
www.allitebooks.com

http://www.allitebooks.org

Ouya Unity Game Development

Your guide to building interactive media-rich 3D games
with Ouya

Gary Riches

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ouya Unity Game Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1171013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-970-1

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Gary Riches

Reviewers
John P. Doran

Steve Jarman

Acquisition Editor
Kevin Colaco

Commissioning Editor
Sharvari Tawde

Technical Editors
Novina Kewalramani

Amit Shetty

Project Coordinator
Amigya Khurana

Proofreader
Lesley Harrison

Indexer
Mariammal Chettiyar

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gary Riches is a longstanding member of the iOS developer community. He has a
keen interest not only in established sections of the industry such as gaming but also
in emerging technologies such as Ouya, GameStick, and others.

Filled with a passion to program on new systems, he has just become a registered
Wii U developer and will also create content for Xbox One and PlayStation 4.
To target so many platforms he uses Unity, which he learned while working on
the Augmented Reality SBook for Saddington Baynes.

When not building software for other companies, he builds his own business
by creating photo manipulation apps such as Zombify Me, games such as Aztec
Antics and Amazed, and also works on educational apps and games such as
Nursery Rhymes: Volume 1, 2, and 3.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgment

I would very much like to thank my wonderful wife, Sophie. Without her support
and enthusiasm I would not be where I am today or the man I am today. This one
paragraph cannot thank her enough but I doubt Packt Publishing will let me write
a book to her so it'll have to do. I must also thank my beautiful daughter Evie,
she provides a brilliant distraction when I'm taking a break or thinking of what
to write or do next.

I must also thank my Mum and Dad, they provided me with computer equipment
from an early age, without which I would have never been able to learn how to
program. Along with the rest of my family, my brother David, helped to foster
a very strong interest in computers and computing. I will never forget when he
made our Spectrum flash insults at me on the screen by programming it and it
seemed like pure magic.

Dave Mark and Jeff LaMarche wrote the book I learnt iOS development from and
without them I would have missed the mobile train completely.

And finally I must thank all of those from the #actionscript IRC channel where I first
learned to program. Special thanks goes out to Rob Gibson, Mark Griffin, Glenn Jones,
Andreas Rønning, and all the other people from that channel that I haven't mentioned.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

John P. Doran is a technical game designer who has worked on all manners of
educational, mod, and professional game projects. He graduated from DigiPen
Institute of Technology in Redmond, WA with a Bachelor of Science in Game Design.

He previously worked at LucasArts in San Francisco, CA on Star Wars 1313 as an
intern Level Designer. He is currently the lead instructor of the DigiPen-Ubisoft
Campus Game Programming Program, instructing graduate level students in an
intensive, advanced-level game programming curriculum. He's also a Software
Engineer at DigiPen's Singapore campus teaching advanced usage of C/C++,
UDK, Flash, Unity, and ActionScript in a development environment to students.

He is the author of Mastering UDK Game Development, Getting Started with UDK,
and the co-writer of UDK iOS Game Development Beginner's Guide, all available
from Packt Publishing.

You can check his blog at http://johnpdoran.com and contact him
at john@johnpdoran.com.

Thanks so much to the author for allowing me to give him my
thoughts while writing the book, I hope that they helped.

I'd also like to thank my brother, Chris Doran, and my wife Hannah
Mai for being there for me whenever I need it and being patient
while I was working on this. I'd also like to thank all the lovely
people at Packt Publishing for all of their support and know-how!

Steve Jarman is a software developer from Sydney, Australia. He has
been programming for almost 30 years; starting out on a Commodore 64
at an early age. Since 2008, Steve's efforts have been focused on video game
development, primarily using the Unity engine. He is the creator of several
successful mobile apps and games. Steve can be contacted through his
website at www.stevejarman.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: What Is Ouya and Why Does It Matter? 5

The early years 5
The crash 6
The recovery 6
Home computers 7
Advancement of game consoles 9
The first indie console 9
Cellular games 10
The iPhone 10
The competitors 11
Current day situation 12
History of Ouya 12
Ouya's release 13
Summary 13

Chapter 2: Setting Up Unity and the Ouya Plugin 15
Installing the Android SDK 15
Installing Java 16
Setting up the Android SDK 16
Setting up the Android NDK 17
Connecting Ouya to your Windows computer 18
Connecting Ouya to your Mac computer 20
Ouya Development Kit 21
The Unity project 22

The bundle identifier 23
Setting up Ouya Panel 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Ouya required prefabs 26
Building, running, and compiling an application 26

Summary 27
Chapter 3: Setting Up Your Game 29

Boo, C#, or UnityScript 29
Boo 29
UnityScript 30
C# 30

The project structure 30
Setting up your Scenes 32
Scripts and MonoDevelop 33
Scene progression 36

The title screen menu 36
Advancing to the game 37
Ouya controller support 38

Creating the level 41
Prefabs 41

Creating a Prefab 41
Materials 42
Multidimensional arrays 42
The BuildLevel method 44

Summary 47
Chapter 4: Adding a Character and Making Them Move 49

Making the camera move 49
Making the character move 52

Ouya controller support 59
Animating the character 60

Summary 63
Chapter 5: Adding Finesse to Your Game 65

Texturing your Prefabs 65
Adding a background 68
Adding extra levels 70
Level complete detection 72

Moving to the next level 73
Restarting our level 74

Adding sounds 74
Summary 76

Table of Contents

[iii]

Chapter 6: Show Me the Money! 77
Setting up your purchase 77
Setting up your game 78
Implementing the Ouya payment framework 79

How to manage your purchases 80
Getting the list of products 81
Limiting your levels 82
Unlocking levels for people who have paid 83
Buying your product 84

Adding a new menu item 84
The buy method 85
Hiding menu items 87

Submitting your game 87
Summary 88

Chapter 7: Building Cross-platform Games 89
Platform Dependent Compilation 90

Changing the TitleScreen scene 91
Removing In-App Purchases 93
Mobile controls 94
Summary 97

Index 99

Preface
As the Ouya technology is so new, finding information about developing for it can be
hard. This book covers all that you'll need to know to create your game and add great
features to it, such as controller functionality, animation, sounds, and monetization.
We'll even show you how to make it work on Android phones and tablets.

What this book covers
Chapter 1, What is Ouya and Why Does It Matter?, gives a brief history of video
games. We'll show where they've come from, where they're going, and how
the Ouya technology fits in to that journey.

Chapter 2, Setting Up Unity and the Ouya Plugin, will guide you through installing
the development kits needed and show how to set up your Unity project so that
you can build to the Ouya platform.

Chapter 3, Setting Up Your Game, explains the differences between three of
the languages you can use to program in Unity and builds the foundation
for our game.

Chapter 4, Adding a Character and Making Them Move, explains about adding
movement to the camera and making it follow a player around the level.
It also explains expanding upon your character and adding animations.

Chapter 5, Adding Finesse to Your Game, explains how to texture your prefabs,
 add sounds and more levels. This chapter will really flesh out the game.

Chapter 6, Show Me the Money!, will add In-App Purchases, which will allow
you to monetize your awesome new creations.

Chapter 7, Building Cross-platform Games, explains that one of Unity's strongest
features is its write-once, publish-everywhere functionality. Leverage this ability
and get your game running on Android phones and tablets.

Preface

[2]

What you need for this book
For this book you will be required to download the free version of Unity available
at the following link:

• http://www.unity3d.com/unity/download

Your computer should also meet the minimum requirements, as stated on the
Unity website. For the latest requirements, refer to the following link:

• http://unity3d.com/unity/system-requirements

You will also need the Android SDK, NDK, Java, and Ouya Development Kit.
The download, installation, and setup of these is covered in Chapter 2, Setting Up
Unity and the Ouya Plugin.

Who this book is for
This book is for beginner programmers upwards; a basic understanding of Unity is
required. All concepts are explained, even if they are simple.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We won't be using the System.
Collections in this script, so we can go ahead and delete that line although
it won't affect if you leave it in".

A block of code is set as follows:

usingUnityEngine;

public class AdvanceToNextLevel : MonoBehaviour {

 // Use this for initialization
 void Awake () {
 Application.LoadLevel("TitleScreen");
 }
}

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"We're going to create some new folders to hold other files in project, so click
on the Create drop-down menu, which is located just underneath the Project
tab in panel you opened".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

What Is Ouya and
Why Does It Matter?

Video games! From the bedroom developer to the video-game company, we can all
create games that can inspire, educate, or are just plain fun. Let's look how video
games got where they are and the history of indie game development till the current
day with the Ouya.

The early years
It started on January 25, 1947. The United States Patent and Trademark office received
a request for a patent on an invention described as a cathode ray amusement device.
The patent was granted on December 14, 1948 and, while it was never marketed or
sold to the general public, it was truly one of the first video games. The machine was
a crude electromechanical device that did not use any memory or programming.

In the early 1950s, simple computer programs started to surface but they lacked
interactivity, and with the limited accessibility of computers they would not be
seen by many and were destined to be forgotten.

It wasn't until the 1970s that arcade machines as we know them came about.
Nolan Bushnell and Ted Dabney created a coin-operated game named Computer
Space. Nutting Associates bought the game and produced over 1,500 arcade
machines. Computer Space had a steep learning curve, and because of this was
unsuccessful, but it must still be remembered for being the first mass-produced
video game offered for general sale.

What Is Ouya and Why Does It Matter?

[6]

Bushnell and Dabney went on to establish Atari in 1972 and assigned one of their
employees, Allen Alcorn, with a training exercise. During that exercise, he created
Pong, the virtual table tennis game we all know and love. Bushnell and Dabney
were impressed with Alcorn's work and they decided to manufacture the game.
Overall, Atari sold approximately 19,000 pong machines.

Creating a machine that could play a game was all well and good, but innovators
were looking towards the future. What if a machine could play multiple games?
This would truly give it the edge over its single-game relatives. Ralph Baer had
begun work on such a machine in the late 1960s. He was demoing it in the early
1970s to companies including Sylvania, Sears, Magnavox, and General Electric.
Magnavox licensed the system and produced the first video-game console in the
world, the Magnavox Odyssey console. This console used cartridges containing
jumpers that would alter the circuitry logic of the machine. A multigame device
coupled with a strong marketing push meant that Magnavox sold over 100,000
Odyssey consoles in their first year. Over the lifetime of the console, the Odyssey
console sold over 2,000,000 units.

The crash
By 1977, the market was flooded with cheap clones of Pong. Due to the sheer amount
of cloned devices, none saw sustainable sales. Companies, faced with obsolete and
aging stock, started to sell their systems at a loss causing a crash in the price of the
devices and leading to many companies pulling out of the games market. Only two
were able to weather the storm, Atari and Magnavox, but both reported losses in 1977
and 1978.

However, in 1978 a new game, Space Invaders, was released by a company named
Taito. The game was a huge commercial success allowing Taito to create a US office
and paving the way for a renaissance in video games. Atari licensed Space Invaders
for their new machine, Atari 2600. This console revived the home video-game
market, backed by the success of Space Invaders.

The recovery
While the Magnavox Odyssey console could play multiple games, the software was
embedded on chips in the console; the cartridges would simply modify the circuitry
inside the console with jumpers. The configuration of the jumpers would define
which game you played. This meant that no software changes could occur on the
device but hardware changes only. If a new game was created you'd have to buy a
new device to attach to your television.

Chapter 1

[7]

A new breed of console had been conceived and was starting to arrive, one that
would allow new circuitry to be added easily and allow new games to be played
without the need to buy a new machine. The trick was to have microprocessors
inside the video-game cartridge. When the cartridge was plugged in to the device,
it became part of the console, running whatever program was stored in Read Only
Memory (ROM) on the cartridge.

While the system for running games had improved, video-game production itself
was still very basic with most development being carried out by one person. They
would create the concept, write the code, draw the graphics, and make the sound,
much like one-man developer teams.

In 1979, four developers from Atari realized that the games they had created
for meager pay were earning Atari around $60,000,000 a year. They decided
to leave and set up their own company. Activision, the first third-party
developer was founded.

After the success of Space Invaders, video games started to become mainstream.
Arcade machines entered shopping malls, restaurants, and convenience stores
bringing about an explosion in video-game usage. Space Invaders sold over 360,000
arcade machines worldwide and generated over $2,000,000,000 in quarters. From
1978 to 1981, the sales of arcade machines went from $50,000,000 to $900,000,000.

By 1982, video games generated more revenue than both pop music and Hollywood
films combined.

It was around this time that a debt-ridden toy company named Nintendo turned
around its fortunes, by firstly, securing the rights to distribute the Magnavox
Odyssey console in Japan and secondly, creating their own games for arcades
and on the Atari 2600 machine, Intellivision, and ColecoVision video-game systems.
In 1985, Nintendo released Nintendo Entertainment System (NES) and the system
was a huge success.

Home computers
Alongside the video-game consoles, home computers started to arrive on the scene.
Notable entrants were the Commodore 64, the Sinclair ZX Spectrum, the BBC
Micro, and the Acorn Electron machines. These machines allowed their operators
to program their own software. Magazines would print reams of code, to be hand
typed to produce a game. There were mailing lists and, at some locations, even local
shops selling a programmer's wares on their shelves in the form of floppy discs,
tapes, or cartridges.

What Is Ouya and Why Does It Matter?

[8]

By 1984, computer gaming had overtaken the console gaming market. While not as
simple to use, the ability to create programs for them was appealing and the software
was more readily available.

The Commodore 64 machine was launched in 1982 and shipped with a Beginners'
All-purpose Symbolic Instruction Code (BASIC) programming environment.
This spawned a generation of bedroom programmers. They would work on software
to show off their coding prowess, which could achieve the most impressive effects
within the memory constraints of the machine, and are largely credited for creating
the demo scene as it is today.

In 1985, the Atari ST and the Commodore Amiga machines arrived. While expensive
initially, these machines became more affordable within a few years. The power of
home computers was coming on in leaps and bounds, and both computers excelled
in certain areas.

Home computers were ahead of contemporary game consoles in terms of graphical
performance. The Amiga machine had many hardware revisions and the PC was
improving with dedicated graphics and sound cards.

None of the game consoles allowed any hobbyist development, they all were closed
systems. If you wanted to program, you would need to get a computer and learn
how to code for it.

It was around this time that many small game companies were founded in the UK;
Bitmap Brothers, Psygnosis, and Team 17 to name a few. While these companies
started off small, the success of their games led to rapid expansion. While some
have now ceased to exist and others have been bought out by larger companies,
games based on their intellectual property and franchises still exist and are available
for sale today. Some of the Bitmap Brothers games are available on Xbox Live
Arcade, and Sony has just announced a remake of Shadow of the Beast, an early
game from Psygnosis.

Chapter 1

[9]

Advancement of game consoles
In 1995, the PlayStation console was launched. The hype around the launch and the
fact that the machine could produce incredible 3D graphics for the time and output
CD quality music meant the console was an instant success. Whereas developers for
the PC would have to worry about hardware fragmentation, with the PlayStation all
consoles had a standard set of specifications. There was a vibrant console modification
scene that set about getting the PlayStation to run programs it wasn't intended to via
chipping, a process that involved soldering chips on to the main PlayStation circuit
board to circumvent its copy protection schemes. While Sony tried to clamp down on
console modification by releasing new hardware revisions, they also acknowledged
that there was a real desire to program for their machine.

The first indie console
In 1997, Sony made a new console available, the Net Yaroze console. A Net Yaroze
console purchase included an Software Development Kit (SDK), a cable to connect
it to your PC and some documentation. You would also have access to an online
community of other Net Yaroze programmers. No other console manufacturer had
offered such a device before. It wasn't a full development kit, but it would allow
any member of the public to purchase one via mail order and start creating games.
The Official PlayStation Magazine guide would regularly feature demos that had
been created by Net Yaroze enthusiasts. A few of them were made into commercial
PlayStation games and one game, Time Slip, was even updated and released on Xbox
Live Arcade in 2012.

This kind of console manufacturer interaction with the enthusiast developer
community was not repeated with PlayStation 2 or PlayStation 3 by Sony,
or the Xbox or Xbox 360 by Microsoft. While they offer indie developer programs,
they were often relegated to deep menu sections and poorly publicized over their
more elaborately produced arcade games.

By the time these later consoles were established, the cost of games' development
had sky-rocketed, a result of the complexity needed in modern games and the
graphical detail could now be displayed. For example, Grand Theft Auto IV which
was released on PlayStation 3, Xbox 360, and PC had over 150 developers working
on it and cost more than $100,000,000 to produce. A far cry from the one man teams
of the late 1970s and early 1980s.

What Is Ouya and Why Does It Matter?

[10]

Cellular games
While consoles and computers were well established, cell phones were still quite
basic in comparison. In 1998, you would be happy with a Nokia phone that could
display two colors. A brand new game was now coming installed on every new
Nokia phone, Snake!. The game was simple but it was played by a massive audience
as there were few alternatives. In 2003, with the success of Nintendo's Game Boy
line of handheld consoles, Nokia tried to capitalize on cellular gaming and released
the N-Gage game. The N-Gage game was not well received by the press or general
public, but Nokia persisted with the idea until 2005 before relegating the N-Gage
brand to a software service that was to slowly die.

Meanwhile, Microsoft had been producing Windows Mobile for cell phones.
These devices offered true multitasking, the software you could purchase online
and install from an SD card, advanced calendar syncing, and document viewing
among other features. Many of them also offered resistive touch screens.
Unfortunately, the complexity of the devices and a poor user experience
hampered general uptake of the devices.

Cellular development was not in a good position. There were myriad processor
speeds, screen sizes, memory amounts, and phone abilities. Any development,
usually in Java for Nokia's Symbian platform, had to cater for the lowest common
denominator, meaning game development was not being pushed forward on
cellular devices.

The iPhone
This was about to change. On June 29, 2007 Apple released the iPhone device.
This device was far ahead of all its competitors at the time. The iPhone device
supported multitouch, capacitive screens which allowed more accuracy, and new
types of gestures that hadn't been seen before, such as pinching a screen to zoom
in or out. Apple's attention to user experience was evident throughout the device.
Scrolling and animations were executed with a fluidity not previously seen in a cell
phone. Shortly after, the iPod Touch device was released. It used the same operating
system and had the recognisability of the already ubiquitous iPod name. Like the
PlayStation before it, there was suddenly a very popular device with only one
hardware configuration. Developers were very quick to try and find a way to create
software for the device. Apple, responding to developers while hesitant to open up
their platform to third parties, provided documentation and help on how to build
HTML 5 apps for their device. These apps, as Apple called them, couldn't offer a
full range of functionality as they were unable to access much of the hardware on
the iPhone.

Chapter 1

[11]

Things went on that way for a year but Apple had been working in the background.
They had created a new phone, the iPhone 3G phone, and a new version of the
iPhone OS to run on it. There were multiple new features, but most revolutionary
was the App Store feature. Released on June 10, 2008, the App Store feature
promised a store front for everyone's apps, all on an equal footing. Apple would
handle all the financial transactions and the file hosting, and take a 30 percent cut.
This is now what most app stores offer but the amount given to a developer prior to
this was considerably less.

While the phones were quite powerful, a user's expectations of what a handheld
game was hadn't been defined yet. If you were upgrading from Snake then these
were absolute power houses, but as they were handheld devices no one expected
Grand Theft Auto on them. It meant that developers were free to experiment with
all types of games. It enabled bedroom development again. One developer with
a computer and an iPhone was able to create a game to their specification and
could have it on sale alongside titles from Sega, EA, Square Enix and other large,
professional game companies.

The competitors
Not wanting to miss out on the new cellular gold rush, Google announced its
Android operating system in 2007 and the first Android phone was released
in October 2008. Android's unique selling point was its openness. While Apple
was allowing third-party development for its iPhone and iPod touch devices,
the developers were restricted in what their apps could do. Apple provided
access to high level methods in iPhone OS while Android allowed almost
any aspect of the operating system to be modified or augmented as the
developer saw fit.

Android was essentially free for any cell phone manufacturers to install on
their devices, so uptake of Android grew massively. Some just installed a basic,
unmodified version of Android while others, such as Samsung and HTC,
installed their own version of Android for better or worse. Others, such as
Amazon, have taken Android, forked, and modified it beyond all recognition.
That's the beauty and flaw of Android, you have the ability to do whatever you
want with the operating system. Sometimes the results are stunning but other
times the results are a disaster. This is what Apple is trying to avoid by limiting
software access and producing their own hardware.

What Is Ouya and Why Does It Matter?

[12]

Current day situation
As of writing this text, it's 2013 now, and while indie games are big business they
can still be created by small teams. The large publishers have invaded the app stores
and are doing what they do best, making money by releasing already established IP
and buying anyone who does well, but the smaller teams are competing and in some
cases outdoing the larger companies. Minecraft, a game initially created by one man,
has pulled in over $80,000,000, and Angry Birds, created by Rovio with a team of
twelve developers, has made over $100,000,000.

If you are lucky enough to create a successful app you'll earn very good money,
but the pool to be selected from has grown massively since 2008. There are now
an estimated 900,000 apps on the app store for iOS alone with a similar amount
for Android.

History of Ouya
On June 10, 2012 a new kind of game console was imagined. With its support for four
controllers and output to the TV, it was to try and capture the glory days of console
gaming; you and your friends sitting on a sofa together, having fun playing games.
It used a crowd-funding website named Kickstarter to announce itself and generate
funds. The Ouya development team was asking for $950,000. Backers would receive
access to the device when it was released. The Kickstarter fund-raising goal was
raised within 8 hours. Ouya holds the record for the best first day performance of
any project on Kickstarter to date. Ouya became the most quickly funded project on
Kickstarter to reach one million dollars, and went on to become the eighth project
in Kickstarter history to raise more than a million dollars. At the end of the funding,
the development team had received $8,596,474. The cost of the device was $99 and it
ran Android. This meant there was a large library of games available to easily port
across to Ouya. Developers heavily backed the Ouya as the consistent hardware
specification is a boon to Android developers who normally have to contend with
device specification fragmentation.

Chapter 1

[13]

Ouya's release
Suddenly the Ouya is in the world's press. Events are unfolding very similar to the
iPhone release and developers want to get in to the Ouya development while it's still
fresh and new.

While it runs Android, it's a complete visual change. Special consideration needs to
be taken to implement the controller support and in-app purchase. All games on the
Ouya need to offer a demo version or be free. The games are monetized by creating
unlockable content that can be enabled via an in-app purchase.

The Ouya already has a some good games, but there is plenty of space for new
ideas to make their mark. Some of the current games are exclusive to the platform,
some of them are ports from large publishers, such as Square Enix, but all of them
receive equal footing on the Ouya, yours will too.

It's all new territory again and anything can be a success!

Summary
There are parallels between the early days of the video-game industry and where
indie game development is now. While it had mostly been viewed as a niche area
previously, Sony, Microsoft, and Nintendo are all embracing indie developers for
the next generation, and there is huge interest in the market now. We're here as
we want to capitalize on the current interest for indie development. In Chapter 2,
Setting Up Unity and the Ouya Plugin, we're going to go through the steps required
to set up Unity for Ouya development.

Setting Up Unity and
the Ouya Plugin

In this chapter, you'll be guided through installing the Android SDK, Android NDK
(Native Development Kit), Java, Java JDK (Java Development Kit), and ODK
(Ouya Development Kit) and shown how to set up your Unity project so that you
can build Ouya. Once this is complete we'll be ready to start our game, Sokoban.
Sokoban is a classic crate-moving game where the player has to get all the crates in a
warehouse on to their designated goal tiles. Sokoban in Japanese roughly translates
to warehouse keeper.

These instructions have been written for Windows but the installation of
the SDK, Java, NDK, and ODK will be similar. Where the process differs
greatly we'll include some extra information.

Installing the Android SDK
It may not look like it, but Ouya runs Android so we'll need to install the Android
SDK. This is going to allow us to compile from Unity and then add the game to the
our Ouya or Android device. Go to http://developer.android.com/sdk/index.
html in your browser and you'll see a large, blue button on the right that says
Download the SDK followed by ADT Bundle for Windows.

Press the large, blue button and you'll be presented with a Terms and Conditions
page and a radio button asking whether you want the 32-bit or 64-bit version.
We're going to go with the 32-bit version for this book. Once downloaded,
install it on your machine. For the purposes of this book, I'm going to install it
to c:\adt-bundle-windows-x86-20130729.

Setting Up Unity and the Ouya Plugin

[16]

Installing Java
Next you'll need to install Java for your computer. Go to http://www.java.com/en/
download/ie_manual.jsp?locale=en in your browser and click on the red button
that says Agree and Start Free Download. Download and install the file.

Be sure to uncheck the boxes where Oracle attempts to get you to
install toolbars and other bloatware.

Setting up the Android SDK
Once Java is installed you'll be able to configure your Android SDK. Navigate to
the folder where you have installed the Android SDK and you'll see an application
called SDK Manager that has the Android mascot as its icon. Open the SDK
Manager and you'll see something like this:

Chapter 2

[17]

Ouya requires certain Android APIs to be installed that are not pre-installed by
default. To install the others you'll need to check:

• Tools
• Android 4.1.2 (API 16)
• Android 4.0 (API 14)
• Extra/Android Support Library

Click on Install Packages and you will be presented with a license window. Click on
Accept Licenses. Now is a good time to get yourself a drink as the install can take
quite a while.

Google has changed the path of where some of their tools are installed to.
So Ouya finds what it expects we need to copy & paste aapt.exe from
(your root Android SDK install folder)/build-tools/17.0.0 to (your root
Android SDK install folder)/platform-tools. We copy and paste as the
Android SDK expects the aapt.exe to be in the original location.

Setting up the Android NDK
No, that's not a typo! Once we have set up the Android SDK we need to install the
Android NDK (Native Development Kit). The NDK is a toolset that allows you
to implement parts of your app using native-code languages such as C and C++.
The ODK will interface with the NDK and will give you optimum performance in
your game.

Perform the following steps to set up the Android NDK:

1. Go to http://developer.android.com/tools/sdk/ndk/index.html in
your browser.

2. Select the correct download for your computer, we're going to go with
the 32-bit Windows version for this book, and agree to the licensing
terms and conditions.

3. Once the file is downloaded, unzip it to the same root folder where you
installed the Android SDK.

www.allitebooks.com

http://www.allitebooks.org

Setting Up Unity and the Ouya Plugin

[18]

Connecting Ouya to your Windows
computer
The process here is different for Windows 7, Windows 8, and OS X. Let's cover
Windows first.

Windows 8 users will need to disable driver signature verification to install
the unsigned Android driver. This involves restarting your PC, so do this
before you start. See https://devs.ouya.tv/developers/docs/
windows8.md for step-by-step instructions.

Before we get up and running, we need to make sure that Ouya will be recognized
by Windows so that we will be able to build to it. The first step of this is to add some
paths to your PATH environment variable. This will enable us to run the executables
in the Android SDK folder from directory via the command line.

1. Open My Computer.
2. From the left-hand panel, right-click on My Computer and click on

Properties.
3. From the left-hand panel, click on Advanced system settings.
4. Click on the Environment Variables… button.
5. If the PATH variable already exists in the User variables table select it and

click on the Edit… button, else click on the New… button.
6. If the PATH variable already exists then append the following to the Variable

value: (your root Android SDK install folder)/sdk/tools and (your root
Android SDK install folder)/sdk/platform-tools.

7. If the PATH variable doesn't exist, type PATH for the Variable name and
(your root Android SDK install folder)/sdk/tools and (your root Android
SDK install folder)/sdk/platform-tools for the Variable value.

8. Click on the OK button to save your changes.
9. Click on the OK button to exit the Environment Variables window.
10. Click on the OK button to exit the System Properties window.

You will need to change the paths here to match
those of your install.

Chapter 2

[19]

Now open the file from the path: (your root Android SDK install folder)/sdk/extras/
google/usb_driver/android_winusb.inf in Notepad and paste the code below in
both the sections, that is, [Google.NTx86] and [Google.NTamd64]:

;OUYA Console
%SingleAdbInterface% = USB_Install, USB\VID_2836&PID_0010
%CompositeAdbInterface% = USB_Install, USB\VID_2836&PID_0010&MI_01

Save the changes and close the window. Open the Run window by pressing the
Windows key and R or click on Run from the Start menu and type cmd then click
on OK.

Type the following in the command prompt window to refresh our data:

adb kill-server

echo 0x2836 >> "%USERPROFILE%\.android\adb_usb.ini"

adb start-server

It is important that you now check your adb_usb.ini. You can find it
in your c:\Users\YOUR_USER_NAME\.android folder. Open it in
Notepad and ensure that the 0x2836 is at the start of a new line. If the
first line started with a # then sometimes it is appended to an existing line
rather than starting a new one.

Close the window and plug in Ouya to your computer and it should now be
recognized. Perform the following steps to install the driver for it:

1. Open the Device Manager by right-clicking on My Computer.
2. Click on Properties and then Device Manager.
3. In Device Manager, open Portable Devices and you should see

OUYA Console.
4. Right-click on and select Update Driver Software....
5. Click on Browse my computer for driver software.
6. Click on Let me pick from a list of device drivers on my computer.
7. If you're using Windows 8 then click on All devices and then click on Next.

If you're using Windows 7 this step is not necessary.
8. Click on Have Disk and browse to c:\adt-bundle-

windows-x86-\20130729\sdk\extras\google\usb_driver.
9. Choose ADB Composite Device.
10. Accept the unsigned driver.

Setting Up Unity and the Ouya Plugin

[20]

Turn on Ouya and wait for the menu screen to appear on your TV. Make sure no
other Android devices are attached to your computer. Now, open the command
prompt and type adb devices. If all has gone according to plan, you should see
a device listed as the following screenshot:

If not, go back and check again whether you've completed the all the preceding
steps. Common fail points are your adb_usb.ini having 0x2836 appended to an
existing line rather than being on a new one or the number being typed incorrectly.
Also try killing and starting the ADB server again with the adb kill-server and
adb start-server commands we used earlier.

Connecting Ouya to your Mac computer
While the process for installing the required software is similar, the process for
getting Ouya recognized by the OS is different.

You will need to change the paths here to match to your
installation process.

We're going to have to add some paths to PATH. Assuming that you have put the
SDK folder in the location ~/Development/adt-bundle-mac-x86_64, open up
a Terminal window (this is in your Applications/Utilites folder by default).
Enter the following command:

open ~/.bash_profile

This will open the .bash_profile file in TextEdit (the default text editor included
on your Mac). This file allows you to customize the environment your user runs in.
Add the following three lines:

export PATH=$PATH:~/Development/adt-bundle-mac-x86_64/sdk/tools

export PATH=$PATH:~/Development/adt-bundle-mac-x86_64/sdk/platform-tools

export ANDROID_HOME=~/Development/adt-bundle-mac-x86_64/sdk

Save the file and quit TextEdit. Now we've made the changes that are needed to
execute the file. Type the following in Terminal:

source ~/.bash_profile

Chapter 2

[21]

Now add the following line to ~/.android/adb_usb.ini (create it if it doesn't exist)
for your OUYA Console to be recognized:

0x2836

There should be no carriage return after the hex value.
Any blank lines in this file will result in an error.

Make sure your Ouya is connected and turned on and in Terminal,
type the following:

adb kill-server

adb start-server

adb devices

If you see a device listed in your Terminal window then all is well, if not, check that
you have installed all the required software, your device is turned on, and that you
have connected it via USB.

Ouya Development Kit
We're almost ready to get in to Unity but we still have to install the ODK first. Go to
https://devs.ouya.tv/developers/odk in your browser. Press the red button that
says Download ODK. Once the file is downloaded, unzip it to the same root folder
where you installed the Android SDK.

Go to https://github.com/ouya/ouya-unity-plugin in your browser. The Ouya
Unity files are stored in GitHub. If you're comfortable using GitHub you should
clone the repository, if you're not comfortable with it then you should use the
Download ZIP button on the right-hand side of the page.

Once the file is downloaded, unzip it to the same root folder where you installed the
Android SDK.

Understanding how to use GitHub is a useful skill that will help you in
many projects, not just this one. Have a read of the GitHub Help page
located at https://help.github.com/

Setting Up Unity and the Ouya Plugin

[22]

The Unity project
Instead of giving us developers a unitypackage file to download, the Ouya team give
us a Unity project and we need to build it ourselves. The benefit of this is that the Ouya
team can update the files on GitHub and, if we have cloned the repository, we'll be
able to pull an update easily and rebuild the packages. The following steps will guide
you through creating the Ouya unitypackage file that, after importing, will enable us
to configure the Ouya project settings and allow us to deploy to Ouya itself:

1. Open Unity and navigate to File | Open Project | Open Other. You'll need
to navigate to where you unzipped the Ouya Unity files and press Select
Folder. Depending on how up-to-date the files are you may get a message
from Unity about upgrading the project, if it asks for an upgrade, then let
it proceed.

2. To generate the unitypackage file, we will need to configure the Ouya
project settings which on importing will allow us to deploy to Ouya itself.
Click on OUYA | Export Core Package and after a short delay a window
will open and you should see a file named OuyaSDK-Core.

3. We're now going to create a new Unity project. We'll need to set it to be for
the Android platform, set up the Android requirements, and then set up the
Ouya-specific requirements. Create a new project in Unity, call it Sokoban,
and navigate to File | Build Settings, then click on Android and click on
Switch Platform. Now click on the Player Settings button from the same
window. A tab should appear, click on Other Settings and then click on
the drop-down box next to Minimum API Level, you will need to select
Android 4.1 'Jelly Bean' (API Level 16). Next, click on Resolution and
Presentation and set the Default Orientation to Landscape Left.

4. Finally, navigate to Assets | Import Package | Custom Package… and select
the OuyaSDK-Core file that was created a moment ago. Import all the files
and then, once they have processed, you will see a new menu item at the top
of the screen: OUYA.

Chapter 2

[23]

The bundle identifier
Each game for Ouya must have a unique bundle identifier. A bundle identifier is
used to identify your app in the app store, link purchases from the app to your
account, and let other processes know what is running.

Because Unity interfaces with Ouya as an Android app with a Java plugin it means
there are three bundle identifiers: one for the Unity project, one for the Android
Manifest file, and one for the Java plugin, if there are any mismatches your app
won't deploy on to Ouya. The first step is coming up with your bundle identifier,
they are normally created in reverse-domain notation, for example: com.companyName.
productName. For the purposes of this book we'll use com.generic.sokoban.

Thankfully, Ouya now provides a way to sync the bundle identifier from Unity in to
the two other places.

In the Player Settings menu, click on the Android icon and then click on Other Settings
and then type the bundle identifier in the textbox marked Bundle Identifier*.

Navigate to Window | Open Ouya Panel. A panel will appear and you will most
likely see a [error] (bundle mismatched) warning. Click on Sync Bundle ID and
after a few moment that warning should go away.

Setting Up Unity and the Ouya Plugin

[24]

Setting up Ouya Panel
The following is the screenshot of Ouya Panel, you use it to configure all the paths
that the Ouya Unity plugin requires.

Click on the third tab, Java JDK, and then click on Download JDK 6 32-bit.
A browser will open and you will need to accept the license agreement and
then click on Windows x86. Oracle will ask you to sign in, do so if you already
have an account, if not then create one and download the Java JDK. Run the
installer and leave all the options as default, once it's finished head back over
to Unity. Click on Select SDK Path… and then navigate to the default install
location of the Java JDK, for me the location is c:/Program Files (x86)/
Java/jdk1.6.0_45.

Chapter 2

[25]

Now click on the fourth tab, Android SDK, and then click on Select SDK Path…
and navigate to your root Android SDK folder.

For me the location is c:/adt-bundle-windows-x86-20130729/sdk. The labels at
the top of the panel should go from gray to white. If the APT Path is still gray then
make sure you copied the aapt.exe from (your root Android SDK install folder)/
build-tools/17.0.0 to (your root Android SDK install folder)/platform-tools.

Finally, we have to set up the Android NDK paths. Click on the fifth tab, Android
NDK, and then click on Select NDK Path… and navigate to your root Android NDK
folder. Now click on Select NDK Make Path… and navigate to your (root Android
NDK folder)/prebuilt/windows/bin/make.exe.

Setting Up Unity and the Ouya Plugin

[26]

Now the Java JDK, Android SDK, and Android NKD have been set up, we need to
compile everything. The Ouya Panel makes this really easy. Click on the first tab,
OUYA, and you will see three buttons:

Press each one in turn, you should see results in the console, hopefully with no errors.
If you do have errors, read them carefully as they usually explain what the issue is.
It's normally to do with one of the tabs being set up incorrectly so check each tab in
turn, ensuring all the fields that have path names are in white, not gray.

That's Ouya Panel, set up and configured properly. While it does seem like a long
process to set it up, it saves your configuration so you only need to do it the once.

Ouya required prefabs
Open the Project panel in Unity and navigate to Ouya | SDK | Editor | Prefabs |
OuyaGameObject. Drag an instance of this prefab in to the scene and select it. In
the Inspector panel you will see a DEVELOPER_ID field, you will need to paste
your Developer ID in there. If you don't know what yours is then log in at https://
devs.ouya.tv/developers. You'll see Developer UUID (used for configuring in-app
purchases). Copy the Developer ID from there and paste it in to the DEVELOPER_ID
field in Unity.

Building, running, and compiling
an application
We're now ready to see all your hard work so far pay off.

If you have the basic version of Unity then click on Compile on the Ouya Panel and
you'll see few command prompts open and close, when it's finished navigate to File
| Build & Run.

If you have the pro version of Unity then you can use the Build, Run and Compile
Application button. Click on it and you'll see a few command prompts open and
then close, followed by the Unity build progress bar.

For the purposes of this book, if you see Build, Run and Compile
Application use the correct method for your version of Unity.

Chapter 2

[27]

If all has gone according to plan, in a few moments you'll see a Unity splash
screen followed by the blue hue of your default scene and main camera.

Common fail points here are Unity not finding the Ouya or the app opening
and then closing immediately. If Unity cannot find the Ouya make sure you
have followed all the steps from the Connecting Ouya to your Windows/Mac
computer section of this chapter. If the app is opening and then immediately
closing again, make sure you have added the required prefabs and entered
your Developer ID in to the OuyaGameObject prefab. If it is still opening
and then immediately closing, make sure you have also compiled the Java
JDK, the Android SDK, and the Android NDK, as described in the Setting up
Ouya Panel section of this chapter.

You can breathe a sigh of relief now, that's the boring bit over with.

Summary
If you've made it this far then well done! The process of setting up Unity for
Ouya development is not a simple one and there are many steps which can
fail. Now the required software is installed, setting up Ouya Panel again is
a lot less painful. In the next chapter, we'll be getting to the fun stuff. Let's go!

Setting Up Your Game
After the history lesson and setting up your project you must be looking forward
to do some actual development. In this chapter, we'll be explaining the difference
between three of the languages you can use to program in Unity, creating a
basic structure for our game, creating a title screen, creating an in-game screen,
and rendering a level.

Boo, C#, or UnityScript
Unity is amazing. With minimal effort you can have a prototype up and running
in a few hours. No other engine has allowed such great flexibility. Another of
Unity's excellent features is the ability to program in three languages, namely C#,
UnityScript, and Boo. Let's go in to the pros and cons of each one, and explain
which one we'll be using.

Boo
Boo is an object-oriented, statically-typed programming language that has a
syntax inspired by Python. Boo has only been covered here for completeness,
the documentation for programming in Unity with Boo is poor to non-existent
and only around 5 percent of Unity developers actually use Boo, so finding
support when you need it could prove difficult.

Setting Up Your Game

[30]

UnityScript
If you know JavaScript then you'll feel comfortable with UnityScript. The syntax
is exactly the same; you just need to learn all the addressable objects from Unity.
Both JavaScript and UnityScript support dynamic typing. This is great if you are
just trying to create something quickly and don't want to worry too much with
the details, but it can lead to less manageable code and dynamic typing is not
supported on iOS. Some plugins, which you can buy on the asset store, will be
written in UnityScript, but these will often require modification to get them
running on all platforms.

C#
C# is also an object-oriented language, like Boo, but the similarities end there. C# is a
multiparadigm programming language; a framework where programmers are free to
work in a variety of styles, mixing constructs from different paradigms. It encompasses
strong typing, declarative, imperative, procedural, functional, object-oriented and
component-oriented programming disciplines. The majority of plugins you can buy on
the asset store are written in C# and will work on mobile with very little code changes,
if any. Unity requires that all variables are strongly typed, which means that any issues
with the code will be identified within Unity and will stop you compiling until they
are resolved. This makes it a lot less error prone than Boo or UnityScript, and it is for
this reason that we will be writing our game, Sokoban, in C#.

The project structure
Keeping your Unity project in a good shape is important. Things can quickly get
out of hand as a project goes from small prototype to full on work-in-progress.
Normally, you have good intentions to tidy it up at a later date but the deadlines
and bugs always seem to get in the way. Setting up the project structure before you
start, and sticking to it as you go along, will save you a lot of time as you won't be
searching for files later on when you could be programming.

Chapter 3

[31]

You should still have your Sokoban project from Chapter 2, Setting Up Unity and the
Ouya Plug-in, so we'll carry on from that point. So far the project is set up so that
the platform is Android and we have imported the OuyaSDK-Core unity package.
This will have created some folders already in your project. Make the project panel
visible by clicking on Window | Project; there should already be some folders there,
namely LitJson, Ouya, and Plugins. We're going to create some new folders to hold
other files in project, so click on the Create drop-down menu, which is located just
underneath the Project tab in panel you opened. A menu should appear which will
save your time in the future, so get accustomed to what you can create from here.

Setting Up Your Game

[32]

Click on Folder and a new folder will be created in the project panel. Here you can
type the name and click on Return, and the folder will be created. We need to create
folders for the following directories:

• Materials

• Prefabs

• Scenes

• Scripts

Setting up your Scenes
You should now have a project panel with seven folders and a scene with Main
Camera and OuyaGameObject that you have entered your developer ID into.
We are going to use this scene as a setup scene that isn't displayed for long but
instead adds all the required game objects. Normally in Unity, when loading a new
scene, all objects are destroyed, and then the objects in the new scene are loaded.
If it is needed to have an object persist between scenes then there is a method,
DontDestroyOnLoad that you can pass an object to. If the object is a component or
GameObject then its entire transform hierarchy will not be destroyed either. A side
effect of this is that if the scene has the GameObject added to it in Unity and you
load it multiple times (on a level select screen for example) then the GameObject
will be cloned multiple times and, with a GameObject that handles controller input
for example, this can result in multiple controller presses being triggered. We can
avoid this by having all our GameObjects that require DontDestroyOnLoad being
instantiated on a scene that we will only ever load the one time.

As we won't be displaying anything on this scene, you should delete Main Camera.
We'll also need a mechanism to leave this scene and load the next one, by performing
the following steps:

1. Save the current scene as SetUp by clicking on File | Save Scene, and select
the Scenes folder you created earlier.

2. While we're dealing with scenes, let's create another one we're going to be
using shortly. Click on File | New Scene, and select the Scenes folder you
created earlier. Give it a name of TitleScreen and click on Save.

3. Repeat these steps to create a scene named GameScreen too. This will have
left us in the wrong scene, so double-click on our SetUp scene again to load
that one.

Chapter 3

[33]

4. Your final setup should look like the following screenshot:

Scripts and MonoDevelop
Click on GameObject | Create Empty and a new GameObject will appear on the
stage with the name GameObject. It should already be highlighted, so click it once
more and the name will become editable, call it AdvanceToNextLevel.

We're going to create and attach a C# sharp script to the AdvanceToNextLevel
GameObject that will load a new scene as soon as this one is initialized.
Right-click on the Scripts folder you created earlier and then click on Create
and select the C# Script label. Once you click on it, a script will appear in the
Scripts folder and it should already have focus and be asking you to type a name
for the script, call it AdvanceToNextLevel. Double-click on the script in Unity
and it will open MonoDevelop, which is an open source, integrated development
environment that runs on Linux, Mac OSX, and Windows. It supports automatic
code completion, source control, and Graphical User Interface (GUI).

Setting Up Your Game

[34]

After MonoDevelop has loaded, you will be presented with the C# stub code that
was created automatically for you by Unity when you created the C# script.

Let's break down what's currently there before we replace some of it with new code.
At the top you will see the following two lines of code:

using UnityEngine;
using System.Collections;

The UnityEngine namespace contains interfaces and class definitions that let
MonoDevelop know about all the addressable objects inside Unity.

The System.Collections namespace contains interfaces and classes that define
various collections of objects, such as lists, queues, bit arrays, hash tables,
and dictionaries. We won't be using the System.Collections in this script,
so we can go ahead and delete that line although it won't affect if you leave it in.

The next line of code you'll see is as follows:

public class AdvanceToNextLevel : MonoBehaviour {

The class name must match the filename. When Unity created our C# stub code,
it took care of this, we can see this result as our file is named AdvanceToNextLevel
and the class is also named AdvanceToNextLevel. Next up is the : MonoBehaviour
section of the code. All behavior scripts must inherit from : MonoBehaviour directly
or indirectly. While this happens automatically in JavaScript, it must be explicitly
declared inside the C# scripts. If you create your script inside Unity through the
Create | C# Script, the created template will already contain the
necessary definition.

The line after that is a method definition for a method named Start, as shown in the
following code. It isn't a user method, but one that belongs to MonoBehaviour.

void Start () {

}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 3

[35]

Start is called just before any of the Update methods are called for the first time.
We're not going to use Start; we're going to use Awake instead, so you can change
the word Start to Awake as the method signatures are the same. This is the method
that will load our next scene.

Start is only called once in the lifetime of the behavior. The difference between
Awake and Start is that Start is only called if the script instance is enabled.
This allows you to delay any initialization code until it is really needed. Awake
is always called before any Start method functions. This allows you to order
the initialization of your scripts.

Inside the curly braces add the following line to the code:

Application.LoadLevel("TitleScreen");

LoadLevel will simply destroy everything in the current scene, excluding
GameObjects that have DontDestroyOnLoad set, and load the scene specified
as a string. The string is the filename of the scene, in this case TitleScreen,
which we created earlier.

The last piece of code is the Update method. This method is called once every
frame so it's an ideal place to add any code that will need to execute constantly
such as checks for movement. This particular script has no need for the method,
so go ahead and delete it.

Your final script should look like the following code:

usingUnityEngine;

public class AdvanceToNextLevel : MonoBehaviour {

 // Use this for initialization
 void Awake () {
 Application.LoadLevel("TitleScreen");
 }
}

Now we have finished our first script, we need to attach it to a GameObject in our
scene. Go back to Unity and you'll see a small activity indicator in the lower-right of
the screen, that's your script being compiled and checked for errors by Unity. If there
are ever any issues, they will appear in the console. Drag your AdvanceToNextLevel
script to your AdvanceToNextLevel GameObject.

Setting Up Your Game

[36]

Scene progression
We have to add the scenes that we're going to use to the build settings before we
can test our code works, so click on File | Build Settings, and then click on Add
Current. You'll see the scene name appear in the Scenes In Build area, now drag
the TitleScreen and the GameScreen scenes into the same window and their names
will appear there too. Close the build settings window and click on the play icon
in the top-middle of the Unity screen. If all has worked as expected you should
be staring back at a plain blue screen. That's actually a good result as it means
your SetUp scene is working as expected and has loaded the TitleScreen scene
immediately, and the blue screen you see is from the background color of Main
Camera in that scene.

Make sure you click on the play icon again to stop the play mode, this is
important as any changes you make in play mode are not permanent and
will reset to the default values when play mode is disabled.

The title screen menu
Double-click on the TitleScreen scene in the Scenes folder to load that scene.
We're going to need some kind of instructions on the TitleScreen scene, let's
keep it simple for now. Click on GameObject | Create Other | 3D Text.
A new Text Mesh component will appear in the Hierarchy panel with the
name New Text and Inspector panel will show Text Mesh. New Text should
already be highlighted, so click it once more to rename it and call it Play
Instructions, then click on Return. Now drag it in to the Main Camera to
make it a child object of the Main Camera. Click on the Main Camera and in
the Inspector panel, and you should see Background with a blue hue next to
it, click on the blue color and a palette will appear in a new window. Move the
blue hue to the black hue, and then close the window.

Chapter 3

[37]

Select the text in the Inspector panel and replace the text that's there, Hello World with
the text Press O to Play. Change the anchor from upper-left to middle-center and
change the font size to 50. The text has been set and added to the correct GameObject
but we need to position it correctly, in the Inspector panel set the position to X: 0, Y:
0, Z: 50, and then click on the play icon to test the scene. You should see something
like the following screenshot:

Advancing to the game
We'll add keyboard support first, and then once we know all our scripts are working,
we'll add Ouya controller support.

It's important to implement one feature at a time because if
something goes wrong, it can make debugging much harder
if there are multiple failure points.

Right-click on the Scripts folder in your Project panel and navigate to Create | C#
Script. Call the new script as ControlsTitleScreen, and then double-click on the
script to edit it in MonoDevelop. You'll see that the Start and Update methods have
already been created. In the Update method, we're going to check if the Space key has
been pressed to start the game. We'll break it down after, but the code we need to
add now is as follows:

void Update () {
 if(Input.GetKeyDown(KeyCode.Space)){
 Application.LoadLevel("GameScreen");
 }
}

www.allitebooks.com

http://www.allitebooks.org

Setting Up Your Game

[38]

The preceding code is going to check every frame, if the key with the KeyCode of
Space has been pressed that frame. We are just using Space when testing in the
editor; we'll be adding Ouya controller support in the next section. You can also use
GetKey() to detect the key being held over multiple frames. We used LoadLevel
earlier so that we should understand what that does but just to refresh your memory,
it will simply destroy everything in the current scene, excluding GameObjects that
have DontDestroyOnLoad set, and load the scene specified as a string. The string is
the filename of the scene, in this case GameScreen, which we created earlier. Save
your script and go back to Unity, we're done for now.

Click on GameObject | Create Empty, and a new GameObject will appear in the
Hierarchy panel with the name GameObject. It should already be highlighted,
so click on it once more and the name will become editable, call it Controls.
Drag the ControlsTitleScreen script from the Project panel to the
Controls GameObject.

Click on the play icon to test your scene. It should start off with a black screen
with the text Press O to Play on it, and then go to the blue screen when the
Space key is pressed.

Ouya controller support
Assuming that everything now works as it should, let's get the title screen detecting
Ouya input and then giving it a run on the Ouya itself to check everything is
working as expected. The Ouya code examples are updated frequently, so are often
hosted on GitHub for version control and ease of access. The code for accessing
input is no different and can be found at https://github.com/rendermat/
OuyaInputFramework. As before, if you are familiar with GitHub then you will be
better in off cloning the repository, else click on the Download ZIP button located
on the right-hand side of the page. For the time being we're only interested in one
file from the ZIP, namely OuyaInput.unitypackage.

1. Double-click on OuyaInput.unitypackage and it will open in Unity and ask
you what you want to import.

2. Uncheck Documentation, Prefabs, and Scenes, and then click on Import.
If you want to learn more you can import everything and load up the scene
named ControllerSimpleTest. There you can see all input being handled
from the Ouya controller.

3. After the import has finished, you will see a C# script named OuyaInput
in the Plugins folder. The code inside this script is defined as a static class,
which means we do not have to attach it to a GameObject for it to work.

Chapter 3

[39]

4. Double-click on your ControlsTitleScreen script in the Project panel to edit
it in MonoDevelop and add the following code just above the Start method:
public bool continuousScan = true;
public OuyaPlayer player = OuyaPlayer.P01;

The first variable, continuousScan, is going to be used a little further down,
so we'll deal with that when we come to it.
The second variable, player, is being set to an integer value with a predefined
name, this is called enum. This will be passed to the GetButtonDown method,
so it knows what controller to read the values from.

5. Add the following lines inside the Start method:
OuyaInput.SetContinuousScanning(continuousScan);
OuyaInput.UpdateControllers();

Passing true to SetContinuousScanning will allow us to receive button
up and down events from the controller. UpdateControllers will grab the
initial state from the controllers.

6. At the top of the Update method, add the following code:
OuyaInput.UpdateControllers();

7. Update the if statement we used to check for the Space key being pressed.
Change that line to the following:
if (Input.GetKeyDown(KeyCode.Space) || OuyaInput.
GetButtonDown(OuyaButton.O, player)){

You can see we have added the OR operator, ||, if you read the code now,
it should all seem quite clear: if the Space key or the O key is down for
player 1, then use the following code.

The final script should look like the following code:

using UnityEngine;
using System.Collections;

public class ControlsTitleScreen : MonoBehaviour {

 // Do we want to scan for trigger and d-pad button
 events?
 publicboolcontinuousScan = true;

 // The player we want to get input for

Setting Up Your Game

[40]

 publicOuyaPlayer player = OuyaPlayer.P01;

 // Use this for initialization
 void Start () {

 // Set button state scanning to receive input state
 events for trigger and d-pads
 OuyaInput.SetContinuousScanning(continuousScan);

 // Do a controller update here to get everything
 started as soon as possible
 OuyaInput.UpdateControllers();
 }

 // Update is called once per frame
 void Update () {

 // Update the controllers here for best results
 OuyaInput.UpdateControllers();

 if (Input.GetKeyDown(KeyCode.Space) ||
 OuyaInput.GetButtonDown(OuyaButton.O, player)){
 Application.LoadLevel("GameScreen");
 }
 }
}

That's it for the Ouya controller support for the TitleScreen at the moment.
Make sure your Ouya is turned on and connected to your computer, and click
on Build, Run, and Compile Application on the Ouya Panel. Your game should
start and present a black screen with Press O to Play on it, press O on your
controller and the screen should change from black to blue. Let's stop that
screen being so bare.

Chapter 3

[41]

Creating the level
Start by opening the GameScreen scene you created earlier by double-clicking on it.
There should just be a Main Camera and nothing else. Make the background color of
the Main Camera black, just like you did earlier, and set the position to X: 3, Y: 6,
Z: -10.

Prefabs
A prefab is a type of asset, a reusable GameObject that is accessible from the Project
panel. Prefabs can be added into any scene, multiple times per scene. When you add
a prefab to a scene, an instance is created of it. All prefab instances are linked to the
original prefab. No matter how many instances exist in your project, when you make
a change to the prefab, you will see the change applied to all instances of it.

Creating a Prefab
In order to create a prefab, drag a GameObject that you've created in the scene into
the Project panel, we're using the Prefabs folder to store ours. The GameObject's
name will turn blue to show that it is a prefab.

We're going to need five prefabs in our game; a wall, a floor, a goal, a crate, and a
player. Let's just use cubes for now, we can pretty things up later. Click on
GameObject | CreateOther | Cube, and a cube will appear in your Hierarchy
panel. Click on it to select it, then click on Edit | Duplicate, you'll need to keep
doing that until you have created five cubes in total. Click on each one in turn and
rename it. Call them wall, floor, goal, crate, and player. Before we make them
prefabs, we need to set up the transform of some of them.

Click on the goal GameObject and in the Information panel, set the scale to X: 1,
Y: 0.1, Z: 1, and then do the same with the floor GameObject.

Drag each of the new GameObjects in to the Prefabs folder we created in the Projects
panel. They should appear in the folder along with a blue cube icon. The GameObject
will remain in the Hierarchy panel but the color of its name will have changed from
white to blue. Once you have dragged all five GameObjects in the Prefabs folder,
you can delete them from the Hierarchy panel.

Setting Up Your Game

[42]

Materials
Our game would be pretty boring with gray cubes for every single model so
let's give them some color. For the purposes of this book, we're just going to
use self-illuminating, diffused materials on the prefabs, but if you are good
with a graphics package you can easily drag a texture into these materials
to add some polish to your game. Right-click on the Materials folder in
your Project panel and click on Create | Material. Call the new material
wall. In the Inspector panel, click on the drop-down menu next to Shader
and select Self-Illumin | Diffuse. Just below that, you'll see Main Color
with a white color swatch next to it. Click on the swatch and change the color
to red then close the color palette window. With your new material selected,
click on Edit | Duplicate, you'll need to keep doing that until you have
created five materials in total. Click on each one of the duplicated materials
and rename it. We already have the wall material, so call the duplicated ones
floor, goal, crate, and player. Set colors in the same way as before for each
one in turn. Make floor as light gray, goal as bright green, crate as brown,
and player as blue.

Click and drag each material to its respective prefab, this will assign the material
to the prefab and make out game more colorful.

Multidimensional arrays
An array is a reference to a list of objects that you can iterate through numerically.
We are going to be storing tile IDs in our array. The ID of the tile will tell us if it's
a floor, a wall, a crate, a player or a goal. You will see in the following code that a
list is supplied that shows what kind of tile each number represents.

You may have heard of two-dimensional arrays, these are arrays where each object
is an array; they are useful for storing map data of a tile based game in as you have
columns and rows. We're going to be using a three-dimensional array. The top-level
of the array is going to be the number of the level we're on, each element inside that
top-level array will represent a row of the game map and each element of the
second-level array is going to be a tile ID.

By using an array to store our level data, it means we can easily store our level layouts
in a matter of bytes, and by establishing where our play is in the array we get collision
detection for very little effort.

Chapter 3

[43]

Create a new C# script in the scripts folder and call it Sokoban, then double-click on
the script to edit it. Add the following code just above the Start method:

// Legend
// 0 = Floor
// 1 = Wall
// 2 = Goal
// 3 = Crate
// 4 = Player
// -1 = Empty tile

// Create the top array, this will store the level arrays
int[][][] levels =
{
 // Create the level array, this will store the row array
 new int [][] {
 // Create all row array, these will store column data
 new int[] {1,1,1,1,1,1,1,1},
 new int[] {1,0,0,1,0,0,0,1},
 new int[] {1,0,3,3,0,3,0,1},
 new int[] {1,0,0,1,0,1,0,1},
 new int[] {1,0,0,1,3,1,0,1},
 new int[] {1,0,0,2,2,2,2,1},
 new int[] {1,0,0,1,0,4,1,1},
 new int[] {1,1,1,1,1,1,1,1}
 }
};

We're only going to have one level for the moment. You can visualize the level quite
easily when you look at the three-dimensional array like this.

Now add the following code below the closing bracket of our levels array:

public Transform wall;
public Transform floor;
public Transform goal;
public Transform crate;
public Transform player;
int playerRow;
int playerCol;
Transform thePlayer;
string movingCrate = "";
int amountOfCrates = 0;

Setting Up Your Game

[44]

Defining the variables here means we will be able to access them from all methods
in this class. The ones that are prefixed with public will be exposed inside the Unity
development environment. The playerRow and playerCol methods are going to
be used in our level-rendering code and the crate related ones are going to be for
moving the crates and checking if we've finished the level or not.

The BuildLevel method
We now have the level map in our three-dimensional array, our prefabs to act
as the building blocks for our level, and the materials to give them some color,
which means we're ready to actually build the level now!

Double-click on your Sokoban script to open it in MonoDevelop, and above the
Start method, add the following code:

void BuildLevel () {
 // Loop through the level array
 for (int i = 0; i< levels[0].Length; i++) {

 // Loop through the row array
 for (int j = 0; j < levels[0][i].Length; j++) {

 // What value is the tile in this column
 switch (levels[0][i][j]) {
 case 0: // Floor
 Instantiate(floor,
 new Vector3 (i, -0.6f, j),
 Quaternion.identity);
 break;
 case 1: // Wall, add a floor below it
 Instantiate(
 floor,
 new Vector3 (i, -0.6f, j),
 Quaternion.identity);

 Instantiate(
 wall,
 new Vector3 (i, 0, j),
 Quaternion.identity);
 break;
 case 2: // Goal

Chapter 3

[45]

 Instantiate(
 goal,
 new Vector3 (i, -0.6f, j),
 Quaternion.identity);
 break;
 case 3: // Create, add a floor below it
 Instantiate(
 floor,
 new Vector3 (i, -0.6f, j),
 Quaternion.identity);
 Transform crateCubeInstance = Instantiate(
 crate,
 new Vector3 (i, 0, j),
 Quaternion.identity) as Transform;
 crateCubeInstance.name =
 "crate_" + i + "_" + j;
 amountOfCrates++;
 break;
 case 4: // Player, add a floor below it
 Instantiate(
 floor,
 new Vector3 (i, -0.6f, j),
 Quaternion.identity);
 thePlayer = Instantiate(
 player,
 new Vector3 (i,0, j),
 Quaternion.identity) as Transform;
 thePlayer.name = "Player";
 playerRow = i;
 playerCol = j;
 break;
 }
 }
 }
}

Setting Up Your Game

[46]

That does look like quite a lot of code but it's only using three principles, let's go
through what they are:

• The for loop: The first for loop is iterating through the rows in level 1,
we only have one of those so far, so we're just using index 0 in the array.
The second for loop is iterating through each column segment in that row.

• The switch statement: We pass the tile ID, which we get from the column
array, into the switch statement which will evaluate what was passed in
and respond with the appropriate case.

• The Instantiate method: This is the method that loads the prefabs we
created earlier and attaches them to the scene. You will see that we pass
Instantiate to one of the public Transform variables we created earlier.

We have to call the method after creating it so change Start to Awake and add the
method call inside there. The final method should look like the following code:

void Awake () {
 BuildLevel();
}

As our prefabs are all one unit in size in both X and Z axis, we can just use the int
that are defined in the for loops. As we are setting the walls, player, and crate Y to
0, their Y boundaries will be from -0.5 to 0.5 as Unity will place the center of the
GameObject at the location specified. It is for this reason that we set the Y position
of the floor and goal GameObjects to -0.6.

1. Click on GameObject | Create Empty and a new GameObject will appear in
the Hierarchy panel with the name GameObject.

2. It should already be highlighted, so click on it once more and the name will
become editable; call it Sokoban.

3. Drag the Sokoban script to the GameObject, and you will see your five
exposed, public Transform variables in the Inspector panel.

4. Click and drag each prefab to its respective Transform variable, this will
assign the prefab to the variable.

Chapter 3

[47]

5. Click on Build, Run and Compile Application on the Ouya panel, and then
proceed past the title screen and you should hopefully see a screen like the
following screenshot:

Common fail points are forgetting to add the script to a new GameObject in this
scene or neglecting to add the prefabs to the exposed public Transform variables
in the Inspector panel.

Summary
We've laid a lot of groundwork in this chapter, so well done. You should now
understand the different coding options available to you and their pros and
cons and your Unity project should also be set up in a way that will help you
work smarter in the future. We also achieved our first Ouya specific programming
with the controller input. In Chapter 4, Adding a Character and Making Them Move,
we'll give you a better camera angle, make your character move and add
some animation.

Adding a Character and
Making Them Move

From the previous chapter, you should have a very colorful view when you test the
game, but it's somewhat lacking in interactivity. We're going to add movement to
our basic character and get the Main Camera game object in Unity following them
around the level as they move. We'll also add in the ability for them to push crates
around the level. Finally, we'll swap out our existing character for something that is
a bit fancier and trigger their built in animations as they move around the level.

Making the camera move
The first thing you hopefully noticed when we tested the scene in the previous chapter
was that we were just looking in to the distance at nothing. That won't do for a game,
traditionally the camera follows the player around the level and responds to their
movements. The character in our game at the moment is represented by a blue cube,
in our BuildLevel method of our Sokoban script, we assign a name to the player
when we instantiate it; to refresh your memory the code in question is as follows:

thePlayer = Instantiate(player,
 new Vector3 (i,0, j),
 Quaternion.identity) as Transform;
thePlayer.name = "Player";

Giving the instantiated GameObject a name of Player means we will be able to
address the Player game object from other scripts when we need to reference it.

Adding a Character and Making Them Move

[50]

Let's create a new script for making the Main Camera focus on the player and rotate
according to the player's orientation. Right-click on the Scripts folder that you created
earlier and then click on Create and select C# Script. Once you click on it, a script will
appear in the Scripts folder, it should already be selected and asking you to type
a name for the script, call it UpdateCameraPosition. Double-click on the script in
Unity and it will open MonoDevelop. The aim of this script will be to:

• Find the player
• Move the Main Camera game object to a fixed distance from them
• Rotate to position the Main Camera game object behind the player

Unity provides a method to find any GameObject, conveniently called Find,
although it's a very expensive operation to call. If no game object with that name
can be found, null is returned. The preferred usage is to find the game object,
using Find, you want at the initial execution of the script and store a reference to
the game object as a variable. Also, you should check that the result is not null
before you try and use it.

Let's put what we've just learned in to practice and write our Main Camera
movement script. As we are going to use Find and store the result for reuse
later; we will need to create a variable above the Start method that has been
added automatically for you:

Transform target;

We will also add a method call to the Start and ourUpdate method, so add the
following line in both methods:

PositionCamera();

So, we've added the calls to the PositionCamera method but we still need to write
it. As we have done previously, the code will be written in its entirety; later we can
break it down to see what it's doing:

void PositionCamera () {

 // If we don't have it then try to find it
 if (target == null) {
 target = GameObject.Find("Player").transform;
 }

 // Is the target still no? If so, then you've named it
 // incorrectly
 if (target == null) {
 return;

Chapter 4

[51]

 }

 float angleToReach = Mathf.LerpAngle(transform.eulerAngles.y,
 target.eulerAngles.y,
 4 * Time.deltaTime);

 Quaternion currentRotation = Quaternion.Euler(0,
 angleToReach,
 0);

 transform.position += target.position + new Vector3(0, 9, 0);
 transform.position -= currentRotation * Vector3.forward * 4;
 transform.LookAt(target.position);
}

As per the Unity documentation, we'll be storing a reference to our GameObject
rather than calling GameObject.Find every frame. If our target variable is not set,
we call target = GameObject.Find("Player").transform. We only store
transform as that's all that's needed to adjust the Main Camera's position.

Next up is angleToReach, to set this variable we use Mathf.LerpAngle which will
interpolate the Vector3 rotation type of the camera's rotation to that of the target's
rotation over a period of time. The third argument of LerpAngle is the position in
Lerp (linear interpolation). While you can set an absolute of 0 or 1, for this argument
you get a nicer effect by using Time.deltaTime. This will normally be quite constant,
but as the Main Camera's rotation will be changing each frame, this will give you an
easing effect as the Main Camera pans around. We want this to happen quite quickly
so we are using Time.deltaTime for the position in Lerp, hence we are multiplying
it by four.

We use the value in angleToReach as a variable for the currentRotation
quaternion and it's going to allow us to work out where the Main Camera game
object should be positioned in relation to our target. This is done in a two-step
process; first we need to move the Main Camera's position to be over the target
and then we need move it along the line of the angleToReach float multiplied by
Vector3.forward. This will give you a position around the target that eases in to
place, but by multiplying it by four we can exaggerate the effect.

Finally, now that our Main Camera is orbiting our target and easing in to position,
we have to make it actually look at the target. This is very simple in Unity, we just
have to call transform.LookAt(target.position) and it's as easy as that. This will
automatically modify transform.rotation of the Vector3 rotation type to point at
the target.position.

Adding a Character and Making Them Move

[52]

Close the script, go back to Unity and press the play icon at the top-middle of the
Unity screen. If all has gone according to the plan, you should see the Main Camera
game object much closer to the player.

Making the character move
Our game is shaping up nicely, we have the level-building code complete and the
camera will, in theory, follow the player around when they move. Let's put that to
the test.

As in the previous chapter, we'll get all the input working with the keyboard and
then implement the Ouya input.

We are going to make it so the person playing the game can turn left, turn right,
and move forward. This will always happen one tile at a time.

Edit your Sokoban script file and add the following code below the int
amountOfCrates = 0; line:

GameObject theCrate;
bool isPlayerMoving;
bool isPlayerRotating;
int rotationSpeed;
int movingSteps;
int tRow;
int tCol;

Chapter 4

[53]

The items these variables will represent are:

• theCrate: This is a reference to the crate game object that the player is
currently pushing

• isPlayerMoving: This is a Boolean that will be set to true if the player is
moving, else it will be false

• isPlayerRotating: This is a Boolean that will be set to true if the player is
moving, else it will be false

• rotationSpeed: This indicates how fast the player turn will happen
• movingSteps: This indicates the number of steps it will take the movement

method to move the player one unit
• tRow: This is the row that the player will be attempting to move to
• tCol: This is the column that the player will be attempting to move to

The method we're going to add next is going to work out if we can move to the tile
when we try to. As we're storing the players X and Y tile position and we know their
rotation, we can check the element in the array that represents forwards to the player.
The code for this is as follows:

// Check if the player is attempting to move
void CheckIfPlayerIsAttempingToMove () {

 // Has the player tried to move forwards?
 if (Input.GetKeyDown (KeyCode.UpArrow)) {

 // What direction is the player currently facing?
 // Depending on the angle we get a different row and
 // column in the array for where we are going to move
 switch((int)Mathf.Round(thePlayer.transform.eulerAngles.y)) {
 case 0 :
 tRow = 0;
 tCol = 1;
 break;
 case 90 :
 tRow = 1;
 tCol = 0;
 break;
 case 180 :
 tRow = 0;
 tCol = -1;
 break;
 case 270 :
 tRow = -1;
 tCol = 0;

Adding a Character and Making Them Move

[54]

 break;
 }

 // Is the target tile a floor, 0, or a goal, 2?
 if (levels[0][pRow + tRow][pCol+tCol] == 0 ||
 levels[0][pRow + tRow][pCol + tCol] == 2)
 {

 isPlayerMoving = true;
 movingSteps = 0;

 } else if (levels[0][pRow + tRow][pCol + tCol] == 3 ||
 levels[0][pRow + tRow][pCol + tCol] == 5)
 {
 // Is the target tile a crate on a floor tile, 3, or a
 // crate on a goal tile, 5?

 // At this point we know the player is pushing a
 // crate so we need to check if the crate can be
 // pushed to the target location

 // Is the target tile a floor, 0, or a goal, 2?
 if (levels[0][pRow + 2 * tRow][pCol + 2 * tCol] == 0 ||
 levels[0][pRow + 2 * tRow][pCol + 2 * tCol] == 2)
 {

 // Store a reference to the moving crate's name
 movingCrate = "crate_" +
 (pRow + tRow) +
 "_" +
 (pCol + tCol);

 isPlayerMoving = true;
 movingSteps = 0;
 }
 }
 } else {

 // Is the player turning left or right?
 // The rotationSpeed variable can be tweaked but MUST go
 // exactly in to 90
 // Example: 90 / 5 = 18 - OK
 // Example: 90 / 6 = 15 - OK
 // Example: 90 / 7 = 12.85 - FAIL
 if (Input.GetKeyDown (KeyCode.RightArrow)) {
 isPlayerRotating = true;
 rotationSpeed = 5;

Chapter 4

[55]

 }
 else if (Input.GetKeyDown (KeyCode.LeftArrow)) {
 isPlayerRotating = true;
 rotationSpeed = -5;
 }
 }
}

There are comments in the code so you can see, line by line, what each part
does, but let's go over the method now, from top to bottom and explain what
it does generally:

• Check if the Up arrow key has been pressed. If it has:
 ° Check the direction the player is facing and establish what forwards

means in terms of which array element to access. Depending on the
results of the switch statement, it sets tRow and tCol to the correct
values to represent the forwards direction.

 ° Check if there is an empty floor or goal tile for the player's target row
and column. If there is then we set the isPlayerMoving Boolean to
true and set the movingSteps variable to 0.

 ° Check if the tile in front is a crate.
 ° If true then check if there is an empty floor or goal tile for the crate's

target row and column. If there is, then we set the isPlayerMoving
Boolean to true, set the movingSteps variable to 0 and store a
reference crate's name in movingCrate.

• If it hasn't:

 ° Check if the Left arrow key has been pressed. If it has, then we set
the isPlayerRotating Boolean to true and set the rotationSpeed
variable to -5.

 ° Check if the Right arrow key has been pressed. If it has, then we set
the isPlayerRotating Boolean to true and set the rotationSpeed
variable to 5.

Now we have written the method, let's add it in the Update method:

void Update () {

 // Is the player is stationary at the moment?
 if (!isPlayerMoving && !isPlayerRotating) {
 CheckIfPlayerIsAttempingToMove();
 }
}

Adding a Character and Making Them Move

[56]

As you can see, we check if the player is not currently moving or rotating, and if
both of those checks pass, we check if the player is attempting to move. While we're
working in the Update method lets add the next piece of code, add it just below the
end of the if statement:

if (isPlayerMoving) {
 MovePlayer();
}

// Do we need to rotate the character
// This is an interative process and will occur every frame until
// we have rotated 90 degrees
if (isPlayerRotating) {
 RotatePlayer();
}

Let's look at what is happening in the code now:

• Update is called once per frame
• If the player is not moving, check if they are attempting to
• If an attempt to move forwards is successful, set isPlayerMoving to true
• If the player has rotated set isPlayerRotating to true
• If isPlayerMoving is true, then call the MovePlayer method to move the

player model
• IfisPlayerRotating is true, then call the RotatePlayer method to rotate

the player

Once the isPlayerMoving or isPlayerRotating Booleans are set to true they will
not be set to false until the MovePlayer or RotatePlayer methods have completed.
After we add these next two methods we should be able to test our game and play
through the level. Add the following two methods:

void MovePlayer () {

 // Move the player forward. We move in 10 steps and need to
 // move 1 unit for 1 complete move
 // so we move 0.1 for each step taken. 0.1 * 10 = 1
 thePlayer.transform.Translate(Vector3.forward * 0.1f);

 // Are we moving a crate?
 if (movingCrate != "") {

 // Get a reference to the crate
 theCrate = GameObject.Find(movingCrate);

Chapter 4

[57]

 // What direction is the player currently facing?
 switch((int)Mathf.Round(thePlayer.transform.eulerAngles.y)) {
 case 0 :
 theCrate.transform.Translate(Vector3.forward * 0.1f);
 break;
 case 90 :
 theCrate.transform.Translate(Vector3.right * 0.1f);
 break;
 case 180 :
 theCrate.transform.Translate(Vector3.forward * -0.1f);
 break;
 case 270 :
 theCrate.transform.Translate(Vector3.right * -0.1f);
 break;
 }
 }
 movingSteps++;

 // Have we finished the move?
 if (movingSteps == 10) {

 isPlayerMoving = false;

 // 4 is the tile reference for the player so add 4 to
 // the tile we have moved to
 // Example: A goal, 2, would become 6 as we have added 4
 //for the player
 // Add to the tile we have moved to
 levels[0][pRow + tRow][pCol + tCol] += 4;

 // Remove player from the tile we have moved from
 levels[0][pRow][pCol] -= 4;

 // Are we moving a crate?
 if (movingCrate != "") {

 // 3 is the tile reference for a crate so add 3 to
 //the tile the crate moved to
 // Example: A goal, 2, would become 5 as we have added
 //3 for the crate
 // Add to the tile we have moved to
 levels[0][pRow + 2 * tRow][pCol + 2 * tCol] += 3;

 // Remove from the tile we have moved from
 levels[0][pRow + tRow][pCol + tCol] -= 3;

Adding a Character and Making Them Move

[58]

 // Adjust the name of the crate and move the
 // reference to it as we are no longer pushing it
 theCrate.name = "crate_" +
 (pRow + 2 * tRow) +
 "_" +
 (pCol + 2 * tCol);
 movingCrate = "";
 }

 // Adjust the stored player location on the map and in
 // the array
 pRow += tRow;
 pCol += tCol;
 }
}

void RotatePlayer () {

 // Adjust the transform
 thePlayer.transform.Rotate(0, rotationSpeed, 0);

 // Have we rotated a full 90 degrees?
 if (Mathf.Round(thePlayer.transform.eulerAngles.y) % 90 == 0)
 {
 isPlayerRotating = false;
 }
}

Again, there are comments in the code so that you can see what each part does
and gives a general break down of what the code path for each method is. For the
MovePlayer method:

• Modify player's transform by 0.1 of a unit forwards (the direction
the player is facing). We use 0.1 as this method will run ten times
before setting isPlayerMoving to true.

• Check if we have a string reference in movingCrate.
 ° If we do then find the crate
 ° Modify crate's transform by 0.1 of a unit in the same

direction as the player

• Increment the movingSteps variable, this is our step counter and we will
stop executing this method when this has completed ten steps.

• Check the value of movingSteps, if this value is 10 then set the array entries
and stop this method being called again.

Chapter 4

[59]

• Set the value of isPlayerMoving to false, this is what will stop the method
being called in Update again until a key press or Ouya controller press occurs.

• Add 4 to the value of the array entry that the player has moved to, this means
we can still establish what the original tile is without the player on it.

• Remove four from the array entry we have moved from.
• Check if we have a string reference in movingCrate.

 ° If we do then add three to the value of the array entry that the
crate has moved to

 ° Remove three from the array entry the crate has moved from
 ° Adjust the crates name to reflect its new position in the array
 ° Set movingCrate to an empty string in case we don't move it

next move

• Modify the pCol and pRow variables by the values stored in tCol and tRow,
this way we always have the current index of the player.

The RotatePlayer method is much simpler:

• Modify player's transform.Rotate of the Vector3 rotation type by the
rotationSpeed variable defined earlier around the y axis

• Check if we have rotated a full 90 degrees by checking that dividing the
current rotation by ninety leaves no remainder. In case you are not sure,
the % operator is called modulo

• If we have rotated a full 90 degrees then set isPlayerRotating to false

Close the script, go back to Unity, and press the play icon at the top middle of the
Unity screen. Try using the Left arrow and Right arrow keys to turn left and right
and the Up arrow key move forwards. The camera should pan smoothly around
the player as you turn.

Ouya controller support
As we have already added the OuyaInput.unitypackage package in our previous
chapter, we can go right ahead and implement the controller support. The Ouya
team have made it so simple to integrate the controller once all the necessary files
are imported, just add the following lines inside our public class definition in our
Sokoban script:

public bool continuousScan = true;
public OuyaPlayer player = OuyaPlayer.P01;

Adding a Character and Making Them Move

[60]

Also as before, add the following lines to the Awake method:

OuyaInput.SetContinuousScanning(continuousScan);
OuyaInput.UpdateControllers();

At the start of the Update method add:

OuyaInput.UpdateControllers();

Now edit the CheckIfPlayerIsAttempingToMove method and edit the following
three lines:

if (Input.GetKeyDown (KeyCode.UpArrow)) {
if (Input.GetKeyDown (KeyCode.LeftArrow)) {
if (Input.GetKeyDown (KeyCode.RightArrow)) {

They need to become:

if (Input.GetKeyDown (KeyCode.UpArrow) ||
 OuyaInput.GetButtonDown(OuyaButton.DU, player)) {

if (Input.GetKeyDown (KeyCode.LeftArrow) ||
 OuyaInput.GetButtonDown(OuyaButton.DL, player)) {

if (Input.GetKeyDown (KeyCode.RightArrow) ||
 OuyaInput.GetButtonDown(OuyaButton.DR, player)) {

Press Build, Run and Compile Application on the Ouya Panel and go through
the steps to get to the game, try the directional pad on the controller and you'll see
that the game responds just as it did when you were pressing the arrow keys on
your keyboard.

Animating the character
While there is already some basic animation in the character in terms of moving
them smoothly between tiles, wouldn't it be nicer to have an actual character?
It would! Unity Asset Store, TurboSquid, and many others offer models for
free or a very low cost. For our game we're going to use an asset that Unity
provides in one of their demos. Unity very kindly allows you to include their
assets in your own projects and still offer them for sale.

Chapter 4

[61]

The character in question is from a demo called Astro Dude and he looks like this:

Import the playerModel.unitypackage package from the source files for this chapter.
Once all the files are imported you'll have a new Player folder inside your Prefabs
folder, click on the playerAnimated prefab inside the PlayerModel prefab and look at
the Inspector panel, you should see two animations listed:

Make a note of the two animation names as we'll be using them later. The names are
idle and runforward.

Adding a Character and Making Them Move

[62]

Drag the new PlayerModel prefab in to the Player transform slot on the script that
is attached to your Sokoban game object.

This model's sizes are a little different so we're going to need to adjust the
instantiation code in the BuildLevel method as we're also going to have to
trigger the built in animations already in the model when they are required.
Let's start with the model position, it's taller than the one unit that our cube
is so to adjust the Y position when we instantiate it change the following
line from:

thePlayer = Instantiate(player, new Vector3 (i,0, j),
 Quaternion.identity) as Transform;

To:

thePlayer = Instantiate(player, new Vector3 (i,1, j),
 Quaternion.identity) as Transform;

The change is small, we've just changed 0 to 1. There is slightly more code for the
animations, but don't worry it's not too much. First we need to declare a variable at
the top of our script to store the reference to Animation so add the following line
inside our public class definition:

Animation thePlayerAnimation;

If we think about the points we need to trigger our character's animation it's only
actually a few places. They are:

• When the script loads, after the BuildLevel method, we need to trigger the
idle animation

• If the Up arrow key is pressed, we need to trigger the runforward animation
• If the player has finished moving, we need to trigger the idle animation

First we need to get the reference to the animations so add the following lines to the
Awake method:

thePlayerAnimation = GameObject.Find("playerAnimated").animation;
thePlayerAnimation.Play("idle");

Next, just after the GetKeyDown method check inside the
CheckIfPlayerIsAttemptingToMove method add:

thePlayerAnimation.CrossFade ("runforward");

Chapter 4

[63]

Finally, add to following after the if (movingSteps == 10) { line in the
MovePlayer method:

thePlayerAnimation.CrossFade ("idle");

Test your game and now and behold! Proper animation and a fancy character in
your game.

Summary
What a chapter! We've gone from some colored cubes to something that is actually
playable as a game on Ouya. We've now also got camera animation and character
animation. As a developer, most of the time you'll work with an artist or buy your
assets, so they will come with pre-built animations in them already, the method
employed here to animate your character will likely be the most common set of
circumstances. Next up we're going to add some finishing touches to our game.

Adding Finesse
to Your Game

Our game is now playable, and you can progress from the title screen to the game.
If you're patient enough, you have even worked out how to finish the level, but don't
worry if not, we'll explain the solution shortly. In this chapter, we'll be adding some
polish to our game, texturing the cubes, so they fit in more with the design of the main
character you added in Chapter 4, Adding a Character and Making Them Move. We'll also
be adding a new level or two, and also indicate when the player has finished the level
by playing a fanfare sound.

Texturing your Prefabs
While the mechanics of the game have been developed, we're still using our initial
place holder prefabs. We can add a texture to the prefabs really easily and it should
hopefully improve the look of the game immensely.

Import the package texturesAndMaterials.unitypackage from the files for this
chapter, you should have the following new files:

• Materials/crate.mat

• Materials/moonsurface.mat

• Materials/rock_seamless_256.mat

• Scripts/AstroDude.shader

• Skyboxes/MoonReflection.cubemap

• Textures/astrod00d_selfillum.tif

• Textures/flag.png

• Textures/moonsurface.tif

• Textures/moonsurface_normals.tif

• Textures/stars.tif

Adding Finesse to Your Game

[66]

First things first, we need to update some of the materials and textures to be better
suited to our prefabs. Click on Textures/ rock_seamless_256, and in the Inspector
panel, change the Max Size to 64 as shown in the following screenshot. Do the same
with rocks_normals, moonsurface, and moonsurface_normals:

It's because our materials and textures came from the same Astro Dude project
that Unity supply that we need to adjust some settings. The next one to change is
Materials/rock_seamless_256 as the old project had the texture being tiled multiple
times, we only need it to be tiled the one time. Click on the material in the Project
panel, and then in the Inspector panel, set the tiling for X and Y to 1.

Let's assign our new materials to our prefabs, by performing the following steps.
Unity can be quite clever and may have already modified or assigned some of the
materials based on their names and the prefabs names.

1. Click and drag the Crate material to the Crate prefab.
2. Click and drag the moonsurface material to the Floor prefab.
3. Click and drag the rock_seamless_256 material to the Wall prefab.
4. Click on Prefabs | Player | Graphics | Materials | astrod00d_diffuse,

and make sure the Shader option in the Inspector panel is set to AstroDude.

Chapter 5

[67]

The scene is ready to test, but if you did it would be quite dark as we have changed all
the materials from self-illuminating to Diffuse. To counter this, change the Ambient
Light panel to 100, 100, 100, and 255. To bring up the Ambient Light panel click on
Edit | Render Settings, and then click on Ambient Light in the Inspector panel.

Go ahead and click on the play icon at the top-middle of the Unity screen. Marvel at
the wonder you have created for a short while, it's getting quite cool, isn't it?

Adding Finesse to Your Game

[68]

Adding a background
There is still a lot of black in the background and as the game has a space theme,
let's add some stars in there. The way we'll do this is to add a sphere that we can
map the stars texture to, so click on Game Object | Create Other | Sphere, and
position it at X: 0, Y: 0, Z: 0. We also need to set the size to X: 100, Y: 100, Z:
100. Drag the stars texture, located at Textures/stars, on to the new sphere that
we created in our scene. That was simple, wasn't that? Unity has added the texture
to a material that appears on the outside of our sphere while we need it to show on
the inside. To fix it, we are going to reverse the triangle order, flip the normal map,
and flip the UV map with C# code. Right-click on the Scripts folder and then
click on Create and select C# Script. Once you click on it, a script will appear in
the Scripts folder; it should already have focus and be asking you to type a name
for the script, call it SkyDome. Double-click on the script in Unity and it will open
in MonoDevelop. Edit the Start method, as shown in the following code:

void Start () {

 // Get a reference to the mesh
 MeshFilterBase MeshFilter = transform.GetComponent("MeshFilter")
 as MeshFilter;
 Mesh mesh = BaseMeshFilter.mesh;

 // Reverse triangle winding
 int[] triangles = mesh.triangles;
 int numpolies = triangles.Length / 3;
 for(int t = 0;t <numpolies; t++)
 {
 Int tribuffer = triangles[t * 3];
 triangles[t * 3] = triangles[(t * 3) + 2];
 triangles[(t * 3) + 2] = tribuffer;
 }

 // Read just uv map for inner sphere projection
 Vector2[] uvs = mesh.uv;
 for(int uvnum = 0; uvnum < uvs.Length; uvnum++)
 {
 uvs[uvnum] = new Vector2(1 - uvs[uvnum].x, uvs[uvnum].y);
 }

 // Read just normals for inner sphere projection
 Vector3[] norms = mesh.normals;
 for(int normalsnum = 0; normalsnum < norms.Length; normalsnum++)
 {

Chapter 5

[69]

 norms[normalsnum] = -norms[normalsnum];
 }

 // Copy local built in arrays back to the mesh
 mesh.uv = uvs;
 mesh.triangles = triangles;
 mesh.normals = norms;
}

The breakdown of the code as is follows:

1. Get the mesh of the sphere.
2. Reverse the way the triangles are drawn. Each triangle has three indexes

in the array; this script just swaps the first and last index of each triangle
in the array.

3. Adjust the X position for the UV map coordinates.
4. Flip the normals of the sphere.
5. Apply the new values of the reversed triangles, adjusted UV coordinates,

and flipped normals to the sphere.

Click and drag this script onto your sphere GameObject and test your scene.
You should now see something like the following screenshot:

Adding Finesse to Your Game

[70]

Adding extra levels
Now that the game is looking better, we can add some more content in to it. Luckily
the jagged array we created earlier easily supports adding more levels. Levels can
be any size, even with variable column heights per row. Double-click on the Sokoban
script in the Project panel and switch over to MonoDevelop. Find levels array and
modify it to be as follows:

 // Create the top array, this will store the level arrays
 int[][][] levels =
 {
 // Create the level array, this will store the row array
 new int [][] {
 // Create all row array, these will store column data
 new int[] {1,1,1,1,1,1,1,1},
 new int[] {1,0,0,1,0,0,0,1},
 new int[] {1,0,3,3,0,3,0,1},
 new int[] {1,0,0,1,0,1,0,1},
 new int[] {1,0,0,1,3,1,0,1},
 new int[] {1,0,0,2,2,2,2,1},
 new int[] {1,0,0,1,0,4,1,1},
 new int[] {1,1,1,1,1,1,1,1}
 },
 // Create a new level
 new int [][] {
 new int[] {1,1,1,1,0,0,0,0},
 new int[] {1,0,0,1,1,1,1,1},
 new int[] {1,0,2,0,0,3,0,1},
 new int[] {1,0,3,0,0,2,4,1},
 new int[] {1,1,1,0,0,1,1,1},
 new int[] {0,0,1,1,1,1,0,0}
 },
 // Create a new level
 new int [][] {
 new int[] {1,1,1,1,1,1,1,1},
 new int[] {1,4,0,1,2,2,2,1},
 new int[] {1,0,0,3,3,0,0,1},
 new int[] {1,0,3,0,0,0,1,1},
 new int[] {1,0,0,1,1,1,1},
 new int[] {1,0,0,1},
 new int[] {1,1,1,1}
 }
};

Chapter 5

[71]

The preceding code has given us two extra levels, bringing the total to three.
The layout of the arrays is still very visual and you can easily see the level
layout just by looking at the arrays.

Our BuildLevel, CheckIfPlayerIsAttempingToMove and MovePlayer methods
only work on the first level at the moment, let's update them to always use the users
current level. We'll have to store which level the player is currently on and use that
level at all times, incrementing the value when a level is finished. As we'll want this
value to persist between plays, we'll be using the PlayerPrefs object that Unity
provides for saving player data. Before we get the value, we need to check that it
is actually set and exists; otherwise we could see some odd results.

Start by declaring our variable for use at the top of the Sokoban script as follows:

int currentLevel;

Next, we'll need to get the value of the current level from the PlayerPrefs
object and store it in the Awake method. Add the following code to the top
of your Awake method:

if (PlayerPrefs.HasKey("currentLevel")) {
 currentLevel = PlayerPrefs.GetInt("currentLevel");
} else {
 currentLevel = 0;
 PlayerPrefs.SetInt("currentLevel", currentLevel);
}

Here we are checking if we have a value already stored in the PlayerPrefs
object, if we do then use it, if we don't then set currentLevel to 0, and then
save it to the PlayerPrefs object. To fix the methods mentioned earlier, click on
Search | Replace. A new window will appear. Type levels[0] in the top box
and levels[currentLevel] in the bottom one, and then click on All.

Adding Finesse to Your Game

[72]

Level complete detection
It's all well and good having three levels, but without a mechanism to move between
them they are useless. We are going to add a check to see if the player has finished
a level, if they have then increment the level counter and load the next level in the
array. We only need to do the check at the end of every move; to do so every frame
would be redundant.

We'll write the following method first and then explain it:

// If this method returns true then we have finished the level
boolhaveFinishedLevel () {
 // Initialise the counter for how many crates are on goal
 // tiles
 int cratesOnGoalTiles = 0;
 // Loop through all the rows in the current level
 for (int i = 0; i< levels[currentLevel].Length; i++) {
 // Get the tile ID for the column and pass it the switch
 // statement
 for (int j = 0; j < levels[currentLevel][i].Length; j++) {
 switch (levels[currentLevel][i][j]) {
 case 5:
 // Do we have a match for a crate on goal
 // tile ID? If so increment the counter
 cratesOnGoalTiles++;
 break;
 default:
 break;
 }
 }
 }

 // Check if the cratesOnGoalTiles variable is the same as the
 // amountOfCrates we set when building the level
 if (amountOfCrates == cratesOnGoalTiles) {
 return true;
 } else {
 return false;
 }
}

Chapter 5

[73]

In the BuildLevel method, whenever we instantiate crate, we increment the
amountOfCrates variable. We can use this variable to check if the amount of
crates on goal tiles is the same as the amountOfCrates variable, if it is then we
know we have finished the current level. The for loops iterate through the current
level's rows and columns, and we know that 5 in the array is a crate on a goal tile.
The method returns a Boolean based on whether we have finished the level or
not. Now let's add the call to the method. The logical place would be inside
the MovePlayer method, so go ahead and add a call to the method just after
the pCol += tCol; statement.

As the method returns true or false, we're going to use it in an if statement,
as shown in the following code:

// Check if we have finished the level
if (haveFinishedLevel()) {
 Debug.Log("Finished");
}

The Debug.Log method will do for now, let's check if it's working. The solution for
level one is on YouTube at http://www.youtube.com/watch?v=K5SMwAJrQM8&hd=1.
Click on the play icon at the top-middle of the Unity screen and copy the sequence
of moves in the video (or solve it yourself), when all the crates are on the goal tiles
you'll see Finished in the Console panel.

Moving to the next level
Assuming everything went correctly, you should have seen the Finished text
appear. Next is to load a new level which is probably going to be easier than you
think. We already have all the code to build a level and add the character in our
current scene. Rather than elaborately tear it down and unload the current assets,
we can simply increment the currentLevel counter and then reload the scene;
our existing code will take care of the rest. Replace the Debug.Log method with
the following code:

// Check if we have finished the level
if (haveFinishedLevel()) {

 currentLevel++;
 if (currentLevel == levels.Length) {
 currentLevel = 0;
 }
 PlayerPrefs.SetInt("currentLevel", currentLevel);

 Invoke("LoadNextLevel", 1.0f);
}

Adding Finesse to Your Game

[74]

Here, we are checking if we have finished the level with the haveFinishedlevel
method, and then incrementing the currentLevel counter. The next check makes
sure that it doesn't go over the amount of levels we actually have by comparing it
to the Length of the levels array, if it does go over, we set it back to 0 to loop the
level order. We then store the level in the PlayerPrefs object, so you can resume
from that point after quitting the game. The last line is the Invoke method, as we
don't want to load the new level at the exact moment, we finish placing the last
crate. We can invoke a method after a delay. Here, the method to Invoke is named
LoadNextLevel and the delay is 1.0f, which means one second. Let's create the
LoadLevel method:

Void LoadNextlevel () {
 Application.LoadLevel("GameScreen");
}

As you've seen previously, Application.LoadLevel just loads a new scene,
and because we have set out method to use the currentLevel variable, we can
simply reload our scene to render the next level.

Restarting our level
Sometimes things just don't go your way. In Sokoban, you can get yourself into a
situation where it is impossible to complete the level. As this is the case, then we
need the ability to restart the game. Let's map it to the Y button on the Ouya
controller. Add the following code to the bottom of your Update method:

// Should we restart the current level?
if (OuyaInput.GetButtonDown(OuyaButton.Y, playerNumber)) {
 Application.LoadLevel("GameScreen");
}

Give your game a test on the Ouya, and when in the main game, click on the Y
button. You should reset back to the start position.

Adding sounds
When you start adding sounds in to your game, it takes on a whole new dimension,
you'd be surprised how a game that seems unfinished can suddenly feel almost
complete just by adding some sounds effects. We're going to add a sound that will
play every time a crate is moved on to a goal tile. With keeping our project tidy in
mind, the first step is to create a folder that will store all our sound files.

Chapter 5

[75]

Click on the Create dropdown menu in the Project panel. Click on Folder and a new
folder will be created in the project panel, call the folder Sounds. Import the asset
crateOnGoal.mp3 from the files for this chapter to your new Sounds folder.

Sound in Unity requires the following three things:

• A sound to play
• A source for the sound to come from
• A listener to hear the sound

Our Main Camera already has an Audio Listener component attached to it and we
have already imported our sound to play, all that's left is to add an audio source with
a reference to our sound and a trigger to call it. Click on the Sokoban GameObject,
then click on Component | Audio | Audio Source. You'll see in the Inspector panel
that the new component has appeared that is Audio Source.

Drag your crateOnGoal sound effect to the Audio Clip section of the component;
this is how Audio Source knows which sound to play. We also need to uncheck the
Play On Awake box, as we only want the sound to play when a box is moved on to
a goal by the player, as shown in the following screenshot:

Adding Finesse to Your Game

[76]

Our audio component is now configured. Go back to MonoDevelop and edit your
Sokoban script, we need to find the appropriate place to add our sound code.
The MovePlayer method is a good place. We need to add it when we know a
move has finished, so it will be inside of the if (movingSteps == 10) {
statement. As we want it to play only when moving a crate we'll also have to
have it inside the if (movingCrate != "") { statement. Add the following
code at the bottom of the statement, inside the closing brace:

if (levels[currentLevel][pRow + 2 * tRow][pCol + 2 * tCol] == 5) {
 audio.Play();
}

We only want to play the sound if the crate is on a goal tile, so we check that the
array's index is 5, which is the number we use for a crate on a goal tile. As Audio
Source is attached to the same GameObject as the Sokoban script, we can just call
audio.Play to play the sound. Click on the play icon at the top-middle of the
Unity screen and position a crate on a goal tile, you should have a cool space-style
sound effect play. If not then check you dragged the sound file to the Audio Source
component and that your sound on your test device is turned up.

Summary
The game now has some structure in the form of levels that you can complete and is
easily expandable. If you wanted to take a break from the book, now would be a great
time to create and add some levels to the game and maybe add some extra sound
effects. All this hard work is for nothing if you can't make any money though, isn't it?
Chapter 6, Show Me the Money!, will help you on your way to monetizing your creation.

Show Me the Money!
We now have a game. You could give it away for free but the Ouya also supports
In-App Purchase. There are two types of In-App Purchase:

• An entitlement: This is a great way of letting players try out your
game and then, if they like it, unlocking new features or levels with
a one-off payment.

• A consumable: This is usually represented as coins, gems, or some
other kind of in-game currency. They can be used, and as the name
suggests, consumed.

This chapter assumes you have set up a company and entered all your tax
information on the Ouya website. If not then you can only give your game
away for free and you can skip this chapter.

Setting up your purchase
Before we can dive in to Unity and get started with coding, we're going to have to
use the Ouya website to create our In-App Purchase. Log in to the Ouya Developer
Portal at https://devs.ouya.tv/developers and click on the Products option
from the top menu. It will take you to a screen where you need to complete the
following fields:

• Identifier: Call it SokobanUnlock.
• Name: This is the name that the player will see. Call it Sokoban – Full

Unlock.
• Price: It can be difficult choosing the price for your game. It's better

to start a little higher, that way you can always offer sales at a later
date. Set it to 1.99.

• Type: This is going to be a one off purchase so set it to Entitlement.

Show Me the Money!

[78]

When you've entered all that information, click on Create Product and you'll be
taken back to the Products screen.

The Ouya store will pay you when your game earns over $150, and the payments
will come 30 days after the month in which the money was earned. The Ouya store
takes 30% of the sale price, which is standard for the industry now.

Setting up your game
To perform any In-App Purchase, your game must also be signed with a key.der
file. Ouya will generate this file for you after you create a listing for your game on
their website.

While we're on the Ouya website, let's do that too. Go to https://devs.ouya.tv/
developers/games and click on Add a Game. Add the values to the following fields:

• Title: Sokoban 3D, if this is taken use a name of your liking—currently
the Ouya platform is allowing duplicate application names although this
is likely to change.

• Android package name: com.generic.sokoban, if this is taken use a name
of your liking. Currently the Ouya platform is allowing you to submit
duplicate bundle IDs although this is also likely to change. If you do change
your bundle ID then revisit Chapter 2, Setting Up Unity and the Ouya Plugin,
and follow the steps to set up your new bundle ID in Unity.

• OUYA exclusive: No – if your app is going to only come out on Ouya then
set this to Yes. We will be converting our game to run on Android phones,
which is why we set it to No.

• Expected: The date you plan to release the game.
• Developer permission: Yes – saying Yes here means that Ouya will

publicize the release of your game on the Ouya website.

Tick the three checkboxes and click on Create, you'll be taken to a screen for more
information. The required fields on this page are Description, Content rating,
Support email address, and Website, so fill in those fields and then click on Save.
The My Games screen will appear with your new entry. One of the items alongside
your entry will be Signing Key with a Download button. Download your key.
der file and save it to (your game project folder)\Assets\Plugins\Android\res\
raw\key.der. This will now allow you to sign your apps for release and the In-App
Purchase to work.

Chapter 6

[79]

Implementing the Ouya payment
framework
The Ouya examples provide a really good stub class for your In-App Purchase needs,
we'll import that in to our project as a base for the code. The file is located in the folder
where you installed the Ouya Unity repository to in Chapter 2, Setting Up Unity and the
Ouya Plugin. From inside that folder navigate to Assets\Ouya\Examples\Scripts
and drag the OuyaShowProducts file in to the Scripts folder in our Project panel.
Double-click on it to edit it in MonoDevelop, and have a look at the method names
to become familiar with the method names that we will need to call and respond to.
At the moment we're going to use the script as it is. There is some code already in the
script that will build a Graphical User Interface (GUI) and display a menu system for
seeing your products.

Back in Unity, open your SetUp scene and add a new, empty game object to it. Call it
IAP and drag your OuyaShowProducts script on to it. We need to make sure that this
new, empty game object persists across all scenes as well as OuyaGameObject, so let's
create a script that we can use for both the game objects.

Create a new C# script and call it DontDestroyOnLoad. Edit the script as shown in
the following code:

using UnityEngine;
using System.Collections;

public class DontDestroyOnLoad : MonoBehaviour {

 // Use this for initialization
 void Awake () {

 // Make it so this object persists
 DontDestroyOnLoad(this);
 }
}

Save the script and drag it on to your IAP game object and OuyaGameObject. This will
make sure that they persist across all scenes. The final thing we need to do before we
can see some results is to let OuyaGameObject know about the names of the products
it will need to request information about initially. To do this, click on OuyaGameObject
in Unity and the Inspector panel will show the word Purchasables in Ouya Game
Object (Script). If this isn't expanded then expand Purchasables and you'll see a Size
property, change it to 1. In the Element 0 label add SokobanUnlock.

Show Me the Money!

[80]

If you want to sell multiple products in the future you'll need to increase the
size of the Purchasables array and add the names to it. With the exception of
the DEVELOPER_ID, you can see how the Inspector panel should appear in
the following screenshot:

Make sure Ouya is connected to the Internet and run the game on it. You will see
that there is now some text and three buttons on the screen. You have to wait until
the In-App Purchase system is initialized before you call anything on it. You can see
the status in the top-left of the screen. When you see the IAP is initialized message,
you're good to go. Using the mouse-like area of the Ouya controller to bring up
a mouse pointer, click on the Get Products button and you'll see your Sokoban
Unlock appear. Click on the Purchase button next to it and you'll be presented
with the In-App Purchase screen for the Ouya.

If your Ouya developer login ID is the same as the account you logged in
to your Ouya with, then you won't be charged for your In-App Purchases.

How to manage your purchases
While testing your code to check if In-App Purchases works, you'll need to buy it over
and over again, thankfully Ouya took this in to consideration and made it easy to
manage any purchases you have made of your own products. After you have bought
your In-App Purchase, and providing your Ouya developer login is the same as the
account you logged in to your Ouya with, you will be able to see your purchase on the
Ouya Developer website: https://devs.ouya.tv/developers/purchases.

Chapter 6

[81]

Getting the list of products
As we know our In-App Purchases are now set up correctly on the website and we can
start to properly implement them in our game. Double-click on the OuyaShowProducts
script to open it in MonoDevelop and scroll to the bottom of the file. You'll see a
method called OnGUI, when you find it comment out the whole method using /* and
*/. This is a way of commenting out entire blocks of code without having to use // on
every line.

Let's create a method that will get our products and store them in an array. At the
top of our file, where the variables are defined add the following line of code:

bool iAPDone = false;

We create this Boolean as we're going to have an if statement that we only want to be
called once. The if statement will need to called in the Update method. The method
should be written as following:

void Update () {

 // Is the IAP engine initialized and have we NOT called
 // this code previously?
 if (OuyaSDK.isIAPInitComplete() && iAPDone == false) {

 // Make it so we don't call this code again
 iAPDone = true;

 // Create a List (like an array) to store our products
 List<OuyaSDK.Purchasable> productIdentifierList =
 new List<OuyaSDK.Purchasable>();

 // Loop through all the purchasables specified in the
 // OuyaGameObject
 foreach (string productId in
 OuyaGameObject.Singleton.Purchasables)
 {
 // Add the product name to the List
 productIdentifierList.Add(
 new OuyaSDK.Purchasable(productId));
 }

 // Initiate a request to get the reciepts.
 // This will be used to check if we have already bought
 // any of these items
 OuyaSDK.requestReceiptList();

 // Get the information about the products in the List
 OuyaSDK.requestProductList(productIdentifierList);
 }
}

Show Me the Money!

[82]

Comments have been left in the code to provide a line by line explanation but the
overview is:

• Has the In-App Purchase engine initialized and not been called before
• Set a Boolean so this code won't be called again
• Create List to store any products we need to get information on
• Loop through the Purchasables array in OuyaGameObject
• Add any Purchasables to List
• Get the list of receipts to see if any of the products have already been bought
• Get information about all the products listed in productIdentifierList

Limiting your levels
If you're just dealing with an entitlement In-App Purchase then it's easier to build the
game completely and then add in the In-App Purchase code afterwards. We've added
three levels to our game already so that's a good place to start. We're going to limit it so
there is only one level until you pay to unlock them all. Double-click on your Sokoban
script to open it in MonoDevelop and, at the top of the script where the variables are
defined, add the following line of code:

int trialLevelAmount = 1;

We now need to modify our MovePlayer method. Scroll to the bottom of the method
and find the if (haveFinishedLevel()) condition. We need to edit it as shown in
the following code:

if (haveFinishedLevel()) {

 currentLevel++;

 if ((PlayerPrefs.HasKey("purchased") && currentLevel <
 levels.Length) || currentLevel < trialLevelAmount) {
 Invoke("LoadNextLevel", 1.0f);
 } else {
 currentLevel = 0;
 Invoke("LoadTitleScreen", 1.0f);
 }

 PlayerPrefs.SetInt("currentLevel", currentLevel);
}

Chapter 6

[83]

You can see that the if statement that we perform now is slightly different. We check
if the player has purchased the full unlock and whether the current level is less than
the full array of levels, if the game has not been purchased we only check if the current
level is less than the trial-level amount. This means that the player will be sent back to
the title screen when they have finished all the levels if they have bought the game, or
when they finish the first level if they haven't bought it.

We have called a new method, LoadTitleScreen, which we also need to create.
It's very simple, add the following code:

void LoadTitleScreen () {
 Application.LoadLevel("TitleScreen");
}

Unlocking levels for people who have paid
If the player has already paid for the unlockable levels we need to make sure they
are always available. We'll achieve this by using two systems; first we'll check if
int has been set in PlayerPrefs. Secondly, we'll download the receipts and see if
this product has been purchased previously. We have to do both as if the game is
deleted from the user's Ouya then the PlayerPrefs information will be deleted.
You'll remember earlier that in OuyaShowProducts we added the Update method
and, in there, called the OuyaSDK.requestReceiptList method. When the receipts
come down from the server, OuyaGetReceiptsOnSuccess is called. There was
already a stub method in place so let's expand on it:

public void OuyaGetReceiptsOnSuccess(List<OuyaSDK.Receipt>
 receipts)
{
 // Clear the current receipts List
 m_receipts.Clear();

 // Loop through all the receipts and verify we have one
 // with our SokobanUnlock identifier in
 foreach (OuyaSDK.Receipt receipt in receipts)
 {
 if (receipt.getIdentifier() == "SokobanUnlock") {

 // If we have previously purchased the
 // SokobanUnlock then store it in the PlayerPrefs
 PlayerPrefs.SetInt("purchased", 1);
 }
 m_receipts.Add(receipt);
 }
}

Show Me the Money!

[84]

The method will pass a list of receipts, all we need to do is loop through all the receipts
and see if any of them have the identifier of SokobanUnlock. If they do, then we know
that the user has purchased the game and we can set int in PlayerPrefs.

Buying your product
The majority of the hard work has already been done by this point; we have our
trial-level amount code, we have our receipt checking, the only thing left to do is
to create a mechanism to actually buy the game. As we now drop the game back to
the title screen when we finish the demo or the full game, the title screen is a perfect
place to offer the game for sale. It's good User Experience (UX) to not offer the
purchase to people who have already bought the game. The tasks are to add a new
menu items to the title screen, call the buy method if that item is selected, and hide
the item if the game has already been purchased. Let's start with the first of those.

Adding a new menu item
In Unity, double-click on your TitleScreen scene to edit it. We're going to add
some more text just like we did earlier to navigate to GameObject | Create
Other | 3D Text. Change the name of the new game object to Purchase
Instructions. Click and drag the new text in to the Main Camera's game
object and then change the following settings:

• Set Position to X: 0 Y: -5 Z: 50
• Set Text to Press A to Purchase
• Set Anchor to middle center
• Set Font Size to 50

You will also have to edit the Play Instructions game object to get it positioned
correctly with the new menu entry:

• Set the Y of the Play Instructions game object to 5

Chapter 6

[85]

Test your game inside Unity and your title screen should look like the
following screenshot:

The buy method
We now need to create a method that is going to purchase our product upon
pressing the A button on the Ouya controller, the best place for this is within
our OuyaShowProducts script. Create a new method in the script called
BuyFullGame and add the following code:

public void BuyFullGame () {
 if (PlayerPrefs.HasKey("purchased")) {
 // The game has already been brought, don't continue
 return;
 }

 foreach (OuyaSDK.Product product in m_products)
 {
 // Is this the product we want to buy?
 if (product.getIdentifier() == "SokobanUnlock") {
 OuyaSDK.requestPurchase(product.getIdentifier());
 }
 }
}

Show Me the Money!

[86]

First we check that we haven't already bought the game, obviously we don't want
to be able to purchase it twice. After that we loop through all the objects that we
stored in our m_products list earlier when we called OuyaSDK.requestProductList.
The m_products list is created for you by the code in the OuyaShowProducts script.
This will then bring up the Ouya purchase dialog that you saw earlier and, upon
clicking on PURCHASE, will trigger the OuyaPurchaseOnSuccess method.

To hook up the A button, we need to edit our ControlsTitleScreen script.
Double-click on the ControlsTitleScreen script to edit it in MonoDevelop
and go to the Update method. We're going to add an else condition to the
if statement:

if (Input.GetKeyDown(KeyCode.Space) ||
 OuyaInput.GetButtonDown(OuyaButton.O, player)){
 Application.LoadLevel("GameScreen");
} else if (OuyaInput.GetButtonDown(OuyaButton.A, player)) {

 GameObject iap = GameObject.Find("IAP");
 OuyaShowProducts showProductsScript =
 iap.GetComponent<OuyaShowProducts>();
 showProductsScript.BuyFullGame();
}

Here we have added a check for the A button, and if that is pressed, we find the IAP
game object. As previously stated, the Find operation is expensive, but as this won't
be called often it's fine to use in this instance. Once we have found it we need to
get a reference to the OuyaShowProducts script that's attached to it, that's what the
GetComponent method achieves. As we made our BuyFullGame method public,
it means we call it from this script.

Once a purchase has been successful the OuyaPurchaseOnSuccess method will be
called. Modify the method as shown in the following code:

public void OuyaPurchaseOnSuccess(OuyaSDK.Product product)
{
 PlayerPrefs.SetInt("purchased", 1);

 Application.LoadLevel("TitleScreen");

 // Once the purchase is complete get a list of all receipts
 OuyaSDK.requestReceiptList();
}

You can see that on a successful purchase we now store a value in PlayerPrefs,
reload the TitleScreen scene, and request the receipt list. This last step is done for
completeness. You'll see why we reload the scene in out next section.

Chapter 6

[87]

Hiding menu items
We've got a functioning method to buy our level now but the message when you
load the game still has the option to buy it. We need to detect if the app has already
been purchased and hide the purchase option if it has. The first step for this is to
delete your purchases in case you have already purchased the product, this can be
done at https://devs.ouya.tv/developers/purchases.

Create a new script in the Scripts folder and call it HideIfPurchased. Click and drag
the script on to our Purchase Instructions game object and then double-click on the
file to edit it in MonoDevelop. Edit the Start method as shown in the following code:

void Start () {
 if (PlayerPrefs.HasKey("purchased")) {
 this.transform.gameObject.SetActive(false);
 }
}

We simply check if we have a value for purchased in our PlayerPrefs, if we do
then we hide the game object. If you recall, we set purchased to 1 and reload the
TitleScreen scene when OuyaPurchaseOnSuccess gets called.

Submitting your game
We're almost ready to submit our game but we just need to do one final thing:
replace the icon. The default Ouya icon is at (your game project folder)\Assets\
Plugins\Android\res\drawable-xhdpi\ouya_icon.png and it's a 732 x 412 pixels
PNG file. Replace it with the icon of your choice and then go to the build settings by
navigating to File | Build Settings… and click on Build and type a name for the file
in the text field, and then click on Save.

Now that's saved we need to go back to the My Games page on the Ouya website
and click on Edit. Add some screenshots; they need to be 1280 pixels wide by 720
pixels high and you need a minimum of three; can submit up to nine. Scroll down to
the bottom and click on Upload APK, then follow the on-screen instructions, once
the upload is complete click on Save. This will take you back to the My Games page
where you'll most likely see that Ouya are still verifying your APK. Give it a few
minutes and then refresh the page, the warnings should have disappeared.

Finally, click on Submit for review. The status should change to Submitted and
you're done! The review process normally takes a few days but that can go up or
down depending how busy they are.

www.allitebooks.com

http://www.allitebooks.org

Show Me the Money!

[88]

Summary
Our game is now complete! Pour yourself a drink of your choice and give your game a
play. It's pretty sweet, huh? We have successfully implemented an entitlement In-App
Purchase but what about the other type mentioned at the start of this chapter? You can
read all the Ouya documentation on In-App Purchases at https://devs.ouya.tv/
developers/docs/purchasing. Next, let's look at what it takes to get our app running
on an Android phone or tablet.

Building Cross-platform
Games

One of Unity's strongest features is its write-once, publish-everywhere functionality.
Our game isn't quite ready for that, but with very little work, we'll have it running
on Android devices.

The Ouya controller functionality we added earlier already supports PS3 controllers
paired to an Android device but we should add some touch screen controls too.

Although we're focusing on Android, the game will run on any device that Unity
supports, but the setup of all those development environments requires a book
in itself.

This chapter explains how to get the game running on Android.
To test your code, you will need an Android phone or tablet.
If you don't have one, you won't be able to test the code, but it
is still beneficial to read the chapter.

Building Cross-platform Games

[90]

Platform Dependent Compilation
Unity includes a feature called Platform Dependent Compilation. It consists of
some preprocessor directives that let you partition your scripts to compile and
execute sections of code for one of the supported platforms. This functionality is
also supported within Editor, so you can compile the code specifically for your
mobile or console and test it in Editor.

This is useful if you're branching code for things, such as In-App Purchase
or control mechanisms. To use the Platform Dependent Compilation feature,
you use the pound or hash symbol, as shown in the following code:

void Start () {

 #if UNITY_EDITOR
 Debug.Log("Unity Editor");
 #endif

 #if UNITY_ANDROID
 Debug.Log("Android");
 #endif

 #if UNITY_IPHONE
 Debug.Log("iPhone");
 #endif

 #if UNITY_STANDALONE_OSX
 Debug.Log("Stand Alone OSX");
 #endif

 #if UNITY_STANDALONE_WIN
 Debug.Log("Stand Alone Windows");
 #endif
}

While this is brilliant for coding between platforms, it doesn't actually help in our
example. The Ouya and an Android phone might seem different, but they both run
on the Android operating system, even though the Ouya does a good job at hiding
that. It means our platform-dependent compilation is going to trigger for Android in
both scenarios. Thankfully, the Ouya SDK thought of this and provided a method we
can call instead. The method is OuyaSDK.IsOUYA() and it is called as shown in the
following code:

if (OuyaSDK.IsOUYA()) {

 // Remove the In-App Purchase here as
 // it's not needed for mobile
}

Chapter 7

[91]

Changing the TitleScreen scene
Currently our title screen has Press O to Play and Press A to Purchase on it,
neither of these will apply to the Android version of the game, so let's add
something a little more fitting. How about Tap to Start? We're going to
have three 3D text GameObjects on our screen and we'll need to toggle the
visibility depending on if we are or are not on Ouya. The best way to
do this is with a simple script. Create a new C# script and call it
ToggleVisibilityForOuya. At the top of the script, where variables
are defined, add the following code:

public bool visibleIfOuya;

Change the Start method to an Awake method and change it to the following code:

void Awake () {
 if (OuyaSDK.IsOUYA()) {
 this.gameObject.SetActive(visibleIfOuya);
 } else if (!OuyaSDK.IsOUYA()) {
 this.gameObject.SetActive(!visibleIfOuya);
 }
}

The preceding code will make sure that when we run on the Ouya with the
visibleIfOuya script, a Boolean set will show up and if we're not running on
the Ouya then the opposite will show up. Now perform the following steps:

1. Save your script and go back to Unity. Rather than creating a new 3D text and
setting all the parameters again, we can duplicate one of the existing ones.
Make sure you're editing the TitleScreen scene, click on the Play Instructions
GameObject in the Hierarchy panel, and then click on Edit | Duplicate.

2. Now you'll have two copies of Play Instructions, change the name of one of
them to Tap to Play.

3. While it is selected, move over to the Inspector panel and change the position
of Transform to Y to 0, and the text of Text Mesh to Tap to Play.

4. Click and drag your ToggleVisibilityForOuya script onto all three of
the 3D text GameObjects, namely Play Instructions, Purchase Instructions,
and Tap to Play.

5. Click on Play Instructions and, in the Inspector panel, tick the Visible If
Ouya box.

6. Click on Purchase Instructions, and in the Inspector panel, tick the Visible
If Ouya box.

7. Click on Tap to Play, and in the Inspector panel, make sure the tick box
is unticked.

Building Cross-platform Games

[92]

Run the game on your Android device and the title screen should just have Tap to
Play on. Let's add some code to make that actually happen. Double-click on your
ControlsTitleScreen script to edit it in MonoDevelop and change the Update
method as follows:

void Update () {

 #if UNITY_ANDROID
 if (OuyaSDK.IsOUYA ()) {
 // Update the controllers here for best results
 OuyaInput.UpdateControllers();

 if (Input.GetKeyDown(KeyCode.Space) ||
 OuyaInput.GetButtonDown(OuyaButton.O, player)) {
 Application.LoadLevel("GameScreen");
 } else
 if (OuyaInput.GetButtonDown(OuyaButton.A, player)) {

 GameObject iap = GameObject.Find("IAP");
 OuyaShowProducts showProductsScript =
 iap.GetComponent<OuyaShowProducts>();
 showProductsScript.BuyFullGame();
 }
 } else {
 if (Input.touchCount >= 1) {
 Application.LoadLevel("GameScreen");
 }
 }
 #endif
}

Chapter 7

[93]

You can see that we now wrapped all the code in a platform-dependent compilation
block, so it will only trigger on Android devices, this means we can implement
different control systems for different platforms. We then check if we are running
on the Ouya or an Android phone with OuyaSDK.IsOUYA. If it returns false we just
check for a tap anywhere on the screen to start the game.

Test the game on your Android device now to verify it's all working as it should
for you.

Removing In-App Purchases
The Ouya SDK makes In-App Purchase relatively simple; it integrates nicely with
Unity out of the box. Android, on the other hand, can be a pain to integrate with
In-App Purchase inside Unity unless you use a plugin from the Asset Store. For this
reason, we'll be modifying our Android game to not use In-App Purchase and instead
make it work like a full game purchased from one of the many Android app stores.

As we already have the code for giving the player all the levels when we
have purchased the game on the Ouya, the simplest way to remove the
In-App Purchase requirement would be to set the purchased int in
PlayerPrefs when the game starts.

Double-click on your Sokoban script, as we're going to modify our Awake
method. Add the following code to the top of it:

#if UNITY_ANDROID
if (OuyaSDK.IsOUYA () == false){
 PlayerPrefs.SetInt("purchased", 1);
}
#endif

The preceding code is checking if we are on Android but not on Ouya, and if that
condition is met then we set the purchased int to 1. We've already tested the code
when the game was purchased, so we know this code will work too.

Building Cross-platform Games

[94]

Mobile controls
We're going to keep our controls really simple for this demo, there won't be a
virtual joystick or button in sight. As we only need three functions, namely left,
forward, and right, we'll be breaking the screen up in to three sections and using
the left section for turning left, the center section for forward, and the right section
for turning right. The following is a screenshot of the game with the control areas
overlaid for illustration purposes:

We already have our control script for the game, Sokoban, so go ahead and
double-click on it to edit it in MonoDevelop.

We're going to create a new method that will return true or false when we pass it
in a string for the control direction we want to check. It should only return true if
the tap has just happened, and not keep returning true if the user holds his finger
on the screen. The method is as follows:

 // Check if an area of the screen has been
 // touched for the very first time
 bool FirstTouchForControlType(string controlType) {

 // Is there only one press?
 if (Input.touchCount == 1) {

 // Get the touch out of the touches
 // array as a touch object

Chapter 7

[95]

 Touch touch = Input.touches[0];

 // Has the touch just started?
 if (touch.phase == TouchPhase.Began) {

 // Get the screen sections
 float screenSectionLeft = Screen.width / 3;
 float screenSectionCenter = screenSectionLeft +
 Screen.width / 3;
 float screenSectionRight = Screen.width;

 // Check the passed control type
 if (controlType == "left") {

 // Have we hit the left section?
 if (touch.position.x <= screenSectionLeft) {
 return true;
 } else {
 return false;
 }
 } else if (controlType == "forward") {

 // Have we hit the forward section?
 if (touch.position.x >= screenSectionLeft &&
 touch.position.x <= screenSectionCenter) {
 return true;
 } else {
 return false;
 }
 } else if (controlType == "right") {

 // Have we hit the right section?
 if (touch.position.x >= screenSectionCenter &&
 touch.position.x <= screenSectionRight) {
 return true;
 } else {
 return false;
 }
 }
 }
 }

 return false;
}

Building Cross-platform Games

[96]

Let's break that code down as there's quite a large amount. Firstly, we check that
there is only one finger on the screen, we then get the touch at index 0 and store it
in to a variable named touch. As we only want the method to return true when the
finger is first placed, we have to check the touch.phase value and make sure it's the
same as TouchPhase.Began. After that we break the screen down into three sections,
on Android the screen sizes can be variable, so it's best that this is done in code to
allow for the variation. We pass in the methods to check whether left, forward,
or right have been clicked, so the next check is the value of that string, from there
on the code is self-explanatory.

Now that we have the method in place, we need to modify our movement code,
it's in the same file so find the method named CheckIfPlayerIsAttempingToMove
and find the following code line:

if (Input.GetKeyDown (KeyCode.UpArrow) ||
 OuyaInput.GetButtonDown(OuyaButton.DU, playerNumber)) {

We're going to modify it to be the following code:

if (Input.GetKeyDown (KeyCode.UpArrow) ||
 OuyaInput.GetButtonDown(OuyaButton.DU, playerNumber) ||
 FirstTouchForControlType("forward")) {

You see we've just added another check to the conditional with the OR operator,
we call our method and pass in a string of "forward". Do the same for left
and right.

That's it! Give the game a test and try out the new control method. It is pretty
impressive that the game now works in the editor, on the Ouya and on Android!

Chapter 7

[97]

Summary
Unity will output to iOS, OS X, Android, Windows Phone 8, Windows 8, Blackberry
10, and many other platforms. Organization of your code and project is paramount;
otherwise things will get very messy very quickly. Why don't you try making this
game work on some other platforms? The best way to learn is through experimenting
and performing, so what are you waiting for? If you do get stuck, the forums at
http://forum.unity3d.com are really helpful. Hopefully you feel comfortable with
the basics of programming on Unity for Ouya now and I look forward to see all the
cool new things you come up with. This demo alone could be expanded to have
hundreds of levels, more sounds, and some better graphical effects.

My Twitter username is @Gary_BBGames and I'm happy to answer any questions or
help out in any way possible if you get stuck. If you create any apps or games, do let
me know and I'll help promote them for you.

Thank you for taking the time to go through this book and remember, it's all new
territory again and anything can be a success!

Index
A
Acorn Electron 7
Activision 7
Android NDK

about 15
setting up 17
URL 17

Android operating system
history 11

Android SDK
installing 15
setting up 16, 17
URL 15

Angry Birds 12
array

about 42
multidimensional array 42, 43
three-dimensional array 42
two-dimensional array 42

Asset Store 93
Atari 6
Atari 2600 6
Atari ST 8
Awake method 60, 91, 93

B
background

adding 68, 69
BBC Micro 7
Beginners All-purpose Symbolic

Instruction Code (BASIC) 8
Boo 29
BuildLevel method 44-49, 62, 73

bundle identifier 23
BuyFullGame method 85, 86

C
C# 29, 30
cellular games

history 10
character

animating 60-63
character movement

making 52-59
character movement, making

Ouya controller support 59
chipping 9
Commodore 64 7
Commodore Amiga 8
Computer Space 5
consumable In-App Purchase 77

D
Debug.Log method 73
dynamic typing 30

E
entitlement In-App Purchase 77
extra level

adding 70, 71

F
for loop 46

[100]

G
Game Boy 10
GitHub 21

URL 21
Grand Theft Auto IV 9
Graphical User Interface (GUI) 33, 79

H
home computers

history 7, 8

I
In-App Purchase 77

managing 80
removing 93
setting up 77, 78

In-App Purchase, types
consumable 77
entitlement 77

indie games
current situation 12

indie gaming industry
history 9

installation
Android SDK 15
Java 16

Instantiate method 46
iPhone

history 10
iPhone 3G phone 11
iPod Touch device 10

J
Java

installing 16
URL 16

Java Development Kit (JDK) 15
Java JDK 15

K
key.der file 78
Kickstarter 12

L
level

creating 41
limiting 82
restarting 74
unlocking 83

level completion
detecting 72, 73

level, creating
array 42, 43
BuildLevel method 44-47

M
Mac computer

Ouya, connecting 20
Main Camera movement

making 49-51
materials 42
menu item

adding 84
hiding 87

Minecraft 12
mobile controls 94, 96
MonoDevelop 33-35
MovePlayer method 58, 73
multidimensional array 42, 43

N
Native Development Kit (NDK) 15
Net Yaroze 9
next level

moving 73
N-Gage 10
Nintendo Entertainment System (NES) 7

O
ODK

about 15, 21
URL 21

Ouya
about 12
connecting, to Mac computer 20
connecting, to Windows computer 18, 20

[101]

release 13
Ouya controller support 38, 40, 59
Ouya Developer Portal

about 77
URL 77

Ouya Development Kit. See ODK
Ouya Panel

setting up 24-26
Ouya payment framework

implementing 79, 80
In-App Purchase, managing 80
level, limiting 82
level, unlocking 83
product, buying 84
product list, getting 81, 82

Ouya required prefabs 26
Ouya Unity plugin

about 21
URL 21

Ouya website
Unity project, setting up 78

P
Platform Dependent Compilation

about 90
TitleScreen scene, changing 91, 93

PlayStation 9
Pong 6
prefab

about 41
creating 41
texturing 65, 66

product
buying 84

product, buying
BuyFullGame method 85, 86
menu item, adding 84
menu item, hiding 87

product list
getting 81, 82

Python 29

R
Read Only Memory (ROM) 7
RotatePlayer method 59

S
scenes

advancing 37
Ouya controller support 38, 40
progression 36
setting up 32
TitleScreen menu 36

scripts 33-35
SDK 9
SDK Manager 16
Shadow of the Beast 8
Sinclair ZX Spectrum 7
Snake! 10
Software Development Kit. See SDK
Sokoban 15, 30
sounds

adding 74, 76
Space Invaders 6
Square Enix 13
Start method 35, 37, 39, 91
switch statement 46

T
TextEdit 20
three-dimensional array 42
TitleScreen scene

changing 91, 93
TurboSquid 60
two-dimensional array 42

U
Unity

feature 29
Unity Asset Store 60
Unity project

about 22
application, compiling 26, 27
background, adding 68, 69
building 26, 27
bundle identifier 23
character, animating 60-63
character movement, making 52-59
executing 26, 27
extra level, adding 70, 71

[102]

level completion, detecting 72, 73
level, creating 41
level, restarting 74
Main Camera movement, making 49-51
materials 42
next level, moving 73
Ouya Panel, setting up 24-26
Ouya required prefabs 26
prefab 41
scenes, progression 36
scenes, setting up 32
setting up 78
sounds, adding 74, 76
structure 30, 32
submitting 87

UnityScript 30
Update method 35, 39, 55, 56, 60, 92
User Experience (UX) 84

V
video game industry

history 5, 6
market crash 6
recovery 6, 7

video games
advancement 9

W
Windows computer

Ouya, connecting 18, 20
Windows Mobile 10

Thank you for buying
Ouya Unity Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Unity
ISBN: 978-1-84969-584-8 Paperback: 170 pages

Learn how to use Unity by creating your very own
"Outbreak" survival game while developing your
essential skills

1. Use basic AI techniques to bring your game
to life

2. Learn how to use Mecanim; create states and
manage them through scripting

3. Use scripting to manage the graphical interface,
collisions, animations, persistent data,
or transitions between scenes

jQuery Game Development
Essentials
ISBN: 978-1-84969-506-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1. Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery

2. Learn how you can integrate your game with
various social networks, creating multiplayer
experiences and also ensuring compatibility
with mobile devices

3. Create your very own framework, harnessing
the very best design patterns and proven
techniques along the way

Please check www.PacktPub.com for information on our titles

AndEngine for Android Game
Development Cookbook
ISBN: 978-1-84951--898-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
exmples to get to grips with the powerful capabilities
of AndEngine and GLES 2

1. Step by step detailed instructions and
information on a number of AndEngine
functions, including illustrations and
diagrams for added support and results

2. Learn all about the various aspects of
AndEngine with prime and practical
examples, useful for bringing your
ideas to life

3. Improve the performance of past and future
game projects with a collection of useful
optimization tips

HTML5 Game Development
with ImpactJS
ISBN: 978-1-84969-456-8 Paperback: 304 pages

A step-by-step guide to developing your own
2D games

1. A practical hands-on approach to teach you
how to build your own game from scratch

2. Learn to incorporate game physics

3. How to monetize and deploy to the web
and mobile platforms

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What Is Ouya and
Why Does It Matter?
	The early years
	The crash
	The recovery
	Home computers
	Advancement of games consoles
	The first indie console
	Cellular games
	The iPhone
	The competitors
	Current day
	The Ouya
	The release
	Summary

	Chapter 2: Setting Up Unity and
the Ouya Plugin
	Installing the Android SDK
	Installing Java
	Setting up the Android SDK
	Setting up the Android NDK
	Connecting Ouya to your Windows computer
	Connecting Ouya to your Mac computer
	Ouya Development Kit
	Unity project
	Bundle identifier
	Setting up Ouya Panel
	Ouya required prefabs
	Building, running, and compiling
an application

	Summary

	Chapter 3: Setting Up Your Game
	Boo, C#, or UnityScript
	Boo
	UnityScript
	C#

	The project structure
	Setting up your Scenes
	Scripts and MonoDevelop
	Scene progression
	The Title Screen menu
	Advancing to the game
	Ouya controller support

	Creating the level
	Prefabs
	Creating a Prefab

	Materials
	Multidimensional arrays
	The BuildLevel method

	Summary

	Chapter 4: Adding a Character and Making Them Move
	Making the camera move
	Making the character move
	Ouya controller support
	Animating the character

	Summary

	Chapter 5: Adding Finesse
to Your Game
	Texturing your Prefabs
	Adding a background
	Adding extra levels
	Level complete detection
	Moving to the next level
	Restarting our level

	Adding sounds
	Summary

	Chapter 6: Show Me the Money!
	Setting up your purchase
	Setting up your game
	Implementing the Ouya payment framework
	How to manage your purchases
	Getting the list of products
	Limiting your levels
	Unlocking levels for people who have paid
	Buying your product
	Adding a new menu item
	The buy method
	Hiding menu items

	Submitting your game
	Summary

	Chapter 7: Building Cross-platform Games
	Platform Dependent Compilation
	Changing the TitleScreen scene

	Removing In-App Purchases
	Mobile controls
	Summary

	Index

