
www.allitebooks.com

http://www.allitebooks.org

OpenStack Cloud Security

Build a secure OpenStack cloud to withstand all
common attacks

Fabio Alessandro Locati

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenStack Cloud Security

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1220715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-098-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Fabio Alessandro Locati

Reviewers
Pedro Navarro Pérez

Vinoth Kumar Selvaraj

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Nikhil Karkal

Content Development Editor
Mamata Walkar

Technical Editor
Namrata Patil

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Fabio Alessandro Locati is an Italian IT external consultant. His main areas of
expertise are Linux, networking, security, data centers, and OpenStack. With more
than 10 years of working experience in this field, he has experienced different IT
roles, technologies, and languages. Fabio has worked for many different companies,
starting from a one-man company to huge companies such as Tech Data and
Samsung. This has allowed him to consider various technologies from different
points of view, helping him develop critical thinking and understand whether a
particular technology is the correct one in a very short span of time.

Since he is always looking for better technologies, he also tries new technologies
to see their advantages over the old ones. Two of the most important things Fabio
evaluates in a technology are its internal security and the possibility of additional
security through configuration or interaction with the other technologies. For
virtualization, he often uses OpenStack due to its power and simplicity, ever since
he first tried it in 2011. Fabio has used OpenStack for the public-facing cloud, as well
as the internal clouds.

I would like to thank my parents, who introduced me to computer
science before I was even able to write, and my whole family, who
has always been supportive.
A special thanks goes to everyone I worked with at Packt
Publishing for their hard work and to the reviewers for their
constructive feedback.
Of course, I would also like to thank NASA, Rackspace, the
OpenStack community, and all the companies that have created
and improved OpenStack over the years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Pedro Navarro Pérez works as an OpenStack specialist at Red Hat. He does
training, coding, configuration, and installation of OpenStack; he is also a major
contributor to OpenStack on Hyper-V.

Prior to working for Red Hat, Pedro spent several years working as a developer
for award-winning cloud start-ups. Pedro graduated from Telecom Bretagne and
Universidad Politécnica de Valencia in 2008.

He also likes salsa, playing handball, and evangelizing about how to cook authentic
Valencian paella. He currently resides in Barcelona, Spain.

Vinoth Kumar Selvaraj is an enthusiastic computer science engineer from
Tamil Nadu, India. He works as an OpenStack engineer for Cloudenablers.
He is a graduate from Sri Ram Engineering College, Veppampattu, Chennai.
He has been working on various cloud-based technologies and their integrations
since the beginning of his career. He is constantly striving to learn new technologies
and learn better and faster ways to solve problems.

He is an active member of the OpenStack community at https://ask.openstack.
org/en/users/1825/vinoth/.

In his spare time, Vinoth enjoys sharing his insights on technologies at
http://www.hellovinoth.com and via his Twitter handle @vinoth6664.

I wish I could thank everyone personally, but let me thank Amma,
Appa, Anna, and my friends for their love and support.

I would also like to thank Konda Chendil, Rathinasabapathy,
Thiruvalluvar, Venkatesh Perumal, and Krishna Kumar for their
support and trust in me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: First Things First – Creating a Safe Environment	 1

Access control	 1
The CIA model	 2

Confidentiality	 2
Integrity	 4
Availability	 5
Some considerations	 6
A real-world example	 6

The principles of security	 8
The Principle of Insecurity	 8
The Principle of Least Privilege	 8
The Principle of Separation of Duties	 9
The Principle of Internal Security	 10

Data center security	 11
Select a good place	 11
Implement a castle-like structure	 12
Secure your authorization points	 13
Defend your employees	 13
Defend all your support systems	 13
Keep a low profile	 13
The power of redundancy	 14
Cameras	 14
Blueprints	 15
Data center in office	 15

Server security	 16
The importance of logs	 17

Where to store the logs?	 17

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Evaluate what to log	 18
Evaluate the number of logs	 19

The people aspect of security	 19
Simple forgetfulness	 20
Shortcuts	 21
Human error	 22
Lack of information	 23
Social engineering	 24
Evil actions under threats	 25
Evil actions for personal advantage	 26

Summary	 26
Chapter 2: OpenStack Security Challenges	 27

Private cloud versus public cloud security	 27
The private cloud	 28
The public cloud	 28
Private cloud versus public cloud	 29

The different kinds of security threats	 30
Possible attackers	 30

The possible attacks	 30
Denial of Service	 31
0-day	 32
Brute force	 33
Advanced Persistent Threat	 33
Automated exploitation tools	 33
The ISP intercept	 34
The supply chain attack	 34
Social engineering	 35
The Hypervisor breakout	 35

The OpenStack structure	 35
OpenStack Compute Service – Nova	 36
OpenStack Object Storage Service – Swift	 36
OpenStack Image Service – Glance	 37
OpenStack Dashboard – Horizon	 37
OpenStack Identity Service – Keystone	 38
OpenStack Networking Service – Neutron	 38
OpenStack Block Storage Service – Cinder	 39
OpenStack Orchestration – Heat	 39
OpenStack Telemetry – Ceilometer	 39
OpenStack Database Service – Trove	 40
OpenStack Data Processing Service – Sahara	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Future components	 40
Ironic – bare metal provisioning	 41
Zaqar – cloud messaging	 41
Manila – file sharing	 41
Designate – DNS	 41
Barbican – key management	 42

Summary	 42
Chapter 3: Securing OpenStack Networking	 43

The Open Systems Interconnection model	 44
Layer 1 – the Physical layer	 44
Layer 2 – the Data link layer	 45

Address Resolution Protocol (ARP) spoofing	 46
MAC flooding and Content Addressable Memory table overflow attack	 47
Dynamic Host Configuration Protocol (DHCP) starvation attack	 47
Cisco Discovery Protocol (CDP) attacks	 48
Spanning Tree Protocol (STP) attacks	 48
Virtual LAN (VLAN) attacks	 49

Layer 3 – the Network layer	 50
Layer 4 – the Transport layer	 51
Layer 5 – the Session layer	 51
Layer 6 – the Presentation layer	 51
Layer 7 – the Application layer	 52

TCP/IP	 52
Architecting secure networks	 53

Different uses means different network	 53
The importance of firewall, IDS, and IPS	 55

Firewall	 55
Intrusion detection system (IDS)	 56
Intrusion prevention system (IPS)	 57

Generic Routing Encapsulation (GRE)	 57
VXLAN	 58

Flat network versus VLAN versus GRE in OpenStack Quantum	 58
Design a secure network for your OpenStack deployment	 59

The networking resource policy engine	 60
Virtual Private Network as a Service (VPNaaS)	 60
Summary	 61

Chapter 4: Securing OpenStack Communications and Its API	 63
Encryption security	 64
Symmetric encryption	 64

Stream cipher	 65
Block cipher	 66

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Asymmetric encryption	 67
Diffie-Hellman	 68
RSA algorithm	 69
Elliptic Curve Cryptography	 69

Symmetric/asymmetric comparison and synergies	 70
Hashing	 71

MD5	 72
SHA	 72

Public key infrastructure	 73
Signed certificates versus self-signed certificates	 75

Cipher security	 75
Designing a redundant environment for your APIs	 77
Secure your OpenStack API with TLS	 79

Apache HTTPd	 79
Nginx	 82

Enforcing HTTPS for future connections	 82
Summary	 82

Chapter 5: Securing the OpenStack Identification
and Authentication System and Its Dashboard	 83

Identification versus authentication versus authorization	 83
Identification	 84
Authentication	 84

Something you know	 85
Something you have	 86
Something you are	 86
The multifactor authentication	 87

Authorization	 88
Mandatory Access Control	 88
Discretionary Access Control	 89
Role-based Access Control	 89
Lattice-based Access Control	 90

Session management	 90
Federated identity	 90
Configuring OpenStack Keystone to use Apache HTTPd	 91

Apache HTTPd configuration	 92
Making Keystone available to Apache HTTPd	 92
Configuring iptables	 93
Configuring firewalld	 93
SELinux	 93

Table of Contents

[v]

Setting up shared tokens	 94
Setting up the startup properly	 94

Setting up Keystone as a Identity Provider	 95
Configuring Apache HTTPd	 95

Configuring Shibboleth	 96
Configuring OpenStack Keystone	 97

Summary	 97
Chapter 6: Securing OpenStack Storage	 99

Different storage types	 99
Object storage	 99
Block storage	 100
File storage	 101
Comparison between storage solutions	 102
Security	 103

Backends	 103
Ceph	 104
GlusterFS	 105
The Logical Volume Manager	 106
The Network File System	 107
Sheepdog	 108
Swift	 108
Z File System (ZFS)	 109

Security	 109
Securing OpenStack Swift	 110

Hiding information	 110
Securing ports	 111

Summary	 112
Chapter 7: Securing the Hypervisor	 113

Various types of virtualization	 113
Full virtualization	 114
Paravirtualization	 115
Partial virtualization	 115
Comparison of virtualization levels	 116

Hypervisors	 116
Kernel-based Virtual Machine	 116
Xen	 117
VMware ESXi	 118
Hyper-V	 118

Baremetal	 118

Table of Contents

[vi]

Containers	 119
Docker	 120
Linux Containers	 120
Criteria for choosing a hypervisor	 121

Team expertise	 121
Product or project maturity	 122
Certifications and attestations	 123
Features and performance	 123
Hardware concerns	 124
Hypervisor memory optimization	 124
Additional security features	 125

Hardening the hardware management	 125
Physical hardware – PCI passthrough	 125
Virtual hardware with Quick Emulator	 126

sVirt – SELinux and virtualization	 128
Hardening the host operative system	 129
Summary	 130

Index	 131

[vii]

Preface
As our society moves from an analog world to a digital world, it is easier for
ill-intentioned people to attack privates, companies, banks, and government for
their advantage or for the other party's damage. Since the beginning of information
technologies, we have seen a shift to digitalize our world, and this process has been
accelerating ever since. The virtualization has concentrated more data on even less
systems, making these systems very nice targets for attacks. Making the clouds secure
will be one of the biggest security challenges for the next 10 years, from my point of
view. The goal of this book is to prepare cloud administrators for this challenge.

The structure of this book is designed to give you a wide perspective on security.
This has multiple reasons. First of all, programs change, but a secure mindset is often
more important than knowing how to secure a very specific software, also because
very often people specialize in a particular part of the IT sector and kind of lose track
of what there is around the technology they master. This often leads to huge security
problems in between the areas of expertise of the various people of the team.

OpenStack allows very powerful infrastructures, but tends to be pretty complex,
being a solution to many different situations, making it, often, very interesting from
a business point of view, but very hard to manage safely.

What this book covers
Chapter 1, First Things First – Creating a Safe Environment, teaches you about a lot
of basic security concepts. Also, you'll see a lot of things to be kept in mind while
designing a data center as well as new security policies.

Chapter 2, OpenStack Security Challenges, allows you to discover the different kinds
of clouds and how this affects security and also the possible types of attacks. In the
second part of the chapter, you'll see the various parts of OpenStack and what they do.

Preface

[viii]

Chapter 3, Securing OpenStack Networking, shows you how the OSI networking
model works from a security perspective and a lot of possible network attacks
for each OSI level. In the second part of the chapter, you can see how to harden
OpenStack and a few utilities OpenStack networking can provide to make your
workflow more secure.

Chapter 4, Securing OpenStack Communications and Its API, explains how the encryption
works in our world, and, therefore, what its strengths and weaknesses are. You'll also
learn how to enable encryption for the OpenStack APIs.

Chapter 5, Securing the OpenStack Identification and Authentication System and Its
Dashboard, shows you how the identification, authentication, and authorization
systems work, as well as how OpenStack can be configured to meet your needs
from this point of view.

Chapter 6, Securing OpenStack Storage, explains how the different kinds of storage
work from a security standpoint and the options you have to implement them in
OpenStack. Also, you will see some configuration to make the storage more resilient
to attacks.

Chapter 7, Securing the Hypervisor, lists all the hypervisors that can be used with
OpenStack. You'll find a lot of insight on how to choose the right hypervisor for
you and how to secure it.

What you need for this book
To follow the examples in this book, you'll need an installation of OpenStack. This
can be as big as multiple hardware machines or as little as a single virtual machine.
For the goals of this book, it does not matter.

As for the operating system on the host, I suggest using CentOS/RHEL 6 or 7,
because this is the configuration that is directly touched by the examples, but you
can easily adapt the examples to any other Linux distribution.

Who this book is for
If you are an OpenStack administrator or developer, or wish to build solutions to
protect your OpenStack environment, then this book is for you. Experience of Linux
administration and familiarity with different OpenStack components is assumed.

Preface

[ix]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can find this configuration in the /etc/nova/policy.json file."

A block of code is set as follows:

<VirtualHost <ip address>:80>
 ServerName <site FQDN>
 RedirectPermanent / https://<site FQDN>/
</VirtualHost>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

policy_module(keystonewsgi, 1.0.0)

require {
 type httpd_t;
 type keystone_var_lib_t;
}

Any command-line input or output is written as follows:

$ echo "password" | md5sum

286755fad04869ca523320acce0dc6a4 -

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

First Things First – Creating
a Safe Environment

We often hear about security, but very often we do not receive a clear definition of
what this is, since it's taken for granted. Even if we know what security in general
is, sometimes we can miss some pieces of what security means in that specific field.
I, personally, like to use this definition of information security—preservation of
confidentiality, integrity, and availability of information.

The ISO/IEC 27000:2009 affirms that "In addition, other properties, such as
authenticity, accountability, nonrepudiation, and reliability can also be involved."

This highlights the fact that security is a very wide sector, including two very
different realms:

•	 Data protection from unauthorized access (confidentiality)
•	 Data integrity and availability

Before we dive in the security realm, we need to look at some important concepts
of security.

Access control
Access control is the selective restriction of access to some kind of resource (a folder,
a file, and a device). There are different types of approaches to access control. The
first one is Discretionary Access Control (DAC) in which every user can decide who
can, with which permissions, read his/her files.

An example of this is the Unix permission system where, if you create a file, you can
choose who will be able to read or change it.

First Things First – Creating a Safe Environment

[2]

In Mandatory Access Control (MAC), the administrator decides the security policies
and all the files in the system will comply.

An example of this is a public archive (that is, tax archive), where even if you are the
creator of a document, you are not allowed to choose who is able to read it. Only the
archive owner will be able to make such decisions.

An evolution of DAC and MAC is Role-based Access Control (RBAC). In RBAC,
the permissions are not granted per user, but according to role. This allows big
organizations to assign permission to roles and roles to users, making it easier to
create, modify, or delete users.

Examples of this type of access controllers are pretty common in day-to-day life.
A typical use of RBAC in real life is the authorized personnel only area, where usually
all people with certain characteristics (that is, be it an employee of a specific company
or be it the work for a specific department) are allowed to enter.

An evolution of RB and MAC is Multi Level Security (MLS). In MLS systems, each
user has a trust level and each item has a confidentiality level. The administrator is
still the one who is in charge of creating the security policies, as in MAC systems,
but the system will ensure that each user will only see the items that have a
confidentiality level allowed to him based on some system configurations and the
user trust level.

The CIA model
As we have seen in the ISO 27000 definition, there are three words that are very
important when speaking of security, Confidentiality, Integrity, and Availability.
Even though many other models have been proposed over the years, the CIA model
is still the one that is most used. Let's see the various parts of it.

Confidentiality
Confidentiality is the first part of the CIA model and is usually the first thing that
people consider when they think about security. Many models have been created
to grant the confidentiality of information, but the most famous and used by far is
the Bell-LaPadula model. Implementing this model means creating multiple levels
in which the users are divided and allowing all users of the nth level to read all
documents collocated at any level lower or equal to n and to write documents at
any level higher or equal to n. This is often characterized by the phrase no read up,
no write down.

Chapter 1

[3]

A lot of security attacks try to break the confidentiality of the data, mainly because
it is a very lucrative job. Today companies and governments are willing to pay
thousands or even millions of dollars to get information about their competitor's
future products or a rival nation's secrets.

One of the easiest ways to grant confidentiality is by using encryption. Encryption
cannot solve all confidentiality problems, since we have to be sure that the keys to
decrypt the data are not stored with the data; otherwise, the encryption is pointless.
Encryption is not the solution to every problem, since encrypting a data set will
decrease performances of any operation over it (read/write). Also, encryption brings
a possible problem—if the encryption key is lost, this will lead to losing the access to
the data set, so encryption can become a hazard to the availability of the data.

You can think of confidentiality as a chain. A chain is as strong as its weakest link.
I believe this is one of the most important things to remember about confidentiality,
because very often we do a lot of work and spend a lot of money hardening a specific
part of the chain leaving other parts very weak, nullifying all our work and the
money spent.

I once had a client who engineers and designs his products in a sector where the
average expense for R&D of a single product is way beyond the million USD. When
I met them, they were very concerned about the confidentiality of one of their not
yet released products, since they believed that it involved several years of research
and was more advanced than their competitor's projects. They knew that if one of
their competitors could obtain that information, he would have been able to fill the
gap in less than 6 months. The main focus of this company was the confidentiality
of the data; therefore, we created a solution that was based on a single platform
(hardware, software, and configurations) and with a limited replication to maximize
its confidentiality, even reducing its availability. The data has been divided into four
levels based on the importance, using for-the-sake-of-clarity names inspired by the
US Department of Defense system, and for each level we assigned different kinds of
requirements, additional to the authorization:

•	 Public: All the information at this level was public for all, including people
inside the company and outsiders, such as reporters. This information was
something the company wanted to be public about. No security clearance or
requirements were required.

•	 Confidential: All information at this level was available to people working
on the project. Mainly for manuals and generic documentation, such as user
manuals, repairman manuals, and so on. People needed to be authorized by
their manager.

First Things First – Creating a Safe Environment

[4]

•	 Secret: All information at this level was available only to selected people
working on the project and divided into multiple categories to fine grain
permissions. This was used mainly for low-risk economical evaluations and
noncritical blueprints. People needed to be authorized directly by the project
manager and to use two factor authentications.

•	 Top access control: The information at this level was available only to a
handful of people working on the project and was divided into multiple
categories to fine grain permissions. It was used for encryption keys and all
critical blueprints and economical and legal evaluations. People needed to be
authorized directly by the project manager to use three-factor authentications
and to be in specific high-security parts of the building.

All the information was stored on a single cluster and encrypted backups that were
made daily were shipped to three secure locations. As you can see, Top Secret data
could not exit from the building if not heavily encrypted. This helped the company
to keep their advantage over competitors.

Integrity
By integrity we mean maintaining and assuring the accuracy and the consistency
of the data during its entire lifecycle. The Biba integrity model is the most known
integrity module and works exactly in the opposite way of the Bell-LaPadula model.
In fact, it is characterized by the phrase no read down, no write up.

There are some attacks that are structured to destroy integrity. There are two
possible reasons why a hacker would be interested in doing this:

•	 A lot of data has legal value only if its integrity has been maintained for the
entire life span of the data. An example of this is forensic evidence. So, an
attacker could be interested in creating reasonable doubt on the integrity of
the data to make it unusable.

•	 Sometimes an attacker would like to change a small element of data that
will affect future decisions that are based on that bit of data. An example can
be an attacker who wants to edit the value of some stocks, so an automatic
trading program would think that selling at a very low price would be a
good idea. As soon as the automatic trading program does this transaction,
the company (or bank) owning it would have lost a huge amount of money
and will be very hard to trace back to the attacker.

Chapter 1

[5]

An example of integrity is the Internet DNS service, which is a very critical
service and has a core composed of a few clusters that have to grant integrity and
availability. Availability is really important here because otherwise the Internet
would be down for many users. However, its integrity is much more important,
because otherwise an attacker could change a DNS value for a big website or a
bank and create a perfectly undetectable phishing attack, also known as pharming,
at a global scale. Each one of these clusters are managed by a different company
or an organization, with different hardware, different software, and different
configurations. Availability has been implemented using multiple hardware,
software, and configurations to avoid the possibility of a faulty or hackable aspect
that can bring down the whole system. Confidentiality is not the focus of this system
since the DNS service does not contain any sensible data (or, at least, it shouldn't).
Integrity is granted by a pyramidal system in which the top DNS (root DNS) is
trusted by all other DNSes. Also, lately, all DNS programs are supporting encryption
and untrustworthiness of unknown DNS servers to prevent DNS cache poison
attacks, which have now become more frequent.

Availability
Availability simply means at any given moment, a document that should be
available, has to be available. This means that no matter what has happened to your
server, the main server farm, the data has to be available.

You can think of availability as a wire rope. A wire rope holds as long as at least
one wire holds, so we can say that a wire rope is as strong as its strongest wire.
Naturally, the lesser wires still in place, the more load they will have to carry,
so they will be more susceptible to failures.

There is a type of attack that tries to reduce or put out availability, the Denial
of Service attack. This family of attacks, also known as DoS or DDoS (if it's
Distributed), has become very popular thanks to some groups such as Anonymous,
and could create huge losses if the target system creates profits for the company.
Also, often, these attacks are combined with attacks to steal the confidential
information, since DoS attacks create a huge amount of traffic and could easily be
used as a diversion.

In February 2014, CloudFlare, a big content delivery network and distributed DNS
company, was attacked by a massive 400Gb/s DDoS attack that caused a huge slow
down in CloudFlare services. This was the single biggest DDoS attack in history
(until the end of 2014, when this book is being written). Lately, huge DDoS attacks
are becoming more frequent. In fact from 2013 to 2014, DDoS attacks over 20Gb/s
are doubled.

First Things First – Creating a Safe Environment

[6]

An interesting case I would like to relay here is the Feedly DDoS attack, which
happened between July 10, 2014 and July 14, 2014. During this attack, Feedly servers
had been attacked and a person, claiming to be the attacker, asked the company to
pay some money to end the attack, which the Feedly company affirms not to have
paid. I think this case gives us a lot to think about. Many companies are now moving
towards a complete rely on computers, so new forms of extortion could become
popular and you should start to think on how to defend yourself and your company.

Another type of DoS attack that is becoming more popular with the coming of
public clouds, where you can virtually scale up your infrastructure unlimitedly is
the Economic Denial of Sustainability (EDoS). In this kind of attack, the goal is
not to max out the resources since that would be pretty difficult, but it is to make it
economically unsustainable for the company under attack. This kind of attack could
even be a persistent attack where the attacker increases a company cloud bill of 10-
20 percent without creating any income for the company. In the long run, this could
make a company fail.

Some considerations
As you can imagine, based on the CIA model, there is no way a system can meet 100
percent of the requirements, because confidentiality, availability, and integrity are in
contradiction. For instance, to decrease the probability of a leak (also known as loss
of confidentiality), we can decide to use a single platform (hardware, software, and
configuration) to be able to spend 100 percent of our efforts towards the hardening
of this single platform. However, to grant better availability we should try to create
many different platforms, as different as possible, to be sure that at least one would
survive the attack or failure. How can we handle this? We simply have to understand
our system needs and design the perfect mix of the two. I will go over a real-life
example here that will give you a better understanding of mixing and matching your
resources to your needs.

A real-world example
Recently, I helped a client to figure out how to store files safely. The company was
an international company owning more than 10 different buildings in as many
countries. The company has had few unhappy situations that lead it to consider it to
be more important to keep the data safe. Specifically, the following things happened
in the previous months:

•	 Many employees wanted to have an easy way to share their documents
between their devices and with colleagues, so they often used unauthorized
third-party services

Chapter 1

[7]

•	 Some employees had been stopped at security controls in airports and the
airport security had copied their entire hard drive

•	 Some employees had lost their phones, tablets, and computers full of
company information

•	 Some employees had reported data loss after their computer hard drive
failed and the IT team had to replace it

•	 An employee left the company revealing his passwords, locking the company
out of his data

As often happens, companies decide to change their current system when multiple
problems occurs, and they prefer to change to a solution that solves their problems
altogether.

The solution we came up with was to create a multiregional cluster with Ceph,
which provided the object storage we needed to put all the employer's data into. This
allowed us to have multizone redundancy, which was necessary to grant availability.
It also allowed us to create all backups in only two places instead of forcing us to
have backups at all places. This increased the availability of backups and decreased
their cost.

Also, client applications for computers, tablets, and phones have been created
to allow the user to manage its files and automatically synchronize all files in
the system. A nice feature of these clients is that they encrypt all the data with a
password that is dynamically generated for each file and stored on another system
(in a different data center) encrypted with the user GNU Privacy Guard (GPG) key.
The user GPG key is also kept on an Hardware Security Module in a different Data
Center to grant the company the possibility to decrypt a user's data if they leave. This
granted a very high level of security and allowed to share a document between two
or more colleagues.

The GPG key is also used to sign each file to grant that the file integrity has not been
compromised.

To grant better security towards the loss or copy of computers, all company's
computers have the hard drive completely encrypted with a key known only to the
employer.

This solved all technical problems. To be sure that the people were trained enough
to keep the system safe, the company decided to give a 5 days security course to all
their employers and to add 1 day every year of mandatory security update course.

No further accidents happened in the company.

First Things First – Creating a Safe Environment

[8]

The principles of security
There are some principles that we always have to remember when we speak about IT
security, since they can really help to prevent the most common security problems.

The Principle of Insecurity
I have called this principle the Principle of Insecurity because I have not yet found a
better name for it. This principle states that no matter what you do, who you are, and
how much money you spend, you will never have a 100 percent secure environment.

An example of this happened on April 7, 2014, when a new version of OpenSSL
was published with the announcement of the Heartbleed bug having been fixed.
This bug allowed users to extract a memory (RAM) dump from any machines that
were running unpatched versions of OpenSSL. OpenSSL was considered safe and
therefore the majority of the companies worldwide have used it and embedded it
in their products to the point that in April 2014 there was close to no alternative to
it. But even if something is very standard and wide used, it does not mean it's 100
percent secure.

Something that is always important to remember when we speak about security,
is that money is limited, and it is often hard to evaluate how much money we
can spend on security. To evaluate how much money it makes sense to spend
on security, a mathematical economic model called the Gordon-Loeb model was
developed in 2002, which tells us that it makes sense to spend up to 37 percent of
the expected losses that would occur from a security breach. This model is widely
used and is a well-accepted analytical model in the economics of cyber/information
security literature.

Security is a journey, not a destination. Security is always an ongoing process.

The Principle of Least Privilege
The Principle of Least Privilege (also known as the Principle of Minimal Privilege
or the Principle of Least Authority) requires that any user, process, or system has all
but only the permissions required to complete the assigned tasks. This is one of the
most important principles on security and usually the one that is least considered.

I can write about many examples I have seen where the violation of this principle
brought about very bad situations. Not very long ago, I saw a simple process that
only needed to access (in read/write) one folder and to read from a database,
wiping a machine and the multiple remote disks that were mounted in that moment,
because the process was running as root instead of a limited user, as it should have.

Chapter 1

[9]

What happened was that the process was removing all the files in a subdirectory
with the bash command:

rm -rf $VAR/*

Here, the $VAR variable was set reading a field in the database. The database did not
respond (because it was down) and therefore the variable was empty, allowing the
process to run the following:

rm -rf /*

This is deadly if it is executed by root, since it will erase all the mounted storage
devices, including the one containing the Operative System (the logs, etc.)

When it comes to the Principle of Least Privilege, remember that rank
does not mean full access. A company's CEO may need to see more
data than other individuals, but he/she does not automatically need
full access to the system just because he/she is the CEO.

The Principle of Separation of Duties
The Principle of Separation of Duties (also known as Principle of Segregation of
Duties) requires that a complete task cannot be done by a person alone or that a
person cannot perform all actions on a system. The basic idea of this principle is that
completely trusting people could be unsafe for these reasons:

•	 People can make mistakes
•	 People can be malicious
•	 People can be corrupted or threatened
•	 People can take advantage of their position

This is always hard to accept for companies, but we have to face the fact that people
are not perfect if we want to create a secure environment. The separation of duties
(and powers, due to the Principle of Least Privilege) helps the people too, since
they will be less prone to take advantage of their position and also they will be less
attractive to those who wanted to bribe or threaten them.

A world-famous example of the consequences of failing to keep up with this
principle is what happened at the National Security Agency (NSA) in 2013. On
June 10, 2013 Edward Joseph Snowden, a private contractor working at NSA, leaked
thousands of classified files from the NSA. This was possible because he was allowed
to copy (and bring out of the facility) that data without the involvement of other
people in the process.

First Things First – Creating a Safe Environment

[10]

People are often the weaker link of the security chain, so never underestimate people
when thinking about security.

The Principle of Internal Security
The Principle of Internal Security requires that a system is defended by multiple
layers of security, each one protecting it from a particular type of attack. Often this
principle is stated not as a principle but as a technique with the name Defense
in depth and Castle Approach. Data center designers should study a castle's
fortification structure, since castles are very good examples of this principle. Very
often, I see data centers with only one level of security and once you are able to
violate it, you are free to go wherever you want. Castles, on the other hand, have
multiple layers of security and even when you pass a security layer, you are still
being watched. Also, the defenders in the towers will have a better spot than you
because they are in enhanced security facilities, and there are no blind spots where
you can hide.

Chapter 1

[11]

We have to design data centers with the idea that the single security layers (and
potentially all security layers) could be breached. This means:

•	 Putting in multiple (different) security layers
•	 Monitoring in and around the security area, leaving no blind spot
•	 Training your people to react immediately to breaches
•	 Don't create strict reaction schemas, because if leaked, these could be used

against you
•	 If breaches occur, study them and study countermeasures
•	 Run frequent tests to be sure all systems are active and your people are ready

to react

IT security is as much about limiting the damage from breaches as it is about
preventing them.

Data center security
Let's start with some things to remember when we design or verify the compliance
of a data center. Very often, data centers are reused over the years for different kinds
of data, so it's critically important to check every time that the data center is able to
deliver enough security for the kind of data we are putting into it. Also, if we are
designing a brand new data center, it would make sense to create it more secure than
would suit the current needs (if it makes sense to spend the budget this way), so in
the future it will be able to house more data without major work.

Many things that are very cheap or come free when you build something could
become very expensive to fix later.

Select a good place
When I have to give my opinion on the location of a data center, I always try to
consider any possible disaster that could happen in that location. For this reason, I
strongly suggest to never build a data center on areas with high risk of earthquakes,
floods, tornadoes, avalanches, or any other natural disaster you can think of. Also, I
would suggest avoiding places where accidents can happen, such as places close to
airports, highways, dangerous curved roads, power plants, oil refineries, chemical
facilities, ammunition factories, and so on. These things are very important for the
availability aspect of the CIA model, since those events could destroy your data
center and will cause huge economical losses for the company as well as huge data
loss. Also, those kind of places are often more expensive to protect with insurance,
since they are more dangerous.

www.allitebooks.com

http://www.allitebooks.org

First Things First – Creating a Safe Environment

[12]

Implement a castle-like structure
As we have already seen, there are many similarities between castles and data
centers, so we can learn a lot from history to harden our data centers.

First of all, we need a fence (or wall); this will be our first line of defense. This fence
has to have one or two entry points (having more would cost much more and would
not be very useful). Each of these entry points have to be guarded and have some
hard security measures, such as retractable crash barriers. A bomb detector system
could be put in place at any entrance if it is a possible risk.

The second line of defense should be a buffer zone between your facility and the
fence. This area could be small (10 meters) or very big (100 meters) based on the
facility needing security, the country you are building in, and your budget. This
buffer zone has to be completely free, should offer no blind spot, and should be
under complete surveillance. This will allow security to spot any attempt to bypass
our fence. In case of fire, it will also prevent the fire from moving from your facility,
to outside and from outside, to your facility and can be used as an assembly point. A
parking space can be housed in this area, if it's distant enough from the building and
placed in a way that does not confuse the security personnel.

The third line of defense will be the walls of our building. I usually consider the area
delimited by this line of defense as the secure zone. Thick concrete walls are cheap
and effective barriers against explosive devices and the elements. There are other
materials that grant you a better level of security, but can be far more costly. This
wall should have the least amount of openings. One or two accesses will be enough.
Those accesses have to be guarded, and need surveillance cameras. Windows are not
needed, and are usually dangerous. Fire doors have to be exit only, so install doors
that do not have handles on the outside. Also, when any of these doors are opened,
a loud alarm should sound and trigger a response from the security command center.

A fourth line of defense should be in place inside the building. This area will be
designated as high security zone. This allows a third level of authorization, reducing
the possibilities of unauthorized access. In this area, no food or liquids should be
allowed.

A fifth line of defense could be in place, with another authorization point segmenting
the server floor in multiple areas, where only people that have reasons to be in that
particular area should be allowed to enter (for Principle of Least Privilege).

Chapter 1

[13]

Secure your authorization points
As you can see, a lot of authorization points have to be put in place. How can we
make an authorization point secure? By deploying man traps, we can use multifactor
authentication. These measures can be used in one or more authorization points.
Remember that all authorization points should be filmed and all accesses should be
logged (in and out) for the record and make sure to check whether everyone left the
building in case of an emergency or if there are people still trapped inside it.

Defend your employees
Even if a data center is more about computers than humans, people will have to be
present in the data center for server maintenance, maintenance of the building, and
security reasons. Make sure their life and health is always safe by providing safe
places for them to stay and which give them a sense of security. Another thing that
could be useful is a system that allows you to recirculate air rather than drawing
in air from the outside. This could help protect people and equipment if there was
some kind of biological or chemical attack or heavy smoke spreading from a nearby
fire. For added security, it is possible to put devices in place to monitor the air for
chemical, biological, or radiological contaminants.

Defend all your support systems
A data center has multiple support systems that have to be secured properly, such
as power systems, air conditioner, etc. These systems should stay inside the secure
zone or could have their own secure zone (another building within the buffer zone).
Always remember that some of these systems can be dangerous themselves, so there
has to be protection between them and the servers.

Keep a low profile
My father always says, "never let the thieves think you have something to steal"; this
is a suggestion I always give my clients. If you start telling people that at this location
you have a data center (or if you even paint on walls, like "[Company XYZ] Data
Center"), don't be surprised if some thief comes to take a look.

Consider that you may put unworthy completely encrypted data in the data center,
but the thieves will not know what data there is until they steal and analyze one or
more disks. Furthermore, they might be interested in the servers themselves—even
if bringing out hundreds of racks is not easy, they might be worth millions of dollars
on the market.

First Things First – Creating a Safe Environment

[14]

Have you noticed how much attention the big companies (such as Amazon,
Facebook, and Google) put on this? They do not allow people in their data centers
unless they are invited. Some of these data centers have been filmed to create
documentaries, but even those documentaries do not provide enough information
on the data center's location and its security measures, so as to be sure that no one is
too attracted by their data centers. Also, very often, the people who are not directly
involved in the data center, will not know its exact position.

A hedge or some trees (outside the first fence zone) could help prevent curious
people snooping on your site. Also, this prevents people seeing our security
measures, this will decrease the probability of being the subject of casual attacks.

"Never let thieves think you have something to steal."

The power of redundancy
When it comes to availability, there are two ways to provide it:

•	 Use high-end hardware that is failure proof
•	 Use redundancy

The high-end hardware is usually very expensive, includes redundancy, and is not
as failure proof as it's usually sold as. Today, companies usually prefer redundancy
of common hardware because it is cheaper, is able to grant better availability, and is
easier to deploy and maintain.

When I was starting in the IT field, it was not really clear to me which degree of
redundancy was right and which was not. Luckily for me, after a few months of field
work, I have had a very interesting conversation about this with a senior technician
which explained to me very clearly:

"A system has enough redundancy if I can unplug and replug all cables, one cable
at a time, and no user complains."

Cameras
I have already said this about some specific areas, but it's true for all areas. There
should be no blind spot in the camera system and each camera should be in the
visual field of at least one other camera.

Also, the recording should be kept in case of a break in, in order to be analyzed to
prevent the success of future attempts using the same method.

Chapter 1

[15]

Blueprints
The legend goes that the pharaohs of Egypt killed the pyramid architects to be
sure that the blueprint remained a secret. No matter whether this is true or not,
the concept that this legend underlines is surely true: the pharaohs did not want
the blueprints of their pyramid in the hands of the thieves.

The same thing should be done by companies too. Inviting visitors to see the high
level of security can be counterproductive because an observant visitor could spot
some security flaws. Also, this removes the surprise aspect. In fact, if the attacker
passed the second layer of security and has no idea about how many other levels
there could be, he might be less willing to go forward. Furthermore, it could happen
that you are able to open the first door of a man-trap (That is because he stole a
badge) but you could fail the biometrical authentication needed to open the second
door because you were not expecting it, resulting in a locked man-trap with no
possibility to exit.

Data center in office
Often, people ask me what I think about dedicating a room in the office as a data-
center. I believe this kind of approach is less safe even if it is well implemented,
and very often it is also implemented poorly from a security stand point. I can
understand that sometimes the need for security is way less than the one provided
by a dedicated facility (always remember the Gordon-Loeb model). In these cases,
I strongly suggest to implement it as best as possible and to extend some security
policies for the whole building.

Often, I have seen data centers in offices implemented as racks in the CTO office,
or even as racks in the lobby. Do not do this, as they will make any other efforts to
secure your environment useless and a huge waste of resources.

An example of a good implementation of a data center in an office will be:

•	 An hedge to protect the propriety
•	 A fence (with guarded entrance)
•	 The parking lot
•	 A 10 meters buffer zone
•	 A building (with guarded entrance)
•	 A secure zone that can be accessed by employees and escorted visitors

(with man-trap access)

First Things First – Creating a Safe Environment

[16]

•	 A secure elevator requiring an authorized badge to go to the data center floor
(this will be the high security zone)

•	 A man-trap entrance to the data center with multifactor authentication
•	 Eventual doors in the data center for granular access

This way you are able to keep multiple authorization points without having to use a
different facility. This is still less secure than a dedicated facility, but can be a good
balance between security and cost. Also, this will make the whole office more secure.

Server security
At this point, we have covered some basic rules and tips on how to implement a safe
data center. Let's move to the next step: the security inside the data center.

As we have already mentioned in the preceding paragraphs, we can split the servers
with secure doors for more granular access. Why should we do this? Isn't it enough
to be sure that all people entering the data center are authorized? Very often this is
not enough because all the people who are authorized to enter in the data center will
be allowed to touch every single device in it so we are still not compliant with the
Principle of Least Privilege.

Some companies solve this problem with a locked rack, while others resolve it with
segmented data centers, or even with both approaches. Both the approaches have
ups and downs, for instance, you might prefer a segmented data center approach
because:

•	 Rack doors are often uncomfortable and require a wider aisle
•	 Open racks have a better air flow than locked racks (this is not always true)
•	 Open racks are way cheaper than locked racks

This approach also has some disadvantages:

•	 Less flexible (the person has or has not access to multiple racks)
•	 Walls and doors have to be placed during the data center construction and

cannot be moved later
A combined solution can solve some of these disadvantages. Another mixed option is
the locking cages, which are easier to install than walls but are often easier to break in.

To implement more, the Separation of Duties principle is possible to require two
authorized people to be present at the same time to unlock a door or it could require
a badge of type A for unlocking the doors in the data center and a badge of type B to
unlock the racks.

Chapter 1

[17]

This measure will increase security, but your administrators will
be way less productive because there will always be two people
doing the work of a single person. It could make sense on critical
systems while not on all the other systems.

The importance of logs
Often my clients ask me what they should log and what they should not log. My
usual answer is. "What would you like to know if an accident or a data leak would
have just happened?" I think this is the whole point, you have to think in the various
scenarios which kind of data you would like to have and then start collecting them
immediately. The same answer is valid for "For how long should I keep this log?"

The importance of logs is that those are the only traces that can help
you to understand what exactly happened and why.

Where to store the logs?
There are many places where you can store the logs, such as:

•	 Files on filesystems
•	 Files on SAN or other replicated infrastructure
•	 Lines in a relational and or transactional database
•	 Lines in a NoSQL database

The first option seems very good because hard drives are pretty cheap and you only
need a server with a lot of hard drives to make it work. The downsides of this option
are multiple:

•	 Unreliability: How can you be sure whether the machine will be up today or
tomorrow?

•	 Scalability: How will you handle the case in which all your drives will be
full?

•	 Read performances: How much time will you need to scan all your logs?
(consider that data center grade hard drive usually can read between
100MB/s and 200MB/s)

•	 Usability: How will you find the exact data you need?

First Things First – Creating a Safe Environment

[18]

The second option does solve the first two disadvantages of the first option, but still
has the usability issue and can be very costly.

The third option does solve the usability problem, but based on the fact that you
have one or more nodes, can show the unreliability and the read performances
problems. No matter how you design the node or cluster, you will have huge
scalability problems and also some constraints created by the rigid structure
of tables.

The last option does solve all problems in my opinion. Even if technically speaking it
is a very good option, it will bring some aspects to be considered:

•	 You will need someone with NoSQL/Big Data experience
•	 You will have a high initial cost because NoSQL databases usually need more

than three nodes to create a cluster.

While speaking of OpenStack, the best option to store log is OpenStack Data
Processing Service (Sahara), since it's a part of OpenStack since October 2014.

The more information you log and with more details, the harder is it to store them
and retrieve them. In fact, if you only store one type of data (for example, the time
and person that is logging in a machine), you will probably have a few megabytes of
data every month and; therefore, it will be very easy to put it in a relational database
(such as MariaDB or PostgreSQL) that you already have in place. This is also possible
because we have only one kind of data; you can know exactly how each log entry
will be presented to your log system. When you start logging thousands of lines per
hour, coming from tens or hundreds of sources, and with tens of different formats,
the NoSQL storage seems to be the only one that works.

Evaluate what to log
Although there is no ultimate solution for deciding what logs work for every company,
since every company is different, there are some things that are usually logged:

•	 Door access (both entering and exiting)
•	 Server access (SSH, Database, and so on)
•	 All servers logs
•	 Data center environmental metrics (temperature, humidity, and so on)

It's really important that a considered decision is made here to ensure that you have
all the logs you need, but on the other hand you will not save a huge amount of logs
that you will never use.

Chapter 1

[19]

Evaluate the number of logs
Another important thing to decide is for how long to keep the logs. Some countries
have specific laws for the minimum time to keep some kinds of logs, while other do
not. In my opinion, it depends a lot from company to company, but I usually suggest
keeping them for at least 1 year.

A whole year seems to be a lot of time, but it's not; it's the very minimum in my
opinion. This is because if you suspect that a person lately is behaving strangely,
you will want to look the logs for at least one year to confirm a pattern or a change
of pattern.

The best option of all is to keep logs indefinitely, so that you can really go back in the
past and have full information about the past.

The people aspect of security
I have seen, in my life, many more security problems caused by humans than
machines. With the people aspect of security I mean all human actions that can
increase or decrease security. Humans are in the vast majority of company processes,
and can often be the weak link of the chain in multiple occasions, such as in the
following examples:

•	 A system administrator disables a firewall (or allows all by default) to speed
up a process

•	 A system administrator sends a PEM certificate/PGP private key by e-mail
•	 A user creates a weak password to remember it better
•	 A user writes his password on a piece of paper stitched to the monitor
•	 A user gives his password to a colleague via his phone

As you can see, there are some actions that are committed by system administrators,
while others are committed by users, but at the end of the day, they can have a huge
impact no matter who committed it. Some of these actions can be prevented using
automatic systems, such as using a password grader before accepting a password.
Some other actions can be prevented only informing your users and system
administrators and teaching them to act properly for your company security and
their own.

First Things First – Creating a Safe Environment

[20]

I divide the human aspect of security in the following categories:

•	 Simple forgetfulness
•	 Shortcuts
•	 Human error
•	 Lack of information
•	 Social engineering
•	 Malicious actions under threats
•	 Malicious actions for own advantage

Simple forgetfulness
This is a very common pattern in humans. Very often, people perform actions
without really caring or not thinking about the consequences of their actions.
The most commons cases in this category are:

•	 A user creates a weak password to remember it better
•	 A user writes his password on a piece of paper stitched to the monitor
•	 A user gives his password to a colleague via his phone

As you can see, I have listed only user actions, because very often those errors are
committed by users, not system administrators. The good news for you is that these
kinds of errors are usually easy to spot, fix, and prevent.

I have worked in a company that needed to increase its security, so we started
working on this because is very cost effective. We started assessing the passwords
using John the Ripper in a secure machine on the hashed passwords. The result
was shocking—more than 95 percent of the passwords were found in less than an
hour on an average computer. We decided to create a very small course (2 hours) in
which we explained how to create safe passwords and how to handle them safely.
The course has been forced to all employees in the following week. After the week
ended, we created a JavaScript, was been loaded on any login page, which checked
whether the password in its current form was secure enough, and if not, changed the
reference URL of the login button so that the first page proposed to the user was the
change password page. After one week, we ran the John the Ripper test again and
with much joy we have seen that the first password has been found after more than
24 hours in the test and in 24 hours we were still under the 1 percent of passwords
found. The policies we enforced were the following:

Chapter 1

[21]

•	 No dictionary word
•	 At least one uppercase letter, one lowercase letter, one number and a special

character, excluding '!', '#', '@', '&', and '$' which are the most common special
characters

•	 At least thirteen character-long passwords

Using these three rules, we removed the weak passwords problem, reaching 80 bits
of entropy on each password.

The National Institute of Standards and Technology (NIST)
suggested to use at least 80 bits of entropy for secure passwords.

To be sure that the people followed the instructions given during the password
course to manage the passwords, we identified a few people in the company who
were most successful during the course, to help out with looking for colleagues
that were handling the passwords unsafely. Those people caught handling unsafe
passwords were signed up for another course (4 hours, this time), which was more
focused on giving the reasons as to why people should follow the rules, rather than
simply teaching them the rules (that were already discussed in the previous course).

As for password sharing and other similar practices, a system has been put in place
to be sure that no more than an IP could use a certain username and password at
a given moment in time. If more than a user did connect, the account was locked
automatically and the user (owner of the account) had to call the IT department
directly to ask them to unlock his account. In a few months, these kind of actions will
no longer happen. We did not solve the password over telephone problem directly
(because is not possible to enforce this kind of rule, unless there is someone listening
for all phone calls, which is pretty impossible), but we have made it pretty noticeable
by the IT department.

Shortcuts
People are lazy and will try to use any possible shortcut that they can think of.
I know this is a huge generalization, but it's true more often than not. If you ask
people to do a complex process and they see the possibility of having similar results
with a much simpler process, the majority of them will use the simpler process and
this is more true, when the same person has to do the same process multiple times.

First Things First – Creating a Safe Environment

[22]

How can you defend your company from this? The first thing to do is to keep
the processes as simple as possible, so that people have less advantages to take a
shortcut. The second thing to do is to inform all the people that are part of each
process the reasons why that process is done in that way and what can be the
consequences of a different process.

To explain this at best, I'd like to bring you a very famous example from a different
field, aviation. British Airways Flight 5390 became famous because on June 10,
1990, since an windscreen blew due to a panel that was improperly installed. In
the process, the captain of the plain, Tim Lancaster, was ejected halfway out of the
aircraft. The body of the captain (still alive) was firmly pressed against the window
frame where it stayed until the first officer managed to perform an emergency
landing in Southampton with no loss of life.

The reason this accident is of such importance is that it shows what can happen
when enough information about a process is given to the people who are executing
that process. In this case, the problem was that in a replacement done few hours
before the flight, the windscreen had been changed and wrong bolts were used. In
fact, 84 of the 90 windscreen retention bolts were 0.026 inches (0.66 mm), which is
too short in diameter, while the remaining six were 0.1 inches (2.5 mm), too short.
This has been possible because the operator that changed the windscreen used a like
for like method to select the new bolts, instead of looking up on the maintenance
documentation, even if this would have been the right procedure following the
official British Airways policies, which required referencing to the maintenance
documentation for each component that is being replaced on the planes.

Three out of the five recommendations of the Civil Aviation Authority following
this accident, aimed to improve the probability of the right execution of the
procedures by the people, mainly through training, and testing including the
possible consequences of shortcuts during the processes. The remaining two
recommendations were about examining the continued viability of self-certification
with regards to safety critical tasks on aircraft and about recognizing the need for the
use of corrective glasses, if prescribed, in association with aircraft engineering tasks.

Human error
Human errors are very frequent and usually have disastrous consequences. One of
the main causes of human errors in IT, in my experience, is pressure.

Human error implies that the person doing the action knows what he/she should
do, but does it differently because there are external factors acting on them, such as
pressure or tiredness.

Chapter 1

[23]

I have not seen a single office in my life that was not susceptible to pressure or
tiredness—obviously a good management can help, but cannot prevent it. What you
can do is document everything when you are calm and rested, so when pressure or
tiredness grow, it is possible to follow the documentation.

I have seen this in multiple companies' IT departments with no documentation.
I know this is pretty common (at least in south Europe) because multiple colleagues
of mine have told me that they have had similar experiences. I do remember a
specific case in which I went to a company to create an active-active cluster.

In my experience, the presence of documentation for certain
procedures creates less pressure on the executors; therefore, the
simple fact of having a procedure can decrease one of the cause
of errors.

After a few days in the job, the main MySQL database went down and the manager
asked me to fix it. After a little bit of analysis, I had in place a workaround promoting
the slave to the master, so that the company was able to work again. This was
obviously a dirty workaround that had to be fixed very soon. So, after working for
hours, when it was safe to shut down the system for enough time, we created a new
slave to restore the initial situation. I have asked the manager if this ever happened
before and how they fixed it the previous times. He responded saying that it already
happened few times, but the person who fixed it the previous time left the company
months ago leaving no documentation, since the company never forced him to write
it. Having all data on a SAN, we chose to do a SAN copy to improve the speed of the
recovery. The result has been a huge mess with doubled LVM IDs that required more
than 2 hours to be cleared.

Obviously, I cannot blame the previous technician for the LVM issue, but if he/she
would have written a documentation for that procedure, we would have followed it
without creating the mess, considering that all that mess happened because a single
LVM command had been forgotten planning the work.

Lack of information
As we have seen, human errors and shortcuts are often caused by a lack of
information. Sometimes, the lack of information does not result in human errors or
shortcuts, but ends up in disasters because the person that is doing the procedure
does not know something relevant to the procedure, or has no real idea about the
environment it is working on.

First Things First – Creating a Safe Environment

[24]

The solution is to create the documentation and to update it constantly. Obviously,
it is important to read all the documentation too. In my experience, it is really
important to have a good tool for documentation. Some companies use Word
documents or similar kind of programs. I think this is wrong for mainly the
following four reasons:

•	 Word processors mix style with the content, which can create problems when
you have commands and code in your documentation

•	 It's not possible, or very hard, to link each document or section. Every time a
system or procedure is mentioned, it will be linked. Each system should have
a page with all procedures and configuration linked, and vice versa.

•	 It requires specific software or other kind of not-so-friendly interfaces
(such as Google Drive)

•	 It does not support (or supports small) versioning

I think the best way to provide documentation is with a wiki installation or a
Git repository containing human readable documentation in a markdown or a
similar format. If you go for the Git repository option, remember to export them
in HTML too, to be more accessible. In either case, remember to backup your
documentation frequently because it's a very important asset.

Always create a documentation of everything you do,
because later on you or someone else will need it.

Social engineering
"The information security industry defines social engineering as an attack that
breaches an organization's security defenses by manipulating people and the
human tendency to trust."—SysAdmin Audit Networking and Security Institute
(SANS Institute)

Humans are in pretty much all processes or can enter into them if they feel the
urgency to do so. Humans, also, are very often the weakest link of a security chain
since they are flexible, while computers are not.

Humans are flexible and usually try to meet other people's
expectations, often accepting a rule violation to do so.

Chapter 1

[25]

Today, it's possible to create a secure system for a small amount of money that will
require multiple times more money to break into it. This is the reason why attackers
use people inside the company to drastically reduce the amount of effort needed to
break into the system. The majority of times, the attacker exploits the employee's
willingness to meet the other person's expectation to get the information they need.

Lately, social engineering has been split into tens of fields based on the vehicle of
attack and the goal. We will not go deeper in this topic at the moment.

I would like to bring you an example of social engineering I did, because I didn't
believe what happened would have been so easy in that company.

I was placed in a big company to help them increase their security. The manager was
willing to undertake a lot of actions in this sense, but thought that social engineering
was only a commercial thing used by sellers to sell more useless services and
therefore was not willing to implement any social engineering countermeasure. To
demonstrate to him the importance of social engineering countermeasures, I pulled
out my phone, and called the company front desk hiding my number. I informed the
person who responded that I had problems with an invoice calculation, and therefore
had to speak with someone in the accounting department. Soon after a person of the
accounting department responded. I informed him that I was calling from Microsoft
helpdesk and that I had to do some tests with him due to a new update that has
been rolled out that morning. The man was really happy about my call because he
also had a problem with a scanner that was not able to make it work properly. I said
that a part of the procedure required his company password and a lot of other data
to verify that everything worked. The incredible part was that he gave me all the
information without doubting my intentions. While I was on the phone, the manager
was shocked that an employee had shared so much information with an unknown
person over the phone.

Evil actions under threats
Sometimes the attacker is not able to circumvent anyone in the company,
so he/she might want to identify a person who has enough clearance and is easy
to threaten to obtain what we are looking for. In movies, usually, the villain kidnaps
a person from the hero's family to obtain what he is looking for. Luckily, in reality,
this is not common and usually the threats are much smaller, but still work for the
attacker's purpose.

First Things First – Creating a Safe Environment

[26]

My point of view is that it is really important that the company works to ensure their
employees work in a secure environment mainly limiting their powers. Mistreating
someone is very dangerous and legally speaking very bad in the majority of countries;
therefore, the attacker would like to get a single person with enough power, but if
there are no people with this power, an attacker could try different approaches to the
problem leaving aside the employees.

Evil actions for personal advantage
I have left this category as the last one because it's often hard to accept, mainly in
small companies, and very hard to deal with.

Sometimes people commit evil actions and you have to be prepared for this. This
kind of inside attack is usually very dangerous because they will be able to ask for
favors from their colleagues with legitimacy. If they do not have direct access to the
resource they need, they can use social engineering but using their real credentials
to gain more trust and to be able to ask for bigger favors or more confidential
information.

For this reason, you have to segment the process and have very strict rules that don't
allow a person to know more than they are meant to know. Also, it is important to
inform your employees and make them aware of this kind of risk.

Summary
In this chapter, we have seen an introduction to security as well as a number of best
practices to use. These best practices will help you to have a safer environment.

Often, people focus so strongly on securing a system from a specific kind of attack
that the system seems inexpugnable from that point of view, but they forget to secure
the system from other prospective too, making worthless or their work.

In the next chapter, we will dive into some security challenges you may be facing
and into the OpenStack structure.

[27]

OpenStack Security
Challenges

As we have seen in the first chapter, each level of your infrastructure can be an object
of the unwanted attention for an attacker. Software is no exception to this. There are
a lot of attacks that aim to find bugs or misconfigurations in software and exploit
them to gain access to the machines that run the software, or to data. OpenStack,
with all its parts and all the software it relies on, can be a very effective attack vehicle
if not safely configured, due to its very trustful policy that allows nodes to access all
data if the node requires it. So, an attacker can quickly compromise and obtain your
data if he or she is able to compromise a single node.

Before looking at OpenStack directly, I would like to deal with a critical aspect:
security in cloud environments; that is, the ownership of machines.

In this chapter, we will to cover:

•	 The differences between the private and the public cloud with a focus on the
security aspects

•	 The possible security threats to a cloud components of OpenStack

Private cloud versus public cloud
security
Very often people say cloud when they actually mean public cloud. For this reason,
in the book, we'll always specify private cloud or public cloud and when we do not
specify anything, the word cloud is used in both senses at the same time.

OpenStack Security Challenges

[28]

This is a necessary disclaimer because when speaking of security, private and public
clouds have completely different issues, but let's start from the beginning.

The private cloud
A private cloud environment is operated solely for a single organization (or person)
by internal or third-party personnel. In a private cloud situation, all machines are
owned (or leased) by the organization and will run that organization's software
exclusively.

From an economical perspective, private clouds are less flexible; in fact, the number
of machines will stay pretty stable over time compared to public clouds.

From a scalability perspective, private clouds are not very flexible because you can't
use more processing power than that you have installed it with. Very often, private
clouds are kept with an average of 80-90 percent load and this means you can burst
only 10-25 percent of your average load.

From a security perspective, private clouds grant you full access (and full
responsibilities) to create a safe environment. This means that no one can look at
your data if you create a safe environment, and you will have to spend money to
create a safe environment. Usually, these clouds are created behind a company's
firewall, so this helps secure them. This security advantage is negated if the cloud
contains the Web-readable/writable content because you'll have to open your
firewall ports in this case. This is often mitigated by creating two different clouds,
one for web-accessible data (in a DMZ) and one that is accessible only by internal
users (in the internal network).

The public cloud
"There is no [public] cloud, only other people's computers."—Free Software
Foundation Europe

A public cloud has very different problems and opportunities as compared to a
private cloud.

From an economical perspective, with a public cloud, you pay exactly what you use
as you go, so no upfront costs.

From a scalability perspective, public clouds can be considered as limitless because
they usually have so many resources available that you can start up all the machines
you need without worrying about cloud capabilities.

Chapter 2

[29]

From a security perspective, the public cloud is more complex to analyze. Since
cloud providers usually provide to millions of machines at any given moment, they
can invest way more than the average company for security. Thus, their cloud is
very secure. The drawback is that you have to trust the Cloud Service Provider
(CSP) completely with your data. If the CSP would like to see your data and
everything you run on their machines, they can. If they are interested in selling your
data to your competitor, there are very limited things you can do. Also, we have to
remember that public clouds can be attacked from inside, since an attacker can lease
a virtual machine directly into the cloud for a few dollars and without any questions
asked.

Since all users of a public cloud are not in the company
network of the cloud service provider, public clouds have to
be accessible from the Web, increasing the attack surface of
public clouds.

Private cloud versus public cloud
The following is an easy-to-remember schema that will help you immediately
understand the advantages and disadvantages of public and private clouds:

Prospective Public cloud Private cloud
Economical Pay as you go Pay upfront
Bandwidth Usually very high Limited
Scalability Virtually unlimited Limited
Security Usually very high Limited to your

budget
Data confidentiality Not under your control Under your control
People you have to trust Yourself and the cloud

provider
Yourself

As we can see, public clouds and private clouds are very different and there isn't
a choice that is always right and one that is always wrong. It depends on the
specific software you have to deploy. If you integrate a private cloud with a public
cloud, you'll have an hybrid cloud. Usually, the public part of a hybrid cloud has
the same characteristics as that of a public cloud, as the private part has the same
characteristics of a private cloud.

OpenStack Security Challenges

[30]

The different kinds of security threats
As we have seen in the previous chapter, when we speak about security, we can
mean multiple things. Also, as we have just seen that private and public clouds
present different kinds of security issues. We are now going to analyze the various
attacks that you can encounter when administering an OpenStack cloud.

Possible attackers
Let's start by identifying the possible attackers we can face. They can be divided
in different ways based on their goals; in this case, we will distinguish them as
the following:

•	 Automated attacks/Script kiddies: Automated vulnerability scanning/
exploitation.

•	 Motivated individuals: This includes multiple kinds of attackers, such
as small-scale industrial espionage, rogue or malicious employees, or
disaffected customers. They act alone.

•	 Highly capable groups: These groups often refer to themselves as Hacktivist
and are not typically commercially funded, but can pose a serious threat
to service providers and cloud operators. Many groups of hackers have
organized themselves lately, such as Lulzsec and Anonymous.

•	 Organized hackers: These are groups of hackers who are usually highly
capable. These groups are financially driven and able to fund in-house
to exploit development and target research. Multiple groups fall in this
category, from the Russian Business Network to the various organized
groups that undertake industrial espionage.

•	 Intelligence agencies/services: They usually have capabilities greater than
any other attacker, because they can bend rules without breaking them
and can be authorized to violate rules. Intelligence agencies and other
governmental players are comparable to organized hackers, but usually
have far more money they can spend on those operations, making them
more effective.

The possible attacks
There are multiple kinds of attacks that can be put into action. The main kinds are
as follows:

•	 Denial of Service
•	 0-day

Chapter 2

[31]

•	 Brute force
•	 Advanced Persistent Threat
•	 Automated exploitation tools
•	 ISP intercept
•	 Supply chain attack
•	 Social engineering
•	 Hypervisor Breakout

Denial of Service
A Denial of Service (DoS) attack is an attack that aims to make some service
unavailable. In the last few years, usually we speak about DDoS, since those are
very effective and cheap and for those reasons have become the most used DoS
attack. DDoS attacks consist in multiple machines trying to overload a server or
its connection to make the services that are running on that server unavailable.

The good part about DoS attacks is that in majority of the cases, as soon as they end
it, all is back to normal. When this is not true, small actions have to be executed by
system administrators, such as restarting a service or rebooting a machine.

There is no way to completely protect a server from a
DoS attack.

Even if you cannot protect your company completely from such attacks, you can
mitigate them in two ways:

•	 Having a lot of spare resources such as CPU, RAM, and bandwidth makes
harder to knockdown the service

•	 Writing rules on firewalls (or having an Intrusion Prevention System (IPS)
or an DoS Defense System (DDS) that do it for you) that drop all traffic
coming from IPs that are currently attacking your servers

There are companies that provide clean pipes that are connected with only good
traffic since have already been filtered by the ISP using IPSes and DDSes.

Usually, DDoSes are used by automated attacks/script kiddies, motivated
individuals, and highly capable groups. It could so happen that organized hackers
too use DDoS attacks, but, in this case, it's usually an Advanced Persistent DoS
(APDoS), where the attack lasts for long periods (the longest APDoS registered was
38 days), moves from server to server to be harder to detect, and involves a huge
amount of traffic (usually more than 50Pb in total).

www.allitebooks.com

http://www.allitebooks.org

OpenStack Security Challenges

[32]

In the history of DoS attacks, the following methods have been heavily used:

•	 Buffer overflow attacks: In this kind of attack, the attacker looks for buffers
that are filled with input from the user without prior validation. Since buffers
have a fixed length, we can't put only a certain amount of data that can fit
in the buffer; the rest of the data will be written in other parts of RAM and
could be executed by the program.

•	 SYN Flood attacks: As we will see more deeply in the next chapter, the
computers expect certain handshakes at the beginning of a communication.
This attack violates this convention forcing the server to open more
connections than needed. At a certain point, the server will not be able to
open a new connection, making the service unavailable.

•	 Teardrop attacks: Network packages should be of certain sizes. If bigger
packages are found, the machines split them into smaller packages to manage
them properly. Old machines have problems recognizing and properly
managing packages that are smaller than expected. In this attack, this bug is
exploited by sending smaller packages than expected to the machines, which
in old systems often resulted in system crashes and reboots.

•	 Smurf attacks: In this kind of attack, the attacker uses badly configured
machines in the network to amplify the attack. Usually, the attacker sends a
forged package (that is, ICMP ECHO package) that seems to arrive from the
victim to a broadcast address. All the machines in the broadcast domain that
are tricked by this package, will respond to the victim. So, if in the network
there are 100 machines with poor configuration, an attacker could be able to
create an amount of traffic that is 100 times its maximum amount of traffic.

•	 Viruses/Worms: In this kind of attack, the attacker creates a self-replicating
program that can consume resources or destroy the systems.

0-day
A 0-day attack is an attack that exploits a vulnerability that was not known
(or thought not to be exploitable) until that day. In these cases, there is no patch
available when the attack is used the first time.

In a 0-day case, no specific measurement can protect a company, but all general
security measurements we already talked about in the previous chapter will help
mitigate this risk.

0-day attacks can only be done by highly capable groups, organized hackers, and
intelligence agencies/services because those are the only players that have the
resources needed to do such an attack.

Chapter 2

[33]

Brute force
Since many attackers cannot afford to invest to research 0-day attacks, they use
Brute force. Brute force is very noisy and the majority of system administrators,
and IDSes will recognize and block them.

To prevent these kinds of attacks, you should have an IDS and good policies
for passwords.

These attacks are so noisy that only automated attacks/script kiddies and motivated
individuals will use them.

Advanced Persistent Threat
An Advanced Persistent Threat (APT) is a kind of attack in which expert attackers
use stealthy and continuous attacks targeting a specific entity.

During an APT attack, it is common to find many attacks that we already discussed,
such as APDoS, and 0-day exploitations. Often also involved are Social Engineering
techniques and Supply Chain attacks, which we will talk about shortly.

Since these are very expensive attacks that require multiple people, they can only be
done by highly capable groups, organized hackers, and intelligence agencies/services.

Automated exploitation tools
Since APT attacks are very expensive, automated attacks/script kiddies, and
motivated individuals will prefer Automated exploitation tools. These tools allow
the attacker to test multiple already known exploits to search for a known exploit
that the system administrator has not yet patched.

Examples of Automated exploitation tools are Metasploit and Nessus.

To prevent these kinds of attacks, you need to always keep your
system updated and frequently check online whether there are
new ways to exploit software applications you use become known.

OpenStack Security Challenges

[34]

The ISP intercept
The ISP intercept is a category in which a lot of possible attack vectors fall into.
The baseline is that somehow the attacker is able to see all traffic moving into your
connection at the border of your property. This attack can be executed legally by
Intelligence agencies/services with a warrant, or could be executed illegally.

I've seen an example of an illegal execution of this kind of attack in a company,
where the attacker has cut the company's Internet connection cable and has added its
own box that allowed the traffic to be normally received and sent, but also copied all
the passing data to the attacker systems.

Preventing those kinds of attacks is impossible because they are executed outside
your competence limits. The only possible way to mitigate these attacks is to encrypt
all the data you share with the outside world.

Sometimes even companies' private networks can be compromised with this attack.
Recently, there have been rumors that the NSA was able to retrieve data from Google
and Yahoo! by tapping their fiber optics cables that connect the datacenters. Even if
there hasn't been any official confirmation, in a few months' since these rumors, both
Google and Yahoo! announced that they now encrypt all traffic between datacenters
to prevent this from happening.

The only kind of attacker that can do this legally are the Intelligence agencies/
services. But organized hackers can also perpetrate such attacks.

The supply chain attack
In a supply chain attack, the attacker tempers a cryptographic component, such as a
device that performs encryption or secure transactions, when it is still in the supply
chain of the device, so that it is not yet in the hands of the client. This could happen
during the manufacture of the device or at a certain point before it is put into the
production environment. For this kind of attack, the attacker needs physical access
to the device. A common type of tempering is the installation of a rootkit or specific
hardware design to spy on the user.

From the documents written by Edward Snowden, it seems that the NSA has been able
to perform multiple Supply Chain Attacks in the last few years. This has not been
confirmed as of today by the NSA itself.

Due to its complexity, only Organized hackers and Intelligence agencies/services can
perform this kind of attack.

Chapter 2

[35]

Social engineering
As we have already seen in the previous chapter, social engineering could be a good
option for an attacker who would like to attack an organization.

All kinds of attackers can perform social engineering attacks, but the most effective
will be the ones perpetrated by the most skilled groups.

The Hypervisor breakout
Since we are focusing on OpenStack, the Hypervisor breakout is an attack your
company could suffer from.

In an Hypervisor breakout, the user of a virtual machine is able to escape from his
virtual machine and connect to the host that is running the virtual machine. In the
history of virtualization, there have been multiple cases of possible Hypervisor
Breakout attacks and pretty much all hypervisors have been objects of such
unwanted attention.

At the moment, there is no known case of Hypervisor Breakout in real-world attacks,
but it is possible that some companies have been compromised by this kind of feature
but has not made it public due to the possible consequences to the company's image.

The real risk with an attack of this kind is that a person with such a level of access
will probably be able to attack every machine in the cluster and will be able to access
all resources available to those machines.

We will see how to prevent this kind of attack in the last chapter of this book.

These attacks are really hard to perform and are very expensive, so only organized
hackers and intelligence agencies/services will be able to perform them.

The OpenStack structure
OpenStack is an orchestration suite to create clouds mainly focused to create
Infrastructure as a Service (IaaS) solutions. OpenStack has multiple components,
each one aiming to provide a piece to the cloud. As I write, last OpenStack stable
version is Juno that has the following components:

OpenStack Security Challenges

[36]

OpenStack Compute Service – Nova
Computing is one of the core parts of any IaaS solution, as well as OpenStack. This is
also one of the two oldest modules of OpenStack, since it has been part of the project
since its first version, Austin, which was released in October, 2010. Nova derives
from NASA's Nebula platform.

Nova is a cloud computing fabric controller. It is designed to manage and automate
pools of computer resources and can work with many hypervisors such as KVM,
VMware, and Xen.

It is written in Python and uses many external libraries. Nova was created with
horizontal scalability in mind; in fact, it's able to scale horizontally on commercial
off-the-shelf (COTS) components. This allows you to keep the hardware costs down
and to easily integrate with legacy hardware.

Starting from the Havana release, Nova is able to run docker containers directly,
but due to some Continuous-Integration problems, this feature will be in the main
source code only since the Kilo release.

Nova can be compared to Amazon's Amazon Elastic Compute Cloud (EC2). As for
the Docker addition in Kilo, Amazon provides the AWS Elastic Beanstalk service.

OpenStack Object Storage Service – Swift
The other component available since the first release of OpenStack is Swift, a scalable
redundant storage system. Swift was developed in the first place by Rackspace
Hosting itself and derives from the Rackspace expertise, and is built for creating and
managing the Rackspace Hosting Cloud File service. Currently, Swiftstack is leading
the development of Swift.

Swift is an object storage capable to ensure data integrity, thanks to its ability to
write the files to multiple disks spread throughout the nodes in the cluster. Swift is
also able to manage multiple regions for the same pool, so it's possible to create real-
time, off-site replicas of data to prevent possible data losses in case of problems in
the main region.

Due to its design, Swift—like Nova—is created with horizontal scalability in mind,
and works with COTS components.

Swift can be compared to Amazon's Amazon Simple Storage Service (S3).

Chapter 2

[37]

OpenStack Image Service – Glance
Glance has been added in the second release of OpenStack (Bexar), and since its first
version, it has greatly improved. Glance is useful to save disk and server images
to make the users able to run multiple equal servers without having to reconfigure
them each time.

The purpose of Glance is to help you manage the Nova images in a simpler and
more efficient way. In fact, Glance allows you to use the images as templates for
new instances, take snapshots, and backups.

Glance is not a storage service for those images and can rely on multiple storage
services, such as the OpenStack Object Storage Service. Due to this fact, Glance
can be easily integrated with the current storage architecture and can contain a
large number of images, based on the amount of free space available in your
backend storage.

Glance provides a REST API interface to integrate with other components to allow
other components to manage (indirectly) machines, images, and templates.

Glance can be compared to Amazon's Amazon Machine Image (AMI) system.

OpenStack Dashboard – Horizon
Horizon is the OpenStack dashboard and can help users to handle OpenStack
resources without the need for command-line access. Horizon has been added in
Essex, the fifth release of OpenStack.

Horizon is a web interface for OpenStack and all components of OpenStack can be
managed in Horizon. This allows OpenStack end users to access their account and
to manage their OpenStack resources without the need of a system administrator
and of connecting via terminal to the cluster. This improves OpenStack security.

Horizon is designed to allow easy integration with other products and services,
in order to allow an easy deployment and usage with third-party software.

Horizon can be compared to Amazon's AWS Management Console.

OpenStack Security Challenges

[38]

OpenStack Identity Service – Keystone
Keystone is the identity server of OpenStack. It has been added to OpenStack
in Essex.

Keystone is a service that catalogs the available API endpoints and allows a
centralization of user permissions in OpenStack. Due to the high sensibility of these
information, it will be very costly and unsafe to let each component manage them. To
do so, Keystone keeps all information in a secure way and all the other components
that need them will be able to access it using the Keystone REST API. Keystone
allows multiple authentication methods such as username and password, token-
based system and Amazon Web Services (AWS) login.

Keystone supports multiple backends to store this data, such as LDAP.

Keystone can be compared to Amazon's AWS Identity and Access Management
(IAM).

OpenStack Networking Service – Neutron
In Folsom (the sixth release of OpenStack), a networking module called Quantum
has been added. Due to some branding issues, since Havana (the eighth OpenStack
release), this module has been renamed as Neutron.

Neutron allows you to create and manage virtual networking in an easy yet
powerful way. It allows to have global networks that are valid for all users and
managed by administrators and user networks that are usable and manageable by a
single user. In the case of user networks, the network will be visible and usable only
by that specific user.

Neutron does not only provide basic networking, but also provides advanced
networking tools, such as floating IPs. Also, it provides an extension framework
allowing the deployment and management of other network services such as
Intrusion Detection Systems (IDS), load balancers, firewalls, and virtual private
networks (VPN). For administrators, there is the possibility to use software-defined
networking (SDN) technology such as OpenFlow to support multitenancy and
horizontal scaling.

Neutron can be compared to Amazon's Amazon Virtual Private Cloud (VPC).

Chapter 2

[39]

OpenStack Block Storage Service – Cinder
Cinder is a Block Storage for OpenStack. It has been included in OpenStack since
Folsom (the sixth release of OpenStack).

Cinder is able to provide block-level storage devices to Nova. Cinder interface and
its features are comparable to the block storage providers available in commercial
SAN products, so any user is able to create, manage, and use their block storage
devices. Cinder does support multiple backends, such as Ceph, GlusterFS, NFS,
and multiple proprietary SAN systems.

Cinder can be compared to Amazon's Amazon Elastic Block Store (EBS).

OpenStack Orchestration – Heat
Heat has been a part of OpenStack since Havana (the eighth release of OpenStack).
It can be used to orchestrate cloud applications using templates, and to automatically
create machines on demand.

Heat can be used to create machines on demand from templates to allow an application
to grow horizontally without any need for direct commands from the administrators.

To help the administrators that have to manage multiple infrastructure on OpenStack
and Amazon, or are migrating the infrastructure from Amazon to OpenStack, Heat
does support Amazon CloudFormation template syntax.

Heat can be compared to Amazon's Amazon CloudFormation.

OpenStack Telemetry – Ceilometer
Ceilometer has been added to OpenStack in Havana (the eighth release of
OpenStack) with Heat, since they are complementary. In fact, Ceilometer provides
data about the user's usage of resources, so as to be able to bill the people based on
the actual resources used.

Ceilometer provides a single service that centralizes each service counter, so it's
possible to export the usage data that will be needed to calculate the customer
billing. All data available in Ceilometer are traceable and the whole process can be
audited. Ceilometer data can also help companies using OpenStack in their private
cloud to understand which processes and Business Units use more resources.

Ceilometer can be compared to Amazon's Amazon CloudWatch.

OpenStack Security Challenges

[40]

OpenStack Database Service – Trove
Trove is a database-as-a-service that is able to provide databases that are both
relational and nonrelational. It has been added in Icehouse (the ninth release of
OpenStack) and has been heavily improved in Juno (the tenth release of OpenStack).

Trove manages the database for the user, so it's capable of migrating a database from
a machine to another or to scale the machine size based on the required resources. It
also provides a RESTful API to communicate to the databases to completely abstract
the database and its management. Also, the native interface of the chosen database
is always available. Currently, it supports relational databases such as MySQL,
NoSQL databases such as MongoDB, Cassandra, Redis, CouchDB, CouchBase, and
in-memory databases such as MemCached and VoltDB.

Trove can be compared to Amazon's Amazon Relational Database Service (RDS),
but Amazon's service only supports relational databases.

OpenStack Data Processing Service – Sahara
Sahara is a Hadoop-as-a-service system. It's very new; in fact, it has been added in
Juno (the tenth release).

Sahara allows the user to create Hadoop clusters quickly and easily. It also allows
the user to be fully in control of the clusters, being able to set a lot of settings such
as Hadoop version, cluster topology, and node's hardware details. After the user
completes this information, Sahara deploys the cluster in a few minutes.

Sahara also allows the user to launch and manage MapReduce jobs on the clusters
that have created.

Sahara can be compared to Amazon's Amazon Elastic MapReduce (EMR).

Future components
Since the OpenStack community is increasing its size very quickly, the OpenStack
Technical Committee has created a procedure to accept new components as part
of OpenStack.

To grant maximum safety and code-continuity, it has been decided that the new
components have to pass a given time in incubation. In this period, the component
has to show a few releases as if they were already parts of OpenStack before they
can be promoted to official components. This makes the incubation process pretty
long but you can be assured that only high quality components are allowed to be
officially part of OpenStack.

Chapter 2

[41]

Due to this long process, we already know that some components that will soon
become part of OpenStack. The following components are being considered to
be part of the next release (Kilo) and some of them will very likely be integrated.
These components are explained next.

Ironic – bare metal provisioning
The ironic goal is to provide the same interface that is used to create virtual instances
in OpenStack to create real (bare metal) machines as well. The main goal of this is to
help a system administrator to centralize the administration of the machines.

Amazon does not provide any service that is comparable to Ironic.

Zaqar – cloud messaging
Zaqar is a cloud messaging service for web developers. The service features
a RESTful API, which developers can use to send messages between various
components of their software and mobile applications. During the early phase of
the development of Zaqar, it was known as Marconi, but since has been renamed.

Zaqar can be compared to Amazon's Amazon Simple Queue Service (SQS) service,
but with the additional support for event broadcasting. Also, some features of Zaqar
can be found in Amazon's Amazon Simple Notification Service (SNS).

Manila – file sharing
Manila is a file sharing service provider. Manila volumes are accessible as NFS and
CIFS volumes, as well as through the RESTful interface. Manila also supports ACL
at the file level. It can use GlusterFS, NetApp, and IBM GPFS volumes as backends.

Manila can be compared to Amazon's AWS Storage Gateway.

Designate – DNS
Designate is a DNS-as-a-service provider. It is able to manage multiple DNS
instances for redundancy reasons and to keep them all synchronized properly.
Multiple backends can be used such as PowerDNS, NSD4, FreeIPA, DynECT,
and BIND9.

Designate can be compared to Amazon's Amazon Route 53.

OpenStack Security Challenges

[42]

Barbican – key management
Barbican is a key (secrets) manager for OpenStack. Barbican handles many types of
secrets, including:

•	 Symmetric keys that can be used to encrypt Swift containers and Cinder
block storages

•	 Asymmetric keys that can be used for secure communications such as
SSL/TLS, encrypted e-mails, and SSH

•	 Raw secrets that can be used to keep secure data in Barbican

Barbican can be compared to Amazon's AWS Key Management Service (KMS).

Summary
In this chapter, we have seen the differences between private and public cloud with a
specific focus on security, the different kind of attackers, and attacks with a focus on
cloud computing, as well as the components of OpenStack.

In the next chapter, we will focus on networking security for OpenStack.

[43]

Securing OpenStack
Networking

OpenStack, as any other software, has to assume certain hypothesis as though
they were true. This is necessary to develop flexible software in a speedy way.
On the other side of the coin, this approach endangers the security of the software.
In the case of OpenStack, there is a single hypothesis that can trash your security
measurements.

OpenStack fully trusts each node of the cluster.

As we have seen in the Hypervisor breakout section in Chapter 2, OpenStack Security
Challenges, this exposes all the data and resources in the cluster in case someone
obtains access to a machine in the cluster. The hypervisor breakout is not the only case
in which this can happen, and is rare. The most common exploit of that hypothesis is a
network attack in which the attacker is able to use an insecure network to gain access
to more data than it should.

Securing OpenStack Networking

[44]

The Open Systems Interconnection model
In 1984, ISO/IEC 7498-1 was published, which defines the Open Systems
Interconnection (OSI) model. The OSI model is a theoretical model to divide
a communication between two machines in abstraction layers.

Even if the OSI model is not used in the real world, it is critical, because
it helps you to understand the networking communications and their
implications clearly. Also, very often, those layers are referred to in
networking, in phrases such as "we got a problem on layer 3".

The OSI model consists of the following seven layers:

1.	 Physical
2.	 Data link
3.	 Network
4.	 Transport
5.	 Session
6.	 Presentation
7.	 Application

Layer 1 – the Physical layer
This is the lowest layer and it relates the physical part, as the name suggests.
This layer cares about bit stream, so it will be electrical, light, or radio impulses.

The following are the standards that fall in this layer:

•	 IEEE 802.11a/b/g/n/ac (WiFi)10BASE-T
•	 100BASE-TX
•	 1000BASE T
•	 10GBASE T
•	 40GBASE-T (Ethernet standards over RJ-45 twisted pair of copper cables)

Synchronous Optical Networking (SONET)
•	 Synchronous Digital Hierarchy (SDH) (common optical fiber standards)

The physical layer standards define the basic things about the cables and connectors,
such as the layout of pins, line impedance, voltages, cable specifications, connectors'
shapes, and many other similar things.

Chapter 3

[45]

If a colleague comes to you saying that he thinks there is a layer 1 problem, means
that he thinks either the cable or the ports are faulty.

As for security, layer 1 attacks are the ones that see the attacker messing directly
with the cables. The two possible attacks aim respectively to a denial-of-service
and to data duplication.

In the first case, the attacker would cut or unplug a cable to inhibit two machines
to communicate. An example of this could be an attacker that identifies the network
cable exiting your data center and cuts it to make all the data available in your data
center unavailable to the outside world.

In the second case, the attacker would somehow copy all the data passing through
your cable to another cable to be able to collect and parse them. An example of this
case could be an attacker who cuts a cable in a moment when no one would be
checking, crimps connectors to both the pieces, and adds some hardware in between,
such as a passive LAN tap, to be able to read all data streaming through the cable
without being discovered.

Layer 2 – the Data link layer
By moving up one level in the networking stack, we can find the data link. This layer
deals with frames that are bits with a source and a destination. In this layer, the
source and destination addresses are the Media Access Control (MAC) addresses.
Data can be passed from the source to the destination only if they are in the same
network, so they don't have any router or firewall in the middle.

In this layer, a lot of low-level operation occurs such as error control, flow control,
spanning tree mitigation with Spanning Tree Protocol (STP) or its evolutions,
Quality of Service (QoS) control, and Virtual LANs (VLAN).

So, a layer 2 problem usually means something related to MAC addresses, STP,
and VLAN that went wrong.

From a security prospect, layer 2 is crucial, because a lot of sensible data passes in
this level such as broadcast announcements and requests. If the network is deployed
properly, you will have a router or a firewall on any connection that goes outside
your walls, even if that line is yours or dedicated. In this case, to be able to do a layer
2 attack, the attacker has to be physically in your building or be able to connect to a
machine in your building.

Securing OpenStack Networking

[46]

Multiple kinds of attacks are possible in layer 2, the most common ones are
the following:

•	 Address Resolution Protocol (ARP) spoofing
•	 MAC flooding and Content Addressable Memory (CAM) table

overflow attack
•	 Dynamic Host Configuration Protocol (DHCP) starvation attack
•	 Cisco Discovery Protocol (CDP) attacks
•	 STP attacks
•	 Virtual LAN (VLAN) attacks

This list only counts for cabled networks, because Wi-Fi networking has all those
plus many more attack vehicles, but since the Wi-Fi technology is not used in the
server farm, those problems are excluded from our goal.

Address Resolution Protocol (ARP) spoofing
ARP is a protocol that allows identification of the MAC address of a machine
by its IP. To improve its performances, historically, every machine listens for ARP
packages and updates their ARP tables every time a host affirms that it owns an IP
and a MAC address even if no ARP request has been issued.

ARP spoofing is an attack that allows an attacker to make the other host in the
network thinks he is someone else sending out a crafted ARP package with the
machine's real MAC and another machine IP. The most common type of attack
is the attacker faking to be the gateway to be able to perform a Man in the Middle
(MitM) attack. The single most effective way to prevent this is to enable the port
security feature on your switches.

Hubs are simple signal replicators and should be avoided in
any situation. Always use switches instead of hubs.

Chapter 3

[47]

MAC flooding and Content Addressable Memory
table overflow attack
To improve their performances, all switches maintain a CAM table that lists all
known MAC addresses with the indication of which port to use to reach them.
This allows the switch to send a package for a specific MAC address, only to the
port where that MAC address is connected. MAC flooding attack aims to saturate
the CAM table of the switch. To do so, the attacker will fake many Ethernet frames
from random MAC addresses and those will be sent to the switch. The switch will
add all those new MAC addresses to its CAM table, and in the end the CAM table
will be saturated.

If a switch has the CAM table full, it will act as if it was a hub,
relaying all data to all ports, so any computer connected to that
switch with the packet analyzer software will be able to log all
traffic passing through the switch itself.

To prevent this kind of attack, you need to enable the port security feature and
to limit the number of MAC address that can be authorized on a single physical
port. The best way to prevent this kind of attack would be to deactivate the MAC
autodiscovery, but this can scale out badly because every time you add, change,
move, or remove a box you'll have to update the switch configuration.

Dynamic Host Configuration Protocol (DHCP)
starvation attack
The majority of networks today have the DHCP enabled to distribute IP addresses,
gateway addresses, and DNS addresses without the need for any manual
configuration. Every time a MAC address requests an IP to a DHCP server, the
DHCP server will reply with an IP address. In the DHCP starvation attack, the
attacker will perform thousands of IP requests until the DHCP server runs out of
assignable IPs. At this point, if new clients try to request an IP address, the DHCP
server will not be able to provide them anymore and the new clients will not be
able to navigate properly, so a DoS has been performed. There is another possible
outcome to this attack, that is, if the attacker does create a new (rogue) DHCP server,
which has free IPs. If this happens, the new clients will ask for an IP address and the
rogue DHCP server will assign them properly. Since the IPs of gateways and DNS
are also provided by the DHCP server, the rogue DHCP server can provide its IP as
the gateway, so it will be able to perform a MitM attack on those clients.

Securing OpenStack Networking

[48]

The best way to mitigate this kind of attack is to enable port security and to limit the
maximum number of MAC address for each physical port. In fact, if you set 10 MAC
addresses for each physical port, the attacker will be able to steal only 10 addresses
from your DHCP, if he is able to access a single physical connector.

Cisco Discovery Protocol (CDP) attacks
The CDP is enabled by default on all Cisco devices and allows them to coordinate
themselves. CDP is an unauthenticated and clear text protocol, so it has no embedded
securities. This is a Cisco proprietary protocol, so only if you have at least one Cisco
device in your infrastructure, you can be affected by this. The CDP aims to make
possible a communication (and coordination) of the multiple Cisco devices you
probably have on your network.

There are multiple attacks that can be performed against this protocol, including
the following:

•	 Denial-of-service that will inhibit the attacked hardware to work at all
•	 Cache overflow that allows the routers/switches to reset to fabric conditions
•	 Power exhaustion that will leave your switches without enough energy

to run properly, exploiting the reserve electrical power feature created
for VoIP devices

•	 Cache pollution that will make the usefulness of CDP disappear, since its
tables will be full of garbage making them useless

To prevent and mitigate those attacks, we have various options. The safest one is
to deactivate the CDP on any Cisco hardware. However even if this is a safe way to
prevent these kinds of attacks, you probably have reasons to want those protocols
in your organization since it helps network admins. A middle ground option is to
disable the CDP on all ports that have clients on them, leaving it enabled only on
ports between networking devices.

Spanning Tree Protocol (STP) attacks
STP is a very common technology to be found on networks. Its goal is to grant in
any given moment that no loops are possible in the network. To do so, it uses Bridge
Protocol Data Units (BPDU), which are special packages crafted to detect loops.
This protocol assumes trust between networking appliances. This opens up the way
for multiple attacks like the following:

•	 Sending configuration BPDU, with this kind of attack, is possible to
inform all layer 2 switches that a new configuration is available

Chapter 3

[49]

•	 Sending Topology Change Notification (TCN) BPDU, in this case,
it's possible to fake the addition, or elimination of a node

•	 Claiming Root Role, in this kind of attack, the attacker informs all other
nodes to be the Root switch and so a lot of traffic will pass through it

•	 Claiming Other Role, in this case, the attacker can claim to be in a certain
position of the tree, and therefore is able to capture specific traffic, knowing
some information about the network

As you can see, there are a lot of different ways to exploit STP. The basic rule to
make STP safe is to disable it from any interface that is not used to connect switches
together. Also, on many important vendors' switches, you can enable root guard or
BPDU guard to mitigate these kind of attacks.

Virtual LAN (VLAN) attacks
VLAN attacks are nowadays present in all complex networks since they are an
economical way to split different systems in multiple networks without having
to buy multiple switches. The VLAN protocol is standardized in the IEEE 802.1Q
document. VLAN works thanks to an additional header added to each package (also
known as VLAN header or 802.1Q header) that identifies the VLAN the package is a
part of. On Cisco devices, VLAN can be managed using the Cisco proprietary VLAN
Trunking Protocol (VTP), a protocol that allows centralized management of VLAN
instead of management for each network appliance. OpenStack Quantum can use
VLAN, so we will speak more about VLAN and L2 tunnels later in this chapter.

VLAN is susceptible to the following attacks:

•	 VTP attack: In this kind of attack, the attacker will send VTP packages with
changes to VLANs. If the switches read and apply those changes, the attacker
will be able to do anything he wants with your VLANs.

•	 VLAN hopping attack: In this case, the attacker will make your network
believe it is a switch and subscribe to more VLANs than it should, being able
in this way to access those new VLANs.

•	 Double encapsulation: In this case, the attacker puts two 802.1Q headers
in each package, his own and the victim's. If the switch has the port set for
negotiation, the package will be sent to the victim's VLAN.

Securing OpenStack Networking

[50]

There are multiple exploits that allow the attacker to somehow escape from
the VLAN or to mess with your VLANs. To prevent and mitigate those attacks,
you can do the following:

•	 Always use a dedicated VLAN for the trunks port, so double tagging is harder
•	 Disable unused ports and put them in an unused VLAN, so even if someone

can enable them, it will be of no use
•	 Don't use VLAN 1 for any use, since some switches can interpret VLAN 1 as

untagged traffic
•	 Disable trunking on ports that are not switch facing, so it's not possible for

an attacker to fake being a switch
•	 Use 802.1Q tags on all ports
•	 Disable VTP or at least force basic security (such as MD5 authentication)

Layer 3 – the Network layer
Moving up one level in the networking stack, we can find the network link. This is
the last layer classified as media layer, since it's the last layer that is directly managed
by your networking infrastructure. This layer deals with packages. In this layer, the
source and destination addresses are Internet Protocol (IP) either version 4 or 6.
The data can move from a network to another using routers and layer 3 switches.

In this layer, all high-level networking occurs, such as Internet Protocol Security
(IPSec), Internet Control Message Protocol (ICMP), and Internet Group
Management Protocol (IGMP). Multiple protocols can be used for routing; the most
common ones are Open Shortest Path First (OSPF), Routing Information Protocol
(RIP), Enhanced Interior Gateway Routing Protocol (EIGRP), and Border Gateway
Protocol (BGP).

From a security perspective, there are two major attacks that can be performed at
this level:

•	 ICMP DDoS attack, such as smurf attacks and ping flood
•	 Exploit the routing protocol to execute a MitM attack

Chapter 3

[51]

Layer 4 – the Transport layer
The transport layer provides the ability to move variable-length data sequences from
a source host to a destination host. This is the first time for the host layer since the
switches and routers will not interfere with it and the data will make sense only to
the sender and to the receiver. Today this is not completely true because we have
stately firewalls, but this was true in the past.

The most common technologies found in this layer are Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP).

From a security standpoint, the most probable attack is a DDoS pointing to a badly
handled exception of the TCP stack, such as the SYN flood attack. For these kinds of
threats, you should use the Intrusion prevention systems (IPS) with the Network
behavior analysis (NBA) feature.

Layer 5 – the Session layer
The session layer is in charge of the connection between the two hosts. Its role is
to establish, terminate, and manage the connections between the two hosts. It can
setup different kinds of connections, such as half-duplex, full-duplex, and simplex.

The most common example of layer 5 is the TCP socket.

The most dangerous attack at this level is session hijacking. In this kind of attack,
the attacker will retrieve information about an active and legitimate session and
impersonate the client to be able to receive data from the server. The best way to
prevent that kind of attack is encrypting all data using Transport Layer Security
(TLS).

Layer 6 – the Presentation layer
The presentation layer is in charge of transforming the data from the application
formats to the networks format. It formats and encrypts the data before sending
it to lower layers, and for this reason, it is also called the syntax layer.

The currently most well-known example of technology at this layer is the TLS.

This layer is critical for the security of the applications, and many times attackers
have tried breaching TLS or other similar technology. An example is the Heartbleed
vulnerability discovered in OpenSSL during April 2014. The best way to secure
yourself from these kinds of attacks is to keep your system up-to-date and to check
your configurations; in fact, the majority of the problems at this layer come from 0
days and misconfigurations.

Securing OpenStack Networking

[52]

Layer 7 – the Application layer
The application layer is the highest one, and therefore, the closest to the user.
This layer interacts with applications that communicate using networking.

The examples of technology at this layer are well known, such as Hypertext
Transfer Protocol (HTTP), File Transfer Protocol (FTP), Simple Mail Transfer
Protocol (SMTP), Domain Name System (DNS), Network File System (NFS),
Network Time Protocol (NTP), and many others.

As for the security, in the application layer, we have very similar problems and
solutions to the 6th layer, which is the presentation layer.

TCP/IP
The OSI Model, even if it is very popular and very important to understand how
networking works, is not used in the real world, since Internet and all networks we
usually use are based on the TCP/IP stack. The TCP/IP stack has fewer layers and
it is pretty straight forward when you know the OSI Model. Let's take a look at the
following diagram:

OSI TCP/IP

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network access
(usually Ethernet)

TCP (host-to-host)

Applications
(FTP, SMTP,
HTTP, etc.)

7

6

5

4

3

2

1

Chapter 3

[53]

Architecting secure networks
On top of what we have already seen until now about the network security, we need
to remember a couple more rules as well, which are as follows:

•	 Different uses means different network
•	 The importance of the Intrusion Detection System (IDS) and Intrusion

Prevention System (IPS)

Different uses means different network
This best practice involves dividing into different networks (usually using VLANs) for
different kinds of data. This is a best practice that very often people ignore because is
easier to manage flat networks than more structured network.

The advantages of this approach are multiple and in the following sectors:

•	 Security
•	 Redundancy
•	 Performance
•	 Scalability

Let's start from the last one listed, since it is the easiest to analyze. Very often you
create a network with the idea of adding few servers, but later you'll find yourself
adding more servers to the same network. At the end, you'll end up needing to add
a machine, but you'll have no IP address to assign to the machine. How did this
happen? Often people assign a 24 IP class to a network, which has only 254 usable
addresses. Even if this number seems huge at the beginning, later it will seem too
small. The real problem is that if you want to change the class, you'll have to change
it on a huge number of machines.

Performance-wise, if you have huge networks with hundreds (or thousands)
of machines, you'll see thousands of broadcast messages that will hit all your
machines every time. Clearly, every machine will immediately drop all the
packages that are not interesting for them, but this will use up your bandwidth.

As for redundancy, this is connected to the redundancy systems that are possible
on the various networking layers. If you have a huge flat network, you'll have the
biggest part of communications at layer 2 because the machines will often be in the
same network of the machine they want to communicate with, so they will use Mac
addresses instead of IPs. It's possible to make a redundant layer 2 network, but it is
expensive and the expenses grow directly with the increase of the redundancy level
and number of machines you own.

Securing OpenStack Networking

[54]

Redundancy in layer 2 is obviously necessary in either case, but can be minimized in
a segmented network environment preferring the much cheaper and better scaling
layer 3 redundancy.

Security is also a huge reason to trash a flat network design. Let's start from a classic
example, we have a reverse proxy, an application server that needs a MySQL server,
and an NFS, as shown in the following figure:

Reverse Proxy

Application Server

Reverse Proxy

Database MySQL

Database MySQL

NFS Server

NFS Server

Router

Application Server

Router

We are intentionally ignoring redundancy for simplicity and clarity.

As we can see, in the preceding figure, if the attacker is able to breach in the reverse
proxy machine, he can directly attack the MySQL and the NFS servers. In the second
case, he has to attack before the Application Server then can attack the MySQL and
NFS systems. This slows down the attacker. Also, consider that in a flat network
scenario, you'll very often have machines with different systems in the same network,
so if one system is compromised, the attacker can try to attack all machines in the
network, instead of the few machines logically connected to it.

Chapter 3

[55]

Also, you have to remember that if an attacker is able to take control of a machine
connected to a network, he will be able to perform layer 2 attacks to be able to spoof all
data in the network. Encrypted data is safer, but still a lot of data move unencrypted.

The importance of firewall, IDS, and IPS
The security of a network can and should be achieved in multiple ways.
Three components that are critical to the security of a network are:

•	 Firewall
•	 Intrusion detection system (IDS)
•	 Intrusion prevention system (IPS)

Firewall
Firewalls are systems that control traffic passing through them based on rules.
This can seem something like a router, but they are very different. The router allows
communication between different networks while the firewall limits communication
between networks and hosts. The root of this confusion may occur because very
often the router will have the firewall functionality and vice versa.

Firewalls need to be connected in a series to
your infrastructure.

The first paper on the firewall technology appeared in 1988 and designed the packet
filter firewall. This kind of firewall is often known as first generation firewall. This
kind of firewall analyzes the packages passing through and if the package matches
a rule, the firewall will act accordingly to that rule. This firewall will analyze each
package by itself and will not consider other aspects such as other packages. It
works on the first three layers of the OSI model with very few features using layer
4 specifically to check port numbers and protocols (UDP/TCP). First generation
firewalls are still in use, because in a lot of situations, to do the job properly and are
cheap and secure. Examples of typical filtering those firewalls prohibit (or allow) to
IPs of certain classes (or specific IPs), to access certain IPs, or allow traffic to a specific
IP only on specific ports. There are no known attacks to those kind of firewalls, but
specific models can have specific bugs that can be exploited.

Securing OpenStack Networking

[56]

In 1990, a new generation of firewall appeared. The initial name was circuit-level
gateway, but today it is far more commonly known as stateful firewalls or second
generation firewall. These firewalls are able to understand when connections are being
initialized and closed so that the firewall comes to know what is the current state of a
connection when a package arrives. To do so, this kind of firewall uses the first four
layers of the networking stack. This allows the firewall to drop all packages that are
not establishing a new connection or are in an already established connection. These
firewalls are very powerful with the TCP protocol because it has states, while they
have very small advantages compared to first generation firewalls handling UDP or
ICMP packages, since those packages travel with no connection. In these cases, the
firewall sets the connection as established; only the first valid package passes through
and closes it after the connection times out. Performance-wise, stateful firewall can
be faster than packet firewall because if the package is part of an active connection,
no further test will be performed against that package. These kinds of firewalls are
more susceptible to bugs in their code since reading more about the package makes it
easier to exploit. Also, on many devices, it is possible to open connections (with SYN
packages) until the firewall is saturated. In such cases, the firewall usually downgrades
itself as a simple router allowing all traffic to pass through it.

In 1991, improvements were made to the stateful firewall allowing it to understand
more about the protocol of the package it was evaluating. The firewalls of this kind
before 1994 had major problems, such as working as a proxy that the user had to
interact with. In 1994, the first application firewall, as we know it, was born doing all
its job completely transparently. To be able to understand the protocol, this kind of
firewall requires an understanding of all seven layers of the OSI model. As for security,
the same as the stateful firewall does apply to the application firewall as well.

Intrusion detection system (IDS)
IDSs are systems that monitor the network traffic looking for policy violation and
malicious traffic.

The goal of the IDS is not to block malicious activity,
but instead to log and report them.

These systems act in a passive mode, so you'll not see any traffic coming from them.
This is very important because it makes them invisible to attackers so you can gain
information about the attack, without the attacker knowing.

IDSs need to be connected in parallel to your infrastructure.

Chapter 3

[57]

Intrusion prevention system (IPS)
IPSs are sometimes referred to as Intrusion Detection and Prevention Systems
(IDPS), since they are IDS that are also able to fight back malicious activities. IPSs
have greater possibility to act than IDSs. Other than reporting, like IDS, they can
also drop malicious packages, reset the connection, and block the traffic from the
offending IP address.

IPSs need to be connected in series to your infrastructure.

Generic Routing Encapsulation (GRE)
GRE is a Cisco tuning protocol that is difficult to position in the OSI model. The
best place for it to be is between layers 2 and 3. Being above layer 2 (where VLANs
are), we can use GRE inside VLAN. We will not go deep into the technicalities of
this protocol. I'd like to focus more on the advantages and disadvantages it has
over VLAN.

The first advantage of (extended) GRE over VLAN is scalability. In fact, VLAN is
limited to 4,096, while GRE tunnels do not have this limitation. If you are running
a private cloud and you are working in a small corporation, 4,096 networks could
be enough, but will definitely not be enough if you work for a big corporation or if
you are running a public cloud. Also, unless you use VTP for your VLANs, you'll
have to add VLANs to each network device, while GREs don't need this.

You cannot have more than 4,096 VLANs in an environment.

The second advantage is security. Since you can deploy multiple GRE tunnels in
a single VLAN, you can connect a machine to a single VLAN and multiple GRE
networks without the risks that come with putting a port in trunking that is needed
to bring more VLANs in the same physical port.

For these reasons, GRE has been a very common choice in a lot of OpenStack clusters
deployed up to OpenStack Havana. The current preferred networking choice (since
Icehouse) is Virtual Extensible LAN (VXLAN).

Securing OpenStack Networking

[58]

VXLAN
VXLAN is a network virtualization technology whose specifications have been
originally created by Arista Networks, Cisco, and VMWare, and many other
companies have backed the project. Its goal is to offer a standardized overlay
encapsulation protocol and it was created because the standard VLAN were too
limited for the current cloud needs and the GRE protocol was a Cisco protocol.

It works using layer 2 Ethernet frames within layer 4 UDP packages on port 4789.

As for the maximum number of networks, the limit is 16 million logical networks.

Since the Icehouse release, the suggested standard for networking is VXLAN.

Flat network versus VLAN versus GRE
in OpenStack Quantum
In OpenStack Quantum, you can decide to use multiple technologies for your
networks: flat network, VLAN, GRE, and the most recent, VXLAN. Let's discuss
them in detail:

•	 Flat network: It is often used in private clouds since it is very easy to set up.
The downside is that any virtual machine will see any other virtual machines
in our cloud. I strongly discourage people from using this network design
because it's unsafe, and in the long run, it will have problems, as we have
seen earlier.

•	 VLAN: It is sometimes used in bigger private clouds and sometimes even
in small public clouds. The advantage is that many times you already have
a VLAN-based installation in your company. The major disadvantages are
the need to trunk ports for each physical host and the possible problems in
propagation. I discourage this approach, since in my opinion, the advantages
are very limited while the disadvantages are pretty strong.

•	 VXLAN: It should be used in any kind of cloud due to its technical advantages.
It allows a huge number of networks, its way more secure, and often eases
debugging.

•	 GRE: Until the Havana release, it was the suggested protocol, but since
the Icehouse release, the suggestion has been to move toward VXLAN,
where the majority of the development is focused.

Chapter 3

[59]

Design a secure network for your
OpenStack deployment
As for the physical infrastructure, we have to design it securely. We have seen that
the network security is critical and that there a lot of possible attacks in this realm.
Is it possible to design a secure environment to run OpenStack? Yes it is, if you
remember a few rules:

•	 Create different networks, at the very least for management and external
data (this network usually already exists in your organization and is the
one where all your clients are)

•	 Never put ports on trunking mode if you use VLANs in your infrastructure,
otherwise physically separated networks will be needed

The following diagram is an example of how to implement it:

Compute Node

nova-compute

neutron-plugin-agent

Compute Node

nova-compute

neutron-plugin-agent

Network Node

neutron-metadata-agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Network Node

neutron-metadata-agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Management

SDN
Service
Node

External

Guest

API

Network Node

neutron-metadata-agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Compute Node

nova-compute

neutron-plugin-agent

Cloud Controller
Node

neutron-server

SQLdb

nova-scheduler

keystone

AMQP

nova-api

Dashboard Node

Horizon

Internet

Here, the management, tenant external networks could be either VLAN or real
networks. Remember that to not use VLAN trunking, you need at least the same
amount of physical ports as of VLAN, and the machine has to be subscribed to
avoid port trunking that can be a huge security hole.

Securing OpenStack Networking

[60]

A management network is needed for the administrator to administer the machines
and for the OpenStack services to speak to each other. This network is critical, since
it may contain sensible data, and for this reason, it has to be disconnected from other
networks, or if not possible, have very limited connectivity.

The external network is used by virtual machines to access the Internet (and vice versa).
In this network, all machines will need an IP address reachable from the Web.

The tenant network, sometimes even called internal or guest network is the network
where the virtual machines can communicate with other virtual machines in the
same cloud. This network, in some deployment cases, can be merged with the
external network, but this choice has some security drawbacks.

The API network is used to expose OpenStack APIs to the users. This network
requires IP addresses reachable from the Web, and for this reason, is often merged
into the external network.

There are cases where provider networks are needed to connect tenant networks to
existing networks outside the OpenStack cluster. Those networks are created by the
OpenStack administrator and map directly to an existing physical network in the
data center.

The networking resource policy engine
In OpenStack, there are a lot of policy files that can help you tune the default policies
to meet your specific needs. If you are using Red Hat or CentOS, you can find the
OpenStack Networking policy file in /etc/neutron/policy.json.

Virtual Private Network as a Service
(VPNaaS)
As we have already seen, it's very important to encrypt everything, and even more if
your traffic passes through third parties or shared networks. Since you might need to
connect some external resources (such as servers in a remote location or your laptop
to do some configuration) to your tenant network, OpenStack Networking allows
you to create VPN end points in a few clicks or commands.

This is very useful if you use some unsafe protocols. If you will use only safe protocols
such as SSH and HTTPS, you can still use a VPN if you want to be sure that no one will
be able to even collect metadata of your communications.

Chapter 3

[61]

Summary
In this chapter, we have seen how networking works, which attacks we can expect,
and how we can counter them. Also, we have seen how to implement a secure
deployment of OpenStack Networking.

In the next chapter, we'll see how we can harden OpenStack communications and APIs.

[63]

Securing OpenStack
Communications and Its API

In our world, where the majority of transactions of money, goods, and information
are executed over the Internet, the importance of encryption is becoming critical.

In this chapter, we will dive into encryption and hashing to understand the capabilities
of and possible security threats that these technologies can bring to you and your
infrastructure. After this, we will see how the public key infrastructure works so you
can understand the various weak points it can hide. Then, we will look at how to set
up httpd and nginx with certificates to secure OpenStack APIs.

Encryption is a part of human history. Since the Roman emperor Gaius Julius Cesar
(100–44 BC), many people have tried to create secure encryptions. The first attempt
to create a cryptography system that is considered safe today was made by Frank
Miller (1842–1925), who proposed one-time pads to enhance Vigenere encryption.
Those pads created with random characters were used a single time to encrypt a
message. An example could be as follows:

PLAIN TEXT: HELLO WORLD
KEY: BRYWD EMOVO
CIPHER TEXT: IVJHR AAFGR

As you can see, with one-time pads, you can enable secure cryptography. Although
it is unbreakable if correctly implemented, this kind of cipher is not used commonly
since it has multiple drawbacks:

•	 The one-time pads have to be composed with truly random characters
•	 The one-time pads have to be exchanged
•	 The one-time pads have to be as long as the total combined length of all

messages that are intended to be sent until the next pad exchange

Securing OpenStack Communications and Its API

[64]

These problems were partially solved by the German Army during World War II
with Enigma. Enigma is a machine that encrypts and decrypts a text by identifying
the positions of three rotors and a few patches. This allowed the German Army,
particularly the U-boats, to have months of valid codes on a few sheets of paper.
This obviously was way less secure than the perfect Vigenere cipher; in fact, it was
breached during WWII.

After the World War II, a huge number of attempts to create secure encryption were
made. We will see them as we go on in the chapter.

Encryption security
One of the most important things about encryption is security. This can seem to be
obvious, but it's not.

Different encryption techniques and algorithms have different
security levels and could be susceptible to different attacks.

Symmetric encryption
As you may have noticed, up to now, we have talked of systems where by knowing
the algorithm and the key, you can both encrypt and decrypt a message. This kind
of encryption is known as symmetric encryption. The big advantage of this kind
of encryption is that it is easy because it does not require complex math and much
calculation to execute. On the other hand, it makes critical the key exchange moment
and key management. In fact, the key has to be exchanged before the transmission can
start between the parties, and it has to be done securely. As for the key management
problem, since both parties know the same secret (in fact, this kind of cryptography is
also called shared secret), if you have multiple people that have to communicate with
each other, you will need n(n-1)/2 keys—this means that in a group of 20 people, you'll
need 190 keys.

Chapter 4

[65]

The following is the schema of a communication using a symmetric encryption.

Today, the types of symmetric encryption that are used are as follows:

•	 Stream cipher
•	 Block cipher

Stream cipher
All the encryption methods we talked about in this chapter preface are stream ciphers.
This kind of encryption is not very safe, but allows very cheap implementation and
allows you to send messages of unknown length. Stream ciphers are based on XOR
(exclusive OR) operations.

The most known and used stream cipher algorithm is RC4, which is used in the
important parts of society, like Wired Equivalent Privacy (WEP), Wi-Fi Protected
Access (WPA), Secure Sockets Layer (SSL), Transport Layer Security (TLS), and
many more protocols.

Securing OpenStack Communications and Its API

[66]

Block cipher
Block ciphers are more used than stream ciphers in software products. Block ciphers
operate on fixed-size groups of bits (blocks). A common size is 64 bit.

To understand what this could mean with a very easy example, we can try a
transposition cipher, such as the rail fence cipher. In this cipher, the plain text is
written downwards and diagonally on successive lines (also known as rails—hence
the name of the cipher). When the bottom line is reached, the text bumps at the
end (also known as fence) and starts moving upwards. The same process applies
to the top line. The message is then read in rows, not counting the empty spaces.
The following example can clarify this better:

PLAIN TEXT: HELLO WORLD

LINE1: H...L...R..
LINE2: .E.L.O.O.L.
LINE3: ..L...W...D

CIPHER TEXT: HLREL OOLLWD

In this simple example, we have scrambled the text creating an anagram of the
initial message. This is still somehow understandable since the text was very easy,
but it gives you a good understanding of what a transposition cipher is.

Block ciphers have four ways to cipher data, which are as follows:

•	 Confusion: It is very complex relationships between the plaintext and
the key that will prevent an attacker from determining the key altering
the plain text

•	 Diffusion: This is a way to change the cipher text in multiple places
every time the plain text is altered in a single place

•	 Substitution: This puts a different sign in place of the real one, such as
substitution of a letter with another one

•	 Transposition: This scrambles the text, reordering it in a definite way,
as in the rail fence cipher

These operations are usually simple, such as substitutions and permutations, but are
executed in multiple rounds.

Since the strength of encryption is the number of attempts that are needed to break
it, the encryption algorithm could be declared and made publicly available, and this
would not make the encryption unsafe.

Chapter 4

[67]

The first widespread block cipher is Data Encryption Standard (DES). Today, DES
is not used a lot since it has been proven too weak, while its improved version Triple
Data Encryption Standard (3DES or Triple DES) is still used. Another important
block cipher is Advanced Encryption Standard (AES), which is probably today the
most common block cipher algorithm.

Asymmetric encryption
Asymmetric encryption has some core differences from symmetric encryption.
The first that you can immediately see is that in asymmetric encryption there are
two keys: one public key to encrypt and a private key to decrypt. From this concept,
one of the names of asymmetric encryption is derived: public key encryption. The
process in an exchange of secure data with an asymmetric encryption is as seen here:

This approach does simplify greatly the key exchange and key management.
For the key management, you only need a pair of keys (private/public) for each
person. So if you have 20 people that have to communicate between themselves,
you'll only need 20 pairs of keys. For the key exchange process, it becomes very
easy since every user can share their public key online, and you only have to
have the other person's public key to encrypt the message.

Securing OpenStack Communications and Its API

[68]

Also, asymmetric encryption allows you to sign messages, encrypting them with
your private key, so that anyone with your private key can decrypt the message,
understanding that it is coming from you and granting non-repudiation. The
following figure shows this process:

If you use asymmetric encryption to sign messages, its content will be available
to anyone who knows your public key. That means that your message is not
confidential. You can overcome this by signing the message with your private
key and then encrypting it with the receiver key. By doing so, you are granted
both confidentiality and non-repudiation.

Diffie-Hellman
Diffie-Hellman (also known as D-H or DH) was the first asymmetric algorithm
and was released in 1976. It was named after its creators, Whitfield Diffie and
Martin Hellman.

The Diffie-Hellman protocol works by using two constants: a parameter (p) and a
generator (g). The parameter must be a prime number while the generator must be
smaller than the parameter. Further, gk = n mod p (where k is the key) has to apply
for every number (n) from 1 to p - 1.

Chapter 4

[69]

The Diffie-Hellman protocol security is granted by the discrete logarithm problem.
This problem affirms that when there is a discrete logarithm, it is easy for a machine
to solve it, but it's much more costly to find the original logarithm knowing only its
result. The weak spot of the Diffie-Hellman algorithm is the key exchange because it
does not require any authentication between the parties and, therefore, is vulnerable
to man-in-the-middle attacks.

Today, the Diffie-Hellman algorithm is paired with authentication methods in many
applications, such as the IPSec.

RSA algorithm
The year after the release of the Diffie-Hellman algorithm, Ron Rivest, Adi Shamir,
and Leonard Adleman released a new algorithm for asymmetric encryption, the
RSA, a name that has been derived from their initials.

RSA supports keys up to 4096 bits, and its security is based on the idea that it
is hard to find the two factors that have been multiplied only knowing the result
of the multiplication. This problem is also known as prime factorization problem.
The real challenge for RSA is the randomness of the numbers necessary to create
the key pair. In fact, if the numbers are not truly random, the whole algorithm
could be insecure.

Due to the simplicity of the RSA algorithm, the complexity of the prime factorization
problem, and the fact that the RSA patent expired in 2000, today RSA is the de facto
standard for asymmetric encryption.

Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) is based on the assumption that finding the
discrete algorithm of a random elliptic curve element with respect to a publicly
known base point is unfeasible.

The advantage of ECC is that you can have comparable security to a 3072-bit RSA
with a 256-bit ECC. This means that low power devices can encrypt and decrypt
ECC messages way faster than standard RSA messages.

Multiple methods of ECC have been established in the last few years, such as Elliptic
Curve Diffie-Hellman (ECDH), Elliptic Curve Digital Signature Algorithm
(ECDSA), and Edwards-curve Digital Signature Algorithm (EdDSA).

Securing OpenStack Communications and Its API

[70]

A few concerns have been raised about the security of ECC since the National
Security Agency (NSA) has started to push strongly on ECC since 2005, arriving
to push the Dual Elliptic Curve Deterministic Random Bit Generation (Dual_
EC_DRBG) as a NIST national standard. In 2013, the Dual_EC_DRBG was proven
intentionally weakened. From that moment, several companies like RSA and many
others started to campaign against ECC, since it could be possible that other ECC
standards have similar weaknesses.

Symmetric/asymmetric comparison
and synergies
We have seen that symmetric and asymmetric encryption feature multiple
differences. Let's recap these differences as follows:

Domain Symmetric Asymmetric
Able to grant Confidential Confidential, offering

integrity, authentication,
and non-repudiation

Needed key(s) A single shared key A public key and a private
key

Key exchange Complex and offline Simple and online
Scalability Not scalable, keys increase

exponentially
Scalable

Key size Small Big
Implementation
speed

Fast Slow

Best for Bulk data Small amount of data, key
exchange, digital envelopes,
digital signatures, and
digital certificate

As you can see, in multiple domains, symmetric and asymmetric keys are exact
opposites. This means that they can be used together to fill each other's weaknesses.
A way to do so is to create a hybrid encryption to initialize the communication
using asymmetric encryption, and in this communication, exchange securely a key
that will then be used to perform symmetric encryption on all the data that follows.
This ensures the confidentiality, integrity, authentication, and non-repudiation of
the communication granted by asymmetric encryption, and the high speed of data
transfer granted by the speed of symmetric encryption.

Chapter 4

[71]

Hashing
While encryption is about confidentiality, hashing is about integrity and
authentication. Hashing algorithms reduce any amount of data to a fixed length
value known as the hash value. This hash value is a sort of fingerprint of the initial
data. Due to the algorithms used to create hash values, even small changes in the
initial data will create huge changes in the hash value. This makes it harder to
guess the initial data with a trial-and-error approach.

Since you can have initial data of the desired length, and the output will be of fixed
length, there is the possibility that different initial data will have the same hash
value. This is called collision.

For example, let's see the difference between Password and password:

$ echo "password" | shasum -a 1
c8fed00eb2e87f1cee8e90ebbe870c190ac3848c -
$ echo "Password" | shasum -a 1
3f44a88d098cdb8a384922e88a30dbe67f7178fd -

From a security standpoint, the biggest risk of hashing algorithms is the collisions.
A well-designed algorithm should prevent collision; but the only way to create
an algorithm that is collision-free would need a hash value longer than the text,
making it pointless.

Hashing is a one-way algorithm, and it is not possible to extract the original data
by knowing the hash value. For some hashing algorithms like MD5 that today have
a huge number of collisions, you can simply Google a hash value, which will often
give you a short string that matches that hash value. This does not mean that the
original message that created that hash value will be the one you have found on
Google, but often what you have found will be enough to create breaches in the
security system you are dealing with.

You can use hashing to check if a file you have received is the same as the one
that has been sent. You can also use it to check if a password given by the user
is the right one to authenticate the user without really knowing the password,
since you only stored the algorithm.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Securing OpenStack Communications and Its API

[72]

MD5
MD5 is the most famous MD hashing algorithm and is one of the best-known of all
hashing algorithms. It produces a 128-bit output (32 characters), processing the initial
data in 512-bit blocks. You can use md5sum to see the MD5 hash value of a string in
the following command:

$ echo "password" | md5sum
286755fad04869ca523320acce0dc6a4 -

Today, MD5 is deprecated due to its high number of collisions.
If you still use it, you should start migrating to new and more
secure algorithms, such as SHA-2 or SHA-3.

SHA
The Secure Hash Algorithm (SHA) is another series of algorithms like MD5.
The various algorithms that constitute the SHA series are:

•	 SHA-0: This is the first version of SHA and was withdrawn shortly
after publication since a significant flaw was identified in the hashing
algorithm itself.

•	 SHA-1: This produces 160-bit output (40 characters), and today it is
considered at risk of breaking since it only offers 61 bits of security.

•	 SHA-2: This is a set of algorithms that can create outputs of 224-bit
(56 characters), 256-bit (64 characters), 384-bit (96 characters), and
512-bit (128 characters). It's today considered safe since it can offer
from 112 to 256 bits of security.

•	 SHA-3: This set of algorithms can create output like the SHA-2, but with
an entirely different algorithm, which is based on the Keccak algorithm.

To see some examples of SHA hashing, we can do the following:

$ echo "password" | shasum -a 1
c8fed00eb2e87f1cee8e90ebbe870c190ac3848c -
$ echo "password" | shasum -a 224
87c8cdddb2b4ea61c2d2752c24eb2e1f1ff05500173f504c4cda5291 -
$ echo "password" | shasum -a 256

Chapter 4

[73]

6b3a55e0261b0304143f805a24924d0c1c44524821305f31d9277843b8a10f4e -
$ echo "password" | shasum -a 384
ba5089942870d2d193bf4afaff72ac1aff6c683de523cb3e0346f85be55fef05786107
ab7af91d680e03a8a3357b6e77 -
$ echo "password" | shasum -a 512
9151440965cf9c5e07f81eee6241c042a7b78e9bb2dd4f928a8f6da5e369cdffdd2b70
c70663ee30d02115731d35f1ece5aad9b362aaa9850efa99e3d197212a -
$ echo "password" | sha3sum -a 256
17eded3bf5ab67bb8e37295e3469e236888a7e53dc95cf744856a6419f4d0d48 -
$ echo "password" | sha3sum -a 384
96d331c664090bcf96a67aa438d7800f490c12fa5885c3e02197e2a8471c04dcbd78189
39e83f7f3084628922a088421 -
$ echo "password" | sha3sum -a 512
80200973224a3ab9855a99200c7404d2b33e87cc765497e86a9cfe5e202171bfb93608f
7539de7ffe0ac79f2e8ea4f7da616d4ff156178718152c9916ee77149 -

Public key infrastructure
As we have seen, all encryption methods require a handshaking phase before the
actual transmission to decide the the algorithms and keys to be used. This is probably
the single most risky moment of the whole communication. In fact, today the majority
of hackers direct their efforts at breaking this initial communication. The single biggest
challenge in this phase is to be sure that you are talking directly to the person/machine
you want to talk to, and you don't have anything in the middle performing a man-in-
the-middle attack. If you know the other party, it is a straightforward procedure since
you already have the other party's public key. On the other hand, if you do not know
the other party, you should be able to trust that the other party is really who they claim
to be. An example of a daily situation where this happens is when you want to reach a
website for the first time. To solve this, the Public key infrastructure (PKI) is needed.

The PKI allows two parties to communicate securely even if they did not know
each other before. There are other ways to solve this problem, but the only one that
concerns us in the study of OpenStack Security is the PKI with a centralized Certify
Authority (CA).

The basic idea behind the centralized CA model is that there are one or few
CA trusted by everyone and that grant that the certificate holder is trustable.
This model is the base of the current implementation of SSL and TLS.

Securing OpenStack Communications and Its API

[74]

The best analogy I've ever heard for the PKI was told to me by a consultant working
in the same company as I was. He compared the PKI to the passport system. In the
passport system, every country has a person (the Prime Minister, the President, the
King, and so on) that is trusted by the other countries. He cannot issue all passports
and, so, has an office doing so. Since the people cannot travel to this single office
every time they need a new passport, this office has branches (specific passport
offices, or law enforcement agencies, depending on the country) all over the country.
These offices (in many countries) do not issue the passport themselves, but simply
validate the person's information and ask the main office to send them the passport,
following which they give it to the person who requested it. Any person can walk
into one of these offices and ask for a passport, which will be issued only after
some controls (that are internationally decided) are passed. Any person holding a
passport can walk into another country and can be recognized for what they are,
even if it's the first time they arrive in that country. In addition, the central office of
each country keeps a registry of each passport that has been issued, and in case the
document is invalid before it's due, this is noted. The agent in the other country can
directly ask the office of the country that has released the passport if the passport
they are looking at is still valid or if it has been invalidated.

As you can imagine, this analogy is not perfect, but I think it is the best one. In this
analogy, the person trusted by the other countries is the root CA, the office providing
passports are the intermediate CA, the branches are the registration authority, the
passport represents the digital certificate, and the barrier represents the end user. The
registry in which every central office stores the invalidated passports can be compared
to the Certificate Revocation List (CRL), where each CA puts the revoked certificates.
As with a passport, a digital certificate can be revoked for multiple reasons. The most
common are:

•	 The certificate expires.
•	 Some core information (such as the domain or IP) of the certificate changes

and the certificate has not been updated.
•	 The certificate holder asks to revoke it. This often happens when the servers

are compromised.
•	 A CA in its chain of trust has been compromised.

Chapter 4

[75]

Signed certificates versus self-signed
certificates
You can buy a signed certificate on several websites, and their price varies from
$9.99/year to several thousand dollars per year. This is mainly because there
are some certificates that allow you to cover multiple websites, have Extended
Validation (EV) certificates, have different assurance on them, or have different
brands. On the other hand, you can create your own CA and start creating your
certificates free of charge. Does it make sense to buy a signed certificate?

Domain Signed certificate Self-signed certificate
Price $9.99–$2000 Free
Issue time 1–14 days Immediate
Browser
compatibility

99.9% Only browsers enabled
by you or browser owner

Warranty $5,000–$1.75 million $0

As you can see, there are advantages and disadvantages on both sides. It really
boils down to what you will do with this certificate. If you are willing to use it on a
domain that will be Internet facing, I strongly suggest you to use a signed certificate.
If you are going to use the certificate internally only, you can use your own CA
and self-signed certificate. If you do so, remember to push your CA to all users'
computers using a group policy or a custom package based on your environment.

Cipher security
As we have seen through this chapter, there are several algorithms for encryption,
signing, and hashing, and each one has a different security level and has or could
have known problems in the future. Therefore it is important to understand which
algorithms are good to use and which are not, and obviously, how to communicate
this to your software.

Securing OpenStack Communications and Its API

[76]

The majority of installations today rely on OpenSSL for all SSL/TLS encryption and
decryption. OpenSSL can inform you about what algorithms you can use and their
security status. To do so, you can execute it as follows:

$ openssl ciphers DEFAULT
ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-
AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-
AES256-SHA:DHE-DSS-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES256-SHA256:DHE-DSS-AES256-SHA256:DHE-RSA-AES256-SHA:DHE-DSS-AES256-
SHA:DHE-RSA-CAMELLIA256-SHA:DHE-DSS-CAMELLIA256-SHA:ECDH-RSA-AES256-
GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH-RSA-AES256-SHA384:ECDH-
ECDSA-AES256-SHA384:ECDH-RSA-AES256-SHA:ECDH-ECDSA-AES256-SHA:AES256-
GCM-SHA384:AES256-SHA256:AES256-SHA:CAMELLIA256-SHA:PSK-AES256-CBC-
SHA:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-
RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-
ECDSA-AES128-SHA:DHE-DSS-AES128-GCM-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-
RSA-AES128-SHA256:DHE-DSS-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-
AES128-SHA:DHE-RSA-SEED-SHA:DHE-DSS-SEED-SHA:DHE-RSA-CAMELLIA128-SH-
A:DHE-DSS-CAMELLIA128-SHA:ECDH-RSA-AES128-GCM-SHA256:ECDH-ECDSA-AES128-
GCM-SHA256:ECDH-RSA-AES128-SHA256:ECDH-ECDSA-AES128-SHA256:ECDH-RSA-
AES128-SHA:ECDH-ECDSA-AES128-SHA:AES128-GCM-SHA256:AES128-SHA256:AES128-
SHA:SEED-SHA:CAMELLIA128-SHA:IDEA-CBC-SHA:PSK-AES128-CBC-SHA:KRB5-IDEA-
CBC-SHA:KRB5-IDEA-CBC-MD5:ECDHE-RSA-RC4-SHA:ECDHE-ECDSA-RC4-SHA:ECDH-RSA-
RC4-SHA:ECDH-ECDSA-RC4-SHA:RC4-SHA:RC4-MD5:PSK-RC4-SHA:KRB5-RC4-SHA:KRB5-
RC4-MD5:ECDHE-RSA-DES-CBC3-SHA:ECDHE-ECDSA-DES-CBC3-SHA:EDH-RSA-DES-
CBC3-SHA:EDH-DSS-DES-CBC3-SHA:ECDH-RSA-DES-CBC3-SHA:ECDH-ECDSA-DES-CBC3-
SHA:DES-CBC3-SHA:PSK-3DES-EDE-CBC-SHA:KRB5-DES-CBC3-SHA:KRB5-DES-CBC3-MD5

This is the list of algorithms that are enabled by default on my OpenSSL installation
(version 1.0.1k on Fedora 21). If you have a different version or platform, you
will probably have a different list. OpenSSL has multiple lists of algorithms; lists
that contain unsafe algorithms are EXP (<=56 bits), LOW (>56 bits, <=64 bits) and
MEDIUM (>64 bits, <=128 bits). To see which algorithms are parts of these groups,
you can use the following commands:

$ openssl ciphers EXP
EXP-EDH-RSA-DES-CBC-SHA:EXP-EDH-DSS-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA:EXP-
DES-CBC-SHA:EXP-RC2-CBC-MD5:EXP-RC2-CBC-MD5:EXP-KRB5-RC2-CBC-SHA:EXP-
KRB5-DES-CBC-SHA:EXP-KRB5-RC2-CBC-MD5:EXP-KRB5-DES-CBC-MD5:EXP-ADH-RC4-
MD5:EXP-RC4-MD5:EXP-RC4-MD5:EXP-KRB5-RC4-SHA:EXP-KRB5-RC4-MD5
$ openssl ciphers LOW
EDH-RSA-DES-CBC-SHA:EDH-DSS-DES-CBC-SHA:ADH-DES-CBC-SHA:DES-CBC-SHA:DES-
CBC-MD5:KRB5-DES-CBC-SHA:KRB5-DES-CBC-MD5
$ openssl ciphers MEDIUM

Chapter 4

[77]

DHE-RSA-SEED-SHA:DHE-DSS-SEED-SHA:ADH-SEED-SHA:SEED-SHA:IDEA-CBC-
SHA:IDEA-CBC-MD5:RC2-CBC-MD5:KRB5-IDEA-CBC-SHA:KRB5-IDEA-CBC-MD5:ECDHE-
RSA-RC4-SHA:ECDHE-ECDSA-RC4-SHA:AECDH-RC4-SHA:ADH-RC4-MD5:ECDH-RSA-RC4-
SHA:ECDH-ECDSA-RC4-SHA:RC4-SHA:RC4-MD5:RC4-MD5:PSK-RC4-SHA:KRB5-RC4-
SHA:KRB5-RC4-MD5

As you will notice, toward the end of the DEFAULT ciphers list, there are few
algorithms using the RC4 and/or the MD5 ciphers, which are known to be not very
secure. In fact, you can find the same algorithms in the unsecure lists. Since we want
to use only secure algorithms, we will use the following list of ciphers:

"HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM"

This string will instruct OpenSSL to use all algorithms in the DEFAULT list and all
algorithms in the HIGH list, with the exception of all algorithms using RC4, MD5,
aNULL, and eNULL. Also, it will not use all algorithms listed in the EXP, LOW, and
MEDIUM lists.

It is critical to always keep your OpenSSL up to date. Algorithms that
were believed to be safe until the day before could be discovered as
broken overnight, so it's critical to always have those lists up to date.
Also, always remember that OpenSSL is a software, and as a software,
it could have its own bugs (like Heartbleed) that will need to be safely
patched in minimal time to avoid any security problems.

Designing a redundant environment for
your APIs
Before starting to talk about how to make a safe environment, I'd like to spend few
words on how to make a redundant environment for your APIs. Since the APIs are a
critical part of OpenStack, if they do not respond properly, the majority of operations
OpenStack allows you to do will not be available.

Securing OpenStack Communications and Its API

[78]

There are many possibilities for designing a redundant service, but we will cover
only the one that is by far the safest and the most redundant.

In this design, we have two load balancers that are both listed as A records in
your DNSs. This will grant that even if one of the two dies somehow, the other
will respond to all requests using the DNS round-robin; and while they are both
up and running, they will split the traffic.

Although the DNS round-robin will not grant you that your nodes will
be hit by the same amount of traffic, it's a very inexpensive and reliable
solution. It is for these reasons that I suggest this one.

Those frontend servers will use HAProxy to load balance and share the traffic between
the API servers that are alive in that specific moment.

The API servers can use Apache httpd as well as many other web servers to serve the
OpenStack API.

To make everything secure, both the connections (the one from the web to the
frontend and the one from the frontend to the API server) will need to be encrypted.
To do so, we will have to set up HAProxy to decrypt, process, and then re-encrypt
the traffic. This allows us to use a public signed certificate and a private self-signed
certificate, if we want to.

Although the configuration of HAProxy is not the focus of this book, I'm going to
give you an example of a possible configuration for the situation pictured in the
preceding image:

frontend tls
 bind *:443 ssl crt /etc/ssl/private/ ciphers
 HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM no-sslv3
 default_backend openstack_api

Chapter 4

[79]

backend openstack_api
 server api01 api01.internal:8447
 server api02 api02.internal:8447

HAProxy configurations tend to be pretty simple as soon as one familiarizes a little
bit with it.

The first part (frontend) is where HAProxy looks to understand how to manage
incoming connections, while the second part (backend) is where HAProxy looks
to understand where to push requests.

So, looking at the fronted named tls, we give it a name, and we inform HAProxy
that we want to manage all connections coming for the port 443 (HTTPS), that we
will accept only a limited amount of ciphers, and that all those connections will
have to be processed by the backend named openstack_api.

In the backend named openstack_api, we inform HAProxy to route all requests
to the api01.internal and api02.internal nodes to the 8447 port (the API port).
HAProxy will automatically load balance between the two and stop sending traffic
to a node if this node fails.

Secure your OpenStack API with TLS
The first thing you have to do if you want to secure your APIs is to obtain a
certificate that could either be signed or self-signed. Although the OpenStack
API worker natively supports SSL/TLS, you'll need to use Apache httpd or
nginx if you are willing to use external authentication systems such as Kerberos,
SAML, or OpenID. Let's see how you can do so.

Apache HTTPd
In Apache httpd, to have a correctly set up system, we will need multiple VirtualHost
to be precise, three.

The first one will respond on port 80 (HTTP) to redirect all users to port 443 (HTTPS).
The following code is needed to force the usage of HTTPS:

<VirtualHost <ip address>:80>
 ServerName <site FQDN>
 RedirectPermanent / https://<site FQDN>/
</VirtualHost>

Securing OpenStack Communications and Its API

[80]

In this section, you have to enter your machine IP address and Fully Qualified
Domain Name (FQDN). For instance, in the local installation I have on my testing
cluster, I will use the following statement:

<VirtualHost 192.168.122.15:80>
 ServerName api.test.local
 RedirectPermanent / https://api.test.local/
</VirtualHost>

If you omit this first block, the most probable consequence is that
users going to http://<site FQDN>/ will see an error instead of
being redirected to the https://<site FQDN>/. In some situations,
based on previous or default configurations of Apache httpd, different
behaviors are possible, such as enabling navigation through APIs
insecurely in HTTP.

The second part involves setting up the HTTPS VirtualHost and uses the
following template:

<VirtualHost <ip address>:443>
 ServerName <site FQDN>
 SSLEngine On
 SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2
 SSLCipherSuite HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM
 SSLCACertificateFile /path/<site FQDN>.crt
 SSLCertificateFile /path/<site FQDN>.crt
 SSLCertificateKeyFile /path/<site FQDN>.key
 WSGIScriptAlias / <WSGI script location>
 WSGIDaemonProcess horizon user=<user> group=<group> processes=3
 threads=10
 Alias /static <static files location>
 <Directory <WSGI dir>>
 # In Apache http server 2.4 and later:
 Require all granted
 # For http server 2.2 and earlier:
 # Order allow,deny
 # Allow from all
 </Directory>
</VirtualHost>

Chapter 4

[81]

As you can see, there are several SSL options. Let's see what each one of them does:

•	 SSLEngine On: This enables the SSL for this VirtualHost.
•	 SSLProtocol: This instructs the SSL engine (usually OpenSSL) which

versions of SSL and TLS to use. I usually use +TLSv1 +TLSv1.1 +TLSv1.2,
which means that only TLS protocols are acceptable. This excludes SSLv2
and SSLv3, which have several security issues.

•	 SSLCipherSuite: This instructs the SSL engine (usually OpenSSL) which
algorithms to use and which algorithms to avoid, as we have seen in the
previous section.

•	 SSLCACertificateFile: This is the path to the CA certificate file.
•	 SSLCertificateFile: This is the path to the certificate file.
•	 SSLCERTIFICATEKeyFile: This is the path to the key file (private key) of

your certificate.

The last section is needed to secure port 8447, where the API runs:

<VirtualHost <ip address>:8447>
 ServerName <site FQDN>
 SSLEngine On
 SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2
 SSLCipherSuite HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM
 SSLCACertificateFile /path/<site FQDN>.crt
 SSLCertificateFile /path/<site FQDN>.crt
 SSLCertificateKeyFile /path/<site FQDN>.key
 WSGIScriptAlias / <WSGI script location>
 WSGIDaemonProcess osapi user=<user> group=<group> processes=3
 threads=10
 <Directory <WSGI dir>>
 # Or, in Apache http server 2.4 and later:
 Require all granted
 # For http server 2.2 and earlier:
 # Order allow,deny
 # Allow from all
 </Directory>
</VirtualHost>

As you can see, this third section is pretty similar to the previous one, with only
a difference in the port.

Now you are ready to restart your Apache httpd, and you will find
everything encrypted.

www.allitebooks.com

http://www.allitebooks.org

Securing OpenStack Communications and Its API

[82]

Nginx
In case you are using nginx instead of Apache httpd, this is an example of a config
file to serve HTTPS:

server {
 listen : ssl;
 ssl_certificate /path/<site FQDN>.crt;
 ssl_certificate_key /path/<site FQDN>.key;
 ssl_protocols TLSv1.1 TLSv1.2;
 ssl_ciphers HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM
 server_name <site FQDN>;
 keepalive_timeout 5;
 location / {
}

As you can see, even the names are very similar to the Apache httpd case, so it
should be pretty straightforward.

Enforcing HTTPS for future connections
It is possible to ask the browser to require HTTPS connections every time it accesses
that specific domain for a certain period. This could be a dangerous option, since if
SSL breaks on the server side, that domain will be inaccessible until SSL is restored
properly. On the other hand, it really increases security, because after the first HTTPS
connection, you are granted that until the end of the set period, all communications
will be fully encrypted. To do this, it is enough to send an HTTP Header like the
following one in the response:

Strict-Transport-Security: max-age=86400; includeSubDomains

This example will make this option last for 24 hours. This could be a good value for
testing purposes, while it would be a good idea to set it to longer periods (1 month
or 1 year) in production environments.

Summary
In this chapter, we have seen what encryption, signing, and hashing are, and why they
are relevant to you. We dove into how they work, to understand what possible threats
are hidden in them. Then we moved to the PKI and certificate system to understand
deeply how they work, and which vehicle of attacks is hidden there. In the last section,
we saw how to secure OpenStack APIs.

In the next chapter, we will move on to securing the identification and authentication
system of your OpenStack installation.

[83]

Securing the OpenStack
Identification and

Authentication System and
Its Dashboard

Today we are used to be identified and authenticated to various types of systems.
We start very early in the morning unlocking our phones (if it has a PIN or other
kind of security). We do it continually on websites, smartphones, doors, and so on.
We are so used to be identified and authenticated that a lot of times we do not focus
enough on the importance and the security of this critical process. In this chapter,
we will focus on each of those and how to secure them.

Identification versus authentication
versus authorization
A lot of times, people use those words interchangeably, since they are performed at
the same moment, but in reality, they are critically different concepts. We can define
these three concepts as follows:

•	 Identification: This is an action in which the user (untrusted party) declares
his identity

•	 Authentication: This is an action(s) to prove that the user is who he claims
to be

•	 Authorization: This action(s) is required to determine which actions a
specific user can perform

Securing the OpenStack Identification and Authentication System and Its Dashboard

[84]

To bring this into the real world, let's take an easy example and analyze the various
phases: a web login with the username and password.

Let's imagine you are logging into your OpenStack Dashboard. The username you
put in the username field, is the identification part. In fact, you affirm to be yourself,
and the system trusts you on this. However, to let you do anything, the system needs
to authenticate you. To do so, it needs your password and will check whether the
username and password match. After the system has authenticated you, it will look
into the authorizations your account has in order to decide whether or not to show
you the various links to resources. As you can see, these three items are different
parts of the process, and it is important to understand each one of them to be able to
manage a secure system.

Identification
Although the identification could seem to be useless because the system has to
trust an untrusted party, it's critical to the security of the Authentication. In fact,
the identification allows you to make the authentication problem a one-to-one
problem, instead of a many-to-one problem, increasing its security by several
orders of magnitude.

There are cases when it is acceptable to lower the security check a little bit, simplifying
the identification phase to drastically reduce the amount of time needed for the
process, making it less expensive. A typical example is badging to open a door. In this
case, if you find a badge on the ground, you can enter without any problem since all
the data is already present in the badge. On the other hand, if every time an employee's
badge had to be identified by a security agent, you would see long lines of angry
people waiting to be identified. In the badge example, the identification is usually done
automatically, to make it quick enough to be cheap and effective.

Authentication
Authentication is one of the most attacked processes by malicious users, because it
could be the weak link in the security chain.

There are instances when it is enough to be authenticated with a single method
(single factor authentication), while there are other cases where more security is
needed, so a multiple factor authentication is preferred.

The authentication can be performed in three different ways based on what you use
to identify the person:

•	 Something you know: This is a way to identify a user using something like a
PIN, a password, or a passphrase

Chapter 5

[85]

•	 Something you have: This is a way to identify a user using something like a
smart card or a badge

•	 Something you are: This is a way to identify a user using biometrical
characteristics of the user.

Something you know
This is the most common way to authenticate a person.

In this method, there is a preshared secret between the parties that is revealed to
ensure the identity of the other party.

As you can imagine this method can have multiple weak points:

•	 A secret can be revealed willingly or unwillingly to a third party
•	 If the preshared secret is heard/read by a third party, the third party can

impersonate one of the parties
•	 Very often, the preshared secret is easy to remember
•	 Usually, people write down those secrets, in case they happen to forget them
•	 It is possible to replicate the knowledge without permission from the

knowledge creator, so it is possible that multiple people know a preshared
secret without the other party suspecting it

All in all, it's a low-to-medium level security method. There are some ways to be sure
that the level of security is at least medium:

•	 Train people not to write down passwords, PIN, passphrases, codes, and so on
•	 Rotate passwords, but not too often (every 6 to 12 months)
•	 Prohibit the use of the password that has already been used in the history of

that account
•	 Let people choose a password (this will help to prevent the need to write

them down) enforcing some security rules or letting them choose between a
set of passwords generated by the system

•	 Enforce basic security rules: a minimum of 11 characters for alphanumeric case
sensitive passwords and 10 characters for passwords with all ASCII symbols

•	 Enforce at least a character for each character set (number, lowercase letters,
uppercase letters, and special characters) available

•	 Prohibit the use of passwords present in the dictionary

Securing the OpenStack Identification and Authentication System and Its Dashboard

[86]

•	 Prohibit the use of the company name, address, or any other
company-related information

•	 Prohibit the use of personal information such as birthday, anniversary,
spouse's birthday and name, or children's birthday and name

Something you have
As you can imagine, in this case, you need to physically have an item to be
authenticated. This method of authentication is very common in offices using
the badge.

This method has its downsides which are:

•	 A real object has to be created and delivered to each user
•	 As any other object, this item can be stolen

On the other side of the coin, both these downsides also have advantages, because
of the fact that a real object has to be delivered to each user, which means that if the
device gets stolen, it will travel at slow speed and will be possible to block it before
it's used. Also, a lot of times, people put their badges in their wallet and if their
wallet gets stolen, chances are the thieves do not know what to do with the badge
and will dump it. Also, people will soon know that their security device has been
stolen, so they will be able to contact the IT department to get it locked.

For those reasons, this kind of authentication can be very effective.

Something you are
Today passwords and badges are becoming old fashioned, according to any consumer
electronics company. Even if all the behavioral (also known as behaviometrics)
characteristics fall into this category, today there is a huge push for biometrics. I think
this is, at least, partially caused by Hollywood films that years ago started ago to
portray super-secure systems that are opened with biometric information.

The most common biometric identifiers are:

•	 DNA
•	 Face recognition
•	 Fingerprint
•	 Hand geometry
•	 Palm print
•	 Palm veins

Chapter 5

[87]

•	 Iris recognition
•	 Retina recognition

The most common behavioral characteristics are:

•	 Typing rhythm
•	 Gait
•	 Voice
•	 Hand-written signature

Some of these technological advances have just hit the mass market and many of
those are yet to be seen in the mass market, so it's hard to compare them to the other
two factors, which have been used intensively for decades. A few things that need to
be considered are:

•	 These characteristics are hard (for behavioral) or impossible (for biometric)
to change, so if they are compromised, it's difficult to re-set everything back
to normal.

•	 These characteristics are absolutely not secrets. It's easy to get DNA from a
person, since it is easy to get a hair (a complete one) or a fingerprint (that is,
from a cup or other objects a person touches) or iris images from pictures
posted on social networks, and so on.

•	 Unlike the other two options where the matches are always right (if you have
inserted the right password, it will match, and if you have inserted the wrong
password the system will deny your authentication; and the same applies
for security tokens) it's possible that your face does not match (perhaps you
forgot to trim your beard) or another similar face could be matched.

For these reasons, I would not consider this a secure authentication method, at least
if used alone. Today, we see more and more mobile devices requiring some kind of
biometric identifiers to unlock the phone or similar features. I think this is a feasible
usage of those technologies since the users are often too lazy to put a PIN code
on their phone, while they are happy to swipe their fingerprint on the fingerprint
reader. In this case, even if it is not the safest solution, it is much safer than the
current one and is acceptable to the users.

The multifactor authentication
As you have probably noticed, all the options we have discussed cannot be
considered alone because each one of them has their own weaknesses. The good
thing is that each option has different kinds of weaknesses, so if they are combined
they can create a very secure system.

Securing the OpenStack Identification and Authentication System and Its Dashboard

[88]

Currently, the most widespread multifactor authentication is the one that combines the
knowledge factor and the ownership factor. The examples of those implementations
are everywhere around us. Many banks provide their customers with an OTP (one
time password) generator that is needed for every online operation. When an OTP
(that is a physical object) is needed together with a password (that is known as a
string), you have an example of a two-factor authentication.

Authorization
The authorization is the third and last step of the process. The goal of authorization
is to be sure that the given user has clearance to do what he is asking to do.

It is important that the three steps of the chain—identification, authentication, and
authorization—are performed correctly, because if one of them fails, the whole
security chain will fail.

There are multiple ways to grant privileges to a user, based on the access control
model the system uses. The main access control models are:

•	 Mandatory Access Control (MAC)
•	 Discretionary Access Control (DAC)
•	 Role-based Access Control (RBAC)
•	 Lattice-based Access Control (LBAC)

Mandatory Access Control
The MAC paradigm is very good if you don't trust your users, since you are only
allowed to let new people. The downside is that it's very hard to keep up with all
the permissions if your company is growing because very often the workload on
the security administrators increases more than the linear increase of the people
and projects your company manages.

In the MAC paradigm, the Security Administrator allows people to
access the determined resources and no one else can change it.

A good example of MAC is SELinux, a MAC architecture for Linux Kernel developed
by NSA.

Chapter 5

[89]

Discretionary Access Control
The DAC paradigm is very good if you are in a pretty big company where people are
aware of the consequences of opening a resource to more people. Each team manager
will manage the access of its team granting it to newcomers and deactivating people
that move out of the team. The risk is that people who don't care enough about
security or are not paying enough attention, will leave their documents available to
more people than needed violating the confidentiality of it.

In the DAC paradigm, the owner of each resource
allows people to access it.

A good example of DAC is the UNIX user permissions systems.

Role-based Access Control
The RBAC can use both DAC and MAC paradigms, and works on top of them.
While the DAC and MAC regulate who is able to grant permissions, the RBAC
regulates how precisely they will be given.

The RBAC approach can help in reducing the amount of work needed to manage
the permissions, as in the example we will see next.

This company has a huge Information System that manages pretty much everything
that happens in the company, including all user permissions. When they employ
a new person, let's say in accounting, they simply need to tell the system that
particular person is now an employee, is working in the accounting department,
and has a certain badge ID. The system will set up an account for this person with
all the privileges that he needs and to grant him badge access to certain areas of the
building, where the accountants are supposed to have access. This is also possible
the other way round: when someone leaves, the system can block all his accounts
and clearance, or when someone changes department his permissions will match the
new department's privileges or both the departments' privileges, if he is working in
both of them.

RBAC systems are very common and most companies that employ over a few
hundred people use such systems.

Securing the OpenStack Identification and Authentication System and Its Dashboard

[90]

Lattice-based Access Control
The LBAC approach, like the RBAC, is useful to reduce the amount of permissions
that need to be managed since the amount of work grows strictly linearly with the
linear increase of people and resources. The downside of this approach, and the
reason why I don't really like it is that the people in the highest positions in the
company have full access to all resources, which does not make sense, usually.

In the LBAC, often known as Label-based Access Control or
Rule-based Access Control, each resource or object has a security level,
and each person has a security level. If the security level of the person
is equal to or greater than the security level of the resource or object he
is wishing to use, they will be able to use it.

Session management
After the identification, authentication, and authorization process, a session is
created so that the user can interact with the system for a certain amount of time
without having to pass these three steps each time. Tokens are used to identify those
sessions. By default, in OpenStack, from the Icehouse release, all sessions expire after
1 hour, while previous releases used 24 hours as the session lifespan. It may make
sense to reduce this time even more, since if an malicious user can take control of
a machine within a valid session, he will be able to act as if he is the owner of the
session. Decreasing the length of sessions means reducing the window in which an
attacker can steal a session.

There are some jobs such as transferring a disk image to the
hypervisor for local caching that might require long time. If your
session lifespan is shorter than the time those jobs need, they will
probably fail.

Federated identity
Majority of the companies today have multiple services, each one requiring an
authentication. For years, companies have chosen to have multiple databases of
users, one for each service. Although this worked for a long time, since the majority
of companies only had one or two services, this is not working any more, since
today, a lot of companies have tens of services. This redundant approach, apart from
being very confusing for the users, exposes a lot of potential security problems.

Chapter 5

[91]

In fact, it's easier for a malicious person to gain an account on a system in this case,
because he will have multiple people to trick. Also, since when a new person is
recruited, many accounts will need to be created. It is likely that fewer checks will
be done for each account creation, leaving the system less secure.

Today, it is possible to create Federated identity, which are accounts provided
by an Identity Provider (IdP) to one or many Service Provider (SP). Using this
approach, you'll simply have to create an Identity Provider, create all accounts
on it and configure all your services to trust the identity validation to the Identity
Provider instead of doing it internally in the code. Doing so every time a new person
is recruited will be enough to create a single account on the Identity Provider and all
services will automatically recognize the new employee. Also, when a person leaves
the company, it will be enough to lock a single account on the Identity Provider to
lock all services to this person.

An example of how a login on a system in a federated identity environment is can be
seen in the following diagram:

Subject

Indentity Provider

Trust
Relationship

(1) Authenticate

(2) Digital Identity

(3) Digital Identity

(4) Content

Remote System

Configuring OpenStack Keystone to use
Apache HTTPd
To allow OpenStack to use an external Identity Provider or to become an Identity
Provider itself, the first thing to to is enable Keystone to use HTTPd.

Securing the OpenStack Identification and Authentication System and Its Dashboard

[92]

Firstly, install httpd, mod_nss, mod_wsgi, and python-paste-deploy. To do so
under RedHat/CentOS 6 and 7, run the following command:

yum install httpd mod_nss mod_wsgi python-paste-deploy

For other distributions, check the specific documentation of your distribution since
some package names might be different.

Apache HTTPd configuration
Let's start configuring Apache HTTPd. You need to run Apache HTTPd on port 443
instead of port 8443 that is set by default. We have to change /etc/httpd/conf.d/
nss.conf in two places. First of all, you need to find the following string around
line 10:

Listen 8443

Then you need to substitute it with the following:

Listen 443

The other necessary change to this file is done a few lines later, where the following
code appears:

<virtualhost _default_:8443="">

It should be substituted with the following:

<virtualhost _default_:443="">

We now need to copy the keystone configuration file to /etc/httpd/conf.d/.
In RedHat/CentOS, it is not provided with the packages, so we will download it
from the OpenStack GitHub repository:

cd /etc/httpd/conf.d/
wget
https://raw.githubusercontent.com/openstack/keystone/stable/juno/http
d/wsgi-keystone.conf

Making Keystone available to Apache HTTPd
To make Keystone available for Apache HTTPd, we need to create links to the
keystone folder at wsgi in the /var/www/cgi-bin/keystone:

mkdir /var/www/cgi-bin/keystone
ln /usr/share/keystone/keystone.wsgi /var/www/cgi-bin/keystone/main
ln /usr/share/keystone/keystone.wsgi /var/www/cgi-bin/keystone/admin

Chapter 5

[93]

Configuring iptables
In case you are using iptables, add the rule that will open port 443 to /etc/
sysconfig/iptables or something equivalent:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT

Remember that you need to put this rule before the catch-all rule that is usually
placed in the last line of that file.

Configuring firewalld
Today, all distributions are moving towards systemd. If you are running one of those
systems, such as CentOS/RHEL 7, chances are you have firewalld running. In this
case, you'll need to configure it instead of iptables:

firewall-cmd --permanent --zone=internal --add-port=443/tcp

SELinux
If you have SELinux enabled on the machine, and you should since this will increase
a lot the security of your system, you'll need a new policy to allow OpenStack
Keystone to run properly. To do so, you'll need to create a SELinux policy package.

Let's start by creating the folder where we will be working:

mkdir /root/keystonewsgi

cd /root/keystonewsgi

Then we need to create the keystonewsgi.te file with the following content to
instruct SELinux to accept attempts of Apache HTTPd to operate on files and folders
tagged with the keystone label:

policy_module(keystonewsgi, 1.0.0)

require {

 type httpd_t;

 type keystone_var_lib_t;

}

allow httpd_t keystone_var_lib_t:dir { search getattr };

allow httpd_t keystone_var_lib_t:file { read write getattr open
 setattr };

Securing the OpenStack Identification and Authentication System and Its Dashboard

[94]

After this, your SELinux Policy Package is almost ready to be compiled. To be ready,
you'll need to link the default SELinux Makefile:

ln -s /usr/share/selinux/devel/Makefile.

Now, you are ready to build the package, so you can run the make command:

make

And as soon as the compilation ends, you can install your SELinux Policy Package:

semodule -i keystonewsgi.pp

Setting up shared tokens
Since Apache HTTPd can run multiple threads at the same time, you cannot keep the
session's tokens in memory, because they would not be available to the thread that
is responding to a request. To allow Apache HTTPd threads to share the session's
tokens, you'll need to edit /etc/keystone/keystone.conf.

If you plan to use SQL:

[token]

driver = keystone.token.backends.sql.Token

If you plan to use memcache:

[token]

driver = keystone.token.backends.memcache.Token

Remember that a SQL server or a memcache server has to be present
and to be configured to work properly.

Setting up the startup properly
Since you already have the Openstack-Keystone service running, you'll need to stop
it and prevent it from starting again.

If you are on CentOS/RHEL 6, you'll need to run the following:

service openstack-keystone stop
chkconfig openstack-keystone off

Chapter 5

[95]

If you are on CentOS/RHEL 7, you'll need to run the following:

systemctl stop openstack-keystone
systemctl disable openstack-keystone

On the other hand, you'll need Apache HTTPd to be running and to be started at
machine startup. Since Apache HTTPd could be already running, to be sure that
all your changes have been applied, you'll need to stop it beforehand.

If you are on CentOS/RHEL 6, you'll need to run the following:

service httpd restart
chkconfig httpd on

If you are on CentOS/RHEL 7, you'll need to run the following:

systemctl restart httpd
systemctl enable httpd

Setting up Keystone as a Identity Provider
If you want to set up Keystone to use an external Identity Provider, you'll need to set
up a few more parts.

To set up Keystone to connect to another Identity Provider,
you need to have already configured OpenStack Keystone
to use Apache HTTPd.

The first thing to do is install Shibboleth as follows:

yum install shibboleth

Configuring Apache HTTPd
To make Shibboleth work properly, we need to change /etc/httpd/conf.d/wsgi-
keystone.conf by adding the following lines:

WSGIScriptAliasMatch ^(/v3/OS-
FEDERATION/identity_providers/.*?/protocols/.*?/auth)$
/var/www/keystone/main/$1

<Location /Shibboleth.sso>

 SetHandler shib

Securing the OpenStack Identification and Authentication System and Its Dashboard

[96]

</Location>

<LocationMatch /v3/OS-
FEDERATION/identity_providers/.*?/protocols/saml2/auth>

 ShibRequestSetting requireSession 1

 AuthType shibboleth

 ShibRequireAll On

 ShibRequireSession On

 ShibExportAssertion Off

 Require valid-user

</LocationMatch>

The first line adds a new Alias for the keystone.wsgi file.

Both the locations are needed by Shibboleth to work properly.

In the LocationMatch block, we have a Regular Expression
with the protocol saml2 hardcoded into it. In some cases,
you might use a different protocol. If this is the case, fix the
regex appropriately. Never use the wildcard (*) for that field,
because this could create a security problem on your system.

Restart Apache HTTPd to apply the changes.

If you are on CentOS/RHEL 6, run the following:

service httpd restart

If you are on CentOS/RHEL 7, run the following:

systemctl restart httpd

Configuring Shibboleth
To make Shibboleth work properly, a couple of steps are required.

First of all, we need to create a certificate. Doing so is important to choose the length
of the certificate, as follows:

shib-keygen -y NUMBER_OF_YEARS

After this, you'll need to copy the file that has just been created at
/etc/shibboleth/sp-key.pem to your Identity Provider.

Chapter 5

[97]

Be sure that in /etc/shibboleth/shibboleth2.xml the environment variable
REMOTE_USER is not set; otherwise, local users will not be able to log in.

Restart Shibboleth as follows to apply the changes:

service shibd restart

To make Shibboleth work properly, we need to ensure that, after every reboot,
it will be executed automatically. To do so, run the following code:

chkconfig shibd on

Configuring OpenStack Keystone
To make Keystone work in a Federated environment, add the following code to
/etc/keystone/keystone.conf:

[federation]

driver = keystone.contrib.federation.backends.sql.Federation

[auth]

methods = external,password,token,saml2

saml2 = keystone.auth.plugins.saml2.Saml2

Add the following two lines to /etc/keystone/keystone-paste.ini:

[pipeline:api_v3]

pipeline = access_log sizelimit url_normalize token_auth
admin_token_auth xml_body json_body ec2_extension s3_extension
federation_extension service_v3

Refresh the Keystone database with:

keystone-manage db_sync --extension federation

Summary
In this chapter, we have seen what identification, authentication, and authorization
are and what their weak points could be. After this, we moved to OpenStack
Keystone and looked at how to enable Apache HTTPd with SSL, and how to enable
the federation.

In the next chapter, we will look at the storage systems and their security aspects.

[99]

Securing OpenStack Storage
When the word storage is mentioned in clusters and other complete architectures,
we can refer to three possible kinds:

•	 Object storage
•	 Block storage
•	 File storage

In this chapter, we will focus on how OpenStack provides storage. Our focus,
as usual, will be more on the security part than on others, such as performance.

OpenStack provides two different storage services, Cinder and Swift. Both these
components, like the majority of OpenStack components, don't act directly but
use backends.

Different storage types
As we have seen, three major paradigms in storage define the kind of storage we are
dealing with. Each one has its advantages and disadvantages. Let's look at each one
of them to understand what you need.

Object storage
Object storage manages files as objects and allows your applications to manage files,
not caring about where they stay and how big they are. I think the best explanation
of object storage was given to me by a senior system administrator a few years ago:

Securing OpenStack Storage

[100]

Object storage is like valet parking. You arrive with your car, give it to the valet, and
in exchange, you receive a ticket. When you need your car again, you hand back the
ticket and the valet provides you with your car in exchange. As it often happens with
metaphors, it doesn't fit perfectly because, for instance, in object storage you can get
the same object multiple times, while with cars you can only get it once, but I think
this comparison is a very good one. In fact, the similarities are several:

•	 Both systems are directly accessible; in fact, Object Systems are usually
accessible via HTTP and car parking is usually easily accessible from
the roads.

•	 In both systems, you don't care where your belongings (object in the object
storage, car in the parking) will end up being.

•	 In both systems, you have something that identifies your belongings (ID for
object storage, ticket for parking).

•	 Both systems allow some security for belongings (authentication system for
object storage and car keys for the parking).

Object storage has huge advantages over the other kinds of storage due to the
abstraction and the self-management it offers. It can increase its size if you provide it
with more hard drives. It can also remove broken drives from its pool without losing
the data that was kept on those drives. Other advantages that object storage offers
are connected to its architecture, which allows us to save billions of files and total
volumes of exabytes, without the need for defragmentation or other processes that
common storage systems demand.

As with all technology, object storage has its drawbacks as well. Object storage
systems are optimized for fast reading, not for fast writing, so if your application
writes a lot of data, object storage will not be a good option for you.

In OpenStack, the Swift component provides object storage capabilities.

Block storage
You can think of block storage as traditional hard disks, since this is exactly how the
machines will see it. Due to this, it's very easy to move from traditional hard disks to
block storage. Usually, block storage is exported using one of the following protocols:

•	 Fibre Channel (FC)
•	 Fibre Channel over Ethernet (FCoE)
•	 Internet Small Computer System Interface (iSCSI)

Chapter 6

[101]

Fibre channel connections allow higher speeds and lower latencies but require fibre
channel ports and switches.

The FCoE and the iSCSI protocols are limited by the Ethernet protocol, which
has quite high latency (compared to the FC protocol). By default, iSCSI is used by
OpenStack since this allows running on commodity hardware without having to
install fiber channel networks.

The main disadvantage of block storage is the absence of linear scalability. To make
a poorly performing block device perform better, you cannot simply add more disks
to it (although this does work on certain kind of speed problems). The best way to
improve its performance is to put higher performance drives (that is, HDDs with
higher throughput or SSD) or to use a higher performing RAID underneath it.

Also, block storages used to be limited in terms of maximum disk size and maximum
file size depending on the filesystem, as shown in the following table:

Filesystem Max device size Max file size
EXT3 32 TiB 2 TiB
EXT4 1 EiB 16 TiB
FAT32 2 TiB 2 GiB
XFS 16 EiB 8 EiB -1
ZFS 252 ZiB 16 EiB

As you can see, the modern filesystems are allowing bigger devices and bigger file
sizes, but they still tend to slow down as they get fuller.

In OpenStack, the Cinder component provides block storage capabilities.

File storage
File storage is somehow in between the two. In fact, file storage presents to the
operative system a filesystem where the operative system, its applications, and its
users can read and write as if it was a local file system. The difference between block
storage and file storage is that block storage presents itself to the operative system as
a bare disk, while the file storage presents itself as a filesystem. Even if this difference
can seem to be irrelevant, it's more relevant and its implications are huge.

Securing OpenStack Storage

[102]

Block storages, being disks, can be given to only a single machine in read/write
mode. These are different from physical disks, which can be assigned to multiple
machines as read-only drives. On the other hand, file storage is managed by the
server machine, and the client machine can only access the disk by speaking
through the server machine. This allows the server to talk to multiple machines at
the same time (thus, multiple machines can read and write on the filesystem), and
simultaneously keep the filesystem consistent and healthy.

File storage is not new. SUN, in 1984, published a filesystem that did something
very similar: the Network File System (NFS), which is still used today in various
environments. Another similar filesystem that is commonly used is Server Message
Block (SMB), also known as Common Internet File System (CIFS).

OpenStack does not offer an official component that completely handles these kinds
of storage yet. However, in the Kilo release, the Manila component will probably
be added, which will be able to handle NFS and SMB servers. Also, two important
backends of OpenStack (Ceph and GlusterFS) support this kind of storage by default.

Comparison between storage solutions
Usually, more than a single storage solution is configured in each cluster, since
usually the applications that run in the cluster have reasons to use more than a
single solution. Let's compile the differences between the various solutions in
the following table:

Feature Block storage File storage Object storage
Scalability Less than linear Less than linear Linear
Ways to access the data iSCSI, FC, FCoE NFS, SMB,

Proprietary
HTTP(S),
Proprietary

Number of concurrent
users

1 Limited Unlimited

Security policy level Block Filesystem File
Versioning Absent Absent Usually present

These are not the only differences between these types of storage. The important
differences between them are in the security domain.

Chapter 6

[103]

Security
First, for all the aforementioned types of storage, we must remember that data
will move between different physical nodes (indicatively from storage nodes to
computing nodes). Though pretty obvious, this can have a huge impact on security,
since in the traditional model where in the same chassis you had the data and the
computing power to process them, there was pretty much no way to spoof the
connection between the hard drive and the CPU. In the model in which storage and
computing power are in different nodes, data will pass through your infrastructure.
For this reason, the majority of backends support encryption, but this could cause
delay or increase the machine's load significantly. On the other side of the coin, those
systems usually disperse data in multiple machines, so it's even harder to find all
data that is logically connected.

Since each storage system works differently and with different assumptions, in my
experience is more relevant for security the specific storage system more than it' kind
(block storage, file storage, or object storage), and even more so today since many of
them implement more than one storage type.

Backends
Backends are critical since these software are the real holders of your data. This means
that if the backend you are using ends up having a major security flaw, chances are,
you'll be afflicted. The main backends are as follows:

Backend Block storage File storage Object storage
Ceph Yes Yes Yes
GlusterFS Yes Yes Yes
LVM Yes No No
NFS Yes Yes No
Sheepdog Yes No Yes
Swift No No Yes
ZFS Yes No No

As you can see, several options can be used as backends. Let's look at each one of
them more specifically.

Securing OpenStack Storage

[104]

Ceph
Ceph was created by Sage Weil (co-founder of DreamHost) in a doctoral dissertation
in 2007. After completing his doctorate, he continued to work on Ceph, and few
years later (2011), he approached Inktank Storage to provide commercial support
for Ceph. In April 2014, Red Hat acquired Inktank Storage for $175 million.

Ceph is composed of an object store called Reliable, Autonomous, Distributed
Object Store (RADOS), on which multiple components rely. Two components
rely directly on RADOS:

•	 librados: This refers to a set of libraries to interact in an easy way with RADOS
in many languages, including C, C++, Java, Python, Ruby, and PHP.

•	 CephFS: This refers to a distributed filesystem that is POSIX-compliant and
accessible through an official Linux Kernel module (in the mainstream since
Linux 2.6.34) and FUSE. This component provides file storage capability.

Two more components have been built upon librados:

•	 RADOS Gateway (RADOSGW): This is a REST gateway that provides the
object storage capability and is compatible with the S3 and Swift API.

•	 RADOS Block Device (RBD): This is the provider of block storage capability
that has a Linux Kernel client (since Linux 2.6.34), which allows any Linux
machine with a modern kernel or anything that is virtualized upon QEMU/
KVM to use the block storages properly. To summarize, this is the architecture
of Ceph:

RADOS

LIBRADOS
RADOSGW RBD

APP APP HOST/VM CLIENT

CEPHFS

Chapter 6

[105]

The biggest known installation of Ceph is the DreamObject Cloud Store by
DreamHost, which is over 3 PB.

GlusterFS
GlusterFS was developed by Gluster Inc., and since 2005, it has been made open
source. In fact, the name Gluster arrives from the contraction of the words GNU
and cluster. In 2011, Red Hat bought Gluster Inc. and since then has been the main
developer of Gluster.

GlusterFS is composed of a server (glusterfsd) that runs on the storage nodes and a
client (glusterfs) that run on the head nodes. The communication between servers
and clients uses a custom protocol that runs over TCP/IP, InfiniBand, or Sockets
Direct Protocol (SDP). The head nodes will then expose the kind of storage needed
using the built-in translator.

client

node1 node2

GlusterFS Servers

glusterfsd glusterfsd

/brick02/brick01

glusterd

glusterfsd glusterfsd

/brick02/brick01

glusterd

GlusterFS volume

Gluster Native Client

Kernel (FUSE)

IP Network

The server part of GlusterFS is kept simple by design to minimize possible problems,
while the client part provides the majority of features. To grant maximum flexibility,
clients don't need to communicate with each other and are stateless. Also, GlusterFS
does not rely on metadata storage but uses an elastic hashing algorithm.

Securing OpenStack Storage

[106]

GlusterFS is capable of exposing block storage, object storage, and file storage. It can
export object storage in multiple formats including the OpenStack Swift format.
It can also export file storage in multiple formats, including SMB and NFS.

The biggest known installation of GlusterFS is in the Brightcove infrastructure with
over 1 PB installed.

The Logical Volume Manager
The Logical Volume Manager (LVM) was written in 1998 by Heinz Mauelshagen,
inspired by HP-UX's volume manager. Today, all Linux distributions are LVM-
aware and a majority of them will use it in their default installation.

LVM works on three levels: the Physical Volume (PV), which refers to the physical
drives on your machine; the Volume Group (VG), which are groups of PVs; and
the Logical Volume (LV), which refers to the single partitions that your operative
system will handle.

Logical
Volume

Logical
Volume

Physical
Volume

Physical
Volume

Physical
Volume

Volume Group

This allows LVM to perform many magical operations, such as moving a live partition
from a disk to another or live resizing, as well as many other very handy operations.

Since it's a very widespread technology and probably the majority of your machines
use LVM in one way or another, I'd like to bring up an example of simple typos that
can kill your machine.

Chapter 6

[107]

A few years ago, one of my clients had a MySQL database growing beyond
expectations, so a bigger disk become necessary. This operation is safe enough to be
executed at system live during business hours, so there was a MySQL running on that
partition reading and writing at full speed. A senior administrator created a new LUN
on the SAN and then moved it to the machine to add the new LUN to the VG. The next
operation was to extend the LV by 300 GB. The right command to do so would be:

lvextend -L+300G /dev/vg_database/lv_database

But in this command, even a small error can be catastrophic if you make the
following error:

lvextend -L300G /dev/vg_database/lv_database

In this case, the partition will not be increased by 300 GB, but its size will be set to
300 GB. When you have a 700 GB partition, close to becoming completely full, and it
is suddenly resized to 300 GB, the filesystem will be corrupted. MySQL will fail and
you'll face a huge amount of data loss, meaning that you'll spend the next few days
restoring data (hopefully you'll have backups and a way to recreate the data from
last backup).

Due to its ancient design, LVM performs very dangerous operations
without confirmation, so always double-check your commands.

The Network File System
The Network File System (NFS) was developed by SUN Microsystem in 1984. In 2001,
NFSv4 was released; it was the first version maintained by the Internet Engineering
Task Force (IETF) after SUN handed over the NFS protocol development.

Securing OpenStack Storage

[108]

The NFS protocol works in a server-client mode in which the clients do not have
direct access to the disk but have to ask the server to read (or write) a file or folder
on their behalf.

NFS server File system

File system NFS client

File system NFS client

Network

Sheepdog
Sheepdog was created in 2009 by the Nippon Telegraph and Telephone Corporation,
and it provides both object storage and block storage.

The block storage API is designed to allow direct attachment of Sheepdog block
storage to Linux SCSI Target as well as many other formats. The object storage
API is designed to be compatible with both the Amazon Web Services S3 API and
OpenStack Swift API.

The Nippon Telegraph and Telephone Corporation have shown some benchmarks
that they executed, which show that in many situations, Sheepdog performs sensibly
better than other, more common systems, such as Ceph.

No big production installations of Sheepdog are known to exist, probably because
this project is very young compared to its counterparts.

Swift
Swift is one of the two components in the first OpenStack release. It was created in
2009 by Rackspace as a replacement for the Cloud Files product they had earlier.
Today, SwiftStack is the company that is continuing the development of Swift.

Chapter 6

[109]

Swift is the only one in this list that is not an external software used as a backend for
OpenStack. Swift is usable only through OpenStack or SwiftStack, which is based on
OpenStack. Since it is an integral part of OpenStack, it offers the best compatibility
with OpenStack, and all features are nicely manageable directly from OpenStack itself.
The downside is that there are no major installations outside the OpenStack world.

What differentiates Swift from the majority of the other solutions is that it is an
eventually consistent type of object storage; so, the consistency has been sacrificed
to obtain better performance and scalability.

Swift has huge installations around the world, since it's used in a majority of
OpenStack clouds. Examples include the Rackspace cloud, the HP cloud, and
Marcado Libre, which has deployed a 1.2 PB Swift system.

Z File System (ZFS)
The development of ZFS began in 2001 at the Sun Corporation, but it became public
only in 2004. In 2005, it became a part of Solaris, and in the same year, its code base
was released. Due to some licensing issues, ZFS was never brought into the Linux
Kernel, even if implementations of ZFS for Linux are available (mainly a native one
and a FUSE-based one). Today, the best options for ZFS are Solaris and the various
BSD systems that ship it.

From a technical point of view, ZFS is an amazing filesystem promising to be able to
handle up to 256 ZB (1 ZB is 1024 EB) per volume. From a practical point of view, I
see the operating system limitation as too limiting to use it, unless you are already
planning to use Solaris or BSD for your cluster.

Security
The first thing to do if you want to obtain safer storage is to keep it in a different
VLAN from the rest of the traffic. This will slow down any kind of attack to your
storage infrastructure; in fact, it will not be possible for the computing nodes to tap
into the storage network.

Multiple storage systems do not encrypt data between storage nodes,
so a completely dedicated (V)LAN is needed for security reasons.

Another thing you should do to improve the security of your system is to run all
storage processes with limited root (not root).

Securing OpenStack Storage

[110]

Securing OpenStack Swift
Since Swift is the single most-used storage for OpenStack and chances are you'll
deploy it too, let's dive into how to secure OpenStack Swift. Also, similar suggestions
can be used for the majority of other backends.

A good design is necessary for storage security. A typical design for Swift is as follows:

Auth node

Public Switch

Proxy node

Private Switch

OpenStack Object Storage
Stores container databases, account databases, and stored objects

Internet

Storage nodes

Hiding information
If you have followed the suggestion given in the preceding section on Security,
you should be running OpenStack Swift as a non-root user. Let's suppose you
are running Swift using the user swift in the group called swift for the sake of
the example.

Since Swift (as well as the 99.99 percent of programs in Linux) does not need to
modify its own config file, you can perform the following operations to ensure
that the Swift user will be able to read its configurations but will not be able to
change them.

To do so, you can assign to the /etc/swift folder (and all subfolders and files)
the user root (as it should already be) and group swift.

chown -R root:swift /etc/swift/*

Chapter 6

[111]

At this point, we can assign the permission 640 to all files and 750 to all folders.

find /etc/swift/ -type f -exec chmod 640 {} \;
find /etc/swift/ -type d -exec chmod 750 {} \;

Remember that folders have to have the executable bit to allow
you to look up the files in them.

Securing ports
Swift, like many other storage systems, uses a number of services to sync between
the various storage nodes. The clients do not need authentication since Swift assumes
that it's working on a trusted network.

Swift uses the following services:

•	 Account service 6002/TCP
•	 Container service 6001/TCP
•	 Object service 6000/TCP
•	 Rsync 873/TCP

In case you are using Ssync instead of Rsync, the port 6000/TCP will be used for this
to maintain durability.

You should firewall these ports from all IPs excluding the nodes. Depending on your
networking hardware, you will need to perform different operations to do so.

If you are implementing the suggested architecture, you can obtain this by making
some very strict rules on the firewall to allow traffic to pass only on the HTTPS port,
closing all the other ports.

To do so, you will need to run the following commands:

iptables -A INPUT -p tcp -m tcp -m multiport --dports 443 -j
ACCEPT
iptables -A INPUT -m conntrack -j ACCEPT --ctstate
RELATED,ESTABLISHED
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -j DROP
iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A OUTPUT -j DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -j DROP

Securing OpenStack Storage

[112]

This will allow only traffic on port 443 to enter your proxy machine.
If you are connected in Secure Shell (SSH) to the machine and you
run those commands, your connection will be dropped and you will
not be able to access the machine using SSH. Please remember to
open all other ports that you need (IE: 22 for SSH).

Summary
In this chapter, we saw which options you could choose to create your OpenStack
Storage, along with some aspects that are not completely technical but can influence
your decision. After this, we moved on to see how to secure OpenStack Swift, one of
the most commonly deployed Storage systems of OpenStack.

In the next chapter, we will look at computing from the security point of view with
respect to the different hypervisors and their meaning in terms of security.

[113]

Securing the Hypervisor
Today, wherever you look at IT, the main word that anyone says is virtualization.
We are moving towards a virtualization of storage, networking, and even computing.

Initially, the word virtualization was used only for computing, in the sense of
creating some kind of virtual resource to be used instead of the actual (physical)
one. There are multiple software solutions that allow you to use virtualization.

Various types of virtualization
The virtualization of computing resources is possible thanks to a specific software
called hypervisor. It's possible to classify hypervisors in categories based on the
amount of hardware that is virtualized and the number of modifications the guest
system requires.

Usually, virtualizations are divided into three categories based on how much and
what is virtualized:

•	 Full virtualization
•	 Paravirtualization
•	 Partial virtualization

Securing the Hypervisor

[114]

Full virtualization
In a fully virtualized environment, each component that the virtual machine
provides to the operative system is virtualized, so a standard operative system can
be run without any modification. Usually, the hypervisor simulates a very specific
hardware, for instance, QEMU—simulating an x86 machine will always provide a
(virtual) Realtek 8139C+ PCI as the network adapter. This makes the guest operative
system unaware of the fact that it is not running on real hardware.

Full Virtualization

Apps

Operating
System

Virtual
Machine

Apps

Operating
System

Virtual
Machine

Virtual Machine Monitor

HW Platform

On the other side of the coin, having multiple levels of redundant abstraction,
full virtualization will waste more resources than any other type of virtualization.
Historically, this meant a big decrease in performance, but today, this is less true
thanks to the advancement of hardware-aid virtualization.

In terms of security, full virtualization is safer, since nothing is shared between
virtual machines; so if one is compromised, it is not possible to compromise
anything else unless a hypervisor breakout occurs.

Several hypervisors use full virtualization, such as QEMU, VirtualBox, VMware
ESXi, and many others.

Chapter 7

[115]

Paravirtualization
In paravirtualization, there are additional features exposed by the host system,
which allow moving costly operations from the guest environment (virtualized) to
the host system (native). This requires changes on the guest system to be ported to
those para-APIs specific for the hypervisor in use.

Paravirtualization

Apps

Operating
System

Virtual
Machine

Apps

Operating
System

Virtual
Machine

Virtual Machine Monitor

HW Platform

A
P
I

A
P
I

A
P
I

A
P
I

On the other hand, these costly operations should be less costly if executed on the
native system compared to execution in a virtual environment.

In terms of security, since there are some resources that are used by multiple machines,
it would be easier to cause a hypervisor breakout or to attack another machine without
causing a hypervisor breakout first.

Good examples of paravirtualization are Xen and VMware.

Partial virtualization
In partial virtualization, you can find some components that are managed
as if in a fully virtualized environment and some that are managed as if in
a paravitualization environment.

Securing the Hypervisor

[116]

Comparison of virtualization levels
The various kinds of virtualization are different from each other. The most important
differences are as follows:

Aspect Full virtualization Paravirtualization Partial
virtualization

Driver Native Ad-hoc Some Native
some Ad-hoc

Performance High (if running
on hardware with
specific instructions)

High High

Security Maximum High High
Compatibility Every OS Mostly Linux Mostly Linux
Different
architecture between
guest and host

Possible (with
performance
decrease)

Impossible Impossible

Since there is no ultimate solution that fits all needs, it's important to understand
exactly what the requirements are to make the right decision.

Hypervisors
OpenStack Nova supports multiple hypervisors. Some of them have more functions
usable through OpenStack, while others have less.

Kernel-based Virtual Machine
Kernel-based Virtual Machine (KVM) is a hypervisor that is currently part of the
Linux Kernel since Linux 2.6.20 released in February 2007. Initially, it was available
only for x86 platforms, but today a large number of platforms are supported,
including ARM, IA-64, PowerPC, and S/390.

By default, KVM works in a fully virtualized environment, while with some guests,
it is possible to use paravirtualization for improved performance.

Being part of the core Linux Kernel is one of the biggest advantages of KVM, since
it's often updated and very widely used. Other advantages are its low Total Cost of
Operation (TCO), which is calculated to be between 30 percent to 90 percent cheaper
than the other leading platforms (open source and proprietary), due to its high
efficiency and no license cost.

Chapter 7

[117]

This comes at the cost of not always having all features those other platforms
support. However, KVM has all main virtualization features and a lot of additional
features, and its feature list is getting longer with every release, making it a very
active project.

KVM is also known for its high security, since it integrates with Security Enhanced
Linux (SELinux) in the EL distributions (for example, Red Hat Enterprise Linux
and CentOS).

Red Hat Enterprise Virtualization (RHEV) is based on KVM to provide
virtual machines.

Xen
Xen was created at the University of Cambridge in 2003. Initially, XenSource, Inc.
was created to cope with the needs of Xen and its customers. Then, in 2007, the
company was acquired by Citrix, which now is the main contributor to the project.
In 2013, Citrix announced that the Xen Project would be controlled by the Linux
Foundation as a collaborative project.

Since the release of Linux 3.0 in 2011, some components of Xen have been included
in the Kernel, so those systems can work as Xen guests in a paravirtualized
environment without any modifications.

Xen is probably the most used solution for public clouds; in fact, Amazon EC2,
cloud.com, IBM SoftLayer, Liquid Web, Fujitsu Global Cloud Platform, Linode,
OrionVM, and Rackspace Cloud use it.

One of the reasons that so many companies use Xen is because it supports five
different levels of virtualizations:

•	 Hardware Virtual Machine (HVM)
•	 Hardware Virtual Machine with Paravirtualization drivers (HVM + PV

drivers)
•	 PVHVM
•	 PVH
•	 Paravirtualized PV

Item Xen HVM Xen PV
Physical CPUs 4,095 4,095
Physical RAM 16 TB 16 TB
Virtual CPU per guest 256 512
RAM per guest 1 TB 512 GB

Securing the Hypervisor

[118]

VMware ESXi
VMware, Inc. was founded in 1998, and in 2004, it was bought by EMC Corporation.
In 2007, 15 percent of its shares were made public on NYSE. VMware specializes in
virtualization technologies, and it is probably the biggest provider of software for
such services.

VMware ESXi started as a compact version of VMware Elastic Sky X (ESX). Since
2012, no new versions of VMware ESX have been released, and today, VMware ESXi
is the VMware standard for servers. Unlike XEN and KVM, VMware ESXi is only
available with a commercial license.

Like all the other hypervisors, VMware ESXi has its limitations. Its main limitations
are as follows:

Item Host Guest
Maximum RAM 6 TB (on certified systems is 12 TB) 4 TB
Maximum processors 480 128
Maximum number of guests 1024 -

Hyper-V
Hyper-V was presented by Microsoft in Windows Server 2008, and it is available
in all versions of Windows Server since 2008. Hyper-V uses paravirtualization to
provide virtual machines.

Currently, only a small number of operating systems are available as Hyper-V
guests, and only Microsoft operating systems are available as Hyper-V hosts.

Baremetal
OpenStack Nova also uses real servers as if they were virtualized guest machines.
Users can be given real server and virtual machines as guest machines in a transparent
manner. This allows you to use real machines for some tasks you already know will be
heavy loaded and could have an impact the performance of your cluster.

Until the Icehouse release, it was possible to use baremetal machine by using the
Nova-Baremetal backend, but since the Juno release, the current right way is by
using OpenStack Ironic.

Chapter 7

[119]

This option can even be considered for security reasons, since if you use Ironic
(or Nova-Baremetal) you'll end up having a single virtual machine on the physical
server. This means that this server will not share computing resources (RAM, CPU,
and so on) with other virtual machines, preventing any consequence of a possible
hypervisor breakout.

For machines that require a special level of security, using a baremetal
hypervisor (Nova-Baremetal or OpenStack Ironic) could be a good option.

Another advantage of this kind of setup is the possibility of using specific hardware,
such as Hardware Security Module (HSM), graphic cards, or physical cards.

On the other side of the coin, OpenStack Ironic has fewer features than the other
hypervisors, which can be very useful in some environments, such as the possibility
of attaching and unattaching a block storage device via OpenStack; the ability to
migrate the machine from a physical server to another; and the ability to use VLANs.
Some of these features have not yet been developed in OpenStack Ironic due to the
newness of the project, while one physical server to another.

If you are evaluating Baremetal options, you'll have to create procedures to sanitize
the nodes before their reuse: you will have to make sure that the previous tenant
data has been safely removed; on the other hand, you will have to make sure that
the previous tenant has not tampered or compromised the hardware in any way.

Baremetal nodes need to be sanitized before they can
be used for a different machine.

Containers
In recent years, a new technology has been introduced: the container system,
such as Linux Containers (LXC) and Docker. From a technical standpoint, these
technologies are placed between high-level virtualization (such as OpenVZ)
and a chroot. However, LXC and Docker are different from these virtualization
technologies on the interaction level because the containers have high-level API
to provide high levels of encapsulation and isolation.

Securing the Hypervisor

[120]

This allows deploying a container independently from the underlying system with
minimal effort. For instance, you could create a container with a website and deploy
it on different infrastructures, such as OpenStack, Amazon AWS, CoreOS, and
Google Cloud Platform without modifying it. This gives you the obvious advantage
of portability but also an additional advantage of having a hybrid infrastructure
that uses resources offered by different providers, benefiting from the pricing, the
scalability, and other aspects.

OpenStack Nova supports multiple containers, such as LXC, Docker, and Kubernetes.
Containers are becoming so important in the IT world and in OpenStack that a group
of people in the OpenStack world is working on a new project (OpenStack Magnum)
to create a separate module of OpenStack to managed containers. OpenStack Magnum
will probably arrive in the official OpenStack distribution in the 2016 release. Until
then, OpenStack Nova will service running containers.

Since this kind of deployment is newer than that of classic hypervisors, it is more
probable for this kind of deployment to have some security bugs.

To grant maximum security in a containers environment, you
should always use unprivileged containers and add an extra
security layers, such as AppArmor, SELinux, or GRSEC.

Docker
Docker is probably the single most popular container service. It was released as an
open source project in March 2013 by dotCloud, Inc., and since then, major players
like Red Hat and Microsoft have started collaborating with it.

From a security standpoint, Docker can be considered very safe even if it's a new
technology, since it does not manage a majority of its security features. Instead, these
are demanded to the Linux Kernel, which uses well-tested modules, such as cgroups,
SELinux, and AppArmor.

Linux Containers
Linux Containers (LXC) is a container management system that was integrated in
the Linux Kernel 2.6.24 in August 2008. Like Docker, it uses many kernel modules,
such as cgroups, SELinux, and AppArmor.

Chapter 7

[121]

As for security, there have been real-world cases where users were able to escape from
LXC limits, with Linux Kernels older than 3.8 and without proper patching. Since LXC
1.0, thanks to architectural redesigning and the use of unprivileged containers, no
more container escape has been possible in properly configured environments.

Criteria for choosing a hypervisor
There are multiple factors that must be considered when you choose which hypervisor
to use. The majority of these criteria have security issues, and as you'll see, there is no
universal answer that will fit any environment, but each single company will have to
find the best tool for its needs. Also, all these hypervisors have an amazing speed of
evolution, so hypervisors that are not ready for production now could be ready for
production in a few months.

Team expertise
I believe that a very important part of the hypervisor choice has to be based on your
staff expertise. There are cases where it makes sense to deploy a hypervisor where
none of your staff has any kind of expertise, and this could also be your situation.
The downside of this is that your staff will need to study the hypervisor well before
it can go into a production environment.

I would say that this could be considered the economical part of the decision; in fact,
it affects mainly that part.

Never put in production a hypervisor (as any other piece of
software) unless you have someone in your team that is very
skilled with it. If you fail to do so, you'll risk having huge
security and availability problems.

Please remember, however, that having only a single staff member who knows how
to use a software well is dangerous, because if this person is unavailable for some
reason, a huge amount of knowhow on that particular software will be unavailable.
Also, in case of particular complex systems, such as a hypervisor or an operative
system, you'll need to define multiple roles (such as a system administrator and a
security administrator), which will require at least two people with an advanced
skill set in the use of that technology. In the segregation of duties, it will not be
possible to assign both roles to the same person.

Securing the Hypervisor

[122]

Product or project maturity
The maturity of a project should be a critical point in making the decision to put
software in a production environment. As you can imagine, putting immature
software in production can result in unexpected bugs or instability. Another good
reason not to do so is for security. Immature software can contain huge security
flaws that can give access to your system to people with malicious intentions.
A single unsecure software can compromise the security of your whole system.

In my opinion, there are two aspects of project maturity:

•	 Source code maturity
•	 Ecosystem maturity

Source code maturity is merely about the code:

•	 Is the code secure?
•	 How well is the code documented?
•	 How many warning and errors occur on compilation

(if it is compiled software)?

Ecosystem maturity is about the people who use the code:

•	 Is there an active community?
•	 Is it easy to find people with good knowledge of the software?
•	 Does the core developer respond to user questions?

Is there an official site and/or an official community?

•	 Are there examples of companies already using this software in production?
How big are the known deployments?

•	 Are there any collection of best practices?
•	 Are there any architecture references?
•	 Is it a developer that publishes the source when a new version is ready or is

the software developed in an open source way?
•	 Is there any company that will sell you commercial support?

Clearly, there are some areas of overlap, for instance:

•	 Has the code a lot of open bugs?
•	 How often are new versions released?

Chapter 7

[123]

Since we are talking about hypervisors for OpenStack, I would also question myself
on how good the specific hypervisor supported by OpenStack is:

•	 Do the hypervisors have OpenStack integration for the features you need?

Certifications and attestations
Another important thing to consider is certification. A majority of hypervisors
have been verified and certified by third parties due to the highly critical nature
of this software.

Certification does not guarantee that everything will always work properly, but
at least will be proof that the software has been vetted by a third party. Also,
certifications can be a requirement of your company policy or management.

One of the most acknowledged certifications is Common Criteria. Since July 2002,
all United States government agencies are required to exclusively use software that
have been Common Criteria certified, and many other companies require the same.

A big difference between the Common Criteria certification and many other
certifications is that the process evaluates how the technologies have been
developed. An important part of the process is the evaluation of the security of
the code management system and of the distribution of the binaries themselves.

Features and performance
As you can imagine, different hypervisors have different features and performance.
In some cases, a hypervisor will perform better than another will. If you have some
very specific feature requirements or particular loads that would perform much
better on a particular hypervisor compared to another, this could be a good basis
to make the decision to use the hypervisor.

An example of an important feature that KVM provides that the other hypervisors
don't is the integration with SELinux. In fact, by default, if SELinux is enabled,
every KVM machine obtains its own security context.

Securing the Hypervisor

[124]

Hardware concerns
There are some features that different hypervisors implement in different ways.
Often, different hypervisors decide to use (or not use) hardware technologies such
as VT-d and AMD-Vi to secure PCI pass-through.

Each hypervisor has its Hardware Compatibility List (HCL), which is important to
analyze during the hypervisory decision process. Based on the hardware you own
or you decide to buy, different hypervisors can use different sets of technologies.

Hypervisor memory optimization
Many times, you'll run multiple virtual machines that are created in very similar
ways. For instance, let's suppose you have 100 guest machines on a cluster, and of
these, you have 60 RHEL6, 20 RHEL7, and 20 machines with different OS and/or
versions. This is a pretty common deployment, since usually, a company tends to
use the same Linux distribution and version. In this case, as you can easily imagine,
you'll have 60 equal RHEL6 kernels in RAM (plus other 20 of RHEL7). The same
will apply to other daemons that will be the same in multiple different machines.
All this memory is wasted, since it contains the same data multiple times.

Many hypervisors have the ability to share equal numbers of memory pages between
machines. To do so, usually a Copy On Write (COW) system is used. The downside
of this is that the COW mechanism can be vulnerable to side-channel attacks, since
the owner of a machine could infer something about another machine state. Due
to this, in untrusted environments or in environments with untrusted tenants, it's
unsafe to use this kind of optimization.

In case you have some trusted users and some untrusted users, it would make
sense to use hypervisor memory optimization only among trusted users. There
are multiple ways to do so. The two most common ways include creating different
server groups to ensure that only machines in a certain server group are allowed
to use hypervisor memory optimization, and creating multiple host groups to be
able to physically divide the hosts, ensuring that trusted users use only some of
them. Therefore, this requires setting up hosts used only by trusted users to allow
hypervisor memory optimization.

Although hypervisor memory optimization can allow big RAM
savings, it can expose your machines to side-channel attacks from
an untrusted tenant.

Chapter 7

[125]

The two major hypervisors that sport this feature are KVM and XEN. KVM has
used the Kernel Samepage Merging (KSM) module since Linux 2.6.32 to consolidate
identical memory pages. XEN, since XenServer 5.6, includes the Transparent Page
Sharing (TPS) feature to share identical chunks of memory of 4 KB between
different machines.

Both KSM and TPS have been proven vulnerable to side-channel attacks.

Additional security features
Since virtualization brings new challenges from a security standpoint, multiple
hardening solutions have been implemented by different companies, but not all
hypervisors support all hardening solutions. The five major hardening solutions that
have been developed are AppArmor, cgroups, Intel Trusted Execution Technology
(Intel TXT), sVirt, and Xen Security Modules (XSM). The following table will show
you which technologies the different hypervisors support:

Technology KVM XEN ESXi Hyper-V
XSM Yes
AppArmor Yes
cgroups Yes
sVirt Yes
Intel TXT Yes Yes Yes

Hardening the hardware management
There are two aspects of hardware management: one involves providing physical
hardware to virtual machines securely, while the other involves providing virtual
hardware securely.

Physical hardware – PCI passthrough
As the IT world is moving towards a more complete virtualization of the system,
the need to use more than the classic CPU, RAM, storage and networking in
virtualized environments is becoming more and more common. One of the most
common scenarios is the need to access from virtual machines to video cards and
GPUs for high performance Compute Unified Device Architecture (CUDA). A lot of
hypervisors give you this kind of capability, but it brings two possible security risks.

Securing the Hypervisor

[126]

Direct Memory Access (DMA) is a feature that allows many hardware devices to
access the machine RAM directly and without any control. This feature allows the
device to have a huge latency reduction in the read and write operations, so many
low-latency devices, such as video cards and SCSI controllers use it. If an instance has
free access to a device that has free access to the host RAM, it will be possible for that
instance to read the host RAM and all the running instances on that host. To solve
this, an Input/Output Memory Management Unit (IOMMU) has been integrated in
CPUs. AMD's I/O Virtualization Technology (AMD-Vi) and Intel's Virtualization
Technology for Directed I/O (VT-d) are both implementations of IOMMU.

If you are going to allow instances to access hardware directly, be sure
that your CPU and hypervisor allow you to use an IOMMU system.

The other risk you can face is hardware infection. Some hardware pieces allow the
software to edit or flash the firmware. If this is the case, an instance could mess with
the firmware, adding some malicious code to obtain data or access to machines that
will use the same hardware after that moment. For this kind of scenario, there is no
one-size-fits-all solution. A solution that would be easy to implement is to reflash
the firmware after every use. This solution is not usable in the real world because
the firmware chips have a limited amount of possible writes. This would make the
hardware life pretty short. A way to make the hardware life longer is to flash the
firmware only if it has changed. To identify if the firmware has been tampered with,
the Trusted Platform Module (TPM) could help to check that if the signature and
the checksum of the firmware is valid.

Due to the security criticalities we have just seen, my advice is to keep the PCI
passthrough disabled by default, and to enable it only in the instances where its
really needed. A good way to do so is by creating different flavors of guest with
and without PCI passthrough and keeping the ones with the PCI passthrough
enabled privately only for the specific projects that need it.

Virtual hardware with Quick Emulator
There are cases where software expects to find a certain kind of hardware but it
does not require it to be high performing. Another situation that can bring you to
this approach is if you need hardware that you don't have. Typical examples of
these cases are software that require floppy disks, CDs, or specific hardware, since
they are legacy software written in assembly or other similar low-level languages.

Chapter 7

[127]

The best open source software to provide virtual hardware is Quick Emulator
(QEMU). QEMU is advanced software that allows you to virtualize a huge amount
of hardware no matter what the real hardware QEMU is running on. This allows it to
virtualize different platforms from the one it's running on, so with QEMU, you can
create an ARM instance on an Intel node. Even though QEMU code has been heavily
improved over the last few years, it still has a lot of low-level code that is hard to
write and maintain; so it still has many critical bugs. Historically, the majority of
hypervisory breakout cases are connected with QEMU, so extra caution is necessary
when dealing with it:

•	 The first thing to do to reduce the probability of a QEMU exploit on your
machine is to reduce the attack surface by not providing any virtual
hardware by default and providing it only if needed.

•	 The second aspect is connected with how you obtain QEMU itself. The
easiest way to obtain QEMU is through the package manager of your
distribution. All major distribution today ships QEMU compiled in the
most secure way possible. Another way to obtain it is by compiling it from
sources. In this case, you'll have to take care to use all compiler-hardening
options. The security advantage of this method relies on the possibility of
disabling the compilation of the code-implementing devices that you don't
want to provide to your users. This will decrease the amount of QEMU code
running on your machines.

If you are going to compile QEMU by yourself, create a repository that
all your machines access, create, and push the new packages, using it to
ensure that all your machines run the same version of each software. This
will help you manage and debug your cloud and will allow you to push
security updates to all nodes in a very short amount of time.

No matter how you obtained QEMU, it can happen that somehow an attacker
successfully violates it. To minimize the consequences of this, you need to have a
Mandatory Access Control (MAC) system in place (I suggest using SELinux) and
use a different security context for each virtual machine. As mentioned earlier, to do
a very inexpensive way is to use the KVM hypervisor, since it will do so by default.

Securing the Hypervisor

[128]

sVirt – SELinux and virtualization
Security-Enhanced Linux (SELinux) is a Linux module that was originally
developed by the United States National Security Agency (NSA) in 1998, and that
has been part of the main Linux Kernel since 2.6.0 since August 2003. Since then,
Red Hat, Secure Computing Corporation, and many other companies have helped
improve it.

SELinux implements MAC architecture directly in the Linux Kernel, limiting user
access to all resources: files, network devices, or any other kind of resource. SELinux
integrates with the standard UNIX DAC system but works differently. In fact, it does
not recognize root as a privileged user, neither does it accept any shortcoming that
has been built to help pass security limitations in the UNIX DAC (for example, the
setuid and the setgid systems). To identify who can do what, each resource has
an SELinux context that looks like this:

system_u:object_r:httpd_sys_content_t:s0

It is composed of a user (system_u), a role (object_r), a type (httpd_sys_
content_t), and a level (s0). The level can be simple (like s0) if the SELinux is
run in targeted mode, or more complex (like s0-s0:c0.c1023) if SELinux is run
in Multi-Level Security (MLS) mode.

Since 2002, Secure Virtualization (sVirt) has been developed to bring the security of
SELinux to hypervisors to isolate the instances. The sVirt implementation found in
OpenStack has two major goals:

•	 Protecting the host from a malicious instance
•	 Protecting the other instances from a malicious instance

To do so, each VM created using KVM runs with a different SELinux label, so it
creates a fence around each VM, creating a specific category set for each one.

Since SELinux does not support infinite categories, if you use
SELinux, only 524,288 instances can be run concurrently on each
physical node. This should not be an issue in the majority of cases,
but it is better to be aware of it.

Chapter 7

[129]

Since SELinux is very flexible, and it makes sense to keep it in the strictest way that
allows your system to do exactly what it is supposed to do and nothing more, many
distributions ship it with the Booleans that allow you to enable or disable whole sets
of allowances with a single command. Examples of SELinux Booleans that deal with
sVirt are:

•	 virt_use_common: This manages the ability of the instances to use
serial/parallel communication ports

•	 virt_use_fusefs: This manages the ability of the instances to use
FUSE-mounted filesystems

•	 virt_use_nfs: This manages the ability of the instances to use NFS
mounted filesystems

•	 virt_use_samba: This manages the ability of the instances to use CIFS
mounted filesystems

•	 virt_use_sanlock: This manages the ability of the instances to interact
with the sanlock

•	 virt_use_sysfs: This manages the ability of the instances to manage device
configuration (PCI)

•	 virt_use_usb: This manages the ability of the instances to use USB devices
•	 virt_use_xserver: manages the ability of the instances to interact with the

X Window System

Even if SELinux is not the only way to harden OpenStack, I've found out that it
provides the best isolation and, therefore, the best security. It is also very well
integrated with KVM, as both are part of the Linux Kernel.

Hardening the host operative system
There are many paths to harden a given operating system deployment. The specifics
on these steps are outside of the scope of this book. I recommend referring to a
hardening guide specific to your operating system.

For example, the Security Technical Implementation Guides (STIG) and the NSA
guides are useful starting places along with the OS vendor documentation.

Securing the Hypervisor

[130]

Summary
In this chapter, we covered the compute component from a security standpoint.
Securing OpenStack Nova is a critical part of securing the whole infrastructure and
requires special caution since the biggest part is executed by making wise choices
during the initial design of the cloud itself.

In this book, we have covered several theoretical concepts about how technologies
used by OpenStack work, to understand better how to secure them; this is necessary
to have a better understanding of how, what, and why the systems you are going
to manage are structured. This, in turn, is necessary for security, since exploit and
hardening methods change every day, while the ideas behind them tend to be less
volatile. We also saw how to harden various parts of OpenStack to ensure that your
system will resist all common attacks.

[131]

Index
Symbol
0-day attack 32

A
access control

about 1
Discretionary Access Control (DAC) 1
Mandatory Access Control (MAC) 2
Role-based Access Control (RBAC) 2

Address Resolution Protocol (ARP)
spoofing 46

Advanced Encryption Standard (AES) 67
Advanced Persistent DoS (APDoS) 31
Advanced Persistent Threat 33
Amazon CloudFormation 39
Amazon CloudWatch 39
Amazon Elastic Block Store (EBS) 39
Amazon Elastic Compute Cloud (EC2) 36
Amazon Elastic MapReduce (EMR) 40
Amazon Machine Image (AMI) 37
Amazon Relational Database

Service (RDS) 40
Amazon Route 41, 53
Amazon Simple Notification

Service (SNS) 41
Amazon Simple Queue Service (SQS) 41
Amazon Simple Storage Service (S3) 36
Amazon Web Services (AWS) 38
AMD-Vi 124
Apache HTTPd

about 79, 80
configuring 95, 96

APIs
redundant environment,

designing for 77-79
AppArmor 120, 125
application firewall 56
application layer, Open Systems

Interconnection (OSI) model 52
asymmetric encryption

about 67
Diffie-Hellman 68
Elliptic Curve Cryptography (ECC) 69
RSA algorithm 69
versus symmetric encryption 70

attackers
about 30
automated attacks/script kiddies 30
highly capable groups 30
intelligence agencies/services 30
motivated individuals 30
organized hackers 30

attacks
0-day 32
about 30
Advanced Persistent Threat 33
Automated exploitation tools 33
Brute force 33
Denial of Service (DoS) 31, 32
Hypervisor breakout 35
ISP intercept 34
social engineering 35
supply chain attack 34

authentication
about 83, 84
behavioral characteristics 87

[132]

downsides 86
multifactor authentication 87, 88
performing, ways 84, 85

authorization
about 83, 88
Discretionary Access Control (DAC) 89
Lattice-Based Access Control (LBAC) 90
Role-based Access Control (RBAC) 89

Automated exploitation tools
about 33
metasploit 33
nessus 33

availability 5, 6
AWS Elastic Beanstalk 36
AWS Identity and Access Management

(IAM) 38
AWS Key Management Service (KMS) 42
AWS Management Console 37
AWS Storage Gateway 41

B
backends

about 103
Ceph 104
GlusterFS 105
Logical Volume Manager (LVM) 106, 107
Network File System (NFS) 107
Sheepdog 108
Swift 108, 109
Z File System (ZFS) 109

Barbican 42
Baremetal 118, 119
behaviometrics 86
Bell-LaPadula model 2
Biba integrity model 4
biometric identifiers 86
block cipher

about 66
confusion 66
diffusion 66
substitution 66
transposition 66

block storage
about 100
disadvantage 101

Border Gateway Protocol (BGP) 50

Bridge Protocol Data Units (BPDU) 48
Brute force 33

C
CAM table overflow attack 47
Castle Approach 10
catch-all rule 93
Ceilometer 39
Ceph 102-104
CephFS 104
Certificate Revocation List (CRL) 74
Certify Authority (CA) 73
cgroups 120, 125
chain 3
chroot 119
CIA model

about 2
availability 5, 6
confidentiality 2-4
considerations 6
integrity 4, 5
real-world example 6, 7

Cinder 39, 99
Cipher security 75-77
circuit-level gateway 56
Cisco Discovery Protocol (CDP) 46
clean pipes 31
Cloud Service Provider (CSP) 29
collision 71
commercial off-the-shelf (COTS) 36
Common Criteria 123
Common Internet File System (CIFS) 102
components, built upon librados

RADOS Block Device (RBD) 104
RADOS Gateway (RADOSGW) 104

components, relying on RADOS
CephFS 104
librados 104

Compute Unified Device Architecture
(CUDA) 125

confidentiality 2-4
containers 119
Content Addressable Memory (CAM) 46
Copy On Write (COW) 124
criteria, for selecting hypervisor

about 121

[133]

additional security features 125
attestations 123
certifications 123
features 123
hardware concerns 124
hypervisor memory optimization 124
performance 123
team expertise 121

D
data center security

about 11
authorization points, securing 13
blueprints 15
cameras 14
castle-like structure, implementing 12
data center, in office 15
employees, defending 13
location, selecting 11
low profile, keeping 13
power of redundancy 14
support systems, defending 13

Data Encryption Standard (DES) 67
data link layer, Open Systems

Interconnection (OSI) model
about 45, 46
Address Resolution Protocol (ARP)

spoofing 46
CAM table overflow attack 47
Cisco Discovery Protocol (CDP) attacks 48
Dynamic Host Configuration Protocol

(DHCP) starvation attack 47
MAC flooding attack 47
Spanning Tree Protocol (STP) attacks 48, 49
Virtual LAN (VLAN) attacks 49

Defense in depth 10
Denial of Service (DoS) attack

about 31
buffer overflow attacks 32
smurf attacks 32
SYN Flood attacks 32
teardrop attacks 32
viruses/worms 32

Designate 41
Diffie-Hellman protocol

generator (g) 68

parameter (p) 68
Direct Memory Access (DMA) 126
discrete logarithm problem 69
Discretionary Access Control (DAC) 89
Docker 119, 120
Domain Name System (DNS) 52
DoS 5
DoS Defense System (DDS) 31
DreamObject Cloud Store 105
Dual Elliptic Curve Deterministic Random

Bit Generation (Dual_EC_DRBG) 70
Dynamic Host Configuration Protocol

(DHCP) 46
Dynamic Host Configuration Protocol

(DHCP) starvation attack 47

E
Economic Denial of Sustainability (EDoS) 6
Edwards-curve Digital Signature Algorithm

(EdDSA) 69
Elliptic Curve Cryptography (ECC) 69
Elliptic Curve Diffie-Hellman (ECDH) 69
Elliptic Curve Digital Signature Algorithm

(ECDSA) 69
encryption security 64
Enhanced Interior Gateway Routing

Protocol (EIGRP) 50
examples of SELinux Booleans, dealing

with sVirt
virt_use_common 129
virt_use_fusefs 129
virt_use_nfs 129
virt_use_samba 129
virt_use_sanlock 129
virt_use_sysfs 129
virt_use_usb 129
virt_use_xserver 129

Extended Validation (EV) 75

F
Federated identity 90, 91
Fiber Channel (FC) 100
Fiber Channel over Ethernet (FCoE) 100
files, on filesystems

drawbacks 17

[134]

file storage 101, 102
File Transfer Protocol (FTP) 52
firewall 55
first generation firewall 55
flat network 58
full virtualization 114
future components

about 40
Barbican 42
Designate 41
Ironic 41
Manila 41
Zaqar 41

G
Generic Routing Encapsulation (GRE)

about 57, 58
VXLAN 58

Glance 37
GlusterFS 102, 105
GNU Privacy Guard (GPG) 7
GRSEC 120

H
Hacktivist 30
Hardware Compatibility List (HCL) 124
hardware management, aspects

about 125
physical hardware 125, 126
virtual hardware, with Quick Emulator

(QEMU) 127
Hardware Security Module (HSM) 119
hashing 71
hashing algorithms

MD5 72
SHA 72

Heat 39
Horizon 37
host operative system

hardening 129
HTTPS

enforcing, for future connections 82
hybrid cloud 29
hybrid encryption 70
Hypertext Transfer Protocol (HTTP) 52

Hyper-V 118
hypervisor breakout 114
hypervisors

about 116
criteria, for selecting 121-124
Hyper-V 118
Kernel-based Virtual Machine (KVM) 116
VMware ESXi 118
Xen 117

I
identification 83, 84
Identity Provider (IdP)

about 91
Keystone, setting up as 95

Infrastructure as a Service (IaaS) 35
Input/Output Memory Management

Unit (IOMMU) 126
integrity 4, 5
Intel Trusted Execution Technology

(Intel TXT) 125
Internet Control Message Protocol

(ICMP) 50
Internet Engineering Task Force (IETF) 107
Internet Group Management Protocol

(IGMP) 50
Internet Protocol (IP) 50
Internet Protocol Security (IPSec) 50
Internet Small Computer System

Interface (iSCSI) 100
Intrusion Detection and Prevention

Systems (IDPS) 57
Intrusion Detection Systems (IDS) 38, 56
Intrusion Prevention System (IPS) 31
I/O Virtualization Technology

(AMD-Vi) 126
Ironic 41
ISO/IEC 7498-1 44
ISP intercept 34

K
Kernel-based Virtual Machine (KVM) 116
Kernel Samepage Merging (KSM) 125
Keystone

about 38

[135]

configuring 97
setting up, as Identity Provider 95

knowledge factor 88

L
Lattice-Based Access Control (LBAC) 90
librados 104
like for like method 22
Linux Containers (LXC) 119, 120
Logical Volume (LV) 106
Logical Volume Manager (LVM) 106, 107
logs

location, for storing 17, 18
number of logs, evaluating 19
significance 17
what to log, evaluating 18

M
MAC flooding attack 47
Mandatory Access Control (MAC) 88, 127
Manila 41, 102
Man in the Middle (MitM) attack 46
Marconi 41
MD5 72
Media Access Control (MAC) 45
metasploit 33
multifactor authentication 87, 88
Multi-Level Security (MLS) 2, 128
multiple factor authentication 84

N
National Institute of Standards and

Technology (NIST) 21
National Security Agency (NSA) 9, 70
nessus 33
Network behavior analysis (NBA) 51
Network File System (NFS) 52, 102, 107
networking resource policy engine 60
network layer, Open Systems

Interconnection (OSI) model 50
networks

advantages 53, 54
Network Time Protocol (NTP) 52
Neutron 38

nginx 82
Nova 36

O
object storage 99, 100
Open Shortest Path First (OSPF) 50
OpenStack 35, 43
OpenStack API

securing, with TLS 79
OpenStack deployment

secure network, designing for 59
OpenStack Keystone configuration,

for using Apache HTTPd
about 91
Apache HTTPd configuration 92
firewalld, configuring 93
iptables, configuring 93
Keystone, making available to

Apache HTTPd 92
SELinux 93, 94
shared tokens, setting up 94
startup properly, setting up 94, 95

OpenStack structure
about 35
Ceilometer 39
Cinder 39
Glance 37
Heat 39
Horizon 37
Keystone 38
Neutron 38
Nova 36
Sahara 40
Swift 36
Trove 40

OpenStack Swift, securing
about 110
information, hiding 110
ports, securing 111

Open Systems Interconnection (OSI) model
about 44
application layer 52
data link layer 45, 46
network layer 50
physical layer 44, 45
presentation layer 51

[136]

session layer 51
transport layer 51

OpenVZ 119
ownership factor 88

P
packet filter firewall 55
paravirtualization 115
partial virtualization 115
people aspect, of security

about 19, 20
evil actions, for personal advantage 26
evil actions, under threats 25, 26
human error 22
lack of information 23, 24
shortcuts 21
simple forgetfulness 20, 21
social engineering 24, 25

pharming 5
physical layer, Open Systems

Interconnection (OSI) model 45
Physical Volume (PV) 106
presentation layer, Open Systems

Interconnection (OSI) model 51
prime factorization problem 69
Principle of Insecurity 8
Principle of Internal Security 10, 11
Principle of Least Privilege 8, 9
Principle of Separation of Duties 9
private cloud

about 27, 28
advantages 29
disadvantages 29
versus public cloud 29

private cloud security
versus public cloud security 27

public cloud
about 27, 28
advantages 29
disadvantages 29

Public key infrastructure (PKI) 73

Q
Quality of Service (QoS) 45
Quick Emulator (QEMU) 127

R
Rackspace 108
RADOS Block Device (RBD) 104
RADOS Gateway (RADOSGW) 104
Red Hat Enterprise Virtualization

(RHEV) 117
redundant environment

designing, for APIs 77-79
Reliable, Autonomous, Distributed

Object Store (RADOS) 104
Role-based Access Control (RBAC) 89
Routing Information Protocol (RIP) 50
RSA algorithm 69

S
Sahara 40
second generation firewall 56
Secure Hash Algorithm. See SHA
secure network

designing, for OpenStack deployment 59
secure networks

architecting 53
Secure Shell (SSH) 112
Secure Sockets Layer (SSL) 65
Secure Virtualization (sVirt) 128
secure zone 12
security 109
security levels

confidential 3
public 3
secret 4
top access control 4

security, principles
about 8
Principle of Insecurity 8
Principle of Internal Security 10, 11
Principle of Least Privilege 8, 9
Principle of Separation of Duties 9

Security Technical Implementation
Guides (STIG) 129

security threats
types 30

self-signed certificates
versus signed certificates 75

SELinux 117, 120, 128

[137]

Server Message Block (SMB) 102
server security

about 16
disadvantages 16

Service Provider (SP) 91
session layer, Open Systems

Interconnection (OSI) model 51
session management 90
SHA 72
SHA-0 72
SHA-1 72
SHA-2 72
SHA-3 72
Sheepdog 108
Shibboleth

configuring 96
signed certificates

versus self-signed certificates 75
Simple Mail Transfer Protocol (SMTP) 52
single factor authentication 84
social engineering 24, 25, 35
Sockets Direct Protocol (SDP) 105
software-defined networking (SDN) 38
Spanning Tree Protocol (STP) 45
Spanning Tree Protocol (STP) attacks 48, 49
SSL options

SSLCACertificateFile 81
SSLCertificateFile 81
SSLCERTIFICATEKeyFile 81
SSLCipherSuite 81
SSLEngine On 81
SSLProtocol 81

stateful firewalls 56
storage

about 99
security 103

storage solutions
comparing 102

storage types
about 99
block storage 100, 101
file storage 101, 102
object storage 99, 100

stream cipher 65
supply chain attack 34
sVirt 125, 128
Swift 36, 99, 108, 109

SwiftStack 108
symmetric encryption

about 64
block cipher 66
stream cipher 65
versus asymmetric encryption 70

Synchronous Digital Hierarchy (SDH) 44
Synchronous Optical Networking

(SONET) 44
syntax layer 51

T
TCP/IP stack 52
TLS

OpenStack API, securing with 79
Topology Change Notification (TCN) 49
Total Cost of Operation (TCO) 116
Transmission Control Protocol (TCP) 51
Transparent Page Sharing (TPS) 125
transport layer, Open Systems

Interconnection (OSI) model 51
Transport Layer Security (TLS) 51, 65
Triple Data Encryption Standard

(3DES or Triple DES) 67
Trove 40
Trusted Platform Module (TPM) 126

U
User Datagram Protocol (UDP) 51

V
Virtual Extensible LAN. See VXLAN
virtualization

about 113
full virtualization 114
paravirtualization 115
partial virtualization 115
types 113

virtualization levels
comparing 116

Virtualization Technology for
Directed I/O (VT-d) 126

Virtual LAN (VLAN) 45, 58
Virtual LAN (VLAN) attacks 49

[138]

Virtual Private Network as a Service
(VPNaaS) 60

VLAN Trunking Protocol (VTP) 49
VMware Elastic Sky X (ESX) 118
VMware ESXi

about 118
limitations 118

Volume Group (VG) 106
VT-d 124
VXLAN 58

W
Wi-Fi Protected Access (WPA) 65
Wired Equivalent Privacy (WEP) 65

X
Xen

about 117
virtualization levels 117

Xen Security Modules (XSM) 125

Z
Zaqar 41
Z File System (ZFS) 109

Thank you for buying
OpenStack Cloud Security

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning OpenStack Networking
(Neutron)
ISBN: 978-1-78398-330-8 Paperback: 300 pages

Architect and build a network infrastructure for your
cloud using OpenStack Neutron networking

1.	 Build a virtual switching infrastructure for
virtual machines using the Open vSwitch
or Linux Bridge plugins.

2.	 Create networks and software routers that
connect virtual machines to the Internet using
built-in Linux networking features.

3.	 Scale your application using Neutron's
load-balancing-as-a-service feature using
the haproxy plugin.

OpenStack Essentials
ISBN: 978-1-78398-708-5 Paperback: 182 pages

Demystify the cloud by building your own private
OpenStack cloud

1.	 Set up a powerful cloud platform using
OpenStack.

2.	 Learn about the components of OpenStack and
how they interact with each other.

3.	 Follow a step-by-step process that exposes the
inner details of an OpenStack cluster.

Please check www.PacktPub.com for information on our titles

Implementing Cloud Storage with
OpenStack Swift
ISBN: 978-1-78216-805-8 Paperback: 140 pages

Design, implement, and successfully manage
your own cloud storage cluster using the popular
OpenStack Swift software

1.	 Learn about the fundamentals of cloud storage
using OpenStack Swift.

2.	 Explore how to install and manage OpenStack
Swift along with various hardware and
tuning options.

3.	 Perform data transfer and management using
REST APIs.

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance,
and Horizon

1.	 Learn how to install and configure all the
core components of OpenStack to run an
environment that can be managed and operated
just like AWS or Rackspace.

2.	 Master the complete private cloud stack from
scaling out compute resources to managing
swift services for highly redundant, highly
available storage.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: First Things First – Creating
a Safe Environment
	Access control
	The CIA model
	Confidentiality
	Integrity
	Availability
	Some considerations
	A real-world example

	The principles of security
	The Principle of Insecurity
	The Principle of Least Privilege
	The Principle of Separation of Duties
	The Principle of Internal Security

	Data center security
	Select a good place
	Implement a castle-like structure
	Secure your authorization points
	Defend your employees
	Defend all your support systems
	Keep a low profile
	The power of redundancy
	Cameras
	Blueprints
	Data center in office

	Server security
	The importance of logs
	Where to store the logs?
	Evaluate what to log
	Evaluate the number of logs

	The people aspect of security
	Simple forgetfulness
	Shortcuts
	Human error
	Lack of information
	Social engineering
	Evil actions under threats
	Evil actions for personal advantage

	Summary

	Chapter 2: OpenStack Security Challenges
	Private cloud versus public cloud security
	The private cloud
	The public cloud
	Private cloud versus public cloud

	The different kinds of security threats
	Possible attackers

	The possible attacks
	Denial of Service
	0-day
	Brute force
	Advanced Persistent Threat
	Automated exploitation tools
	The ISP intercept
	The supply chain attack
	Social engineering
	The Hypervisor breakout

	The OpenStack structure
	OpenStack Compute Service – Nova
	OpenStack Object Storage Service – Swift
	OpenStack Image Service – Glance
	OpenStack Dashboard – Horizon
	OpenStack Identity Service – Keystone
	OpenStack Networking Service – Neutron
	OpenStack Block Storage Service – Cinder
	OpenStack Orchestration – Heat
	OpenStack Telemetry – Ceilometer
	OpenStack Database Service – Trove
	OpenStack Data Processing Service – Sahara

	Future components
	Ironic – bare metal provisioning
	Zaqar – cloud messaging
	Manila – file sharing
	Designate – DNS
	Barbican – key management

	Summary

	Chapter 3: Securing OpenStack Networking
	The Open Systems Interconnection model
	Layer 1 – the Physical layer
	Layer 2 – the Data link layer
	Address Resolution Protocol (ARP) spoofing
	MAC flooding and Content Addressable Memory table overflow attack
	Dynamic Host Configuration Protocol (DHCP) starvation attack
	Cisco Discovery Protocol (CDP) attacks
	Spanning Tree Protocol (STP) attacks
	Virtual LAN (VLAN) attacks

	Layer 3 – the Network layer
	Layer 4 – the Transport layer
	Layer 5 – the Session layer
	Layer 6 – the Presentation layer
	Layer 7 – the Application layer

	TCP/IP
	Architecting secure networks
	Different uses means different network
	The importance of firewall, IDS, and IPS
	Firewall
	Intrusion detection system (IDS)
	Intrusion prevention system (IPS)

	Generic Routing Encapsulation (GRE)
	VXLAN

	Flat network versus VLAN versus GRE
in OpenStack Quantum
	Design a secure network for your OpenStack deployment
	The networking resource policy engine

	Virtual Private Network as a Service (VPNaaS)
	Summary

	Chapter 4: Securing OpenStack Communications and Its API
	Encryption security
	Symmetric encryption
	Stream cipher
	Block cipher

	Asymmetric encryption
	Diffie-Hellman
	RSA algorithm
	Elliptic Curve Cryptography

	Symmetric/asymmetric comparison
and synergies
	Hashing
	MD5
	SHA

	Public key infrastructure
	Signed certificates versus self-signed certificates

	Cipher security
	Designing a redundant environment for your APIs
	Secure your OpenStack API with TLS
	Apache HTTPd
	Nginx

	Enforcing HTTPS for future connections
	Summary

	Chapter 5: Securing the OpenStack Identification and Authentication System and Its Dashboard
	Identification versus authentication versus authorization
	Identification
	Authentication
	Something you know
	Something you have
	Something you are
	The multifactor authentication

	Authorization
	Mandatory Access Control
	Discretionary Access Control
	Role-based Access Control
	Lattice-based Access Control

	Session management
	Federated identity
	Configuring OpenStack Keystone to use Apache HTTPd
	Apache HTTPd configuration
	Making Keystone available to Apache HTTPd
	Configuring iptables
	Configuring firewalld
	SELinux
	Setting up shared tokens
	Setting up the startup properly

	Setting up Keystone as a Identity Provider
	Configuring Apache HTTPd

	Configuring Shibboleth
	Configuring OpenStack Keystone

	Summary

	Chapter 6: Securing OpenStack Storage
	Different storage types
	Object storage
	Block storage
	File storage
	Comparison between storage solutions
	Security

	Backends
	Ceph
	GlusterFS
	The Logical Volume Manager
	The Network File System
	Sheepdog
	Swift
	Z File System (ZFS)

	Security
	Securing OpenStack Swift
	Hiding information
	Securing ports

	Summary

	Chapter 7: Securing the Hypervisor
	Various types of virtualization
	Full virtualization
	Paravirtualization
	Partial virtualization
	Comparison of virtualization levels

	Hypervisors
	Kernel-based Virtual Machine
	Xen
	VMware ESXi
	Hyper-V

	Baremetal
	Containers
	Docker
	Linux Containers
	Criteria for choosing a hypervisor
	Team expertise
	Product or project maturity
	Certifications and attestations
	Features and performance
	Hardware concerns
	Hypervisor memory optimization
	Additional security features

	Hardening the hardware management
	Physical hardware – PCI passthrough
	Virtual hardware with Quick Emulator

	sVirt – SELinux and virtualization
	Hardening the host operative system
	Summary

	Index

