 35, hover the mouse over newBook.info
(any from lines 31-33). There will be a small pop-up, as shown in Figure 13-13.

D4

» (Book *) Ox7fdab497cal0 @ (i) ict:newBook];

T 0w

Figure 13-13. Initial variable pop-up. You need to expand this!

Next, click the disclosure arrow (arrow in Figure 13-13). What will be displayed are the variables
associated with the object Book stored in the variable named newBook, as shown in Figure 13-14.

tore addBooks] 33
34

pora imisd

¥ (Book *) Dx7fdab497ca10
b _title = (

inewBook.info;= @"i0S Programming made e

__NSCFConstantString *) @"Objective-C for Absolute Beginners"

0|

» _author = (__ NSCFConstantString *) @"Bennett, Fisher and Lees"
P _info = (__NSCFConstantString *) @"iOS Programming made easy." 3

Figure 13-14. List of properties in the object Book

287

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode 7 debugger, fixing them is part of the entire
debugging process. Before a program can be run (with or without the debugger), all errors must be fixed.
Warnings won't stop a program from building, but they could cause issues during program execution. It’s
best not to have any warnings at all.

Let’s take a look at a couple of different types of warnings/errors. To start, let’s add an error to your code.
On line 18 of the MainViewController.m file, change the following:

[[BookStore alloc] init]
to the following:
[[BookStore alloc] initialize].

Xcode will display a small red exclamation point (stop sign) indicating that there is an error on that line.
Next click the exclamation point to see the error, as shown in Figure 13-15.

@implementation MainViewController

= (instancetype)initwithCoder:(NSCoder *)aDecoder

self = [super initWithCoder:aDecoder];
if (self) {
{1} L] self.bookstore = [[Bookstore alloc] initialize]; © No visible @interface for declares the selector
1 self.title = @"My Bookstore";

}

Figure 13-15. Viewing the error in Xcode

Generally, the error points to the real problem. In the previous case, the BookStore object doesn’t know
about a method called initialize.

Tip Encountering this error when building a project generally means the method name is misspelled or
perhaps the proper header file hasn’t been included to let the compiler know about this method. If you know the
method exists, then check to see whether the header is included. Otherwise, it might just be a typo.

Let’s fix the error by changing the word initialize to init online 18. Xcode will remove the error, and
it will look fine again.

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings won'’t stop a program from
building but may cause issues during program execution. It’s outside the scope of this book to cover those
warnings that may or may not cause problems during program execution; however, it’s good practice to
eliminate all warnings from a program.

Let’s pick on line 18 again. This time, remove [[Bookstore alloc] init]; altogether and replace it
with just a@""; as shown in Figure 13-16. This time, instead of red exclamation point, you now see a warning
triangle. When clicked, the warning is displayed just like it did for the error.

288

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

self = [super initWithCoder:aDecoder];

if (self) {
18 self.bookstore = @"";l Incompatible pointer types gning to = from g
1 self.title = @"My Bookstore";

}
Figure 13-16. Viewing an Xcode warning

It may not be convenient to always click an error or warning in this way. A more convenient way is to
view all the errors and warnings across the entire app. To do this, you use the Issue Navigator. To get to the
Issue Navigator, just choose the triangle from the Navigator panel. Figure 13-17 is an example of viewing all
the errors and warnings.

ove » A\ MyBookstore) i} iPhone B Finished running MyBookstore on iPhone 6 1@ & <0 GO
MainViewController.m Bookstore.m
o o E BE < B ¥ B .m) @ <0

PT— L ime implementation Bookstore
s)init

v A\ MyBookstore 2 issue 0 {
v @ Semantic Issue er initl;
Incompatible pointer types) oks = [NSMutableArray new];
assigning to 'Bookstore *' from ... [self addBooks];

3
@ Property 'bad_title’ not found on

object of type 'Book *' 3
= (void)addBooks
{
Book snewBook;

// Create a new book object.

ve-C for Absolute Beginners®;
isher and Lees";
05 Programming made easy.";

[] [self.books addObject:newBook];

We can re-use the same variable. The current value of newBook is

// Create a new book object.

wen an English *
er *

Figure 13-17. Errors and warnings in the Issue Navigator

Note Line 31 of Bookstore.m was modified to be an error. To do this, we changed the newBook.title t0
newBook.bad_title. It’s an error because bad title isn’t a valid property in the Book object.

Clicking each line in the Issue Navigator will go to the file and location of the error or warning. This
makes it a fast and easy way to find and navigate to all the errors in the build.

Now, just either undo all of these changes or go back and fix these issue so there are no longer any
warnings or errors. Now, play around with running the app; setting breakpoints; and stepping over, into, out
of code. Just have fun. Xcode definitely provides a lot of features to help debug a program and make finding
warnings and errors easy to do.

289

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

Summary

In this chapter, we covered the high-level features of the free Apple Xcode debugger. Regardless of price,
Xcode is an excellent debugger. Specifically, in this chapter, you learned the following:

e The origins of the term “bug” and what a debugger is
e The high-level features of the Xcode debugger
e Breakpoints

e Stepping through a program

e How to use the debugging controls
e Tasks (stop sign)
e Restart and continue (pause)
e Step over
e Stepinto

e Step out

e Working with the various debugger views
e Threads (call stack)
e Variables
e Texteditor

e OQOutput

e Looking at program variables

e Dealing with errors and warnings

Exercises

e Change Device Type from iPhone 6 to something else. Just have fun playing around
with the different simulator sizes.

290

Index

A

Actions
connecting with objects, 239
addToResults(), 217
Airplane class, 15
Algorithm, 1, 10
Alice app
To the Moon Alice app, 17
Alice applications, 6
Alice interface, 8
Alice user interface
details area, 17
3D programming, 11
editor Area, 17
events Area, 17
navigation menu, 12
Object Tree, 16
Opening screen, 11
Scene Editor, 13
World window, 14
Xcode IDE, 12
AND operator, 59-62, 81
AppDelegate class, 283
Apple Developer Program, 27
Apple’s proprietary A9 processor, 36
Application delegate, 275
Architectural pattern, 224
ASCII characters, 39, 40
Attributes, 245
Author class, 99

B

bankLeft(), 15

bankRight(), 15

Binary number system, 38

Binary operators, 59

Block comment, 103

Boilerplate project, 162

Book class, 86-87, 93, 96, 163, 166-167, 205

© Gary Bennett, Brad Lees and Mitchell Fisher 2016

Book Detail View
BookDetailsSegue, 191
BookDetailViewController class, 193-194
identifier, 191
label text, 197-198
outlets setting, 199
plugging, 202
segue identifier, 192
selection segue, 188-190
Table View to Detail View, 188
View Controller, 186-187

Book.h file, 166, 181-184, 202

Book object, 160, 166-167, 169, 205

BookStore application
boilerplate project, 162
Cocoa Touch class, 163
creating, 160
data model classes, 164
name and parent class, 164
product name and options, 161
viewing new class, 166

BookStore folder, 90

Bookstore class, 85, 87

BookStoreCoreData.xcdatamodeld
attributes, 249-250

date, 251

decimal, 251

integer 32, 251

string, 251
blank model, 249
Data Model Inspector, 253
entity, 249
fetched properties, 249
managed objects, 254-256, 258
NSManagedObiject, 254, 257
relationships, 249, 252-253
user interface, 258

BookStore folder, 91

Bookstore.h file, 166

Bookstore init method, 286

Bookstore.m file, 286

G. Bennett et al., Objective-C for Absolute Beginners, DOI 10.1007/978-1-4842-1904-1

291

INDEX

Bookstore object, 85, 160, 180, 205, 285-286, 288
BookstoreTableViewController class, 175
Boolean data type, 40, 59, 63
Boolean expressions, 214
Boolean variable, 215
combining comparisons, 219
comparing dates, 217
comparing strings, 215
if statement, 214
true/false values, 214
Boolean logics
AND operator, 59-60
binary operators, 59
comparing data, 207
Comparison Operators, 62
FALSE operator, 59-60
logical operations, 59
NAND, 60
NOR, 60
NOT statement, 60
NOT OR, 60
OR operator, 59, 60
TRUE operator, 59-60
Truth Tables, 60
unary operator NOT, 59
XOR operator, 60
Boolean variables, 215
Breakpoint Navigator method, 280
Breakpoints, 278-280
Bugs, 4, 277
Bytes, 37

C

Calling methods
class methods, 129
definition, 129
dynamic binding, 129
instance methods, 130
parameters, 129
Call Stack, 286
CamelCase, 167
Camera Adjustment tool, 20, 21
caselnsensitiveCompare method, 216
Class
Calling Methods, 129
components, 128
declaring interfaces and properties, 128
elements, Objective-C language, 127
implementation file, 131
instance variables, 128
interface, 128
methods
coding, 132

292

objective-C
definition, 104
Radio class
hooking up code, 143
implementation file, 139
MyFirstApp, 133, 135
objects, 135
SimpleLabelData classes, 133
UlI, 140
Xcode documentation accessing, 150
Classes, OOP
definition, 84
and individual objects, 85
planning
implementing, 89
methods, 87
properties, 85
Class extension, 117
Class methods, 129
CLLocationManagerDelegate, 275
clubMember variable, 215, 219
Cocoa Touch Class, 137, 163, 175, 177
Code errors
and warnings, 288
Code refactoring, 80
Collection literal, 155-156, 181
Collections
containers, 153
NSArray, 153, 155
NSDictionary, 153, 156
NSMutableArray, 153
NSMutableDictionary, 153
NSMutableSet, 153
NSSet, 153-154
types, 153
Command Line Tool template, 28
Comparing data
Boolean expressions, 214
Boolean logic, 207
relational operators, 208
scale, 207
switch statement, 220
Comparing dates, Boolean expressions, 217
Comparing numbers
relational operators, 208
Comparing strings, Boolean expressions, 215
Comparison operators, 62
ComparisonsAppDelegate.m file, 212-213
Computer program, 1
Condition-Controlled Loops, 73
Containers, 153
Core Data, iOS, 246
Couch object, 84
Count-controlled loop, 72

Counter variable, 72-73

Create a new Xcode Project option, 27-28
Create button, 138

Customer class, 86-88, 93-94, 96
Customer.h file, 94

Custom TextString, 48

D

Data
debugging, 55
numbering systems, 35
storage, 35
zeros and ones, 35
Databases, 245
applications, 245
enterprise database servers, 245
spreadsheet, 245
SQLite, 245
Data Model Inspector, 253
Data storage
BookStoreCoreData.xcdatamodeld
(see BookStoreCoreData.xcdatamodeld)
databases, 245
iPad, 243
iPhone, 243
Mac, 243
preferences file, 243
Data types
Booleans, 40
compiler warnings/compiler errors, 40
definition, 40
numbers, 40
objective-C, 50
objects, 40
strings, 40
variables, 40-41
Dates
comparing, 217
Debug area, 114
Debugger Console window, 30-31
Debugger Controls, 283
Debugging, 4-5, 9-10, 55, 277
benefits of OOP, 97
with Xcode debugger
Breakpoint Navigator method, 280
breakpoints, 278-280
Call Stack, 286
controls, 284
Debugger Controls, 283
output window, 283
Stack trace, 283
Thread Window, 286
variables window, 283, 286

INDEX

Delegate methods, 275
Delete key, 281
Design requirements, 2, 4-5, 8, 10
Details Area, 17
DetailViewController.m, 281
DetailViewController.xib file, 205
Development cycle, 4
Document Outline

Interface builder application, 233
Dog class, 84
doSomething(), 209
Dynamic binding, 129

E

Edibleltem, 274-275

Edit Code button, 21

Editor Area, 17, 30, 49

Edit Scene button, 13
Eliminate Redundant Code, 97
else-if Statements, 79

ENIAC, 35

enteredPassword, 216

Event handlers, 17

Events Area, 17

F

Factory methods, 130
FALSE operator, 59-64, 73
fast enumerator, 154
filled-out method, 148
firstNumber variable, 41, 43-46, 54
flips-the-bit, 61
Flowcharting, 68-69

for loop, 72
forum.xcelme.com, 75, 79
Foundation class, 127-128
Foundation framework, 106

G

Generate Random Number, 235, 240
Getter method, 169
Grass template, 41

H

Handle Style tools, 21

Hello World app, 17
HelloWorld class, 108
HelloWorld.h file, 107
HelloWorld object, 107-108
Helpers, 275

293

INDEX

Hexadecimal, 39
Hooking up code
Radio class, 143
Human Interface Guidelines (HIGs), 226

I, J

if-else statement, 80
If statement, 214
if then statements, 207
If-Then-Else code, 63
If/Then statement, 213
Implementation files
interface builder application, 239
radio class, 139
Implementing, classes, 89
Infinite Loops, 73
Inheritance
multiple, 273
in OOP, 96
init method, 285
Instance methods, 130, 133
Instances
in Alice user interface, 15
Instance variables, 128
accessing properties, 167
custom Getter and Setter, 168
Instance variablesBook object, 167
Instance variablesNSString object, 167
Integer 32, 251
IntegerForKey method, 245

Integrated development environment (IDE), 6, 10

Interface, 104
OOP, 98
Interface builder application
iPhone App
connecting actions and objects, 239
Document Outline, 233
implementation file, 239
MVC groups, 232
Object Library, 234-235
Outlets, 237
RandomNumber, 228, 230
random number generator app, 227
Source files, 230
view, 235
XIB file, 232
operating system, 224
XIBs, 224
XML file, 224
Interface file, 114
Interfaces
and properties (instance variables), 128
Inventoryltem protocol, 275
iPhone App

294

connecting actions and objects, 239
document outline, 233
implementation file, 239
Object Library, 234-235
Outlets, 237
view, 235

isEqualToString, 216

K

Keychain, 244

L

Label object, 120-121, 143, 238, 240
land(), 15
Local variable, 42
LocationManager method, 276
Logical operations, 59
Looping, 74
Loops
Condition-Controlled Loops, 73
count-controlled loop, 72
Infinite Loops, 73
lowerLandingGear(), 15

Macintosh, 101
main.c file, 212
main.m file, 77
MainViewController class, 178-180
Master-Detail Application, 89
MasterViewController.m file, 284, 286, 288
Material class, 96
Methods manipulate objects, 7
Microsoft SQL Server, 245
Mobile banking app, 2, 4, 67
Model-View-Controller (MVC) pattern, 224
modulus operator, 79
MoonProject.a3p Template, 18
Moore’s law, 36
Multiple inheritance, 273
Multitasking, 244
Mutable container classes
NSMutableArray, 158
NSMutableDictionary, 159
NSMutableSet, 157
MyBookstore program
Bookstore Object, 180

clean slate and utilities pane displayed, 172-173

delete key, 169-172
Main.storyboard file, 171
Navigation Controller, 172
(Optional) Shrinking, 173-175

Root View Controller, 174

ViewController.h and .m files, 169

View Controller Scene, 172
MyClass interface, 275

N

NAND operator, 60
NAND truth table, 61
Navigation Controller, 172-173
Navigation menu, 12
Navigator, 114
Navigator area, 30
Nested if Statements, 79
New Xcode Project, 210
NeXT Computer, 101
Non-mutable classes, 157
NOR operator, 60
NOR truth table, 62
NOT statement, 60
NOT operator, 60
NOT truth table, 61
NSApplication class, 275
NSApplication object, 275
NSArray class, 155
NSArray object, 156
NSCalendarDate class, 217
NSComparisonResult, 217-219
NSDate object, 218-219
NSDictionary, 153

Access, Order and Uniqueness, 157

Animal object, 156

definition, 156

key and value, 156

type of collection class, 156
NSLog function, 54-55, 213-214
NSManagedObject, 254
NSMutableArray object, 153, 158
NSMutableDictionary, 153, 159
NSMutableSet, 153, 157
NSObject class, 108, 128, 132
NSOrderedAscending, 217-218
NSOrderedDescending, 217-218
NSOrderedSame, 217, 219
NSSet class, 154
NSString, 213, 215-217, 220
NSString class, 107, 151
NSString object, 107, 130, 167, 215-216
NSUserDefaults object, 244
Numbering systems

bits, 35

bytes, 37

Hexadecimal, 39

Moore’s Law, 36

Unicode, 40

INDEX

Numbers, 40
comparing, 208

(0

Objective-C
arc4random(), 79
Command Line Tool project, 75-76
and data types, 50
else-if Statements, 79
history of, 101
language symbols and syntax
begin and end section of code, 102
comments, 103
definition, class, 104
definition, method, 104
definition, variable, 105
end of a line of code, 103
variable, 102
modulus operator, 79
Nested if Statements, 79
and NeXTSTEP, 101
programming (see Programming)
random number, 76-77
Random Number Generator App, 78-79
refactoring, 80
removing extra characters, 79
Running App, 80
Smalltalk concepts, 105
Objective-C class, 91-92, 107, 125, 127, 137, 151,
154, 163
Objective-C object, 127, 163, 167
Objective-C program
Xcode 4.2 toolset, 26
Object Library, 141, 234-235
Object-oriented programming
language, 101
Object-Oriented Programming (OOP)
benefits
ease of replacement, 98
eliminate redundant code, 97
class (see Classes, OOP)
definition, 83
development environments and languages
implement, 83
inheritance, 96
interface, 98
Polymorphism, 98
Objects, 40
in Alice user interface, 15
connecting actions and, 239
definition, 83
Radio class, 135
Objects Adjustment tool, 20-21
Object’s properties, 8

295

INDEX

Object Tree, 21
OmniGraftle, 2, 65-66
Operating system, 1
OR truth table, 61
Oracle, 245
OR operator, 60
Outlets
interface builder application, 237
Output window, 283

P

Parameters, 24
Pause or Continue button, 284
Planning program flow and decision-making
App’s design, 70
boolean logic, 59
designing and flowcharting, 69
design requirements, 65
Example App in Alice, 74-75
flowcharting, 68
Loops, 72
Pseudo-code, 63
Plugging, 202
Polymorphism
OOP, 98
Preferences file, data storage
read and written, 243
reading, 245
standardized XML file, 244
writing, 244
prepareForSegue, 202
Procedural language, 101
Procedures (methods and functions), 17
Procedures tab, 21-22
Programming
algorithm, 1
Alice user interface, 11
Book DetailView (see Book
Detail View)
BookStore application, 160
collections, 153
design requirements, 2, 4-5, 8, 10
development cycle, 4
instance variables, 166
mutable container classes, 157
MyBookstore Program, 169
Objective-C program, 26
OOP, 5
process of, 1-2, 4
table view, 184
UL 2-3
Programming language, 1
Properties, 17
classes, 85

296

Protocols
definition, 274
delegates, 275
multiple inheritance, 273
syntax, 275
Pseudo-code, 63

Q

Quality assurance (QA), 4, 10

R

raiseLandingGear(), 15
RandomNumber, 76-77
Random number generator, 75
Random number generator app, 74, 240
Random Number Generator App, 78-79
rangeOfString function, 216-217
Reading preferences, data storage, 245
Redundant Code

eliminating, 97
Referencing Outlet, 123
Relational Operators

comparing numbers, 208

Xcode App, 209
RemoveAllObjects method, 158-159
RemoveLastObject method, 159
RemoveObjectAtIndex method, 159
Root View Controller, 174, 179-180
Run button, 30, 284
Running App, 80

S

Saleltem, 275
Sales class, 88, 97
SaleStarted variable, 217-219
Sandbox, 243
Scanf function, 79-80
Scene Editor, 13-14
Second local variable, 43
SecondNumber variable, 42
Seed method, 239
Selection Segue, 188-190
Setter method, 169
Setup Scene button, 13
Setup Scene control, 13
Single View Application, Xcode, 109
Smalltalk concepts
objective-C, 105
Software development cycle, 4-5
Software testing, 4
some_code() method, 214-215

Spreadsheet, 245
SQLite, 245
backup loss, 246
Core Data, iOS, 246, 270
BookStoreCoreData.xcdatamodeld
(see BookStoreCoreData.xcdatamodeld)
database manager, 246
flexibility in storing information, 246
single-user database, 246
Stack trace, 283
Step controls
for debugging, 284
Step Into button, 284-286
Step Out button, 284
Step Over button, 284
Stepstone, 101
Stop button, 284
Storyboards, 223
stringForKey method, 245
String parameter, 48
Strings, 40
comparing, 215
stringwithcontentsofurl, 167
stringWithContentsOfURL, 167
Subclass, 96, 104, 106, 108
Superclass, 92-93, 96, 99, 104, 108
Switch statement
Comparing data, 220
Synchronize function, 245
Synchronize method, 244
Syntax, 31-32
protocols, 275

T

takeOff(), 15
Template tab, 18
Ternary operation, 213
testString variable, 158
Thread Window, 286
title variable, 167
totalNumber variable, 46, 49
totalSum variable, 43-46, 49
To the Moon Alice app
Camera Adjustment tool, 20-21
Edit Code button, 21
Editor area, 24-25
Handle Style tools, 21
HelloWorld app, 17
methods and parameters, 22-24
Objects Adjustment tools, 20, 21
procedures tab, 21-22
Template tab, 18
UFO, 17,18
viewing and adding objects, 19

INDEX

Touch-up inside, 122
Triggers, 17

TRUE operator, 59-65, 73-74
Truth Tables, 60

U

UlIApplication, 283
UlBarButtonltem, 263-264
Ul object, 117
UlTableView, 7-8
Ul Tests check boxes, 110
UML diagram, 89, 94
Unary operator NOT, 59
Unicode, 40
Unified Modeling Language (UML) diagram, 88
Unique objects, 158
unit tests, 110
Unix operating system, 101
unordered, 154
Use Core Data, Xcode, 110
userGuess, 79-80
User interface, data storage
Attributes Inspector, 261
Bar Button Item, 264-265
code implementation, 267-270
connection setup, 267
creation, 259
Document Outline, 265
hook up, 266
identifier, 261
navigation bar, 263-264
Navigation Controller, 262-263
Table View, 260
UlBarButtonltem, 263-264
UlTableViewCell, 261
User interfaces
HIGs, 226
interface builder application, 224
i0S, 223
macOS, 223
MVC pattern, 224
UTF8string, 216
Utilities pane, 114

Vv

Variable, 40, 102
objective-C

definition, 105
Variables and data types, 41
Variables window, 283
ViewController.h file, 114
ViewController.h interface, 116
ViewController.m file, 116

297

INDEX

ViewController object, 123, 126
ViewController.xib file, 117, 140
View object, 225

w

Warnings

and code errors, 288
while loop, 73
Window-Based Application, 210
Woodforest Mobile Banking app, 4, 67
Writing preferences, data storage, 244

XY,Z
Xcode
accessing documentation, 150
launches, 109
new Xcode project, 109
opening screen, 108
project creation
Button control, 118, 119
button’s title, 120
class extension, 117

connection menu for Label object, 123

Debug area, 114

editor, 115
implementation file, 117
interface file, 114

iPhone emulator, 124-125
iPhone interface, 117-118
label object, 120-121
label’s size, 121

navigator, 114

panes, 112-114

298

Referencing Outlet, 123
showName, 122
Single View Application, 109
touch-up inside, 122
types of templates, 109
Ul object, 117
Use Core Data, 110
utilities pane, 114
view buttons, 112
ViewController.h interface, 115-116
ViewController.m implementation
file, 116-117
Xcode 7.3 toolbar, 111-112
types of templates, 110
Xcode 4.2 toolset, 26
Xcode applications
relational operators, 209
Xcode debugger
code errors, 288
warnings, 288
with debugging
Breakpoint Navigator method, 280
breakpoints, 278-280
Call Stack, 286
Debugger Controls, 283
device, 277
features, 277
simulators, 277-287
Thread Window, 286
variables, 286
Xcode IDE, 9, 12
XIB file, 231-232, 236, 238, 241
XML file, 224
XOR operator, 60-61, 81

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Becoming a Great iOS or Mac Programmer
	Thinking like a Developer
	Completing the Development Cycle
	Introducing Object-Oriented Programming
	Working with the Alice Interface
	Summary
	Exercises

	Chapter 2: Programming Basics
	Taking a Tour with Alice
	Navigation Menu
	Editing a Scene
	Classes, Objects, and Instances in Alice
	Object Tree
	Editor Area
	Details Area
	Events Area

	Creating an Alice App—To the Moon, Alice
	Your First Objective-C Program
	Launching and Using Xcode

	Summary
	Exercises

	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Moore’s Law

	Bytes
	Hexadecimal
	Unicode

	Data Types
	Using Variable and Data Types with Alice
	Data Types and Objective-C
	Identifying Problems
	Summary
	Exercises

	Chapter 4: Making Decisions About...and Planning Program Flow
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudo-code
	Design Requirements
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements
	Count-Controlled Loops
	Condition-Controlled Loops
	Infinite Loops

	Coding the Example App in Alice
	Coding the Example App in Objective-C
	Nested if Statements and else-if Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App

	Moving Forward Without Alice
	Summary
	Exercises

	Chapter 5: Object-Oriented Programming with Objective-C
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	It Is Everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Chapter 6: Learning Objective-C and Xcode
	A Brief History of Objective-C
	Understanding the Language Symbols and Basic Syntax
	Create a Variable
	Begin and End a Section of Code
	Signify the End of a Line of Code
	Write a Comment
	Define a Class
	Define a Method
	Define an Objective-C Variable
	Call a Method

	Putting the “Objective” into Objective-C
	Writing Another Program in Xcode
	Creating the Project

	Summary
	Exercises

	Chapter 7: Objective-C Classes, Objects, and Methods
	Creating an Objective-C Class
	Declaring Interfaces and Properties (Instance Variables)
	Calling Methods
	Using Class Methods
	Using Instance Methods

	Working with the Implementation File
	Coding Your Methods

	Using Your New Class
	Updating MyFirstApp
	Adding Objects
	Writing the Implementation File
	Updating the User Interface
	Hooking Up the Code

	Accessing the Xcode Documentation
	Summary
	Exercises

	Chapter 8: Programming Basics in Objective-C
	Collections
	Using NSSet
	Using NSArray
	NSDictionary
	An NSDictionary Example
	NSDictionary Access, Order, and Uniqueness

	Using the Mutable Container Classes
	NSMutableSet
	NSMutableArray
	NSMutableDictionary

	Creating the BookStore Application
	Introducing Instance Variables
	Accessing Properties
	Custom Getter and Setter

	Finishing the MyBookstore Program
	Creating the Initial View
	The Bookstore Object
	Using the Bookstore Object

	Preparing the Table View
	The Book Detail View
	Setting Up the Outlets
	Plugging in the Book Details

	Summary
	Exercises

	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings
	Comparing Dates
	Combining Comparisons

	Using the switch Statement
	Summary
	Exercises

	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller
	Human Interface Guidelines
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Document Outline
	The Object Library
	Creating the View
	Using Outlets
	Connecting Actions and Objects
	Implementation File

	Summary
	Exercises

	Chapter 11: Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary
	Exercises

	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax

	Understanding Delegates
	Next Steps
	Summary

	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls
	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Warnings

	Summary
	Exercises

	Index

