PHP
Persistence

Concepts, Techniques and Practical
Solutions with Doctrine

Michael Romer

APress’

http://www.allitebooks.org

PHP Persistence

Michael Romer

Apress’

www.allitebooks.cond

http://www.allitebooks.org

PHP Persistence: Concepts, Techniques and Practical Solutions with Doctrine

Michael Romer

Munster, Nordrhein-Westfalen

Germany

ISBN-13 (pbk): 978-1-4842-2558-5 ISBN-13 (electronic): 978-1-4842-2559-2

DOI10.1007/978-1-4842-2559-2
Library of Congress Control Number: 2016961535
Copyright © 2016 by Michael Romer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Deepak Vohra

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Alexander Krider

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www. apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUthorcccsnimmimmmismn s ————— ix
About the Technical ReVIEWErcuccusssmmsessmsmsmsssssmsssssssssnsssmssssnsnss Xi
Chapter 1: About This BOOKcuusseemmesmmmmmmsssssssnssssssssssssssssssssssssssss 1
Chapter 2: Introductioncccccuneemmmmnnsemsnmnsssessnmmmsessnmsssssnmnsan 3
Chapter 3: A Self-Made ORMccccusmmmmssemmmssenmssssnsssssssssssssessnnnes 7
Chapter 4: Hello, Doctrine 2!ccccinnsnemmmmnnsseesnnnssessnnssssasnnnnss 27
Chapter 5: Defining Entities........coucmmmmmnsemmmmmmnsessnmmmsessmmssssssnnnns 35
Chapter 6: References Between Entitiescccvunseeensnsssnnnnsnsssnnns 49
Chapter 7: Managing Entitiesccouemmmmsenmmssassmsssssmsssssssssssssssnns 1
Chapter 8: Doctrine Query Language........ccuusseenmmssssasnssssssnsnsssssnnns 83
Chapter 9: Command Line TOOISccusseemmmnsssnnnmsssssssnssssssssssssssnnns 91
Chapter 10: CaChinguscemsssanssssanssssansssssnssssansssssnsssssnsssssnnssssnnss 97
Chapter 11: Advanced TOPICS ..ucuuseersrsssssssssssssnsnssssssssnssssssnnnssssss 101
INdeX..iiierirrim s ——————— 109
ii

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrc.ccccmmsemmmsssnsmsssesmsssssmssassssas s ssasssssnnss ix
About the Technical REVIEWETcccssssmsmssmsmsssmsssssnsssssnsssssnsssssnnss xi
Chapter 1: About This BOOKuussssmmmmsmmmmsssssssssssssnsssssssssssssssssssssnss 1
SOtWArE VEISIONccceereeeerecreriecre s 1
Database SyStem ... ————— 1
Code DOWNIOAUS.......ccccueererneererneese e 2
Conventions Used in ThiS BOOKcccoveererenereseneseseseseseseseseesessenes 2
Chapter 2: Introductioncccunnmeemmmmnmssss—————— 3
Object-Oriented Programming (OOP) and the Domain Model 3
Demo APPLICALIONcoceecercererer e 4
Chapter 3: A Self-Made ORM.cccoccmnisemmmsssmsmsssssssssssssssssssssnneas 7
Loading an ENtity.......cccoceeerenenererere e sse s sne s s sne e 7
I3 (1 T R OO 9
I3 (1 T TS 9
Saving an Entity........ccccovinnncnncrs s 14
ASSOCIALIONScvrcrreirerese e 19
NEXE STEPS ... 25

v

www.allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

Chapter 4: Hello, Doctrine 2!ccccusmmmssemmmsssnsmsssssssssssssssssssssnnas 27
INSEAllALION.......coeereercre e ——— 27
JAN T =] 4 28
A First ASSOCIAtION.......coccvuicreireriri s 31
Core Concepts at @ GIANCEccccccreeerierenereresse e 34
SUMMANY ... s s 34
Chapter 5: Defining Entities.........ccccinnnemmmmnmssnmmmmissssnmmmssssnnnsnnan 35
Mapping FOrMAtS ..o s 35
Mapping Objects 10 TADIESccccerererricrrrr e 35
Mapping Scalar Member Variables to Fields..........ccccceevverrrierrieriennnens 37

DAt TYPES -..vereecererneee e e 38

ENtity Identifieroococeeeeeeeeee s 39
INNBILANCE ... s 39

Single Table INNEHTANCEccoeeererererer et s e re e ra e sae e raens 39

Class Table INNEIILANCE...........cevererererererererere e se e e e e e e sesesesesesesesesesenens 42

MapPPEA SUPEICIASSceeeeeeeceeee e e e 45
SUMMANY ... e e n e s sn s s r e 47
Chapter 6: References Between Entitiesccccuuseennnnsssnnnnnsssnnns 49
One-to-One Relationship, Unidirectionalc.ccccvvrvrverierieniensenienienne 49
One-to-One Relationship, Bidirectionalc.ccocverervrsrcercessencenene 52
One-to-Many Relationship, Bidirectional.............cccoeevvrvriersriersensenienne 57
Many-to-Many Relationship, Unidirectionalccccoverercrcrcercernenne. 59
Many-to-Many Relationship, Bidirectionalcccccvervrcrcrsercerenne. 62
One-to-Many Relationship, Unidirectional.............ccccvvrverrersersersenienienne 64
Many-to-One Relationship, Unidirectional.............cccceccvreerierrnrierencnne. 66
One-to-One Relationship, Self-Referencingcccveveercriercerserienienne 67

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

One-to-Many Relationship, Self-Referencing.........cccecvvvvrrrrerrersensenne 68
Many-to-many Relationship, Self-Referencingcccceevvererrcerencne. 69
SUMMANY ...t s 70
Chapter 7: Managing Entitiesccevunssemnmmssssnnnmmssssnsnssssssnsnsssssnns 1
Creating a New Entity.......cccocevererenerc e 4l
Loading an Existing Entityccccoevverernnnrnvr e 4
USING @ REPOSITONY.....cceeuerereererereerereerereereseresersesessesessesessesssessesessssessssesassassesassenes 4l
USING an ASSOCIALIONcovverercreeererere s res e ree e s e rae e s e e sesae e aesesaesasaesaeseres 73
Changing an Existing Entity..........cccecvrevnininniiesnsc e 75
Removing an Entity ..o 75
Sorting an ASSOCIALION..........ccevvverrerrer e 75
Removing an ASSOCIALioNc.ccocveervernensenses s 76
LifeCyCle EVENESccoeciierercreirenes s 77
Cascading Operationsccoceverererrreersrsesesssssse s s s sssssssessasssssssnes 78
TranSACIONSciuericriri e 80
SUMMAIY ...t 82
Chapter 8: Doctrine Query LangUage......cccrusssmenssssssnnnssssssnnnssssnnns 83
INEFOAUCHION ... 83
Retrieving RESUISccvcerververrerer ettt 84
Constructing BasiC QUEKIESccccceeerrerrererrerresse e ssesssssssesssesssssesssssenes 85
Constructing JOin QUEKIESccvvererreresrssersssrsessssessesessessssessssssessssesnes 89
31111 1P 7S 90
Chapter 9: Command Line TOOISccuseeerrmssssnnnmssssssssssssssssnssssnns 91
Setting Up the Command Line TOOIS..........ccevvrerrerrerrenressensessessessessensenns 91
DBAL COMMANGS.......ccccrurerecnrrernsstsesesse s e s sss s sn s snssssnes 92
Execute an SQL Statement ..o eens 92
IMPOIt SAL FIlESeeeveereerercrtrertese e rese e e ras e ssesessesessesassessssessesessssssssssssssassesssnenns 93

vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

ORM COMMANGS.....ccceemrermeererreesesssesessssse s se s e ssssssssasssssasnss 93
Validate Persistence Configuration.............cceeerverrreresersesenseresseressersesereseseresenens 93
The SChemMa TOOI ..o —————— 93
Generate COMMANGS ... 94
Execute @ DAL COMMANG ..o 94
Cache-Related COmMMANGScourrmrevnrmmmssnn s 95
Converting COMMANGScccvererererrererrerersereeserseseseresersssessesessessssesessessssesssesaens 95
Production-Ready Configuration..............cceeevvererverenseresseresersesesseressersssessssessesessenes 95

SUMMANY ... a e s r e s 96

Chapter 10: Cachingccusemmmmnssemnmmmssssnsnmmssssssmmsssssssssssssssssessssnns 97

Introduction to ORM Cache TYpes......ccccverrrrereriernsesseses s sesesensesnas 97

Caching Backends...........ccccveervereerrersersesses s 97
Metadata CaChe..........ccovrecnerirrccrr e s 98
QUETY CACKE ...ttt ettt p sttt np b psp st np e e e e 98
RESUIE CACNE........coveeieeerirceerire et 99

SUMMANY ... s 100

Chapter 11: Advanced TOPICS ..ucuuesersrssssnsnssssssnsnssssssnsnssssssnnnssssss 101

Framework Integrations...........ccceevvrvvvrrnsensesses e 101

Native SQL Statements..........ccccovecrrricnernscrerssesers s 106

Doctring 2 EXIENSIONS........ccccvrierrenmreressessesesseses e ssssesssss e ssssesssssssssnens 106

RS U 11 1P 107

INA@X.uuuenisssnnnsssnnnsssansssssnssssnnnssssnnssssnnssssnnssssnnnsssanssssanssssannsssnnnnssnnnss 109
viii

www.allitebooks.cond

http://www.allitebooks.org

About the Author

Michael Romer holds a degree in computer science
from Westfilische Hochschule, Germany. He
manages agile software development projects and
teams using Scrum and Kanban. Michael is a
Certified Scrum Professional, Certified Scrum Master
and Certified Scrum Product Owner. He’s worked for
eBay and today helps web startups with their
products and technology. He also codes web
applications, mostly with PHP and Doctrine. Michael
heads the product and business development
department of a German publishing house.

ix

vww . allitebooks.con

http://www.allitebooks.org

About the Technical

Reviewer

Deepak Vohra is a consultant and a principal member
of the NuBean.com software company. Deepak is a
Sun-certified Java programmer and Web component
developer. He has worked in the fields of XML, Java
programming, and Java EE for over seven years. Deepak
is the coauthor of Pro XML Development with Java
Technology (Apress, 2006). He is also the author of the
JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML Documents with Oracle JDeveloper 11g,
EJB 3.0 Database Persistence with Oracle Fusion
Middleware 11g, and Java EE Development in Eclipse
IDE (Packt Publishing). He has served as the technical
reviewer on WebLogic: The Definitive Guide (O’Reilly
Media, 2004) and Ruby Programming for the Absolute
Beginner (Cengage Learning PTR, 2007).

xi

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1

About This Book

“Iwould have written a shorter book, but I did not have the time.” Freely adapted from
Blaise Pascal (French mathematician, logician, physicist, and theologian).

Software Version

This book is based on Doctrine 2.3; however, most of its content will still be valid for later
versions.

Database System

All examples in this book are based on MySQL.! However, Doctrine 2 supports other
database management systems (DBMS) such as PostgreSQL? and SQLite.> Most examples
will work with other DBMS right away; some may need to be adapted.

http://www.mysql.com
*http://www.postgresql.org/
*http://www.sqlite.org/

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2559-2_1) contains supplementary material, which is available
to authorized users.

© Michael Romer 2016 1
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_1

http://www.mysql.com/
http://www.postgresql.org/
http://www.sqlite.org/
http://www.mysql.com/
http://www.postgresql.org/
http://www.sqlite.org/
http://dx.doi.org/10.1007/978-1-4842-2559-2_1

CHAPTER 1 * ABOUT THIS BOOK

Code Downloads

Most of the code shown in this book can be found in a public repository on GitHub.*
While the code of Chapter 3 (“A Self-Made ORM”) can be found on the “master” branch,®
there is another branch available, called “doctrine,”® which holds the modifications made
in Chapter 4 (“Hello, Doctrine 2!”). There is a third branch called “application”” holding
the modifications made in the later chapters. As the demo application grows throughout
the book, the application branch also includes a basic model-view-controller (MVC)
framework, called Slim,® to better structure the application’s code, as well as Twitter’s
Bootstrap? for some basic UI styling.

Conventions Used in This Book

Code listings are highlighted and have line numbering. Listings that start with a $ symbol
represent the command line, lines stating with a » symbol represent command output.
New terms are written in italic on first usage.

*https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch
Shttps://github.com/michael-romer/doctrine2buch/tree/doctrine
"https://github.com/michael-romer/doctrine2buch/tree/application
*http://www.slimframework.com/

*http://getbootstrap.com

https://github.com/michael-romer/doctrine2buch
http://dx.doi.org/10.1007/978-1-4842-2559-2_3
https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch/tree/doctrine
https://github.com/michael-romer/doctrine2buch/tree/doctrine
http://dx.doi.org/10.1007/978-1-4842-2559-2_4
https://github.com/michael-romer/doctrine2buch/tree/application
http://www.slimframework.com/
http://getbootstrap.com/
http://getbootstrap.com/
https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch/tree/doctrine
https://github.com/michael-romer/doctrine2buch/tree/application
http://www.slimframework.com/
http://getbootstrap.com/

CHAPTER 2

Introduction

Object-Oriented Programming (OOP) and the
Domain Model

PHP developers nowadays generally think and code in an object-oriented way.
Application functionality is built using classes, objects, methods, inheritance, and other
object-oriented techniques. In the beginning, OOP was used primarily for the general
technical aspects of applications, such as MVC frameworks or logging and mailing
libraries. All these components can be used more or less “as is” in other applications,
regardless of the domains those applications inhabit: for example, e-commerce, portal,
or community site. For complex systems, or if aspects such as maintainability and
extensibility are important, OOP is also an advantage in the domain-specific code.
Basically, every application consists of two types of code: general technical code and
domain-specific code. General technical code is often reusable when built as a library or
framework; domain-specific code is often too customized to be reused.

Object-oriented domain-specific code is characterized by the existence of a so-called
domain model. A domain model includes:

e C(Classes and objects representing the main concepts of a domain,
the so-called entities. These elements can also be value objects,
to be precise, but compared to entities, value objects don’t have
a persistent identity. In an online shop, the main elements would
be “Customer,” “Order,” “Product,” “Cart,” and so forth.

e Associations between domain-specific classes and objects. In
our online shop example, an Order would have at least one
Customer that it references as well as one or more references to
the Product(s) ordered.

¢ Domain-specific functions implemented as a part of an entity.
In our online shop, a Cart could have a calculateTotalPrice()
method to calculate the final price based on the items in the Cart
and their quantities.

© Michael Romer 2016 3
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_2

CHAPTER 2 " INTRODUCTION

e Functions that span multiple entities usually implemented in so-
called services, simply because they cannot clearly be assigned to
one single entity. In our online shop, the “Checkout” service may
take care of lowering the inventory, invoicing, updating the order
history, etc. The service deals with several entities at once.

e Domain-specific objects used instead of generic data containers
such as PHP arrays whenever possible (exceptions prove the rule
here).

e Business logic (such as business rules) implemented within
the domain objects of an application whenever possible, not
in controllers, for example (controllers are used in MVC-based
frameworks to handle user input).

The main advantage of the domain model lies in having the domain-specific code
centrally defined in classes and objects, an approach which facilitates maintenance and
changes. The possibility of incidentally breaking a function, when changing or extending
code, drops. By isolating domain-specific code from general technical code, portability is
supported. That’s helpful, for example, when migrating from one application framework
to another.

Besides the advantages mentioned above, the domain model also supports
teamwork. Often, when building and launching a new software product, programmers
work together with business and marketing folks. A domain model can bridge the mental
gap between business and IT by unifying the terminology used. This alone makes a
domain model invaluable.

Demo Application

Concrete examples make things easier to understand. Throughout this book, a demo
application called “Talking” will help to put theory into practice. Talking is a (simple)
web application allowing users to publish content online. Figure 2-1 shows the
application’s domain model:

CHAPTER 2 © INTRODUCTION

Life partner Friends

*

e
* :
< \)SEQ

Co OR<T
= 2\ oats

Figure 2-1. Demo application “Talking” - Domain Model

In the Talking demo application, a User can write Posts. A Post always has only one
author (the User), and the two entities reference each other. A User can act in one or more
Roles. A User references its Roles, but from a given Role, one cannot access the Users who
reference the Role. A User references UserInfo holding the date of registration and the
date of de-registration, if available. UserInfo references back to a User. A User references
ContactData where the User’s email and phone number are saved. ContactData does
not reference back to its User. A User may reference another User as its life partner. The
User’s life partner references back if known. A User may have an unlimited number of
friends. Given a User, one can identify its friends, but there is no reference back. The Post
of a User can have an unlimited number of Tags. A Tag can be reused in several Posts.
There is a bidirectional association between a Post and its Tags. A Post references its
Category, however, there is no reference from a Category to its Posts. A Category can have
subcategories which it references, as well as a parent Category, if given. Categories are
user-specific. A User references its categories, but there is no reference back.

CHAPTER 2 " INTRODUCTION

Our demo domain model is designed to use as many different association types as
possible, so that we can see most of the features of Doctrine 2 in action in the scope of
the demo application. In a real application, the domain model would probably look a bit
different. As you can see, not every association between entities is bidirectional. And as we
will see later in this book, this is an essential feature of an object-relational mapping (ORM)
system such as Doctrine 2 living in the object-oriented world. In relational databases, there
are no unidirectional associations; they are always bidirectional by design.

CHAPTER 3

A Self-Made ORM

I believe that showing is always better than telling. Therefore, instead of simply listing the
pros and cons of Doctrine 2, I like to demonstrate what it looks like not having it in your
PHP toolkit when dealing with PHP objects and relational databases.

o Jump straight into Doctrine 2? This section illustrates why Doctrine 2 is such a
big help for the application developer. Step by step, we will implement, on our own, certain
ORM features that are already included in Doctrine 2. This chapter is not needed to learn
Doctrine 2, but it helps in understanding why one should learn it.

Loading an Entity

A domain model is a good thing. As long as the application developer acts in the familiar
object-oriented world, there are no obstacles to designing and implementing a domain
model. Design and implementation become harder, though, if it becomes necessary to
persist objects of the domain model in relational databases or to load and reconstruct
previously stored objects. There is, for instance, the fact that objects are more than just
dumb data structures. With their methods, they have behavior as well. Let’s consider the
User entity definition of the Talking demo application:

<?php
namespace Entity;

1

2

3

4 class User

5 |

6 private $id;

7 private $firstName;
8 private $lastName;
9 private $gender;

10 private $namePrefix;

11

12 const GENDER_MALE = 0;

13 const GENDER_FEMALE = 1;

14

© Michael Romer 2016 7

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_3

CHAPTER 3 ' A SELF-MADE ORM

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
34
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

const GENDER MALE DISPLAY VALUE = "Mr.";
const GENDER FEMALE DISPLAY VALUE = "Ms.";

public function assembleDisplayName()

{
$displayName = '';
if ($this->gender == self::GENDER_MALE) {
$displayName .= self::GENDER_MALE_DISPLAY VALUE;
} else if ($this->gender == self::GENDER_FEMALE) {
$displayName .= self::GENDER_FEMALE DISPLAY VALUE;
}
if ($this->namePrefix) {
$displayName .= ' ' . $this->namePrefix;
}
$displayName .= ' ' . $this->firstName . ' ' . $this->lastName;
return $displayName;
}
public function setFirstName($firstName)
{
$this->firstName = $firstName;
}
public function getFirstName()
{
return $this->firstName;
}
public function setGender($gender)
{
$this->gender = $gender;
}
public function getGender()
{
return $this->gender;
}
public function setId($id)
{
$this->id = $id;
}

public function getId()

63 {

64 return $this->id;

65 }

66

67 public function setlastName($lastName)
68 {

69 $this->lastName = $lastName;

70 }

71

72 public function getlLastName()

73 {

74 return $this->lastName;

75 }

76

77 public function setNamePrefix($namePrefix)
78 {

79 $this->namePrefix = $namePrefix;
80 }

81

82 public function getNamePrefix()

83 {

84 return $this->namePrefix;

85 }

8 }

Listing 1.1

CHAPTER 3

A SELF-MADE ORM

Interesting here is the method assembleDisplayName(). It creates the “display name” for
a user based on a user’s data. The display name is used to print a post’s author.

1 <?php

2 include('../entity/User.php');

3

4 $user = new Entity\User();

5 $user->setFirstName('Max"');

6 $user->setlLastName('Mustermann');
7 $user->setGender(0);

8 S$user->setNamePrefix('Prof. Dr');
9
10 echo $user->assembleDisplayName();
Listing 1.2

The code in Listing 1.2 results in:

1

Mr. Prof. Dr. Max Mustermann

CHAPTER 3 ' A SELF-MADE ORM

The method assembleDisplayName() therefore defines a specific behavior of a User
object.

If a user’s master data is retrieved from the database, it must be transformed in a way
that allows the behavior described above to be attached to it. In other words, the user’s
master data, retrieved from the database, must be transformed into a User object. Within
the application, we always want to deal with objects of our domain so that we can easily
create a User’ s display name by simply calling its assembleDisplayName () method. Let’s
build that into our ORM tool.

First, we set up the database structure:

1 CREATE TABLE users(

2 id int(10) NOT NULL auto increment,
3 first name varchar(50) NOT NULL,

4 last_name varchar(50) NOT NULL,

5 gender ENUM('0',"'1") NOT NULL,

6 name_prefix varchar(50) NOT NULL,

7 PRIMARY KEY (id)

8

);

Then, let’s add dummy data for “Max Mustermann” (the German “John Doe,”
by the way):

1 INSERT INTO users (first_name, last_name, gender, name_prefix)
2 VALUES('Max', 'Mustermann', '0', 'Prof. Dr.');

Now, if we want to reconstruct the User object from the database, we can do it like this:

1 <?php

2 include('../entity/User.php');

3

4 $db = new \PDO('mysql:host=localhost;dbname=app’, 'root', '');

5 $userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();
6

7 $user = new Entity\User();

8 $user->setId($userData['id']);

9 $user->setFirstName($userData['first name']);
10 $user->setlastName($userData['last name']);

11 $user->setGender($userData['gender']);
12 $user->setNamePrefix($userDatal['name prefix']);

14 echo $user->assembleDisplayName();

o Database credentials in live systems In a live system, you use strong keywords
and don’t work with user “root,” right? The code shown above is just an example ...

10

CHAPTER 3 " A SELF-MADE ORM

With these lines of code, we started implementing our own ORM system, which allows

reconstructing domain objects by fetching data from a database. Let’s further improve it.

To encapsulate the “data mapping” shown above, we move the code into its own class:

1 <?php

2 namespace Mapper;

3

4 class User

5 |

6 private $mapping = array(

7 'id' = 'id',

8 'firstName' => 'first_name',

9 'lastName' => 'last_name',

10 'gender' => 'gender’,

11 "namePrefix' => 'name_prefix'
12)5
13
14 public function populate($data, $user)

15 {

16 $mappingsFlipped = array flip($this->mapping);
17
18 foreach($data as $key => $value) {
19 if (isset($mappingsFlipped[$key])) {
20 call user func_array(
21 array($user, 'set'. ucfirst

($mappingsFlipped[$key])),

22 array($value)

23)5

24 }

25 }

26

27 return $user;

28 }

29}

The User mapper is not perfect, but it does the job. Now, our invoking code looks

like this:

1 <?php

2 include_once('../entity/User.php');

3 include_once('../mapper/User.php');

4

5 $db = new \PDO('mysql:host=1localhost;dbname=app', 'root', '');
6 $userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();
7

8 $user = mew Entity\User();

9 $userMapper = new Mapper\User();

10 $user = $userMapper->populate($userData, $user);

11

12 echo $user->assembleDisplayName();

11

CHAPTER 3 ' A SELF-MADE ORM

However, we can make the mapping process even easier by moving the SQL
statement into its own object, a so-called repository:

1 <?php

2 namespace Repository;

3

4 include_once('../entity/User.php');

5 include_once('../mapper/User.php');

6

7 use Mapper\User as UserMapper;

8 use Entity\User as UserEntity;

9

10 class User

11 {

12 private $em;

13 private $mapper;

14

15 public function _ construct($em)

16 {

17 $this->mapper = new UserMapper;

18 $this->em = $em;

19 }

20

21 public function findOneById($id)

22 {

23 $userData = $this->em

24 ->query('SELECT * FROM users WHERE id = ' . $id)

25 ->fetch();

26

27 return $this->mapper->populate($userData, new
UserEntity());

28 }

29 }

Lastly, we move the code that connects to the database into a class called
EntityManager and make the new User repository available through it:

1 <?php

2

3 include_once('../repository/User.php');
4

5 use Repository\User as UserRepository;
6

7 class EntityManager

8 {

9 private $host;

10 private $db;

11 private $user;

f—
[\

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
30
34
35
36
37
38
39
40
4
42
43
44

}

CHAPTER 3 " A SELF-MADE ORM

private $pwd;
private $connection;
private $userRepository;

public function construct($host, $db, $user, $pwd)

{
$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;
$this->connection = new \PDO(
"mysql:host=$host;dbname=$db" ,
$user,
$pwd) ;
$this->userRepository = null;
}
public function query($stmt)
{
return $this->connection->query($stmt);
}
public function getUserRepository()
{
if (!is_null($this->userRepository)) {
return $this->userRepository;
} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;
}
}

The EntityManager now acts as the main entry point; it opens the database

connection as well making database queries available to client code. After this
refactoring, the result remains the same:

1

Mr. Prof. Dr. Max Mustermann

We wrote a whole bunch of code, and yet we can’t do anything more than read data

from a database and make an object out of it. We didn’t really push our own application
forward. Looks like building an ORM system is hard work and time-consuming. And
we've just started. Let’s spend some more time enhancing our ORM so that, later, we will
appreciate even more what Doctrine 2 can do for us.

13

CHAPTER 3 ' A SELF-MADE ORM

Saving an Entity

So far, we have implemented a trivial use case: loading a single object from the database
based on a given ID. But what about writing operations? Actually, there are two types of
write operations: inserts and updates. Let’s first deal with the insert operation by adding
an extract() method to the User mapper:

CwWwow~NOUVI A~ WN PR

<?php

namespace Mapper;

class User

{

private $mapping = array(
'id' = 'id',
'firstName' => 'first name',
‘lastName' => 'last_name',
'gender' => 'gender’,
"namePrefix' => 'name_prefix'

)5
public function extract($user)
{
$data = array();
foreach($this->mapping as $keyObject => $keyColumn) {
if ($keyColumn != 'id") {
$data[$keyColumn] = call user func(
array($user, 'get'. ucfirst($keyObject))
)
}
}

return $data;

}

public function populate($data, $user)

{
$mappingsFlipped = array flip($this->mapping);

foreach($data as $key => $value) {
if (isset($mappingsFlipped[$key])) {
call user func_array(
array($user, 'set'. ucfirst(
$mappingsFlipped[$key])),
array($value)

);

4
42
43
44
45

}

CHAPTER 3 " A SELF-MADE ORM

}

return $user;

This is how we extract the data from the object. The EntityManager, extended by a

saveUser () method, now can insert a new record into the database:

W oo~NOUVI A~ WN R

26
27
28
29
30
31
32
33
34
35

37
38

<?php

include_once('../repository/User.php');
include_once('../mapper/User.php');

use Repository\User as UserRepository;
use Mapper\User as UserMapper;

class EntityManager

{

private $host;

private $db;

private $user;

private $pwd;

private $connection;
private $userRepository;

public function construct($host, $db, $user, $pwd)

{

}

$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;

$this->connection =

new \PDO("mysql:host=$host;dbname=$db", $user,

$pwd) ;

$this->userRepository = null;

public function query($stmt)

{
}

return $this->connection->query($stmt);

public function saveUser($user)

{

$userMapper = new UserMapper();
$data = $userMapper->extract($user);

15

CHAPTER 3 ' A SELF-MADE ORM

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61

QW o~NOUVT S WNR

$columnsString = implode(",

$valuesString = implode(

array map("mysql real escape string", $data)

);

return $this->query(
"INSERT INTO users ($columnsString)
VALUES('$valuesString")"

);
}
public function getUserRepository()
{
if (!is_null($this->userRepository)) {
return $this->userRepository;
} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;
}
}

}

Adding a new record now works like this:

<?php

include_once('../EntityManager.php');

$em = new EntityManager('localhost', 'app', 'root', '');
$user = $em->getUserRepository()->findOneById(1);

echo $user->assembleDisplayName() . '
';

$newUser = new Entity\User();
$newUser->setFirstName('Ute');
$newUser->setLastName('Mustermann');
$newUser->setGender(1);
$em->saveUser ($newUser);

echo $newUser->assembleDisplayName();

So far, so good! But what if we want to update an existing record? How do we identify

, array keys($data));

whether we are dealing with a new record or one that already exists? In our case, we
might simply check to see whether the object already has a value for the given ID field. ID
is an “auto_increment” field, so MySQL will populate it automatically for any new record.
For sure, this is not the most elegant solution one might come up with. We might use a
so-called identity map that brings more advantages, such as re-reading an already-loaded

16

CHAPTER 3 " A SELF-MADE ORM

database without querying the database again. An identity map is nothing more than an
associative array holding references to already loaded entities based on IDs. A good place
for an identity map is the entity manager and its saveUser () method:

1
2
3
4
5
6
7
8
9
0

1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
s
42

<?php

include_once('../repository/User.php');
include_once('../mapper/User.php');

use Repository\User as UserRepository;
use Mapper\User as UserMapper;

class EntityManager

{

private $host;

private $db;

private $user;

private $pwd;

private $connection;
private $userRepository;
private $identityMap;

public function construct($host, $db, $user, $pwd)

{

}

$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;

$this->connection =

new \PDO("mysql:host=$host;dbname=$db", $user,

$pwd) ;

$this->userRepository = null;
$this->identityMap = array('users' => array());

public function query($stmt)

{
}

return $this->connection->query($stmt);

public function saveUser($user)

{

$userMapper = new UserMapper();
$data = $userMapper->extract($user);

$userId = call user func(

17

CHAPTER 3

43

44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63

64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

18

A SELF-MADE ORM

array($user, 'get'. ucfirst($userMapper->
getIdColumn()))
)s

if (array key exists($userId, $this->identityMap['users'])) {
$setString = '';

foreach ($data as $key => $value) {
$setString .= $key."="$value',";
}

return $this->query(
"UPDATE users SET " . substr($setString,

0, -1) .
" WHERE " . $userMapper->getIdColumn() .
"=" . $userId
)s
} else {
$columnsString = implode(", ", array keys($data));

$valuesString = implode(

)
(Rl

array map("mysql real escape string",
$data)
)5

return $this->query(
"INSERT INTO users ($columnsString)
VALUES('$valuesString')"

)5
}
}
public function getUserRepository()
{
if (!is_null($this->userRepository)) {
return $this->userRepository;
} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;
}
}

public function registerUserEntity($id, $user)

{
$this->identityMap['users'][$id] = $user;

CHAPTER 3 " A SELF-MADE ORM

85 return $user;
86 }
87 }

Asyou can see, we added a method, getIdColumn(), which returns “id.” Now the
following code works nicely:

<?php

include_once('../EntityManager.php');

$em = new EntityManager('localhost', 'app', 'root', '');
$user = $em->getUserRepository()->findOneById(1);

echo $user->assembleDisplayName() . '
';

$user->setFirstname('Moritz');
$em->saveUser ($user);

ON OOV B~ WN R

The entity is updated in the database and no additional record is added.

Associations

Now we want to list all posts from a specific User. To do this, we would like to simply
iterate over the Posts collection of a given User and print each Post’s title:

<?php

include_once('../EntityManager.php');

$em = new EntityManager('localhost', 'app', 'root', '');
$user = $em->getUserRepository()->findOneById(1);

2>

<h1><?php echo $user->assembleDisplayName(); ?></h1>

<?php foreach($user->getPosts() as $post) { 2>
<?php echo $post->getTitle(); ?></1i>

<?php } 2>

O oo~NOUVT S WN PR

Y
P O

What do we have to do to make this happen?
First, we create a data structure for posts:

CREATE TABLE posts(
id int(10) NOT NULL auto_increment,
user_id int(10) NOT NULL,
title varchar(255) NOT NULL,
content text NOT NULL,
PRIMARY KEY (id)

~NouvTphs WN R

)5

19

CHAPTER 3 ' A SELF-MADE ORM

We add a test User and some test Posts, so that we can actually test the implementation.
Next, we need to extend a whole bunch of classes. The User entity gets a getPosts() method,
which loads the User’s Posts on first invocation via the corresponding repository:

1 <?php

2 namespace Entity;

3

4 class User

5

6 /7 [..]

7

8 private $postRepository;

9

10 public function getPosts()

11

12 if (is_null($this->posts)) {
13 $this->posts = $this->postRepository->findByUser($this);
14 }

15

16 return $this->posts;

17 }

18

19 /7 [..]

20 }

This will work only if the User entity has access to the Post repository. To make it
available, the User repository method findOneById() needs to be extended:

1 <?php

2 namespace Repository;

3

4 include_once('../entity/User.php');
5 include_once('../mapper/User.php');
6

7 use Mapper\User as UserMapper;

8 use Entity\User as UserEntity;

9

10 class User

1 {

12 private $em;

13 private $mapper;

14

15 public function _ construct($em)
16 {

17 $this->mapper = new UserMapper;
18 $this->em = $em;

19 }

20
20

www.allitebooks.cond

http://www.allitebooks.org

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

OwWwoo~NOUVIT P WN R

[T G Y
oA WwWN PR

17
18
19
20

B~ wWw N R

}

CHAPTER 3 " A SELF-MADE ORM

public function findOneById($id)
{
$userData = $this->em
->query('SELECT * FROM users WHERE id = ' . $id)
->fetchAll();

$newUser = new UserEntity();
$newUser->setPostRepository(
$this->em->getPostRepository());

return $this->em->registerUserEntity(
$id,
$this->mapper->populate($userData, $newUser)

);

The entity manager needs to be extended by the method getPostRepository() as well:

<?php

/7 [..]

class EntityManager

{

}

ars|
private $postRepository;

public function getPostRepository()

{
if (!is_null($this->postRepository)) {
return $this->postRepository;
} else {
$this->postRepository = new
PostRepository($this);
return $this->postRepository;
}
}

Now, the Post entity and the Post mapper must be implemented:

<?php

namespace Entity;

class Post

21

CHAPTER 3 ' A SELF-MADE ORM

CQwoo~NOUVTI A~ WN R

=

[\
[\

private $id;
private $title;
private $content;

public function setContent($content)

{
}

$this->content = $content;

public function getContent()
{

}

public function setId($id)
{

}

return $this->content;

$this->id = $id;

public function getId()
{

}

return $this->id;

public function setTitle($title)

{
}

$this->title = $title;

public function getTitle()
{

}

return $this->title;

}

And here is the mapper:

<?php
namespace Mapper;

class Post
{
private $mapping = array(
'id' = 'id',
"title' => 'title’,
'content’ => 'content',

);

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
4
42
43
44
45
46
47

}

CHAPTER 3 " A SELF-MADE ORM

public function getIdColumn()

{
return 'id’';
}
public function extract($user)
{
$data = array();
foreach ($this->mapping as $keyObject => $keyColumn) {
if ($keyColumn != $this->getIdColumn()) {
$data[$keyColumn] = call user func(
array($user, 'get'.
ucfirst($keyObject))
);
}
}
return $data;
}
public function populate($data, $user)
{
$mappingsFlipped = array flip($this->mapping);
foreach ($data as $key => $value) {
if (isset($mappingsFlipped[$key])) {
call user func_array(
array($user, 'set'. ucfirst(
$mappingsFlipped[$key])),
array($value)
);
}
}
return $user;
}

AUV B~ WN B

Last but not least, the Post repository:

<?php
namespace Repository;

include_once('../entity/Post.php');
include_once(' ../mapper/Post.php');

23

CHAPTER 3 ' A SELF-MADE ORM

24

use Mapper\Post as PostMapper;
use Entity\Post as PostEntity;

class Post

{

}

private $em;
private $mapper;

public function _ construct($em)

{
$this->mapper = new PostMapper;
$this->em = $em;
}
public function findByUser($user)
{
$postsData = $this->em
->query('SELECT * FROM posts WHERE user_id = '
. $user->getId())
->fetchAll();
$posts = array();
foreach($postsData as $postData) {
$newPost = new PostEntity();
$posts[] = $this->mapper->populate($postData,
$newPost);
}
return $posts;
}

That’s it! Up to this point, the application’s files and folder structure looks like this:

EntityManager.php

entity/

mapper/

Post.php
User.php

Post.php
User.php

repository/

public/

Post.php
User.php

index.php

CHAPTER 3 " A SELF-MADE ORM

Next Steps

Great! We built our own little ORM tool. However, already, our code doesn’t look that
good anymore. The fact that technical code is mixed up with domain-specific code is an
issue. Our solutions to the problems faced are valid only to our concrete use case. Also, it
smells like “copy & paste” in here! In fact, some refactoring already needs to be done.

And what about composite primary keys? Adding and deleting associations?
Many-to-many associations? Inheritance, performance, caching and entities, mappers
and repositories for the tons of yet-missing core elements of the application? Also, what
happens if the data structures change? This would mean refactoring of multiple classes!
Looks like it is time for Doctrine 2 to enter the stage.

25

CHAPTER 4

Hello, Doctrine 2!

In the previous chapter we learned about the complexity of an ORM the hard way by
implementing our own persistence code. Doctrine 2 instead provides full transparent
persistence for PHP objects by implementing the so called “Data Mapper Pattern”.
Essentially, Doctrine allows the programmer to focus on the object-oriented business
logic and takes the pain out of PHP object persistence.

Don’t worry! We run through Doctrine 2 quickly in this chapter, but we will look
into each individual aspect of it in depth later in the book.

Installation

The easiest way to install Doctrine 2 is by using “Composer,” which can be downloaded
from its website.! Store the PHP archive (phar) file in the root directory of the application.
Then, create a file called composer. json with the following contents (you may need to
adjust the version number given):

{
"require": {
"doctrine/orm": "2.3.1"
}

Ui b W N

}

In the root directory of the application, execute the command
1 $ php composer.phar install

to download Doctrine 2 to the vendor subfolder. Composer makes it available to the
application by configuring autoloading for its classes.

'http://getcomposer.org/download/

© Michael Romer 2016 27
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_4

http://getcomposer.org/download/
http://getcomposer.org/download/

CHAPTER 4 " HELLO, DOCTRINE 2!

If you receive a composer error or warning, you may want to update composer itself

to its latest version first by running

1

Ui b WN R

$ php composer.phar self-update

You then only need to add

<?php

/7 [..]

if (file_exists('vendor/autoload.php')) {
$loader = include 'vendor/autoload.php';

}

to the index. php file. Once downloaded, all Doctrine 2 classes are loaded

automatically on demand. Nice!

A First Entity

Based on the first section of this book, in which we developed our own little ORM system,
we now can radically simplify the code needed by adding Doctrine 2 annotations to the

User entity:
1 <?php
2 namespace Entity;
3
4 /**
5 * @Entity
6 * @Table(name="users"
7 */
8 class User
9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 /** @Column(type="string", name="first name", nullable=true) */
17 private $firstName;
18
19 /** @Column(type="string", name="last_name", nullable=true) */
20 private $lastName;
21
22 /** @Column(type="string", nullable=true) */
23 private $gender;
24

28

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

CHAPTER 4 * HELLO, DOCTRINE 2!

/** @Column(type="string", name="name prefix", nullable=true) */
private $namePrefix;

const GENDER_MALE

= 0,
const GENDER_FEMALE =

1;

const GENDER MALE DISPLAY VALUE = "Mr.";
const GENDER FEMALE DISPLAY VALUE = "Ms.";

public function assembleDisplayName()

{
$displayName = '';
if ($this->gender == self::GENDER_MALE) {
$displayName .= self::GENDER_MALE_DISPLAY VALUE;
} elseif ($this->gender == self::GENDER_FEMALE) {
$displayName .= self::GENDER_FEMALE_DISPLAY_
VALUE;
}
if ($this->namePrefix) {
$displayName .= ' ' . $this->namePrefix;
}
$displayName .= ' ' . $this->firstName . ' ' . $this->lastName;
return $displayName;
}
public function setFirstName($firstName)
{
$this->firstName = $firstName;
}
public function getFirstName()
{
return $this->firstName;
}
public function setGender($gender)
{
$this->gender = $gender;
}
public function getGender()
{
return $this->gender;
}

29

CHAPTER 4 " HELLO, DOCTRINE 2!

72

73 public function setId($id)

74 {

75 $this->id = $id;

76 }

77

78 public function getId()

79 {

80 return $this->id;

81 }

82

83 public function setlLastName($lastName)
84 {

85 $this->lastName = $lastName;
86 }

87

88 public function getlastName()

89 {

90 return $this->lastName;

91 }

92

93 public function setNamePrefix($namePrefix)
% {

95 $this->namePrefix = $namePrefix;
96 }

97

98 public function getNamePrefix()

99 {

100 return $this->namePrefix;
101 }

102 }

The code in index.php now can be changed to the following lines of code to read
and modify entities using Doctrine 2:

1 <?php

2 include '../entity/User.php’;

3 include '../vendor/autoload.php';
4

5 use Doctrine\ORM\Tools\Setup;

6 use Doctrine\ORM\EntityManager;

7

8 $paths = array(_ DIR__ . "/../entity/");
9 $isDevMode = true;

10

11 $dbParams = array(

12 "driver' => 'pdo_mysql',
13 'user' => 'root',

w
(=)

CHAPTER 4 * HELLO, DOCTRINE 2!

14 "password’ => '',
15 "dbname’ => ‘app’,
16);

17

18 $config = Setup::createAnnotationMetadataConfiguration($paths, $isDevMode);
19 $em = EntityManager::create($dbParams, $config);

20 $user = $em->getRepository('Entity\User')->findOneById(1);

21 echo $user->assembleDisplayName() . '
';

22 $user->setFirstname('Moritz');

23 $em->persist($user);

24 $em->flush();

Please note that we replaced our custom entity manager with the one provided
by Doctrine as well as the user repository with it findOneByld method. All this code is
available out-of-the-box. The only custom code still needed is the user entity definition.
That's it! Easy!

A First Association

Dealing with the association is easy as well. The User entity has to be changed to:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users"

7 */

8 class User

9

10 /7 [..]

11

12 /**

13 * @0neToMany (targetEntity="Entity\Post", mappedBy="user"

14 */

15 private $posts;

16

17 /7 [..]

18

19 public function construct()

20 {

21 $this->posts = new \Doctrine\Common\Collections\
ArrayCollection();

22 }

23

24 /7 [..]

25}

31

CHAPTER 4 " HELLO, DOCTRINE 2!

W oo~NOUVT A~ WN R

Now add some more annotations to the Post entity:

<?php

namespace Entity;

/**

* @Entity
* @Table(name="posts")

*/

class Post

{

/**

* @Id @Column(type="integer")
* @GeneratedValue

*/

private $id;

/**

* @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
* @JoinColumn(name="user id", referencedColumnName="id")

*/

private $user;

/** @Column(type="string") */
private $title;

/** @Column(type="string") */
private $content;

public function setUserId($user id)

{
$this->user_id = $user_id;
}
public function getUserId()
{
return $this->user_id;
}
public function setContent($content)
{
$this->content = $content;
}
public function getContent()
{
return $this->content;
}

CHAPTER 4 * HELLO, DOCTRINE 2!

48 public function setId($id)

49 {

50 $this->id = $id;

51 }

52

53 public function getId()

54 {

55 return $this->id;

56 }

57

58 public function setTitle($title)
59 {

60 $this->title = $title;
61 }

62

63 public function getTitle()

64 {

65 return $this->title;
66 }

67 }

Once the User is loaded, you can iterate over the User’ s posts as before:

1 <?php
2/ [..]
3 $user = $em->getRepository('Entity\User')->findOneById(1);
4 2
5 <hiy<?echo $user->assembleDisplayName(); ?></h1y
6
7 <?php foreach($user->getPosts() as $post) {?>
8 <lis<?php echo $post->getTitle(); ?></lis
9 <?php } 2>
10 </uly

In fact, with Doctrine 2 included, we don’t need most of the code we wrote to
implement the exact same functionality by hand:

1 entity/
2 Post.php
3 User.php
4 public/
5 index.php

It couldn’t be much easier—thank you, Doctrine 2! Before we add more features to
our demo app, we will now look at some basic concepts of Doctrine 2.

33

CHAPTER 4 " HELLO, DOCTRINE 2!

Core Concepts at a Glance

Before we take a deep dive into the details of Doctrine 2, let’s step back and look at its
core concepts.

We already defined an entity as an object with identity that is managed by Doctrine
2 and persisted in a database. Entities are the domain objects of an application. Saving
entities and retrieving them from the database is essential to an application. The term
“entity” is used with two different meanings throughout this book: on one hand, it is
used for single, persistent object; on the other hand, it is used for PHP classes that act as
templates for persistent objects. With Doctrine 2, a persistent object, an entity, is always
in a specific state. This state can be “NEW,” “MANAGED,” “DETACHED,” or “REMOVED.”
We will learn about this later in the book.

The entity manager is Doctrine’s core object. As an application developer, one does
interact a lot with the entity manager. The entity manager is responsible for persisting
new entities, and also takes care of updating and deleting them. Repositories are retrieved
via the entity manager.

Simply speaking, a repository is a container for all entities of a specific type. It allows
you to look-up entities via so-called finder methods or finders. Some finders are available
by default, others may be added manually if needed.

Doctrine’s database access layer (DBAL) is the foundation for the Doctrine 2 ORM
library. It’s a stand-alone component that can be used even without using Doctrine’s
ORM capabilities. Technically, DBAL is a wrapper for PHP’s PHP data objects (PDO)
extension that makes dealing with databases even easier compared to PHP alone. And
again, Doctrine 2 ORM makes dealing with databases even easier than with DBAL alone.

Summary

What a ride! By simply pulling in Doctrine as a persistence library into our application, we
could already reduce the complexity of our application code dramatically. It's now time to
explorer all the powerful features of Doctrine in more detail!

34

CHAPTER 5

Defining Entities

We have already learned how easy it is to map member variables to fields in a database
table. Let’s take a look at exactly how this works.

Mapping Formats

In general, mappings can be defined using annotations within the entities themselves,
or with external XML or YAML files. In terms of performance, there is no difference
between the different ways of implementing the mapping when using a cache. Therefore,
using annotations is often preferred, simply because they make coding easier, as all the
persistence metadata is located in the same file. In the following examples, annotations
are used exclusively.

Annotations are meta information used to tell Doctrine how to persist data.
Syntactically, Doctrine annotations follow the PHPDoc standard which is also used to
auto-generate code documentation using compatible tools. PHPDoc uses individual
DocBlocks to provide meta information on certain code elements. In several IDEs,
annotations are also used to provide improved code completion, type hinting and to
support debugging.

Mapping Objects to Tables

First of all, a class that acts as a template for persistent objects needs to have the @Entity
annotation:

1 <?php

2 /**

3 ¥ @Entity

4 */

5 class User

6

7 /7 [..]

8 }

© Michael Romer 2016 35

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_5

CHAPTER 5 " DEFINING ENTITIES

A DocBlock is an extended PHP comment that begins with "/**" and has an "*" at
the beginning of every line. Simply adding @Entity without additional configuration
means that Doctrine 2 looks for a database table named user, in this case. If the table has
another name, the table name can be configured like this:

1 <?php

2 /**

3 * @Entity

4 * @Table(name="users")
5 *

6 class User

7 A

8 /7 [..]

9 }

An optional attribute, “indexes,” of the @Table annotation can be used to create
indexes automatically using Doctrine’s schema tool, which we will discuss later in the
book. For now, one should remember that this attribute has no meaning during runtime.
Some persistence metadata is important only in conjunction with offline tools such as the
schema tool, while other metadata is evaluated during runtime. An index definition to the
users table goes like this:

<?php

/**

* @Entity

* @Table(name="users",

* indexes={@Index(name="search idx", columns={"name", "email"})}
*)

*/

class User

{
/7 [..]
}

W oo~NOUVT A~ WN

[
R o

The indexes attribute of annotation @Table itself has an annotation with attributes
as its value. The annotation @Index needs the name attribute (name of the index) and the
list of columns to be considered. Multiple values may be given using curly braces.

The same applies to another optional attribute called uniqueConstraints which
defines special unique value indexes:

.1 <?php
2 Voo
3 * @Entity
4 * @Table(name="users",
5 % uniqueConstraints={@UniqueConstraint(name="user unique",
6 * columns={"username"})},

36

CHAPTER 5 " DEFINING ENTITIES

7 % indexes={@Index(name="user idx", columns={"email"})}
g8 *)

9 ¥

10 class User

11 {

12 /7 [..]

13}

Mapping Scalar Member Variables to Fields

Mapping scalar-valued member variables (numbers or strings, for example) to a database
table is super simple:

<?php
/[..]

/** @Column(type="string") */
private $lastName;

AUV B W N R

First, it’s important that all member variables mapped to database fields are declared
as private or protected. Doctrine 2 often applies a technique called lazy loading, which
means that data is loaded just in the moment it is needed, but not earlier. To make this
happen, Doctrine 2 implements so-called proxy objects which rely on the entities’ getter
methods. Therefore, one will want to make sure they are set-up.

The main annotation here is @Column. Its attribute type is the only mandatory
attribute and is important to make persistence work correctly. If a wrong type is defined,
you may lose information while saving to or reading from the database. In addition, there
are many other optional attributes, such as name, which allows you to configure a table
column name. It defaults to the name of the member variable. The length attribute is
needed only for strings, where it defines the maximum length of a string value. It defaults
to 255 if not defined differently. If one encounters truncated values in the database, a
wrong length configuration often is the root cause.

The attributes precision and scale are valid only for values of type decimal, while
unique ensures uniqueness, and nullable tells Doctrine 2 whether a NULL value is
allowed (true) or not (false):

<?php

/7 [..]

/**

* @Column(type="string",

* name="last name", length=32, unique=true, nullable=false)
*/

protected $lastName;

O ooNOUVI B~ WN R

37

CHAPTER 5 " DEFINING ENTITIES

Data Types

Doctrine 2 ships with a set of data types that map PHP data types to SQL data types.
Doctrine 2 data types are compatible with most common database systems:

string: Type that maps an SQL VARCHAR to a PHP string
integer: Type that maps an SQL INT to a PHP integer

smallint: Type that maps a database SMALLINT to a PHP
integer

bigint: Type that maps a database BIGINT to a PHP string
boolean: Type that maps an SQL boolean to a PHP boolean
decimal: Type that maps an SQL DECIMAL to a PHP double

date: Type that maps an SQL DATETIME to a PHP DateTime
object

time: Type that maps an SQL TIME to a PHP DateTime object

datetime: Type that maps an SQL DATETIME/TIMESTAMP to a
PHP DateTime object

text: Type that maps an SQL CLOB to a PHP string

object: Type that maps an SQL CLOB to a PHP object using
serialize() and unserialize()

array: Type that maps an SQL CLOB to a PHP object using
serialize() and unserialize()

float: Type that maps an SQL Float (Double Precision) to a
PHP double. IMPORTANT: Type float works only with locale
settings that use decimal points as separators.

o Custom data types If needed, you can define custom data types, mappings between
PHP data types and SQL data types. The official documentation covers this topic in depth.

'http://docs.doctrine-project.org/en/latest/reference/basic-mapping.
html#custom-mapping-types

38

http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types
http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types
http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types

CHAPTER 5 " DEFINING ENTITIES

Entity Identifier

An entity class must define a unique identifier. The @1d annotation is used for this:
1 <?php

2

3 /7 [..]

4

5 /**

6 * @Id @Column(type="integer")

7 %

8 private $id;

If the @GeneratedValue annotation is used as well, the unique identifier doesn’t need
to be given by the application developer but is assigned automatically by the database
system. The way this value is generated depends on the strategy defined. By default,
Doctrine 2 identifies the best approach on its own. When using MySQL, for instance,
Doctrine 2 uses the auto_increment function. There are additional strategies that can be
used; however, they usually don’t work across platforms and therefore should be avoided.

By the way, the @1d annotation can be used with multiple member variables to define
composite keys. Clearly, the @GeneratedValue annotation then cannot be used anymore.
In this case, the application developer needs to take care in assigning unique keys.

Inheritance

Doctrine 2 supports persistence of hereditary structures with three different strategies:
e Single Table Inheritance
e (Class Table Inheritance

e Mapped Superclass

Single Table Inheritance

The single table inheritance strategy uses a single database table with a so-called
“discriminator column” to differentiate between the different types. All classes of a
hierarchy go into the same table. Let’s say our demo application differentiates between
different types of posts. The supported types are:

Post: A simple, text based post
ImagePost: A post with text and image

VideoPost: A post with text and video

39

CHAPTER 5 " DEFINING ENTITIES

Both ImagePost and VideoPost extend Post and add an image or video URL. To set
up this hierarchy, the topmost Post class holds the configuration needed as well as all
member variables and associations that are shared between the three types:

<?php
namespace Entity;

1
2
3
4 J¥*

5 * @Entity(repositoryClass="Repository\Post")
6 * @Table(name="posts")

7 * @InheritanceType("SINGLE TABLE")

8 * @iscriminatorColumn(name="discr", type="string")

9 * @iscriminatorMap({"text"="Post", "video"="VideoPost", "image"=
"ImagePost"})

10 */

11 class Post

12 |

13 // member variables and associations shared between all types
14}

Since the Post itself can be an entity, it has the typical entity-related annotations.
In addition, via the @InheritanceType annotation, it configures single table inheritance.
The @DiscriminatorColumn annotation is used to label the column which indicates the
type persisted. Lastly, @iscriminatorMap defines the values that can be present in the
discriminator column. In our case, Doctrine 2 writes “text” into the discriminator column
if the entity is a Post. If the entity is a VideoPost, Doctrine 2 writes “video,” and if the
entity is an ImagePost, the value used is “image.”

The ImagePost itself is straightforward:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 */

7 class ImagePost extends Post

8 {

9 /** @Column(type="string") */

10 protected $imageUrl;

11

12 /**

13 * @param mixed $imageUrl

14 */

15 public function setImageUrl($imageUrl)
16 {

17 $this->imageUrl = $imageUrl;
18 }

19

20
21
22
23
24
25
26
27

CwWwoo~NOUVI D WN R

CHAPTER 5

/¥*
* @return mixed
*/
public function getImageUrl()
{

return $this->imageUrl;
}

}

The same is true for the VideoPost:

<?php
namespace Entity;
/**
* @Entity
*/
class VideoPost extends Post
{
/** @Column(type="string") */
protected $videoUrl;
Jx*
* @param mixed $videoUrl
*/
public function setVideoUrl($videoUrl)
{
$this->videoUrl = $videoUrl;
}
/**
* @return mixed
*/
public function getVideoUrl()
{
return $this->videoUrl;
}
}

www.allitebooks.cond

DEFINING ENTITIES

41

http://www.allitebooks.org

CHAPTER 5 " DEFINING ENTITIES

The data structure used by Doctrine 2 looks like this:

Col Type Length NULL? KEY Extras

Id INT 11 PRI auto_
increment

user_id INT 11 YES MUL

category_id INT 11 YES MUL

title VARCHAR 255

content LONGTEXT

discr VARCHAR 255

videoUrl VARCHAR 255 YES

imageUrl VARCHAR 255 YES

Now all three types of entities can easily be persisted. The downside of this approach
is that, depending on how complex the hierarchy is and how different the types involved
are, the table grows and grows, with many fields never used by certain types. In our case,
the videoUrl won't ever be used by entities of type ImagePost. The imageUrl won't be
used by VideoPost entities, and for Post entities, both fields will remain blank.

The upside is that this strategy—due to its very nature—allows for very efficient
queueing across all types in the hierarchy without any joins.

Class Table Inheritance

While single table inheritance uses only one table for all types, with class table inheritance
each class in the hierarchy is mapped to several tables. While this gives the best flexibility
of the three strategies, this also means that reconstructing entities will require joins in the
database. Since joins are usually expensive operations, the performance with class table
inheritance is not as good as with single table inheritance.

The main difference in configuration is in Post:

<?php
namespace Entity;

Voo

* @Entity(repositoryClass="Repository\Post")

* @Table(name="posts")

* @InheritanceType("JOINED")

* @DiscriminatorColumn(name="discr", type="string")

* @DiscriminatorMap ({"text"="Post", "video"="VideoPost", "image"=
"ImagePost"})

*/

O oo~NOUVT B WN B

=
o

42

11
12
13
14

CHAPTER 5 " DEFINING ENTITIES

class Post

{
}

// member variables and associations shared between all types

Instead of inheritance type “SINGLE_TABLE,” now “JOINED” is used. This tells

Doctrine 2 to apply the class table inheritance strategy. Since tables will be used for each
type, configuring the table names may be useful for subclasses:

1
2
3
4
5
6
7
8
9
0

1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<?php
namespace Entity;
Vi
* @Entity
* @Table(name="posts_image")
*/
class ImagePost extends Post
{
/** @Column(type="string") */
protected $imageUrl;
/**
* @param mixed $imageUrl
*/
public function setImageUrl($imageUrl)
{
$this->imageUrl = $imageUrl;
}
Vi
* @return mixed
*/
public function getImageUrl()
{
return $this->imageUrl;
}
}

of configuration to VideoPost entities as well:

1
2
3
4
5
6

<?php
namespace Entity;

/**
* @Entity
* @Table(name="posts video")

The table name posts_image is handy for ImagesPost entities. We add the same style

43

CHAPTER 5 " DEFINING ENTITIES

7 %

8 class VideoPost extends Post

9 {

10 /** @Column(type="string") */
11 protected $videoUrl;

12

13 /**

14 * @param mixed $videoUrl

15 */

16 public function setVideoUrl($videoUrl)
17 {

18 $this->videoUrl = $videoUrl;
19 }

20

21 Ve

22 * @return mixed

23 */

24 public function getVideoUrl()
25 {

26 return $this->videoUrl;
27 }

28}

When letting Doctrine 2 create the database schema, we will end up with three tables
for this hierarchy, while the posts table holds the main information:

Col Type Length NULL? KEY Extras

id INT 11 PRI auto_
increment

user_id INT 11 YES MUL

category_id INT 11 YES MUL

title VARCHAR 255

content LONGTEXT

discr VARCHAR 255

The posts_video table holds only the specifics of this type:

Col Type Length NULL? KEY Extras
id INT 11 PRI
videoUrl VARCHAR 255 YES

44

CHAPTER 5 " DEFINING ENTITIES

The same is true for posts_image:

Col Type Length NULL? KEY Extras
id INT 11 PRI
imageUrl VARCHAR 255 YES

By evaluating the foreign key reference, entities of type ImagePost and VideoPost
can be reconstructed by table joins.

Mapped Superclass

Lastly, a mapped superclass strategy can be used. The main difference from the other two
strategies already discussed is that the superclass itself cannot be an entity. Taking the
example above, this means that class Post cannot itself be an entity. It simply provides
member variables and associations to be inherited by its subclasses.

To configure the mapped superclass strategy means adding the @MappedSuperclass
annotation to the Post class:

1 <?php

2 namespace Entity;

3

4 /** @MappedSuperclass */

5 class Post

6 {

7 // member variables and associations shared between all types
8 }

The two subclasses, ImagePost and VideoPost, do not need to be changed.
However, with the mapped superclass strategy applied, we cannot persist objects of type
Post anymore, which mainly consisted of text. We could fix this by adding another new
type called TextPost:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="posts text")
7%

8 class TextPost extends Post
9

10 /¥

11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */

45

CHAPTER 5 " DEFINING ENTITIES

14 protected $id;
15
16 }

Now we have three concrete entity types and one superclass that is not an entity.
This results in three tables in the database: posts_text, posts_images and posts_video.

As shown above, it’s important that each entity specifies its ID column, while the
mapped superclass does not. It only imparts member variables and associations, but not
the ID column definition.

When inheriting attributes or associations as shown above, one may want to
overwrite certain definitions.

Let’s assume we don’t want to talk about content in a VideoPost, but call it closed
caption. This requires the following configuration:

1 <?php

2 namespace Entity;

3

4 /FF

5 ¥ @Entity

6 * @Table(name="posts video")

7 * @AttributeOverrides({

8 * @AttributeOverride(name="content",
9 * column=@Column(

10 * name = "closed caption”,
11 * type = "text"
12 *)
13 *)
14 *1})
15 ¥/
16 class VideoPost extends Post
17 |
18 /7 [..]
19 }

While Doctrine 2 requires member variables to be either private or protected, it’s
important to remember that member variables need to be protected here; otherwise
they won’t be available in the subclass. When overwriting the property content with
closed_caption as shown above, this leads to a closed_caption column in the database
for this type of entity.

Also, entities of type VideoPost are organized in categories called channels.
We can overwrite the association as shown below:

1 <?php

2 namespace Entity;
3

4 JFF

5 ¥ @Entity

46

O 0o ~N O

10
11
12
13
14
15
16
17
18

CHAPTER 5 " DEFINING ENTITIES

* @Table(name="posts video")
* @AssociationOverrides({

* @AssociationOverride(name="category"”,
* joinColumns=@JoinColumn(
* name="channel_id", referencedColumnName="1id"
*)
)
*1
*/
class VideoPost extends Post
{
/7 [..]
}

Summary

In this chapter, we learned all about entities, the most important aspect of ORM and
Doctrine. Designing entities properly can be fiddly at times, but Doctrine makes it as
simple as possible to lay out the foundation for persisting PHP objects. Since entities
alone already are a great thing to have, it get’s even better, once we start interlinking
them by using associations, which we will cover next.

47

CHAPTER 6

References Between Entities

Entities usually are part of a bigger, interconnected object graph. They have references

to other entities. A User holds references to its Posts, while a Post references a Category
which references back to the User, who (in turn) sets up the Category, and so forth. As
we will see, there are many different ways to establish connections between entities.
Connections are characterized by the number of items they connect and the association’s
direction. Let’s take a look!

o Domain model of the demo app Talking The following code samples are related
to the domain model of the demo app introduced earlier in the book. The drawing of the
domain model might be helpful as a reference throughout this chapter.

One-to-One Relationship, Unidirectional

In contrast to foreign key relationships in a database, which always join two tables in
both directions, this is not true for objects. Therefore, Doctrine 2 differentiates between
unidirectional and bidirectional associations between objects. Unidirectional means that
one objects points to the other, but the latter does not have a pointer back.

To set up this type of a relationship between two entities, we simply need to pick a
member variable acting as the pointer:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users")
7 *

8 class User

9 |

10 /7 [..]

11
© Michael Romer 2016 49

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_6

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

12 /**

13 * @0neToOne(targetEntity="Entity\ContactData")
14 */

15 private $contactData;

16

17 /7 [..]

18 }

The @0neToOne annotation defines the type of the relationship: a one-to-one
relationship. The targetEntity attribute defines the entity class to which the pointer
points. The class given with the targetEntity attribute needs to be fully qualified,
including a namespace if applicable. In any case, you must not add a leading backslash.

It's now already possible to reach a referenced entity (ContactData) through a
loaded User, if a getter method has been added:

1 <?php
2 var_dump($user->getContactData());

However, the simple persistence configuration shown above only works because
ContactData has a member variable called id:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 * @Table(name="contact_data")
7%

8 class ContactData

9 |

10 /**

11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */

14 private $id;

15

16 /7 [..]

17 }

If the member variable has a different name, such as contactDatald or something
similar, we need to tell Doctrine 2 about it:

1 <?php

2 namespace Entity;

3

4 Voo

5 ¥ @Entity

6 * @Table(name="users"

50

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

7%

8 class User

9 {

10 /7 [..]

11

12 /**

13 * @0neToOne(targetEntity="Entity\ContactData")
14 * @JoinColumn(name="id", referencedColumnName="contactDatald")
15 */

16 private $contactData;

17

18 /7 [..]

19 }

Later in this book we will learn more about t the @oinColumn annotation.

Loading a User and its ContactData as shown above works only if the data structure
in the database has also been set up beforehand, in addition to the PHP class and the
persistence configuration. If not, all this won’t work and errors are reported by Doctrine
2. Based on this situation, one of the following will be true:

¢ We have an existing data structure given in the database and we
adapt the persistence configuration to it.

e We do not have an existing data structure and the persistence
configuration has no external restrictions. In this case, the
Doctrine 2 schema tool can create the data structure in the
database based simply on the persistence configuration. More
about how to auto-create a data structure in a database can be
found in Chapter 9, “Command Line Tools” later in this book.

In any case, it's important that the data structure and the Doctrine 2 persistence
mappings match. If not, we will be in trouble for sure. The schema tool can also be used
to verify that data structure and persistence mappings match.

In the following, let’s assume that we always create the data structure for the demo
application using the schema tool. In this case, the users table will be created after
invoking the proper schema tool commands:

Col Type Length NULL? KEY Extras

Id INT 11 PRI auto_increment
first_name VARCHAR 255 Y

last_name VARCHAR 255 Y

gender INT 11 Y

name_prefix VARCHAR 255 Y

contactData_id INT 11 Y UNI

51

http://dx.doi.org/10.1007/978-1-4842-2559-2_9

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

The contact_data table created looks like this:

Col Type Length NULL? KEY Extras
id INT 11 PRI

email VARCHAR 255 Y

phone VARCHAR 255 Y

One-to-One Relationship, Bidirectional

In contrast to the unidirectional one-to-one relationship, in a bidirectional relationship
two pointers exist: one pointing from object A to object B, and another pointing from
object B to object A. It is important that we talk about two separate pointers here, as we
will see in a minute. Let’s take a User entity again with a reference to a UserInfo entity:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 * @Table(name="users"

7 %

8 class User

9 {

10 /7 [..]

11

12 /¥

13 * @0neToOne(targetEntity="Entity\UserInfo")
14 */

15 private $userInfo;
16

17 /7 [..]

18 }

If we now want the UserInfo entity to point back to the User entity, we need to
extend the configuration of the User entity by adding inversedBy="user":

<?php
namespace Entity;

Jx*
* @Entity

* @Table(name="users")
*/

class User

{

W oo~NOUVT B WN B

Q1
NS}

10
11
12
13
14
15
16
17
18

}

/7 [..]

/**

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

* @0neToOne(targetEntity="Entity\UserInfo", inversedBy="user"

*/

private $userInfo;

/7 [..]

UserInfo entity itself looks like this:

CwWwoo~NOUVIL D WN R

WWWWWWNNNNNNNNNNRRPRRRPRRERRERRR
AR WNPRPOOWXINOUPAWNROOLOONOUL D WRN R

<?php
namespace

Jx*
* @Entity

Entity;

* @Table(name="user info")

*/

class UserInfo

{

Ver:

* @Id @Column(type="integer")

* @GeneratedValue

*/

private $id;

We configured the UserInfo with a pointer called $user to a UserInfo entity. The

/** @Column(type="datetime", nullable=true) */
private $signUpDate;

/** @Column(type="datetime", nullable=true) */

private $signOffDate = null;

Ver:

* @0neToOne(targetEntity="Entity\User", mappedBy="userInfo")

*/

private $user;

public function setId($id)

{
}

$this->id = $id;

public function getId()

{
}

return $this->id;

53

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

36

37 public function setSignOffDate($signOffDate)
38 {

39 $this->signOffDate = $signOffDate;
40 }

41

42 public function getSignOffDate()

43 {

44 return $this->signOffDate;

45 }

46

47 public function setSignUpDate($signUpDate)
48 {

49 $this->signUpDate = $signUpDate;
50 }

51

52 public function getSignUpDate()

53 {

54 return $this->signUpDate;

55 }

56

57 public function setUser($user)

58 {

59 $this->user = $user;

60 }

61

62 public function getUser()

63 {

64 return $this->user;

65 }

66 }

In the UserInfo entity we define the target entity class via targetEntity="Entity\
User" and let Doctrine 2 know by adding mappedBy="contactData" that the User entity
references back via contactData.

So far, so good! We just established a bidirectional connection between two entities.
Let’s now talk about the inversedBy and mappedBy configuration.

For a moment, let’s image there exists a User entity and a UserInfo entity, belonging
together and pointing to each other in a bidirectional manner: $userInfo points to a
UserInfoinstance and $user points to a User instance. If we now want to disconnect the
two, we remove both pointers:

<?php

/7 [..]

$user = $em->getRepository('Entity\User')->findOneById($id);
$user->getUserInfo()->setUser(null);
$user->setUserInfo(null);

$em->flush();

oouvlT B W N R

54

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

But what if we remove only one of the two pointers? We would create an inconsistency.
Which reference tells Doctrine 2 the truth about the two objects and their association?
One entity says “yes, we are connected,” the other says “no, we aren’t connected at all”
Remember that this problem exists only in the object oriented world, not in the relational
database universe. In a relational database, references are always bidirectional. There is no
concept of a unidirectional relationship. Back to the inconsistency issue: to which entity
should Doctrine 2 listen when taking care of persistence? The solution looks like this: when
in doubt, Doctrine 2 listens to the entity which carries the inversedBy attribute. This means
that the following code would not remove the association between the two entities:

<?php

/7 [..]

$user = $em->getRepository('Entity\User')->findOneById($id);
$user->getUserInfo()->setUser(null);

$em->flush();

Ul h W N

In contrast, the following code would remove the association:

<?php

/7 [..]

$user = $em->getRepository('Entity\User')->findOneById($id);
$user->setUserInfo(null);

$em->flush();

Ui ph WN R

The reason is that the User entity has the inversedBy attribute and acts as the so-
called owning side of the connection. The owning side is the side Doctrine 2 checks to
determine whether a connection exists. The other side, the so-called inverse side, doesn’t
matter here. Doctrine 2 doesn'’t care what the inverse side says.

However, even if we correctly cut the connection between the two from the owning
side, this change is durable only after flushing:

<?php

use Doctrine\ORM\EntityManager;

/7 [..]

$em = EntityManager::create($dbParams, $config);
$em->flush();

Ui WN R

Until flushing happens, we still have an inconsistency in the running program:

<?php

$user = $em->getRepository('Entity\User')->findOneById($id);
$userInfo = $user->getUserInfo();

$user->setUserInfo(null);

var_dump($user->getUserInfo()); // NULL
var_dump($userInfo->getUser()); // object(Entity\User)
$em->flush();

var_dump($user->getUserInfo()); // NULL
var_dump($userInfo->getUser()); // NULL

W oo~NOUVI B~ WN B

55

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

Only once $em->flush() has been executed will var_dump($userInfo->getUser())
finally return NULL. Before that, it returns the referenced object. In some cases, this situation
may lead to difficult-to-debug issues. A piece of good advice here is to always make sure
that both references are removed simultaneously so that the running program stays intact:

<?php
namespace Entity;

1

2

3

4 /**

5 * @Entity
6 * @Table(name="users")
7

8

9

*/

class User

{
10 /7 [..]
11
12 public function removeUserInfo()
13 {
14 $this->userInfo->setUser(null);
15 $this->userInfo = null;
16 }
17}

The following code now always deals with a consistent state:

<?php

$user = $em->getRepository('Entity\User')->findOneById($id);
$userInfo = $user->getUserInfo();

$user->removeUserInfo();

var_dump($user->getUserInfo()); // NULL
var_dump($userInfo->getUser()); // NULL

$em->flush();

var_dump($user->getUserInfo()); // NULL
var_dump($userInfo->getUser()); // NULL

W ooNOUVT &~ WN -

As a good practice, you should always add a persistence supporting method on the
owning side.

Let’s recap: A bidirectional relationship always has an owning side and an inverse
side. Unidirectional relationships have only an owning side, which also does not need
to be declared explicitly. Regarding associations, only changes to the owning side are
relevant for persistence. Doctrine 2 doesn’t care about the inverse side in this concern.
The data base table of the entity declared as the owning side holds the foreign key. Which
side of the connection is defined as the owning side is up to the application developer.

Given a bidirectional association, the owning side can be identified by spotting the
inversedBy attribute, while the inverse side carries the mappedBy attribute.

56

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

One-to-Many Relationship, Bidirectional

In the chapter “Hello, Doctrine 2!” we added a bidirectional one-to-many relationship
to the demo app between a User and its Posts. Let’s take a close look at how we got that
working. The User entity has a member variable called $posts:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users")
7%

8 class User

9 {

10 /**

11 * @OneToMany (targetEntity="Entity\Post", mappedBy="user"
12 */

13 private $posts;
14

15 /7 [..]

16 }

The @0neToMany annotation defines the one-to-many relationship to the Post entity
(targetEntity). As the mappedBy attribute is given, it’s a bidirectional relationship. The
Post entity looks like this:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="posts")
7%

8 class Post

9 A

10 /**

11 * @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
12 */

13 private $user;
14

15 /7 [..]

16 }

57

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

Here we find the counterpart annotation @anyToOne. In a one-to-one relationship,
the application developer can decide freely which side to declare as the owning side. That
is not the case here. The entity carrying the @ManyToOne annotation must become the
owning side and get the inversedBy attribute.

If (as before) we use the schema tool to create the data structure based on the
persistence configuration, the following tables are set up:

Col Type Length NULL? KEY Extras

id INT 11 PRI auto_increment
first_ name VARCHAR 255 Y

last_name VARCHAR 255 Y

gender INT 11 Y

name_prefix VARCHAR 255 Y

contactData_id INT 11 Y UNI

userInfo_id INT 11 Y UNI

The user_info table looks like this:

Col Type Length NULL? KEY Extras
id INT 11 PRI

user_id INT 11 MUL

title VARCHAR 255

content VARCHAR 255

As we can see, table user_info holds the foreign key, which may occur more than
once. When accessing a User’s Posts from a given User entity, Doctrine uses a Doctrine\
ORM\PersistentCollection to provide the referenced Post entities. It extends other
classes such as \Countable, \IteratorAggregate and \ArrayAccess, which makes a
Doctrine\ORM\PersistentCollection very similar to a regular PHP array, meaning it can
easily be used, for example, in PHP foreach loops.

If the referenced Posts haven’t been accessed at least once, the member variable
$user has the value null and has not yet been assigned an object of class Doctrine\ORM\
PersistentCollection. If one wants to work with the collection before it has been set up
by Doctrine 2, this could be an issue. Therefore, as a good practice, a member variable
holding a persistent association should always be initialized:

1 <?php

2 namespace Entity;
3

4 J¥*

5 * @Entity

6

* @Table(name="users"

58

O 00

10
11
12
13
14

15
16
17
18

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

*/
class User
{
/7 [..]
public function construct()
{
$this->posts = new \Doctrine\Common\Collections\
ArrayCollection();
}
/7 [..]
}

Many-to-Many Relationship, Unidirectional

In our demo app, one User may act in different Roles with different access rights. Let’s
distinguish between base- and pro-users and administrators. User with the base Role
can read Posts, but can’t write Posts. Pro-users can also write Posts. Administrators can
manage the overall application and various settings. We design the relationship so that,
from given a User entity, we can access the User’s Roles, but not the other way around. To
do so, we simply need to add the following persistence configuration:

O oo~NOUVT S WN PR

PR R R R R R R R
o~N oS~ WNR O

1
2

3

<?php
namespace Entity;
/**
* @Entity
* @Table(name="users")
*/
class User
{
/7 [..]
Jx*
* @ManyToMany (targetEntity="Entity\Role")
**/
private $roles;
/7 [..]
}

The Role entity definitions are straightforward as well:

<?php
namespace Entity;

59

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

4 /**

5 ¥ @Entity

6 * @Table(name="role")

7%

8 class Role

9 |

10 Ve

11 * @Id @Column(type="integer")
12 * @GeneratedValue

13 */

14 private $id;

15

16 /** @Column(type="string") */
17 private $label;

18

19 public function setId($id)

20 {

21 $this->id = $id;

22 }

23

24 public function getId()

25 {

26 return $this->id;

27 }

28

29 public function setlabel($label)
30 {

31 $this->label = $label;
32 }

33

34 public function getlabel()

35 {

36 return $this->label;
37 }

38}

Running the schema tool to create the data structure in the database, we now have a
new table called role:

Col Type Length NULL? KEY Extras
Id INT 11 PRI auto_increment
Label VARCHAR 255

60

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

Also, we find a table called user_role allowing us to persist a many-to-many reference:

Col Type Length NULL? KEY Extras
user_id INT 11 MUL
role_id INT 11 MUL

The reason that the join table shown above looks like it does is that Doctrine 2 has
again applied a default configuration to the @JoinTable annotation, which itself is not
given with our code, but which implicitly is considered by Doctrine 2. If needed, our join
table can be defined differently. For example, if an existing data structure in a database
needs to be used:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users")

7%

8 class User

9 A
10 /7 [..]
11
12 Vi
13 * @ManyToMany (targetEntity="Entity\Role")
14 * @JoinTable(name="users roles",

15 * joinColumns={@JoinColumn(name="user",

referencedColumnName="1d")},

16 * inverseJoinColumns={@JoinColumn(name="role",
17 * referencedColumnName="1id")
18 * }
19 *)
20 **/
21 private $roles;
22
23 /7 [..]
24}

The persistence configuration now looks much more complex and tells Doctrine to
deal with a join table that looks like this:

Col Type Length NULL? KEY Extras
user INT 11 MUL
role INT 11 MUL

61

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

The @JoinTable annotation has an attribute called name to define the join table
name as well as the attributes joinColumns and inverseJoinColumns, both of which use
another annotation, called @oinColumn, to map the individual columns.

Many-to-Many Relationship, Bidirectional

The author of a Post (a User) should be able to assign one or more Tags. A Tag itself may
be reused in different Posts. In contrast to the relationship between a User and its Roles,
we design the association to be bidirectional. First, let’s set up the new Tag entity:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 * @Table(name="tag")

7%

8 class Tag

9 {

10 /¥

11 * @Id @Column(type="integer")

12 * @GeneratedValue

13 */

14 private $id;

15

16 /** @Column(type="string") */

17 private $label;

18

19 /**

20 * @ManyToMany (targetEntity="Entity\Post", mappedBy="tags")

21 */

22 private $posts;

23

24 public function construct()

25 {

26 $this->posts = new \Doctrine\Common\Collections\
ArrayCollection();

27 }

28

29 public function setId($id)

30 {

31 $this->id = $id;

32 }

33

34 public function getId()

35 {

36 return $this->id;

37 }

62

38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

QW oo~NOUVI B WN R

}

CHAPTER 6

public function setlabel($label)

{
$this->label = $label;
}
public function getlabel()
{
return $this->label;
}
public function setPosts($posts)
{
$this->posts = $posts;
}
public function getPosts()
{
return $this->posts;
}

REFERENCES BETWEEN ENTITIES

The Post entity needs to be extended, as well, by a new member variable:

<?php

namespace Entity;

/XK
* @Entity

* @Table(name="posts")

*/
class Post

{

/7 [..]

Vet

* @ManyToMany (targetEntity="Entity\Tag"”, inversedBy="posts")

*/
private $tags;

public function construct()

{

$this->tags = new \Doctrine\Common\Collections\

ArrayCollection();

/7 [..]

63

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

When setting up a many-to-many relationship, you can freely choose the owning side.
The schema tool, once more, creates the join table post_tag for us, if we run the
proper commands:

Col Type Length NULL? KEY Extras
post_id INT 11 MUL
tag id INT 11 MUL

Again, defaults are applied here. If desired, the @JoinTable annotation can be used
to alter the labels of the table and its columns.

One-to-Many Relationship, Unidirectional

A User can set up multiple Category entities for its Posts. We will use a unidirectional
association for this domain model aspect, which requires—in contrast to the bidirectional
one-to-many relationship—a join table as well. Also, we need to use the @ManyToMany
annotation, even though we don’t set up a many-to-many annotation (this might be
somewhat confusing). With the help of a unique constraint, it finally results in a one-to-
many relationship. The User entity is extended by the $categories member variable:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 * @Table(name="users")

7%

8 class User

9 {

10 /7 [..]

11

12 /¥

13 * @ManyToMany (targetEntity="Entity\Category")
14 * @JoinTable(name="users categories”,
15 * joinColumns={@JoinColumn(name="user",

referencedColumnName="1d")},

16 * inverseJoinColumns={@JoinColumn(name="category",
17 * referencedColumnName="id", unique=true)}
18 *)
19 */
20 private $categories;
21
22 public function construct()
23 {
24 /7 [..]

64

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39

}

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

$this->categories = new \Doctrine\Common\Collections\

ArrayCollection();
}
public function setCategories($categories)
{
$this->categories = $categories;
}
public function getCategories()
{
return $this->categories;
}
/7 [..]

The annotations and attributes used are already known from the many-to-many

relationship. The unique=true configuration, which makes it a one-to-many relationship,
is new. The Category entity is simple:

NNNNNNNMNNNRRRRRERRRRERR
OOV BWNROWOWUWOWMNOUDWNEROWOOOLOWNOU A WN PR

<?php

namespace Entity;

Vei

* @Entity
* @Table(name="category")

*/

class Category

{

Jx*
* @Id @Column(type="integer")
* @GeneratedValue

*/

private $id;

/** @Column(type="string") */
private $label;

public function setId($id)

{

$this->id = $id;
}
public function getId()
{

return $this->id;
}

65

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

29 public function setlabel($label)
30 {

31 $this->label = $label;
32 }

33

34 public function getlabel()

35 {

36 return $this->label;

37 }

38}

Many-to-One Relationship, Unidirectional

Multiple posts can be grouped in a Category, but each Post can be in only one Category.
To allow access to a Category from a Post, the Post must be extended:

1 <?php

2 namespace Entity;

3

4 /**

5 ¥ @Entity

6 * @Table(name="posts")

7%

8 class Post

9 |

10

11 /7 [..]

12

13 /**

14 * @ManyToOne (targetEntity="Entity\Category")
15 * @JoinColumn(name="category id", referencedColumnName="id")
16 **/
17 private $category;
18
19 /7 [..]
20
21 public function setCategory($category)
22 {
23 $this->category = $category;
24 }
25
26 public function getCategory()
27 {
28 return $this->category;
29 }
30 }

66

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

And that’s it—no more configuration is needed, as it’s a unidirectional association.

The Category doesn’t need to be extended. In fact, even the @JoinColumn annotation is
redundant, because its configuration is identical with Doctrine’s defaults.

One-to-One Relationship, Self-Referencing

Doctrine 2 allows us to define associations between entities of the same type, so-called
self-referencing relations. In our demo app, a User can declare another User as its life
partner. Both ends of the association allow us to access the referenced life partner. The
persistence configuration needed for a self-referencing association looks like this:

1
2
3
4
5
6
7
8
9
0

1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<?php
namespace Entity;
/**
* @Entity
* @Table(name="users"
*/
class User
{
/**
* @0neToOne(targetEntity="Entity\User")
**/
private $lifePartner;
/7 [..]
public function setlifePartner($lifePartner)
{
$this->lifePartner = $lifePartner;
}
public function getlLifePartner()
{
return $this->lifePartner;
}
}

If the database structure is created by the schema tool, Doctrine 2 automatically

adds a column called 1ifeParter_id to the users table to maintain the reference. Again,
Doctrine’s defaults are at play here. If needed, you can add the @JoinColumn annotation
and overwrite the defaults:

67

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

5 * @neToOne(targetEntity="Entity\User")

6 * @JoinColumn(name="partner", referencedColumnName="1id")
7 *

8 private $lifePartner;

9

10 //[..]

One-to-Many Relationship, Self-Referencing

With a self-referencing one-to-many relationship, a category tree can be built. A Category
may have multiple child categories and one parent category (the root node won'’t have

a parent category). The persistence configuration for a self-referencing one-to-many
relationship is similar to a regular bidirectional one-to-many relationship:

1 <?php

2 namespace Entity;

3

4 J¥*

5 * @Entity

6 * @Table(name="category")

7%

8 class Category

9

10 /**

11 * @0neToMany (targetEntity="Entity\Category", mappedBy="parent")

12 *E/

13 private $children;

14

15 /**

16 * @ManyToOne (targetEntity="Entity\Category",
inversedBy="children")

17 * @JoinColumn(name="parent id", referencedColumnName="1id")

18 **/

19 private $parent;

20

21 /7 [..]

22

23 public function construct() {

24 $this->children = new \Doctrine\Common\Collections\

ArrayCollection();

25 }

26

27 public function setParent($parent)

28 {

29 $this->parent = $parent;

30 }

31

68

32
33
34
35
36
37
38

}

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

public function getParent()
{

}
/7 [..]

return $this->parent;

The configuration shown above extends table category by column parent_id, if

the already developed data structure is extended using Doctrine’s schema tool. The
relationship is designed in a way that allows us to reach a parent and children from a
given Category.

Many-to-many Relationship, Self-Referencing

Many-to-many self-referencing relationships can be defined as well. In our demo app,
this type of a relationship is used to describe the social network of a User:

O oo~NOUVT A WN -

NNNNNNNRRRRRRRRRR
OUVBEBWNRPROWOWOONOUDE WN R O

NN
oo

<?php
namespace

/**

* @Entity
* @Table(
*/

class Use

{

Entity;

name="users"
r

/7 [..]

Viii

* @ManyToMany (targetEntity="Entity\User")
* @JoinTable(name="friends",

* joinColumns={@JoinColumn(name="user id",

* referencedColumnName="1id")},

* inverseJoinColumns={@JoinColumn(name="friend user id",
* referencedColumnName="1id")}

*)

**/

private $myFriends;

public function construct()

{
/7 [..]
$this->myFriends = new \Doctrine\Common\Collections\
ArrayCollection();

}

69

CHAPTER 6 "' REFERENCES BETWEEN ENTITIES

29 /7 [..]

30

31 public function setMyFriends($myFriends)
32 {

33 $this->myFriends = $myFriends;
34 }

35

36 public function getMyFriends()

37 {

38 retuxn $this->myFriends;

39 }

4 }

If the schema tool is applied, it will report an error here, because Doctrine 2 wants to
label both columns of the join table with “user_id,” which is invalid. In this case, we will need
to add the @JoinTable annotation to provide a different persistence configuration. Also, by
default, the join table will be called users_users, if not defined otherwise. In our case, we tell
Doctrine 2 to call it friends, a more meaningful table name in our case. If you are dealing
with an existing data structure, custom configuration would be necessary anyway.

Summary

Another important milestone is reached! We are now able to design and persist complex
PHP object graphs connecting multiple individual entities. This is a huge step forward
and completes most of the work needed related to configuring persistence using
Doctrine. In the next chapter, we will start to create and manipulate entities and their
associations programmatically using PHP code.

70

CHAPTER 7

Managing Entities

Creating a New Entity

Once the domain model has been constructed, it is time to use it. A new entity can be
created based simply on a new object of an entity class:

<?php

$newPost = new \Entity\Post();

$newPost->setTitle('A new post!');
$newPost->setContent('This is the body of the new post.');
$em->persist($newPost);

$em->flush();

SV B~ W N R

The code shown above anticipates that $em references a ready-to-use entity manager.
First, a new Post is created, then data is assigned, and the object is passed to the entity
manager for persistence.

One must remember that the persist() method call does not yet cause an SQL
INSERT statement to be issued. The entity is only scheduled for persistence with the next
flushing. As long as no flushing has taken place, the entity is in a state called MANAGED,
meaning that the entity manager recognizes the new entity.

Only when the flush() method is invoked on the entity manager is a new record
written to the database. Otherwise, the entity will be lost after the script has finished.

Loading an Existing Entity

There are two main ways to load an existing entity: either by querying and retrieving
it from its corresponding repository or by accessing it through an association given by
another, already loaded entity.

Using a Repository

We already learned that a repository is a container for all entities of a specific type. A
repository provides finder methods to search for entities based on a query. While several
finder methods are available out-of-the-box, custom finder methods can also be added
later on. A custom finder method can be imagined as a “quick access” to a typical query.
With the help of finder methods, you can look up an entity, for example by its ID, like this:

© Michael Romer 2016 71
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_7

CHAPTER 7 ' MANAGING ENTITIES

1 <?php
2 $post = $em->getRepository('Entity\Post')->findOneById($id);

First we request the repository from the entity manager and then we execute a finder
method on it. By default, four finder methods are available. To find a single entity based
onits ID, use the find() method:

1 <?php
2 public function find($id, $lockMode = LockMode::NONE, $lockVersion =
null);

To find a single entity based on criteria, use the findOneBy () method:

1 <?php
2 public function findOneBy(array $criteria, array $orderBy = null);

To find all entities of a specific type, use the findA11() method:

<?php
2 public function findAll();

To find multiple entities based on criteria, use the findBy() method:

<?php
public function findBy(
array $criteria,
array $orderBy = null,
$limit = null,
$offset = null

~Nouvipbh WwWN e

);

You can define the order, limit, and offset values when using findBy ().
Also helpful are the so-called magic finders. They allow you to include search criteria
directly in a finder method’s name. The next two statements produce the same result:

1 <?php
2 $tag = $em->getRepository('Entity\Tag')->findOneBy(axray('label'=>$label));
3 $tag = $em->getRepository('Entity\Tag')->findOneByLabel($label);

Adding a custom repository with individual finder methods is a two-step process.
First, a new repository class needs to be set up:

<?php
namespace Repository;

use Doctrine\ORM\EntityRepository;

Ui W iN R

72

CHAPTER 7 ' MANAGING ENTITIES

class Post extends EntityRepository

{
public function findAllPostsWithTag($tag)
{
// DQL statement goes here
}
}

Next, Doctrine 2 needs to know about the new repository. This is done through the

corresponding entity:

O oo~NOUVT B WN PR

[
P O

<?php
namespace Entity;

/**
* @Entity(repositoryClass="Repository\Post")
* @Table(name="posts")

*/
class Post
{
/7 [..]
}

That'’s alll The findA11PostsWithTag() finder method can now be easily invoked:

<?php
$posts = $em->getRepository('Entity\Post')->findAllPostsWithTag($tag);

We will learn more about DQL, the Doctrine Query Language, later in the book. It is

used to phrase a query.

Using an Association

Let’s assume we already have a loaded User entity available. Instead of loading the User's
contact data by using its repository, we can also reach this entity from the given User entity:

W oo~NOUVT A WN -

[N
= o

<?php

namespace Entity;

/**

* @Entity

* @Table(name="users"
*/

class User

{
/7 [..]

73

CHAPTER 7 ' MANAGING ENTITIES

12 /¥

13 * @0neToOne(targetEntity="Entity\ContactData")
14 */

15 private $contactData;

16

17 /7 [..]

18

19 public function getContactData()
20 {

21 return $this->contactData;
22 }

23}

In this case, when calling getContactData(), the referenced ContactData entity is
loaded on demand by Doctrine’s proxy mechanism.

We could even make sure that the referenced ContactData entity is already loaded
when loading the User itself, and save an additional database query:

<?php

/7 [..]

/**

* @neToOne(targetEntity="Entity\ContactData", fetch="EAGER")
*/

private $contactData;

oauvT B~ W N R

By using fetch="EAGER, " we tell Doctrine 2 to always load the referenced
ContactData entity when the User itself is loaded.

Loading eagerly sometimes has its advantages, especially when it’s likely to access a
referenced entity later in the process. If the fetch attribute is omitted, Doctrine 2 fetches
LAZY by default. This means it loads the entity on first access. The third option is EXTRA _
LAZY, which is helpful for huge datasets. Even if one decides to lazy load references, the
referenced entities are still all loaded fully into RAM. Depending on the amount and size
of the entities referenced, this could be a serious performance issue. When EXTRA_LAZY
is used, several methods can be executed on the collection of referenced entities without
fully loading them into the RAM right away. This is true for:

e contains()

e count()

e offsetSet()
e add()

e count()

e slice()

In this way, a pagination feature, for example, can be built without performance
issues.

74

CHAPTER 7 ' MANAGING ENTITIES

Changing an Existing Entity

Moditying an existing, already loaded entity is easy. All changes made to such an entity
are auto-detected by Doctrine 2 when flushing the entity manager:

<?php

/7 [..]

$post = $em->getRepository('Entity\Post')->find(1);
$post->setTitle("New title");

$em->flush();

Ui b WN R

There is no need for explicitly telling Doctrine 2 again about the fact that this entity
has been changed. The method persist($entity) does not need to be called on the
entity manager again.

Removing an Entity

Removing an existing entity can easily be done through the entity manager, if a handle to
aloaded entity is available:

1 <?php
2 $em->remove($post);
3 $em->flush();

The SQL statement needed to physically delete the record in the database is not
issued as long as flush() has not yet been invoked.

Sorting an Association

When accessing entities via an association, the order of the entities retrieved is not
defined. As a part of the entity mapping definitions, one can define the order of entities
using the @0rderBy annotation. If we get back to our demo application, we could define
the order ofaUser’s Posts in such a way that the most recent Post is shown first in its
list of Posts, simply by modifying the mapping configuration in the User entity:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users"
7 *

8 class User

9 |

10 /7 [..]

75

CHAPTER 7 ' MANAGING ENTITIES

11

12 /**

13 * @0neToMany (targetEntity="Entity\Post", mappedBy="user")
14 * @0rderBy({"id" = "DESC"})

15 */

16 private $posts;

17

18 /7 [..]

19 }

Alternatively, you can sort a collection usng PHP after retrieving the entities from the
database.

Removing an Association

Removing an association is as straightforward as removing an entity:

<?php

$newPost = new \Entity\Post();

$newPost->setTitle('A new post!');
$newPost->setContent('This is the body of the new post.');
$user = $em->getRepository('Entity\User')->findOneById(1);
$newPost->setUser($user);

$em->flush();

LW oo~NOUVT B WN R

$newPost->setUser (null);
$em->flush();

[y
o

In the example above, a new Post entity is created. Then, an existing User entity is
loaded and associated with the new post. After flushing, the reference has been persisted
to the database. Next, we remove the association again by setting User to null. After the
next flushing, the reference is gone in the database.

We need to keep in mind here that we have established a bidirectional relationship
between the User and its Posts, and the Post entity is the owning side of the association.
If, for example, we would take the User entity and remove the Post from its collection
$posts, nothing would happen on flushing:

<?php

/7 [..]
$user->getPosts()->removeElement($newPost);
$em->flush();

B~ w N R

The removeElement () method, which is used to remove an element from a given
Doctrine 2 collection based on an entity loaded, is without the desired effect. However,
there is an effect. While the change won't be persisted, the element has been removed
from the collection in RAM. One won't find the element anymore when looking it up in
the collection.

76

CHAPTER 7 ' MANAGING ENTITIES

Lifecycle Events

When working with entities, several events are triggered by Doctrine 2:

preRemove: Occurs for a given entity before the respective
EntityManager remove operation for that entity is executed.

postRemove: Occurs for an entity after the entity has been
deleted. It will be invoked after the database delete
operations.

prePersist: Occurs for a given entity before the respective
EntityManager persist operation for that entity is executed.

postPersist: Occurs for an entity after the entity has been
made persistent. It will be invoked after the database insert
operations.

preUpdate: Occurs before the database update operations to
entity data.

postUpdate: Occurs after the database update operations to
entity data.

postLoad: Occurs for an entity after the entity has been loaded
from the database.

With loadClassMetadata, onFlush, and onClear, additional events are triggered
that are persistence-related, but are not specific to a single entity.

With these events available, you can hook into persistence processing, with a so-
called lifecycle callback, which is implemented as a method of an entity class.

Let’s assume we want to add login data for each User to our demo application. While
the username can be picked by the user, the password is auto-generated on signup. This
can be achieved by adding a lifecycle callback to the User class:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @HaslifecycleCallbacks
7 * @Table(name="users")

8 ¥/

9 class User

10 {

11 /7 [..]

12

13 const GENERATED PASSWORD LENGTH = 6;
14

15 /7 [..]

16

77

CHAPTER 7 ' MANAGING ENTITIES

17 /** @PrePersist */

18 public function generatePassword()

19 {

20 for($i = 1; $i <= self::GENERATED PASSWORD LENGTH;
$i++) {

21 $this->password .= chr(rand(65, 90)); // 65 ->

A, 90 -> Z

22 }

23 }

24}

First, we need to declare that lifecycle callbacks are present by using the @
HasLifecycleCallbacks annotation. Then we add the lifecycle annotation @PrePersist
to the generatePassword() method.

That’s it! Now, before persisting a new entity, this method is called automatically,
and the User’s password is auto-generated.

Cascading Operations

When creating a new entity or modifying an existing one, all operations by default affect
only a single entity. A powerful, but somewhat dangerous, feature is the option to define
“operation cascades.” Let’s consider the following example. If we delete a User in our
demo application, we also want all of its Posts to be deleted. This can be achieved by
adding the cascade attribute to the association definition:

1 <?php

2 namespace Entity;

3

4 /FF

5 ¥ @Entity

6 * @HaslifecycleCallbacks

7 * @Table(name="users"

8 */

9 class User

10

11 /7 [..]

12

13 /**

14 * @0neToMany (targetEntity="Entity\Post", mappedBy="user",
cascade={"remove"})

15 */

16 private $posts;

17

18 /7 [..]

19 }

Now, when removing a user via

78

CHAPTER 7 ' MANAGING ENTITIES

<?php

$user = $em->getRepository('Entity\User')->find($id);
$em->remove($user);

$em->flush();

B S N

the User is gone, and so are all its Posts. When setting cascade to value all, the
cascade will be applied on other operations, such as persist, as well.

When adding the cascade attribute, the side matters. In the code shown above, all
referenced Post entities are removed when a User is removed. When adding cascade to
the Post entity as shown in the following code, the User entity will be removed if one of its
referenced Post entities is deleted:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity(repositoryClass="Repository\Post")

6 * @Table(name="posts")

7%

8 class Post

9 |

10 /7 [..]

11

12 /¥

13 * @ManyToOne (targetEntity="Entity\User", inversedBy="posts",
cascade={"remove"})

14 * @JoinColumn(name="user id", referencedColumnName="1id")

15 */

16 protected $user;

17

18 /7 [..]

19 }

Assuming that this is not the desired behavior, it is absolutely crucial to verify the
cascade configuration to prevent data loss.

Another way to achieve automatic deletion of referenced entities as shown above is
orphan removal for one-to-one and one-to-many associations. Orphan removal means
Doctrine 2 will automatically remove referenced entities without a parent entity:

Jx*
* @Entity

* @HaslifecycleCallbacks
* @Table(name="users")
*/

class User

{
/7 [..]

O oo~NOUVT B W N B

79

CHAPTER 7 ' MANAGING ENTITIES

10 /**

11 * @0neToMany (targetEntity="Entity\Post", mappedBy="user",
orphanRemoval=true)

12 private $posts;

13

14 /7 [..]

15}

Again, when the User is gone, all of its Posts are also gone.

While cascading operation are useful, they can be expensive. The reason is that all
operations on the referenced entities happen in RAM. The entities must first be loaded
and reconstructed from the database, and then modified. Depending on the size of the
collection, this could be resource intensive.

Luckily, Doctrine 2 also offers “database level” cascading operations for updates and
deletes via the @JoinColumn annotation:

<?php
namespace Entity;

/**

1
2
3
4
5 * @Entity(repositoryClass="Repository\Post")
6 * @Table(name="posts")

7

8

9

*/
class Post
{
10 /**
11 * @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
12 * @JoinColumn(name="user id", referencedColumnName="id",
onDelete="CASCADE")
13 */
14 protected $user;
15
16 /7 [..]
17}

Transactions

A transaction is an atomic unit of one or more database statements. All insert, update, or
delete operations done through the entity manager are queued, as long as the flush()
method has been called on the entity manager. Technically speaking, the queue is an
implementation of the so-called unit of work' pattern. When calling flush(), all queued
operations in the unit of work are fired against the database as a single transaction. If one
of these operations fails Doctrine 2 automatically rolls back the entire transaction—that is,
all operations queued—and then quits, itself, to prevent data loss due to inconsistencies.

'http://martinfowler.com/eaaCatalog/unitOfWork.html

80

http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/unitOfWork.html

CHAPTER 7 ' MANAGING ENTITIES

Doctrine 2 offers a convenient way to wrap several database operations into a
single transaction. The following code demonstrates how to “reset” a User in the demo
application. First, the existing User is deleted, then a new one is created by using its
current first and last name:

1 <?php

2/ [..]

3 $em->transactional (function($em) {

4 $oldUser = $em->getRepository('Entity\User')->find(1);
5 $newUser = new Entity\User();

6 $newUser->setFirstName($oldUser->getFirstname());

7 $newUser->setLastName($oldUser->getLastname());

8 $em->persist($newlser);

9 $em->remove($oldUser);

10 });

Both operations take effect only if no exception was thrown for either of them.
Otherwise, both operations are rolled back.

Another issue may arise when two or more persons simultaneously work on the same
sets of data, which is not unlikely for web applications. Doctrine 2 fully supports a strategy
called optimistic locking. The core idea behind optimistic locking is that multiple users
can all read data sets, however, whenever changing data, only the first person writing is
privileged to persist its changes. All other users, now working with an outdated version
of the entity, will get an exception when trying to persist their individual changes. As this
strategy allows for concurrent reading operations and controls only write operations, read-
intensive applications won’t be slowed down, compared to a pessimistic locking strategy.

To make optimistic locking happen, Doctrine 2 allows us to add a special integer or
datetime version field to an entity. The current value of this field is compared to the value
loaded before, and if it doesn’t match on write, an OptimisticlLockException is thrown.
If this happens, another user must have already modified the entity. A version field can be
set up by adding the @Version annotation:

<?php
namespace Entity;

/¥*

1
2
3
4
5 * @Entity(repositoryClass="Repository\Post")
6 * @Table(name="posts")

7

8

9

*/
class Post
{
10 /7 [..]
11
12 /** @Version @Column(type="integer") */
13 protected $version;
14
15 /7 [..]
16 }

81

CHAPTER 7 ' MANAGING ENTITIES

When creating the corresponding data schema via Doctrine 2, a column called
version is added to the posts table. For every new Post entity, Doctrine 2 automatically
assigns a value of 1. The value is increased by one with each subsequent modification:

$post = $em->getRepository('Entity\Post')->find(1);
$post->setTitle("New title");

$em->flush();

$em->clear();

$post = $em->getRepository('Entity\Post')->find(1);
$post->setTitle("Again, a new title");
$em->flush();

N ouviph wWwN e

The code shown above modifies the Post entity two times with an ID value of
1. After both changes have been applied, the value column has a value of 3.
The $em->clear() statement is important here: if we omit it, we would produce an
OptimisticLockException ourselves. The reason is that changing the title to “New
title” and flushing the entity manager increments the version value for this entity by
one in the database. However, the value stored in the Post entity object in RAM still
has the old value of 1, and therefore is now outdated—it is not being updated to the
latest version value automatically. Therefore, trying to modifying the title again will fail
with an OptimisticlLockException. The same will be true if we try to persist changes
to an entity which has been modified in the meantime by somebody else. How an
OptimisticLockException situation is handled is fully up to the application developer.

Summary

In this chapter, we got our hands dirty creating and manipulating entities programatically.
We also looked at the entity lifecycle and cascading features making our code even more
compact, but also introduces some ,,magic“ and should be used with care. Transactions
are another major aspect of data persistence and is covered well by Doctrine. For the most
part, Doctrine already takes care of proper transaction demarcation for you: All the write
operations are queued until EntityManager#flush() is invoked which wraps all of these
changes in a single transaction. However, Doctrine also allows (and encourages) you to
take over and control transaction demarcation yourself.

82

CHAPTER 8

Doctrine Query Language -

Introduction

Earlier in this book, we learned about repositories, containers for entities of a specific
type. They are used to look up entities by specific criteria, do updates or deletes, and
so on. They do their work with the help of finder methods, which are implemented
using Doctrine’s own entity query language DQL, the Doctrine Query Language. Strictly
speaking, DQL is not bound to finder methods or repositories; however, it is usually good
practice to put all DQL statements there, just to keep things organized.

DQL itself is a language to query entities. It looks much like SQL, which makes learning
DQL easier, but it isn’t SQL. While DQL statements can be written as a string like this

<?php
/7 [..]
$query = $em->createQuery (
"SELECT u FROM Entity\User u WHERE u.lastName = "Mustermann"'
)

$users = $query->getResult();

~Nouvihs WwWN R

it is much more convenient to use the query builder, especially when constructing
dynamic queries:

1 <?php

2 /7 [..]

3 $gb = $this->_em->createQueryBuilder();

4

5 $gb->select('u’)

6 ->from('Entity\User', 'u')

7 ->where($gb->expr()->eq('u.lastName', '?1'))
8 ->setParameter(1, "Mustermann");

9

10 $users = $qb->getQuery()->getResult();
© Michael Romer 2016 83

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_8

CHAPTER 8 " DOCTRINE QUERY LANGUAGE

We assume that $this->_emholds a reference to the entity manager (which is true
for every repository that extends Doctrine\ORM\EntityRepository). The entity manager
is capable of providing a query builder, which in turn can be used to programmatically
construct a query. Thanks to its fluent interface, the code looks pretty elegant. In contrast
to the first example, we also utilize value parameters and the Expr class, which we will
look at in detail in a minute.

Retrieving Results

When executing a query, multiple options exist for retrieving results. When calling
getResult() on a query object, a PHP array is returned containing all matching entity
objects. Alternatively, getArrayResult() can be used to get all data in the form of an
array. No objects are returned, only all entities’ data as an array in a container array. This
is useful when dealing with large datasets or for simple display tasks, where no objects are
needed in the processing. The method getScalarResult() returns a similar result, but
fully flat, not nested at all. When a single result is desired, calling getSingleResult() or
getSingleScalarResult() will do. Method getOneOrNullResult() may be used if null is
desired when no match was found.

If a query includes objects as well as scalar values as well, the result set returned is
called “mixed”:

1 <?php

2 /7 [..]

3 $gb = $this-> em->createQueryBuilder();

4

5 $gb->select('u')

6 ->addSelect ($gb->expr()->concat('u.firstName', 'u.lastName'))
7 ->from('Entity\User', 'u")

8 ->where($qb->expr()->eq('u.lastName', '?1'))
9 ->setParameter(1, "Mustermann");

10

11 $users = $gb->getQuery()->getResult();

In this query, we not only retrieve entities, but also concatenate the user’s first and
last names. The result of the query looks like this:

1 array

2 (0]

3 [0] => Object

4 [1] => "Max Mustermann"
5 (1]

6 /..

The result set can be limited, via setFirstResult($offset) and
setMaxResults($1imit), as when building a pagination feature.

Another feature Doctrine 2 offers is retrieving partial objects, entities which have
been only partially recreated from the database. To retrieve a partial object, a special
syntax is required:

84

CHAPTER 8 " DOCTRINE QUERY LANGUAGE

1 <?php

2 //[..]

3 $gb = $this->_em->createQueryBuilder();

4

5 $gb->select('partial u.{id, firstName}"')

6 ->from('Entity\User', 'u")

7 ->where($gb->expr()->eq('u.lastName', '?21"))
8 ->setParameter(1, "Mustermann");

9

10 $users = $qb->getQuery()->getResult();

This way, we get back partly reconstituted User objects from the database. When
omitting the partial syntax and simply stating individual fields, the result is a plain array
without objects:

1 array(1) {
2 [0]=>

3 array(2) {

4 ["id"]=> int(1)
5 ["firstName"]=> string(3) "Max"
6
7

}

It's important to always include the identifier (id in this case) in a partial object
definition. Otherwise an exception is thrown.

While Partial objects can be very helpful, such as while tweaking the performance
of an app, they can be problematic as well. Code dealing with partial objects needs to be
aware of the fact that no “real” entities are returned, and certain fields or associations
might not be available. Use partial objects with care.

Constructing Basic Queries

The query builder provides methods for the different parts of a query, such as the one
shown above:

e public function select($select = null);

e public function delete($delete = null, $alias = null);

e public function update($update = null, $alias = null);
¢ public function set($key, $value);

e public function from($from, $alias = null);

e public function where($where);

e public function andWhere($where);

e public function orWhere($where);

e public function groupBy($groupBy);

85

CHAPTER 8

86

DOCTRINE QUERY LANGUAGE

public function addGroupBy($groupBy);
public function having($having);

public function andHaving($having);

public function orHaving($having);

public function orderBy($sort, $order = null);

public function addOrderBy($sort, $order = null);

Expressions like the ones shown above are built using an Expr object, which is
provided by the query builder when calling its expr () method. The Expr object provides
several methods with which to construct an expression:

public function andX($x = null);
public function orX($x = null);
public function eq($x, $y);
public function neq($x, $y);
public function 1t($x, $y);

public function Ite($x, $y);
public function gt($x, $y);

public function gte($x, $y);
public function isNull($x);
public function isNotNull($x);
public function prod($x, $y);
public function diff($x, $y);
public function sum($x, $y);
public function quot($x, $y);
public function exists($subquery);
public function all($subquery);
public function some($subquery);
public function any($subquery);
public function not($restriction);
public function in($x, $y);

public function notIn($x, $y);
public function like($x, $y);

public function between($val, $x, $y);

1
2
3
4
5
6
7
8
9

10

CHAPTER 8

public function trim($x);
public function concat($x, $y);
public function lower($x);
public function upper($x);
public function length($x);
public function avg($x);
public function max ($x);
public function substr($x, $from, $len);
public function min($x);
public function abs($x);
public function sqrt($x);
public function count($x);

public function countDistinct($x);

DOCTRINE QUERY LANGUAGE

Expressions are used in the SELECT, WHERE, HAVING or GROUP part of a query. However,
the query shown above can also be created without using the Expr class:

<?php

$gb = $this->_em->createQueryBuilder();

$qb->select('u')
->addSelect("CONCAT(u.firstName, u.lastName)")

->from('Entity\User', 'u")
->where('u.lastName = ?1")
->setParameter(1, "Mustermann");

$users = $qb->getQuery()->getResult();

This might be necessary sometimes, since not every function or arithmetic operator
can be constructed via the Expr class. The following aggregate functions are allowed in
SELECT and GROUP BY clauses:

AVG
COUNT
MIN
MAX
SUM

87

CHAPTER 8 " DOCTRINE QUERY LANGUAGE

“

a

LW oo~NOUVT B WN R

(R
R O

88

The following functions are supported in SELECT, WHERE, and HAVING clauses:

IDENTITY
ABS(arithmetic_expression)
CONCAT(str1, str2)
CURRENT_DATE()
CURRENT_TIME()
CURRENT_TIMESTAMP()
LENGTH(str)

LOCATE(needle, haystack [, offset])
LOWER(str)

MOD(a, b)

SIZE(collection)

SQRT(q)

SUBSTRING(str, start [, length])
TRIM([LEADING | TRAILING | BOTH] [“trchar” FROM] str)
UPPER(str)

DATE_ADD(date, days, unit)
DATE_SUB(date, days, unit)
DATE_DIFF(datel, date2)

Values can be given for placeholders within queries via setParameter() or
setParameters($array). In the example shown above, number placeholders are used
(starting with a “?” symbol). Alternatively, a string placeholder may be used (starting with

R

<?php

:” symbol):

/7 [..]
$gb = $this->_em->createQueryBuilder();

$qb->select('u")

->addSelect ($gb->expr()->concat('u.firstName', 'u.lastName'))
->from('Entity\User', 'u")
->where($qb->expr()->eq('u.lastName', ':lastName'))
->setParameter("lastName", "Mustermann");

$users = $qb->getQuery()->getResult();

CHAPTER 8 " DOCTRINE QUERY LANGUAGE

Whichever way is preferred, one needs to stick to it within a query. Mixing is not

allowed.

Constructing Join Queries

Doctrine 2 supports two different types of joins. While regular joins are needed, for
example, to limit results via a WHERE clause, so-called fetch joins are used to fetch related
entities for further usage:

COwWwoo~NOUVI B WN R

[
[N

<?php
/7 [..]
$gb = $this->_em->createQueryBuilder();

$qb->select('u', 'c')
->from('Entity\User', 'u')
->leftJoin('u.contactData', 'c')
->where($gb->expr()->eq('u.lastName', '?1'))
->setParameter(1, "Mustermann");

$users = $gb->getQuery()->getResult();

The select('u', 'c') makes the join a fetch join. The referenced ContactData

object is part of the result set. However, when omitting the 'c' in the select clause, the
ContactData object is not part of the result anymore, however, it can still be used, for
example, within the where clause:

COwWwoo~NOUVI P WN R

[
AW R

<?php
/7 [..]

$gb = $this-> em->createQueryBuilder();

$qb->select('u’
->from('Entity\User', 'u')
->leftJoin('u.contactData', 'c')
->where($qb->expr()->eq('u.lastName', '?1'))
->andwhere($gb->expr()->eq('c.email’, '?2'))
->setParameter(1, "Mustermann")
->setParameter(2, "max.mustermann@example.com");

$users = $qb->getQuery()->getResult();

89

CHAPTER 8 " DOCTRINE QUERY LANGUAGE

Summary

We covered the most fundamental aspects of Doctrine’s very own query language. As
said earlier, DQL itself is a language to query entities. It looks much like SQL-which
makes learning DQL easier- but it isn’t SQL. When working with Doctrine, a proper
understanding of DQL is needed.

90

CHAPTER 9

Command Line Tools

Doctrine 2 ships with powerful command line support. The command line tools can
broadly be divided into those that support a database abstraction layer (DBAL-related
operations) and those that provide object-relational mapping (ORM-related operations).
Alist of all commands available can be printed via the 1ist command:

1 $./doctrine list

The help command, or the command parameter --help in conjunction with other
commands, prints the instructions for a given command. For example, if we need help
dealing with the orm: info command, we can ask for help like this:

1 $./doctrine orm:info --help
This will also work:
1 $./doctrine help orm:info

Both commands print the identical output to the console.

Setting Up the Command Line Tools

Before Doctrine 2 can be used on the command line, some basic configuration code
is needed. Like the application itself, the command line tools require a ready-to-go
database connection and entity manager if ORM-related commands are needed.

The configuration of the command line tools first looks somewhat strange. Doctrine
2 requires that a file called c1i-config.php exists within the folder in which the tools
are executed on the command line. If Doctrine 2 was installed using Composer, the
command line tools are located in vendor/bin. Therefore, this is the place where a file
called cli-config.php needs to be set up with the following basic code:

1 <?php
2 include '../../vendor/autoload.php';
3
4 use Doctrine\ORM\Tools\Setup;
© Michael Romer 2016 91

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_9

CHAPTER 9 ©' COMMAND LINE TOOLS

use Doctrine\ORM\EntityManager;

5

6

7 $paths = axrray(_ DIR__ . "/../../entity/");
8 $isDevMode = true;

9

10 $dbParams = array(

11 "driver' => 'pdo_mysql',
12 'user' => 'root',

13 "password’ => '',

14 "dbname’ => ‘app’,

15);

16

17 $config = Setup::createAnnotationMetadataConfiguration($paths,$isDevMode);
18 $em = EntityManager::create($dbParams, $config);

20 $helperSet = new \Symfony\Component\Console\Helper\HelperSet (array(
21 'db' => new \Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper(
22 $em->getConnection()

23),

24 'em' => new \Doctrine\ORM\Tools\Console\Helper\EntityManagerHelpexr(
25 $em

260)

27));

The code shown above is similar to the index. php file used in the demo app. First,
autoloading is configured, then the entity manager is instantiated. If both clients, the web
application and the command line tools, share the same credentials, externalizing this
data may be helpful.

When the command line tools are invoked, Doctrine 2 automatically includes
the cli-config.php file and also looks for a so-called helper set defined in the global
namespace. The helper set provides the command line tools with the database connection
via key db (needed for the DBAL commands) as well as the entity manager via key em
(needed for the ORM commands).

DBAL Commands
Execute an SQL Statement

SQL commands can easily be executed via the command line with Doctrine’s command
line tooling. The command dbal:run-sql requires a single parameter, a valid SQL
statement:

1 $./doctrine dbal:run-sql "SELECT * FROM users;"

The result of the query is printed to the console.

92

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 9 ©' COMMAND LINE TOOLS

Import SQL Files

If you need to execute multiple statements, importing an SQL file via the. /doctrine
dbal:import command might be a great option. It takes one or more paths to SQL files,
delimited by space:

1 $./doctrine dbal:import /tmp/import-data.sql

ORM Commands
Validate Persistence Configuration

One of the most helpful commands is orm: validate-schema, which validates the current
persistence configuration and makes sure that it matches the existing data schema in the
database. If all is good, the following command prints a positive message to the console:

1 $./doctrine orm:validate-schema
2 > [Mapping] OK - The mapping files are correct.
3 > [Database] OK - The database schema is in sync with the mapping files.

The command orm: info prints an overview of the application entities known to
Doctrine:

1 $./doctrine orm:info

2 > Found 2 mapped entities:
3 > [OK] Entity\Post

4 > [OK] Entity\User

The Schema Tool

With the help of the commands
1. orm:schema-tool:create,
2. orm:schema-tool:drop
3. orm:schema-tool:update

one can manipulate a database data schema based on the entity persistence
configuration. However, when running these commands, nothing actually happens—it’s
just a “dry run”. If the commands are executed with parameter --dump-sql, again, only

a dry run occurs. However, this time, the schema tool prints all SQL statements, which
would otherwise have been fired against the database, to the screen. Only if one uses the
parameter --force, does the schema tool finally execute the statements:

1 $./doctrine orm:schema-tool:drop --force

93

CHAPTER 9 ©' COMMAND LINE TOOLS

The command shown above makes all tables and data disappear:

1 > Dropping database schema...
2 > Database schema dropped successfully!

o Danger! Potential loss of data! The schema tool can delete tables and/or data.
Use these commands with caution.

The execution of
1 $./doctrine orm:schema-tool:create
creates the data structure from scratch, while
1 $./doctrine orm:schema-tool:update
migrates an existing data schema from status quo to match the current persistence

configuration, if the existing data schema is not yet up-to-date.

Generate Commands

With the help of the command orm: generate-proxies, the proxy classes for the entities
defined can be created, which otherwise are created by Doctrine 2 automatically when
needed. Via the command orm:generate-entities, the entity classes themselves can
be generated; this is especially helpful if the persistence configuration is given via XML or
YAML. Executing the command

1 $./doctrine orm:generate-entities /tmp

creates the entity classes in /tmp, or to be precise, in /tmp/Entity. More options for
the command orm: generate-entities can be identified running the following command:

1 $./doctrine orm:generate-entities --help
With the help of the command orm: generate-repositories, repository classes can

also be auto-generated.

Execute a DQL Command

Similar to dbal:run-sql, DQL statements can also easily be executed using the command
orm:run-dql.

94

CHAPTER 9 ©' COMMAND LINE TOOLS

Cache-Related Commands
With the commands

1. orm:clear-cache:metadata,

2. orm:clear-cache:query

3. orm:clear-cache:result

the various Doctrine caches can be purged. These commands are especially helpful when
deploying a new application version. They make sure that no outdated configuration or
data is used in conjunction with a new application version—usually, this would lead to
unrecoverable errors.

Converting Commands

Rarely used, but very helpful, are the commands oxrm: convert-di-schema and
orm:convert-mapping. The command orm: convert-di-schema is used to transform the
old Doctrine 1 persistence configuration format to the one used by Doctrine 2, which

is very handy when upgrading an existing application. The command orm:convert-
mapping, on the other hand, allows you to go from one Doctrine 2 mapping format to
another, such as from XML to YAML.

Production-Ready Configuration

The following command validates that Doctrine’s configuration is ready for production
usage:

1 $./doctrine orm:ensure-production-settings
If this is the case, it prints a positive message on the console:
1 > Environment is correctly configured foxr production
Many configuration aspects can cause a negative result. This could be missing proxy

classes created by running the proper command or missing caches. Both are considered
by Doctrine 2 to be a requirement for usage in productive systems.

o Custom commands Doctrine 2 allows you to develop custom commands that can
be hooked into the command line tooling. More information about this topic can be found in
the official documentation.

thttp://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands

95

http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands
http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands
http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands

CHAPTER 9 ©' COMMAND LINE TOOLS

Summary

The Doctrine CLI tools are extremely helpful. They can be used in shell or build scripts
and also serve well when importing external data such as test fixtures or dealing with
database schema changes. Since the CLI tools are also extendable, they are very versatile
and should be part of every developer’s toolkit.

96

CHAPTER 10

Caching

Introduction to ORM Cache Types

Due to its nature and the way Doctrine 2 works, applications using Doctrine 2 naturally
run a bit slower than others. However, with good caching strategies applied, this issue
can be almost completely eliminated. Doctrine 2 ORM brings native support for three
different types of caches: the “meta cache,” the “query cache,” and the “result cache.”
When setting up the entity manager, the different caches can be added to the entity
manager’s configuration. In addition, the cache instance might be used for custom values
as well.

Caching Backends

Cached data can be stored in different so-called caching backends. Doctrine 2 supports
multiple technologies to be used as caching backends:

e ApcCache (requires ext/apc)

e ArrayCache (in memory, lifetime of the request)

e FilesystemCache (not optimal for high concurrency)
¢ MemcacheCache (requires ext/memcache)

e MemcachedCache (requires ext/memcached)

e PhpFileCache (not optimal for high concurrency)

e RedisCache.php (requires ext/phpredis)

¢ WinCacheCache.php (requires ext/wincache)

e XcacheCache.php (requires ext/xcache)

e ZendDataCache.php (requires Zend Server Platform)

Based on the situation or technologies used, you can choose between the different
technologies.

© Michael Romer 2016 97
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_10

CHAPTER 10 I CACHING

Metadata Cache

The metadata cache holds the entity mapping data given as annotations or external
XML or YAML files. Caching this data means that Doctrine 2 does not need to perform
reflection or XML or YAML parsing for every single request, which saves a significant
amount of processing time.

When setting up the entity manager, the cache can easily be configured:

1 <?php

2/ [..]

3 $paths = array(_ DIR . "/../src/Entity/");

4 $isDevMode = false;

5

6 $dbParams = array(

7 "driver' => 'pdo_mysql’,

8 'user' => 'root’',

9 'password’ => "',

10 "dbname’ => ‘app’,

1);

12

13 $config = Setup::createAnnotationMetadataConfiguration(
14 $paths, $isDevMode

15);

16

17 $config->setMetadataCacheImpl(

18 new \Doctrine\Common\Cache\FilesystemCache('/tmp/doctrine2")
19);

20

21 $em = EntityManager::create($dbParams, $config);

In the configuration shown above, we tell Doctrine 2 to cache metadata locally in the
filesystem. We could use other caching backends here as well. The caching path needs
to be given when using the FilesystemCache. Next time, when entities are processed,
Doctrine 2 starts setting up a somewhat cryptic files and folders structure in the given
caching path. Luckily, you don’t need to care about it—Doctrine 2 takes care of all things
caching. We only need to make sure that the caching path given is writable to Doctrine
2. When caching via Memcached or Redis, these services need to be up and running and
accessible to Doctrine 2, as well. If not, an exception will be raised.

Query Cache

The query cache ensures that DQL statements need to be translated into SQL only once.
This again speeds up a Doctrine 2 application significantly:

1 <?php
2 /7 [..]
3 $paths = array(_ DIR . "/../src/Entity/");

98

14

15
16
17

CHAPTER 10 CACHING

$isDevMode = false;

$dbParams = array(
"driver' => 'pdo_mysql',
'user' => 'root’,
'password’ => "',
"dbname’ => 'app’,

);

$config = Setup::createAnnotationMetadataConfiguration($paths,
$isDevMode);

$cachingBackend = new \Doctrine\Common\Cache\FilesystemCache('/tmp/
doctrine2');

$config->setMetadataCacheImpl($cachingBackend);
$config->setQueryCacheImpl($cachingBackend);

$em = EntityManager::create($dbParams, $config);

In the configuration shown above, we first set up a general caching backend, which

now powers both the metadata cache and the query cache.

Result Cache

Last but not least, there is the result cache. The use of a result cache prevents executing
the same queries against the database again and again:

O oo~NOUVT B W N R

PR R R
W N Rk O

14

15
16
17
18

<?php

/7 [..]

$paths = array(_ DIR . "/../src/Entity/");
$isDevMode = false;

$dbParams = array(
"driver' => 'pdo_mysql',
'user' => 'root',
"password’ => '',
"dbname' => ‘app’',

)5

$config = Setup::createAnnotationMetadataConfiguration($paths,
$isDevMode);

$cachingBackend = new \Doctrine\Common\Cache\FilesystemCache('/tmp/
doctrine2');

$config->setMetadataCacheImpl($cachingBackend);
$config->setQueryCacheImpl($cachingBackend);
$config->setResultCacheImpl($cachingBackend);

$em = EntityManager::create($dbParams, $config);

99

CHAPTER 10 I CACHING

Via method setResultCacheImpl(), the result cache now is ready for action. In
contrast to the two other caching types, you have to actively tell Doctrine 2 to cache
results for a given query:

<?php

/7 [..]
$query = $em->createQuery($dqlString);
$query->useResultCache(true);

Ui B W N R

Now, the result is cached.

Summary

Since object-relational-mapping results in a noticeable runtime overhead, caching is
essential for high speed. In fact, in production, caching is a must and should be setup
right from the beginning.

100

CHAPTER 11

Advanced Topics

Framework Integrations

If one of the popular PHP frameworks is used for an application, integration of Doctrine
mostly can be easily done. As an example, we will walk through the process of integrating
Doctrine into a Zend Framework 2 application. If you are using a different framework,
the official framework documentation or a quick web search usually brings up a suited
tutorial.

The easiest way to use to Doctrine 2 with Zend Framework 2 (ZF2) is a Composer
based installation. The ZF2 module doctrine-orm-module' not only ships the glue code
to make both libraries work together, but also ensures that the Doctrine 2 library itself is
downloaded and installed in an existing ZF2 application. One simply needs to add the
following line to the require block of the projects’ composer. json file:

1 "doctrine/doctrine-orm-module": "dev-master"
You must also add the following line above the require block:
1 "minimum-stability": "alpha"
If this configuration is missing, Composer might refuse to install the module. In fact,
with this configuration, we tell Composer to install even non-stable modules.
The following commands start the download and the installation process:
1 $ php composer.phar update
Asyou can see, a whole bunch of other ZF2 modules and additional libraries are
downloaded. Last but not least, two ZF2 modules must be activated via the application.
config.php:
<?php
return array(

1

2

3 ‘modules' => array(

4 "Application’,

'https://github.com/doctrine/DoctrineORMModule

© Michael Romer 2016 101
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_11

https://github.com/doctrine/DoctrineORMModule
https://github.com/doctrine/DoctrineORMModule

CHAPTER 11 I ADVANCED TOPICS

5 'DoctrineModule’,

6 'DoctrineORMModule’

7)5

8 'module listener options' => array(

9 'config_glob_paths' => array(
10 "config/autoload/{,*.}{global,local}.php',
1)5
12 'module_paths' => array(

13 './module’,
14 './vendor',
15)5

16)5

17);

The modules register several services in Main Service Manager, all starting with
the label “doctrine,” such as doctrine.cache.apc and doctrine.sqlloggercollector.
ormdefault.

The entity manager can be obtained using a long-winded label:

1 <?php
2 //[..]
3 $this->getServicelocator()->get('doctrine.entitymanager.orm default');

But before this will work, some additional configuration is needed. Doctrine 2 needs
to know where the entity classes are located and what the caching strategy looks like.
The following example from the module. php tells Doctrine that the mappings are given
as annotation, the entities are locatedin _ DIR__ . '/../src/Application /Entity',
and caching takes place via PHP arrays:

1 <?php

2 /7 [..]

3 'doctrine' => array(

4 "driver' => array(

5 ‘my_annotation_driver' => array(

6 ‘class' => 'Doctrine\ORM\Mapping\Driver\

AnnotationDriver',

7 ‘cache' => 'array’,

8 'paths' => array(_ DIR__ . '/../src/Application/
Entity')

9

10)

1)

12 /7 [..]

102

CHAPTER 11 ADVANCED TOPICS

To allow other ZF2 modules to provide entities to the application, a so-called Driver

Chain allows us to combine multiple entity sources even with different mapping formats
and caching strategies:

AUV B~ WN B

oo

10
11
12
13
14
15
16
17

<?php
/7 [..]
"doctrine' => array(
"driver' => array(
'my_annotation driver' => array(
"class' => 'Doctrine\ORM\Mapping\Driver\
AnnotationDriver',
'cache' => 'array',
'paths' => array(_DIR__ . '/../src/
Application/Entity")
)
"orm default' => array(
"drivers' => array(
"Application\Entity' => 'my_annotation_driver’

)
/0[]

Now the database connection must be configured. Usually, a dedicated config file in

the autoload folder is used, e.g. db.local. php:

SV B WN B

<?php
return array(
"doctrine' => array(
‘connection’ => array(
"orm_default' => array(
"driverClass' => 'Doctrine\DBAL\Driver\
PDOMySql\Driver"',
"params’ => array(
"host' => 'localhost’,
'port' => '3306',
'user' => 'username',
"password’ => 'password',
"dbname’ => 'database',

)s
);

103

CHAPTER 11 I ADVANCED TOPICS

LW oo~NOUVT B WN R

A DA PAPPAPPALPPAEAPDWLWWWWWWWWWNNNNNNNNNNRRRPRRRPRREPRREPRPR
ooV hWNRPRPROOVONOOCUAARWNPRPROWOVOONOULDRWNROOVONOUTIBWNLERELO

104

Once done, we can start dealing with entities (e.g. a Product entity) through Doctrine 2:

<?php
namespace Application\Entity;

use Doctrine\ORM\Mapping as ORM;

Jx*

* @ORM\Entity

* @ORM\Table(name="product")
*/

class Product

{

Vs

* @ORM\Id @ORM\Column(type="integer")
* @ORM\GeneratedValue

*/

protected $productld;

/** @ORM\Column(type="string", nullable=true) */
protected $name;

/** @ORM\Column(type="integer") */
protected $stock;

/** @ORM\Column(type="string", nullable=true) */
protected $description;

/** @ORM\Column(type="string", nullable=true) */
protected $features;

public function setDescription($description)

{

$this->description = $description;
}
public function getDescription()
{

return $this->description;

}
public function setFeatures($features)
{

$this->features = $features;
}

public function getFeatures()

{

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

AUV B WN R

}

CHAPTER 11

return $this->features;

}
public function setProductId($productId)
{
$this->productId = $productld;
}
public function getProductId()
{
return $this->productId;
}
public function setName($name)
{
$this->name = $name;
}
public function getName()
{
return $this->name;
}
public function setStock($stock)
{
$this->stock = $stock;
}
public function getStock()
{
return $this->stock;
}

ADVANCED TOPICS

From a controller, a finder method provided by a repository can be accessed like this:

<?php
/7 [..]

$this->getServicelocator()->get('doctrine.entitymanager.orm default"')

/0[]

->getRepository('Application\Entity\Product")
->findOneByProductId($id);

105

CHAPTER 11 I ADVANCED TOPICS

The Doctrine 2 command line tools are available as well. You simply bring up a
command line and change to the project’s root folder:

1 $ php vendor/bin/doctrine-module orm:validate-schema

Native SQL Statements

Doctrine 2 ships with a special class called NativeQuery that allows you to execute
native SQL select statements and to map the results returned to entity objects. The same
operations that work out-of-the-box with Doctrine 2 can be implemented by hand in
cases where native queries are needed or where they are the better solution to a problem.
NativeQuery allows you to retrieve “raw data” and then subsequently work with entity
objects. The official documentation? holds further information about how to properly
implement native SQL statements.

Lastly, in general, one needs to remember that it’s always possible to execute
arbitrary SQL statements via the underlying database connection:

1 <?php
2/ [..]
3 $em->getConnection()->exec('DELETE FROM posts');

While this is possible, it should always be the last resort. It bypasses the Entity
Manager and might produce hard-to-debug issues and data inconsistencies.

Doctrine 2 Extensions

While Doctrine 2 already ships with tons and tons of features, there is even more. In
the Doctrine 2 extension repository® on GitHub, you will find several extensions with
solutions to typical problems which otherwise must be solved individually by each
application developer again and again:

Tree: Automates the tree handling process and adds some
tree-specific functions on repositories.

Translatable: Gives a very handy solution for translating
records into different languages.

Sluggable: Takes a specified field from an entity and makes it
compatible for URLs.

Timestampable: Updates date fields on creates, updates, and
even property changes.

Blameable: Updates string or reference fields on creates, updates,
and even property changes with a string or object (e.g. user).

2http://docs.doctrine-project.org/en/latest/reference/native-sql.html
*https://github.com/13pp4rd/DoctrineExtensions

106

http://docs.doctrine-project.org/en/latest/reference/native-sql.html
https://github.com/l3pp4rd/DoctrineExtensions
https://github.com/l3pp4rd/DoctrineExtensions
http://docs.doctrine-project.org/en/latest/reference/native-sql.html
https://github.com/l3pp4rd/DoctrineExtensions

CHAPTER 11 ADVANCED TOPICS

Loggable: Helps tracking changes and history of objects, also
supports version management.

Sortable: Makes any entity sortable.
Translator: Supports handling translations.

Softdeleteable: Allows you to mark entities as deleted,
without physically deleting them.

Uploadable: Provides file upload handling to entity fields.

References: Supports linking entities in Documents and vice
versa.

Summary

Congratulations! You made to it to the end of this book. I thank you very much for buying
and reading my book on Doctrine 2 ORM. I believe you now have all knowledge and tools
at hand to use Doctrine 2 in your own applications. As in every technical book, we didn’t
cover all of the features of Doctrine and it might be worth to continue learning by reading
the official documentation. The contents of this book will help you to grasp other features
and implementation details of Doctrine 2 not covered in this book.

Again, thanks for reading my book and happy coding!

107

Index

A B, C
Cache-related commands, 95
Caching

backends, 97

ORM cache types, 97
Class table inheritance, 42-45
Code, 2
Command line tools

autoloading, 92

configuration code, 91

ORM commands, 92

vendor/bin, 91
Conventions, 2
Converting commands, 95

D

Database access layer (DBAL), 34
SQL statement
execution, 92
importing, 93
Database system, 1
Data types, 38
Doctrine 2
association, 31, 33
core concepts, 34
entity, 28-29, 31
extensions, 106-107
installation
root directory, 27
vendor subfolder, 27
version number, 27
Doctrine query language (DQL)
command, 94
constructing queries, 85-89
dynamic queries, 83

© Michael Romer 2016

join queries, 89
manager, 84

query entities, 83
retrieving results, 84-85

E,F, G, H

Entities
association, 73-74
cascading operations, 78-80
changing, 75
creation, 71
identifier, 39
lifecycle events, 77-78
mapping formats, 35
objects to tables, 35-37
removing, 75
removing an association, 76
repository, 71-73
sorting, 75-76
transaction, 80-82

,J,K, L

Inheritance
class table inheritance, 42-45
hereditary structures, 39
mapped superclass, 45-47
single table inheritance, 39-42

M, N

Many-to-many relationship
bidirectional, 62-64
self-referencing, 69-70
unidirectional, 66-67

Mapped superclass, 45-47

M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2

INDEX

Member variable, 50 P
Metadata cache, 98

(0

Object-oriented programming (OOP)

Production-ready configuration, 95

Q

advantages, 4 Query cache, 98-99
demo application, 4-5
domain model, 3-4 R
domain-specific code, 3
PHP developers, 3 Result cache, 99-100
technical code, 4
One-to-many relationship S
bidirectional
counterpart annotation, 58 Scalar member variables
Doctrine\ORM\ attributes, 37
PersistentCollection, 58 @Column, 37
foreign key, 58 database fields, 37
member variable, 57 data types, 38
@OneToMany annotation, 57 entity identifier, 39
persistence configuration, 58 Schema tool, 93-94
self-referencing, 68-69 Self-made ORM
unidirectional, 59-62, 64-66 associations, 19-24
One-to-one relationship auto_increment, 16
bidirectional domain-specific code, 25
code, 55 loading
configuration, 52-53 assembleDisplayName(),
$em->flush(), 56 9-10
owning side, 55 behavior, 10
persistence, 56 data mapping, 11
pointers, 52, 55 demo application, 7-8
UserInfo entity, 52-54 domain model, 7
self-referencing, 67-68 domain objects, 11
unidirectional EntityManager, 12-13
data table, 52 mapping process, 12
data structure, 51 Max Mustermann, 10
demo application, 51 time-consuming, 13
Doctrine 2, 49, 51 User class, 11
@JoinColumn annotation, 51 saving
member variable, 49 saveUser() method, 15-18
@OneToOne annotation, 50 trivial use, 14
persistence configuration, 50 Self-referencing, 67-68
ORM Commands Single table inheritance, 39-42
cache-related commands, 95 Software version, 1
converting commands, 95 SQL statements, 106

DQL command, 94

persistence configuration, 93 T U VWXY
y Uy ¥y 1Ny

production-ready configuration, 95
schema tool, 93-94 Transaction, 80-82

110

V4

Zend framework 2 integration
composer.json file, 101
database connection, 103

INDEX

doctrine-orm-module, 101
Driver Chain, 103

entities, 104-106

modules, 102

111

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: About This Book
	Software Version
	Database System
	Code Downloads
	Conventions Used in This Book

	Chapter 2: Introduction
	Object-Oriented Programming (OOP) and the Domain Model
	Demo Application

	Chapter 3: A Self-Made ORM
	Loading an Entity
	Listing 1.1
	Listing 1.2

	Saving an Entity
	Associations
	Next Steps

	Chapter 4: Hello, Doctrine 2!
	Installation
	A First Entity
	A First Association
	Core Concepts at a Glance
	Summary

	Chapter 5: Defining Entities
	Mapping Formats
	Mapping Objects to Tables
	Mapping Scalar Member Variables to Fields
	Data Types
	Entity Identifier

	Inheritance
	Single Table Inheritance
	Class Table Inheritance
	Mapped Superclass

	Summary

	Chapter 6: References Between Entities
	One-to-One Relationship, Unidirectional
	One-to-One Relationship, Bidirectional
	One-to-Many Relationship, Bidirectional
	Many-to-Many Relationship, Unidirectional
	Many-to-Many Relationship, Bidirectional
	One-to-Many Relationship, Unidirectional
	Many-to-One Relationship, Unidirectional
	One-to-One Relationship, Self-Referencing
	One-to-Many Relationship, Self-Referencing
	Many-to-many Relationship, Self-Referencing
	Summary

	Chapter 7: Managing Entities
	Creating a New Entity
	Loading an Existing Entity
	Using a Repository
	Using an Association

	Changing an Existing Entity
	Removing an Entity
	Sorting an Association
	Removing an Association
	Lifecycle Events
	Cascading Operations
	Transactions
	Summary

	Chapter 8: Doctrine Query Language
	Introduction
	Retrieving Results
	Constructing Basic Queries
	Constructing Join Queries

	Chapter 9: Command Line Tools
	Setting Up the Command Line Tools
	DBAL Commands
	Execute an SQL Statement
	Import SQL Files

	ORM Commands
	Validate Persistence Configuration
	The Schema Tool
	Generate Commands
	Execute a DQL Command
	Cache-Related Commands
	Converting Commands
	Production-Ready Configuration

	Chapter 10: Caching
	Introduction to ORM Cache Types
	Caching Backends
	Metadata Cache
	Query Cache
	Result Cache

	Summary

	Chapter 11: Advanced Topics
	Framework Integrations
	Native SQL Statements
	Doctrine 2 Extensions
	Summary

	Index

