
F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

www.apress.com

SOURCE CODE ONLINE

Shelve in:
Programming Languages/Java

User level:
Intermediate

Pivotal Certified
Professional Spring
Developer Exam

A Study Guide
—
Examination preparation on core Spring
concepts and principles
—
Iuliana Cosmina

Pass the Pivotal Certified Professional exam using source code examples, study summaries,
and mock exams. In this book, you’ll find a descriptive overview of certification-related Spring
modules and a single example application demonstrating the use of all required Spring
modules. Also, it is suitable as an introductory primer for Spring newcomers.

Furthermore, in Pivotal Certified Professional Spring Developer Exam: A Study Guide each
chapter contains a brief study summary and question set, and the book’s free downloadable
source code package includes one mock exam (50 questions – like a real exam). After using this
study guide, you will be ready to take and pass the Pivotal Certified Professional exam.

When you become Pivotal Certified, you will have one of the most valuable credentials in Java.
The demand for Spring skills is skyrocketing. Pivotal certification helps you advance your skills
and your career, and get the maximum benefit from Spring. Passing the exam demonstrates your
understanding of Spring and validates your familiarity with: container-basics, aspect oriented
programming (AOP), data access and transactions, Spring Security, Spring Boot, microservices
and the Spring model-view-controller (MVC). Good luck!

•  How to understand the core principles of the popular Spring Framework
•  How to use dependency injection
•  How to work with aspects in Spring and do AOP (aspect oriented programming)
•  How to control transactional behavior and work with SQL and NoSQL (MongoDB) databases
•  How to create and secure web applications based on Spring MVC
•  How to create Spring microservices applications
•  How to get to know the format of exam and type of questions in it

Pivotal Certified Professional Spring Developer Exam

Cosm
ina 

Pivotal Certified Professional Spring Developer Exam

9 781484 208120

54999
ISBN 978-1-4842-0812-0

Related Titles

www.allitebooks.com

http://www.allitebooks.org

Pivotal Certified
Professional Spring

Developer Exam
A Study Guide

Iuliana Cosmina

www.allitebooks.com

http://www.allitebooks.org

Pivotal Certified Spring Web Application Developer Exam

Iuliana Cosmina					
Sibiu, Romania				

ISBN-13 (pbk): 978-1-4842-0812-0			 ISBN-13 (electronic): 978-1-4842-0811-3
DOI 10.1007/978-1-4842-0811-3

Copyright © 2017 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under
the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Manuel Jordan
Coordinating Editor: Mark Powers
Copy Editor: David Kramer
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Image: Designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/us/services/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
via the book’s product page, located at www.apress.com/9781484208120. For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/us/services/bulk-sales
www.apress.com/9781484208120
http://www.apress.com/source-code
http://www.allitebooks.org

To all passionate Java developers, never stop learning and

never stop improving your skills.

To all my friends for supporting me to make this book happen;
you have no idea how dear you are to me.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

■■Chapter 1: Book Overview�� 1

■■Chapter 2: Spring Bean LifeCycle and Configuration�� 17

■■Chapter 3: Testing Spring Applications�� 115

■■Chapter 4: Aspect Oriented Programming with Spring�������������������������������������� 153

■■Chapter 5: Data Access�� 185

■■Chapter 6: Spring Web�� 271

■■Chapter 7: Spring Advanced Topics�� 349

■■Chapter 8: Spring Microservices with Spring Cloud�� 435

Index�� 461

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

■■Chapter 1: Book Overview�� 1

What Is Spring and Why Should You Be Interested in It?�� 1

What Is the Focus of This Book?��� 3

Who Should Read This Book?�� 3

About the Certification Exam��� 3

How to Use This Book as a Study Guide�� 5

How Is This Book Structured?��� 5

How Each Chapter Is Structured�� 6

Recommended Development Environment��� 7

Recommended JVM��� 8

Recommended Project Build Tool�� 8

Recommended IDE�� 10

The Project Sample��� 11

■■Chapter 2: Spring Bean LifeCycle and Configuration�� 17

Old Style Application Development��� 17

Spring IoC and Dependency Injection�� 24

Spring Configuration��� 29

Providing Configuration via XML�� 29

Spicing Up XML Configuration��� 53

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Application Context and Bean Lifecycle�� 64

Providing Configuration Using Java Configuration and Annotations�� 85

Summary��� 110

Quick quiz�� 111

■■Chapter 3: Testing Spring Applications�� 115

A Few Types of Testing�� 115

Test-Driven Development�� 115

Unit and Integration Testing�� 116

Testing with Stubs��� 117

Testing with Mocks�� 124

Testing with Spring��� 134

Using Profiles��� 144

Summary��� 146

Quick Quiz��� 146

Practical Exercise�� 148

■■Chapter 4: Aspect Oriented Programming with Spring�������������������������������������� 153

Problems Solved by AOP��� 154

Spring AOP�� 157

AOP Terminology�� 158

Quick Start��� 159

Aspect Support Configuration using XML�� 165

Defining Pointcuts��� 165

Implementing Advice��� 172

Conclusions��� 178

Summary��� 181

Quick Quiz��� 181

Practical Exercise�� 183

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

■■Chapter 5: Data Access�� 185

Basic Data Access Using JDBC��� 187

Spring Data Access��� 189

Introducing JdbcTemplate��� 190

Spring Data Access Exceptions��� 207

Data Access Configuration In a Transactional Environment�� 209

How Transaction Management Works in Spring�� 212

Configure Transactions Support�� 214

Introducing Hibernate and ORM�� 235

Session and Hibernate Configuration�� 235

Session and Hibernate Querying��� 240

Exception Mapping�� 243

Object Relational Mapping��� 245

Java Persistence API��� 247

Spring Data JPA��� 256

**Spring and MongoDB�� 260

Summary��� 265

Quiz��� 265

■■Chapter 6: Spring Web�� 271

Spring Web App Configuration��� 274

Quickstart�� 276

XML�� 281

@MVC�� 285

Java Configuration for Spring MVC�� 286

Getting Rid of web.xml�� 288

Running a Spring Web Application��� 291

Running with Jetty��� 292

Running with Tomcat��� 294

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Spring Security�� 298

Spring Security Configuration�� 301

XML Configuration��� 301

Spring XML Configuration without web.xml�� 313

Java Configuration��� 313

Security Tag Library��� 317

Method Security�� 321

Spring Boot�� 326

Configuration��� 327

Configuration Using YAML��� 338

Logging�� 341

Testing with Spring Boot��� 341

Summary��� 344

Quiz��� 345

■■Chapter 7: Spring Advanced Topics�� 349

Spring Remoting�� 350

Spring Remote Configuration�� 353

Spring JMS�� 362

JMS Connections and Sessions��� 363

JMS Messages�� 364

JMS Destinations��� 365

Apache ActiveMQ��� 367

Spring JmsTemplate�� 370

JMS with Spring Boot�� 378

Spring Web Services��� 382

SOAP Messages��� 384

Generating Java Code with XJC��� 386

Spring Boot WS Application��� 387

Publishing WSDL�� 391

Testing Web Services applications�� 392

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Spring REST�� 395

Spring Support for REST�� 397

Exception Handling�� 402

HTTP Message Converters��� 404

Spring MVC Configuration for RESTful Applications�� 405

Using RestTemplate to Test RESTful Applications�� 407

Advantages of REST�� 416

Spring JMX�� 421

JMX Architecture��� 421

Plain JMX��� 423

Spring JMX�� 424

Summary��� 432

Quick Quiz��� 433

■■Chapter 8: Spring Microservices with Spring Cloud�� 435

Microservices with Spring�� 436

Registration and Discovery Server�� 439

Microservices Development�� 442

Microservices Communication�� 451

More Novelties�� 456

Practice Section��� 457

Summary��� 458

Quick Quiz��� 458

Index�� 461

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Author

Iuliana Cosmina is a software architect and passionate developer. She
has been programming in Java for more than 10 years. She also taught
Java at the Gheorge Asachi Technical University in Iasi, Romania. She
has a bachelor’s degree in computer science and a master’s degree in
distributed systems from the same university.

She discovered Spring in June 2012 and loved it so much that she
trained for and passed the exam to become a Certified Spring Professional
in November 2012. She trained for and passed the exam to become a
Certified Web Application Developer in May 2014.

Her plan is to become a Spring Enterprise Integration Specialist in the
near future.

She has contributed to the development of different types of
enterprise applications such as search engines, ERPs, track and trace, and
banking. During her career in outsourcing she has been a team leader,

acting software architect, and DevOps professional. She likes to share her knowledge and expertise via
tutoring, teaching, and mentoring, but in the summer of 2014, everything changed because of Steve Anglin,
who proposed that she write a Spring Web Study Guide. A short time after the first book was released,
she was given the chance to write the Spring Core Study Guide as well, and she seized the opportunity.
She currently lives in Sibiu, Romania, and works as a software architect for BearingPoint, a multinational
management and technology consulting company.

When she is not programming, she spends her time reading, traveling, hiking, or biking.

•	 You can find some of her personal work on her GitHub account:
https://github.com/iuliana.

•	 You can find her complete CV on her LinkedIn account:
https://ro.linkedin.com/in/iulianacosmina.

•	 You can contact her at Iuliana.Cosmina@gmail.com.

https://github.com/iuliana
https://ro.linkedin.com/in/iulianacosmina

xv

About the Technical Reviewer

Manuel Jordan is an self-taught developer and researcher who enjoys learning new technologies for his own
experiments in creating new integrations among them.

Manuel won the 2010 Springy Award, Community Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on his bass and guitar.

xvii

Acknowledgments

Creating this guide involved a lot of teamwork. It is the second time I’ve written a technical book, and I
wouldn’t have made it without all the help and advice I received from Mark Powers and Manuel Jordan.
Mark has been very supportive, sharing with me his experience in book writing and encouraging me when I
was ready to give up because I thought my work was not good enough. He was also very understanding and
forgiving when deadlines were missed because of writer’s block or personal problems.

Manuel has been a great collaborator; I loved our exchanges of technical ideas, for which I am very
thankful, because working with them has helped me grow professionally. Many thanks to the team that
helped turn my technical verbiage into human-readable literature.

Most of all, I want to thank Steve Anglin for trusting me to get this book done.
Apress has published many of the books I have read and used to improve myself professionally during

my studies and beyond. It is a great honor for me to write a book and publish it with Apress, and it gives me
enormous satisfaction to be able to contribute to the education of the next generation of developers.

I am grateful to all my friends who had the patience to listen to me complain about sleep loss, having
too much work to do, and writer’s block. Thank you all for being supportive and making sure I still had some
fun while writing this book.

And I would also like to add a very special thank you to Marian Lopatnic, Cristina Lutai, and Andreea
Jugarean. These three special persons ensured that my determination to finish this book never flagged, by
continually reminding me that I am a badass in my profession, and as long as I do my best, the outcome will
be great.

xix

Introduction

More than four years have passed since I wrote my first Spring project, and since then, the Spring Framework
has turned into a full-blown technology that provides everything needed to build complex and reliable Java
Enterprise Applications.

Four major versions of Spring have been released so far, and the fifth is right around the corner. And
except for the official study guide required for passing the certification exam, before the conception of this
book there was no additional resource like this.

This study guide provides a complete overview of all the technologies involved in creating a Spring core
application from scratch. It guides you step by step into the Spring world, covering Spring 3 and Spring 4.
More advanced topics such as RMI and JMS have been covered as well, because there are still companies
that prefer to use them. and developers might encounter them while in the field.

There is a multimodule project associated with this book named Pet Sitter, covering every example
presented in the book. As the book was written, new versions of Spring were released, a new version
of Intellij IDEA was released, and new versions of Gradle were released as well. I upgraded to the new
versions in order to provide the most recent information and keep this book synchronized with the official
documentation. A group of reviewers has gone over the book, but if you notice any inconsistencies, please
send an email to editorial@apress.com, and a correction will be made.

The example source code for this book can be found on GitHub via the Download Source Code button
on the book’s product page, located at www.apress.com/9781484208120. It will be maintained, synchronized
with new versions of the technologies, and enriched based on the recommendations of the developers using
it to learn Spring.

The code for the Pet Sitter project will likewise be made available on a public GitHub repository.
An appendix with answers to the questions at the end of every chapter and additional details related to

development tools that can be used to develop and run the code samples of the book will also be available as
part of the source code package hosted at Github. A sample practice exam will also be published on the Pet
Sitter repository.

I truly hope you will enjoy using this book to learn Spring as much as I enjoyed writing it.

http://mailto:Iuliana.Cosmina@gmail.com/
http://www.apress.com/9781484208120

1© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_1

CHAPTER 1

Book Overview

Spring is currently one of the most influential and rapidly growing Java frameworks. Every time a new startup
idea is born, if the development language is Java, Spring will be taken into consideration. Spring will be
fourteen years old on the first of October 2016, and it has grown into a full-fledged software technology over
the years.1

This book covers much of the core functionality from multiple projects. The topics that are required for
the official certification exam are covered deeply, and all extras are covered succinctly enough to give you a
taste and make you curious to learn more.

What Is Spring and Why Should You Be Interested in It?
When a project is being built using Java, a great deal of functionality needs to be constructed from scratch.
Yet many useful functionalities have already been built and are freely available because of the open source
world we are living in. A long time ago, when the Java world was still quite small, when you were using
open source code in your project developed by somebody else and shipped as a *.jar, you would say that
you were using a library. But as time passed, the software-development world evolved, and the libraries
grew too. They became frameworks. Because they were no longer a single *.jar file that you could import,
they became a collection of more-or-less decoupled libraries, with different responsibilities, and you had
the possibility of importing only what you needed. As frameworks grew, tools to build projects and add
frameworks as dependencies evolved. One of the currently most widely used tools to build projects is
Maven, but new build tools are now stealing the scene. One of these new-age build tools will be used to build
the projects for this book. It will be introduced later.

The Spring Framework was released in October 2002 as an open source framework and inversion of a
control container developed using Java. As Java evolved, Spring did too. Spring version 4.3, the one covered
in this book, is fully compatible with Java 8, and Spring 5 is planned to be released in the fourth quarter of
2016.2 The intention is to make it compatible with Java 9, which is planned for release in September 2016.3
But since the release of Java 8 was delayed over six months, nothing is certain at the moment.

Spring comes with a great deal of default behavior already implemented. Components called
“infrastructure beans” have a default configuration that can be used or easily customized to fit the project’s
requirements. Having been built to respect the “Convention over Configuration” principle, it reduces the
number of decisions a developer has to make when writing code, since the infrastructure beans can be used
to create functional basic applications with minimum customization (or none at all) required.

1Just as a coincidence and a fun fact, in Romania you obtain your first identity card when you are fourteen years old, and
it is considered the age of intellectual maturity that allows you to differentiate good from evil.
2Information can be found on the official Spring blog at https://spring.io/blog/2015/08/03/
coming-up-in-2016-spring-framework-4-3-5-0.
3Information at https://jaxenter.com/java-9-release-date-announced-116945.html.

https://spring.io/blog/2015/08/03/coming-up-in-2016-spring-framework-4-3-5-0
https://spring.io/blog/2015/08/03/coming-up-in-2016-spring-framework-4-3-5-0
https://jaxenter.com/java-9-release-date-announced-116945.html

Chapter 1 ■ Book Overview

2

Spring is open source, which means that many talented developers have contributed to it, but the
last word on analyzing the quality of the components being developed belongs to the Pivotal Spring
Development Team, previously known as the SpringSource team, before Pivotal and VMware merged. The
full code of the Spring Framework is available to the public on Github,4 and any developer that uses Spring
can fork the repositories and propose changes.

A Java application is essentially composed of objects talking to each other. The reason why Spring
has gained so much praise in Java application development is that it makes connecting and disconnecting
objects easy by providing a comprehensive infrastructure support for assembling objects. Using Spring to
develop a Java application is like building a lightly connected Lego castle; each object is a Lego piece that
you can easily remove and replace with a different one. Spring is currently the VIP of Java Frameworks, and
if all you have read so far has not managed to make you at least a bit interested in it, then I am doing a really
bad job at writing this book, and you should write an email and tell me so.

Before going further about what this book will provide you, let’s have an overview of the Spring projects.
Figure 1-1 depicts all the Spring projects. For 2016, there are nineteen main projects, two community
projects, and three projects that are “in the attic,” so to speak, because there will be no further contributions
to them, since they are going to be dropped in the future.

Figure 1-1.  Spring Web Stack. (The projects drawn with dotted contours will be covered only partially in
this book.)

4Github Spring Framework sources: https://github.com/spring-projects/spring-framework.

https://github.com/spring-projects/spring-framework

Chapter 1 ■ Book Overview

3

What Is the Focus of This Book?
The topics covered in this book are mostly Spring Framework’s support components for the backend tier.
We only scratch the surface for Spring Boot, Spring Data JPA, REST, MVC, and Microservices. This book
aims to provide a natural path in tghe development of a complete Spring application. With each chapter, the
application will become more complex, until its final form is reached, which will also have a security setup, a
simple web application, and will support REST requests.

This book is focused on helping developers understand how Spring’s infrastructure was designed and
how to write Spring applications in a few easy steps using the maximum of Spring’s potential. Its objectives
are as follows:

•	 Use Spring to develop applications

•	 Use Spring Security to secure resources

•	 Use Spring Test and other test frameworks (JUnit, JsMock) to test applications

•	 Create Spring applications using Gradle5

Who Should Read This Book?
This book was written to provide clear insight into creating applications using Spring core components.
It can also be a big help to a developer who wants to become a Certified Spring Professional.6 That is why
every topic that is found in the official Pivotal Spring Core study guide is given the attention it deserves.

You just need a minimal knowledge of Java in order to make good use of this book, but online
documentation for Java7 and Spring8 should be consulted every time something is not fully covered in the book.

In a nutshell, this book was written to be used by the following audiences:

•	 Java developers who want a taste of Spring

•	 Spring developers who are interested in learning to use Spring proficiently, but not
interested in official certification

•	 Spring and Java developers who want to become certified and want all the help they
can get.

About the Certification Exam
If you are interested in becoming a Certified Spring Professional, the first step you have to take is to go
to the Pivotal official learning site http://pivotal.io/training and search for the Spring Certification
section. There you will find all the details you need regarding the official trainings, including where are they

5Gradle is an automated build tool that is easy to configure and use for any type of application. Its build files are written
using Groovy. Gradle combines the power and flexibility of Ant with the dependency management and conventions of
Maven into a more effective way to build. Read more about it at https://www.gradle.org/.
6Keep in mind that attending a Spring Web training from Pivotal or a VMware Authorized Training Center is a
prerequisite to becoming a Certified Spring Professional, as stated on the official site:
http://pivotal.io/academy#certification.
7JSE8 official reference: http://docs.oracle.com/javase/8/docs/; JEE7 official documentation:
http://docs.oracle. com/javaee/7/.
8Spring official Javadoc: http://docs.spring.io/spring/docs/current/javadoc-api/; Spring Reference:
http://docs.spring.io/spring/docs/current/spring-framework-reference/.

http://pivotal.io/training
https://www.gradle.org/
http://pivotal.io/academy#certification
http://docs.oracle.com/javase/8/docs/
http://docs.oracle.com/javaee/7/
http://docs.oracle.com/javaee/7/
http://docs.spring.io/spring/docs/current/javadoc-api/
http://docs.spring.io/spring/docs/current/spring-framework-reference/
http://docs.spring.io/spring/docs/current/spring-framework-reference/

Chapter 1 ■ Book Overview

4

taking place and when. The training is four days long. There are online trainings available as well. After
creating an account on the Pivotal site, you can select the desired training. After you make the payment, if
you choose an online training, about a month later, you will receive through the mail an official training kit
consisting of the following:

•	 A pair of conference headphones (usually Logitech) for use during the training to
hear your trainer talk and so you can ask questions.9

•	 A professional webcam (usually Logitech) for use during the training, so that your
trainer and colleagues can see you, thus simulating the classroom experience.10

•	 A Spring study guide containing the printed version of the slides your tutor will be
using during the training. (This might also be in electronic form, from consideration
of the environment.)

•	 A Spring Study Lab book containing explanations and instructions for the practical
exercises you will do during the training. (This might also be in electronic form, from
consideration of the environment.)

•	 A Pivotal official flash drive containing the following:

–– Jdk installer

–– Sources necessary during the training. Each study lab has a small Spring application attached
to it with missing configuration and code, and the student’s task is to complete it in order to
have a working application. The same model is used in the code associated with this book.

–– An installer of the most recent stable version of the Spring Tool Suite. The version on the flash
drive is mandatory for the course, because the installer sets up a local Maven repository with
all the needed dependencies and a full eclipse project configuration with the lab sources. The
STS also has an internal tcServer to run the web lab applications.

–– An html or PDF version of the Spring Study Lab.

If you decide against an online training course, you will not receive the headphones and the webcam.
The training kit and the rest of the materials will be given to you when you arrive at the location where the
training is taking place. After the training, you will receive a free voucher that is required to schedule the
certification exam at an approved exam center near you. Basically, the voucher or voucher code being given
to you is the proof that you have attended the official Spring Web Training.

! The exam duration is ninety minutes and consists of fifty questions. There are both single and multiple-
answer questions. The latter are quite explicit, telling you how many correct answers you are expected to
select. The questions in the book are actually more difficult, because you will not be told the number of correct
options you must select. But you will be given a complete explanation of the answers in the appendix.

9Depending on the area and the training center, this item is optional.
10Depending on the area and the training center, this item, too, is optional.

Chapter 1 ■ Book Overview

5

The questions will cover (approximately) the following topics:

•	 Spring overview container, IoC and dependency injection

•	 SpEL and Spring AOP

•	 Spring JDBC, Transactions, ORM

•	 Spring MVC and the web layer

•	 Spring Security

•	 Spring Messaging and REST

•	 Spring Testing

The passing score for the exam is 76%. This means that 38 correct answers are needed in order to pass.
Most of the questions will present you a piece of Java code or configuration and ask you what it does, so
make sure you understand the code attached to this book and write your own beans and configurations in
order to understand the framework better. The good news is that all the code in the exam can be found in the
sources you are given when you attend the official training. Other questions will present you with assertions
about Spring Web and will require you to select the correct or the invalid statement.

If you read this book, understand all the examples, solve the practice exercises, and then attend the
official training, my recommendation is that you take the certification exam as soon as possible. Do not
allow for too much time to pass between finishing the training and taking the exam, because we are all
human after all and information can be forgotten. Also, the certification voucher is valid for only a year.
You can retake the exam again if you fail the first time, but it will cost you about $150.

How to Use This Book as a Study Guide
This book was written in such a way as to guide you step by step through the wonderful technology that is
Spring. It follows the same learning curve as the official training and focuses on the same topics that are
required for the certification exam, since those are also the most needed in real production applications.
The topics that are not needed for the certification exam are marked, so you know that you can skip them,
although if you are truly interested in Spring, you will definitely not do so.

The main differences are in the tools used for the practical examples, which will be covered shortly.

How Is This Book Structured?
This book has eight chapters and an appendix. The official Spring guide has sixteen chapters, but for the
purposes of the book, related topics are wrapped up together. For example, the official study guide has four
separate chapters that cover dependency injection, Spring Core fundamentals, and configuration. This book
has only a single big chapter about these topics: Chapter 2—Bean LifeCycle and Configuration.

The list of chapters and a short description of each are presented in Table 1-1.

Chapter 1 ■ Book Overview

6

Table 1-1.  List of topics by chapter

Chapter Topic Details

1 Book overview Introduction to Spring history, technologies and
tools used for practice

2 Bean LifeCycle and Configuration Basic Spring core concepts, components, and
configuration

3 Testing Spring Applications How Spring applications can be tested, most used
testing libraries and test principles

4 Aspect Oriented Programming AOP concept, problems that is solves and how it is
supported in Spring

5 Data Access Advanced Spring Data access using JDBC, Hibernate
and Spring Data JPA

6 Spring Web Basic introduction of Spring MVC

7 Spring Advanced Topics Remoting, Messaging, Web Services with REST

8 Spring Microservices with Spring Cloud Introduction to Spring Microservices and what they
can be used for

A Appendix Two mock exams, answers to review questions, and
other comments

How Each Chapter Is Structured
The introductory chapter, the one you are reading now, covers the basics of Spring that every developer
using this book should know: what Spring is, how it has evolved, how many official Spring projects there are,
the technologies used to build and run the practical exercises, how you can register for the exam to become
a Certified Spring Professional, and so on. This chapter is the exception. It is structured differently from the
others, because it was designed to prepare you for what it will be coming next.

The remaining chapters are designed to cover a Spring Module and associated technologies that will
help you build a specific type of Spring application. Each chapter is split into a few sections, but in a nutshell,
a chapter is organized as follows:

•	 Basics

•	 Configuration

•	 Components

•	 Summary

•	 Quick quiz

•	 Practical exercise

The longer chapters deviate from this structure, introducing small practice exercises after key sections,
since solving these exercises will help you to check your understanding and solidify your knowledge of the
presented components.

Code that is irrelevant to Spring understanding will not always be quoted in this book, but it is available
to you in the book’s practice project.

Chapter 1 ■ Book Overview

7

Conventions

! This symbol appears in front of paragraphs to which you should pay particular attention.

** This symbol appears in front of a paragraph that is an observation or an execution step that you can skip.

? This symbol appears in front of a question for the user.

. . . This symbol represents missing code that is not relevant for the example.

CC This symbol appears in front of a paragraph that describes a Convention over Configuration practice in
Spring, a default behavior that helps the developer reduce his or her work.

[random text here] When you have text surrounded by square brackets, this means that the text between the
brackets should be replaced by a context-related notion.

Downloading the Code
This book has code examples and practical exercises associated with it. There will be missing pieces of
code that you will have to fill in to make applications work and test your understanding of Spring Web.
I recommend that you go over the code samples and do the exercises, since similar pieces of code and
configurations will appear in the certification exam.

The following downloads are available:

•	 Source code for the programming examples in the practice section using XML
configuration

•	 Source code for the programming examples in the practice section using Java
configuration

You can download these items from the Source Code area of the Apress website http://www.apress.com.

Contacting the Author
More information about Iuliana Cosmina can be found at http://ro.linkedin.com/in/iulianacosmina.
She can be reached at mailto:iuliana.cosmina@gmail.com.

Follow her personal coding activity on https://github.com/iuliana.

Recommended Development Environment
If you decide to attend the official course, you will notice that the development environment recommended
in this book differs considerably from the one used at the course. A different editor was recommended, a
different application server, and even a different build tool. The reason for this was to improve and expand
your experience as a developer and to offer a practical development infrastructure. Motivation for each
choice will be mentioned on the corresponding sections.

http://www.apress.com/
http://ro.linkedin.com/in/iulianacosmina
https://github.com/iuliana

Chapter 1 ■ Book Overview

8

Recommended JVM

 Java 8, the official JVM form Oracle. Download the JDK matching your operating system from

http://www.oracle.com and install it.

! It is recommended that you set the JAVA_HOME environment variable to point to the directory where Java 8
was installed (the directory in which the JDK was unpacked) and add %JAVA_HOME%\bin for Windows, $JAVA_
HOME/bin for Unix-based operating systems, to the general path of the system. The reason behind this is to
ensure that other development applications written in Java will use this version of Java and prevent strange
incompatibility errors during development.

! Verify that the version of Java the operating system sees is the one you just installed by opening a terminal
(Command Prompt in Windows, and any type of terminal you have installed on MacOs and Linux) and typing:

java -version

You should see something similar to this:

java version "1.8.0_74"
Java(TM) SE Runtime Environment (build 1.8.0_74-b02)
Java HotSpot(TM) 64-Bit Server VM (build 25.74-b02, mixed mode)

Recommended Project Build Tool

 Grade 2.x ** The sources attached to this book can be compiled and executed using the Gradle

wrapper, which is a batch script on Windows and a shell script for other operating systems. When you start a
Gradle build via the wrapper, Gradle will be automatically downloaded and used to run the build; thus you
do not to need to install Gradle as stated previously. Instructions on how to do this can be found by reading
the public documentation at http://www.gradle.org/docs/current/userguide/gradle_wrapper.html.

A good practice is to keep code and build tools separate, but for this study guide, it was chosen to use
the wrapper to make setting up the practice environment easy by skipping the Gradle installation step and
also because the recommended source code editor uses the wrapper internally.

If you decide to use Gradle outside the editor, you can download the binaries only (or if you are curious,
you can download the full package, which contains binaries, sources, and documentation) from their official
site https://www.gradle.org/, unpack them, and copy the contents somewhere on the hard drive. Create
a GRADLE_HOME environment variable and point it to the location where you have unpacked Gradle. Also add
%GRADLE_HOME%\bin for Windows, $GRADLE_HOME/bin for Unix-based operating systems, to the general path
of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy setup, small
configuration files, flexibility in defining execution tasks, and the fact that the Pivotal Spring team currently
uses it to build all Spring projects.

http://www.oracle.com/
http://www.oracle.com/
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
https://www.gradle.org/
https://www.gradle.org/

Chapter 1 ■ Book Overview

9

! Verify that the version of Gradle the operating system sees is the one you just installed by opening a terminal
(Command Prompt in Windows, and any type of terminal you have installed on MacOs and Linux) and typing

gradle -version

You should see something similar to this:

--
Gradle 2.11
--

Build time: 2016-02-08 07:59:16 UTC
Build number: none
Revision: 584db1c7c90bdd1de1d1c4c51271c665bfcba978

Groovy: 2.4.4
Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JVM: 1.8.0_74 (Oracle Corporation 25.74-b02)
OS: -- whatever operating system you have --

The text above being displayed is confirmation that Gradle commands can be executed in your terminal; thus
Gradle was installed successfully.

The reason Gradle was used to build the projects for this book is its simplicity. Gradle was presented
recently as the modern open source polyglot build automation system, and the Gradle team now also helps
you analyze your builds in order to prove it. Gradle now offers the possibility of registering a receipt on their
site that will be used to connect to the site and generate the build statistics. The project of this book will use
this new service provided by the Gradle team to keep you informed on how the project grows with each
chapter.

If you enter https://gradle.com/demo/ and follow the instructions in the demo, you can build your
project and get a set of statistics about how healthy your project and team are. In the first step of conception,
the project is quite simple, so the initial automatic build does not provide much information. In Figure 1-2,
you can see the statistics for the project in the initial phase. As you can see, the build takes one second, no
tests are run, and the JVM needed a maximum of 910 MB of memory to run this build.

https://gradle.com/demo/

Chapter 1 ■ Book Overview

10

Figure 1-2.  Gradle.com build statistics

Recommended IDE

  The recommended IDE to use in this study guide is IntelliJ IDEA. The reason for this is that it is
the most intelligent Java IDE. IntelliJ IDEA offers outstanding framework-specific coding assistance and
productivity-boosting features for Java EE, and Spring also includes support for Maven and Gradle. It is the

Chapter 1 ■ Book Overview

11

11Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to
an object, or pet in this case.

perfect choice to help you focus on learning Spring, and not how to learn to use an IDE. It can be
downloaded from the JetBrains official site https://www.jetbrains.com/idea/. It is also light on your
operating system and quite easy to use.

Since Spring Boot will be used to run the web applications in the project attached to the book, you can
use the community edition in order to build and solve the TODOs in the project. But if you are looking for a
professional experience in development with Java and Spring, you can try working with the Ultimate Edition,
which has a trial period of thirty days. The figures with code being run, launchers being created, and other
IDE-related details in this book are made using an IntelliJ IDEA Ultimate version.

I believe that an IDE should be so easy to use and so intuitive that you can focus on what really matters:
the solution you are implementing. But in case you are already familiar with a different Java editor, you can
go ahead and use it as long as it supports Gradle.

The Project Sample
The project attached to this book is called Pet Sitter. As you have probably figured out, it is a proof of
concept for an application designed to help pet owners find people to take care of their pets while they are
on vacation or are forced to leave the pet alone for some reason. Here is what this project should provide:

•	 A user should have a secured account to access the application. The type of the
account can be:

–– OWNER = user that is only looking for a pet sitter for its pet(s)

–– SITTER = user that is only looking to provide pet sitter services

–– BOTH = both of the above

–– ADMIN = account with special privileges that can manage other users’ activities on the site.

•	 A user account of type OWNER can have one or more pet instances associated with it.

•	 Each pet must have an RFID11 microchip implanted, and the barcode should be
provided to the application.

•	 A user account of type OWNER is able to create a request for a pet sitter for more
than one interval.

•	 A user account of type SITTER can reply to requests by creating response objects that
will be approved or rejected by the owner of that request.

•	 A user account of type BOTH can act as an OWNER and as a SITTER.

•	 Admin accounts can deactivate other types of accounts for inactivity.

•	 Pet sitters and owners can rate each other by writing a review of their experience.
The results are stored in a rating field attached to the user account.

The project is a multimodule Gradle project. Every module is a project that covers a specific Spring
Topic. The projects suffixed with practice are missing pieces of code and configuration and are the ones
that need to be solved by you to test your understanding of Spring Web. The projects suffixed with solution
are a proposal resolution for the tasks. Some projects are suffixed with sample to tell you that they contain a
sample of code or configuration that you are to analyze and pay special attention to.

In Figure 1-3, the structure of the Pet Sitter project as it is viewed in IntelliJ IDEA is depicted. Each
module name is prefixed with a number, so no matter what IDE you use, you will always have the modules in
the exact order in which they were intended to be used.

https://www.jetbrains.com/idea/

Chapter 1 ■ Book Overview

12

Figure 1-3.  Pet Sitter modules

Chapter 1 ■ Book Overview

13

The 00-ps-core contains the entity classes that map on database tables, enumerations, and other
utility classes that are referenced from other modules. As the name of the project implies, this is the core
project, the base tier. The other projects are implementation of service tiers that are built upon it. The Pet
Sitter was designed with the multitier architecture in mind, and the abstract internal layer structure is
depicted in Figure 1-4.

Figure 1-4.  Pet Sitter application layers

The entities have common fields used by hibernate to identify uniquely each entity instance (id)
and fields used to audit each entity instance (createdAt and modifiedAt) and keep track of how many
times an entity was modified (version). These fields have been grouped in the AbstractEntity class to
avoid having duplicated code. Other classes are enumerations used to define different types of objects
and other utility classes (for conversion and serialization). The contents of the 00-ps-core project are
depicted in Figure 1-5.

Chapter 1 ■ Book Overview

14

The class hierarchy, class members, and relationships between classes can be analyzed in Figure 1-6.

Figure 1-6.  Pet Sitter entity class hierarchy

Figure 1-5.  Pet Sitter 00-ps-core project contents

Chapter 1 ■ Book Overview

15

This chapter does not have any practice and sample code attached to it, so more information regarding
the setup of the project and how it is built and executed will be provided in the following chapters.

The UML diagram in Figure 1-7 describes the general functionality of the application. The
RequestDispatcher and Controller are part of the web tier and are included here because the 09-ps-mvc-*
and 10-ps-security-* projects also have a simple web tier in place, and basic notions of Spring Web are part
of the certification exam.

Figure 1-7.  UML diagram describing the general behavior of the Pet Sitter application

17© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_2

CHAPTER 2

Spring Bean LifeCycle and
Configuration

The Spring Framework provides an easy way to create, initialize, and connect objects into competent,
decoupled, easy to test enterprise-ready applications. Every software application consists of software
components that interact, that collaborate and depend on other components to successfully execute a set of
tasks. Each software component provides a service to other components, and linking the customer and the
provider component is the process known as Dependency Injection. Spring provides a very simplistic way to
define the connections between them in order to create an application.

Before Spring entered the picture, defining connections between classes and composing them required
for development to be done following different design patterns, such as Factory, Abstract Factory, Singleton,
Builder, Decorator, Proxy, Service Locator, and even reflection.1 Spring was built in order to make Dependency
Injection easy. This software design pattern implies that clients delegate the dependency resolution to an
external service. The client is not allowed to call the injector service, which is why this software pattern is
characterized by Inversion of Control behavior, also known as the Don’t call us, we’ll call you! principle.

The software components that Spring uses to build applications are called beans and are nothing more
than Plain Old Java Objects (POJOs) that are being created, initialized, assembled, and managed by the
Spring Inversion of Control container. The order of these operations and the relationships between objects
are provided to the Spring IoC container using XML configuration files prior to Spring version 2.5. Starting
with 2.5, a small set of annotations was added for configuring beans, and with Spring 3, Java configuration
using annotations was introduced.

This chapter covers everything a developer needs to know in order to configure a basic Spring
application using XML and Java Configuration. The Java annotations that represent the intermediate step
between configurations using XML and full Java Configuration will also be covered.

Old Style Application Development
In the most competent development style, a Java application should be composed of POJOs, simple
Java objects each with a single responsibility. In the previous chapter, the entity classes that will be used
throughout the book were introduced along with the relationships between them. In order to manage this
type of object at the lowest level, the dao (repository) layer of the application, classes named repositories
will be used. The purpose of these classes is to retrieve, update, create, and delete entities from the storage
support, which usually is some type of database.

1If you are interested in more books about Java Design Patterns, you can check out this book from Apress:
http://www.apress.com/9781484218013?gtmf=s.

www.allitebooks.com

http://www.apress.com/9781484218013?gtmf=s
http://www.allitebooks.org

Chapter 2 ■ Spring Bean LifeCycle and Configuration

18

These classes are called repositories, and in the code for this book, their name is created by
concatenating a short denomination for the type of entity management, the name of entity object being
managed, and the Repo postfix. Each class implements a simple interface that defines the methods to be
implemented to provide the desired behavior for that entity type. All interfaces extend a common interface
declaring the common methods that should be implemented for any type of entity. For example: saving,
searching by id, and deleting should be supported for every type of entity. This method of development
is used because Java is a very object-oriented programming language, and in this case, the inheritance
principle is very well respected. Also, generic types make possible such a level of inheritance.

In Figure 2-1, the AbstractRepo interface and the child interfaces for each entity type are depicted. You
can notice how the AbstractRepo interface defines typical method skeletons for every entity type, and the
child interface defines method skeletons designed to work with only a specific type of entity.

Figure 2-1.  Repository interfaces hierarchy

Figure 2-2.  Repository stub implementations

At the end of this section you can take a break from reading in order to get comfortable with this
implementation. The project specifically designed for this is named 01-ps-start-practice. It contains stub
implementations for the repository classes, which can be found in the test sources under the package
com.ps.repo.stub. In Figure 2-2, the stub classes are depicted. Again, inheritance was used in order to
reduce the amount of code to be written and avoid writing duplicate code.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

19

The stub repositories store all the data created by the user in a map data structure named records.
The unique id for each record is generated based on the size of this map. The implementation is in the
StubAbstractRepo class and is depicted below, together with all basic repository operations:

package com.ps.repo.stub;

import com.ps.base.AbstractEntity;
import com.ps.repos.AbstractRepo;
import java.util.HashMap;
import java.util.Map;

public abstract class StubAbstractRepo

 <T extends AbstractEntity> implements +underlineAbstractRepo<T> {
 protected Map<Long, T> records = new HashMap<>();
 @Override
 public void save(T entity) {
 if (entity.getId() == null) {
 Long id = (long) records.size() + 1;
 entity.setId(id);
 }
 records.put(entity.getId(), entity);
 }

 @Override
 public void delete(T entity) {
 records.remove(entity.getId());
 }

 @Override
 public void deleteById(Long entityId) {
 records.remove(entityId);
 }

 @Override
 public T findById(Long entityId) {
 return records.get(entityId);
 }
}

The next layer after the dao (repository) layer is the service layer. This layer is composed of classes doing
modifications to the entity objects before being passed on to the repositories for persisting the changes
to the storage support (database). The service layer is the bridge between the web layer and the dao layer
and will be the main focus of the book. It is composed of specialized classes that work together in order to
implement behavior that is not specific to web or data access. It is also called the business layer, because
most of the application business logic is implemented here. Each service class implements an interface that
defines the methods that it must implement to provide the desired behavior. Each service class uses one or
more repository fields to manage entity objects. Typically, for each entity type, a service class also exists, but
also more complex services can be defined that can use multiple entity types in order to perform complex
tasks. In the code for this book, such a class is the SimpleOperationsService service, which contains
methods useful for executing common Pet Sitter operations such as create a pet sitter request, accept a
response, close a request, and rate the pet owner.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

20

The most complex service class is called SimpleOperationsService, and this service class can be used
to create a response, accept a response, or close a request. In Figure 2-3 all the service classes and interfaces
are depicted.

Figure 2-3.  Service interfaces and implementations

Figure 2-4.  Service class and its dependency in different running environments

All the classes presented here are parts that will be assembled to create an application that will manage
user data. In a production environment, a service class needs to be instantiated, and a repository instance
must be set for it so data can be managed properly. Applications running in production support complex
operations such as transactions, security, messaging, remote access, and caching. They are connected to
other applications and software components. In order to test them, pieces of them have to be isolated,
and some of them that are not the object of testing are replaced with simplified implementations. In a test
environment, stub or mock implementations can be used to replace implementations that are not meant to
be covered by the testing process. In Figure 2-4, you can see a service class and a dependency needed for it
in a production and test environment side by side.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

21

The code snippet relevant to the previous image is depicted below and is a piece of the
SimpleOperationsService class definition.

public class SimpleOperationsService
 implements OperationsService {

 private UserRepo userRepo;
 ...

 public void setUserRepo(UserRepo userRepo) {
 this.userRepo = userRepo;
 }
}

As you can see, the dependency is defined using an abstract type, in this case, the UserRepo interface,
so any implementation can be provided. So in a production environment, an instance of type JdbcUserRepo
will be provided, and that type will be defined to implement the UserRepo interface.

public class JdbcUserRepo extends JdbcAbstractRepo<User>
 implements UserRepo {
 //implementation not relevant at this point
...
}

The creation of an instance of type SimpleOperationsService will require the following steps:

	 1.	 instantiate and initialize the repository instance

JdbcUserRepo userRepo = new JdbcUserRepo(...);

	 2.	 instantiate the service class

OperationsService service = new SimpleOperationsService();

	 3.	 inject the dependency

service.setUserRepo(repo);

In a test environment, a mock or a stub will do, as long as it implements the same interface:

public class StubUserRepo extends StubAbstractRepo<User>
 implements UserRepo {
 //implementation not relevant at this point
...
}

For the test environment, the assembling steps are the same:

1. StubUserRepo userRepo = new StubUserRepo(...);
2. OperationsService service = new SimpleOperationsService();
3. service.setUserRepo(repo);

Chapter 2 ■ Spring Bean LifeCycle and Configuration

22

Spring will help assembling the components a very pleasant job. Swapping them depending on the
environment is also possible in a practical manner with Spring. Because connecting components is so easy,
writing tests becomes a breeze also, since each part can be isolated from the others and tested without any
unknown influence. Spring provides support for writing tests via the spring-test.jar library.

! A nd now that you know what Spring can help you with, you are invited to have a taste of how things are
done without it. Take a look at the 01-ps-start-practice project. In the SimpleOperationsService class
there is a method named createResponse that needs an implementation. The steps to create a Response
instance are:

1.	 retrieve the sitter User instance using userRepo

2.	 retrieve the Request instance using requestRepo

3.	 instantiate a Response instance

4.	 populate the Response instance:

•	 set the response status to ResponseStatus.PROPOSED

•	 set the user to the sitter instance

•	 set details with a sample text

•	 add the response to the request object

•	 save the response object using the verb|responseRepo|

Figure 2-5 depicts the sequence of operations.

Figure 2-5.  Service class and its dependency

Chapter 2 ■ Spring Bean LifeCycle and Configuration

23

To run the implementation, search for the class com.ps.repo.services.SimpleOperationsServiceTest under
the test directory. Inside this class there is a method annotated with @Test. This is a JUnit annotation. More
details about testing tools are covered in Chapter 3. Testing Spring Applications. In order to run a unit test in
Intellij IDEA, just click right on the method name, and a menu like the one in Figure 2-6 will be displayed. Select
the Run option to run the test. Select Debug if you want to run the test in debug mode and check field values.

Figure 2-6.  JUnit test contextual menu in Intellij IDEA

Figure 2-7.  JUnit test failure in Intellij IDEA

If the implementation is not correct, the test will fail, and in the Intellij IDEA console you should see something
similar to what is depicted in Figure 2-7. And yes, a red progress bar is a clear sign that the test failed.

If the implementation is correct, the test will pass, and a lot of green in the Intellij IDEA console, as in Figure 2-8,
is a sign that everything went ok.

http://dx.doi.org/10.1007/978-1-4842-0811-3_3

Chapter 2 ■ Spring Bean LifeCycle and Configuration

24

You can check the solution by comparing it with the proposed code from the 01-ps-start-solution.

Spring IoC and Dependency Injection
At the beginning of this chapter, it was mentioned that creating objects and assembling them is what Spring
does. The Spring Framework Inversion of Control (IoC) component is the nucleus of the framework. It
uses dependency injection to assemble Spring-provided (also called infrastructure components) and
development-provided components in order to rapidly wrap up an application. Figure 2-9 depicts where the
Spring IoC fits in the application development process.

Figure 2-8.  JUnit test passed in Intellij IDEA

Figure 2-9.  Spring IoC purpose

Chapter 2 ■ Spring Bean LifeCycle and Configuration

25

The application being developed over the course of this book includes service classes that are built
using repository instances. For example, this is how a UserService implementation can be defined:

public class SimpleUserService extends SimpleAbstractService<User>
 implements UserService {

 private UserRepo repo;

 public SimpleUserService(UserRepo userRepo) {
 this.repo = userRepo;
 }
 ...
}

As you can see, the dependency is injected using a constructor, so creating the service instance requires
a repository instance to be provided as a parameter. The repository instance is needed in order to retrieve
and persist User objects in the database. The repository can be defined like this:

import javax.sql.DataSource;

public class JdbcUserRepo extends JdbcAbstractRepo<User> {

 public JdbcUserRepo(DataSource dataSource) {
 super(dataSource);
 }
 ...
}

//JdbcAbstractRepo.java contains common
//implementation for all repository classes
import javax.sql.DataSource;

public class JdbcAbstractRepo<T extends AbstractEntity>
 implements AbstractRepo<T> {
 protected DataSource dataSource;

 public JdbcAbstractRepo(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Override
 public void save(T entity) {...}

 @Override
 public void delete(T entity) {... }

 @Override
 public void deleteById(Long entityId) {...}

 @Override
 public T findById(Long entityId) {...}
}

Chapter 2 ■ Spring Bean LifeCycle and Configuration

26

In order to create a repository instance, a DataSource instance is needed, in order to connect to the
database.

In order to tell the Spring Container to create these objects and how to link them together, a
configuration must be provided. This configuration can be provided using XML files or XML + annotations
or Java Configuration classes.

The following configuration snippet depicts the contents and template of an XML Spring Configuration
file, used to define the components that will make up the application.2

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 <bean id="simpleUserService" class="com.ps.services.impl.SimpleUserService">
 <property name="userRepo" ref="userRepo"/>
 </bean>

 <!-- Loads users from the data source -->
 <bean id="userRepo" class="com.ps.repos.impl.JdbcUserRepo">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource" class="oracle.jdbc.pool.OracleDataSource">
 <property name="url" value="jdbc:oracle:thin:@sample:1521:PET"/>
 <property name="username" value="sample"/>
 <property name="password" value="sample"/>
 </bean>
</beans>

The XML file is usually placed in the project directory under src/main/resources/spring. The spring
directory tells you that files under it are Spring configuration files, because an application can have more
XML configuration files for other purposes (configuring other infrastructure components like Hibernate,
configuring caching with Ehcache, logging, etc.). An application configured in this way will run in an
application context created by the Spring container.

The application context will manage all objects instantiated and initialized by the Spring IoC, which
from now on we will refer to as beans in order to get you accustomed with the Spring terminology. The
relationship among these objects and the application context is depicted in Figure 2-10 along with their
unique identifier.

2Oracle was used for data storage in this example because most production applications use Oracle for storage, and this
book aims to provide real configurations such as you will probably encounter and need while working in software
development.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

27

The application context is nothing else than a class implementing the Spring interface
org.springframework.context.ApplicationContext that needs to be instantiated and the configuration
file given as an argument. There are more implementations for the application context provided by Spring,
and the one to use depends on the location and the resources containing the configuration. For XML, the
class org.springframework.context.support.ClassPathXmlApplicationContext is used.

//creating the context
(1)ApplicationContext context = new ClassPathXmlApplicationContext
 ("classpath:spring/application-config.xml");

// Get the bean to use to invoke the service
(2)UserService userService = (UserService)context.get("simpleUserService");

// create user entity
(3)User user = new User();
// populate user

// invoking the save method of the bean
(4)userService.save(user);

In the previous example, a lot of information is new and will be introduced gradually in the next
sections. The classpath is a common prefix used in Spring applications configured using XML files, to tell
the Spring IoC where the configuration is located. The bean unique identifier in the application context, the
bean id was evidentiated by underlining its value, in order to give you a hint as to how the identification of a
certain instance is done. More on this topic will be covered in the following sections.

Figure 2-10.  Application Context and the beans managed by it

Chapter 2 ■ Spring Bean LifeCycle and Configuration

28

Configuration using Java Configurations can be done as in the following code snippet, but what
everything means will be covered in more detail in the following sections. The method names used to
create the beans were evidentiated by underlining them, in order to give you a hint as to how the bean id is
determined.

@Configuration
@PropertySource("claspath:db/datasource.properties")
public class ApplicationConfig {

 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public UserService simpleUserService() throws SQLException {
 return new SimpleUserService(userRepo());
 }

 @Bean
 public UserRepo userRepo() throws SQLException {
 return new JdbcUserRepo(dataSource());
 }

 @Bean
 public DataSource dataSource() throws SQLException {
 OracleDataSource ds = new OracleDataSource();
 ds.setURL(url);
 ds.setUser(username);
 ds.setPassword(password);
 return ds;
 }
}

The datasource.properties file contains the database access credentials, which are set for the fields
annotated with @Value, but how this works will be explained in greater detail in the Java Configuration
section. For Java Configuration classes, the class org.springframework.context.annotation.
AnnotationConfigApplicationContext is used to create an application context.

ApplicationContext ctx = new AnnotationConfigApplicationContext
 (ApplicationConfig.class);
// everything wires up across configuration classes...
SimpleUserService simpleUserService =
 (SimpleUserService) ctx.getBean("simpleUserService");

And now that the surface has been scratched, you are ready to dive into advanced Spring configuration.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

29

Spring Configuration
The beans definitions that make up a Spring application are provided using XML files, annotations, Java-based
Configuration annotations, or all of them together. XML was the first method for storing bean definitions
that Spring used, probably because annotations had not yet been invented when Spring was. A form of
annotation-based configuration was introduced in Spring 2.5, when annotations such as @Component,
@Service, @Repository, also called stereotype annotations, were introduced to define common business
beans. But the most common way to provide the configuration for a Spring application nowadays is Java-
based Configuration, which introduces annotations such as @Configuration, @Bean for infrastructure beans
beginning with Spring 3.0. The stereotype annotations and the Java Configuration annotations complement
each other to provide a practical, non- XML way to define the configuration for a Spring application.
XML configuration is still supported because of legacy code and to support diversity. Indeed, there are
programmers who still prefer to completely decouple all configuration from code, and not writing extra code
just for configuration and Java-based Configuration and/or annotations is not quite allowed.

In this section, all aspects of configuration and dependency injection types will be covered, so get
yourself a big cup of coffee (or tea) and start reading.

Providing Configuration via XML
In order to provide an XML configuration for a Spring application that will define one or more bean
definitions, the file must use certain namespaces and respect the structure defined by them. A bean
definition specifies the bean id, name, alias, type, arguments used for its initialization, dependencies, and
many more items. The main namespace is the beans namespace, which specifies what a bean definition
should look like. The namespace has a matching XSD, which needs to be added to the <beans/> element so
that the configuration file can be validated according to the rules defined by it. A Spring XML configuration
file must have at least this namespace defined. The code snippet below depicts the standard XML-based
configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="..." class="...">
 <!-- props to set -->
 </bean>
</beans>

! I n the code sample above, the Spring version is not used in the schema location declaration. If used, the
schema location element would look like this:

 ...

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-4.3.xsd">

 ...

Chapter 2 ■ Spring Bean LifeCycle and Configuration

30

A recommended (best) practice is not to do this, since the version will be correctly identified from the Spring
dependency version in the project. Also, the other advantage is that you can upgrade the Spring version you are
using, and the new definition specifications will be automatically supported in your configuration files without
your having to modify them.

For bean definitions to be read and for beans to be created and managed, many Spring-provided beans
must be created too. That is why a few core Spring modules must be added as dependencies to your project:

•	 spring-core: fundamental parts of the Spring Framework

•	 spring-beans: together with spring-core provide the core components of the
framework, including the Spring IoC and dependency Injection features.

•	 spring-context: expands the functionality of the previous two, and as the name
says, it contains components that help build and use an application context. The
ApplicationContext interface is part of this module, being the interface that every
application context class implements.

•	 spring-context-support: provides support for integration with third-party
libraries, for example Guava, Quartz, FreeMarker, and many more.

•	 spring-expressions: provides a powerful Expression Language (SpEL) used for
querying and manipulating objects at runtime; for example, properties can be
read from external sources decided at runtime and used to initialize beans. But
this language is quite powerful, since it also supports logical and mathematical
operations, accessing arrays, and manipulating collections.

And now that that you know where all the infrastructure components come from, we can return to the
configuration details and show you what a bean definition looks like. The simplest bean definition looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 </beans>

In the configuration above we just defined a bean with the id simpleBean of type
com.ps.SimpleBeanImpl that has no dependencies. In order to define a bean with dependencies, we have
to decide how those dependencies are injected. In Spring, there are two types of dependency injection
specific to XML: via constructor and via setters, and one that can be used only using annotations and
Java Configuration: field injection, which will be covered in the next section.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

31

Constructor Injection
Constructor injection can be used to define beans when the bean type is a class that has a constructor with
arguments defined. If the bean definition looks like this:

<beans ...>

 <bean id="complexBean" class="com.ps.beans.ctr.ComplexBeanImpl">
 <constructor-arg ref="simpleBean"/>
 </bean>

<bean id= "simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 </beans>

Then the class ComplexBeanImpl looks like this:

public class ComplexBeanImpl implements ComplexBean {

 private SimpleBean simpleBean;
 public ComplexBeanImpl(SimpleBean simpleBean) {
 this.simpleBean = simpleBean;
 }
...
}

The code and configuration snippets above provide all the necessary information so that the Spring
container can create a bean of type SimpleBeanImpl named simpleBean and then inject it into a bean of type
ComplexBeanImpl named complexBean. What is done behind the scenes is:

SimpleBean simpleBean = new SimpleBeanImpl();
ComplexBean complexBean = new ComplexBeanImpl(simpleBean);

Spring creates the beans in the order they are needed. The dependencies are first created and then
injected into the beans that need them.

What you have to remember when it comes to constructor injection is that the template for a bean
definition using it looks like this:

<bean id="..." class="...">
 <constructor-arg ref="..."/>
</bean>

The <constructor-arg /> element defines the constructor argument and does so using a number of
attributes, but ref is the most common, and it is used to tell the container that the value of this attribute is
a reference to another bean. The complete list of attributes and documentation for each one can be found
in spring-beans-4.3.xsd, which can be accessed easily from Intellij IDEA by pressing CTRL (Command in
MacOS systems) while clicking on constructor-arg in your configuration file.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

32

Another attribute that is commonly used is value. This attribute is used when the value to inject is a
scalar.3 So text values, numbers, booleans, all can be used as arguments for the constructor using the value
attribute.

<beans ...>
 <bean id="complexBean" class="com.ps.beans.ctr.ComplexBeanImpl">
 <constructor-arg ref="simpleBean"/>
 <constructor-arg value="true"/>
 </bean>
...
</beans>
// ComplexBeanImpl.java constructor
 public ComplexBeanImpl(SimpleBean simpleBean, boolean complex) {
 this.simpleBean = simpleBean;
 this.complex = isComplex;
 }

So what happens here is equivalent to:

ComplexBean complexBean = new ComplexBeanImpl(simpleBean, true);

And also quite useful is the index attribute, which should be used when the constructor has more
parameters of the same type.

<beans ...>
 <bean id="simpleBean0" class="com.ps.beans.SimpleBeanImpl"/>
 <bean id="simpleBean1" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean2" class="com.ps.beans.ctr.ComplexBean2Impl">
 <constructor-arg ref="simpleBean0" index="0"/>
 <constructor-arg ref="simpleBean1" index="1"/>
 </bean>
</beans>

 // ComplexBean2Impl.java constructor
 public ComplexBean2Impl(SimpleBean simpleBean1, SimpleBean simpleBean2) {
 this.simpleBean1 = simpleBean1;
 this.simpleBean2 = simpleBean2;
 }

So what happens here is equivalent to:

ComplexBean complexBean2 = new ComplexBean2Impl(simpleBean0, simpleBean1);

Another way to handle constructors with more parameters of the same type is to use the name attribute,
which receives as its value the name of the parameter of the constructor. And obviously, using it makes the
configuration a lot clearer and easier to read. So for the complexBean2 defined previously, there is another
configuration that does the same job.

3The term “scalar” comes from linear algebra, where it is used to differentiate a number from a vector or matrix. In
computing, the term has a similar meaning. It distinguishes a single value such as an integer or float from a data structure
like an array. In Spring, scalar refers to any value that is not a bean and cannot be treated as such.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

33

<beans ...>
 <bean id="simpleBean0" class="com.ps.beans.SimpleBeanImpl"/>
 <bean id="simpleBean1" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean2" class="com.ps.beans.ctr.ComplexBean2Impl">
 <constructor-arg ref="simpleBean0" name="simpleBean1"/>
 <constructor-arg ref="simpleBean1" name="simpleBean2"/>
 </bean>
</beans>

Developers choose to use constructor injection when it is mandatory for the dependencies to be
provided, since the bean depending on them cannot be used properly without them. Dependency injection
also is suitable when a bean needs to be immutable, by assigning the dependencies to final fields. The most
common reason to use constructor injection is that sometimes, third-party dependencies are used in a
project, and their classes were designed to support only this type of dependency injection.

In creating a bean, there are two steps that need to be executed one after the other. The bean first needs
to be instantiated, and then the bean must be initialized. The constructor injection combines two steps into
one, because injecting a dependency using a constructor means basically instantiating and initializing the
object at the same time.

If constructor-arg seems to be a long name for a configuration element, do not worry. Spring has
introduced a fix for that in version 3.1 the c-namespace : xmlns:c="http://www.springframework.org/
schema/c". This namespace allows usage of inline attributes for configuring the constructor arguments and
does not have an XSD schema, since it does not introduce any new configuration elements. Just add it to the
bean configuration file and your configuration can be simplified like this:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemalocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="simpleBean0" class="com.ps.beans.SimpleBeanImpl"/>
 <bean id="simpleBean1" class="com.ps.beans.SimpleBeanImpl"/>

 <!-- usage for reference to dependency -->
 <bean id="complexBean0" class="com.ps.beans.ctr.ComplexBeanImpl"
 c:simpleBean-ref="simpleBean0"/>

 <!-- usage for primitive type dependency -->
 <bean id="complexBean1" class="com.ps.beans.ctr.ComplexBeanImpl"
 c:simpleBean-ref="simpleBean0" c:complex="true"/>

 <!-- usage for index specified references -->
 <bean id="complexBean2" class="com.ps.beans.ctr.ComplexBean2Impl"
 c:_0-ref="simpleBean0" c:_1-ref="simpleBean1" />
</beans>

http://www.springframework.org/schema/c
http://www.springframework.org/schema/c

Chapter 2 ■ Spring Bean LifeCycle and Configuration

34

What you should remember when using the c-namespace is that when the dependency is another bean,
the "-ref" postfix is added to the c: prefixed attributes.

! I f you are using the name of the constructor parameter to inject the dependency, then the attribute definition
with c: should match the pattern c:nameConstructorParameter[-ref], while if you are using indexes, the
attribute definition should match c:_{index}[-ref].

! A ll these examples can be found in the 02-ps-container-01-practice project. The package containing all
beans and configurations for trying out constructor injections is named com.ps.beans.ctr. The configuration
files are stored under 02-ps-container-01-practice/src/main/resources/spring/ctr, and there are
two configuration files: sample-config-01.xml, containing the bean definitions using the constructor-arg
element, and sample-config-02.xml, containing the bean definitions using the c-namespace.

In order to test the validity of these files, run the test in the com.ps.beans.ctr.CIBeansTest class. There
is also a TODO task in there, asking you to retrieve beans of types ComplexBean and make sure that their
dependencies were correctly set. How you do this is up to you, since there are many ways to do it. A solution is
provided for you in the 02-ps-container-01-solution. If you want, you can take a break from the book and
try to solve the task now.

Setter Injection
In order to use setter injection, the class type of the bean must have setter methods used to set the
dependencies. A constructor is not mandatory. If no constructor is declared, Spring will use the default “no
argument” constructor, which every class automatically inherits for the Java Object class to instantiate the
object and the setter methods to inject dependencies. If a no argument constructor is explicitly defined,
Spring will use it to instantiate the bean. If a constructor with parameters is defined, the dependencies
declared in this way will be injected using constructor-injection, and the ones defined using setters will be
injected via setter injection.

In conclusion, when creating a bean using setter injection, the bean is first instantiated by calling the
constructor and then initialized by injecting the dependencies using setters. (Of course, you will learn later
in this chapter that initialization can split into two steps too: setting dependencies and calling a special init
method that processes those dependencies.) So if your bean definition looks like this:

<beans ...>
 <bean id="simpleBean0" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean" class="com.ps.beans.set.ComplexBeanImpl">
 <property name="simpleBean" ref="simpleBean"/>
 </bean>
</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

35

Then the class com.ps.beans.set.ComplexBeanImpl looks like this:

public class ComplexBeanImpl implements ComplexBean {
 private SimpleBean simpleBean;

 // no-argument empty constructor, not mandatory
 public ComplexBeanImpl() {}

 public void setSimpleBean(SimpleBean simpleBean) {
 this.simpleBean = simpleBean;
 }

 public SimpleBean getSimpleBean() {
 return simpleBean;
 }
}

The code and configuration snippets above provide all the necessary information so that the Spring
container can create a bean of type SimpleBeanImpl and a bean named simpleBean0 and then inject it
into a bean of type ComplexBeanImpl named complexBean. The dependency is injected after the bean is
instantiated by calling the setSimpleBean method and providing the simpleBean as argument. What is done
behind the scenes is:

SimpleBean simpleBean = new SimpleBeanImpl();
ComplexBean complexBean = new ComplexBeanImpl();
complexBean.setSimpleBean(simpleBean);

What you have to remember when it comes to setter injection is that the template for a bean definition
using it looks like this:

<bean id="..." class="...">
 <property name="..." ref="..." />
</bean>

The <property /> element defines the property to be set and the value to be set with and does so using
a pair of attributes: [name, ref] or [name,value].

The name attribute is mandatory, because its value is the name of the bean property to be set.
The ref attribute is used to tell the container that the value of this attribute is a reference to another bean.
The value, as you probably suspect, is used to tell the container that the value is not a bean, but a

scalar value.

<beans ...>

 <bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean" class="com.ps.beans.set.ComplexBeanImpl">
 <property name="simpleBean" ref="simpleBean"/>
 <property name="complex" value="true"/>
 </bean>
</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

36

// ComplexBeanImpl.java
public class ComplexBeanImpl implements ComplexBean {
 private SimpleBean simpleBean;
 private boolean complex;
 public ComplexBeanImpl() {}

 public void setSimpleBean(SimpleBean simpleBean) {
 this.simpleBean = simpleBean;
 }

 public void setComplex(boolean complex) {
 this.complex = complex;
 }
}

As with construction injection, Spring also has a namespace for simplifying XML definition when
one is using setter injection. It is called the p-namespace: http://www.springframework.org/schema/p.
This namespace allows the use of inlined attributes for configuring property arguments and does not
have an XSD schema, since it does not introduce any new configuration elements. Just add it to the bean
configuration file and your configuration can be simplified. The -ref postfix for the "p:" attributes has the
role of telling the container that the value of the attribute is a reference to another bean.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean" class="com.ps.beans.set.ComplexBeanImpl"
 p:simpleBean-ref="simpleBean" p:complex="true"/>
</beans>

And this is all that can be said about the setter injection for now. Choosing between setter and
constructor injection depends only on the needs of the application, the code that is already written and
cannot be changed (legacy code) and third party libraries. The advantage of setter injection is that the
dependencies are optional and defaults can be used, and also inheritance. When deciding on what to use,
follow the best practices as much as possible:

•	 Use constructor injection when properties are required.

•	 Use setter injection when properties are not required.

•	 Use the strategy matching the implementation of bean type.

•	 Be consistent.

http://www.springframework.org/schema/p

Chapter 2 ■ Spring Bean LifeCycle and Configuration

37

Constructor and setter injection can be used together in creating the same bean. Here is an example:

<!-- typical configuration -->
<beans .../>
 <bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="complexBean2" class="com.ps.beans.set.ComplexBean2Impl">
 <constructor-arg ref="simpleBean"/>
 <property name="complex" value="true"/>
 </bean>
</beans>

<!-- configuration optimized using p-namespace and c-namespace -->
<beans .../>
 <bean id="complexBean2" class="com.ps.beans.set.ComplexBean2Impl"
 c:simpleBean-ref="simpleBean" p:complex="true"/>
</beans>

//ComplexBean2Impl.java
public class ComplexBean2Impl implements ComplexBean {
 private SimpleBean simpleBean;
 private boolean complex;

 public ComplexBean2Impl(SimpleBean simpleBean)
 {
 this.simpleBean = simpleBean;
 }

 public void setComplex(boolean complex) {
 this.complex = complex;
 }
}

! A ll these examples can be found in the 02-ps-container-01-practice project. The package containing
all beans and configurations for trying out setter injection is named com.ps.beans.set. The configuration
files are stored under 02-ps-container-01-practice/src/main/resources/spring/set, and there are two
configuration files: sample-config-01.xml, containing the bean definitions using the property element, and
sample-config-02.xml, containing the bean definitions using the p-namespace.

In order to test the validity of these files, run the test in the com.ps.beans.set.SIBeansTest class. There
is also a TODO task in there, asking you to retrieve beans of types ComplexBean and make sure that their
dependencies were correctly set. How you do this is up to you, since there are many ways to do it. A solution is
provided for you in the 02-ps-container-01-solution. If you want, you can take a break from the book and
try to execute this task now.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Spring Bean LifeCycle and Configuration

38

Injecting Dependencies That Are Not Beans
Dependency injection with Spring is a vast subject, and this book was written with the intention of covering
all the cases you might need in enterprise development. It was mentioned that scalar values can be
injected. This of course opens the discussion about type conversion. In the previous example, we injected a
boolean value, and the Spring container knew to take the text value from the configuration file and convert
it to the property type defined in the bean type definition. The Spring container knows how to do this for all
primitive types and their reference wrapper types. String values, booleans, and numeric types are supported
by default. Just keep in mind that for booleans and decimal types, however, the syntax typical for these types
must be respected; otherwise, the default Spring conversion will not work.

Spring also knows to automatically convert Date values before injection if the syntax matches any date
pattern with "/" separators (e.g., dd/MM/yyyy ,yyyy/MM/dd, dd/yyyy/MM) just take care, because even
invalid numerical combinations are accepted and converted, e.g., 25/2433/23.

In order to support any other types, the Spring container must be told how to convert the value of the
attribute to the type that the constructor or setter requires as an argument. The most common method is to
use a property editor. This is a Spring concept that describes a component used to handle the transformation
between any Object and String. In order to make such a conversion possible, you have to define a custom
implementation for the java.beans.PropertyEditor and register it in the Spring context. Out of the box,
Spring provides a number of PropertyEditor implementations for commonly used types.4 All the developer
has to do is to customize them and register them.

Let’s assume we want to define a Person bean like this:

<bean id="person" class="com.ps.beans.PersonBean">
 <property name="fullName" value="John Mayer"/>
 <property name="birthDay" value="1977-10-16"/>
</bean>

There is more than one way to tell the Spring IoC how the value 1977-10-16 can be converted to a
Date. And since java.beans.PropertyEditor was mentioned, the first example will use the Spring
org.springframework.beans.propertyeditors.CustomDateEditor. In order for this to work, we need to
do the following:

•	 Define a class that implements org.springframework.beans.
PropertyEditorRegistrar that registers the customized version of
org.springframework.beans.propertyeditors.CustomDateEditor (the Spring
built-in implementation for conversion between java.util.Date and String):

package com.ps.beans.others;

import org.springframework.beans.PropertyEditorRegistrar;
import org.springframework.beans.PropertyEditorRegistry;
import org.springframework.beans.propertyeditors.CustomDateEditor;

import java.text.SimpleDateFormat;
import java.util.Date;

4You can find them all listed in the Spring Reference http://docs.spring.io/spring/docs/current/spring-
framework-reference/html/validation.html#beans-beans-conversion.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#beans-beans-conversion
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#beans-beans-conversion

Chapter 2 ■ Spring Bean LifeCycle and Configuration

39

public class DateConverter implements PropertyEditorRegistrar {
 @Override
 public void registerCustomEditors(PropertyEditorRegistry registry) {
 registry.registerCustomEditor(Date.class,
 new CustomDateEditor(new SimpleDateFormat("yyyy-MM-dd"), false));
 }
}

•	 Add a bean definition for the org.springframework.beans.factory.
config.CustomEditorConfigurer and provide as parameter for its
propertyEditorRegistrars property a list containing a bean of type DataConverter:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
 <property name="propertyEditorRegistrars">
 <list>
 <bean class="com.ps.beans.others.DateConverter" />
 </list>
 </property>
</bean>

The second example shows you how to do this only from configuration and uses two attributes of the
<bean /> element that will be covered in a following section: factory-bean and factory-method. The
formatter bean is used as a factory bean that creates date values from the String values passed as arguments
to the parse method. The downside of this method is that the definition of the bean is polluted with the
conversion definition.

<beans ...>

 <bean id="formatter" class="java.text.SimpleDateFormat">
 <constructor-arg value="yyyy-MM-dd" />
 </bean>

 <bean id="person" class="com.ps.beans.PersonBean">
 <property name="fullName" value="John Mayer"/>
 <property name="birthDay">
 <bean factory-bean="formatter" factory-method="parse">
 <constructor-arg value="1977-10-16" />
 </bean>
 </property>
 </bean>
</beans>

In a web application context, an implementation of the org.springframework.format.Formatter must
be provided and registered.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

40

! A n example bean with fields of various types was provided in 02-ps-container-01-practice. The class is
called com.ps.beans.others.MultipleTypesBean, and it can be tested by running the test class called com.
ps.beans.others.MtBeanTest. The bean definition can be found in the 02-ps-container-01-practice/src/
main/resources/spring/others/sample-config-01.xml file and is depicted in the following code snippet:

<bean id="mtBean" class="com.ps.beans.others.MultipleTypesBean">

 <property name="noOne" value="1"/>
 <property name="noTwo" value="2"/>
 <property name="longOne" value="3"/>
 <property name="longTwo" value="4"/>
 <property name="floatOne" value="5.0"/>
 <property name="floatTwo" value="6.0"/>
 <property name="doubleOne" value="7.0"/>
 <property name="doubleTwo" value="8.0"/>
 <property name="boolOne" value="true"/>
 <property name="boolTwo" value="false"/>
 <property name="charOne" value="1"/>
 <property name="charTwo" value="A"/>
 <property name="date" value="1977-10-16"/>
 </bean>

Run the test in debug mode as depicted in Figure 2-11, and set a breakpoint on the assertNotNull(mtBean);
line. In the Debug console, visible at the bottom of the figure, you can see the values for all the fields of the
mtBean.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

41

The fields postfixed with One are primitives; the others are objects. Notice how they were all initialized correctly,
and the values in the bean definition were converted to the appropriate types.

Another type of object commonly used is collections, and to make using them together with beans
easier, the Spring development team has created the util namespace. In the previous code snippet you
probably noticed the <list /> element. That is how collections can be used without the util namespace,
and another code snippet will be provided to make their usage obvious. Consider a class named
CollectionHolder defined as in the following code snippet:

public class CollectionHolder {

 private List<SimpleBean> simpleBeanList;
 private Set<SimpleBean> simpleBeanSet;
 private Map<String, SimpleBean> simpleBeanMap;

Figure 2-11.  Running a test in debug mode to inspect the` fields of a bean of type MultipleTypesBean

Chapter 2 ■ Spring Bean LifeCycle and Configuration

42

 public void setSimpleBeanList(List<SimpleBean> simpleBeanList) {
 this.simpleBeanList = simpleBeanList;
 }

 public void setSimpleBeanSet(Set<SimpleBean> simpleBeanSet) {
 this.simpleBeanSet = simpleBeanSet;
 }

 public void setSimpleBeanMap(Map<String, SimpleBean> simpleBeanMap) {
 this.simpleBeanMap = simpleBeanMap;
 }

 /**
 * This method was implemented just to verify the collections injected
 * into beans of this type
 */
 @Override
 public String toString() {
 return "CollectionHolder{" +
 "simpleBeanList=" + simpleBeanList +
 ", simpleBeanSet=" + simpleBeanSet +
 ", simpleBeanMap=" + simpleBeanMap +
 ’}’;
 }
}

The state of the collectionHolder bean will be tested using the following test class:

 // CollectionTest.java
public class MtBeanTest {
 private Logger logger = LoggerFactory.getLogger(SIBeansTest.class);
 @Test
 public void testConfig() {
 ApplicationContext ctx = new ClassPathXmlApplicationContext
 ("classpath:spring/others/sample-config-01.xml");

 CollectionHolder ctBean = (CollectionHolder) ctx.getBean("collectionHolder");
 assertNotNull(ctBean);
 (*) logger.info(ctBean.toString());
 }
}

Beans can be created, and values for their collection properties can be injected as in the following examples:

•	 inject empty collections

 <bean id="collectionHolder" class="com.ps.beans.others.CollectionHolder">
 <property name="simpleBeanList">
 <list/>
 </property>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

43

 <property name="simpleBeanSet">
 <set/>
 </property>

 <property name="simpleBeanMap">
 <map/>
 </property>
</bean>

The logger.info statement in the line marked with (*) in the test class will print the following: Collect
ionHolder{simpleBeanList=[], simpleBeanSet=[], simpleBeanMap={}}

•	 inject a property of type List with SimpleBean elements

<bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

<bean id="collectionHolder" class="com.ps.beans.others.CollectionHolder">
 <property name="simpleBeanList">
 <list>
 <ref bean="simpleBean"/>
 <bean class="com.ps.beans.SimpleBeanImpl"/>
 <null/>
 </list>
 </property>
</bean>

•	 The logger.info statement in the line marked with (*) in the test class will print the
following:

CollectionHolder{
 simpleBeanList=[
 SimpleBeanImpl{ code: 454325163},
 SimpleBeanImpl{ code: 796667727},
 null
],
 simpleBeanSet=null, simpleBeanMap=null
}

•	 Here is a detailed explanation of the three injected elements:

–– <ref bean="simpleBean"/> is referencing an existing bean. At runtime, the bean named
simpleBean will be added to the list. Equivalent to list.add(simpleBean).

–– <bean class="com.ps.beans.SimpleBeanImpl"/> is used to define a bean that is created on
the spot. Equivalent to list.add(new SimpleBeanImpl). This bean definition declares a bean
called inner bean, a concept that will be covered later.

–– <null/> is used to add a null element to the list. Equivalent to list.add(null).

•	 what was done with the list element can be done with the set element as well.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

44

•	 inject a property of type Map<String, SimpleBean>:

<bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="collectionHolder" class="com.ps.beans.others.CollectionHolder">
 <property name="simpleBeanMap">
 <map>
 <entry key="one" value-ref="simpleBean"/>
 </map>
 </property>
 </bean>

The logger.info statement in the line marked with (*) in the test class will print the
following:

CollectionHolder{
 simpleBeanList=null, simpleBeanSet=null,
 simpleBeanMap={
 one=SimpleBeanImpl{ code: 454325163}
 }
}

In using the <map /> element with values or keys of non-primitive types, the "-ref" postfix is used to
reference an existing bean. Also, beans cannot be created on the spot, as in <list /> and <set /> elements.
Nor can <null /> elements be used.

Without using the util namespace, collection elements cannot be defined outside the definition of a
bean in a configuration file. The util namespace was introduced to deal with common utility configuration
issues such as defining and injecting collections, java.util.Properties objects, referencing constants. To
use its elements, it has to be added to the list of namespaces in the <beans /> element. Using this namespace,
collections can be defined under the <beans \> element. They are assigned their own ids, which can be used
to reference them for injection into multiple beans. They are basically used in the same ways that beans are.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

 <bean id="simpleBean" class="com.ps.beans.SimpleBeanImpl"/>

 <util:list id="simpleList">
 <ref bean="simpleBean"/>
 <bean class="com.ps.beans.SimpleBeanImpl"/>
 <null/>
 </util:list>

 <util:set id="simpleSet">
 <ref bean="simpleBean"/>
 </util:set>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

45

 <util:map id="simpleMap">
 <entry key="one" value-ref="simpleBean"/>
 </util:map>

 <bean id="collectionHolder" class="com.ps.beans.others.CollectionHolder">
 <property name="simpleBeanList" ref="simpleList"/>
 <property name="simpleBeanSet" ref="simpleSet"/>
 <property name="simpleBeanMap" ref="simpleMap"/>
 </bean>

 <bean id="collectionHolder2" class="com.ps.beans.others.CollectionHolder">
 <property name="simpleBeanList" ref="simpleList"/>
 </bean>

In the previous code snippet, you can notice how the simpleList component is injected into two beans:
collectionHolder and collectionHolder2.

Another type of bean used quite often in Spring applications is the java.util.Properties type. It can
be defined and used in a similar way as the other collections were used in the previous examples. This type
was not covered in the previous examples, because it was saved for something special.

Using Bean Factories
The <bean /> element has more attributes and can also be used to declare beans that are created by a
factory method5 or singleton6 objects. To use a singleton class to create a bean, the factory-method attribute
is used, and its value will be the static method name that returns the bean instance. Here in a simple
example showing how a bean can be created using a singleton class and the bean configuration:

<beans .../>
 <bean id="simpleSingleton" class="com.ps.beans.others.SimpleSingleton"
 factory-method="getInstance" />
</beans>

// SimpleSingleton.java
public class SimpleSingleton {
 private static SimpleSingleton instance = new SimpleSingleton();

 private SimpleSingleton() { }

 public static SimpleSingleton getInstance(){
 return instance;
 }
}

5Factory Method is a design pattern that implies using factory methods to create objects without specifying the exact type
of the object being created. More information about this pattern can easily be found on the Internet using a simple search
on Google, but here is a quick good source: https://en.wikipedia.org/wiki/Factory_method_pattern.
6Singleton is a creation pattern that is characterized by the fact that a singleton class can be instantiated only once. More
about it can be read here: https://en.wikipedia.org/wiki/Singleton_pattern.

https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

Chapter 2 ■ Spring Bean LifeCycle and Configuration

46

To use a factory object to create a bean, the factory-bean and factory-method attributes are used. As
their so obvious names say, the first one points to the object used to create the bean, and the other specifies
the method name that returns the actual result (not static in this case). Here is a snippet of code depicting a
bean being created by a factory bean:

<beans .../>
 <bean id="simpleBeanFactory" class="com.ps.beans.others.SimpleFactoryBean"/>
 <bean id="simpleFB" factory-bean="simpleBeanFactory"
 factory-method="getSimpleBean" />
</beans>
// SimpleSingleton.java
public class SimpleFactoryBean {

 public SimpleBean getSimpleBean() {
 return new SimpleBeanImpl();
 }
}

Although it seems somewhat redundant, creating beans in this way might be useful when one is using
third-party libraries that only allow creating objects using a factory class. And this method can be used
to connect existing components to provide a certain behavior, such as helping Spring to convert String
values to Date objects using a format pattern different from the default one, as was presented in the section
Injecting Dependencies That Are Not Beans.

Spring comes to the rescue in this case as well, by providing an interface named org.springframework.
beans.factory.FactoryBean<T>. This is used by many Spring classes in order to simplify configuration. By
implementing this interface, the factory beans will be automatically picked up by the Spring container, and
the desired bean will be created by automatically calling the getObject method. Even if implementing your
factories in this way ties your code to Spring components, which usually is recommended to be avoided, this
method is practical and could be used in case of need.

<beans .../>
 <bean id="smartBean" class="com.ps.beans.others.SpringFactoryBean"/>
</beans>

//SpringFactoryBean.java
import org.springframework.beans.factory.FactoryBean;
...
public class SpringFactoryBean implements FactoryBean<SimpleBean> {
 private Logger logger = LoggerFactory.getLogger(SpringFactoryBean.class);

 private SimpleBean simpleBean = new SimpleBeanImpl();

 public SpringFactoryBean() {
 logger.info(">> Look ma, no definition!");
 }

 @Override
 public SimpleBean getObject() throws Exception {
 return this.simpleBean;
 }

Chapter 2 ■ Spring Bean LifeCycle and Configuration

47

 @Override
 public Class<?> getObjectType() {
 return SimpleBean.class;
 }
 @Override
 public boolean isSingleton() {
 return true;
 }
}

If you are curious about the Spring classes that implement org.springframework.beans.factory.
FactoryBean, Intellij IDEA can help you there. The class depicted in the previous code snippet is a part of
02-ps-container-01-practice. Just open that class, click on the interface name, and press CTRL (Command
in MacOS)+ALT+B, and a list of classes implementing it will be displayed, as depicted in Figure 2-12.

Figure 2-12.  Classes implementing the FactoryBean interface

Spring factory bean classes provide assistance for configuring data access using Hibernate and JPA, for
handling transactions, for configuring caching with EhCache, and so on. A few of them will be used in the
code samples for this book, so you will have occasion to see them in action.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

48

Creating an Application Context
In the examples provided up to now, the test classes contained a statement like this:

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
...
ApplicationContext ctx = new
ClassPathXmlApplicationContext("classpath:spring/others/sample-config-02.xml");

The org.springframework.context.ApplicationContext is the interface implemented by classes
that provide the configuration for an application. This interface is an extension of the interface
org.springframework.beans.factory.BeanFactory, which is the root interface for accessing a Spring
Bean container. Implementations of ApplicationContext manage a number of beans definition uniquely
identified by their name. Multiple Spring application context implementations exist, each one specific to a
type of application. An ApplicationContext implementation provides the following:

•	 access to beans using bean factory methods

•	 ability to load file resources in a generic way

•	 ability to publish events to registered listeners

•	 ability to resolve messages and support internationalization (most used in
international web applications)

An application context is created by the Spring container and initialized with a configuration provided
by a resource that can be an XML file (or more) or a configuration class (or more) or both. When the resource
is provided as a String instance, the Spring container tries to load the resource based on the prefix of that
String value. Also, based on the prefix, when instantiating an application context, different classes should be
used. In Table 2-1 you can see the different prefixes that can be used when loading resources in Spring.

Table 2-1.  Prefixes and corresponding paths

Prefix Location Comment

no prefix In root directory where the
class creating the context is
executed

In the main or test directory. The Resource being loaded
will have a type depending on the ApplicationContext
instance being used. (A detailed example is presented after
the table.)

classpath: The resource should be
obtained from the classpath

In the resources directory and the resource will
be of type ClassPathResource. If the resource
is used to create an application context, the
ClassPathXmlApplicationContext class is suitable.

file: In the absolute location
following the prefix

Resource is loaded as an URL, from the filesystem
and the resource will be of type UrlResource. If the
resource is used to create an application context, the
FileSystemXmlApplicationContext class is suitable.

http: In the web location following
the prefix

Resource is loaded as an URL and the resource will be
of type UrlResource. If the resource is used to create an
application context, the WebApplicationContext class is
suitable.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

49

In order to provide the functionality for loading resources, an application context must implement the
org.springframework.core.io.ResourceLoader interface. Here is an example of resource loading without
using a prefix:

Resource template = ctx.getResource("application-config.xml");

Depending on the context class used, the resource loaded can have one of the following types:

•	 If ctx is a ClassPathXmlApplicationContext instance resource type will be
ClassPathResource

•	 If ctx is a FileSystemXmlApplicationContext instance resource type will be
FileSystemResource

•	 If ctx is a WebApplicationContext instance resource type will be
ServletContextResource

And here is where prefixes come in. If we want to force the resource type, no matter what context type is
used, the resource must be specified using the desired prefix.

In the examples mentioned so far, all the bean definitions were in the same file, but for big multilayered
applications, it is more appropriate to separate bean definitions depending on their purpose. Let’s assume
that for the Pet Sitter application there will only be one XML configuration file. That file would look like this,
and the second... replaces other repository beans and services bean definitions, one for each type of object
used in the application.

<beans ...>
 <bean id="simpleUserService" class="com.ps.services.impl.SimpleUserService">
 <property name="repo" ref="userRepo"/>
 </bean>
 <!-- Loads users from the data source -->
 <bean id="userRepo" class="com.ps.repos.impl.JdbcUserRepo">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource" class="oracle.jdbc.pool.OracleDataSource">
 ...
 </bean>

 ... // other repo beans
</beans>

Testing certain components in isolation would not be possible. Mixed configurations are not
recommended for enterprise applications. They are more suitable for applications used to learn Spring.

An application context can be loaded from multiple XML files. This provides the opportunity to group
bean definitions by their purpose, for example to separate infrastructure beans from application beans,
because infrastructure changes between environments.7

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/application-config.xml",
 "classpath:spring/db-config.xml");

7Most companies use three types of environments: development, testing, and production.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

50

In the example above, the configuration for the storage layer is decoupled from the rest of the
application configuration in db-config.xml. This makes the database configuration easily replaceable
depending on the environment. The contents of db-config.xml for production could contain a dataSource
bean definition that uses a professional database such as Oracle.

<beans ...>
<bean id="dataSource" class="oracle.jdbc.pool.OracleDataSource">
 <property name="URL" value="jdbc:oracle:thin:@localhost:1521:PET"/>
 <property name="user" value="admin"/>
 </bean>
</beans>

The test-db-config.xml file for a test environment could contain a dataSource bean definition that
uses an in-memory database.

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseFactoryBean">
 <property name="databasePopulator" ref="populator"/>
 </bean>

 <bean id="populator"
 class="org.springframework.jdbc.datasource.init.ResourceDatabasePopulator">
 <property name="scripts">
 <list>
 <value>classpath:testdb/schema.sql</value>
 <value>classpath:testdb/test-data.sql</value>
 </list>
 </property>
 </bean>

Using the application-configuration.xml file together with test-db-config.xml, a test environment
application context can be created that can be used to run unit tests:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/application-config.xml",
 "classpath:spring/test-db-config.xml");

But as we have seen in the initial configuration snippet, we can go even further, and split the repository
from the service components, so the application-configuration.xml file will be split in two:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/repo-config.xml",
 "classpath:spring/service-config.xml");

And because the file names are so similar, wildcards are supported and can be used to keep the code
even simpler than this:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/*-config.xml");

Chapter 2 ■ Spring Bean LifeCycle and Configuration

51

In working with multiple files, in order to group them, there is also the possibility of enclosing them one
in another using the <import /> element. The import element supports prefixes in order to properly locate
files and should be used when beans defined in separate configuration files are part of the same logical
group. The following code and configuration snippet depicts how configuration files can be imported. In
Figure 2-13, the content of a resources directory is depicted.

Figure 2-13.  Spring configuration files in a resources directory

The file application-config.xml directory should enclose all the files named sample-config-* under
directories ctr, set, and others so the application context can be created like this:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/application-config.xml");

Using different prefixes, for learning purposes of course, here is how the files can be imported:

<beans ...>
 <!-- using relative path, no prefix-->
 <import resource="ctr/sample-config-01.xml"/>
 <import resource="ctr/sample-config-02.xml"/>

 <!-- using classpath-->
 <import resource="classpath: spring/ctr/sample-config-01.xml"/>
 <import resource="classpath: spring/ctr/sample-config-02.xml"/>

 <!-- using classpath and wildcards-->
 <import resource="classpath: spring/others/sample-config-*.xml"/>

</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

52

!  Since this is the end of an important section, there is a task for you. In project 02-ps-container-01-
practice there is a configuration file that has gotten a little too big:

02-ps-container-01-practice/src/main/resources/spring/others/sample-config-01.xml.

Split this file into one or more configuration files, and modify the test class com.ps.beans.others.
MtBeanTest to use those files to load the context. The test must complete successfully in order to validate your
configuration. A solution is provided for you in the 02-ps-container-01-solution project. You can compare
your result with this and draw conclusions. As a bonus, try using wildcards.

Also, do not forget, after you have modified a class, you might want to build your project using gradle build
-x test in the command line or run the compileJava task from the Intellij IDEA interface, in order to make sure
you are running your test with the most recent sources. In Figure 2-14, the location of the compileJava task is
evidentiated for you.

Figure 2-14.  The Gradle view in Intellij IDEA

Chapter 2 ■ Spring Bean LifeCycle and Configuration

53

Spicing Up XML Configuration
XML is a very flexible text format that defines a set of rules for encoding text elements that is both human- and
machine-readable. The purpose of XML configuration is to make configuring Spring applications easy. Even
with XML configuring enterprise behavior like AOP, collections, and transactions, integration with third-party
frameworks was cumbersome, so special namespaces that offer the possibility to define complex elements
easily were introduced. This also helped with differentiating infrastructure beans from application beans.

Using XML is also practical because the configuration files can be externalized, which allows them to
control the behavior of the application without recompiling it. So in the following sections, advanced XML
configuration will be covered.

Spring Namespaces
The util namespace was introduced earlier in order to demonstrate how collections can be injected into
beans easily and also how collections can be treated as beans. Below, you have a few things that you can do
using the util namespace:

•	 access and use constants in configuration

<!-- without util namespace -->
<bean id="complexBean2" class="com.ps.sample.ComplexBean"
 p:simpleBean2-ref="simpleBean2">
 <constructor-arg>
 <bean id="com.ps.sample.SimpleBean.DEFAULT_SIMPLE_BEAN"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
 </constructor-arg>
 </bean>

<!-- with util namespace -->
<bean id="complexBean2" class="com.ps.sample.ComplexBean"
 p:simpleBean2-ref="simpleBean2">
 <constructor-arg>
 <util:constant static-field="com.ps.sample.SimpleBean.DEFAULT_SIMPLE_BEAN"/>
 </constructor-arg>
</bean>

// SimpleBean.java, where the static field is defined
package com.ps.sample;
public class SimpleBean {
 public static final SimpleBean DEFAULT_SIMPLE_BEAN= new SimpleBean("DEFAULT");
 }

FieldRetrievingFactoryBean is a FactoryBean that retrieves values of static or
nonstatic fields. The name of the bean is the full path of the static object being
retrieved. This approach works for enums too.

•	 Use typed collections. When you declare <util:list />, <util:set />, or
<util:map/>, Spring decides what type of implementation to use, but you can
change that:

<util:list id="beanList" list-class="java.util.LinkedList">
...
</util:list>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

54

<util:set id="names" set-class="java.util.TreeSet">
...
</util:set>

<util:map id="simpleMap" map-class="java.util.TreeMap">
...
</util:map>

•	 Read properties from a file directly into a java.util.Properties that can be treated
like a bean, assigned an id, and retrieved from the context.

 <util:properties id="dbProp" location="classpath:db/datasource.properties"/>
 ...
Properties dbProp = ctx.getBean("dbProp", Properties.class);

Another useful namespace is the jdbc namespace. It provides configuration elements used to create in
memory datasources for testing purposes and initializing databases.

<!-- without jdbc namespace -->
<beans ...>
 <bean id="dataSource" class="org.springframework.jdbc.datasource
 .embedded.EmbeddedDatabaseFactoryBean">
 <property name="databasePopulator" ref="populator"/>
 </bean>

 <bean id="populator" class="org.springframework.jdbc.datasource
 .init.ResourceDatabasePopulator">
 <property name="scripts">
 <list>
 <value>classpath:testdb/schema.sql</value>
 <value>classpath:testdb/test-data.sql</value>
 </list>
 </property>
 </bean>
</beans>

<!-- with jdbc namespace -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd">
 <jdbc:embedded-database id="dataSource">
 <jdbc:script location="classpath:testdb/schema.sql"/>
 <jdbc:script location="classpath:testdb/test-data.sql"/>
 </jdbc:embedded-database>
</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

55

<!-- initializing a database -->
<beans ...>
 <jdbc:embedded-database id="dataSource" type="HSQL"/>

 <jdbc:initialize-database data-source="dataSource">
 <jdbc:script location="classpath:db/schema.sql"/>
 <jdbc:script location="classpath:db/test-data.sql"/>
 </jdbc:initialize-database>
</beans>

Some other important namespaces such context, aop, tx, and jms will be covered later in the book.

How to Read Property Files in Spring Evolution
As a example of how the namespaces help simplify configuration, let’s take a simple operation: reading
properties from a file. Here is how properties can be read from a file using the bean namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- reading the properties, Spring infrastructure bean is exposed -->
 <bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations" value="classpath:db/datasource.properties"/>
 </bean>

<!-- here the values are injected into a datasource -->
 <bean id="dataSource1"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${driverClassName}"/>
 <property name="url" value="${url}"/>
 <property name="username" value="${username}"/>
 <property name="password" value="${password}"/>
 </bean>

</beans>

Here is how properties can be read from a file using the context namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

Chapter 2 ■ Spring Bean LifeCycle and Configuration

56

<!-- Spring infrastructure is not visible anymore -->
 <context:property-placeholder location="classpath:db/datasource.properties" />

<!-- here the values are injected into a datasource -->
 <bean id="dataSource2"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${driverClassName}"/>
 <property name="url" value="${url}"/>
 <property name="username" value="${username}"/>
 <property name="password" value="${password}"/>
 </bean>

</beans>

Here is how properties can be read from a file using the util namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

 <!-- Spring infrastructure is not visible anymore -->
 <util:properties id="dbProp" location="classpath:db/datasource.properties"/>

 <bean id="dataSource3"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="#{dbProp.driverClassName}"/>
 <property name="url" value="#{dbProp.url}"/>
 <property name="username" value="#{dbProp.username}"/>
 <property name="password" value="#{dbProp.password}"/>
 </bean>

</beans>

The advantage of using the util namespace is that the properties are loaded in a java.util.
Properties object named dbProp that can be used in other beans’ configurations. In order to access those
values and inject them into other beans, SpEl is needed, which is why the values are injected using #{},
which is typical SpEL syntax to access a property of an object; basically, #{dbProp.url} is equivalent to
dbProp.getProperty("url").

Chapter 2 ■ Spring Bean LifeCycle and Configuration

57

Spring Expression Language
SpEL is the Spring Expression language. It is quite powerful, since it supports querying and manipulating an
object graph at runtime. The SpEL is inspired from WebFlow EL,8 a superset of Unified EL,9 and it provides
considerable functionality, such as:

•	 method invocation

•	 access to properties, indexed collections

•	 collection filtering

•	 boolean and relational operators

•	 and many more10

There are several extensions of SpEL (OGNL, MVEL, and JBoss EL), but the best part is that it is not
directly tied to Spring and can be used independently.

Bean Definition Inheritance
Since classes are templates for creating objects and they can be extended, in order to extend an existing
bean template, the same can be done for bean definitions. They can be inherited, and an existing definition
can be enriched with extra details. Let us assume that the Pet Sitter application must run in production on a
cluster of three servers. Each server has its own database, and the configuration must mention them all. The
configuration file for connecting to the database would look like this:

<beans ...>
 <bean id="dataSource-1" class="oracle.jdbc.pool.OracleDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 <property name="user" value="admin"/>
 <property name="loginTimeout" value="300"/>
 </bean>

 <bean id="dataSource-2" class="oracle.jdbc.pool.OracleDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 <property name="user" value="admin"/>
 <property name="loginTimeout" value="300"/>
 </bean>

 <bean id="dataSource-3" class="oracle.jdbc.pool.OracleDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 <property name="user" value="admin"/>
 <property name="loginTimeout" value="300"/>
 </bean>
</beans>

8An expression language used to configure web flows: http://docs.spring.io/spring-webflow/docs/current/
reference/html/el.html.
9Unified EL is the Java expression language used to add logic in JSP pages: https://docs.oracle.com/javaee/5/
tutorial/doc/bnahq.html.
10The full list of capabilities is not in the scope of this book. If you are interested in SpEL, the official documentation
is the best resource: http://docs.spring.io/spring/docs/current/spring-framework-reference/html/
expressions.html.

http://docs.spring.io/spring-webflow/docs/current/reference/html/el.html
http://docs.spring.io/spring-webflow/docs/current/reference/html/el.html
https://docs.oracle.com/javaee/5/tutorial/doc/bnahq.html
https://docs.oracle.com/javaee/5/tutorial/doc/bnahq.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Chapter 2 ■ Spring Bean LifeCycle and Configuration

58

A lot of repetition in there, isn’t there? Bean inheritance can help reduce the file in size and can
separate common configuration elements in a template bean definition that will be defined as abstract. This
type of bean cannot be created by the Spring IoC. The bean definition will declare the template as parent
and will inherit all the details defined in it. For example, in the code snippet below, bean type, user, and
loginTimeout property values are inherited. As in class inheritance, bean definitions can override inherited
details. The dataSource3 bean definition overrides the loginTimeout, and it overrides the bean type, too.

<beans ...>
 <bean id="abstractDataSource" class="oracle.jdbc.pool.OracleDataSource"
 abstract="true">
 <property name="user" value="admin"/>
 <property name="loginTimeout" value="300"/>
 </bean>

 <bean id="dataSource-1" parent="abstractDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 </bean>

 <bean id="dataSource-2" parent="abstractDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 </bean>

 <bean id="dataSource3" parent="abstractDataSource"
 class="com.ps.CustomizedOracleDataSource">
 <property name="URL" value="jdbc:oracle:thin:@192.168.1.164:1521:PET"/>
 <property name="loginTimeout" value="100"/>
 </bean>
</beans>

The interesting part about bean inheritance is that the resulting beans do not have to have the same
types as the parent. As long as the properties inherited are present in the bean definition that extends the
parent template, the inheritance will work.

Inner beans
Inner beans are beans that are defined within the scope of another bean. They are the equivalent of private
fields that cannot be accessed using getter methods and have no outside reference to them. This type of
bean was mentioned briefly when collections were introduced, but it deserves its own section in order to
make sure that it is clear when to use them and why. An inner bean is defined by a <bean/> element inside
the <property/> or <constructor-arg/> elements.

<beans .../>
 <bean id="enclosingBean1" class="...">
 <property name="target">
 <bean class="..."/>
 </property>
 </bean>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

59

 <!-- or -->
 <bean id="enclosingBean1" class="...">
 <constructor-arg index="0">
 <bean class="..." />
 </constructor-arg>
 </bean>
</beans>

Inner beans could have the id or name attribute populated (both attributes will be explained in detail
in the following section), but this would be useless, since these beans cannot be retrieved using them,
because they are internal to the beans that enclose them. And of course, in case you were curious, beans
can be nested as many times as you want, but avoid doing so unless you really really have to, since this will
make your configuration look bloated, and it becomes hard to test. Nested beans are usually a choice for
infrastructure beans.

Example: a Musician bean, that encloses a Person bean, that encloses an Address bean.

<beans .../>

 <bean id="sampleMusician" class="com.ps.sample.Musician">
 <constructor-arg>
 <bean class="com.ps.sample.Person">
 <property name="fullName" value="John Mayer" />
 <property name="birthData" >
 <bean class="com.ps.sample.BirthData>
 <property name="city" value="Bridgeport" />
 <property name="state" value="Connecticut" />
 <property name="birthDate" value="1977-10-16"/>
 </bean>
 </property>
 </bean>
 </constructor-arg>
 </bean>

</beans>

Bean Naming
Every bean hosted by the container has an unique identifier. It is the developer’s responsibility to name
beans accordingly using the id or name attributes where this is necessary, because as we’ve seen previously
when we customized the CustomDateEditor, the configurer bean was defined without an id. A bean usually
has at least one unique identifier, and in case of need, more of them can be defined by setting multiple
values for the name attribute, by separating them with a comma (,), semicolon (;), or white space. Or by
using the <alias /> element.

Prior to Spring 3.1, the id attribute was of type xsd:ID, and as a consequence, characters such as
comma, semicolon, white space, and others were not allowed. Starting with Spring 3.1, the type was changed
to xsd:string, the same type used for the name attribute, which made these attributes interchangeable. So
you can use one or the other, with the same syntax. You can use them both if you want, anything, just to
make sure your bean is identified correctly.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

60

Let’s start at the beginning, and assume that you have a configuration file containing a single bean
definition with no id or name defined:

<beans ...>
 <bean class="com.ps.beans.SimpleBeanImpl"/>
</beans>

An application context can be created from this file, and it will contain a single bean of type
SimpleBeanImpl with a name that was set by the container. If we want to see the name that the container
assigns to this bean, all we have to do is to print all the bean names in the context, and this can be done by
calling getBeanDefinitionNames() provided by the application context and iterating the returned results:

 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("classpath:spring/application-config.xml");
for (String beanName : ctx.getBeanDefinitionNames()) {
 logger.info("Bean " + beanName + " of type "
 + ctx.getBean(beanName).getClass().getSimpleName());
 }

 // Result printed in the console:
 Bean com.ps.beans.SimpleBeanImpl#0 of type SimpleBeanImpl

The fun part is that nothing stops you from duplicating the bean definition. The container will just
assign a different name to the second bean of the same type, and the code above will print the following:

Bean com.ps.beans.SimpleBeanImpl#0 of type SimpleBeanImpl
Bean com.ps.beans.SimpleBeanImpl#1 of type SimpleBeanImpl

You could even retrieve those beans and their names by calling the getBeansOfType(...) method on
the application context:

Map<String, SimpleBean> simpleBeans = ctx.getBeansOfType(SimpleBean.class);

So technically, in case you ever need to do something like this, you can. But keep in mind that all the beans
with that type will be added to that map, whether they have a developer given id/name or not. When you have
exactly one bean of a certain type, it can be retrieved form the context using the getBean(...) method, which
has quite a few versions that you can use to retrieve beans, all of which will be covered in this book.

SimpleBean simpleBean = ctx.getBean(SimpleBean.class);

The getBean method, which requires only a Class<T> argument, returns the bean instance that
uniquely matches the given object type, if any. The Spring IoC searches for any bean of that type, whether
the bean type is an interface or superclass. In case more than one bean of that type is defined, the context
will throw an exception, since it cannot know what bean you really want. The exception name is quite
obvious, as you can see in the log snippet below.

org.springframework.beans.factory.NoUniqueBeanDefinitionException:
 No qualifying bean of type com.ps.beans.SimpleBean is defined:
 expected single matching bean but found 2: sb01,com.ps.beans.SimpleBeanImpl#0

Chapter 2 ■ Spring Bean LifeCycle and Configuration

61

Although having beans with no explicit ids defined is possible, unless they are inner beans
or some type of infrastructure beans (example: org.springframework.beans.factory.config.
CustomEditorConfigurer), it rarely makes sense to define a bean with no id.

Beginning with Spring 3.1, the id and name attributes have the same type, so they accept special
characters in their values. In versions of Spring previous to 3.1, the name attribute was mandatory for web
controllers, because the syntax required their id to start with "/" (e.g., name="/persons"), and the id attribute
did not allow special characters. Almost everything that will be covered from now on for the attribute id is
valid for the name attribute too, except for a little detail that will be mentioned at the appropriate time.

! T he Spring convention is to use the standard Java convention for instance field names when naming beans.
This means that bean names start with a lowercase letter and are camel-cased from then on. The purpose of
good bean naming is to make the configuration quick to read and understand. Also, when using more advance
features like AOP, it is useful to be able to apply advice to a set of beans related by name.

Let’s cover the many ways in which a bean can be named using an id.

<beans ...>
 <bean id="sb01" class="com.ps.beans.SimpleBeanImpl"/>

 <!-- equivalent with -->
 <bean name="sb01" class="com.ps.beans.SimpleBeanImpl"/>
</beans>

If the sb01 bean is named as in one of the examples before, there are two ways in which this bean can be
retrieved from the application context:

SimpleBean sb01 = (SimpleBean)ctx.getBean("sb01");

SimpleBean sb01 = ctx.getBean("sb01", SimpleBean.class);

Since id and name have the same purpose, it is not allowed to have in the same application context bean
definitions with the same value for id/name. Smart Java editors, like the one you were recommended to use,
Intellij IDEA, even warns you against doing something like that by underlining the attribute value with a red
line, as depicted in Figure 2-15.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

62

Figure 2-15.  Bad bean naming is obvious in Intellij IDEA

? I n the configuration below, a few bean-naming examples are depicted. Can you imagine what the code that
logs all beans in the context will print for the following configuration file?

<beans ...>
 <bean id="sb01" name="sb01" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="sb02/sb03" name="mumu" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="sb04; sb05" class="com.ps.beans.SimpleBeanImpl"/>

 <bean name="sb04; sb05, sb004 sb005" class="com.ps.beans.SimpleBeanImpl"/>

 <bean id="$" class="com.ps.beans.SimpleBeanImpl"/>
</beans>

Well, the log will print this:

Bean sb01 of type SimpleBeanImpl
Bean sb02/sb03 of type SimpleBeanImpl
Bean sb04; sb05 of type SimpleBeanImpl
Bean sb04 of type SimpleBeanImpl
Bean $ of type SimpleBeanImp

So a detailed explanation for each case is appropriate.

•	 The attributes id and name can have the same value.

•	 “sb02/sb03” is an id containing a special character; $ is an id consisting of one special
character. Both are valid, and the beans can be successfully retrieved using:

SimpleBean sb1 = ctx.getBean("sb02/sb03", SimpleBean.class);
SimpleBean sb2 = ctx.getBean("$", SimpleBean.class);

Chapter 2 ■ Spring Bean LifeCycle and Configuration

63

But wait, what happened to the "mumu" value set with the name attribute? Can
you guess? The application context can offer a reply to this too:

for (String name : ctx.getAliases("sb02/sb03")){
 logger.info ("Alias for sb04 -> " + name);
}
//The result
Alias for sb02/sb03 -> mumu

•	 “sb04; sb05” is also a valid id containing a special character, which happens to be a
separator, but the bean can be retrieved only using the full id value, because Spring
treats the ids and names a little differently. A bean can have many names, but only
one id.

•	 “sb04; sb05, sb004 sb005” is used as a value for the name attribute, so the separators
are taken into consideration, and that’s why in the log, only the s04 value is printed.
But wait, what happened to the others? I think you already have a suspicion. If you
run the code above, the one that prints the aliases, here is the output:

Alias for sb04 -> sb05
Alias for sb04 -> sb004
Alias for sb04 -> sb005

The conclusion is that the first name became the id, and the others became aliases.

And since we mentioned aliases, let’s give an example for this too:

<beans ...>
 <bean id="$" class="com.ps.beans.SimpleBeanImpl"/>
 <alias name="$" alias="properName"/>
</beans>

So now the $ bean can be retrieved using its alias:

SimpleBean s = ctx.getBean("properName", SimpleBean.class);

Bean aliasing can be used to override already configured beans, thus providing a way to substitute them
with a different bean definition. This is useful in testing, and the configuration is not decoupled enough, and
it comes from an external source that cannot be modified. Using aliasing, real beans can be replaced with
test beans with known behavior, making it possible to test a specific module in isolation. But more about
testing can be read in Chapter 3. Testing Spring Applications.

All these examples can be found in 02-ps-container-01-practice. The configuration file path
is /02-ps-container-01-practice/src/main/resources/spring/others/sample-config-03.xml,
and the test class to run is 02-ps-container-01-practice/src/test/java/com/ps/beans/others/
BeanNamingTest.java. You are invited to add your own bean names and your own tests.

! T he conclusions of this section are really important, so you might consider putting a bookmark right here, or
make a note somewhere.

•	 If the bean has only the name attribute defined, then its value becomes the bean name
used to uniquely identify this bean in the context.

http://dx.doi.org/10.1007/978-1-4842-0811-3_3

Chapter 2 ■ Spring Bean LifeCycle and Configuration

64

•	 If the bean has id and name attributes defined, the name value is used as an alias, and
the id value becomes the bean name used to uniquely identify this bean in the context.

•	 The id and name attribute values have the same type, but if the id value contains
separator characters: comma (,), semicolon (;), or white space, they are not treated
as such.

•	 If the bean has only the name attribute defined and the value contains multiple names,
then the first value becomes the bean name used to uniquely identify this bean in the
context; the others become aliases.

Application Context and Bean Lifecycle
Before explaining how everything presented so far can be done using Java Configurations and annotations,
the application context and bean lifecycle must be covered, because some of the details are intertwined, so it
is better to have an overall idea about this before going more deeply into this subject.

A Spring application has a lifecycle composed of three phases:

	 1.	 Initialization: In this phase, bean definitions are read, beans are created,
dependencies are injected, and resources are allocated, also known as the
bootstrap phase. After this phase is complete, the application can be used.

	 2.	 Use: In this phase, the application is up and running. It is used by clients, and
beans are retrieved and used to provide responses for their requests. This is the
main phase of the lifecycle and covers 99% of it.

	 3.	 Destruction: The context is being shut down, resources are released, and beans
are handed over to the garbage collector.

These three phases are common to every type of application, whether it is a JUnit System test, a Spring
or JEE web, or enterprise application. Look at the following code snippet (the sources can be found in the
/02-ps-container-02-solution project); it was modified in order to make obvious where each phase ends.

import org.springframework.context.ConfigurableApplicationContext;

public class ApplicationContextTest {

 private Logger logger = LoggerFactory.getLogger(ApplicationContextTest.class);

 @Test
 public void testDataSource1() {
 ConfigurableApplicationContext ctx =
 new ClassPathXmlApplicationContext("classpath:spring/test-db01-config.xml");
 logger.info(" >> init done.");
 DataSource dataSource1 = ctx.getBean("dataSource1", DataSource.class);
 assertNotNull(dataSource1);
 logger.info(" >> usage done.");
 ctx.close();
 }

 <!-- test-db01-config.xml contents-->
 <?xml version="1.0" encoding="UTF-8"?>
<beans ...>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

65

 <bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations" value="classpath:db/datasource.properties"/>
 </bean>

 <bean id="dataSource1"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${driverClassName}"/>
 <property name="url" value="${url}"/>
 <property name="username" value="${username}"/>
 <property name="password" value="${password}"/>
 </bean>
</beans>

The initialization phase of a Spring application ends when the application context initialization process
ends. If the logger for the Spring framework is set to debug, before the init done message is printed, a lot of
log entries show what the Spring container is doing. A simplified sample is depicted below:

DEBUG o.s.c.e.StandardEnvironment - Initialized StandardEnvironment
with PropertySources [systemProperties,systemEnvironment]
INFO o.s.c.s.ClassPathXmlApplicationContext - Refreshing
 <<1>> o.s.context.support. ClassPathXmlApplicationContext@335eadca:
 startup date; root of context hierarchy
 ...
INFO o.s.b.f.x.XmlBeanDefinitionReader -
 <<2>> Loading XML bean definitions from class path resource
 [spring/test-db01-config.xml]
...
DEBUG o.s.b.f.x.BeanDefinitionParserDelegate - Neither XML ’id’ nor ’name’ specified -
 using generated bean name
 <<3>> [org.springframework.beans.factory.config.PropertyPlaceholderConfigurer#0]
DEBUG o.s.b.f.x.XmlBeanDefinitionReader - Loaded 2 bean definitions from location
 pattern [classpath:spring/test-db01-config.xml]
...
INFO o.s.b.f.c.PropertyPlaceholderConfigurer -
 Loading properties file from class path resource [db/datasource.properties]
 DEBUG o.s.b.f.s.DefaultListableBeanFactory - Pre-instantiating singletons in
 o.s.beans.factory.support.DefaultListableBeanFactory@6591f517:
 defining beans [o.s.b.f.config.PropertyPlaceholderConfigurer#0,dataSource1];
root of factory hierarchy
...
 <<4>> DEBUG o.s.b.f.s.DefaultListableBeanFactory -
 Creating instance of bean ’dataSource1’
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Eagerly caching bean ’dataSource1’
 to allow for resolving
 potential circular references
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean ’dataSource1’
INFO c.p.ApplicationContextTest - >> init done.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

66

 <<7>> DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean ’dataSource1’
INFO c.p.ApplicationContextTest - >> usage done.

INFO c.p.ApplicationContextTest - >> bye bye.
INFO o.s.c.s.ClassPathXmlApplicationContext -
 <<8>> Closing o.s.context.support.ClassPathXmlApplicationContext
 @335eadca: startup date [Sun Mar 27 21:18:39 EEST 2016]; root of context hierarchy
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean ’lifecycleProcessor’
DEBUG o.s.b.f.s.DefaultListableBeanFactory -
<<9>>Destroying singletons in o.s.beans.factory.support.DefaultListableBeanFactory
@6591f517: defining beans
 [o.s.beans.factory.config.PropertyPlaceholderConfigurer#0,dataSource1];
root of factory hierarchy...

Although the log is incomplete, all the important details were underlined, and by following them we can
notice some of the following steps. To make it easier, the corresponding steps were marked in the log with
the corresponding step number.

	 1.	 The application context is initialized.

	 2.	 The bean definitions are loaded (from the spring/test-db01-config.xml in this
case).

	 3.	 The bean definitions are processed (in our case a bean of type
PropertyPlaceholderConfigurer is created and used to read the properties
from datasource.properties, which are then added to the dataSource bean
definition).

	 4.	 Beans are instantiated.

	 5.	 Dependencies are injected (not visible from the log, since the dataSource bean
does not require any dependencies).

	 6.	 Beans are processed (also not visible from the log, since the dataSource does not
have any processing defined).

	 7.	 Beans are used.

	 8.	 The context starts the destruction process.

	 9.	 Beans are destroyed.

Figure 2-16 depicts the whole application context lifecycle and the bean lifecycle.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

67

Bean Lifecycle Under the Hood
In the previous section it was mentioned that for a bean to come to life and become available to be used for
a purpose, it has to go through a set of steps. Since in the previous section, the focus was on the application
context, the references to bean creation steps were quite shallow. So we need to fix that. Let’s start with a
schema depicting the creation steps of a bean: Figure 2-17.

Figure 2-16.  Application context and bean lifecycle

Chapter 2 ■ Spring Bean LifeCycle and Configuration

68

In the Load Bean Definition step, the XML files/Configuration classes are parsed, and bean definitions
are loaded into the application context, indexed by ids. The bean definitions are then processed by beans
called bean definition post processors that are automatically picked up by the application context, created,
and applied before any other beans are created. These bean types implement the org.springframework.
beans.factory.config.BeanFactoryPostProcessor interface, and that is how the application context

Figure 2-17.  Complete list of bean creation steps

Chapter 2 ■ Spring Bean LifeCycle and Configuration

69

recognizes them. In the previous example, the PropertyPlaceholderConfigurer type was mentioned. This
class is a bean definition post processor that resolves placeholders like ${propName} with property values
read from the Spring environment and its set of property sources.

The BeanFactoryPostProcessor contains a single method definition that must be implemented,
postprocess(BeanFactory). The parameter with which this method will be called is the factory bean
used by the application context to create the beans. Developers can create their own bean definition
postprocessors and define a bean of this type in their configuration, and the application context will make
sure to invoke them.

In Figure 2-18, the effect of a PropertyPlaceholderConfigurer bean being invoked on the dataSource1
bean definition is depicted.

Figure 2-18.  Effect of a PropertyPlaceholderConfigurer on a bean definition using placeholders

These types of beans are useful, because they can process bean definitions at runtime and change
them based on resources that are outside the application, so the application does not need to be recompiled
in order to change a bean definition. In the above example, if instead of reading the properties of the
dataSource1 from an external file, the information were to be written directly in the configuration file, then if
the dataSource1 location and type changed, the XML configuration file would need to be changed, and the
application would have to be recompiled and restarted. Not that practical, right?

Chapter 2 ■ Spring Bean LifeCycle and Configuration

70

The Bean creation step can be split into a small number of stages.

	 1.	 In the first stage, the beans are instantiated. This basically means that the
bean factory is calling the constructor of each bean. If the bean is created using
constructor dependency injection, the dependency bean is created first and then
injected where needed. For beans that are defined in this way, the instantiation
stage coincides with the dependency injection stage.

	 2.	 In the second stage, dependencies are injected. For beans that are defined
having dependencies injected via setter, this stage is separate from the
instantiation stage.

	 3.	 The next stage is the one in which bean post process beans are invoked before
initialization.11

	 4.	 In this stage, beans are initialized.

	 5.	 The next stage is the one in which bean post process beans are invoked after
initialization.

As you can see, there are two stages involving bean post process beans being called. What is the
difference between them? The stage between them, the initialization stage, is used to split them into bean
post processors that are invoked before it and after it. Since the bean post processor subject is quite large,
the initialization stage will be covered first. Long story short, a bean can be defined so that a certain method
is called right after the bean is created and dependencies are injected in order to execute some code. This
method is called an initialization method, and in using XML configuration, this method is set using the
init-method attribute on a bean definition. The init-method attribute should have as value the name of a
method defined in the bean type. The method must return void, have no arguments defined, and can have
any access right, since Spring uses reflection to find and call it, and some developers actually recommend to
make it private so it cannot be called from outside the bean, and also make sure that Spring has total control
over it and that it calls it only one time during the bean lifecycle. In the code snippet below you can see
the configuration of such a method for a bean of type ComplexBean. The bean is a very simple one with no
methods to be picked up and executed by a bean post processor:

public class ComplexBean {
 private Logger logger = LoggerFactory.getLogger(ComplexBean.class);

 private SimpleBean simpleBean1;

 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

11Unfortunately there is no other way to formulate this. We are talking about beans that have the ability to post process
other beans. And they are called, confusingly: bean post process beans.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

71

 /**
 * The initialization method.
 * Just for fun: it instantiates the simpleBean2 only
 * if the current time is even.
 */
 private void initMethod() {
 logger.info("Stage 4: Calling the initMethod.");
 long ct = System.currentTimeMillis();
 if (ct % 2 == 0) {
 simpleBean2 = new SimpleBean();
 }
 }
}

The ComplexBean definition, contains a setter definition that is used to inject the simpleBean2 dependency,
but in the following configuration, the setter is not used, because the focus is on the initialization stage.

 <!-- configuration file contents -->
<beans ...>

 <bean id="simpleBean" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean" init-method="initMethod"/>
</beans>

In initializing an application context based on the configuration above, here is what could be seen in the log:

 ...
 DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean 'complexBean'
INFO c.p.s.ComplexBean - Stage 1: Calling the constructor.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Eagerly caching bean 'complexBean' to allow for
resolving potential circular references
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Invoking init method 'initMethod' on bean with
name 'complexBean'
INFO c.p.s.ComplexBean - Stage 4: Calling the initMethod.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance of bean
'complexBean'
...

As you can see, the bean is created, and then the initMethod is called by the factory creating the bean.
Keep this in mind, because it is important, as you will soon see. If an init method is not specified, there are
other ways of initializing a bean available in Spring. Here is the complete list:

•	 Using the attribute init-method on a <bean/> XML definition to define a method to
be called for initialization, covered previously.

•	 Implementing the org.springframework.beans.factory.InitializingBean
interface and providing an implementation for the method afterPropertiesSet
(not recommended, since it couples the application code with Spring infrastructure).

Chapter 2 ■ Spring Bean LifeCycle and Configuration

72

12Beginning with Spring 2.5, a few annotations are supported.

•	 Annotating with @PostConstruct the method that is called right after the bean is
instantiated and dependencies injected.12

•	 The equivalent of the init-method attribute when using Java Configuration
@Bean(initMethod="...").

The InstantiatingBean interface is implemented by beans that need to react once all their
dependencies have been injected by the BeanFactory. It defines a single method that is named accordingly,
afterPropertiesSet(), which is called by the factory. In the code snippet below, the ComplexBean is
modified to implement this interface.

 public class ComplexBean implements InitializingBean {
 private Logger logger = LoggerFactory.getLogger(ComplexBean.class);

 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 logger.info("Stage 4: Calling afterPropertiesSet.");
 }
}
<!-- configuration file contents -->
<beans ...>

 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"/>
</beans>

In this example, the setter of this bean was used, so that it will be obvious in the log that the
afterPropertiesSet() method is called after injecting all the dependencies. If an application context is
created using the previous configuration, this is what can be seen in the log:

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean 'complexBean'
INFO c.p.s.ComplexBean - Stage 1: Calling the constructor.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

73

DEBUG o.s.b.f.s.DefaultListableBeanFactory - Eagerly caching bean 'complexBean'
 to allow for resolving potential circular references
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean 'simpleBean2'
INFO c.p.s.ComplexBean - Stage 2: Calling the setter.
(*)DEBUG o.s.b.f.s.DefaultListableBeanFactory - Invoking afterPropertiesSet()
 on bean with name 'complexBean'
INFO c.p.s.ComplexBean - Stage 4: Calling afterPropertiesSet.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean 'complexBean'
...

As you can notice from the log, the line marked with (*), calling the afterProperties method, is also a
responsibility of the factory that creates the bean.

Annotations support was introduced in Spring 2.5 for a small set of annotations. Since then, Spring has
evolved, and currently with Spring 4.0, an application can be configured using only annotations (stereotypes
and the complete set of Java Configuration). The @PostConstruct annotation is part of the JSR 25013 and is
used on a method that needs to be executed after dependency injection is done to perform initialization.
The annotated method must be invoked before the bean is used, and, like any other initialization method
chosen, may be called only once during a bean lifecycle. If there are no dependencies to be injected, the
annotated method will be called after the bean is instantiated. Only one method should be annotated with
@PostConstruct.

The method annotated with @PostConstruct is picked up and called by a pre-init bean of a type that
implements the org.springframework.beans.factory.config.BeanPostProcessor interface. Classes
implementing this interface are actually factory hooks that allow for modifications of bean instances. The
application context auto-detects these types of beans and instantiates them before any other beans in the
container, since after their instantiation they are used to manipulate other beans managed by the IoC container.

The BeanPostProcessor declares two methods to be implemented, postProcessBeforeInitialization
and postProcessAfterInitialization, and their names depict clearly their purpose. In Figure 2-17, there
are two pink rectangles depicting when the bean post processor is invoking methods on the bean. Typically,
post processors that populate beans via marker interfaces (they pick up methods annotated with
@PostConstruct) will implement postProcessBeforeInitialization, while post processors that wrap
beans with proxies will normally implement postProcessAfterInitialization.

For @PostConstruct, annotated methods to be picked up and executed. A bean of this type must be
present in the configuration. The bean that registers @PostConstruct (and other annotations from JSR 250,
as you will see later) is org.springframework.context.annotation.CommonAnnotationBeanPostProcessor.
Since this is a Spring infrastructure bean, it could be added to the configuration file like this:

<beans ...>

<bean
 class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor"/>

<!-- other bean definitions here -->
</beans>

And this could work, but there will be some issues as configuring the bean like that, overrides the
Spring defaults which might lead to unexpected behavior. Fortunately this bean configuration is one of those
included in the following line, a Spring shortcut based on the context namespace:

13Java Request Specification 250 https://jcp.org/en/jsr/detail?id=250.

https://jcp.org/en/jsr/detail?id=250

Chapter 2 ■ Spring Bean LifeCycle and Configuration

74

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">
 <context:annotation-config/>

 <! -- or this one, that is an extension of annotation-config-->
 <context:component-scan base-package="com.ps.sample"/>
 </beans>

The <context:annotation-config /> enables scanning of all the classes in the project for annotations,
so using it on large applications might make them slow. The solution is to use <context:component-scan />,
because the base-package| attribute will reduce the number of classes to be scanned. Also, the good part
is that you can set multiple base packages too, by separating them with a comma. The best part is that the
classes in the packages can also be filtered by name, by what they are annotated with, or by other criteria.

<beans .../>
 <context:component-scan base-package="com.ps.sample, com.ps.repos"/>

 <!-- package filtering -->

 <context:component-scan base-package="com.ps.sample, com.ps.all">
 <context:include-filter type="regex" expression="*Repo"/>

 <context:exclude-filter type="annotation"
 expression="org.springframework.stereotype.Service"/>
 </context:component-scan>

</beans>

When the <context:component-scan /> statement is present in an XML file, all supported annotations
are detected in the class path, or only in the packages specified as values for the base-package attribute in
the second case.

The <context:annotation-config/> activates detection for @PostConstruct, @PreDestroy, @Resource,
@Autowired, and @Required and other JPA and EJB 3 annotations.

The <context:component-scan/> activates detection for all annotations mentioned previously, plus
Spring stereotype annotations: @Component and extensions (e.g., @Service, @Repository).

Returning to our bean initialization, the code and configuration below depicts the ComplexBean class
making use of the @PostConstruct annotation:

<beans ...>
 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"/>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

75

 <context:component-scan base-package="com.ps.sample"/>
</beans>

//ComplexBean.java
import javax.annotation.PostConstruct;

public class ComplexBean {
 private Logger logger = LoggerFactory.getLogger(ComplexBean.class);

 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

 @PostConstruct
 private void initMethod() {
 logger.info("Stage 4: Calling the initMethod.");
 long ct = System.currentTimeMillis();
 if (ct % 2 == 0) {
 simpleBean2 = new SimpleBean();
 }
 }
}

The methods that can be annotated with @PostConstruct must respect the same rules as every other
init method: they must have no arguments, return void, and they can have any access right. And if an
application context is created from this configuration, here is what the log might show:

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean ’complexBean’
INFO c.p.s.ComplexBean - Stage 1: Calling the constructor.
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor -
 Found init method on class com.ps.sample.ComplexBean:
 private void com.ps.sample.ComplexBean.initMethod()
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor -
 Registered init method on class com.ps.sample.ComplexBean:
 o.s.b.f.a.InitDestroyAnnotationBeanPostProcessor$LifecycleElement@fad21aed
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Eagerly caching bean ’complexBean’
 to allow for resolving potential circular references
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance of
 singleton bean ’simpleBean2’
INFO c.p.s.ComplexBean - Stage 2: Calling the setter.
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor - Invoking init method

Chapter 2 ■ Spring Bean LifeCycle and Configuration

76

 on bean 'complexBean': private void com.ps.sample.ComplexBean.initMethod()
INFO c.p.s.ComplexBean - Stage 4: Calling the initMethod.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean 'complexBean'
...

As you can see from this log, although the same initMethod is called to initialize the bean, the
caller is different from before, since the method is now called by the pre-init post processor bean, the
CommonAnnotationBeanPostProcessor bean, not the factory bean creating the bean. And this is important,
because now it makes sense that this type of bean can have an effect before and after the initialization of the
bean, since obviously, while they can be used for initialization, they are intended to be used to do something
before or after it.

? F or example, how would the log above change if we added another method initMethod2 to the class
ComplexBean and configured the complexBean as in the code snippet below?

<beans ...>
 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"
 init-method="initMethod2"/>

 <context:component-scan base-package="com.ps.sample"/>
</beans>

In case you haven’t figured it out, this is how the log will change:

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean ’complexBean’
INFO c.p.s.ComplexBean - Stage 1: Calling the constructor.
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor -
 Found init method on class com.ps.sample.ComplexBean:
 private void com.ps.sample.ComplexBean.initMethod()
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor -
 Registered init method on class com.ps.sample.ComplexBean:
 o.s.b.f.a.InitDestroyAnnotationBeanPostProcessor$LifecycleElement@fad21aed
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Eagerly caching bean ’complexBean’
 to allow for resolving potential circular references
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance of
 singleton bean 'simpleBean2'
INFO c.p.s.ComplexBean - Stage 2: Calling the setter.
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor - Invoking init method
 on bean 'complexBean': private void com.ps.sample.ComplexBean.initMethod()
INFO c.p.s.ComplexBean - Stage 3: Calling the initMethod.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Invoking init method

Chapter 2 ■ Spring Bean LifeCycle and Configuration

77

 'initMethod2' on bean with name 'complexBean'
c.p.s.ComplexBean - Stage 4: Calling the initMethod2.
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean 'complexBean'
...

The method initMethod, the one annotated with @PostConstruct, is invoked before the method
initMethod2, making it cover the third stage in the lifecycle of a bean.

Bean post processors are quite powerful, since they can be used to enforce bean behavior (@Required)
and even to add behavior to the application logic transparently (transactions, security). The @Required
annotation is used to mark dependencies that are mandatory and is provided by Spring. At the beginning
of the chapter, when it was shown how to configure setter dependency injection, it was mentioned that
dependencies injected using setters were not required, but there is a way to enforce their injection on the
developer. The @Required annotation is that way. In the code snippet below, the ComplexBean type was
modified to make use of the @Required annotation:

import org.springframework.beans.factory.annotation.Required;

public class ComplexBean {
 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 @Required
 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }
 ...
}

<!-- configuration file -->
<?xml version="1.0" encoding="UTF-8"?>
<beans ...">

 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:simpleBean1-ref="simpleBean1"
 init-method="initMethod2"/>
 <context:component-scan base-package="com.ps.sample"/>

</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

78

An application context cannot be created using the configuration above, since the property
simpleBean2 for complexBean is not set anywhere. In the console, an exception will be printed, and right
under it, you can see the BeanPostProcessor type of the bean that enforces the mandatory behavior for the
dependency:

org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor

 org.springframework.beans.factory.BeanInitializationException:
 Property 'simpleBean2' is required for bean 'complexBean'
 at o.s.b.f.a.RequiredAnnotationBeanPostProcessor.postProcessPropertyValues

A Spring-capable IDE will recognize this annotation and will try to warn you about your mistake,
underlining the bean definition with red, or showing you a popup with a comment, something similar to
what you see in Figure 2-19.

Figure 2-19.  Intellij IDEA warning the developer about required dependencies

We are at the end of the section, so now we have to cover what happens to beans after they have been
used and are no longer needed and the application shuts down, or only the context managing them. When
a context is closed, it destroys all the beans; that is obvious. But some beans work with resources that might
refuse to release them if they are not notified before destruction. In Spring, this can be done in three ways:

•	 Set a method to be called before destruction using the destroy-method attribute of
the <bean /> element.

•	 Modify the bean to implement the org.springframework.beans.factory.
DisposableBean interface and provide an implementation for the destroy() method
(not recommended, since it couples the application code with Spring infrastructure).

Chapter 2 ■ Spring Bean LifeCycle and Configuration

79

•	 Annotate a method with @PreDestroy, also part of JSR 250 and one of the first
supported annotations in Spring.

•	 The equivalent of destroy-method for Java Configuration @Bean(destroyMeth
od="...").

The destroy method for a bean has the same purpose as the finalize method for POJOs. The
ComplexBean was modified to make use of the destroy method, and the code and configuration are depicted
below.

public class ComplexBean {
 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 @Required
 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

 private void destroyMethod(){
 logger.info(" --> Calling the destroyMethod.");
 simpleBean1 = null;
 simpleBean2 = null;
 }
 ...
}

<!-- configuration file -->
<?xml version="1.0" encoding="UTF-8"?>
<beans ...">

 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"
 destroy-method="destroyMethod"/>

</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

80

In order to view something useful in the log, we need to close the application context gracefully, and
this can be done by calling the close method.

@Test
public void testBeanCreation() {
 ConfigurableApplicationContext ctx =
 new ClassPathXmlApplicationContext("classpath:spring/test-db04-config.xml");

 ... // use the bean

 ctx.close();
}

And voila: (Only the last part of the log is depicted, where the invocation of the destroy method is logged.)

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean ’complexBean’
...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean 'complexBean'
...
INFO o.s.c.s.ClassPathXmlApplicationContext - Closing
 org.springframework.context.support.ClassPathXmlApplicationContext
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean ’lifecycleProcessor’
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Destroying singletons in
 org.springframework.beans.factory.support.DefaultListableBeanFactory...
DEBUG o.s.b.f.s.DisposableBeanAdapter - Invoking destroy method ’destroyMethod’
 on bean with name ’complexBean’
INFO c.p.s.ComplexBean - --> Calling the destroyMethod.
</beans>

As you can see, the command to destroy the beans is given to the factory that created them,
which delegates the dirty work to a bean of type org.springframework.beans.factory.support.
DisposableBeanAdapter.14

! F or the destroy method, the same rules and recommendations regarding signature and accessors apply as
for the init method:

The destroy method may be called only once during the bean lifecycle.

The destroy method can have any accessor; some developers even recommend to make it private, so that only
Spring can call it via reflection.

The destroy method must not have any parameters.

The destroy method must return void.

14DisposableBeanAdapter is an internal infrastructure bean type that performs various destruction steps on a given bean
instance. Its code is available here: https://github.com/spring-projects/spring-framework/blob/master/
spring-beans/src/main/java/org/springframework/beans/factory/support/DisposableBeanAdapter.java.

https://github.com/spring-projects/spring-framework/blob/master/spring-beans/src/main/java/org/springframework/beans/factory/support/DisposableBeanAdapter.java
https://github.com/spring-projects/spring-framework/blob/master/spring-beans/src/main/java/org/springframework/beans/factory/support/DisposableBeanAdapter.java

Chapter 2 ■ Spring Bean LifeCycle and Configuration

81

As you probably suspect by now, if ComplexBean implements DisposableBean, the dirty work will be
done by the same bean that the factory delegated when the destroy method was configured via XML. Further
below you can see the implementation and the configuration.

 import org.springframework.beans.factory.DisposableBean;

public class ComplexBean implements DisposableBean {
 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 @Required
 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

 @Override
 private void destroy(){
 logger.info(" --> Calling the destroy() method.");
 simpleBean1 = null;
 simpleBean2 = null;
 }
 ...
}

<!-- configuration file -->
<?xml version="1.0" encoding="UTF-8"?>
<beans ...">

 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"/>
</beans>

The log is the same as when the destroy method is specified using the destroy-method attribute. The
DisposableBeanAdapter will call the destroy() method, so it will not be depicted again.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

82

Also, you probably also suspect that if ComplexBean makes use of the @PreDestroy annotation,
the dirty work will be done by a bean post processor. Further below you can see the implementation,
configuration, and log:

import javax.annotation.PreDestroy;

public class ComplexBean {
 private SimpleBean simpleBean1;
 private SimpleBean simpleBean2;

 public ComplexBean(SimpleBean simpleBean1) {
 logger.info("Stage 1: Calling the constructor.");
 this.simpleBean1 = simpleBean1;
 }

 @Required
 public void setSimpleBean2(SimpleBean simpleBean2) {
 logger.info("Stage 2: Calling the setter.");
 this.simpleBean2 = simpleBean2;
 }

 @PreDestroy
 private void destroyMethod(){
 logger.info(" --> Calling the destroyMethod.");
 simpleBean1 = null;
 simpleBean2 = null;
 }
 ...
}
<!-- configuration file -->
<?xml version="1.0" encoding="UTF-8"?>
<beans ...">

 <bean id="simpleBean1" class="com.ps.sample.SimpleBean"/>
 <bean id="simpleBean2" class="com.ps.sample.SimpleBean"/>

 <bean id="complexBean" class="com.ps.sample.ComplexBean"
 c:_0-ref="simpleBean1"
 p:simpleBean2-ref="simpleBean2"/>

 <context:component-scan base-package="com.ps.sample"/>

</beans>

 // The log
...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean 'complexBean'
...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Finished creating instance
 of bean 'complexBean'

Chapter 2 ■ Spring Bean LifeCycle and Configuration

83

...
INFO o.s.c.s.ClassPathXmlApplicationContext - Closing
 org.springframework.context.support.ClassPathXmlApplicationContext
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean ’lifecycleProcessor’
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Destroying singletons in
 org.springframework.beans.factory.support.DefaultListableBeanFactory...
DEBUG o.s.c.a.CommonAnnotationBeanPostProcessor - Invoking destroy method
 on bean ’complexBean’: private void com.ps.sample.ComplexBean.destroyMethod()
INFO c.p.s.ComplexBean ---> Calling the destroyMethod.
</beans>

Bean Scopes
And since the subject of destroying beans was covered, how much a bean can live will be covered, also
known as the bean scope. As you probably noticed, when a context closes, in the log you always see this:

DEBUG o.s.b.f.s.DefaultListableBeanFactory - Destroying singletons in org.springframework.
beans.factory.support.DefaultListableBeanFactory@10e92f8f: defining beans simpleBean1,simple
Bean2,complexBean, o.s.c.a.internalConfigurationAnnotationProcessor...

So, Spring refers to the beans as singletons, because that is the default scope of a bean.15 When the
Spring IoC instantiates beans, it creates a single instance for each bean, unless a property is set on the bean
definition specifying otherwise. The property in question is called scope, and the default scope for a bean is
singleton. The scopes are defined in Table 2-2.

Table 2-2.  Bean scopes

Scope Description

Singleton The Spring IoC creates a single instance of this bean, and any request for beans
with an id or ids matching this bean definition results in this instance being
returned.

Prototype Every time a request is made for this specific bean, the Spring IoC creates a new
instance.

Request The Spring IoC creates a bean instance for each HTTP request. Only valid in the
context of a web-aware Spring ApplicationContext.

Session The Spring IoC creates a bean instance for each HTTP session. Only valid in the
context of a web-aware Spring ApplicationContext.

global-session The Spring IoC creates a bean instance for each global HTTP session. Only valid
in the context of a web-aware Spring ApplicationContext.

Custom Developers are provided the possibility to define their own scopes with their
own rules.

15The Singleton design pattern is therefore used heavily in Spring.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

84

So when a bean is created without a scope attribute:

<bean id="complexBean" class="com.ps.sample.ComplexBean"/>

The default scope is singleton. Otherwise, the scope of the bean is the one specified by the value of the
scope attribute.

<bean id="complexBean" class="com.ps.sample.ComplexBean"
 scope="prototype"/>

Now that we know that more beans scopes are available, how do we solve dependencies between
different scopes? When we have a prototype bean depending on a singleton, there is no problem. Every
time the prototype bean is requested from the context, a new instance is created, and the singleton bean is
injected into it. But in other cases, things get a little complicated.

The domain that is most sensitive when it comes to dependencies among beans with different scopes is
the Web Applications domain. As you probably noticed in the bean scope table, there are three bean scopes
designed to be used in web applications: request, session, and global-session. Let’s assume that we have
a service bean called ThemeManager that manages updates on an object of type UserSettings containing
the settings that a User has for an interface in a web application. This means that the ThemeManager bean
has to work with a different UserSettings bean for each HTTP session. Obviously, this means that the
UserSettings bean should have the scope session:

<beans ...>

<bean id="userSettings" class="com.ps.sample.UserSettings"
 scope="session"/>

<bean id="themeManager" class="com.ps.sample.ThemeManager">
 <property name="userSettings" ref="userSettings"/>
</bean>

</beans>

But how can the problem with single instantiation mentioned earlier can be solved? On different
HTTP sessions, methods like themeManager.saveSettings(userSettings) should be called with the
userSettings bean specific to that session. But the configuration above does not allow for this to happen.

Spring has a solution to this problem. The Spring IoC container not only handles bean instantiation, but
also injecting dependencies. If only it could be instructed to reinject the proper dependency when needed!
A behavior similar to this can be configured as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

<bean id="userSettings" class="com.ps.sample.UserSettings" scope="session"/>
 <aop:scoped-proxy/>
</bean>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

85

<bean id="themeManager" class="com.ps.sample.ThemeManager">
 <property name="userSettings" ref="userSettings"/>
</bean>

</beans>

The <aop:scoped-proxy/> is part of the AOP16 namespace, and what is does is to tell the Spring IoC
not to inject a UserSettings bean in there, but a replacement bean called a proxy17 with the same public
interface as the intended object, which will be smart enough to fetch the UserSettings specific to the
current session and delegate the calls from ThemeManager to it.

The AOP framework was introduced here because it was important to show how beans with different
scopes can be used correctly. The AOP framework complements the Spring IoC container. Of course, the
Spring container can be used without it in small applications that do not require the use of security or
transactions, because these are the key crosscutting concerns for enterprise applications. The Spring AOP
framework has the entire fourth chapter of this book dedicated to it.

! A ll the code snippets presented in this section can be found in 02-container-ps-02-practice. The bean
classes are under com.ps.sample, and in order to test your understanding so far, some pieces of the bean
classes and configurations were removed, and TODO comments were added in their place. There are four tasks
for you to complete, numbered 9 through 12. The TODOs cover bean lifecycle and scopes. The logging has been
configured on DEBUG for the Spring framework, in the Logback configuration file located at 02-ps-container-
02-practice/src/main/resources/logback.xml, so you can study delayed logs and search for elements
mentioned in this section. The core class to run in order to verify your solution is

com.ps.ApplicationContextTest.

A solution was provided for you in 02-container-ps-02-solution. Use it for comparison, or if you have
problems, use it for inspiration.

Providing Configuration Using Java Configuration and Annotations
The Spring namespaces provide a way to simplify the Spring configuration by hiding the framework details.
They define a language to be used to create bean definitions. Because it is XML, validations are available,
so any smart editor will be able to validate the configuration files before running the application. They also
can be extended, so developers can create their own elements to configure beans. Besides the beans and
the already mentioned util namespace, the Spring team has developed dedicated namespaces meant to
simplify configuration and use of Spring infrastructure beans for a number of topics that will be covered in
this book: aop, context, jms, aop, jdbc, security, tx, etc. And all of this is really good, but there is always room
for something new.

16AOP is an acronym for Aspect Oriented Programming and is a programming paradigm aiming to increase modularity
by allowing the separation of cross-cutting concerns. This is done by defining something called “pointcut,” which
represents a point in the code where new behavior will be injected. This allows for business logic agnostic code to be
separated from the code, avoiding code cluttering.
17The Proxy programming design pattern is characterized by the use of a surrogate or placeholder instead of the real
intended object. This design template is heavily used in AOP and remoting.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

86

In Section 2, How to Read Property Files in Spring Evolution you were taught three methods of
reading properties from files using Spring. There is a fourth one. Using Java Configurations and annotations,
the same thing looks like this:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;
import org.springframework.jdbc.datasource.DriverManagerDataSource;

import javax.sql.DataSource;
import java.sql.SQLException;

@Configuration
@PropertySource("classpath:db/datasource.properties")
public class DataSourceConfig {

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public DataSource dataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ds.setUsername(username);
 ds.setPassword(password);
 return ds;
 }

 // needed to resolve the properties injected with @Value
 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }
}

Before starting to dig deeply into Java Configuration and Annotations usage for configuring Spring
applications, it is proper to begin with a little history lesson.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

87

When Spring 1.0 was released in 2004, it supported only XML as a method of configuration. The
annotation concept was not even invented yet. I remember that the first time I had contact with Spring was
in 2006. As a young coder eager to learn to write Java code, writing applications using XML did not seem
appealing. As soon as the idea of annotations emerged, Spring adopted it and rapidly provided its own
annotations, (the stereotype annotations @Component and its specializations @Service and @Repository,
etc.), in order to make configuring Spring applications more practical. This happened in 2007, when Spring
2.5 was released. In this version, XML was still needed. Starting with Spring 3.0 in 2009 and the introduction
of Java Configuration, a configuration method based on annotations placed inside the Java code, XML
became expendable. The code above doesn’t need any XML at all. An application context can be created
based on that configuration class using a corresponding class, org.springframework.context.annotation.
AnnotationConfigApplicationContext. In order to test the configuration, a test class like the one below
must be written.

public class ApplicationContextTest {
 @Test
 public void testDataSource4() {
 ApplicationContext ctx =
 new AnnotationConfigApplicationContext(DataSourceConfig.class);

 DataSource dataSource = ctx.getBean("dataSource", DataSource.class);
 assertNotNull(dataSource);
 }
}

The following sections will be analogous to the ones for XML configuration where applicable.

The Annotations
The core annotation in Spring is the @Component from the org.springframework.stereotype package. This
annotation marks a class from which a bean will be created. Such classes are automatically picked up using
annotation-based configuration and classpath scanning. In Figure 2-20, all the annotations used in this book
are depicted and are grouped by their purpose.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Spring Bean LifeCycle and Configuration

88

•	 Stereotypes annotations are used to mark classes according to their purpose:

–– @Component: template for any Spring-managed component(bean).

–– @Repository: template for a component used to provide data access, specialization of the
@Component annotation for the the Dao layer.

–– @Service: template for a component that provides service execution, specialization of the
@Component annotation for the Service layer.

–– @Controller: template for a web component, specialization of the @Component annotation for
the Web layer.

–– @Cofiguration: configuration class containing bean definitions (methods annotated with @Bean).

•	 Autowiring and initialization annotations are used to define which dependency is
injected and what the bean looks like. For example:

–– @Autowired: core annotation for this group; is used on dependencies to instruct Spring IoC to
take care of injecting them. Can be used on fields, constructors, and setters. Use with
@Qualifier from Spring to specify name of the bean to inject.

Figure 2-20.  Annotations used in this book

Chapter 2 ■ Spring Bean LifeCycle and Configuration

89

–– @Inject: equivalent annotation to @Autowired from javax.inject package. Use with
@Qualifier from javax.inject to specify name of the bean to inject.

–– @Resource: equivalent annotation to @Autowired from javax.annotation package. Provides
a name attribute to specify name of the bean to inject.

–– @Required: Spring annotation that marks a dependency as mandatory, used on setters.

–– @Lazy: dependency will be injected the first time it is used.

•	 Annotations that appear only in (and on) classes annotated with @Configuration;
they define the configuration resources, the components, and their scope.

•	 Behavioral annotations are annotations that define behavior of a bean. They might
as well be named proxy annotations, because they involve proxies being created to
intercept requests to the beans being configured with them.

JSR 250 annotations contained in JDK, package javax.annotations are supported. Also in Spring 3,
support for JSR 33018 was added, and the Spring annotations are implementations of JSR 330 annotations.
A complete list of the annotations in each package is depicted in Figure 2-21. Most of them are Java
annotations that provide a minimum behavior of the Spring annotations.

Figure 2-21.  JSR 250 and JSR 330 annotations supported by Spring

Now that the stars of the following sections have been introduced, let the show begin!

Using Multiple Sources of Configuration
Classes annotated with @Configuration contain bean definitions. There can be one or more in a Spring
application, and they can be combined with XML configuration files. These classes can be bootstrapped19
in many ways, depending on the chosen setup of the configuration. The DataSourceConfig class used in
the previous example is a typical Java Configuration class, which contains two bean definitions and some
properties that are injected from a property file using the PropertySource annotation.

18Extension of the Java dependency injection API https://jcp.org/en/jsr/detail?id=330.
19Bootstrapping in Spring means loading an application context.

https://jcp.org/en/jsr/detail?id=330

Chapter 2 ■ Spring Bean LifeCycle and Configuration

90

import org.springframework.jdbc.datasource.DriverManagerDataSource;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;

@Configuration
@PropertySource("classpath:db/datasource.properties")
public class DataSourceConfig {
 @Value("${driverClassName}")
 private String driverClassName;
 ...

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean
 public DataSource dataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ds.setUsername(username);
 ds.setPassword(password);
 return ds;
 }
}

The @Bean annotation is used to tell Spring that the result of the annotated method will be a bean that
has to be managed by it. The @Bean annotation together with the method are treated as a bean definition,
and the method name becomes the bean id.

The PropertySource annotation adds a bean of type PropertySource to Spring’s environment that will
be used to read property values from a property file set as argument. The configuration also requires a bean
of type PropertySourcesPlaceholderConfigurer to replace the placeholders set as arguments for the @
Value annotated properties. This class can be bootstrapped with an AnnotationConfigApplicationContext
instance as shown earlier. But in combination with XML, it can also be bootstrapped with
ClassPathXmlApplicationContext. In this case, we need an XML configuration file that has component
scanning enabled, so the configuration class can be picked up.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 <!-- does not pickup @Configuration so the configuration
 class must be declared as a bean-->
 <context:annotation-config/>
 <bean class="com.ps.config.DataSourceConfig" />

 <!-- or the more practical way -->
 <!-- Picks up everything-->
 <context:component-scan base-package="com.ps.config"/>

</beans>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

91

There are two examples of configuration using XML in the following code snippet. The
<context:annotation-config/> activates various annotations to be detected in bean classes: Spring’s
@Required and @Autowired, JSR 250’s @PostConstruct, @PreDestroy, and @Resource and a few others. This
configuration element is rarely used these days, because <context:component-scan /> extends it and is
more practical to use because it supports a lot of attributes for filtering and reducing scope of scanning.

In a Spring test environment, the spring-test library provides the @ContextConfiguration to be used in
order to bootstrap a test environment using one or multiple configuration resources. The code below depicts
this scenario, and it won’t be explained now, because it will be covered in Chapter 3.

...
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {DataSourceConfig.class})
public class CfgToXmlTest {

 @Autowired
 DataSource dataSource;

 @Test
 public void testBoot() {
 assertNotNull(dataSource);
 }
}

When configuration classes and XML configuration files are used together to configure an
application, they can be configured and used as in the XML snippet and bootstrap example above, but
the reverse is possible also, to import a configuration from XML files and bootstrap everything with
a AnnotationConfigApplicationContext instance, using the @ImportResource annotation on the
configuration class. The following snippet of code depicts this situation.

<!-- user-repo-config.xml -->
<beans">

 <bean id="userRepo" class="com.ps.repos.impl.JdbcUserRepo"
 p:dataSource-ref="dataSource"/>

</beans>

//UserRepoConfig.java
import org.springframework.context.annotation.ImportResource;
...
@Configuration
@PropertySource("classpath:db/datasource.properties")
@ImportResource("classpath:spring/user-repo-config.xml")
public class UserRepoDSConfig {

http://dx.doi.org/10.1007/978-1-4842-0811-3_3

Chapter 2 ■ Spring Bean LifeCycle and Configuration

92

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;
 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
}

 @Bean
 public DataSource dataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ds.setUsername(username);
 ds.setPassword(password);
 return ds;
 }
}

//Test class
...
import org.junit.Test;

public class XmlToCfgTest {

 private ApplicationContext ctx;

 @Before
 public void setup() {
 ctx = new AnnotationConfigApplicationContext(UserRepoDSConfig.class);
 assertNotNull(ctx);
 }

 @Test
 public void testStart3() {
 DataSource dataSource = ctx.getBean("dataSource", DataSource.class);
 assertNotNull(dataSource);

 UserRepo userRepo = ctx.getBean("userRepo", UserRepo.class);
 assertNotNull(userRepo);
 }
}

Chapter 2 ■ Spring Bean LifeCycle and Configuration

93

What actually happens in the previous example? The bean definitions in the XML file are imported
into the UserRepoDSConfig that is bootstrapped for testing. And the test passes. The classes in this section
can be found in 02-ps-container-02-practice. The configuration file is located at 02-ps-container-
02-solution/src/main/resources/spring/user-repo-config.xml, the UserRepoDSConfig is located at
02-ps-container-02-solution/src/main/java/com/ps/config/UserRepoDSConfig and the test class at
02-ps-container-02-solution/src/test/java/com/ps/XmlToCfgTest.java, right next to the previous test
class CfgToXmlTest.java.

Another situation that you will have to deal with when developing Spring applications is having
multiple configuration classes. This is recommended for the same reason it is recommended to have
multiple XML configuration files, to group together beans with the same responsibility and to make the
application testable. Bootstrapping an application configured via multiple configuration classes can be done
using an AnnotationConfigApplicationContext instance, which will be initialized with the two classes as
parameters.

ApplicationContext ctx =
 new AnnotationConfigApplicationContext(DataSourceConfig.class,
 PetRepoConfig.class);

In case you have configuration classes with bean definitions with the same purpose in the application,
the more practical approach would be to use the @Import annotation to import the bean definition in one
class into the other.

import org.springframework.context.annotation.Import;

@Configuration
@Import({DataSourceConfig.class, UserRepoDSConfig.class})
public class AllRepoConfig {
...
}

In the configuration examples so far we have used bean definitions by methods annotated with @Bean,
which are always found under a class annotated with @Configuration. For large applications, you can
imagine that this is quite impractical, which is why there is another way. The simplest way to define
a bean in Spring is to annotate the bean class with @Component (or any of the stereotype annotations
that apply) and enable component scanning. Of course, this is applicable only to classes that are
part of the project. For classes that are defined in third party libs like the DataSource in the examples
presented do far, @Bean is the only solution. The same applies to Spring infrastructure beans too, like the
PropertySourcesPlaceholderConfigurer.

In using Java Configuration, component scanning is enabled by annotating the configuration class with
@ComponentScan. It works the same way as <context:component-scan /> for XML. The code snippet below
makes use of component scanning to find the bean definition for jdbcRequestRepo.

package com.ps.repos.impl;
...
import org.springframework.stereotype.Repository;

//JdbcRequestRepo.java
@Repository
public class JdbcRequestRepo extends
 JdbcAbstractRepo<Request> implements RequestRepo{
...
}

Chapter 2 ■ Spring Bean LifeCycle and Configuration

94

//RequestRepoConfig.java
...
import org.springframework.context.annotation.ComponentScan;
@Configuration
@Import(DataSourceConfig.class)
@ComponentScan(basePackages = "com.ps")
public class RequestRepoConfig {
}

This setup can be tested by bootstrapping the configuration and testing that jdbcRequestRepo can be
found. The name of the jdbcRequestRepo bean is named like this by the Spring IoC, because no explicit
bean name was configured. More details about bean naming using Java Configurations can be found in the
bean naming section.

public class BootstrapTest {

 @Before
 public void setup() {
 ctx = new AnnotationConfigApplicationContext(DataSourceConfig.class,
 RequestRepoConfig.class);
 assertNotNull(ctx);
 }

@Test
 public void testStart5() {
 DataSource dataSource = ctx.getBean("dataSource", DataSource.class);
 assertNotNull(dataSource);

 RequestRepo requestRepo = ctx.getBean("jdbcRequestRepo", RequestRepo.class);
 assertNotNull(requestRepo);
 }
}

Bean Naming
Bean naming is simpler when using JavaConfigurations for a number of reasons.

CC  When the name is not defined for a bean declared with Bean, the Spring IoC names the bean with the
annotated method name.

The name can be set by populating the name attribute. The same attribute can receive as argument an array of
names. The first one becomes the name; the rest become aliases.

// bean name = dataSource

@Bean

public DataSource dataSource() throws SQLException {

Chapter 2 ■ Spring Bean LifeCycle and Configuration

95

...

 }

 //bean name = one

 @Bean(name="one")

public DataSource dataSource() throws SQLException {

...

 }

 //bean name = one, alias = two

 @Bean(name={"one", "two"})

public DataSource dataSource() throws SQLException {

...

 }

CC  When the name is not defined for a bean declared with Component, the Spring IoC creates the name of the
bean from the name of the bean type, by lowercasing the first letter.

That is why in the previous example, the bean name was jdbcRequestRepo, because the class name was
JdbcRequestRepo. If you want to rename it, all you have to do is give the name to the @Repository annotation
(or any of the stereotype annotations) as argument:

// bean name = jdbcRequestRepo

@Repository

public class JdbcRequestRepo extends

 JdbcAbstractRepo<Request> implements RequestRepo{

 ...

}

// bean name = requestRepo

@Repository("requestRepo")

Chapter 2 ■ Spring Bean LifeCycle and Configuration

96

20If you are interested in this feature, you can follow the evolution of the issue here: https://jira.spring.io/
browse/SPR-6736.

public class JdbcRequestRepo extends

 JdbcAbstractRepo<Request> implements RequestRepo{

 ...

}

// or

@Repository(value="requestRepo")

public class JdbcRequestRepo extends

 JdbcAbstractRepo<Request> implements RequestRepo{

 ...

}

// or

// bean name = requestRepo

@Component("requestRepo")

public class JdbcRequestRepo extends

 JdbcAbstractRepo<Request> implements RequestRepo{

 ...

}

Aliases cannot be defined using stereotype annotations, but a request has already been made to provide such a
feature.20

Related to naming is the @Description annotation, which was added in Spring 4.x. This annotation
is used to add a description to a bean, which is quite useful when beans are exposed for monitoring
purposes, as you will see in the JMX section. This can be used together with @Bean and @Component (and its
specializations).

@Repository
@Description("This is not the bean you are looking for")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo {
...
}

https://jira.spring.io/browse/SPR-6736
https://jira.spring.io/browse/SPR-6736

Chapter 2 ■ Spring Bean LifeCycle and Configuration

97

In Spring 4.2, the @AliasFor annotation was added. This annotation is set on annotation attributes
to declare them as aliases for other annotation attributes. In the example below, a @DsCfg annotation was
declared with a single attribute called loginTimeout.

package com.ps.repos.impl;

public @interface DsCfg {
 int loginTimeout() default 3600;
}

Repository bean definitions can be annotated with this annotation to automatically set the
loginTimeout value for the dataSource to the one specified by the loginTimeout attribute value of the
annotation.21 Injecting the value from the annotation into the appropriate field of the bean will obviously
be done using a post processor bean (Remember those?), and the code needed for this is irrelevant for this
example and will not be depicted here.

package com.ps.sample;
...
import com.ps.sample.DsCfg;

@DsCfg(loginTimeout = 4800)
@Repository("requestRepo")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo {
...
}

The attribute name is quite long, right? If the application is big, renaming the attribute would be a pain,
so this is where @AliasFor comes to the rescue.

package com.ps.sample;
import org.springframework.core.annotation.AliasFor;
public @interface DsCfg {

 int loginTimeout() default 3600;

 @AliasFor(attribute = "loginTimeout")
 int lTout() default 3600;
}

Using @AliasFor, the alias lTout was defined for the loginTimeout attribute, so the repository
definition above can be written now like this:

package com.ps.sample;
...
import com.ps.sample.DsCfg;

21In practice, you will probably never need to do this; we are doing this to give a concrete example of the use of
@AliasFor.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

98

@DsCfg(lTout = 4800)
@Repository("requestRepo")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo {
...
}

And even more can be done. Aliases for meta-annotation attributes can be declared. Let’s say that
we do not like the value attribute name of the @Repository annotation and we want in our application
to make it more obvious that the @Repository annotation can be used to set the id of a bean, by adding
an id attribute that will be an alias for the value attribute. The only conditions for this to work are that the
annotation declaring the alias has to be annotated with the meta-annotation, and the annotation attribute
must must reference the meta-annotation.

package com.ps.sample;
import org.springframework.core.annotation.AliasFor;

@Repository
public @interface MyRepoCfg {

 @AliasFor(annotation = Repository.class, attribute = "value")
 String id() default "";
}

Thus, the repository beans can be declared as depicted in the following code snippet:

...
import com.ps.MyRepoCfg;
...

 //JdbcRequestRepo. java bean definition
@MyRepoCfg(id = "requestRepo")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo{
...
}

Field, Constructor, and Setter Injection
At the beginning of the XML configuration section it was mentioned that field injection is not supported
in XML. This is because the <bean /> element definition does not support this.22 In using annotations to
configure beans, field injection is possible, since the central annotation used to define dependencies
@Autowire can be used on fields, constructors, setters, and even methods.

The term autowire is the short version for automatic dependency injection. This is possible only in
Spring applications using component scanning and stereotype annotations to create beans. The @Autowire
annotation indicates that Spring should take care of injecting that dependency. This raises an interesting
question: how does Spring know what to inject?

22It only supports the <constructor-arg /> element for constructor injection and <property /> element for setter injection.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

99

CC O ut of the box, Spring will try to autowire by type, because rarely in an application is there need for more
than one bean of a type. Spring will inspect the type of dependency necessary and will inject the bean with
that exact type. Let’s consider a configuration class called RequestRepoConfig that defines one bean of type
JdbcRequestRepo. Let’s specify an explicit name for the repository bean of type JdbcRequestRepo and then
define an autowired dependency in a typical Spring test class. In using @Autowire on a field, we are making use
of field injection.

//JdbcRequestRepo.java bean definition
@Repository("requestRepo")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo{
...
}

//configuration class RequestRepoConfig.java
...
import org.springframework.context.annotation.ComponentScan;

@Configuration
@Import(DataSourceConfig.class)
@ComponentScan(basePackages = "com.ps")
public class RequestRepoConfig {
}

//AutowireTest.java Spring typical test class
import org.springframework.beans.factory.annotation.Autowired;
...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {RequestRepoConfig.class})
public class AutowiringTest {

 @Autowired
 RequestRepo reqRepo;

 @Test
 public void testAutowiredField() {
 assertNotNull(reqRepo);
 }
}

The test above will pass as long as there is exactly one bean of type RequestRepo defined in the context.
Spring does not care how the bean is named, unless there are more beans of the same type in the context.

CC  By default, if Spring cannot decide which bean to autowire based on type (because there are more
beans of the same type in the application), it defaults to autowiring by name. The name considered as the
criterion for searching the proper dependency is the name of the field being autowired.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

100

In the previous case, if Spring cannot decided what to autowire based on type, it will look for a bean
named reqRepo. Let’s define in the RequestRepoConfig another bean of type RequestRepo and let’s name it
anotherRepo and then see what happens.

@Configuration
@Import(DataSourceConfig.class)
@ComponentScan(basePackages = "com.ps")
public class RequestRepoConfig {

 @Bean
 public RequestRepo anotherRepo(){
 return new JdbcRequestRepo();
 }
}

The class AutowireTest is part of 02-ps-container-02-practice, and the log for the Spring framework has
been set to debug. When running the testAutowiredField test method, here is what can be seen in the log:23

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean 'requestRepo'
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean 'anotherRepo'
ERROR o.s.t.c.TestContextManager - Caught exception while allowing TestExecutionListener
 to prepare test instance com.ps.AutowiringTest@6ec8211c UnsatisfiedDependencyException
Error creating bean with name 'com.ps.AutowiringTest':
 Unsatisfied dependency expressed through field 'reqRepo'
No qualifying bean of type com.ps.repos.RequestRepo is defined:
 expected single matching bean but found 2: requestRepo,anotherRepo

In this case, we have two beans of type RequestRepo, and neither of them is named reqRepo, so Spring
cannot decide. The first solution would be to rename the anotherRepo method. The second would be to
tell Spring via @Autowired + @Qualifier (the one provided by Spring) that the bean named anotherRepo
should be used for autowiring, because that is what the Qualifier annotation is used for, to tell Spring
which bean qualifies for autowiring from the developers’s point of view.

 import org.springframework.beans.factory.annotation.Qualifier;
 ...

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {RequestRepoConfig.class})
public class AutowiringTest {

 @Qualifier("anotherRepo")
 @Autowired
 RequestRepo reqRepo;
}

23The log entries were cleaned up a little, and only a snippet of the log is presented here for obvious reasons.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

101

The @Autowire annotation can be used on constructors to tell Spring to use autowiring in order to
provide arguments for that constructor. The way Spring will identify the autowiring candidate is by using
the same logic presented before: it will try to find a unique bean of the parameter type. If it finds more then
one, the one named as the parameter will be injected. The JdbcRequestRepo bean type needs a dataSource
in order to function properly. That dependency will be provided using constructor injection by annotating
the constructor with @Autowired. The test class used so far can still be used to test the reqRepo field, because
if the dataSource cannot be injected, the bean can’t be created, and the test will fail. And if you run the test
and it passes, the log will be a pretty good source for understanding what happens under the hood.

@Repository("requestRepo")
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo{

 @Autowired
 public JdbcRequestRepo(DataSource dataSource) {
 super(dataSource);
 }
 }
//AutowiringTest.java Spring typical test class
 ...
 @Qualifier("requestRepo")
 @Autowired
 RequestRepo reqRepo;
 ...
// the log when bootstrapping the application
DEBUG o.s.b.f.s...Factory - Creating instance of bean 'requestRepo'
DEBUG o.s.b.f.s...Factory - Returning cached instance of singleton bean 'one'
DEBUG o.s.b.f.s...Factory - Returning cached instance of singleton bean 'dataSource'
DEBUG o.s.b.f.s...Factory -
 Autowiring by type from bean name 'requestRepo' via constructor
 to bean named 'dataSource'
DEBUG o.s.b.f.a.AutowiredAnnotationBeanPostProcessor -
 Autowiring by type from bean name 'com.ps.AutowiringTest'
 to bean named 'requestRepo'
}

To test that autowiring of the dataSource succeeded, a breakpoint can be placed in the
testAutowiredReq method. Run the test in debug mode, and inspect the contents of the reqRepo field. In
Figure 2-22, such an operation is depicted, and the target bean’s contents are evidentiated.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

102

In case Spring finds more than candidate for autowiring when constructor injection is used, the
solution is still to use @Qualifier, only in this case, this annotation is used on the parameter, because a
constructor can have more parameters, and Spring must be instructed exactly where each bean will be
injected. The definition of the constructor will change like this:

@Autowired
public JdbcRequestRepo(@Qualifier("oracleDataSource") DataSource dataSource) {
 super(dataSource);
}

// Configuration class that defines two datasource beans
@Configuration
public class DataSourceConfig {

 @Bean(name = "h2DataSource")
 public DataSource dataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 //populate
 return ds;
 }

Figure 2-22.  Running a test in debug mode to test constructor injection

Chapter 2 ■ Spring Bean LifeCycle and Configuration

103

 @Bean(name = "oracleDataSource")
 public DataSource dataSource() throws SQLException {
 OracleDataSource ds = new OracleDataSource();
 //populate
 return ds;
 }
}

In using @Autowired on constructors, it makes not sense to have more than one constructor annotated
with it, and Spring will complain about it because it will not know what constructor to use to instantiate the
bean.

Everything that was presented about the capabilities of @Autowired and @Qualifier and how to use
them to control bean autowiring applies for setter injection too. So except for a code snippet, there nothing
more that can be said about setter injection via autowiring.

public class JdbcUserRepo extends JdbcAbstractRepo<User>
 implements UserRepo {
 protected DataSource dataSource;

 @Autowired
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 //or by name
 @Autowired
 public void setDataSource(@Qualifier("oracleDataSource") DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

The @Autowired annotation by default requires the dependency to be mandatory, but this behavior can
be changed, by setting the required attribute to true:

 @Autowired(required=false)
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
}

The @Autowired annotation works on methods, too. If Spring can identify the proper bean, it will
autowire it. This is useful for development of special Spring configuration classes that have methods that are
called by Spring directly and have parameters that have to be configured. The most common example is the
setting method global security using classes annotated with @EnableGlobalMethodSecurity:

@Configuration
@EnableGlobalMethodSecurity
public class MethodSecurityConfig {

Chapter 2 ■ Spring Bean LifeCycle and Configuration

104

// method called by Spring
 @Autowired
 public void registerGlobal(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .inMemoryAuthentication()
 .withUser("john").password("test").roles("USER").and()
 .withUser("admin").password("admin").roles("USER", "ADMIN");
 }

 @Bean
 public MethodSecurityService methodSecurityService() {
 return new MethodSecurityServiceImpl()
 }
}

A more detailed version of this code snippet will be covered and explained in detail in the Spring
Security section, in the chapter Spring Web.

A strong feature for @Autowired added in Spring 4.x is the possibility to use generic types as qualifiers.
This is useful when you have classes that are organized in a hierarchy and they all inherit a certain class that
is generic, like the repositories in the project attached to the book, all of which extend JdbcAbstractRepo<T>.
Let’s see how this feature can be used.

// repository classes extending JdbcAbstractRepo
public class JdbcReviewRepo extends JdbcAbstractRepo<Review>
 implements ReviewRepo { ...}
public class JdbcResponseRepo extends JdbcAbstractRepo<Response>
 implements ResponseRepo{ ...}

//configuration class defining beans of the previous types
@Configuration
@Import({DataSourceConfig.class, UserRepoDSConfig.class})
public class AllRepoConfig {

 @Bean
 public ReviewRepo reviewRepo(){
 return new JdbcReviewRepo();
 }

 @Bean
 public ResponseRepo responseRepo(){
 return new JdbcResponseRepo();
 }
}
// Test class
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {AllRepoConfig.class})
public class GenericQualifierTest {

Chapter 2 ■ Spring Bean LifeCycle and Configuration

105

 @Autowired
 JdbcAbstractRepo<Review> reviewRepo;

 @Autowired
 JdbcAbstractRepo<Response> responseRepo;
....
}

This helps a lot, because in related classes, the Qualifier annotation is no longer needed to name
different beans of related types in order to make sure that Spring does not get confused.

It was mentioned before that the JSR 250 and JSR 330 annotations are supported and can be used
alongside Spring annotations, but they have quite a few common functionalities. In Table 2-3, you can see
the correspondences and the differences between them.

Table 2-3.  Prefixes and corresponding paths

Spring JSR Comment

@Component @Named @Named can be used instead of all
stereotype annotations except
@Configuration

@Qualifier @Qualifier JSR Qualifier is a marker annotation
used to identify qualifier annotations, like
@Named, for example

@Autowired @Inject @Inject may apply to static as well as
instance members

@Autowired + @Qualifier @Resource(name="beanName") @Resource is useful because replaces two
annotations.

Injecting Dependencies That Are Not Beans
Because of its syntax and its definition, @Autowired cannot be used to autowire primitive values, or Strings,
which is quite logical, considering that there is an annotation named @Value that specializes in this exactly.
This annotation can be used to insert scalar values or can be used together with placeholders and SpEL
in order to provide flexibility in configuring a bean. The DataSourceConfig is used to define a dataSource
bean, and the property values needed to initialize the dataSource are injected using @Value.

import org.springframework.beans.factory.annotation.Value;
...
@Configuration
@PropertySource("classpath:db/datasource.properties")
public class DataSourceConfig {

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;

 ...

Chapter 2 ■ Spring Bean LifeCycle and Configuration

106

 @Bean
 public DataSource dataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ...
 return ds;
 }
}

Also, the @Value annotation can also be used with SpEL in order to inject values from other beans, or
objects treated as beans, in the following case from a Properties object:

@Configuration
public class DataSourceConfig1 {

 @Bean
 public Properties dbProps(){
 Properties p = new Properties();
 p.setProperty("driverClassName", "org.h2.Driver");
 p.setProperty("url", "jdbc:h2:~/sample");
 p.setProperty("username", "sample");
 p.setProperty("password", "sample");
 return p;
 }
 @Bean
 public DataSource dataSource(
 @Value("#{dbProps.driverClassName}")String driverClassName,
 @Value("#{dbProps.url}")String url,
 @Value("#{dbProps.username}")String username,
 @Value("#{dbProps.password}")String password) throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ds.setUsername(username);
 ds.setPassword(password);
 return ds;
 }
}

The dbProps is an object that was instantiated and initialized, and it is treated as a bean in the
application because of the @Bean annotation. There is no equivalent for @Value in any JSR.

Bean Lifecycle and Scopes
Annotated beans and methods are discovered by component scanning. The bean lifecycle is the same
no matter how the application is configured, and how the beans are defined, and although the behavior
looks the same from outside, under the hood something different happens. And this is normal, since Java
Configuration and XML configurations are two different things, but there are also common elements. Let’s
cover them step by step.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

107

Bean Definitions Loading
•	 Recall from the XML bean lifecycle section that in the first step, the bean definitions

are loaded. When XML is used, a bean of type org.springframework.beans.
factory.xml.XmlBeanDefinitionReader is used to load the bean definitions from
the XML file(s).

•	 For a configuration using Java Configuration annotations, the classpath is
scanned by a bean of type org.springframework.context.annotation.
ClassPathBeanDefinitionScanner, and the bean definitions are
registered by a bean of type org.springframework.context.annotation.
ConfigurationClassBeanDefinitionReader.24

•	 For mixed configurations using XML and stereotype annotations, both classes
mentioned in the previous cases are used.

Bean Creation
In all cases, XML and annotation beans are created by a factory of type org.springframework.beans.
factory.support.DefaultListableBeanFactory.

Injecting Dependencies
•	 XML: the factory bean is used to inject dependencies.

•	 Java Configuration and all other annotations: a org.springframework.beans.
factory.annotation.AutowiredAnnotationBeanPostProcessor bean is used to
autowire dependencies. This is a post processor bean implementation that autowires
annotated fields, setter methods, and arbitrary config methods. It is registered by the
@Configuration annotation, but it can also be registered in mixed configurations by
component scanning. This bean takes care of the autowiring configured with
@Autowired, @Value, and @Inject.

•	 For mixed configurations, the two approaches above are used together.

Bean Destruction
In all cases, XML and annotations, the dirty job of disposing of a bean is the responsibility of
org.springframework.beans.factory.support.DisposableBeanAdapter bean.

And this is all that can be said about the internals of processing annotations. All of them are picked up
and treated accordingly by the bean post processor. If you are really curious regarding what other beans
contribute to running an application, just set the log for the Spring Framework to DEBUG and enjoy the
display.

24ConfigurationClassBeanDefinitionReader is a Spring internal class and does not appear in the Spring API, but the
source code can be found on GitHub at https://github.com/spring-projects/spring-framework/blob/master/
spring-context/src/main/java/org/springframework/context/annotation/
ConfigurationClassBeanDefinitionReader.java.

https://github.com/spring-projects/spring-framework/blob/master/spring-context/src/main/java/org/springframework/context/annotation/ConfigurationClassBeanDefinitionReader.java
https://github.com/spring-projects/spring-framework/blob/master/spring-context/src/main/java/org/springframework/context/annotation/ConfigurationClassBeanDefinitionReader.java
https://github.com/spring-projects/spring-framework/blob/master/spring-context/src/main/java/org/springframework/context/annotation/ConfigurationClassBeanDefinitionReader.java

Chapter 2 ■ Spring Bean LifeCycle and Configuration

108

25Java Configuration and stereotype annotations were introduced together, because the Java Configuration is just the
second Spring step in totally removing configuration via XML.

In the analogous XML section it was mentioned that there were equivalents for init-method and
detroy-method from the <bean/> element that will be covered in the annotation section,25 because they were
represented by two attributes of the @Bean annotation. Please analyze the following example:

 // JdbcRequestRepo.java
@Repository("requestRepo")=
public class JdbcRequestRepo extends JdbcAbstractRepo<Request>
 implements RequestRepo {
 private Logger logger = LoggerFactory.getLogger(JdbcRequestRepo.class);

 private void init(){
 logger.info(" ... initializing requestRepo ...");
 }
 private void destroy(){
 logger.info(" ... destroying requestRepo ...");
 }
 ...
}

 //RequestRepoConfig.java configuration class
@Configuration
@Import(DataSourceConfig.class)
@ComponentScan(basePackages = "com.ps")
public class RequestRepoConfig {

 @Bean (initMethod = "init", destroyMethod = "destroy")
 public RequestRepo anotherRepo(){
 return new JdbcRequestRepo();
 }
}

The initMethod attribute of the Java Configuration annotation @Bean specifies the method name to be
called in order to initialize anotherRepo, and the destroyMethod attribute specifies the method to call when
the context is closed. The bean definition from the RequestRepoConfig class is basically equivalent to this:

<beans ...>
 <bean id="anotherRepo" class="com.ps.repos.impl.JdbcRequestRepo"
 init-method="init", destroy-method="destroy" />
</beans>

A bean that is created from a definition marked with @Bean or @Component or any of its specializations
is by default a singleton. But the scope can be changed by annotating the class or method with @Scope and
setting the value attribute to a different scope.

@Component
@Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class SimpleBean {
...
}

Chapter 2 ■ Spring Bean LifeCycle and Configuration

109

!  @Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE) is equivalent to @
Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE), and @Scope("prototype") as constant SCOPE_
PROTOTYPE is of type string with the “prototype” value. Using Spring constants eliminates the risk of misspelling
the scope value.

Another interesting annotation is @Lazy, which starting with Spring 4.x can be used on injection points
(wherever @Autowired is used) too. This annotation can be used to postpone the creation of a bean until it is
first accessed, by adding this annotation to the bean definition. This is useful when the dependency is a huge
object and you do not want to keep the memory occupied with this object until it is really needed.

@Component
@Lazy
public class SimpleBean { ... }

// or on a @Bean
@Configuration
public class RequestRepoConfig {

 @Lazy
 @Bean
 public RequestRepo anotherRepo(){
 return new JdbcRequestRepo();
 }
}
// on injection point
@Repository
public class JdbcPetRepo extends JdbcAbstractRepo<Pet>
implements PetRepo {
 ...
 @Lazy
 @Autowired(required=false)
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

Aside from all the annotations discussed so far, developers can develop their own annotations. Many of
the annotations provided by Spring can be used as meta-annotations in your own code.You can view a meta-
annotation as a super class. A meta-annotation can be used to annotate another annotation. All stereotype
specializations are annotated with @Component, for example. Meta-annotations can be composed to obtain
other annotations. For example, let’s create a @CustomTx annotation that will be used to mark service beans
that will use a different transaction:

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

Chapter 2 ■ Spring Bean LifeCycle and Configuration

110

import org.springframework.transaction.annotation.Transactional;

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional("customTransactionManager", timeout="90")
public @interface CustomTx {
 boolean readOnly() default false;
}

! A fter all this talk about annotations and how great they are, you probably want to use them. The 02-ps-
container-02-practice contains all examples from the Java Config and Annotations sections. All the
configuration classes are in the com.ps.config package. All the bean classes are under com.ps.repo. In the
resources directory you can find some XML configuration classes used in the mixed examples. There is only
one TODO task for this project. The TODO number 13 requires you to replace wherever you can the Spring
annotations with JSR annotations.

Spring configuration using annotations is really powerful and flexible. In this book, Java Configuration
and Annotations are covered together, because this is the way they are commonly used in practice. There
definitely are old-style developers who still prefer XML and more grounded developers who like to mix and
match. Configuration using annotations is practical, because it can help you reduce the number of resource
files in the project, but the downside is that it is scattered all over the code. But being linked to the code,
refactoring is a process that becomes possible without the torture of searching bean definitions in XML files,
although smart editors help a lot with that these days. The annotations configuration is more appropriate for
beans that are frequently changing: custom business beans such as services, repositories, and controllers.
Imagine adding a new parameter for a constructor and then going hunting beans in the XML files so the
definition can be updated. Java Configuration annotations should be used to configure infrastructure beans
(data sources, persistence units, etc).

There are advantages to using XML too. The main advantage is that the configuration is centralized
in a few parts of the application, but Java Configuration does the same. Then, XML is widely supported
and known. Ultimately, it is only the context that decides the most appropriate solution. If you are a Spring
expert starting to work on your own startup application, you will probably go with Java Configuration
and annotations. And probably Spring Boot, which will make your work much easier by providing super-
meta-annotations to configure much of the infrastructure needed for the project. If you are working on a
big project with legacy code, you will probably be doomed with some XML configuration here and there.
Whatever the case, respect good practices and read the manual, and you should be fine.

Summary
After reading this chapter you should possess enough knowledge to configure a Spring application, using
XML, Java Configurations, and annotations or all of them, and to harness the power of beans to develop
small Spring Applications.

•	 Spring is built for dependency injection and provides a container for Inversion
of Control, which takes care of injecting the dependencies according to the
configuration.

•	 The two flavors of configuration can also be mixed: XML-based when beans
declarations are decoupled from code and Java Configuration when bean
declarations are in the code.

Chapter 2 ■ Spring Bean LifeCycle and Configuration

111

•	 Spring promotes the use of interfaces, so beans of types implementing the same
interface can be easily interchanged.

•	 The Spring way of configuration promotes testability. Since beans can be
interchanged, it is easy to use stubs and mocks to isolate components.

•	 The bean lifecycle can be controlled; behavior can be added at specific points during
the bean life.

•	 Spring offers many ways to simplify configuration: bean inheritance, nesting and
namespaces in XML, and a lot of convention over configuration default behavior in
Java Configuration.

•	 Bean definition sources can be coupled by importing them one into another, or by
composing them in order to create an application context.

2.1 Quick quiz
Question 1: What is a bean? (choose all that apply)

	 A.	 a Plain Old Java Object

	 B.	 an instance of a class

	 C.	 an object that is instantiated, assembled, and managed by a Spring IoC
Container

Question 2: What is the default scope of a bean?

	 A.	 default

	 B.	 singleton

	 C.	 protected

	 D.	 prototype

Question 3: What are the types of dependency injection supported by Spring IoC Container?
(choose all that apply)

	 A.	 setter injection

	 B.	 constructorinjection

	 C.	 interface-based injection

	 D.	 field-based injection

Question 4: What class is used to bootstrap an XML configured application context?

	 A.	 ClassPathXmlApplicationContext

	 B.	 AnnotationConfigApplicationContext

	 C.	 ApplicationContext

Chapter 2 ■ Spring Bean LifeCycle and Configuration

112

Question 5: Which of the following are stereotype annotations? (choose all that apply)

	 A.	 @Component

	 B.	 @Bean

	 C.	 @PostConstruct

	 D.	 @Scope

	 E.	 @Configuration

Question 6: What is the difference between declaring a bean with @Bean and with @Component?

	 A.	 @Bean annotates a method that creates a bean in a configuration class;
@Component annotates classes to mark them as bean definitions for the Spring
Container

	 B.	 @Bean is a specialization of @Component and annotates classes to mark them as
bean definitions for the Spring Container

	 C.	 @Bean is the JSR 250 equivalent of @Component

Question 7: Given the following bean definition, what will be printed in the log when the
application runs?

public class QuizBean {
 // assume correct logger instantiation here
 Logger log =...;

 private void initMethod() {
 logger.info("--> I’m calling it bean soon");
 }
}
// bean configuration
 <bean id="quizBean" class="QuizBean"
 init-method="initMethod"/>

	 A.	 the application won’t run, it will crash in the initialization phase because the
initMethod is private

	 B.	 the application will run, but won’t create the quizBean because its initialization
method is private

	 C.	 –> I’m calling it bean soon

Question 8: Given the quizBean bean definition, choose from the list the bean definitions that are
equivalent.

<bean id="quizBean" class="QuizBean"
 init-method="initMethod">
 <property name="petitBean" ref="petitBean"/>
 </bean>

Chapter 2 ■ Spring Bean LifeCycle and Configuration

113

	 A.	 @Component

 public class QuizBean {
 public void setPetitBean(PetitBean petitBean) {
 this.petitBean = petitBean;
 }

 @PostConstruct
 private void initMethod() {
 logger.info("--> I’m calling it bean soon");
 }
 }

	 B.	 @Configuration
 public class QuizConfiguration {

 //assume petitBean() is defined here

 @Bean(initMethod="initMethod")
 private QuizBean getQuizBean() {
 return new QuizBean(petitBean());
 }
 }

	 C.	 <bean id="quizBean" class="QuizBean"
 init-method="initMethod" p:petitBean="petitBean" />

Question 9: Which of the following beans is a bean factory post processor?

	 A.	 ClassPathXmlApplicationContext

	 B.	 PropertySourcesPlaceholderConfigurer

	 C.	 CommonAnnotationBeanPostProcessor

Question 10: What is the correct way to import bean definitions from an XML file into a configuration class?

	 A.	 @Import("classpath:spring/app-config.xml")

	 B.	 @Resource("classpath:spring/app-config.xml")

	 C.	 @ImportResource("classpath:spring/app-config.xml")

Question 11: Given the following configuration class and bean, the bean being autowired into another bean
as dependency, what happens when the application runs?

package com.cfg;
//configuration
@Configuration
public class AppConfig {}

Chapter 2 ■ Spring Bean LifeCycle and Configuration

114

package com.quiz;
// bean
@Component
public class QuizBean {}

package com.another.quiz;
// autowiring the bean
@Component
public class AnotherQuizBean {
 @Autowired
 QuizBean quizBean;
}

	 A.	 an exception will be thrown because there is no scope defined for the bean of
type QuizBean

	 B.	 an exception will be thrown because @ComponentScan is missing from the
configuration class so the bean definitions are not discovered

	 C.	 a bean of type QuizBean is created and autowired into a bean of type
AnotherQuizBean

Question 12: The Spring IoC container by default tries to identify beans to autowire by type; if multiple
beans are found, it it chooses for autowiring the one that has the same name with the dependency being
autowired

	 A.	 True

	 B.	 False

115© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_3

CHAPTER 3

Testing Spring Applications

Before an application is delivered to the client, it has to be tested and validated for use by a team of
professionals called testers. As you can imagine, testing an application after development is complete is a
little too late, because perhaps specifications were not understood correctly, or were not complete. Also,
the behavior of an application on an isolated development system differs considerably from the behavior
on a production system. That is why there are multiple testing steps that have to be taken, some of them
even before development. And there is also the human factor. Since no one is perfect, mistakes are made,
and testing helps find those mistakes and fix them before the application reaches the end user, thus
ensuring the quality of the software. The purpose of software testing is to verify that an application satisfies
the functional (application provides the expected functions) and nonfunctional (application provides the
expected functions as fast as expected and does not require more memory than is available on the system)
requirements and to detect errors, and all activities of planning, preparation, evaluation, and validation are
part of it.

There are specific courses and certifications for testers that are designed to train them in functional and
software testing processes that they can use to test an application, and the ISTQB1 is the organization that
provides the infrastructure for training and examination.

A Few Types of Testing
There are multiple types of testing classified by the development step in which they are executed, or by their
implementation, but it is not the object of this book to cover them all. Only those that imply writing actual
code using testing libraries and frameworks will be covered.

Test-Driven Development
Quality starts at the beginning of a project. Requirements and specifications are decided and validated, and
based on them a process called Test-Driven Development can be executed. This process implies creation
of tests before development of code. The tests will initially fail, but will start to pass one by one as the code is
developed. The tests decide how the application will behave, and thus this type of testing is called test-driven
development. This is a type of testing that ensures that the specifications were understood and implemented
correctly. The tests for this process are designed by business analysts and implemented by developers. This
approach puts the design under question: if tests are difficult to write, the design should be reconsidered. It
is more suitable to JavaScript applications (because there is no compilation of the code), but it can be used
in Java applications too when the development is done using interfaces.

1International Software Testing Qualification Board: http://www.istqb.org/.

http://www.istqb.org/

Chapter 3 ■ Testing Spring Applications

116

In Figure 3-1, the test-driven development process is described for exactly one test case.
This testing technique is really good for finding problems early in the development process. And

considering that the effort to solve a problem grows exponentially in proportion to the time it takes to
find it, no project should ever be developed without it. Also, the tests should be run automatically using
a continuous integration tool like Jenkins, Hudson, or Bamboo. Test-driven development can produce
applications of high quality in less time than is possible with older methods, but it has its limitations.
Sometimes tests might be incorrectly conceived or applied. This may result in units that do not perform as
expected in the real world. Even if all the units work perfectly in isolation and in all anticipated scenarios,
end users may encounter situations not imagined by the developers and testers. And since testing units was
mentioned, this section will end here in order to cover the next one.

Unit and Integration Testing
Unit testing implies testing the smallest testable parts of an application individually and independently,
isolated from any other units that might affect their behavior in an unpredictable way. The dependencies
are kept to a minimum, and most of them will be replaced with pseudo-units reproducing the expected
behavior. This means basically that the unit of functionality is taken out of context. The unit tests are written
by developers and are run using automated tools, although they can be run manually too in case of need.
A unit test exercises a single scenario with a provided input and compares the expected results for that input
with the actual results. If they match, the test passes; if they don’t, the test fails. This method of testing is fast
and is one that is most used in many projects. The tests are written by developers, and the recommended
practice is to cover every method in a class with positive and negative tests. Positive tests are the ones that
test valid inputs for the unit, while negative tests test invalid inputs for the unit. These are tests that cover a
failure of the unit, and they are considered to have failed if the unit does not actually fail when tested.

Figure 3-1.  Test-driven development logical schema

Chapter 3 ■ Testing Spring Applications

117

The core framework helping developers to easily write and execute unit tests in Java since 2000 is JUnit.
The current version is 4.13, but version 5 is currently being developed, and an Alpha version was released in
January 2016.

There are not many JUnit extensions, because there is little that this framework is missing, but there
is a framework called Hamcrest that is quite interesting because it provides a set of matchers that can be
combined to create flexible expressions of intent. It originated as a framework based on JUnit, and it was
used for writing tests in Java, but managed to break the language barrier, and currently it is provided for most
currently used languages such as Python and Swift. More about it can be found on the official site:
http://hamcrest.org/.

Running a suite of unit tests together in a context with all their real dependencies provided is called
integration testing. As the name of this technique implies, the infrastructure needed to connect objects
being tested is also a part of the context in which tests are executed. In Figure 3-2, a simple diagram for
comparing unit and integration testing concepts is depicted.

Figure 3-2.  Unit and integration testing concepts

In order for functional units to be tested in isolation, dependencies must be replaced with pseudo-
dependencies, fake objects with simple implementation that mimics the behavior of the real dependency as
far as the dependent is concerned. The pseudo-dependencies can be stubs or mocks. Both perform the same
function, to replace a real dependency, but they way they are created is what sets them apart.

Testing with Stubs
Stubs are created by the developer; they do not require extra dependencies. A stub is a concrete class
implementing the same interface as the original dependency of the unit being tested. They should be
designed to exhibit a small part or the whole behavior of the actual dependency.

http://hamcrest.org/

Chapter 3 ■ Testing Spring Applications

118

For example, let’s try to test one of the service classes that were introduced in the previous chapter, the
SimplePetService.

package com.ps.services.impl;
...
public class SimplePetService extends SimpleAbstractService<Pet>
 implements PetService {

 // dependency that has to be stubbed
 private PetRepo repo;

 @Override
 public Pet createPet(User user, String name, int age,
 PetType petType, String rfid) {
 Pet pet = new Pet();
 pet.setOwner(user);
 pet.setName(name);
 pet.setAge(age);
 pet.setRfid(rfid);
 user.addPet(pet);
 repo.save(pet);
 return pet;
 }

 @Override
 public Set<Pet> findAllByOwner(User user) {
 return repo.findAllByOwner(user);
 }

 /**
 * @param user owner of the pet
 * @param name name of the pet
 * @return
 */

 @Override
 public Pet findByOwner(User user, String name) {
 return repo.findByOwner(user, name);
 }

 public void setRepo(PetRepo petRepo) {
 this.repo = petRepo;
 }

 public PetRepo getRepo() {
 return repo;
 }
}

Chapter 3 ■ Testing Spring Applications

119

// the interface defining the specific Pet behavior
public interface PetService {

 Pet createPet(User user, String name, int age, PetType petType,
 String rfid);

 Set<Pet> findAllByOwner(User user);

 Pet findByOwner(User user, String name);
}

This class inherits some behavior from the abstract class SimpleAbstractService<Pet>.

package com.ps.services.impl;
...
public abstract class SimpleAbstractService<T extends AbstractEntity>
 implements AbstractService<T>{

 public void save(T entity) {
 getRepo().save(entity);
 }

 public T findById(Long entityId){
 return getRepo().findById(entityId);
 }

 @Override
 public void delete(T entity) {
 getRepo().delete(entity);
 }

 @Override
 public void deleteById(Long entityId) {
 getRepo().deleteById(entityId);
 }

 abstract AbstractRepo<T> getRepo();
}

Although the number of tests varies depending on developer experience and what the code actually
does, also related in a funny short story by Alberto Savoia, posted on the Google official blog,2 my
recommendation is to start unit testing by trying to write at least two tests for each method: one positive and
one negative, for methods that can be tested in this way. There are seven methods in SimplePetService,
besides the getter and setter, so the test class should have approximately fourteen tests. When testing the
service class, the concern is that the class should interact correctly with the repository class. The behavior
of the repository class is assumed known and fixed. The stub class will implement the typical repository
behavior but without a database connection needed, because interaction with a database introduces an

2Here it is, in case you are curious: http://googletesting.blogspot.ro/2010/07/code-coverage-goal-80-and-
no-less.html.

http://googletesting.blogspot.ro/2010/07/code-coverage-goal-80-and-no-less.html
http://googletesting.blogspot.ro/2010/07/code-coverage-goal-80-and-no-less.html

Chapter 3 ■ Testing Spring Applications

120

undesired lag in test execution. The implementation presented here will use a java.util.Map to simulate a
database. As in the application, there are more repository classes extending SimpleAbstractService<Pet>;
the stubs will follow the same inheritance design, so the abstract class will be stubbed as well.

package com.ps.repo.stub;
 ...
public abstract class StubAbstractRepo<T extends AbstractEntity>
 implements AbstractRepo<T> {

 protected Map<Long, T> records = new HashMap<>();

 @Override
 public void save(T entity) {
 if (entity.getId() == null) {
 Long id = (long) records.size() + 1;
 entity.setId(id);
 }
 records.put(entity.getId(), entity);
 }

 @Override
 public void delete(T entity) {
 if(records.containsKey(entity.getId())) {
 records.remove(entity.getId());
 } else {
 throw new NotFoundException("Entity with id "
 + entity.getId() + " could not be deleted because it does not exists");
 }
 }

 @Override
 public void deleteById(Long entityId) {
 if(records.containsKey(entityId)) {
 records.remove(entityId);
 } else {
 throw new NotFoundException("Entity with id "
 + entityId + " could not be deleted because it does not exists");
 }
 }

 @Override
 public T findById(Long entityId) {
 return records.get(entityId);
 }
}

The StubPetRepo class extends the previous stub class, adding its specific behavior, but skipping
implementation methods that cannot be executed on the Map used to simulate the database. And since
the Map contains <id,Pet> pairs, neither of the specific PetRepo methods can be stubbed, so a new map is
needed.

Chapter 3 ■ Testing Spring Applications

121

package com.ps.repo.stub;
import org.apache.commons.lang3.NotImplementedException;
 ...
public class StubPetRepo extends StubAbstractRepo<Pet> implements PetRepo {

 // grouping pets by owner
 protected Map<User, Set<Pet>> records2 = new HashMap<>();

 //overriding the save method from StubAbstractRepo
 // to include stub behavior for PetRepo
 @Override
 public void save(Pet pet) {
 super.save(pet);
 addWithOwner(pet);
 }

 private void addWithOwner(Pet pet){
 if (pet.getOwner()!= null) {
 User owner = pet.getOwner();
 if (records2.containsKey(owner)) {
 records2.get(owner).add(pet);
 } else {
 Set<Pet> newPetSet = new HashSet<>();
 newPetSet.add(pet);
 records2.put(owner, newPetSet);
 }
 }
 }

 @Override
 public Pet findByOwner(User owner, String name) {
 Set<Pet> petSet = records2.get(owner);
 for (Pet pet: petSet) {
 if (pet.getName().equalsIgnoreCase(name)) {
 return pet;
 }
 }
 return null;
 }

 @Override
 public Set<Pet> findAllByOwner(User owner) {
 Set<Pet> petSet = records2.get(owner);
 // we never return null when returning collections
 // to avoid NullPointerException
 return petSet != null? petSet : new HashSet<>();
 }

 @Override
 public Set<Pet> findAllByType(PetType type) {
 throw new NotImplementedException("Not needed for this stub.");
 }
}

Chapter 3 ■ Testing Spring Applications

122

Now that we have the stubs, they have to be used. In order to write multiple unit tests and execute them
together as a suite, a dependency is needed to make the implementation run more easily. This dependency
is JUnit,3 a Java framework to write repeatable unit tests. It provides annotations to prepare and run unit test
suites.

The recommended practice is to create a class named the same as the class to be tested but postfixed
with Test, so the test class in this case will be named SimplePetServiceTest. Only a few test examples will
be depicted here. For more, look in the code attached to the book for this chapter, project 03-ps-test-
practice.

package com.ps.repo.services;

import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertNull;
...

public class SimplePetServiceTest {
 public static final Long PET_ID = 1L;
 public static final User owner = buildUser("test@gmail.com", "test",
 UserType.OWNER);

 private StubPetRepo stubPetRepo = new StubPetRepo();

 // object to be tested
 private SimplePetService simplePetService;

 @Before
 public void setUp() {
 // create a few entries to play with
 stubPetRepo.save(build(owner, PetType.CAT, "John", 3, "0122345645"));
 stubPetRepo.save(build(owner, PetType.DOG, "Max", 5, "0222335645"));

 // create object to be tested
 simplePetService = new SimplePetService();
 simplePetService.setRepo(stubPetRepo);
 }

 //positive test, we know that a Pet with ID=1 exists
 @Test
 public void findByIdPositive() {
 Pet pet = simplePetService.findById(PET_ID);
 assertNotNull(pet);
 }

3JUnit official site: http://junit.org/junit4/.

http://junit.org/junit4/

Chapter 3 ■ Testing Spring Applications

123

 //positive test, we know that pets for this owner exist and how many
 @Test
 public void findByOwnerPositive() {
 Set<Pet> result = simplePetService.findAllByOwner(owner);
 assertEquals(result.size(), 2);
 }

 //negative test, we know that pets for this owner do not exist
 @Test
 public void findByOwnerNegative() {
 User newOwner = buildUser("gigi@gmail.com", "test", UserType.OWNER);
 Set<Pet> result = simplePetService.findAllByOwner(newOwner);
 assertEquals(result.size(), 0);
 }
 ...
 // simple builder of User instances
 private static User buildUser(String email, String password,
 UserType userType){
 ..
 return user;
 }

 // simple builder of Pet instances
 private static Pet build(User owner,PetType petType, String name,
 Integer age, String rfid) {
 ...
 pet.setOwner(owner);
 return pet;
 }
}

For the delete methods, the negative test looks a little different, since the delete methods do not
return a result that you can make an assertion about. Instead, when they cannot delete a record, they throw
an exception of type com.ps.repos.NotFoundException. Of course, this is a little extreme, but necessary
in order to show you how these methods can be tested. Since we know the cases in which the exception
is thrown, in order to make the test pass, we tell JUnit when this behavior is expected using the expected
attribute of the @Test annotation.

//positive test, we know that a Pet with ID=1 exists
@Test
public void deleteByIdPositive() {
 simplePetService.deleteById(PET_ID);

 // we do a find to test the deletion succeeded
 Pet pet = simplePetService.findById(PET_ID);
 assertNull(pet);
}

//negative test, we know that a Pet with ID=99 does not exist
@Test(expected = NotFoundException.class)
public void deleteByIdNegative() {
 simplePetService.deleteById(99L);
}

Chapter 3 ■ Testing Spring Applications

124

In the code snippet above, the following JUnit components were used:

•	 The @Before annotation is used on methods that should be executed before
executing a test method. These methods are used to prepare the context for that test
to execute in. All objects used in the test methods should be created and initialized
in this method. Methods annotated with @Before are executed before every method
annotated with @Test.

•	 The @Test annotation is the annotation that tells JUnit that the code in this method
should be run as a test case. Methods annotated with @Test should always be public
and return void. It can also be used to treat expected exceptions.

•	 The assert* methods are defined in the org.junit.Assert class and can be used to
simplify the code of a test method. Without them, the user would have to write the
code that specifies when the test should pass or fail.

After a quick analysis of the code, one thing should be obvious: testing code with stubs is time-
consuming, and writing stubs seems to take as much time as development itself. Indeed, testing using stubs
is applicable only for really simple applications and scenarios. The worst thing about testing with stubs,
though, is that if the interface changes, the stub implementation has to change too. So, not only do you have
to adapt the tests, but the stubs too. The second-worst thing is that all methods have to be implemented
when stubs are used, even those that are not used by a test scenario. Example:

@Override
 public Set<Pet> findAllByType(PetType type) {
 throw new NotImplementedException("Not needed for this stub.");
 }

This method was not involved in any test scenario, and to avoid providing an implementation, the decision
was made to throw a NotImplementedException. The third-worst thing about stubs is that if we have a hierarchy
of stubs, refactoring the one at the base of the hierarchy means refactoring all the stubs based on them, or else
tests will fail. And this is the case in our example as well, since all stubs are based on StubAbstractRepo.

■■ Conclusion S tubs make testing seem like a tedious job, so let’s see what mocks can do to improve the
situation.

Testing with Mocks
A mock object is also a pseudo object, replacing the dependency we are not interested in testing and helping
to isolate the object in which we are interested. Mock code does not have to be written, because there are a
few libraries and frameworks that can be used to generate mock objects. The mock object will implement
the dependent interface on the fly. Before a mock object is generated, the developer can configure its
behavior: what methods will be called and what will they return. The mock object can be used after that, and
then expectations can be checked in order to decide the test result.

There are more libraries and frameworks for mock generation written in Java applications, and which
one to use is up to you.

•	 EasyMock provides an easy way to replace collaborators of the unit under test. More
about it on their official site: http://easymock.org/. This library is very popular and was
used extensively in Spring development until version 3.1 made the switch to Mockito.

•	 jMock is a small library, and the team that created it brags about making it quick and
easy to define mock objects. The API is very nice and is suitable for complex stateful
logic. More about it on their official site: http://www.jmock.org/.

http://easymock.org/
http://www.jmock.org/

Chapter 3 ■ Testing Spring Applications

125

•	 Mockito is a mocking framework that provides a really clean and simple API for
writing tests. The interesting thing about it is that it provides the possibility of partial
mocking; real methods are invoked but still can be verified and stubbed. More about
it on their official site: http://mockito.org/.

•	 PowerMock is a framework that extends other mock libraries such as EasyMock with
more powerful capabilities. It was created in order to provide a way of testing code
considered untestable. It uses a custom classloader and bytecode manipulation to
enable mocking of static methods, constructors, final classes and methods, private
methods, removal of static initializers, and more. You can read more about it here:
https://github.com/jayway/powermock.

Each of these mocking tools will be covered in this chapter. All of them also provide annotations when
used in a Spring context, when doing integration testing. But until Spring testing is covered, we will stick to
simple unit testing.

EasyMock
The class to test with mocks generated by EasyMock is SimpleUserService. This class inherits all methods
from SimpleAbstractService<T> and provides its own for user-specific behavior.

import static com.ps.util.TestObjectsBuilder.buildUser;
...
public class SimpleUserService extends SimpleAbstractService<User>
 implements UserService {

 private UserRepo repo;

 @Override
 public User createUser(String email, String password, UserType userType) {
 User user = buildUser(email);
 user.setPassword(password);
 user.setUserType(userType);
 repo.save(user);
 return user;
 }

 @Override
 public Set<User> findByName(String name, boolean exact) {
 return repo.findAllByUserName(name, exact);
 }

 // setters & getters
 public void setRepo(UserRepo repo) {
 this.repo = repo;
 }

 @Override
 public UserRepo getRepo() {
 return repo;
 }
}

http://mockito.org/
https://github.com/jayway/powermock

Chapter 3 ■ Testing Spring Applications

126

// interface for User specific behavior
public interface UserService {
 User createUser(String email, String password, UserType userType);

 /**
 * Method used to search an User by his name
 * @param name name of the user searching for
 * @param exact if the search should be exact (name= :name),
 * or not (name like ’%name%’)
 * @return
 */
 Set<User> findByName(String name, boolean exact);
}

The TestObjectsBuilder is a java class containing utility methods for creating user and pet objects. Its
code is not relevant in this context, but you can inspect its code in the project attached to this chapter.

To perform a test using mocks generated with EasyMock, the following steps have to be completed:

	 1.	 Declare the mock

	 2.	 Create the mock

	 3.	 Inject the mock

	 4.	 Record what the mock is supposed to do

	 5.	 Tell the mock the actual testing that is being done

	 6.	 Test

	 7.	 Make sure that the methods were called on the mock

	 8.	 Validate the execution

The test class will be named SimpleUserServiceTest, and in the following test snippet, the findByName
method is tested, and the above-listed steps are underlined.

package com.ps.repo.services;

import org.junit.Before;
import org.junit.Test;
...
import static org.easymock.EasyMock.*;
import static org.junit.Assert.*;

public class SimpleUserServiceTest {

 (1)private UserRepo userMockRepo;
 private SimpleUserService simpleUserService;

 @Before
 public void setUp() {
 (2)userMockRepo = createMock(UserRepo.class);

Chapter 3 ■ Testing Spring Applications

127

 //create object to be tested
 simpleUserService = new SimpleUserService();

 (3)simpleUserService.setRepo(userMockRepo);
 }

 @Test
 public void findByNamePositive() {
 //record what we want the mock to do
 User simpleUser = buildUser("gigi@gmail.com", "the_password", UserType.OWNER);
 Set<User> userSet = new HashSet<>();
 userSet.add(simpleUser);

 (4)expect(userMockRepo.findAllByUserName("gigi", false)).andReturn(userSet);
 (5)replay(userMockRepo);

 (6)Set<User> result = simpleUserService.findByName("gigi", false);
 (7)verify(userMockRepo);
 (8) assertEquals(result.size(), 1);
 }
}

The EasyMock library provides static methods to process the mock, and when multiple mocks are
needed, replay and verify methods are replaced with replyAll and verifyAll, and the mocks are picked
up and processed without direct reference to any of them. The main advantage of using mocks is that
there is no need to maintain any extra classes, because when using mocks, the behavior needed from the
dependency is defined on the spot, inside the test method body, and the generating library takes care of
mimicking the behavior. Young and inexperienced developers might have difficulty in understanding how
mocking works, but if you are their mentor, just ask them to create stubs first and then switch them to mocks.
They will understand more easily and will be enchanted by the possibility of not needing to write too much
extra code in order to test an object.

jMock
The class to test with mocks generated by jMock is SimpleRequestService. This class inherits all methods
from SimpleAbstractService<T> and provides its own for requesting specific behavior.

public class SimpleRequestService extends SimpleAbstractService<Request>
 implements RequestService {

 private RequestRepo repo;

 public Request createRequest(User user, Pet pet,
 Pair<DateTime, DateTime> interval, String details) {
 Request request = new Request();
 ...
 repo.save(request);
 return request;
 }

Chapter 3 ■ Testing Spring Applications

128

 @Override
 public Set<Request> findAllByUser(User user) {
 return repo.findAllForUser(user);
 }

 // setters & getters
 public void setRepo(RequestRepo requestRepo) {
 this.repo = requestRepo;
 }

 @Override
 public RequestRepo getRepo() {
 return repo;
 }
}

// interface for Request specific behavior
public interface RequestService {

 Request createRequest(User user, Pet pet,
 Pair<DateTime, DateTime> interval, String details);

 Set<Request> findAllByUser(User user);

}

The Pair class is a java class containing two fields of generic types. It is a utility class, and its code is not
relevant in this context, but you can inspect its code in the project attached to this chapter.

To perform a test using mocks generated with jMock, the following steps have to be completed:

	 1.	 Declare the mock

	 2.	 Declare and define the context of the object under test, an instance of the
org.jmock.Mockery class

	 3.	 Create the mock

	 4.	 Inject the mock

	 5.	 Define the expectations we have from the mock

	 6.	 Test

	 7.	 Check that the mock was actually used

	 8.	 Validate the execution

The test class will be named SimpleRequestServiceTest, and in the following test snippet, the
findAllByUser method is tested and the above listed steps are underlined.

Chapter 3 ■ Testing Spring Applications

129

package com.ps.repo.services;

import org.jmock.Expectations;
import org.jmock.Mockery;
import org.joda.time.DateTime;
import org.junit.Before;
import org.junit.Test;
...
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SimpleRequestServiceTest {

 (1)private RequestRepo requestMockRepo;

 (2)private Mockery mockery = new Mockery();

 private SimpleRequestService simpleRequestService;

 @Before
 public void setUp() {
 (3)requestMockRepo = mockery.mock(RequestRepo.class);

 simpleRequestService = new SimpleRequestService();
 (4)simpleRequestService.setRepo(requestMockRepo);
 }

 @Test
 public void findByUserPositive() {
 User user = buildUser("gigi@gmail.com", "the_password", UserType.OWNER);
 Request req = new Request();
 req.setUser(user);
 req.setStartAt(DateTime.parse("2016-09-06").toDate());
 req.setEndAt(DateTime.parse("2016-09-18").toDate());
 req.setRequestStatus(RequestStatus.NEW);
 Set<Request> expectedResult= new HashSet<>();
 expectedResult.add(req);
 (5)
 mockery.checking(new Expectations() {{
 allowing(requestMockRepo).findAllForUser(user);
 will(returnValue(expectedResult));
 }});
 (6)Set<Request> result = simpleRequestService.findAllByUser(user);
 (7)mockery.assertIsSatisfied();
 (8)assertEquals(result.size(), 1);
 }
}

Chapter 3 ■ Testing Spring Applications

130

The only observation needed here is that when multiple mocks are used, or multiple operations are
executed by the same mock, defining the expectations can become a bit cumbersome. Still, it is easier than
defining stubs.

Mockito
Mockito has the advantage of mocking behavior by writing code that is readable and very intuitive. The
collection of methods provided was designed so well that even somebody without extensive programming
knowledge can understand what is happening in that code, as long as that person also understands English.
The class that will be tested with Mockito is SimpleReviewService. This class inherits all methods from
SimpleAbstractService<T> and provides its own for request specific behavior.

public class SimpleReviewService extends SimpleAbstractService<Review>
 implements ReviewService {

 private ReviewRepo repo;

 @Override
 public Review createReview(ReviewGrade grade, String details) {
 Review review = new Review();
 review.setGrade(grade);
 review.setDetails(details);
 repo.save(review);
 return review;
 }

 @Override
 public Set<Review> findAllByUser(User user) {
 return repo.findAllForUser(user);
 }

 // setters & getters
 public void setRepo(ReviewRepo reviewRepo) {
 this.repo = reviewRepo;
 }

 @Override
 public ReviewRepo getRepo() {
 return repo;
 }
}
// interface for Review specific behavior
public interface ReviewService {
 Review createReview(ReviewGrade grade, String details);

 Set<Review> findAllByUser(User user);
}

Chapter 3 ■ Testing Spring Applications

131

To perform a test using mocks generated with Mockito, the following steps have to be completed:

	 1.	 Declare and create the mock

	 2.	 Inject the mock

	 3.	 Define the behavior of the mock

	 4.	 Test

	 5.	 Validate the execution

The test class will be named SimpleReviewServiceTest, and in the following test snippet, the
findAllByUser method is tested and the above listed steps are underlined.

package com.ps.repo.services;

import org.junit.Before;
import org.junit.Test;

import static org.mockito.Mockito.*;
import static org.junit.Assert.*;
...

public class SimpleReviewServiceTest {

 (1)private ReviewRepo reviewMockRepo = mock(ReviewRepo.class);

 private SimpleReviewService simpleReviewService;

 @Before
 public void setUp(){
 simpleReviewService = new SimpleReviewService();
 (2)simpleReviewService.setRepo(reviewMockRepo);
 }

 @Test
 public void findByUserPositive() {
 User user = buildUser("gigi@gmail.com", "the_password", UserType.OWNER);
 Request req = new Request();
 req.setUser(user);
 Review review = new Review();
 review.setRequest(req);

 Set<Review> reviewSet = new HashSet<>();
 reviewSet.add(review);

 (3) when(reviewMockRepo.findAllForUser(user)).thenReturn(reviewSet);
 (4) Set<Review> result = simpleReviewService.findAllByUser(user);
 (5) assertEquals(result.size(), 1);
 }
}

Chapter 3 ■ Testing Spring Applications

132

The org.mockito.Mockito class provides static methods for creation of the mock object and defining
its behavior. Defining the behavior of the mock is so intuitive that looking at the line marked with (3), you
can directly figure out how the mock works: when the findAllForUser method is called on it with argument
user, it will return the reviewSet object defined previously. When multiple mocks are used or multiple
methods of the same mock are called, then more when statements must be written.

When a mock method is being called multiple times, Mockito also has the possibility to check how
many times the method was called with a certain argument using a combination of verify and times
methods.

when(reviewMockRepo.findAllForUser(user)).thenReturn(reviewSet);
Set<Review> result = simpleReviewService.findAllByUser(user);
verify(reviewMockRepo, times(1)).findAllForUser(user);
assertEquals(result.size(), 1);

Quite practical, right? Probably this is the reason why the Spring team switched from EasyMock to
Mockito. And there is more, because when using annotations, everything becomes even more practical.

package com.ps.repo.services;

import org.junit.Before;
import org.junit.Test;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.Mockito;
import org.mockito.MockitoAnnotations;

import static com.ps.util.TestObjectsBuilder.buildUser;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

/**
 * Created by iuliana.cosmina on 4/17/16.
 */
public class MockPetServiceTest {

 public static final Long PET_ID = 1L;
 public static final User owner = buildUser("test@gmail.com",
 "the_password", UserType.OWNER);

 @InjectMocks
 SimplePetService simplePetService;

 //Creates mock instance of the field it annotates
 @Mock
 PetRepo petRepo;

 @Before
 public void initMocks() {
 MockitoAnnotations.initMocks(this);
 }

Chapter 3 ■ Testing Spring Applications

133

 //positive test, we know that pets for this owner exist and how many
 @Test
 public void findByOwnerPositive() {
 Set<Pet> sample = new HashSet<>();
 sample.add(new Pet());
 Mockito.when(petRepo.findAllByOwner(owner)).thenReturn(sample);
 Set<Pet> result = simplePetService.findAllByOwner(owner);
 assertEquals(result.size(), 1);
 }
}

The InjectMock has a behavior similar to the Spring IoC, because its role is to instantiate testing object
instances and to try to inject fields annotated with @Mock or @Spy into private fields of the testing object.

The MockitoAnnotations.initMocks(this); call that initializes the mocks is not needed when the test
class is annotated with @RunWith(MockitoJUnitRunner.class) and the Mockito JUnit runner class is used
to execute the tests that will take care of the mock objects too.

Also, Mockito provides matchers that can be used to replace any variables needed for mocking
environment preparation. These matchers are static methods in the org.mockito.Mockito class and can be
called to replace any argument with a pseudo-value of the required type. For common types, the method
names are prefixed with any, (anyString(), anyLong(), and others), while for every other object type,
any(Class<T>) can be used. So the line

Mockito.when(petRepo.findAllByOwner(owner)).thenReturn(sample);

can be written using a matcher, and no owner variable is needed.

Mockito.when(petRepo.findAllByOwner(any(User.class))).thenReturn(sample);

PowerMock
PowerMock was born because sometimes code is not testable, perhaps because of bad design or because of
some necessity. Below you can find a list of untestable elements:

•	 static methods

•	 classes with static initializers

•	 final classes and final methods; sometimes there is need for an insurance that the
code will not be misused or to make sure that an object is constructed correctly

•	 private methods and fields

PowerMock is not that useful in a Spring application, since you will rarely find static elements there, but
there is always legacy code and third-party libraries that might require mocking, so it is only suitable to know
that it is possible to do so and the tool to use for this. If you want to know more, take a look on their official
site: https://github.com/jayway/powermock

When it comes to testing applications, the technique and tools to use are defined by the complexity
of the application, the experience of the developer, and ultimately legal limitations, because there are
companies that are restricted to using software under a certain license. During a development career, you
will probably get to use all the techniques and libraries mentioned in this book. Favor mocks for nontrivial
dependencies and nontrivial interfaces. Favor stubs when the interfaces are simple with repetitive behavior,
but also because stubs can log and record their usage.

https://github.com/jayway/powermock
https://github.com/jayway/powermock

Chapter 3 ■ Testing Spring Applications

134

That being said, you can switch over to the next section, which will show you how to use all these things
to test a Spring application.

3.1 Testing with Spring
Spring provides a module called spring-test that contains Spring JUnit test support classes that can
be used to make testing Spring applications a manageable operation. The core class of this module
is org.springframework.test.context.junit4.SpringJUnit4ClassRunner, which is used to cache
an ApplicationContext across test methods. All the tests are run in the same context, using the same
dependencies; thus this is integration testing.

In order to define a test class for running in a Spring context, the following have to be done:

	 1.	 annotate the test class with @RunWith(SpringJUnit4ClassRunner.class)

	 2.	 annotate the class with @ContextConfiguration in order to tell the runner class
where the bean definitions come from

// bean definitions are provided by class AllRepoConfig
@ContextConfiguration(classes = {AllRepoConfig.class})
public class GenericQualifierTest {...}
// bean definitions are loaded from file all-config.xml
@ContextConfiguration(locations = {"classpath:spring/all-config.xml"})
public class GenericQualifierTest {...}

■■ CC I f @ContextConfiguration is used without any attributes defined, the default behavior of Spring is to
search for a file named {testClassName}-context.xml in the same location as the test class and load bean
definitions from there if found.

	 3.	 use @Autowired to inject beans to be tested.

This method of testing was already introduced to test Java Configuration-based applications in the
previous chapter, but in this chapter you will find out how you can manipulate the configuration so that tests
can be run in a test context.

The following code snippet tests the class SimplePetService in a Spring context defined by two Spring
configuration XML files. The test uses a stub implementation for PetRepo, declared as a bean and injected
in SimplePetService using configuration. In Figure 3-3, the classes and files involved in defining the test
context and running the test are depicted.

Chapter 3 ■ Testing Spring Applications

135

The pet-cfg.xml file contains the definition for a single bean of type SimplePetService, the bean we
are interested in testing.

//pet-cfg.xml
<beans ...>

 <bean name="simplePetService" class="com.ps.services.impl.SimplePetService">
 <property name="repo" ref="petRepo" />
 </bean>

</beans>

Figure 3-3.  Spring test context for testing SimplePetService

Chapter 3 ■ Testing Spring Applications

136

The petRepo is not defined in this file. It is decoupled from the simplePetService bean via
configuration. It can be provided in a different file depending on the execution context. In this case, we are
using a test context, and the dependency for executing this test is provided by the file test-cfg.xml.

//test-cfg.xml
<beans ...>

 <bean name="petRepo" class="com.ps.repo.stub.StubPetRepo"
 init-method="init"/>
</beans>

For the stub to match the Spring environment, it was modified a little, and an init method was added
in order to initialize the contents managed by the repo. The TestObjectsBuilder utility class also contains
a buildPet method, used to create a pet object. The method body is also not relevant to the context, but can
be inspected in the project attached to this chapter. To make things easier, methods building test objects
were moved to a different class called TestObjectsBuilder.

package com.ps.repo.stub;
 ...
import static com.ps.util.TestObjectsBuilder.buildPet;
import static com.ps.util.TestObjectsBuilder.buildUser;

public class StubPetRepo extends StubAbstractRepo<Pet>
 implements PetRepo {

protected Map<User, Set<Pet>> records2 = new HashMap<>();

 public void init(){
 // create a few entries to play with
 final User owner = buildUser("test@gmail.com", "the_password", UserType.OWNER);
 this.save(buildPet(owner, PetType.CAT, "John", 3, "0122345645"));
 this.save(buildPet(owner, PetType.DOG, "Max", 5, "0222335645"));
 }

 @Override
 public void save(Pet pet) {
 super.save(pet);
 addWithOwner(pet);
 }
 ...
}

Even if we are using a stub, the following test is an integration test. All the test methods will run in the
same Spring test context. The object to be tested and its dependencies are created only once, when the
application context is created, and they are used by all methods. The object to be tested is a bean, and it is
injected in the class testing it using @Autowired.

Chapter 3 ■ Testing Spring Applications

137

package com.ps.integration;

import org.junit.Test;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import static com.ps.util.TestObjectsBuilder.buildUser;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations= {
 "classpath:spring/test-cfg.xml",
 "classpath:spring/pet-cfg.xml"})
public class SpringPetServiceTest{

 public static final Long PET_ID = 1L;
 public static final User owner =
 buildUser("test@gmail.com", "the_password", UserType.OWNER);

 @Autowired
 PetService simplePetService;

 //positive test, we know that a Pet with ID=1 exists
 @Test
 public void findByIdPositive() {
 Pet pet = simplePetService.findById(PET_ID);
 assertNotNull(pet);
 }

 //positive test, we know that pets for this owner exist and how many
 @Test
 public void findByOwnerPositive() {
 Set<Pet> result = simplePetService.findAllByOwner(owner);
 assertEquals(result.size(), 2);
 }
}

The Spring test context is created using the two configuration files, which will make sure the stub
dependency is the only one available to be injected into the simplePetService bean. As you can see, the
@Before annotated method is no longer necessary. Also, there is no longer any need to manipulate the
petRepo object, since it is created, initialized, and injected by Spring. So all that is left for the developer to do
is to inject the bean being tested and jump right to writing tests.

Chapter 3 ■ Testing Spring Applications

138

Something similar can be done when configuration is provided using Java Configuration, because the
@Bean annotation can be used to declare attributes. In the following code snippet the XML files were
replaced by configuration classes.

// replaces test-cfg.xml
@Configuration
public class TestAppConfig2 {

 @Bean(initMethod = "init")
 public PetRepo petRepo(){
 return new StubPetRepo();
 }
}

// replaces pet-cfg.xml
public class PetConfigClass2 {

 @Bean
 public PetService simplePetService(){
 return new SimplePetService();
 }
}

The test class stays the same, only the attribute locations is replaced with classes in the
@ContextConfiguration annotation, because the configuration is now provided using Java Configuration
classes.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestAppConfig2.class,
 PetConfigClass2.class})
// previous declaration replaces @ContextConfiguration(locations= {
// "classpath:spring/test-cfg.xml",
// "classpath:spring/pet-cfg.xml"})
public class SpringPetServiceTest2
 ...
}

Stereotype annotations can be added too. The StubPetRepo class must be defined as a bean, and the
init method must be annotated with @PostConstruct. The SimplePetService class must also be defined as
a bean, and the repo dependency must be autowired.

Chapter 3 ■ Testing Spring Applications

139

//StubPetRepo.java
@Component
public class StubPetRepo extends StubAbstractRepo<Pet> implements PetRepo {

 @PostConstruct
 public void init(){
 // create a few entries to play with
 final User owner = buildUser("test@gmail.com", "the_password", UserType.OWNER);
 this.save(buildPet(owner, PetType.CAT, "John", 3, "0122345645"));
 this.save(buildPet(owner, PetType.DOG, "Max", 5, "0222335645"));
 }
 ...
}

//SimplePetService.java
@Component
public class SimplePetService extends SimpleAbstractService<Pet>
 implements PetService {
...

 @Autowired
 public void setRepo(PetRepo petRepo) {
 this.repo = petRepo;
 }
}

The configuration classes must have scanning for components enabled and set to use exactly the
packages we are interested in:

//PetConfigClass.java
@Configuration
@ComponentScan(basePackages = "com.ps.services.impl")
public class PetConfigClass {
}

//TestAppConfig.java
@Configuration
@ComponentScan(basePackages = "com.ps.repo.stub")
public class TestAppConfig {
}

The only thing that changes in the test class is the configuration for the @ContextConfiguration
annotation; the autowiring of the tested components and the tests remain exactly the same.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestAppConfig.class, PetConfigClass.class})
public class SpringPetServiceTest2 {
...
}

Chapter 3 ■ Testing Spring Applications

140

In Spring 3.1, the org.springframework.test.context.support.AnnotationConfigContextLoader
class was introduced. This class loads bean definitions from annotated classes. So a configuration
class can be created directly in the test class to create the beans needed to be tested in isolation. This
is useful because configuration classes usually contain more than one bean definition, and loading
them all just to test one is, well, inefficient. The class must be internal to the test class and static, and the
AnnotationConfigContextLoader class must be used as a value for the loader attribute of the
@ContextConfiguration annotation.

Please look at the following code snippet:

package com.ps.integration;
import
 org.springframework.test.context.support.AnnotationConfigContextLoader;
 ...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(loader=AnnotationConfigContextLoader.class)
public class SpringPetServiceTest3 {

 public static final Long PET_ID = 1L;
 public static final User owner = buildUser("test@gmail.com", "test",
 UserType.OWNER);

 @Configuration
 static class TestCtxConfig {

 @Bean
 StubPetRepo petRepo(){
 return new StubPetRepo();
 }

 @Bean
 PetService simplePetService(){
 SimplePetService petService = new SimplePetService();
 petService.setRepo(petRepo());
 return petService;
 }
}

@Autowired
PetService simplePetService;
 @Test
 public void findByOwnerPositive() {
 Set<Pet> result = simplePetService.findAllByOwner(owner);
 assertEquals(result.size(), 2);
 }
}

Also, Spring Test can be combined with mocking to write integration tests that skip heavy components,
like the ones providing access to databases. To be able to cover this specific scenario, concrete
implementations for the repository classes must be used. Since their implementation is irrelevant to this
chapter and will be covered later in Chapter 5, Data Access, the full code will not be presented here. In order
to manage Pet objects, a Repository class is needed. The most basic way to provide access to a database in
Spring applications is to use a bean of type org.springframework.jdbc.core.JdbcTemplate, so repository

http://dx.doi.org/10.1007/978-1-4842-0811-3_5

Chapter 3 ■ Testing Spring Applications

141

classes will be created with a dependency of that type. The methods querying the database from this bean
require an object that can map database records to entities, which is why each repository class should define
an internal class implementing the Spring-specific mapping interface org.springframework.jdbc.core.
RowMapper<T>.

 //abstract repository base class
 package com.ps.repos.impl;
 import org.springframework.jdbc.core.JdbcTemplate;
 ...
public class JdbcAbstractRepo<T extends AbstractEntity>
 implements AbstractRepo<T> {

 protected JdbcTemplate jdbcTemplate;

 public JdbcAbstractRepo(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
 ...
 }

@Repository("petRepo")
public class JdbcPetRepo extends JdbcAbstractRepo<Pet> implements PetRepo {
 private String findByIdQuery = "select id, name from pet";
 private RowMapper<Pet> rowMapper = new PetRowMapper();

 @Autowired
 public JdbcPetRepo(JdbcTemplate jdbcTemplate) {
 super(jdbcTemplate);
 }
...
 @Override
 public Pet findById(Long entityId) {
 return jdbcTemplate.queryForObject(findByIdQuery, rowMapper, entityId);
 }
...
 // the DB record to entity mapper class
 private class PetRowMapper implements RowMapper<Pet> {
 public Pet mapRow(ResultSet rs, int rowNum) throws SQLException {
 Long id = rs.getLong("ID");
 String name = rs.getString("NAME");
 Pet pet = new Pet();
 pet.setId(id);
 pet.setName(name);
 return pet;
 }
 }
}

Chapter 3 ■ Testing Spring Applications

142

A configuration class that provides a mock that replaces the jdbcTemplate bean is needed. The mock will
be created by a static method in the org.mockito.Mockito class called mock(Class<T>). This configuration
class will be used together with the configuration classes for repositories and services to create a test context.

// the mock configuration class
import static org.mockito.Mockito.mock;
...
@Configuration
public class MockTemplateConfig {

 @Bean
 public JdbcTemplate jdbcTemplate() {
 return mock(JdbcTemplate.class);
 }
}

//repositories configuration class
@Configuration
@ComponentScan(basePackages = "com.ps.repos.impl")
public class JdbcRepoConfig {
}

//services configuration class
@Configuration
@ComponentScan(basePackages = "com.ps.services.impl")
public class ServiceConfig {
}

Now the test class can be created; it has to respect the following two rules:

•	 must be executed with MockitoJUnitRunner runner class

•	 two Spring-specific components must be added to the test class so the context can be
loaded

@ClassRule
public static final SpringClassRule SPRING_CLASS_RULE = new SpringClassRule();

@Rule
public final SpringMethodRule springMethodRule = new SpringMethodRule();

org.springframework.test.context.junit4.rules.SpringClassRule is an
implementation of JUnit org.junit.rules.TestRule that supports class-level
features of the Spring TestContext Framework. The @ClassRule annotation is used
on fields that reference rules or methods that return them. Fields must be public,
static and a subtype of org.junit.rules.TestRule. Methods must be public, static
and return an implementation of TestRule. The org.springframework.test.
context.junit4.rules.SpringMethodRule is an implementation of JUnit org.
junit.rules.MethodRule that supports instance-level and method-level features
of the Spring TestContext Framework. The @Rule annotation is used on fields that
reference rules or methods that return them. Fields must be public and not static and
an implementation of TestRule or org.junit.rules.MethodRule; methods must be
public and not static and return an implementation of TestRule or MethodRule.

Chapter 3 ■ Testing Spring Applications

143

The final test class is depicted in the following code snippet:

package com.ps.config;

import com.ps.ents.Pet;
import com.ps.mock.MockTemplateConfig;
import com.ps.services.impl.SimplePetService;
import org.junit.ClassRule;
import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.Mockito;
import org.mockito.runners.MockitoJUnitRunner;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.rules.SpringClassRule;
import org.springframework.test.context.junit4.rules.SpringMethodRule;

import static org.junit.Assert.assertNotNull;
import static org.mockito.Mockito.any;
import static org.mockito.Mockito.anyString;
import static org.mockito.Mockito.anyLong;

@RunWith(MockitoJUnitRunner.class)
@ContextConfiguration(classes = {JdbcRepoConfig.class,
 ServiceConfig.class, MockTemplateConfig.class})
public class TestAppConfig3 {

 public static final Long PET_ID = 1L;

 // mocking the database
 @Autowired
 JdbcTemplate jdbcTemplate;

 // tested object
 @Autowired
 SimplePetService simplePetService;

 @ClassRule
 public static final SpringClassRule SPRING_CLASS_RULE = new SpringClassRule();

 @Rule
 public final SpringMethodRule springMethodRule = new SpringMethodRule();

 //positive test, we know that a Pet with ID=1 exists
 @Test
 public void findByIdPositive() {
 Mockito.when(jdbcTemplate.queryForObject(anyString(),
 any(RowMapper.class), anyLong())).thenReturn(new Pet());

Chapter 3 ■ Testing Spring Applications

144

 Pet pet = simplePetService.findById(PET_ID);
 assertNotNull(pet);
 }
}

If you have’t figured out yet what happened, here is the explanation: A test context was created
containing all the beans in the configuration classes except the jdbcTemplate bean. This bean was replaced
with a mock, which was defined as a bean in a test configuration class and that was injected automatically by
Spring where needed (in the repository bean).

Using Profiles
Starting with Spring 3.1, the @Profile annotation became available. When classes are annotated with this
anclasses become eligible for registration when one or more profiles are active. Spring profiles have the same
as Maven profiles, but they are more practical to use, because they are much easier to configure and are not
the builder tool of an application. It was mentioned before that different environments require different
configurations, and much care should be used during development so that components are decoupled
enough so they can be swapped depending on the context in which processes are executed. Spring profiles
help considerably in this case. For example, during development, tests are run on development machines,
and a database is not really needed, or if one is needed, an in-memory simple and fast implementation
should be used. This can be set up by creating a test datasource configuration file that will be used only
when the development profile is active. The two datasource classes, for production and test environment,
are depicted in the code snippet below:

//production dataSource
package com.ps.config;
import org.springframework.context.annotation.Profile;
...
@Configuration
@PropertySource("classpath:db/datasource.properties")
@Profile("prod")
public class ProdDataConfig {

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

Chapter 3 ■ Testing Spring Applications

145

 @Bean
 public DataSource _underlinedataSource() throws SQLException {
 DriverManagerDataSource ds = new DriverManagerDataSource();
 ds.setDriverClassName(driverClassName);
 ds.setUrl(url);
 ds.setUsername(username);
 ds.setPassword(password);
 return ds;
 }
}

// development dataSource
@Configuration
@Profile("dev")
public class TestDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.H2)
 .addScript("classpath:db/schema.sql")
 .addScript("classpath:db/test-data.sql")
 .build();
 }
}

In the sample above we have two configuration classes, each declaring a bean named dataSource,
each bean specific to a different environment. The profiles are named simply prod, for the production
environment, and dev, for the development environment. In the test class we can activate the development
profile by annotating the test class with @ActiveProfiles annotation and giving the profile name as
argument. Thus, in the test context only the beans defined in classes annotated with @Profile("dev") will
be created and injected. The test class is depicted in the following code snippet.

import org.springframework.test.context.ActiveProfiles;
...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {PetConfigClass.class})
@ActiveProfiles("dev")
public class PetServiceTest {

 public static final Long PET_ID = 1L;

 @Autowired
 PetService simplePetService;

 //positive test, we know that a Pet with ID=1 exists
 @Test
 public void findByIdPositive() {
 Pet pet = simplePetService.findById(PET_ID);
 assertNotNull(pet);
 }
}

Chapter 3 ■ Testing Spring Applications

146

By annotating the test class @ActiveProfiles("dev"), the development profile is activated, so when
the context is created, bean definitions are picked up from the configuration class (or files) specified by the
@ContextConfiguration annotation and all the configuration classes annotated with @Profile("dev").
Thus, when running the test, the in-memory database will be used, making the execution fast and practical.

■■ Conclusion  Using the Spring-provided test classes to test a Spring application is definitely easier than not
doing it, since no external container is needed to define the context in which the tests run. If the configuration
is decoupled enough, pieces of it can be shared between the test and production environment. For basic unit
testing, Spring is not needed, but in order to implement proper integration testing, the ability to set up a test
context in record time is surely useful.

Summary
After reading this chapter you should possess enough knowledge to test a Spring application using unit and
integration testing.

•	 Testing is an important part of the development process.

•	 What is unit testing, and what library is useful for writing unit tests in Java?

•	 What is a stub?

•	 What is a mock?

•	 What is integration testing?

•	 How does one set up a Spring Test Context?

Quick Quiz
Question 1: Given the following integration test:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class SimpleTest {
 //test methods here
}

What can be said about the behavior of Spring when the test is executed? (choose all that apply)

	 A.	 Spring will build an empty context and the tests will fail

	 B.	 Spring will not be able to create a test context for the tests to run in

	 C.	 Spring will look for a file named SimpleTest-context.xml in the same location
as the SimpleTest class to use it to initialize the context

Chapter 3 ■ Testing Spring Applications

147

Question 2: Given the following unit test, what is missing from the class definition that prevents the test from
being executed correctly?

public class SimplePetServiceTest {

 @InjectMocks
 SimplePetService simplePetService;

 PetRepo petRepo;

 @Before
 public void initMocks() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void findById() {
 Mockito.when(petRepo.findById(1L)).thenReturn(new Pet());
 Pet pet = simplePetService.findById(1L);
 assertNotNull(pet);
 }
}

	 A.	 The class should be annotated with @RunWith(MockitoRunner.class)

	 B.	 The setUp method is missing the following statement:

simplePetService.setRepo(petRepo);

	 C.	 Nothing, the test will be executed correctly and it will pass.

	 D.	 The petRepo field is missing annotation @Mock

Question 3: The class SpringJUnit4ClassRunner is used to set up a test context.

	 A.	 true

	 B.	 false

Question 4: What is the @ContextConfiguration used for?

	 A.	 to load and configure a TestApplicationContext instance

	 B.	 to load and configure an ApplicationContext for integration testing

	 C.	 to inject beans used in unit testing

Question 5: What library is mandatory for writing unit tests for a Spring application?

	 A.	 JUnit

	 B.	 spring-test

	 C.	 any mock generating library such as jMock, Mockito, or EasyMock

Chapter 3 ■ Testing Spring Applications

148

Practical Exercise
The project to use to test your understanding of testing is 03-ps-test-practice. This project contains part
of the implementation depicted in the code snippets. The parts missing are marked with a TODO task and
are visible in Intellij IDEA in the TODO view. There are six tasks for you to solve in order to test your acquired
knowledge of testing, and they are focused on Mockito usage and Spring testing.

Tasks TODO 14 and 15 require you to complete two unit tests that test a SimplePetService object using a stub.
TaskTODO 16 requires you to place the missing annotations in the MockPetServiceTest.
Task TODO 17 requires you to define the behavior of the mock object using Mockito methods.
Tasks TODO 18 and 19 require you to complete the test class definitions in order for the test cases to be

executed correctly. In order to run a test case, just click anywhere on the class content or on the class name
in the project view and select the Run '{TestClassName'} option. If you want to run a single test, just right
click, and from the menu select Run '{TestMethodName}'. The options are depicted in Figure 3-4 for a test
class and a test method in the project. You can even run the tests using debug in case you are interested in
stopping the execution at specific times. After implementing all the solutions, you can run the Gradle test
task to run all your tests. You should see a green toolbar, next to it a message telling you that all twenty tests
passed, similar to what you see depicted in Figure 3-5.

Figure 3-4.  How to run tests in Intellij IDEA

Chapter 3 ■ Testing Spring Applications

149

Figure 3-5.  Running all tests for a module in Intellij IDEA, using the Gradle test task

In the Figure 3-5, the Gradle task appears on the right, in the Gradle view selected with gray. For any
module it can be found under ModuleName/Tasks/verification.

On the left, the index.html file generated when Gradle tests are run is selected. You can open that file in
the browser when writing the test in order to check percentages of the tests passing and detailed logs telling
you why tests fail. If all is well at the end, you should see a page looking like the one depicted in Figure 3-6.

Chapter 3 ■ Testing Spring Applications

150

The project 03-ps-test-solution contains the proposed solution for this chapter. Please compare
yours with the provided one to make sure all was implemented according to the specifications.

Also, because the project has grown in size, you can do a run with the -Dreceipt option and analyze
its stability an execution time. Also, in order to build modules in parallel, you can add the -Dorg.gradle.
parallel=true option.

gradle build -Dreceipt -Dorg.gradle.parallel=true

If there are *-practice projects with unimplemented tests, the build will unfortunately fail, and when
analyzing your build in the browser, you will see something similar to what is depicted in Figure 3-7. But if
the module you have just worked on is not among the ones listed, then all is ok.

Figure 3-6.  Gradle web report after all tests have passed

Chapter 3 ■ Testing Spring Applications

151

Figure 3-7.  Official Gradle report about the pet-sitter project build

153© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_4

CHAPTER 4

Aspect Oriented Programming
with Spring

AOP is an acronym for Aspect Oriented Programming, a term that refers to a type of programming that
aims to increase modularity by allowing the separation of cross-cutting concerns. A cross-cutting concern
is a functionality that is tangled with business code, which usually cannot be separated from the business
logic. Auditing, security, and transaction management are good examples of cross cutting concerns. They
are mingled with the business code, heavily coupled with the functionality that might be affected if they
fail. These are good candidates for separation using aspects, because there is no design pattern that would
allow writing the code in such a way that they would be separated from the business logic. This means
that additional behavior is added to existing behavior when the application is compiled. So transaction
management, security logic, and auditing can be developed separately and mingled with the functionality at
compile time. This is done by defining an advice containing code that will be executed in a location named
join point specified by a pointcut. This approach allows for code implementing behavior that is not related to
business logic to be separated from functional code, the result being a more modular, less coupled, and less
cluttered application.

The business or base code is not actually changed; you can imagine aspects as plugins. They modify the
behavior, not the actual implementation.

AOP is a type of programming that aims to help with separation of cross-cutting concerns to
increase modularity; it implies declaring an aspect class that will alter the behavior of base code, by
applying advices to specific join points, specified by pointcuts.

AOP is a complement of OOP (Object Oriented Programming) and they can be used together to write
powerful applications, because both provide different ways of structuring your code. OOP is focused on
making everything an object, while AOP introduces the aspect, which is a special type of object that injects
and wraps its behavior to complement the behavior of other objects. Other examples of cross-cutting
concerns:

•	 Caching

•	 Internationalization

•	 Error detection and correction

•	 Memory management

•	 Performance monitoring

•	 Synchronization

Chapter 4 ■ Aspect Oriented Programming with Spring

154

Problems Solved by AOP
When databases are used to store data, a connection to the database is used to interact with the application.
The connection to database needs to be opened before the communication and closed afterwards, to
successfully complete the communication with the database. Every database implementation will allow a
limited number of connections simultaneously; thus connections that are no longer used need to be closed,
so that others can be opened. Using Spring, a JDBC a repository method that looks for a user based on its ID
looks similar to the implementation in Figure 4-1:

Figure 4-1.  Method using JDBC to search for a user based on its ID in a database, with cross-cutting
concern-specific code highlighted

Chapter 4 ■ Aspect Oriented Programming with Spring

155

The code implementing the opening and closing of the connection is enclosed in red rectangles. This
code was specifically chosen to underline a cross-cutting concern that tangles in the base code, leading
to code cluttering. It is not a clean solution and not a stable one either, since a big project, database
communicating methods will be written by different programmers, and it is enough for one to make a
mistake that leads to connections to the database not being closed correctly, and the application might end
up not being able to communicate with the database because a new connection cannot be opened.

The example above is quite archaic, and the call diagram for the method above is depicted in Figure 4-2.

Figure 4-2.  UML call diagram for the JDBC method extracting a user by its ID

Chapter 4 ■ Aspect Oriented Programming with Spring

156

The schema in the previous image is a conceptual one, and it depicts the basic idea. AOP components
intercept calls to certain objects and inject their own functionality, without being strongly connected to the
initial target, and they do so in a transparent way.

There are not many applications left that use JDBC components directly. Currently there are
frameworks that provide classes to manage the connections for you, so you do not have to write all that code.
For example, in Spring, the class org.springframework.jdbc.core.JdbcTemplate does that for you, and it
will be covered in Chapter 5: Data Access. Repository components can be created based on JdbcTemplate
instances, and database connections are managed by connection pool components. Connection pooling is
a technique of reusing connections: when a connection is closed, it can reside in memory to be reused the
next time a connection is required, eliminating the cost of creating a new connection. But using connections
directly is cumbersome, because application crashes can lead to inconsistent data. Aside from connections,
applications use transactions to group database operations in units of work. When all operations have
completed successfully, the transaction is committed, and the changes are persisted into the database. If one
operation fails, the transaction is rolled back, leaving the database untouched.

In this case, transactions become a cross-cutting concern because a method that is supposed to be
called into a transaction has to obtain a transaction, open it, perform its actions, and then commit the
transaction.

But usually an application uses more than one cross-cutting concern, the most common grouping is:
security + logging (or auditing) + transactions. So service classes that provide and regulate access to data end
up looking like Figure 4-4.

Figure 4-3.  Conceptual schema for the findById() method with AOP

Complicated, right? AOP can help decouple the connection management code from the business code.
Using AOP, the previous diagram should be reduced to something like what is depicted in Figure 4-3.

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

157

Code tangling and code scattering are two issues that come together when base code needs to be
executed under certain conditions. Code tangling means that the same component is injected into many
others, thus leading to significant dependencies coupling components together. Code scattering means
duplication, because you can do the same thing in only one way. The resulting solution is difficult to extend
and to maintain, harder to understand, and a pain to debug. Using AOP, a programmer can focus on the core
implementation, then define aspect components to cover the cross-cutting concerns. AOP provides even
more modularization than OOP does.

Spring AOP
The original library that provided components for creating aspects is named AspectJ. It was developed by
the Xerox PARC company and released in 1995. It defined a standard for AOP because of its simplicity and
usability. The language syntax used to define aspects was similar to Java and allowed developers to define
special constructs called aspects. The aspects developed in AspectJ are processed at compile time, so they
directly affect the generated bytecode.

The Spring AOP framework is a complement to the current version of AspectJ and contains many
annotations that can be used to develop and configure aspects using Java code, but the Spring development
team knows and recognizes its limitations. For example, it cannot advise fine-grained objects such as
domain objects. Spring AOP functionality is based on AspectJ, which is why when Spring AOP libraries are
used, aspectjweaver and aspectjrt must be added to the application classpath.

Also, Spring AOP cannot advise objects that are not managed by the Spring container. AspectJ can
do that. Spring AOP uses dynamic proxies for aspect weaving, so the bytecode of the target objects is
not affected in any way. Also, following the Spring convention, Spring AOP is non-invasive having been
developed in such a way to keep AOP components decoupled from application components.

Figure 4-4.  Code tangling and scattering in service classes without AOP

Chapter 4 ■ Aspect Oriented Programming with Spring

158

In earlier versions, XML was used to define aspects. The purpose of this chapter is to help you
modularize your code so that tangling and scattering are eliminated (or at least reduced to a minimum)
using everything Spring has to offer.

The Spring Framework is composed of a few libraries:

•	 spring-aop provides AOP alliance API compliant components that can be used to
define method interceptors and pointcuts so that code with different responsibilities
can be cleanly decoupled.

•	 spring-aspects provides integration with AspectJ.

•	 spring-instrument provides class instrumentation support and classloader
implementations that can be used on application servers.

•	 spring-instrument-tomcat contains Spring’s instrumentation agent for Tomcat.

Spring IoC can be used to write software applications, and for business applications that require the
use of cross-cutting concerns, using Spring AOP is a must. Before digging into it, let’s introduce the AOP
concepts and how they are declared in Spring.

AOP Terminology
A few specific AOP terms were mentioned in the introduction of this chapter, but a more detailed
explanation is required.

•	 Aspect: a class containing code specific to a cross-cutting concern. A class declaration
is recognized in Spring as an aspect if it is annotated with the @Aspect annotation.

•	 Weaving: a synonym for this word is interlacing, but in software, the synonym is
linking, and it refers to aspects being combined with other types of objects to create
an advised object.

•	 Join point: a point during the execution of a program. In Spring AOP, a joint point
is always a method execution. Basically, the join point marks the execution point
where aspect behavior and base behavior join.

•	 Target object: object to which the aspect applies.

•	 Target method: the advised method.

•	 Advice: action taken by an aspect at a join point. In Spring AOP there are multiple
advice types:

–– Before advice: methods annotated with @Before that will execute before the join point. These
methods do not prevent the execution of the target method unless they throw an exception.

–– After returning advice: methods annotated with @AfterReturning that will execute after a
join point completes normally, meaning that the target method returns normally without
throwing an exception.

–– After throwing advice: methods annotated with @AfterThrowing that will execute after a join
point execution ends by throwing an exception.

–– After (finally) advice: methods annotated with @After that will execute after a join point
execution, no matter how the execution ended.

–– Around advice: methods annotated with @Around intercept the target method and surround
the join point. This is the most powerful type of advice, since it can perform custom behavior
before and after the invocation. It has the responsibility of choosing to perform the invocation
or return its own value.

Chapter 4 ■ Aspect Oriented Programming with Spring

159

•	 Pointcut: a predicate used to identify join points. Advice definitions are associated
with a pointcut expression and the advice will execute on any join point matching
the pointcut expression. Pointcut expressions are defined using AspectJ Pointcut
Expression Language.1 Pointcut expressions can be defined as arguments for Advice
annotations or as arguments for the @Pointcut annotation.

•	 Introduction: declaring additional methods, fields, interfaces being implemented,
annotations on behalf of another type. Spring AOP allows this using a suite of AspectJ
@Declare* annotations that are part of the aspectjrt library.

•	 AOP proxy: the object created by AOP to implement the aspect contracts. In Spring,
proxy objects can be JDK dynamic proxies or CGLIB proxies. By default, the proxy
objects will be JDK dynamic proxies, and the object being proxied must implement
an interface, that will also be implemented by the proxy object. But a library like
CGLIB can be used to create proxies by subclassing too, so an interface is not
needed.

Quick Start
To quickly introduce most Spring AOP terms in the previous section, let’s consider a very simple example.
Let’s consider a JdbcTemplateUserRepo bean with a few simple methods used to query for or modify User
instances.+

 ...
@Repository("userTemplateRepo")
public class JdbcTemplateUserRepo implements UserRepo {

 private RowMapper<User> rowMapper = new UserRowMapper();

 protected JdbcTemplate jdbcTemplate;

 @Autowired
 public JdbcTemplateUserRepo(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 public Set<User> findAll() {
 String sql = "select id, username, email, password from p_user";
 return new HashSet<>(jdbcTemplate.query(sql, rowMapper));
 }

 public User findById(Long id) {
 String sql = "select id, email, username,password from p_user where id= ?";
 return jdbcTemplate.queryForObject(sql, rowMapper, id);
 }

1Complete reference here: https://eclipse.org/aspectj/doc/next/progguide/language.html.

https://eclipse.org/aspectj/doc/next/progguide/language.html

Chapter 4 ■ Aspect Oriented Programming with Spring

160

 public Set<User> findAllByUserName(String username, boolean exactMatch) {
 String sql = "select id, username, email, password from p_user where ";
 if (exactMatch) {
 sql += "username= ?";
 } else {
 sql += "username like '%' || ? || '%'";
 }
 return new HashSet<>(jdbcTemplate.query(sql, new Object{username}, rowMapper));
 }

 public void updatePassword(Long userId, String newPass) {
 String sql = "update p_user set password=? where ID = ?";
 jdbcTemplate.update(sql, newPass, userId);
 }

 // Maps a row returned from a query executed on the P_USER table to a User object.
 //implementation not relevant for this chapter
 private class UserRowMapper implements RowMapper<User> {
 ...
 }
}

The UserRowMapper instance is not relevant for this chapter, but in case you are curious, this class
implements the Spring RowMapper interface, and it is used by JdbcTemplate instances to transform database
records into domain objects to be used by the application. Objects of this type are typically stateless and
reusable. They will be covered in detail in Chapter 5: Data Access.

An aspect can be created to monitor the execution of the methods of this bean. The following code
snippet depicts an aspect class definition that contains a single advice that prints a message every time the
findById method is called.

 package com.ps.aspects;

import org.apache.log4j.Logger;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.ProceedingJoinPoint;

import org.aspectj.lang.annotation.Component;
import org.aspectj.lang.annotation.Aspect;
import underlineorg.aspectj.lang.annotation.Before;

@Aspect
@Component
public class UserRepoMonitor {
 private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);

 @Before
 ("execution(public com.ps.repos.˙JdbcTemplateUserRepo+.findById(..))")
 public void beforeFindById(JoinPoint joinPoint) throws Throwable {
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Method " + methodName + " is about to be called");
 }
}

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

161

The class containing the aspect definition must be declared as a bean. This can be done using any of the
three methods covered in Chapter 2. In the example above, the declaration is done by annotating the class
with @Component. The @Before annotation is used with a parameter that is called a pointcut expression. This
is used to identify the method execution on which the behavior will be applied.

To test the following code, we need a configuration class and a test class. The configuration for
the datasource will be decoupled in the class com.ps.config.TestDataConfig, that is not relevant for
this chapter, but you can find it in the sources attached to this chapter in project 04-aop-practice.
The application configuration will be provided by the class AppConfig. To enable aspect support, the
configuration class must be annotated with @EnableAspectJAutoProxy.

package com.ps.config;
...
import org.springframework.context.annotation.EnableAspectJAutoProxy;

@Configuration
@ComponentScan(basePackages = {"com.ps.repos.impl","com.ps.aspects"})
@EnableAspectJAutoProxy
public class AppConfig {
}

To be able to add behavior to existing objects, Spring uses a method called proxying, which implies
creating an object that wraps around the target object. By default, Spring creates JDK dynamic proxies, which
are proxy objects implementing the same interface the target object does. The @EnableAspectJAutoProxy
annotation can also be used to modify the type of proxies created if CGLIB is on the classpath. The CGLIB
proxies are called sub-class proxies, because they extend the type of the target object. To change the type of
proxies to CGLIB proxies, just set the proxyTargetClass parameter to true. But before getting deeper into
this topic, let’s do some testing.

 ... // imports here
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class TestJdbcTemplateUserRepo {

 @Autowired
 @Qualifier("userTemplateRepo")
 UserRepo userRepo;

 @Test
 public void testFindById() {
 User user = userRepo.findById(1L);
 assertEquals("John", user.getUsername());
 }
}

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

162

!  Because the UserRepoMonitor only prints messages currently, to clearly see the advice in action all the logs
will be set to OFF, except the one of the aspect class. This can be done by editing the 04-ps-aop-practice/
src/test/resources/logback-test.xml and setting all logs for other packages to OFF and the log level for
the com.ps.aspects on INFO, as the following code snippet shows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <contextListener class="ch.qos.logback.classic.jul.LevelChangePropagator">
 <resetJUL>true</resetJUL>
 </contextListener>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} %thread %-5level %logger{5} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="org.springframework" level="off"/>
 <logger name="org.springframework.jdbc" level="off"/>
 <logger name="org.h2" level="off"/>
 <logger name="com.ps.aspects" level="info"/>

 <root level="info">
 <appender-ref ref="console" />
 </root>
</configuration>

When the testFindById method is executed, in the log a single line will be printed.

INFO c.p.a.UserRepoMonitor - ---> Method findById is about to be called.

It is obvious that the before advice was executed, but how does it actually work? Spring IoC creates
the userTemplateRepo bean. Then the aspect definition with an advice that has to be executed before the
findById method tells Spring that this bean has to be wrapped up in a proxy object that will add additional
behavior, and this object will be injected instead of the original everywhere needed. And because we are using
JDK dynamic proxies, the proxy will implement the UserRepo interface. Figure 4-5 depicts this situation.

Chapter 4 ■ Aspect Oriented Programming with Spring

163

The bean that is injected into the test bean can be inspected by placing a breakpoint inside the
testFindById method and starting the test in debug mode. In the debugger view, the userRepo can be
expanded and its contents inspected. In Figure 4-6 you can see side by side the structure of a userRepo bean
when aspects are used and when they aren’t.2

Figure 4-6.  Injected bean userRepo structure when aspects are used and when they are not as displayed in the
Intellij IDEA Debugger view. On the right you notice the type of the injected bean: JdkDynamicAopProxy

Figure 4-5.  The userTemplateRepo proxy bean

In this case, it is obvious that the type of proxy created is the default JDK dynamic proxy, which is useful
when the target class implements one or more interfaces, because Spring will create a proxy that implements
all of them. The JDK proxies are created at runtime using JDK Reflection API, and reflection is known to
affect performance.

2You can disable aspects support by commenting the @EnableAspectJAutoProxy annotation, and Spring will just ignore
the Aspect annotation.

Chapter 4 ■ Aspect Oriented Programming with Spring

164

So basically, in order to use aspects in a Spring application you need the following:

•	 spring-aop as a dependency

•	 declare an @Aspect class and declare it as a bean as well (using @Component or @Bean
or XML typical bean declaration element)

•	 declare an advice method annotated with a typical advice annotation (@Before,
@After, etc.) and associate it to a pointcut expression

•	 enable aspects support by annotating a configuration class with
@EnableAspectJAutoProxy

•	 (optional) add CGLIB as a dependency and enable aspects support using subclassed
proxies by annotating a configuration class with @EnableAspectJAutoProxy(proxyTa
rgetClass = true)

If the CGLIB library is to be added to the application classpath, Spring must be told that we want
subclass-based proxies by modifying the aspect enabling annotation to @EnableAspectJAutoProxy(proxy
TargetClass = true). This approach is suitable when the target class does not implement any interface,
so Spring will create a new class on the fly that is a subclass of the target class. CGLIB is suitable for that
because it is a bytecode generation library. The proxies generated with CGLIB are called subclass-based, and
one of their advantages is that they can override methods optionally. They use specialized interceptors to
call methods, and this can actually improve performance.

In Figure 4-7 you can see the structure of the userRepo bean when CGLIB is used to created proxies.

Figure 4-7.  Injected bean userRepo structure when proxies are created using CGLIB in the Intellij IDEA
Debugger view

Chapter 4 ■ Aspect Oriented Programming with Spring

165

Aspect Support Configuration using XML
Although aspect support configuration has been based on annotations since Spring 3.1, before that version,
the configuration was done using XML. Since your experience as a developer you might end up working on
projects using Spring < 3.1, we find it useful to cover how to configure aspect support using XML.

Obviously, there’s a namespace for that, which provides an element definition equivalent to
@EnableAspectJAutoProxy. The specific element is <aop:aspectj-autoproxy../>, which has a child
element <aop:include ../> for each aspect defined in the application.

If you want to avoid configuring aspects using annotations altogether, the reason for that being that you
are using a Java version < 5 and annotations are not supported, there is also an <aop:config /> element that
can be used to declare methods of a bean as advice and associate pointcuts.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">
 <!-- Configuration for the aspects that apply to the application -->
 <bean id="userRepoMonitor" class="com.ps.aspects.UserRepoMonitor" />

 <!-- Configure Aspect support -->
 <aop:aspectj-autoproxy>
 <aop:include name="userRepoMonitor"/>
 </aop:aspectj-autoproxy>

 <!-- Configure advice -->
 <aop:config>
 <aop:aspect ref="userRepoMonitor">
 <aop:before
 pointcut="execution(public com.ps.repos.˙JdbcTemplateUserRepo+.findById(..))"
 method="beforeFindById" />
 </aop:aspect>
 </aop:config>
</beans>

To configure the use of subclass-based proxies, the <aop:aspectj-autoproxy../> must have the
proxy-target-class attribute set to true.

Defining Pointcuts
In the Quick Start section, the before advice was covered and the pointcut expression associated with it,
which provided means to identify where to apply the advice. The pointcut expression looked like the
following snippet:

execution(public * com.ps.repos.*.JdbcTemplateUserRepo+.findById(..))

Chapter 4 ■ Aspect Oriented Programming with Spring

166

The template that a pointcut expression follows can be defined as follows:

execution([Modifiers] [ReturnType] [FullClassName].[MethodName]
 ([Arguments]) throws [ExceptionType])

The expression can contain wildcards like + and * and can be made of multiple expressions
concatenated by boolean operators such as &&, ||, etc. The * wildcard replaces any group of characters;
the + wildcard is used to specify that the method to advise can also be found in subclasses identified by
[FullClassName] criteria.

There is also a list of designators that can be used to define the reach of the pointcut; for example, the
within(...) designator can be used to limit the pointcut to a package

public * com.ps.repos.*.JdbcTemplateUserRepo+.findById(..)) && +underlinewithin(com.ps.*)

Also, a pointcut expression can identify only methods defined in a class annotated with a specific
annotation:

execution(@org.springframework.transaction.annotation.Transactional
 public * com.ps.repos.*.*Repo+.findById(..)))

A pointcut expression can even identify methods that return values with a specific annotation:

execution(public (@org.springframework.stereotype.Service *) *(..))

And by using the @annotation() designator, only methods annotated with a specific annotation can be
taken into consideration:

execution(public (public * com.ps.service.*.*Service+.*(..)
 && @annotation(org.springframework.security.access.annotation.Secured))

This is useful when security is involved, because the @annotation can be bound to a method parameter
so that the annotation object is available in the advice body.

@Around("execution(* *(..)) && @annotation(securedObj)")
public void calculateExecutionTime(ProceedingJoinPoint pjp,
 Secured securedObj) throws Throwable {
// extra security checks using securedObj.allowedRoles()
...
}

!  Observations:

•	 The [ReturnType] is mandatory. If the return type is not a criterion, just use *.
If it is missing the application crashes at boot time, throwing a java.lang.
IllegalArgumentException with a message explaining that the pointcut is not
well-formed.

•	 The [Modifers] is not mandatory and if not specified defaults to public.

Chapter 4 ■ Aspect Oriented Programming with Spring

167

•	 The [MethodName] is not mandatory, meaning no exception will be thrown at
boot time. But if unspecified, the join point where to execute the advice won’t be
identified. It’s safe to say that if you want to define a technically useful pointcut
expression, you need to specify it.

•	 The [Arguments] is mandatory. If it is missing the application crashes at boot time,
throwing a java.lang.IllegalArgumentException with a message explaining that
the pointcut is not well formed. If the arguments are not a criterion just use (..),
which will match a method with 0 or many arguments. If you want the match to be
done on a method with no arguments, use (). If you want the match to be done on a
method with a single argument, use (*).

Using pointcut expressions can become tedious when the criterion for determining the method to be
advised is complicated. But declaring pointcuts can be made pleasant by breaking down the expressions
into several subexpressions that can be combined and reused in other composed expressions. Spring also
offers the possibility to externalize expressions in dedicated classes—yes, even pointcuts declarations can be
decoupled. In the following code snippets we’ll explain how this can be done.

Let’s declare a service class that can be used to manage User instances. This service class will use the
userRepo to interact with the database.

...
@Service
public class UserServiceImpl implements UserService {

 private UserRepo userRepo;

 @Autowired
 public void setUserRepo(UserRepo userRepo) {
 this.userRepo = userRepo;
 }

 @Override
 public Set<User> findAll() {
 return userRepo.findAll();
 }

 @Override
 public void updateUsername(Long id, String username) {
 userRepo.updateUsername(id, username);
 }

 @Override
 public void updatePassword(Long id, String password) {
 userRepo.updatePassword(id, password);
 }

 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }
}

Chapter 4 ■ Aspect Oriented Programming with Spring

168

We want to write an aspect that will write a message every time an update* method is called only from
a repository or a service class managing User instances. So the pointcut has to look for a method whose
name begins with update that has arguments and is found in any of the classes implementing UserRepo or
UserService.

There are many ways the pointcut expression can be written, and in this section a few of them will be
presented. The aspect class and advice look like this:

@Aspect
@Component
public class UserRepoMonitor {
 private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);

 @Before("execution(* com.ps.repos.*.*UserRepo+.update*(..))
 || execution (* com.ps.services.*Service+.update*(..)))")
 public void beforeUpdate(JoinPoint joinPoint) throws Throwable {
 String className = joinPoint.getSignature().getDeclaringTypeName();
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Method " + className + "." + methodName
 + " is about to be called");
 }
}

Of course in a small application, when you know you only have those two classes, this pointcut
expression will do too: "execution(* update*(..))", but in a big application, this relaxed expression
might cause the advice to be applied on methods you did not intend to be advised. The expression used in
the first code snippet is composed of two expressions.

execution(* com.ps.repos.*.*UserRepo+.update*(..))
 || execution (* com.ps.services.*Service+.update*(..)))

The two expressions can be split into two pointcut declarations that can be associated to methods. The
name of these methods will then be used in a composite expression to identify a pointcut. And that is why
these pointcuts are called Named Pointcuts.

@Aspect
@Component
public class UserRepoMonitor {
 private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);

 @Before("repoUpdate() || serviceUpdate()")
 public void beforeUpdate(JoinPoint joinPoint) throws Throwable {
 String className = joinPoint.getSignature().getDeclaringTypeName();
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Method " + className + "." + methodName
 + " is about to be called");
 }

Chapter 4 ■ Aspect Oriented Programming with Spring

169

 @Pointcut("execution(* com.ps.repos.*.*UserRepo+.update*(..))")
 public void repoUpdate() {}

 @Pointcut("execution (* com.ps.services.*Service+.update*(..)))")
 public void serviceUpdate() {}
}

It was mentioned before that a dedicated class can be created to group together pointcuts. In this case,
the composite expression must be modified to contain the package and classname where the methods are
located.

package com.ps.aspects;
import org.aspectj.lang.annotation.Pointcut;

public class PointcutContainer {

 @Pointcut("execution(* com.ps.repos.*.*UserRepo+.update*(..))")
 public void repoUpdate() {
 }

 @Pointcut("execution (* com.ps.services.*Service+.update*(..)))")
 public void serviceUpdate() {
 }
}

Methods repoUpdate and serviceUpdate are moved to the class com.ps.aspects.PointcutContainer,
so the expression for the beforeUpdate advice changes to:

@Before("com.ps.aspects.PointcutContainer.repoUpdate() ||
 com.ps.aspects.PointcutContainer.serviceUpdate()")
 public void beforeUpdate(JoinPoint joinPoint) throws Throwable {
 ...
 }

So, now that the pointcuts are externalized, what more can be done? The methods annotated with
@Pointcut and associated with pointcut expressions can be used to process data. So far, we have been using
the JoinPoint argument to extract context data. But context data can be injected by Spring, if told so by
using special designators.

The update methods in our example have a string argument that must be processed, and an exception
must be thrown if the value contains special characters like $, #, &, %. This should be done only in the service
methods, because there is no point in calling a repo method with a bad argument. This means that we have
to separate the advice in two parts: one for repositories, one for services.

@Aspect
@Component
public class UserRepoMonitor {
private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);

 @Before("com.ps.aspects.PointcutContainer.serviceUpdate()")
 public void beforeServiceUpdate(JoinPoint joinPoint) throws Throwable {
 Object[] args = joinPoint.getArgs();
 String text = (String)args[1];

Chapter 4 ■ Aspect Oriented Programming with Spring

170

 if (StringUtils.indexOfAny(text, new String[]{"$", "#", "&", "%"}) != -1) {
 throw new IllegalArgumentException("Text contains weird characters!");
 }
 }

 @Before("com.ps.aspects.PointcutContainer.repoUpdate()")
 public void beforeRepoUpdate(JoinPoint joinPoint) throws Throwable {
 String className = joinPoint.getSignature().getDeclaringTypeName();
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Method " + className + "." + methodName
 + " is about to be called");
 }
}

Notice how all information about the context of the advices is extracted from the joinPoint object. The
JoinPoint interface provides a couple of methods to access information about the target method, all accessible
via the proxy object. A reference to the target object can be obtained by calling joinPoint.getTarget(). In
Figure 4-8, a test run was stopped at a breakpoint after calling the joinPoint.getTarget() method, and the
target object is the focus on the Debugger view in Intellij IDEA. You can clearly notice its type.

Figure 4-8.  The advice target object

Chapter 4 ■ Aspect Oriented Programming with Spring

171

Instead of calling JointPoint methods, we’ll modify the implementation and use Spring to
automatically populate the information we need. The pointcut expression becomes:

public class PointcutContainer {
...
 @Pointcut("execution (* com.ps.services.*Service+.update*(..))
 && args(id,pass) && target (service)")
 public void serviceUpdate(UserService service, Long id, String pass) {
 }
}

! T he args() designator is used to identify methods with a parameter configuration defined by it. It can
be used as args(com.ps.ents.User) when it identifies methods with one parameter of type User. But this
designator can be used to make method arguments available in the advice body.

In the code snippet above, it is used in its binding form to ensure that the value of the corresponding argument
will be passed as the parameter value when the advice is invoked. In this case, the values of the (id,pass)
method arguments will be injected into (id,pass) advice arguments. And yes, as you probably suspected, the
name of the parameter in the designator must match the advice parameter name.

The advice can now be modified to declare exactly the fields we need Spring to populate for us and use
them directly. No need to use a JoinPoint object to extract them and take care of the conversions in the
advice body, because Spring has already done that for us.

@Aspect
@Component
public class UserRepoMonitor {
 private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);

 @Before("com.ps.aspects.PointcutContainer.serviceUpdate(service, id, pass)")
 public void beforeServiceUpdate
 (UserService service, Long id, String pass) throws Throwable {
 logger.info(" ---> Proxied object " + service.getClass());

 if (StringUtils.indexOfAny(pass, new String{"$", "#", "$", "%"}) != -1) {
 throw new IllegalArgumentException("Text for " + id
 + " contains weird characters!");
 }
 }
}

And now that we know how to define pointcuts, it is time to come back and dig deeper into advice types
and definitions.

Chapter 4 ■ Aspect Oriented Programming with Spring

172

Implementing Advice
In the Quick Start section, some technical details about how aspects and advice are implemented in Spring
were covered, but the surface was only scratched. The pointcut specifics had to be covered first to make
advice declaration easier to understand. This section will cover in detail every type of advice that you will
most likely need during development of Spring Applications.

Before
You were already introduced to the before advice. In the previous section there was a before advice defined
that tested an argument of type string.

import org.aspectj.lang.annotation.Before;
...

@Before("com.ps.aspects.PointcutContainer.serviceUpdate(id, pass)")
 public void beforeServiceUpdate (Long id, String pass) throws Throwable {

 if (StringUtils.indexOfAny(pass, new String{"$", "#", "$", "%"}) != -1) {
 throw new IllegalArgumentException("Text for " + id
 + " contains weird characters!");
 }

The UML sequence sequence that describes what happens when userService.update*(..) is called is
depicted in Figure 4-9.

Figure 4-9.  Before advice UML call diagram

Chapter 4 ■ Aspect Oriented Programming with Spring

173

The proxy object receives the call destined for the target bean and calls first the advice method. If the advice
method returns successfully, it then forwards the initial call to the target bean and forwards the result back to
the caller. If the advice method throws an exception, the exception gets propagated to the caller, and the target
method is no longer executed. A test method to cover the case in which the advice method throws an exception
should expect an exception of type IllegalArgumentException, and the code is depicted after this paragraph.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})

@ActiveProfiles("dev")
public class TestUserService {

 @Autowired
 UserService userService;
 @Test(expected = IllegalArgumentException.class)
 public void testUpdatePass() {
 userService.updatePassword(1L, "new%pass");
 User user = userService.findById(1L);
 assertEquals("new%pass", user.getPassword());
 }
}

Because the before advice does not have any effect on the arguments, it is used most of the times to
perform checks and stop the execution of the target method by throwing an exception if those checks are not
passed. Obviously, the most likely candidate for this is the security concern. In an application that requires
users to provide credentials before using it, security rights and roles must be checked every time a method
handling sensitive information is called. Including the security check in every method body would be a pain.
So an advice that tests the provided credentials is definitely a more practical solution. The Spring Security
Framework, which will be covered in Chapter 6: Spring Web, makes handling security even easier by
providing out of the box security aspects.

After Returning
This type of advice is executed only if the target method executed successfully and does not end by throwing
an exception. An aspect of this type is defined in the code snippet below for the same update methods in
the target bean. This advice will just print a message confirming that the update process executed correctly.
The @AfterReturning has an attribute that can be used to access the result of the target method execution
named returning. The value of this attribute must match the name of the parameter name in the advice
method signature, because Spring will inject there the result of the execution of the target method.

import org.aspectj.lang.annotation.AfterReturning;
 ...

@AfterReturning(value="execution (* com.ps.services.*Service+.update*(..))",
 returning = "result")
public void afterServiceUpdate(JoinPoint joinPoint, int result) throws Throwable {
 String className = joinPoint.getSignature().getDeclaringTypeName();
 String methodName = joinPoint.getSignature().getName();
 if(result == 0) {
 logger.info(" ---> Update method " + className + "." + methodName
 + " performed as expected.");
 }
}

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

174

The UML sequence diagram that describes what happens when userService.update*(..) is called
is depicted in Figure 4-10. Because the after returning advice has access to the value returned by the target
method, this advice is suitable for use when caching is implemented.

Figure 4-10.  After Returning advice UML sequence diagram

After Throwing
The after throwing advice is similar to the after returning. The only difference is that its criterion of execution
is exactly the opposite. That is, this advice is executed only when when the target method ends by throwing
an exception. The @AfterThrowing annotation has an attribute named throwing that can be used to access
the exception thrown by the target method. The value of this attribute must match the name of the exception
parameter of the advice method.

//custom exception type for this example
import com.ps.exception.UnexpectedException;
...
import org.aspectj.lang.annotation.AfterThrowing;
...
@AfterThrowing(value="execution
 (* com.ps.services.*Service+.updateUsername(..))", throwing = "e")
public void afterBadUpdate(JoinPoint joinPoint, Exception e) throws Throwable {
 String className = joinPoint.getSignature().getDeclaringTypeName();
 String methodName = joinPoint.getSignature().getName();
 if(e instanceof DuplicateKeyException) {

Chapter 4 ■ Aspect Oriented Programming with Spring

175

 logger.info(" ---> Update method " + className + "."
 + methodName + " failed. Existing username found.");
 } else {
 throw new UnexpectedException(" Ooops!", e);
 }
}

This type of advice does not stop the propagation of the exception, but it can change the type of
exception being thrown.

For this example, it is an advice that is executed only before the userService.updateUsername() is
used. The repository method called by the service method throws a DuplicateKeyException if the username
is already found in the database. This type of exception is expected to be thrown, so the advice just prints
a notification, and the original exception propagates. But if a different type of exception is thrown, then
the advice wraps up the original exception into an UnexpectedException to tell the original caller that
something wrong has happened that needs to be handled.

To test that this advice is correctly executed, the test method must be declared to expect the
DuplicateKeyException to be thrown and provide a username that already exists in the the database.

@Test(expected = DuplicateKeyException.class)
public void testAfterUpdateUsernameBad() {
 int result = userService.updateUsername(1L, "Johnny");
 assertEquals(1, result);
}

This test must pass, and in the console a single line must be printed. (This is, of course, true only if you
do not have other advice defined for the same method.)

INFO c.p.a.UserRepoMonitor - ---> Update method
 com.ps.services.UserServiceImpl.updateUsername failed. Existing username found.

The UML sequence diagram that describes what happens when userService.updateUsername(..)
is called is depicted in Figure 4-11. This type of advice can be used to restore the system state after an
unexpected failure.

Chapter 4 ■ Aspect Oriented Programming with Spring

176

After
The after advice is executed after the target method regardless of how its execution ended, whether
successfully or with an exception, and because of this, it is most suitable to use for auditing or logging.

import org.aspectj.lang.annotation.After;
...
@Aspect
@Component
public class UserRepoMonitor {

 private static final Logger logger = Logger.getLogger(UserRepoMonitor.class);
 private static long findByIdCount = 0;

 @After
 ("execution(public * com.ps.repos.*.JdbcTemplateUserRepo+.updateUsername(..))")
 public void afterFindById(JoinPoint joinPoint) throws Throwable {
 ++findByIdCount;
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Method " + methodName + " was called "
 + findByIdCount + " times.");
 }
}

The UML sequence diagram that describes what happens when userService.updateUsername(..) is
called is depicted in Figure 4-12.

Figure 4-11.  After Throwing advice UML sequence diagram

Chapter 4 ■ Aspect Oriented Programming with Spring

177

!  Until now, every advice in the default implementation (without using designators for binding parameters like
args or target) has as a parameter a reference of type org.aspectj.lang.JoinPoint. The object that Spring
injects at runtime provides access to both the state available at a join point and static information about it: type
of the target, name of the method target, arguments, reference to the target itself. This information can be used
for tracing and logging; it does not give direct control over the execution of the target method.

The type allowing this is org.aspectj.lang.ProceedingJoinPoint, an extension of org.aspectj.lang.
JoinPoint that can be used as type for the join point parameter only in around advice.

Around
The around advice is the most powerful type of advice, because it encapsulates the target method and has
control over its execution, meaning that the advice decides whether the target method is called, and if so,
when. For this section an advice that logs in the duration of each find operation was created.

import org.aspectj.lang.annotation.Around;
...
@Around("execution(public * com.ps.repos.*.*Repo+.find*(..))")
 public Object monitorFind(ProceedingJoinPoint joinPoint) throws Throwable {
 String methodName = joinPoint.getSignature().getName();
 logger.info(" ---> Intercepting call of: " + methodName);
 long t1 = System.currentTimeMillis();
 try {

Figure 4-12.  After advice UML sequence diagram

Chapter 4 ■ Aspect Oriented Programming with Spring

178

 //put a pause here so we can register an execution time
 Thread.sleep(1000L);
 return joinPoint.proceed();
 } finally {
 long t2 = System.currentTimeMillis();
 logger.info(" ---> Execution of " + methodName + " took: "
 + (t2 - t1) / 1000 + " ms.");
 }
}

The type ProceedingJoinPoint inherits from JoinPoint and adds the proceed() method that is used
to call the target method. And because in this case the advice method calls the target method directly,
exceptions can be caught and treated in the advice method, instead of propagating them. The UML
sequence diagram that describes what happens when any userService.find*(..) is called is depicted in
Figure 4-13.

Figure 4-13.  Around advice UML sequence diagram

Conclusions
Spring AOP together with AspectJ provides a very practical way for separating cross-cutting concerns in
targeted components. Other Spring modules and frameworks would have been much more difficult to
develop and use without AOP. Spring transactions, a module that will be covered in the next chapter, makes
use of Spring AOP to transparently manage transactions. Spring Security, which will be covered in Chapter 6
makes use of AOP to control access to sensitive data.

However Spring AOP does have its limitations:

•	 Only public Join Points can be advised (you probably suspected that).

•	 Aspects can be applied only to Spring Beans.

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

179

•	 Even if Spring AOP is not set to use CGLIB proxies, if a Join Point is in a class that
does not implement an interface, Spring AOP will try to create a CGLIB proxy.

•	 If a method in the proxy calls another method in the proxy, and both match the
pointcut expression of an advice, the advice will be executed only for the first
method. This is the proxy’s nature: it executes the extra behavior only when the caller
calls the target method.

Let’s consider the following example. We’ll edit the JdbcTemplateUserRepo to add a method named
updateDependencies that is supposed to update some records that depend on the object being updated. The
actual body is not important for this scenario.

@Repository("userTemplateRepo")
public class JdbcTemplateUserRepo implements UserRepo {
...
@Override
 public int updateUsername(Long userId, String username) {
 String sql = "update p_user set username=? where ID = ?";
 updateDependencies(userId);
 return jdbcTemplate.update(sql, username, userId);
 }

 @Override
 public int updateDependencies(Long userId) {
 //mock method to test the proxy nature
 return 0;
 }
}

Let’s consider the following pointcut expression and advice declaration:

// PointcutContainer.java
public class PointcutContainer {
...

 @Pointcut("execution(* com.ps.repos.*.*UserRepo+.update*(..))")
 public void proxyBubu() {
}
// UserRepoMonitor.java
@Aspect
@Component
public class UserRepoMonitor {
...
@Before("com.ps.aspects.PointcutContainer.proxyBubu()")
 public void bubuHappens(JoinPoint joinPoint) throws Throwable {
 String methodName = joinPoint.getSignature().getName();
 String className = joinPoint.getSignature().getDeclaringTypeName();
 logger.info(" ---> BUBU when calling: " + className + "." + methodName);
 }
}

Chapter 4 ■ Aspect Oriented Programming with Spring

180

To test the previous example, let’s use a simple method:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class TestUserService {

 @Autowired
 UserService userService;
 ...

 @Test
 public void testProxyBubu() {
 int result = userService.updateUsername(3L, "Iuliana");
 assertEquals(1, result);
 }
}

If the previous test method is executed, in the console only one line can be seen:

INFO c.p.a.UserRepoMonitor - ---> BUBU when calling:
 com.ps.repos.impl.JdbcTemplateUserRepo.updateUsername

But how do we know that the updateDependencies matches the joinpoint expression? We create a
method in the service bean that calls this method, and we write a test for it as well.

// UserServiceImpl.java
@Service
public class UserServiceImpl implements UserService {
...
 @Override
 public int updateDependencies(Long id) {
 return userRepo.updateDependencies(id);
 }
}
// TestUserService.java
...@Test
 public void testProxyBubuDeps() {
 int result = userService.updateDependencies(3L);
 assertEquals(0, result);
 }

If the test testProxyBubuDeps method is executed, in the console only one line can be seen:

INFO c.p.a.UserRepoMonitor - ---> BUBU when calling:
 com.ps.repos.impl.JdbcTemplateUserRepo.updateDependencies

Now we can be sure that both methods are matching the pointcut expression.
What really happens here is that the advice method does its thing and then the target method is called.

The target method executes, and it calls the updateDependencies method on the target object. The proxy is
not involved in this call in any way, so that is why it cannot apply any advice. The UML sequence diagram in
Figure 4-14 should make things even clearer.

Chapter 4 ■ Aspect Oriented Programming with Spring

181

The code snippets used to explain this specific scenario are part of the 04-ps-aop-solution.

Summary
After reading this chapter, you should possess enough knowledge to write and configure aspects with Spring
AOP. Keep in mind the following:

•	 Cross-cutting concerns cause code scattering and tangling.

•	 AOP is a programming type that can help reduce code scattering and tangling by
modularizing cross-cutting concerns.

•	 The most common cross-cutting concerns.

•	 AOP Concepts: aspect, advice, join point, pointcut, AOP proxy, etc.

•	 How aspect support is configured in a Spring application.

•	 How many advice types there are.

Quick Quiz
Question 1: Which options in the list below represent a cross-cutting concern?(choose all that apply)

	 A.	 connecting to the database

	 B.	 caching

	 C.	 security

	 D.	 transactions

Figure 4-14.  The proxy nature explained via UML sequence diagram

Chapter 4 ■ Aspect Oriented Programming with Spring

182

Question 2: Which options in the list are used to declare advice in Spring AOP? (choose all that apply)

	 A.	 @Aspect

	 B.	 @Before

	 C.	 @Pointcut

	 D.	 @AfterReturning

	 E.	 @After

Question 3: What is true about the after advice?(choose all that apply)

	 A.	 it is not executed if the target method execution ends by throwing an exception

	 B.	 it can catch the target method exception and prevent propagation

	 C.	 it can catch the target method exception and throw a different exception

Question 4: Which methods will match the following pointcut expression? (choose all that apply)
execution(protected * com.ps.repos.*.*Repo.find*(..))

	 A.	 none: Spring AOP supports only advising public methods

	 B.	 com.ps.repos.impl.JdbcTemplateUserRepo.findById(Long id)

	 C.	 com.ps.repos.impl.JdbcUserRepository.findAll()

Question 5: Which of the following pointcut expressions match the following method definition?
Method definition: a method named update that has the first parameter of type Long and more parameters
may follow

	 A.	 execution(update(*))

	 B.	 execution(* update(Long, *))

	 C.	 execution(* update(..))

	 D.	 execution(* update(Logn,..))

Question 6: What is the XML equivalent of @EnableAspectJAutoProxy ?

A.   <aop:aspectj-autoproxy>
    <aop:aspect base-package="..."/>
   </aop:aspectj-autoproxy>
B.   <aop:aspectj-autoproxy>
    <aop:include name="..."/>
    </aop:aspectj-autoproxy>
C.   <aop:config>
    <aop:aspect ref="...">
    </aop:config>

Chapter 4 ■ Aspect Oriented Programming with Spring

183

Question 7: Which of the following is true about Spring AOP proxies?

	 A.	 A proxy object must implement the interface that the target implements or be a
subclass of the target’s type.

	 B.	 A proxy object has scope prototype.

	 C.	 Spring AOP uses subclass-based proxies by default.

Question 8: What is a pointcut?

	 A.	 a parameter that every advice method must specify in its signature that provides
access to the execution context

	 B.	 an expression to identify methods to which the advice applies to

	 C.	 a predicate used to identify join points.

Practical Exercise
In the source code for this book there is a project called 04-ps-aop-practice. This project can be used to
test your understanding of Spring AOP. This project contains part of the implementation depicted in the
code snippets. The parts missing are marked with a TODO task and are visible in Intellij IDEA in the TODO
view. There are six tasks for you to solve in order to test your acquired knowledge of Spring AOP.

Task TODO 20 requires you to enable aspect support by modifying the AppConfig class. If you want to
use JDK proxies or CGLIB, it is up to you. The CGLIB dependency is on the classpath and can be used.

Task TODO 21 requires you to declare the UserRepoMonitor as an aspect.
Tasks 22–26 require that you configure methods declared inside the UserRepoMonitor class as different

types of advice. The pointcuts expressions are your responsibility as well.
The tests that can be used to verify that your advices work, are declared in the class TestUserService.

Each test method is commented with the type of advice it tests. Since some of the pointcut expressions might
match more than one method, all advices that apply will be executed. To stop that from happening, when
working on configuring an advice, comment the annotations on the others.

To run a test case, just click anywhere on the class content, or on the class name in the project view and
select the Run '{TestClassName'} option. If you want to run a single test, just right click and from the menu
select Run '{TestMethodName}'. These instructions were already explained to you in the practice section of
Chapter 3: Testing. You might need to review it.

After you have resolved all the TODOs, you should be able to run the full test suite, and you should see
something similar to what is depicted in Figure 4-15.

Figure 4-15.  Test suite for the Aspects section with all tests passing

http://

Chapter 4 ■ Aspect Oriented Programming with Spring

184

If you have difficulties solving the TODOs, you can take a peek at 04-ps-aop-solution.

! I n case you are still hungry for more information, there are two blog entries on the Spring official blog. One
is about proxies

https://spring.io/blog/2012/05/23/transactions-caching-and-aop-understanding-proxy-usage-in-

spring

and one is about named pointcuts

https://spring.io/blog/2007/03/29/aop-context-binding-with-named-pointcuts

https://spring.io/blog/2012/05/23/transactions-caching-and-aop-understanding-proxy-usage-in-spring
https://spring.io/blog/2012/05/23/transactions-caching-and-aop-understanding-proxy-usage-in-spring
https://spring.io/blog/2007/03/29/aop-context-binding-with-named-pointcuts

185© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_5

CHAPTER 5

Data Access

Software applications usually handle sets of data that must to be stored in an organized manner so they can
be easily accessed, managed, and updated. The fact that data can be made to persist means that is can be
available even when the application is down. So storage is decoupled from the rest of the application. The
most common way of organizing data for storage is a database. Any storage setup that allows for data to be
organized in such a way that can be queried and updated represents a database. The most widely known and
used databases nowadays are relational databases (such as MySQL, PostgreSQL, and Oracle) and key-value
databases, also known as NoSQL. Of course, XML files can be used as a database as well, but only for small
applications, because using XML files for data storage implies that all data must be loaded into memory in
order to be managed.

From an architectural point of view, software applications are multilayered or multitiered, and the
database is the base layer, where data gets stored. The interface between the base layer (also called the
infrastructure layer) and the rest of the application is the data access layer, also knows as the repository layer.
On top of this, there is the logic (or service) layer. This layer transforms user data and prepares it for storage
or transforms database content into data proper for display in the user interface. On top of the service layer
there is the presentation (or interface) layer, which is responsible for receiving commands and data and
forwarding them for processing to the service layer or displaying results. And across all layers, as mentioned
in the previous chapter, are the cross-cutting concerns, as depicted in Figure 5-1.

Chapter 5 ■ Data Access

186

The database is a central resource in a software application, and thus it can be a source of bottlenecks.
That is why accessing a database to perform typical operations like searching for data, creating data, and
deleting data need to be managed properly. Spring supports many database implementations and can be
integrated with most frameworks that provide efficient data access management (Hibernate, EclipseLink,
or MyBatis.1) This chapter is focused on how Spring can be used to manage database access, and the code
samples cover service, data layer, and transaction-cutting concerns.

Figure 5-1.  Typical software application architecture

1My Batis was previously knows as iBatis, before Apache dropped it. More information on the new official site:
http://blog.mybatis.org/

http://blog.mybatis.org/

Chapter 5 ■ Data Access

187

Basic Data Access Using JDBC
To perform data operations, a connection to the database is needed. The most basic way to get a connection
in Java is to use JDBC. But the basic way is also cumbersome, since the developer has to write the code to close
the connection and any other stream-based objects used during the processing. Because a connection is not
enough, transporting data between the application and the database requires additional objects to contain the
data in a format that can be read. Any objects that build on top of a connection, such as prepared statement and
result set objects, must be safely discarded as well. This leads to ugly cluttered code that is difficult to maintain,
difficult to test, and difficult to write. To access a database using JDBC, the following things are needed:

•	 a database driver used to communicate with the database;

•	 a connection url that is the entry point for the communication;

•	 database credentials (usually user and password).

Using the previous information, a javax.sql.DataSource object is created. This is a Java interface that
must be implemented by every dataSource class used to access a database, and each database driver library
contains its own implementation.

Example: the class used to provide access to an oracle database is oracle.jdbc.pool.
OracleDataSource. To interact with the database using JDBC, the following steps must be implemented:

•	 The dataSource is used to open a connection to the database. The connection object
is of a type specific to the database that implements java.sql.Connection.

•	 To extract or save data to the database, a statement instance of type implementing
java.sql.PreparedStatement is created based on the connection.

•	 After the statement has been executed, the results are stored in an object of type
implementing java.sql.ResultSet.

Just look at the following example, which uses JDBC to extract all users from a database:

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
...
public Set<User> findAll() {
 Set<User> userSet = new HashSet<>();
 String sql = "select u.ID as ID, u.USERNAME as USERNAME," +
 "u.EMAIL as EMAIL," +
 "u.PASSWORD as PASSWORD from P_USER u ";
 Connection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 try {
 conn = dataSource.getConnection();
 ps = conn.prepareStatement(sql);
 rs = ps.executeQuery();

Chapter 5 ■ Data Access

188

 userSet = mapUsers(rs); // (*)
 } catch (SQLException e) {
 throw new RuntimeException("Unexpected problem when"+
 " extracting users from database!", e);
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 ...
 }
 }
 if (ps != null) {
 try {
 ps.close();
 } catch (SQLException ex) {
 ...
 }
 }
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ...
 }
 }
 }
 return userSet;
}

The code above opens a connection, extracts the data, processes the results, then closes the connection.
Each individual SQL statement is treated as a transaction and is automatically committed right after
it is executed. And another complication here is that domain objects (entities) that are Java objects
corresponding to database record conversion must also be implemented, because JDBC does not know how
to do this on its own. In the example above, notice the line marked with (*). This is done by the mapUsers,
which is depicted in the code snippet below:

private Set<User> mapUsers(ResultSet rs) throws SQLException {
 Set<User> userSet = new HashSet<>();
 User user = null;
 while (rs.next()) {
 user = new User();
 // set internal entity identifier (primary key)
 user.setId(rs.getLong("ID"));
 user.setUsername(rs.getString("USERNAME"));
 user.setEmail(rs.getString("EMAIL"));
 user.setPassword(rs.getString("PASSWORD"));
 userSet.add(user);
 }
return userSet;
}

Chapter 5 ■ Data Access

189

Basically, the ResultSet object is converted to one or more User objects depending on the number of
results returned by the statement execution. And as food for thought, imagine how problematic the handling
of Timestamp and Date values becomes with the method above.

What happens if a query is not executed correctly? A java.sql.SQLException is thrown, and the developer
has to write the appropriate code to treat it, of course, because it is a checked exception. The traditional JDBC
usage is redundant, prone to error, poor in exception handling, and overall cumbersome to use.

Spring Data Access
With Spring, there is no need to write basic traditional JDBC code. The Spring framework provides
components that were created to remove the necessity of “manually” handling database connections. In
writing enterprise applications (using Spring or not), classes called repositories are used to communicate
with the database. In Figure 5-2, you can see the different types of repository classes that can be used and the
persistence framework used as a bridge to the database.

As mentioned earlier, data storage is a resource. Access to resources has to be managed properly to
avoid bottlenecks. In software, the term bottleneck refers to a situation in which multiple processes require
access to a resource, and if the access to the resource is not managed properly, some processes end up
never having access to the resource. Using pure JDBC access to the resource, the database is handled by the
developer explicitly. Spring comes in, together with persistence frameworks, to unburden the developer
of this responsibility. So, let’s begin with the most basic way of accessing data using Spring: using a JDBC
repository class.

Figure 5-2.  How repository classes interact with the database

Chapter 5 ■ Data Access

190

Introducing JdbcTemplate
The Spring Framework’s JDBC abstraction framework consists of four main packages: core, datasource,
object, and support.2 There is also a small config package containing two infrastructure beans used in the
configuration of a Spring JDBC environment. Spring simplifies the code that needs to be written in using
JDBC to interact with a database by introducing the org.springframework.jdbc.core.JdbcTemplate
class, which is part of the core package. This class hides large amounts of JDBC boilerplate code and
unburdens the developer of connection management, since database connections are acquired and
released automatically. The datasource package contains utility classes for DataSource management
and a few simple DataSource implementations that can be used for testing. The object package contains
classes that represent RDBMS queries, updates, and stored procedures as thread-safe, reusable objects.
The support package provides SQLException translation functionality and some utility classes. Exception
handling is covered, providing clear exceptions with root causes always being reported and also making
sure that resources are always released properly, even in case of failures. The JdbcTemplate class is designed
according to the template method pattern, which is a behavioral design pattern that defines the skeleton of
an algorithm, the effective implementation being defined later or delegated to subclasses.3

The simplest example that can be used to demonstrate how the JdbcTemplate can be used will be
covered in this section. For this, we need the following:

•	 a configuration file containing the database details, let’s call it db.properties:

#db.properties contents
For running application with H2 in memory database
driverClassName=org.h2.Driver
url=jdbc:h2:~/sample
username=sample
password=sample

•	 configuration files containing SQL queries for initializing the database structure:
schema.sql containing SQL code for creating tables and test-data.sql containing
insert statements that populate the tables with some initial data. The content of the
files is not relevant for this chapter, but they are part of the 05-ps-jdbc-practice
project.

•	 a configuration class for the test database, let’s call it TestDataConfig. This
configuration class will contain all the beans necessary to create a dataSource bean.
We will be using an in-memory database called H2. The following configuration seems
complicated, but this offers the possibility to define the connection URL and the
credentials to access the database. At this point, the db.properties configuration file can
just be replaced with a file describing a different type of database, and the rest of the
application will still work. The dataSource bean is of type SimpleDriverDataSource,
which is a simple Spring-specific implementation of javax.sql.DataSource.
Two specialized Spring beans are used to initialize the dataSource bean,
DataSourceInitializer, and to populate the dataSource bean, DatabasePopulator.

2More information on the official Spring Reference page: http://docs.spring.io/spring/docs/4.3.2.RELEASE/
spring-framework-reference/htmlsingle/#jdbc-packages.
3Other Spring classes to access a different type of resource follow the same pattern: JmsTemplate, RestTemplate, etc.

http://docs.spring.io/spring/docs/4.3.2.RELEASE/spring-framework-reference/htmlsingle/#jdbc-packages
http://docs.spring.io/spring/docs/4.3.2.RELEASE/spring-framework-reference/htmlsingle/#jdbc-packages

Chapter 5 ■ Data Access

191

package com.ps.config;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.*;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;
import org.springframework.core.io.Resource;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.SimpleDriverDataSource;
import org.springframework.jdbc.datasource.init.DataSourceInitializer;
import org.springframework.jdbc.datasource.init.DatabasePopulator;
import org.springframework.jdbc.datasource.init.DatabasePopulatorUtils;

import org.springframework.jdbc.datasource.init.ResourceDatabasePopulator;

@Configuration
@Profile("dev")
@PropertySource("classpath:db/db.properties")
public class TestDataConfig {

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Lazy
 @Bean
 public DataSource dataSource() {
 try {
 SimpleDriverDataSource dataSource = new SimpleDriverDataSource();
 Class<? extends Driver> driver =
 (Class<? extends Driver>) Class.forName(driverClassName);
 dataSource.setDriverClass(driver);
 dataSource.setUrl(url);
 dataSource.setUsername(username);
 dataSource.setPassword(password);
 DatabasePopulatorUtils.execute(databasePopulator(), dataSource);
 return dataSource;
 } catch (Exception e) {
 return null;
 }
 }

 @Value("classpath:db/schema.sql")

Chapter 5 ■ Data Access

192

 private Resource schemaScript;

 @Value("classpath:db/test-data.sql")
 private Resource dataScript;

 @Bean
 public DataSourceInitializer dataSourceInitializer
 (final DataSource dataSource) {
 final DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDataSource(dataSource);
 initializer.setDatabasePopulator(databasePopulator());
 return initializer;
 }

 private DatabasePopulator databasePopulator() {
 final ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.addScript(schemaScript);
 populator.addScript(dataScript);
 return populator;
 }

 @Bean
 public JdbcTemplate userJdbcTemplate() {
 return new JdbcTemplate(dataSource());
 }

}

The configuration class probably looks familiar to you, since it was already introduced in Chapter 2:
Bean Lifecycle and Configuration. There is an extra bean declaration here, though: dataSourceInitializer.
This bean uses an instance of DatabasePopulator to read scripts necessary to create and populate the
P_USER and the P_PET tables. The db/schema.sql file contains SQL DDL statements that define the
structure of the tables. The db/test-data.sql contains SQL DML insert statements that are executed by the
databasePopulator component to insert data into the previously created table.

The simple version, using an embedded database, looks like the following code snippet and uses Spring
JDBC support components like EmbeddedDatabaseBuilder to create a lightweight in-memory database.

 package com.ps.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

@Configuration
@Profile("dev")
public class TestDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()

http://

Chapter 5 ■ Data Access

193

 .setType(EmbeddedDatabaseType.H2)
 .addScript("classpath:db/schema.sql")
 .addScript("classpath:db/test-data.sql")
 .build();
 }

 @Bean
 public JdbcTemplate ~underlinejdbcTemplate() {
 return new JdbcTemplate(dataSource());
 }
}

! A n equivalent configuration can be set up using XML and the JDBC namespace. For an embedded
in-memory database with no concern for credentials or connection url, the <jdbc:embedded-database .../>
configuration can be used:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd">
 <!-- Creates an in-memory "sample" database
 populated with test data for fast testing -->
 <jdbc:embedded-database id="dataSource">
 < jdbc:script location="classpath:db/schema.sql"/>
 <jdbc:script location="classpath:db/test-data.sql"/>
 </jdbc:embedded-database>
</beans>

A more complex configuration that allows for credentials to be read from an external configuration file can be
set up as well using the jdbc:initialize-database .../> element and a SimpleDriverDataSource bean:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

Chapter 5 ■ Data Access

194

 �<util:properties id="dbProp" location="classpath:db/db.properties"/>

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
 <property name="driverClass" value="#{dbProp.driverClassName}"/>
 <property name="url" value="#{dbProp.url}"/>
 <property name="username" value="#{dbProp.username}"/>
 <property name="password" value="#{dbProp.password}"/>
 </bean>
 <jdbc:initialize-database data-source="dataSource">
 <jdbc:script location="classpath:db/schema.sql"/>
 <jdbc:script location="classpath:db/test-data.sql"/>
 </jdbc:initialize-database>
</beans>

•	 an application configuration class declaring the repository bean to be tested, let’s call
it AppConfig and define it like this:

@Configuration
@ComponentScan(basePackages = {"com.ps.repos.impl"})
public class AppConfig {
}

•	 a repository bean that uses a bean of type JdbcTemplate to access the database:
JdbcTemplateUserRepo

 package com.ps.repos.impl;
import com.ps.ents.User;
// interface to define User specific methods
// to be implemented by the repository
import com.ps.repos.UserRepo;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Repository;

import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.HashSet;
import java.util.Set;

@Repository("userTemplateRepo")
public class JdbcTemplateUserRepo implements UserRepo {

 private RowMapper<User> rowMapper = new UserRowMapper();

 protected JdbcTemplate jdbcTemplate;

 @Autowired
 public JdbcTemplateUserRepo(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

Chapter 5 ■ Data Access

195

 @Override
 public User findById(Long id) {
 String sql = "select id, email, username, password from p_user where id= ?";
 return jdbcTemplate.queryForObject(sql, rowMapper, id);
 }

 ... // other repository methods

 /**
 * Maps a row returned from a query executed
 * on the P_USER table to a com.ps.ents.User object.
 */
 private class UserRowMapper implements RowMapper<User> {

 public User mapRow(ResultSet rs, int rowNum) throws SQLException {
 Long id = rs.getLong("ID");
 String email = rs.getString("EMAIL");
 String username = rs.getString("USERNAME");
 String password = rs.getString("PASSWORD");
 User user = new User();
 user.setId(id);
 user.setUsername(username);
 user.setEmail(email);
 user.setPassword(password);
 return user;
 }
 }
}

In a software application, data is managed as objects that are called entities or
domain objects. The entity classes are written by the developer, and their fields
match the columns in a database table. The UserRowMapper internal class depicted in
the previous code snippet is used to do just that, and it will be covered in more detail
a little bit later in this section.

•	 a test class: TestJdbcTemplateUserRepo

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class TestJdbcTemplateUserRepo {

 @Autowired
 @Qualifier("userTemplateRepo")
 UserRepo userRepo;

 @Before
 public void setUp() {
 assertNotNull(userRepo);
 }

Chapter 5 ■ Data Access

196

 @Test
 public void testFindById() {
 User user = userRepo.findById(1L);
 assertEquals("John", user.getUsername());
 }

 @Test
 public void testNoFindById() {
 User user = userRepo.findById(99L);
 assertEquals("John", user.getUsername());
 }
}

This test class is a simple one that searches for a user object by its ID. The
testFindById method passes, the testNoFindById test does not, and this method
will be covered in detail in the section about Spring data access exceptions. Here, the
method is incomplete, missing the expected attribute, because it is out of scope at
the moment.

To create a JdbcTemplate bean, a dataSource is needed to access database records. Every repository
bean will have this bean as a dependence, and it will use it to manipulate data when JdbcTemplate bean
methods are called, as in the following code snippet:

String sql = "select id, email, username,password from p_user where id= ?";
jdbcTemplate.queryForObject(sql, rowMapper, id);

The next sequence of steps is taken by Spring in the background:

	 1.	 A database connection is acquired.

	 2.	 A transaction is acquired or created so the statement can be executed in its
context if in a transactional environment. In the previous case, there is no
transaction support, defined declarative using @Transactional or programmatic.
Both will be introduced later in the chapter.

	 3.	 The statement is executed.

	 4.	 The ResultSet is processed and transformed into entity object(s) using
RowMapper instances.

	 5.	 Exceptions are handled.

	 6.	 The database connection is released.

What we are interested in when running methods of this test class is what happens in the background,
and this is because there is no code needed to be developed for connection management. It was already
mentioned that Spring takes care of that, but it would be nice to actually have a proof, right? To be able to
see this happening, the logback-test.xml file can be customized to show the Spring JDBC detailed log by
adding the following line:

<logger name="org.springframework" level="debug"/>

Before we look at the log produced when the test class is run, the location of the files mentioned until
now must be covered, and you can see it in Figure 5-3.

Chapter 5 ■ Data Access

197

The project has the typical Java project structure consecrated by Maven, and the *sql, *xml, *.properties
are resource files, so they are stored in the project in the resources directory from the test or main module. By
running the TestJdbcTemplateUserRepo.testFindById() method with the logging setup mentioned previously,
if you scan the log, you will find the following lines:

 #booting up environment
... creating beans ...
DEBUG o.s.j.d.DataSourceUtils - Fetching JDBC Connection from DataSource
DEBUG o.s.j.d.SimpleDriverDataSource - Creating new JDBC Driver Connection
 to [jdbc:h2:sample]
DEBUG o.s.j.d.i.ScriptUtils - Executing SQL script from class path
 resource [db/schema.sql]
... listing SQL scripts ...
INFO o.s.j.d.i.ScriptUtils - Executed SQL script from class path
 resource [db/schema.sql] in 23 ms.
INFO o.s.j.d.i.ScriptUtils - Executing SQL script from class path
 resource [db/test-data.sql]
... listing SQL scripts ...
INFO o.s.j.d.i.ScriptUtils - Executed SQL script from class path
 resource [db/test-data.sql] in 5 ms.
DEBUG o.s.j.d.DataSourceUtils - Returning JDBC Connection to DataSource
#executing the test

Figure 5-3.  Location of the files in the 05-ps-jdbc-practice project

Chapter 5 ■ Data Access

198

DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL query
DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL statement
 [select id, email, username,password from p_user where id= ?]
DEBUG o.s.j.d.DataSourceUtils - Fetching JDBC Connection from DataSource
DEBUG o.s.j.d.SimpleDriverDataSource - Creating new JDBC Driver Connection
 to [jdbc:h2:sample]
DEBUG o.s.j.d.DataSourceUtils - Returning JDBC Connection to DataSource
...

Basically, every time a JdbcTemplate method is called, a connection is automatically opened for query
execution, and then the same connection is released and all the magic is done by the Spring utility class org.
springframework.jdbc.datasource.DataSourceUtils. This class is abstract and it is used internally by
JdbcTemplate and by transaction manager classes that will be covered in the following sections.

Using Spring’s JdbcTemplate as depicted so far is suitable for small applications designed for academic
use. Use it whenever you need to get rid of traditional JDBC. In an enterprise application, transactions will
most likely be needed, so more Spring components must be added to the mix. Working with transactions
will be covered shortly, but before that, let’s see what happens when an unexpected event takes place during
communication with a database using a JdbcTemplate bean.

Querying with JdbcTemplate
The JdbcTemplate provides the developer a multitude of methods to query for entities (also called domain
objects), generic maps, and lists and simple types (long, int, String). JdbcTemplate methods use queries
containing the '?' placeholder for parameters and variables that are bound to it. It makes use of the advantage
of varargs and autoboxing to simplify JdbcTemplate use. But simple queries, without any bind variables, can be
used too. The following example uses a query to count all the users in the p_user table and returns an integer.

public int countUsers() {
 String sql = "select count(*) from p_user";
 return jdbcTemplate.queryForObject(sql, Integer.class);
}

The method queryForObject used here does not need a RowMapper object, since the result is a number of
type Integer. The type of the result is provided as argument to the method as well. This method has replaced,
in Spring version 3.2.2, specialized methods like queryForInt and queryForLong. Examples of how these
methods were used until 3.2.2 (when they became deprecated) can be seen in the following code snippet:

public int countUsers() {
 String sql = "select count(*) from p_user";
 return jdbcTemplate.queryForInt(sql);
}

public Long findIdByUsername(String username) {
 String sql = "select id from p_user where username = ?";
 return jdbcTemplate.queryForLong(sql, username);
}

Sometimes there might be a need to extract a record form a table in a different format from an
entity. JdbcTemplate provides a method called queryForMap that extracts a row from the ResultSet as a
Map<String,Object>.

Chapter 5 ■ Data Access

199

public Map<String, Object> findByIdAsMap(Long id) {
 String sql = "select * from p_user where id= ?";
 return jdbcTemplate.queryForMap(sql, id);
}

The map returned by this method contains pairs of column [name, column value]. Example:

{
 ID=1,
 FIRST_NAME=null,
 USERNAME=John,
 LAST_NAME=null,
 PASSWORD=test,
 ADDRESS=null,
 EMAIL=john@pet.com
}

The queryForList does the same as the previous methods but for ResultSet instances that contain
multiple rows. This method returns a List of Map<String, Object> objects, each map containing a row
from the ResultSet.

public List<Map<String, Object>> findAllAsMaps() {
 String sql = "select * from p_user";
 return jdbcTemplate.queryForList(sql);
}

Sample output:

[
 {
 ID=1,
 FIRST_NAME=null,
 USERNAME=John,
 LAST_NAME=null,
 PASSWORD=test,
 ADDRESS=null,
 EMAIL=john@pet.com
 },
 {
 ID=2,
 FIRST_NAME=null,
 USERNAME=Mary,
 LAST_NAME=null,
 PASSWORD=test,
 ADDRESS=null,
 EMAIL=mary@pet.com
 }
]

These two methods can be used for testing and auditing.

Chapter 5 ■ Data Access

200

The first example using JdbcTemplate returns an entity object (also called domain object). To transform
a table record into a domain object, Spring provides the org.springframework.jdbc.core.RowMapper<T>
interface. This should be implemented for every entity type in an application, because an object of the
implementing type is required as a parameter for JdbcTemplate methods that return entities. RowMapper
objects are usually stateless, so creating one per repository class and using it as a converter from table
records to Java objects is a good practice.

Spring converts contents of a ResultSet into domain objects using a callback approach. The
JdbcTemplate instance first executes the query and populates the ResultSet; then the mapRow method of the
RowMapper instance used as argument is called. In case the ResultSet contains more than one table row, the
method is called for each row.

@Repository("userTemplateRepo")
public class JdbcTemplateUserRepo implements UserRepo {

 private RowMapper<User> rowMapper = new UserRowMapper();

 protected JdbcTemplate jdbcTemplate;

 public Set<User> findAll() {
 String sql = "select id, username, email, password from p_user";
 return new HashSet<>(jdbcTemplate.query(sql, rowMapper));
 }
 ...

 class UserRowMapper implements RowMapper<User> {

 public User mapRow(ResultSet rs, int rowNum) throws SQLException {
 Long id = rs.getLong("ID");
 String email = rs.getString("EMAIL");
 String username = rs.getString("USERNAME");
 String password = rs.getString("PASSWORD");
 User user = new User();
 user.setId(id);
 user.setUsername(username);
 user.setEmail(email);
 user.setPassword(password);
 return user;
 }
 }
}

The interface is generic, and the type of the domain object that the repository manages should be used
as parameter. Usually, it is declared as an internal class of a repository, but when more than one repository
manages the same type of domain object, it can be declared as a top-level class. However, as you can notice, the
code to transform a ResultSet into a domain object, or a collection of them, has to be written by the developer.
this too will no longer be necessary when ORM (object relational mapping) is used. But more about that later.

So far, only JdbcTemplate methods that return some kind of result have been covered. An example
for an execution that does not return a result is appropriate right about now. The most important method
in the JdbcTemplate class that executes queries but returns no result is named query. This method is
polymorphic,4 and the method signature differs depending on the purpose of the query result.

4Polymorphism is one of the object oriented programming principles. The term is of Greek etymology and means one
name, many forms. Polymorphism manifests itself in software by having multiple methods all with the same name but
slightly different functionalities.

Chapter 5 ■ Data Access

201

Spring provides the org.springframework.jdbc.core.RowCallbackHandler interface, which can
implemented to stream the rows returned by the query to a file, to convert them to XML, or to filter them
before adding them to a collection. An instance of this type is provided to the query method along with
query parameters if necessary, and the JdbcTemplate will use it accordingly. In the code snippet below, the
code of this interface is depicted.

public interface RowCallbackHandler {
 void processRow(ResultSet rs) throws SQLException;
}

The implementation of the method is used by the JdbcTemplate to process the ResultSet row as
implemented by the developer. The exceptions are caught and treated by the JdbcTemplate instance. In the
following code snippet, the HTMLUserRowCallbackHandler is used by the JdbcTemplate instance to extract all
users named “John” from the p_user table, write the resulting rows in HTML, and print them to the console.

...
import org.springframework.jdbc.core.RowCallbackHandler;

public class JdbcTemplateUserRepo implements UserRepo {

 private class HTMLUserRowCallbackHandler
 implements RowCallbackHandler {
 private PrintStream out;

 public HTMLUserRowCallbackHandler(PrintStream out) {
 this.out = out;
 }

 @Override
 public void processRow(ResultSet rs)
 throws SQLException {
 StringBuilder htmlSb =
 new StringBuilder("<p>user ID: " + rs.getLong("ID") + "</p></br>\n")
 .append("<p>username: " + rs.getString("USERNAME") + "</p></br>\n")
 .append("<p>email: " + rs.getString("EMAIL") + "</p></br>");
 out.print(htmlSb.toString());
 }
 }

 public void htmlAllByName(String name) {
 String sql = "select id, username, email from p_user where username= ?";
 jdbcTemplate.query(sql, new HTMLUserRowCallbackHandler(System.out), name);
 }
 ...
}

When running this method, among all the Spring logs at the end we will see the following too in the console:

<p>user ID: 1</p></br>
<p>username: John</p></br>
<p>email: john@pet.com</p></br>

If the ResultSet contains more than one row, the JdbcTemplate instance will process each of them
using the HTMLUserRowCallbackHandler.processRow method.

Chapter 5 ■ Data Access

202

Spring also provides the option of processing a full ResultSet at once and transforming it into an
object, via the org.springframework.jdbc.core.ResultSetExtractor<T>. This capability is very useful
when the results are extracted from more than one table, but must be treated in the application as a single
object. The developer is responsible of iterating the ResultSet and setting the properties of the object with
other objects mapped to entries in the database. This interface is parametrizable by type.

public interface ResultSetExtractor<T> {
 T extractData(ResultSet rs) throws SQLException, DataAccessException;
}

The following code snippet depicts the usage of UserWithPetsExtractor to extract a user by id from the
p_user table with the pets from the p_pet table and create an object of type User that contains the populated
list of Pet objects linked to the user.

...
import org.springframework.jdbc.core.ResultSetExtractor;

@Repository("userTemplateRepo")
public class JdbcTemplateUserRepo implements UserRepo {
...
 @Override
 public User findByIdWithPets(Long id) {
 String sql = "select u.id id," +
 " u.username un," +
 " u.email email, " +
 "p.id pid, " +
 "p.name pname," +
 " p.age age," +
 " p.pet_type pt" +
 " from p_user u, p_pet p where u.id=p.owner and u.id=" + id;
 return jdbcTemplate.query(sql, new UserWithPetsExtractor());
 }

 private class UserWithPetsExtractor implements
 ResultSetExtractor<User> {
 @Override
 public User extractData(ResultSet rs) throws SQLException,
 DataAccessException {
 User user = null;
 while (rs.next()) {
 if (user == null) {
 user = new User();
 // set internal entity identifier (primary key)
 user.setId(rs.getLong("ID"));
 user.setUsername(rs.getString("UN"));
 user.setEmail(rs.getString("EMAIL"));
 }
 Pet p = new Pet();
 p.setId(rs.getLong("PID"));
 p.setName(rs.getString("PNAME"));
 p.setAge(rs.getInt("AGE"));
 p.setPetType(PetType.valueOf(rs.getString("PT")));
 user.addPet(p);
 }

Chapter 5 ■ Data Access

203

 return user;
 }
 }

// test method for findByIdWithPets()
 @Test
 public void testExtractor(){
 User user = userRepo.findByIdWithPets(1L);
 assertEquals(2, user.getPets().size());
 }

This is pretty much all you need to know about JdbcTemplate, so you can use it properly in your code.
To summarize:

•	 JdbcTemplate works with queries that specify parameters using the '?' placeholder.

•	 Use queryForObject when it is expected that execution of the query will return a
single result.

•	 Use RowMapper<T> when each row of the ResultSet maps to a domain object.

•	 Use RowCallbackHandler when no value should be returned.

•	 Use ResultSetExtractor<T> when multiple rows in the ResultSet map to a single
object.

Querying with NamedParameterJdbcTemplate
Besides the JdbcTemplate class, Spring provides another template class for executing queries with named
parameters:

org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate. This class provides
methods analogous to JdbcTemplate that require as a parameter a map containing a pair of named
parameters and their values.5 Once the named parameters have been replaced with the values, the call
is delegated behind the scenes to a JdbcTemplate instance. The relationship between the two classes is
depicted in Figure 5-4.

Figure 5-4.  Relationship between JdbcTemplate and NamedParameterJdbcTemplate

5This approach of providing parameters is used by JPA and Hibernate as well.

Chapter 5 ■ Data Access

204

If you look at the code of the NamedParameterJdbcTemplate,6 you will see the following:

...

public class NamedParameterJdbcTemplate
 implements NamedParameterJdbcOperations {
 ...
 /** The JdbcTemplate we are wrapping */
 private final JdbcOperations classicJdbcTemplate;
 ...
 /**
 * Expose the classic Spring JdbcTemplate to allow invocation of
 * less commonly used methods.
 */
 @Override
 public JdbcOperations getJdbcOperations() {
 return this.classicJdbcTemplate;
 }
 ...
}

The JdbcTemplate is therefore exposed to the developer via the getJdbcOperations, and traditional
JdbcTemplate can be called as well.

In the code snippet below, you can compare the findById method written with the two types of JDBC
template classes:

//using JdbcTemplate
public User findById(Long id) {
 String sql = "select id, email, username,password from p_user where id= ?";
 return jdbcTemplate.queryForObject(sql, rowMapper, id);
}

//using NamedParameterJdbcTemplate
public User findById(Long id) {
 String sql = "select id, email, username,password from p_user where id= :id";
 Map<String, Object> params = new HashMap<>();
 params.put("id", id);
 return jdbcNamedTemplate.queryForObject(sql, params, rowMapper);
}

In writing your application, the decision of using JdbcTemplate or NamedParameterJdbcTemplate is up
to you. But consider this: named queries are easier to read and safer, since there is little chance to assign the
value to the wrong parameter.

6Code accessible on GitHub: https://github.com/spring-projects/spring-framework/blob/master/spring-
jdbc/src/main/java/org/springframework/jdbc/core/namedparam/NamedParameterJdbcTemplate.java, or in
Intellij IDEA, click on the class name and press the Control (Command on MacOs) key, and the sources will be opened
for you.

https://github.com/spring-projects/spring-framework/blob/master/spring-jdbc/src/main/java/org/springframework/jdbc/core/namedparam/NamedParameterJdbcTemplate.java
https://github.com/spring-projects/spring-framework/blob/master/spring-jdbc/src/main/java/org/springframework/jdbc/core/namedparam/NamedParameterJdbcTemplate.java

Chapter 5 ■ Data Access

205

Aside from SELECT queries, JdbcTemplate can execute INSERT, UPDATE, and DELETE operations using the
update method. This method is polymorphic as well7 and can be called with or without parameters. It returns an
integer representing the number of lines that were affected. Below you can see code snippets for each of them:

•	 INSERT: the method createUser below inserts a new user

// JdbcTemplateUserRepo.java
public int createUser(Long userId, String username, String password,
 String email) {
 return jdbcTemplate.update(
 "insert into p_user(ID, USERNAME, PASSWORD, EMAIL)"+
 " values(?,?,?,?)",
 userId, username, password, email
);
}

...

 public Set<User> findAllByUserName(String username,
 boolean exactMatch) {
 String sql = "select id, username, email, password from p_user where ";
 if (exactMatch) {
 sql += "username= ?";
 } else {
 sql += "username like ’%’ || ? || ’%’";
 }
 return new HashSet<>(jdbcTemplate.query(sql,
 new Object{username}, rowMapper));
 }

// test method in TestJdbcTemplateUserRepo.java
@Test
public void testCreate(){
 int result = userRepo.createUser(5L, "Diana", "mypass",
 "diana@opympus.com");
 assertEquals(1, result);
 Set<User> dianas = userRepo.findAllByUserName("Diana", true);
 assertTrue(dianas.size() == 1);
}

•	 UPDATE: the method below updates the password for a user, identifying it by its ID.

// JdbcTemplateUserRepo.java
public int updatePassword(Long userId, String newPass) {
 String sql = "update p_user set password=? where ID = ?";
 return jdbcTemplate.update(sql, newPass, userId);

}

7Its many signatures and recommended uses can be inspected in the official JavaDoc available online http://docs.
spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html

Chapter 5 ■ Data Access

206

// test method in TestJdbcTemplateUserRepo.java
@Test
public void testUpdate(){
 int result = userRepo.updatePassword(1L, "newpass");
 assertEquals(1, result);
}

•	 DELETE: the method below deletes a user identified by its ID.

// JdbcTemplateUserRepo.java
public int deleteById(Long userId) {
 return jdbcTemplate.update(
 "delete from p_user where id =? ",
 userId);
}

// test method in TestJdbcTemplateUserRepo.java
@Test
public void testDelete(){
 int result = userRepo.deleteById(4L);
 assertEquals(1, result);
}

DML stands for Data Manipulation Language, and the database operations presented so far are part of
it, the commands SELECT, INSERT, UPDATE, and DELETE are database statements used to create, update, or
delete data from existing tables.

DDL stands for Data Definition Language, and database operations that are part of it are used to
manipulate database objects: tables, views, cursors, etc. DDL database statements can be executed with
JdbcTemplate using the execute method. The following code snippet depicts how to create a table using a
JdbcTemplate instance. After creation, a query to count the records in the table is executed. If the table was
created, the query will successfully be executed and return 0.8

// JdbcTemplateUserRepo.java
public int createTable(String name) {
 jdbcTemplate.execute("create table " + name +
 " (id integer, name varchar2)");
 String sql = "select count(*) from " + name;
 return jdbcTemplate.queryForObject(sql, Integer.class);
}

// test method in TestJdbcTemplateUserRepo.java
@Test
public void testCreateTable(){
 int result = userRepo.createTable("new_p_user");
 // table exists but is empty
 assertEquals(0, result);
}

8This kind of approach leaves an application sensitive to SQL Injection attacks, which is why in enterprise applications,
the tables are never created by executing DDL scripts in the code with parameter values provided by the user.

Chapter 5 ■ Data Access

207

But things do not always go as intended, and sometimes exceptions are thrown. In the next section,
what can be done in such unexpected cases and the components involved in treating the situation
accordingly are presented.

Spring Data Access Exceptions
When working with data sources, there are a few particular cases when things do not go well: sometimes,
operations might be called on records that no longer exist; sometimes records cannot be created because of
some database restrictions; sometimes the database takes too long to respond; and so on. In pure JDBC, the
same type of checked exception is always thrown, java.sql.SQLException, and in its message there is an
SQL code that the developer must identify and treat accordingly.

Spring provides a big family of data access exceptions. All of them are subclasses of Java
RuntimeException and provide a practical way for the developer to handle database access exceptions
without knowing the details of the data access API. The JdbcTemplate instance takes care of transforming
cryptic java.sql.SQLExceptions into clear and concise org.springframework.dao.DataAccessException
implementations9 behind the scenes using an infrastructure bean of a type that implements org.
springframework.jdbc.support.SQLExceptionTranslator. Spring data access exceptions are unchecked
and contain human-readable messages that point exactly to the cause of the problem. There are translator
components that can be used to transform any type of data access exceptions into Spring-specific
exceptions, which is quite useful when one is migrating from one database type to another. A simplified
version of the Spring data access exception hierarchy can be seen in Figure 5-5.

Figure 5-5.  Spring data access exception hierarchy

9Class org.springframework.dao.DataAccessException is an abstract class, parent of all the family of Spring Data Access
exceptions.

Chapter 5 ■ Data Access

208

The java.sql.SQLException is a checked exception that forces developers to catch it and handle it or
declare it as being thrown over the call method call hierarchy. This type of exception is general and is thrown
for every database error. This introduces a form of tight coupling.

In Spring, the data access exceptions are unchecked (they extend java.lang.RuntimeException, which
is why this class is exhibited in the previous image with a red border) and can be thrown up the method
call hierarchy to the point where they are most appropriate to handle. The Spring data access exceptions
hide the technology used to communicate with the database. They are thrown when JdbcTemplate, JPA,
Hibernate, etc. are used. That is probably why they are part of the spring-tx module.

As you can notice from Figure 5-5, the Spring data access exception family has three main branches:

•	 exceptions that are considered non-transient, which means that retrying the
operation will fail unless the originating cause is fixed. The parent class of this
hierarchy is the org.springframework.dao.NonTransientDataAccessException.
The most obvious example here is searching for an object that does not exist.
Retrying this query will fail until a user that is the one being searched for exists. The
code snippet below searches for a user that does not exist. Right below is a snippet
from the console log depicting the exception type and message.

// test method in TestJdbcTemplateUserRepo.java
@Test
public void testNoFindById() {
 User user = userRepo.findById(99L);
 assertEquals("Darius", user.getUsername());
}

#log from the console
org.springframework.dao.EmptyResultDataAccessException:
 Incorrect result size: expected 1, actual 0

Obviously, this test will fail until a user with ID equal to 99 and username Darius is
found in the p_user table.

•	 org.springframework.dao.RecoverableDataAccessException is thrown when a
previously failed operation might succeed if some recovery steps are performed,
usually closing the current connection and using a new one. This type of exception is
very useful when the database is on a different computer from that of the application
and connection to the database fails because of a temporary network hiccup. The
exception can be caught and the query retried when the network is up, and the
execution will succeed in a new connection.

•	 exceptions that are considered transient, which extend the abstract class org.
springframework.dao.TransientDataAccessException, which means that retrying
the operation might succeed without any intervention. These are concurrency or
latency exceptions. For example, when the database becomes unavailable because
of a bad network connection in the middle of the execution of a query, an exception
of type QueryTimeoutException is thrown. The developer can treat this exception by
retrying the query.

The fourth branch contains only an exception type used when initialization of a test database with a bean of
type DataSourceInitializer fails because of a script error; thus the exception type is named ScriptException.
And that is all that can be said about Spring data access exceptions. Sounds pretty simple, right?

Chapter 5 ■ Data Access

209

!  If you want to test your understanding of Spring JdbcTemplate and related components presented so far,
you can open the 05-ps-jdbc-practice project and try to complete the TODOs. There are three that you
should definitely solve and one that is a bonus in case you really like this section and you enjoy the practice.
The parts missing are marked with a TODO task and are visible in Intellij IDEA in the TODO view.

Task TODO 27, located in the TestJdbcTemplateUserRepo class, requires you to complete the body of a
negative test method that searches for a user that does not exist. The test should pass. To see the user IDs
present in the database, inspect the 05-ps-jdbc-practice/src/test/resources/db/test-data.sql.

Task TODO 28, located in the TestJdbcTemplateUserRepo class, requires you to complete the body of a test
method that counts the users in the database.

Task TODO 29, located in JdbcNamedTemplateUserRepo, requires you to complete the body of repository
methods. You can use either the jdbcNamedTemplate bean or the underlying JdbcTemplate accessed with
jdbcNamedTemplate.getJdbcOperations().

The bonus task TODO 30, located in test class TestNamedJdbcTemplateUserRepo, if you decide to complete it,
will help you test the methods implemented by completing TODO 29.

If you have trouble, you can take a peek at the proposed solution in the 05-ps-jdbc-solution project.

Data Access Configuration In a Transactional Environment
Until now, data access has been covered with Spring in a nontransactional environment, which means that
when a query was executed, a connection was obtained, the query was executed, then the connection was
released. In enterprise applications, though, there is a need to group certain SQL operations together so that
in case one of them fails, all the results of previous queries in the same group should be rolled back to avoid
leaving the database in an inconsistent state. The context of execution for a group of SQL operations is called
a transaction and has the following properties:

•	 Atomicity is the main attribute of a transaction and is the characteristic mentioned
earlier, that if an operation in a transaction fails, the entire transaction fails, and the
database is left unchanged. When all operations in a transaction succeed, all changes
are saved into the database when the transaction is committed. Basically it is “all or
nothing.”

•	 Consistency implies that every transaction should bring the database from one valid
state to another.

•	 Isolation implies that when multiple transactions are executed in parallel, they won’t
hinder one another or affect each other in any way. The state of the database after a
group of transactions is executed in parallel should be the same as if the transactions
in the group had been executed sequentially.

•	 Durability is the property of a transaction that should persist even in cases of power
off, crashes, and other errors on the underlying system.10

10An exception to this rule would be if the server catches fire or gets really wet.

Chapter 5 ■ Data Access

210

In a transactional environment, transactions have to be managed. In Spring, this is done by an
infrastructure bean called the transaction manager. The transaction manager bean’s configuration is the
only thing that has to be changed when the environment changes. There are four basic flavors:

	 1.	 Local JDBC Spring environment: a local JDBC configuration declaring a basic
datasource to be used (even an embedded one will do) and a bean of type org.
springframework.jdbc.datasource.DataSourceTransactionManager, a Spring-
specific implementation. The connections to use can come from a connection
pool, and the transaction manager bean will associate connections to transactions
according to the configured behavior. Configuring transactional behavior is done
declaratively by annotating methods with @Transactional. It is mandatory to
use this annotation on repository classes, too, in order to ensure transactional
behavior. Without an ORM, a component of type JdbcTemplate must be used to
execute queries at the repository level. All this will be detailed later in this chapter.
The abstract schema of this configuration is depicted in Figure 5-6.

	 2.	 Local Hibernate Spring environment: a local hibernate configuration declaring
a basic datasource to be used (even an embedded one will do) and a bean of
type org.springframework.orm.hibernate5.HibernateTransactionManager,
a Spring-specific implementation that uses a hibernate session object created
by an infrastructure bean of type that extends org.springframework.orm.
hibernate5.LocalSessionFactoryBean to manage entities in a transactional
context. The abstract schema of this configuration is depicted in Figure 5-7.

Figure 5-6.  Spring Local JDBC Configuration abstract schema

Chapter 5 ■ Data Access

211

	 3.	 Local JPA Spring environment: a local configuration declaring a basic
datasource to be used (even an embedded one will do) and a bean of
type org.springframework.orm.jpa.JpaTransactionManager, a Spring-
specific implementation that uses an entity manager object created
by an infrastructure bean of type org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean to manage entities in a transactional
context. The abstract schema of this configuration is depicted in Figure 5-8.
To create the LocalContainerEntityManagerFactoryBean bean, a persistence
manager and a JPA adapter bean are needed. These can be provided by Hibernate,
Apache OpenJPA, or any other Spring-supported persistence framework.

Figure 5-7.  Spring Local Hibernate Configuration abstract schema

Figure 5-8.  Spring Local JPA Configuration abstract schema

Chapter 5 ■ Data Access

212

	 4.	 Enterprise JTA Spring environment: this setup requires an application
server that will configure and provide a datasource bean using JNDI. Spring
will load a bean of type extending org.springframework.transaction.
jta.JtaTransactionManager specific to the application server used. This
transaction manager is appropriate for handling distributed transactions, which
are transactions that span multiple resources, and for controlling transactions
on application server resources. The abstract schema of this configuration is
depicted in Figure 5-9.

How Transaction Management Works in Spring
In the previous section, a repository class used a JdbcTemplate to execute methods within a connection.
To introduce transactions, we need a service class that will call the repository methods in the context of a
transaction. Figure 5-10 depicts the abstract UML sequence diagram that describes the examples covered in
this section. The diagram in the figure mentions only the findById(...) method, but the call sequence for
every service method that involves managing database-stored information is the same.

Figure 5-9.  Enterprise JTA Spring environment

Chapter 5 ■ Data Access

213

Transaction management is implemented in Spring by making use under the hood of a framework
presented in a previous chapter, AOP, and that is because transactions are a cross-cutting concern.
Basically, for every method that must be executed in a transaction, retrieving or opening a transaction before
execution and committing it afterward is necessary. For beans that have methods that must be executed
in a transactional context, AOP proxies are created that wrap the methods in an Around advice that takes
care of getting a transaction before calling the method and committing the transaction afterward. The
AOP proxies use two infrastructure beans for this: an org.springframework.transaction.interceptor.
TransactionInterceptor in conjunction with an implementation of org.springframework.transaction.
PlatformTransactionManager. Spring provides a flexible and powerful abstraction layer for transaction
management support. At the core of it is the PlatformTransactionManager interface. Any transaction manager
provider framework that is supported can be used. JTA providers can as well, and this will have no impact on
the rest of the classes of the application. The most common transaction management providers are:

•	 DataSourceTransactionManager, Spring basic transaction management provider
class;

•	 HibernateTransactionManager, when Hibernate is used for persistence support;

•	 JpaTransactionManager, when an entity manager is used for persistence support;

•	 JtaTransactionManager, used to delegate transaction management to a Java EE
server. Can be used with Atomikos too, removing the need for an application server.11

•	 WebLogicJtaTransactionManager, transaction support provided by the WebLogic
Application Server.

•	 etc.

Conceptually, what happens when a transactional method is called is depicted in Figure 5-11.

Figure 5-10.  UML call diagram for a service class

11You can find more about Atomikos from their official site https://www.atomikos.com/.

https://www.atomikos.com/

Chapter 5 ■ Data Access

214

Methods that need to be executed in a transactional context are annotated with @Transactional Spring
annotation. The body of these methods is a functional unit that cannot be subdivided. The official Spring
course calls these methods atomic units of work. As you probably remember from the AOP chapter,
this annotation must be used only on public methods; otherwise, the transactional proxy won’t be able to
apply the transactional behavior. When the application context is created and support for this annotation
is enabled via configuration (this will be covered in the following section), here is what happens under
the hood: an internal infrastructure Spring-specific bean of type org.springframework.aop.framework.
autoproxy.InfrastructureAdvisorAutoProxyCreator is registered and acts as a bean postprocessor that
modifies the service and repository bean to add transaction-specific logic. Basically, this is the bean that
creates the transactional AOP proxy.

Configure Transactions Support
The simplest way to add transaction management to the application covered in the previous section is to do
the following:

•	 Configure transaction management support: add a declaration of a bean of type
org.springframework.jdbc.datasource.DataSourceTransactionManager. Using
XML and activating it with the <tx:annotation-driven ../> (be careful when you
are using transactions XML configuration because it is a common mistake to forget
this element) configuration element provided by the tx namespace is easy.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tx="http://www.springframework.org/schema/tx"

Figure 5-11.  Conceptual UML sequence diagram for a transactional operation

Chapter 5 ■ Data Access

215

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.0.xsd">

 <bean id="transactionManager"
 �class="org.springframework.jdbc.datasource.

DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <tx:annotation-driven transaction-manager="transactionManager"/>
</beans>

The configuration above declares a bean named transactionManager and sets it as the
general transaction manager for the application using <tx:annotation-driven ../>.
Or a Configuration class:

public class TestDataConfig {
...
 @Bean
 public PlatformTransactionManager txManager(){
 return new DataSourceTransactionManager(dataSource());
 }
}

And we activate it with the @EnableTransactionManagement:

import org.springframework.transaction.annotation.EnableTransactionManagement;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = {"com.ps.repos.impl", "com.ps.services.impl"})
public class AppConfig {
}

•	 Declare transactional methods: write a service class containing methods that will
call the UserRepo bean methods in a transaction. A method that is to be executed in
a transaction must be annotated with the Spring @Transaction annotation. Since the
transactional behavior must be propagated to the repository, the repository class or
methods are annotated with @Transactional too.

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

@Service
public class UserServiceImpl implements UserService {

 private UserRepo userRepo;

 @Autowired
 public UserServiceImpl(UserRepo userRepo) {
 this.userRepo = userRepo;
 }

Chapter 5 ■ Data Access

216

 @Transactional
 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }
}

■■ CC  Both @EnableTransactionManagement and <tx:annotation-driven ../> enable all infrastructure
beans necessary for supporting transactional execution. But there is a minor difference between them. The
XML configuration element can be used like this: <tx:annotation-driven /> without the transaction-
manager attribute. In this case, Spring will look for a bean named transactionManager by default, and if it
is not found, the application won’t start. The @EnableTransactionManagement is more flexible; it looks for a
bean of any type that implements the org.springframework.transaction.PlatformTransactionManager,
so the name is not important. In case the default transaction manager bean must be established without a
doubt, this can be done by making the configuration class annotated with @EnableTransactionManagement
implement the org.springframework.transaction.annotation.TransactionManagementConfigurer
interface and declare the default transaction manager by providing an implementation for the method
annotationDrivenTransactionManager.

import org.springframework.transaction.annotation.TransactionManagementConfigurer;
...
@EnableTransactionManagement
@Configuration
public class AppConfig implements TransactionManagementConfigurer {

 ...

 @Bean
 public PlatformTransactionManager txManager(){
 return new DataSourceTransactionManager(dataSource());
 }

 @Overrride
 public PlatformTransactionManager annotationDrivenTransactionManager() {
 return txManager();
 }
}

This is useful, because in bigger applications requiring more than one datasource, multiple transaction
manager beans need to be declared. If the default to use is not specified, Spring cannot choose for itself, and
the application will fail to start with an ugly and explicit exception:

org.springframework.beans.factory.NoUniqueBeanDefinitionException:
 No qualifying bean of type [org.springframework.transaction.PlatformTransactionManager]
 is defined: expected single matching bean but found 2: txManager,simpleManager

Chapter 5 ■ Data Access

217

The transaction manager to use when executing a method in a transactional context can also be
specified by the transactionManager attribute of the @Transactional annotation. So considering that we
have two transaction manager beans, txManager, which is configured as default, and simpleManager, code
similar to that in the next snippet will work like a charm.

@Service
public class UserServiceImpl implements UserService {
 private UserRepo userRepo;

 @Autowired
 public UserServiceImpl(UserRepo userRepo) {
 this.userRepo = userRepo;
 }

 //default txManager is used
 @Transactional
 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }

 @Transactional(transactionManager = "simpleManager",readOnly = true)
 @Override
 public void htmlAllByNameAll(String name){
 userRepo.htmlAllByName(name);
 }
}

The transactions in the context of which methods are executed in Spring applications are called
declarative transactions when defined with @Transactional, and this type of declaring transactions is not
connected to a JTA (Java Transaction API), which is very practical, because this means that transactions
can be used in any environment: local with JDBC, JPA, Hibernate, or JDO (Java Data Objects), or together
with an application server. Transactional behavior can be added to any method of any bean as long as the
method is public, because declarative transaction behavior is implemented in Spring using AOP. Spring also
provides declarative rollback rules and the possibility to customize transactional behavior through attributes
of the @Transactional annotation. And at this point, a list of these attributes is appropriate:

	 1.	 The transactionManager attribute value defines the transaction manager used to
manage the transaction in the context of which the annotated method is executed.

	 2.	 The readOnly attribute should be used for transactions that involve operations
that do not modify the database (example: searching, counting records).
The default value is false, and the value of this attribute is just a hint for the
transaction manager, which can be ignored depending of the implementation.
Although if you tell Spring that the transaction is supposed only to read
data, some performance optimizations will be done for read-only data
access. Although it seems useless to use a transaction for reading data, it is
recommended to do so to take into account the isolation level configured for the
transactions. The isolation attribute will be covered shortly.

Chapter 5 ■ Data Access

218

	 3.	 The propagation attribute can be used to define behavior of the target methods:
if they should be executed in an existing or new transaction, or no transaction at
all. The values for this attribute are defined by the Spring org.springframework.
transaction.annotation.Propagation enum, and they match the ones defined
in JEE for EJB transactions. There are seven propagation types:

		 (a)	� REQUIRED: an existing transaction will be used or a new one will be created
to execute the method annotated with @Transactional(propagation =
Propagation.REQUIRED).

		 (b)	� REQUIRES_NEW: a new transaction is created to execute the method
annotated with @Transactional(propagation = Propagation.REQUIRES_
NEW). If a current transaction exists, it will be suspended.

		 (c)	� NESTED: an existing nested transaction will be used to execute the method
annotated with @Transactional(propagation = Propagation.NESTED).
If no such transaction exists, it will be created.

		 (d)	� MANDATORY: an existing transaction must be used to execute the method 	
annotated with @Transactional(propagation = MANDATORY). If there is no
transaction to be used, an exception will be thrown.

		 (e)	� NEVER: methods annotated with @Transactional(propagation =
Propagation.NEVER must not be executed within a transaction. If a
transaction exists, an exception will be thrown.

		 (f)	� NOT_SUPPORTED: no transaction is used to execute the method annotated
with @Transactional(propagation = Propagation.NOT_SUPPORTED). If a
transaction exists, it will be suspended.

	 	 (g)	� SUPPORTS: an existing transaction will be used to execute the method
annotated with @Transactional(propagation = Propagation.SUPPORTS).
If no transaction exists, the method will be executed anyway, without a
transactional context.

In the following code snippet, the findById method is executed in a transaction and the
getPetsAsHtml is executed within a nested transaction. Actual creation of nested transactions will work
only on specific transaction managers. And as you can see from the log at the end of the code snippet,
DataSourceTransactionManager is not one of them when one is working with an in-memory database. This
transaction manager supports nested transactions via the JDBC 3.0 “savepoint” mechanism, but it needs a
database management system that supports savepoints, such as Oracle, for example.

Nested transactions allow for complex behavior; a transaction can start before the enclosing transaction
is completed. A commit in a nested transaction has no effect, and all changes will be applied to the database
when the enclosing transaction is committed. If a nested transaction is rolled back, though, the enclosing
transaction is rolled back to prevent leaving the database in an inconsistent state: partial changes will not be
kept. Nested transactions can be used to force atomic execution of multiple methods.

If instead of NESTED, REQUIRED is used, there will be no guarantee of atomic execution.

Chapter 5 ■ Data Access

219

//UserServiceImpl.java
@Service
public class UserServiceImpl implements UserService {
 ...
 @Transactional(propagation = Propagation.REQUIRED, readOnly= true)
 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }
}

//PetServiceImpl.java
@Service
public class PetServiceImpl implements PetService {

 ...

 @Override
 @Transactional(propagation = Propagation.NESTED, readOnly = true)
 public String getPetsAsHtml(User owner) {
 Set<Pet> pets = petRepo.findByOwner(owner);
 if(pets.isEmpty()) {
 return "<p>User " + owner.getUsername() + " has no pets.</p>\n";
 }
 // build html from pets
 StringBuilder htmlSb = ...;
 return htmlSb.toString();
 }
}

//PetServiceTest.java test class
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class PetServiceTest {
 @Test
 public void testFindById() {
 User user = userService.findById(1L);
 String out = petService.getPetsAsHtml(user);
 assertTrue(out.contains("Name"));
 System.out.println(out);
 }
}

In Figure 5-12, the behavior of nested transactions is depicted.

Chapter 5 ■ Data Access

220

How do we know that at least Spring is trying to execute the second method in a nested transaction?
Simple, we look in the console log:

...
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning cached instance
 of singleton bean ’transactionManager’
DEBUG o.s.j.d.DataSourceTransactionManager - Creating new transaction:
 with name [com.ps.services.impl.UserServiceImpl.findById]
 PROPAGATION_REQUIRED,ISOLATION_DEFAULT,readOnly; ”
DEBUG o.s.j.d.SimpleDriverDataSource -
 Creating new JDBC Driver Connection to [jdbc:h2:sample]
DEBUG o.s.j.d.DataSourceTransactionManager - Acquired Connection
 [conn2: url=jdbc:h2:sample user=SAMPLE] for JDBC transaction
DEBUG o.s.j.d.DataSourceUtils - Setting JDBC Connection
 [conn2: url=jdbc:h2:sample user=SAMPLE] read-only
DEBUG o.s.j.d.DataSourceTransactionManager - Switching JDBC Connection
 [conn2: url=jdbc:h2:sample user=SAMPLE] to manual commit
DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL statement
 [select id, email, username, password, user_type from p_user where id= ?]
DEBUG o.s.j.d.DataSourceTransactionManager - Initiating transaction commit
DEBUG o.s.j.d.DataSourceTransactionManager -
 Committing JDBC transaction on Connection
 [conn2: url=jdbc:h2:sample user=SAMPLE]
DEBUG o.s.j.d.DataSourceTransactionManager - Releasing JDBC Connection
 [conn2: url=jdbc:h2:sample user=SAMPLE] after transaction
DEBUG o.s.j.d.DataSourceUtils - Returning JDBC Connection to DataSource

Not actually nested.

Figure 5-12.  Nested transaction behavior

Chapter 5 ■ Data Access

221

DEBUG o.s.j.d.DataSourceTransactionManager - Creating new transaction with name
 [com.ps.services.impl.PetServiceImpl.getPetsAsHtml]:
 PROPAGATION_NESTED,ISOLATION_DEFAULT,readOnly; ”
DEBUG o.s.j.d.SimpleDriverDataSource - Creating new JDBC Driver Connection
 to [jdbc:h2:sample]
DEBUG o.s.j.d.DataSourceTransactionManager - Acquired Connection
 [conn3: url=jdbc:h2:sample user=SAMPLE] for JDBC transaction
DEBUG o.s.j.d.DataSourceUtils - Setting JDBC Connection
 [conn3: url=jdbc:h2:sample user=SAMPLE] read-only
DEBUG o.s.j.d.DataSourceTransactionManager - Switching JDBC Connection
 [conn3: url=jdbc:h2:sample user=SAMPLE] to manual commit
DEBUG o.s.j.c.JdbcTemplate - Executing SQL query
 [select id, name, age, pet_type from p_pet where owner=1]
DEBUG o.s.j.d.DataSourceTransactionManager - Initiating transaction commit
DEBUG o.s.j.d.DataSourceTransactionManager - Committing JDBC transaction
 on Connection [conn3: url=jdbc:h2:sample user=SAMPLE]
DEBUG o.s.j.d.DataSourceTransactionManager - Releasing JDBC Connection
 [conn3: url=jdbc:h2:sample user=SAMPLE] after transaction
DEBUG o.s.j.d.DataSourceUtils - Returning JDBC Connection to DataSource
 User John has:
 <p>Name: Mona, type: CAT, Age: 2</p></br>
 <p>Name: Max, type: DOG, Age: 10</p></br>

	 4.	 The isolation attribute value defines how data modified in a transaction
affects other simultaneous transactions. As a general idea, transactions should
be isolated. A transaction should not be able to access changes from another
uncommitted transaction. There are four levels of isolation, but every database
management system supports them differently. In Spring, there are five isolation
values that are defined in the org.springframework.transaction.annotation.
Isolation enum:

		 (a)	 DEFAULT: the default isolation level of the DBMS.

		 (b)	� READ_UNCOMMITED: data changed by a transaction can be read by a different
transaction while the first one is not yet committed, also known as dirty
reads.

		 (c)	� READ_COMMITTED: dirty reads are not possible when a transaction is used
with this isolation level. This is the default strategy for most databases. But
a different phenomenon could happen here: repeatable read: when the
same query is executed multiple times, different results might be obtained.
(Example: a user is extracted repeatedly within the same transaction. In
parallel, a different transaction edits the user and commits. If the first
transaction has this isolation level, it will return the user with the new
properties after the second transaction is committed.)

	 	 (d)	� REPEATABLE_READ: this level of isolation does not allow dirty reads, and
repeatedly querying a table row in the same transaction will always return
the same result, even if a different transaction has changed the data while
the reading is being done. The process of reading the same row multiple
times in the context of a transaction and always getting the same result is
called repeatable read.

Chapter 5 ■ Data Access

222

		 (e)	� SERIALIZABLE: this is the most restrictive isolation level, since transaction
are executed in a serialized way. So no dirty reads, no repeatable reads,
and no phantom reads are possible. A phantom read happens when in the
course of a transaction, execution of identical queries can lead to different
result sets being returned.

	 5.	 timeout. By default, the value of this attribute is defined by the transaction
manager provider, but it can be changed by setting a different value in the
annotation: @Transactional(timeout=3600). The value represents the number
of milliseconds after which a transaction is considered failed, and the default
value is –1 which means timeouts are not supported.

	 6.	 rollbackFor attribute values should be one or more exception classes,
subclasses of Throwable. When this type of exception is thrown during the
execution of a transactional method, the transaction is rolled back. By default, a
transaction is rolled back only when a RuntimeException is thrown. In using this
attribute, the rollback can be triggered for checked exceptions as well.

In the code snippet below, MailSendingException is a checked exception that
is thrown when a notification of successful user modification cannot be sent via
email. The basic idea is this: the main operation was performed successfully, and
the user data has been updated. It does not make sense to roll back the changes
because a notification could not be sent.

@Transactional(rollbackFor = MailSendingException.class)
public int updatePassword(Long userId, String newPass)
 throws MailSendingException {
 User u = userRepo.findById(userId);
 String email = u.getEmail();
 sendEmail(email);
 return userRepo.updatePassword(userId, newPass);
}

private void sendEmail(String email)
 throws MailSendingException {
 ... // code not relevant here
}

	 7.	 noRollbackFor attribute values should be one or more exception classes,
subclasses of Throwable. When this type of exception is thrown during the
execution of a transactional method, the transaction is not rolled back.
By default, a transaction is rolled back only when a RuntimeException is
thrown. Using this attribute, rollback of a transaction can be avoided for a
RuntimeException as well.

The @Transactional annotation can be used at the class level too. In this case, all the methods in the class
become transactional, and all properties defined for the transaction are inherited from the @Transactional
class level definition, but they can be overridden by a @Transactional defined at the method level.

@Service
@Transactional(readOnly = true,
 propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

Chapter 5 ■ Data Access

223

...
 @Transactional(propagation = Propagation.REQUIRES_NEW)
 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }

 @Transactional(propagation = Propagation.SUPPORTS)
 @Override
 public void htmlAllByNameAll(String name){
 userRepo.htmlAllByName(name);
 }
}

@Transactional can also be used on abstract classes and interfaces. This leads to all implementation
methods inheriting the transactional behavior defined by the annotation on the parent class/interface, but it
is not the recommended practice.

Testing transactional methods
For test cases involving datasource operations, a few practical annotations were added in Spring 4.1 to the
org.springframework.test.context.jdbc package:

•	 The @Sql annotation can be used to specify SQL scripts to be executed against a
given database during integration tests. It can be used on classes and on methods. It
can be used multiple times when the SQL files to be executed have different syntax,
error handling rules, or different execution phases. The tests specific to this section
are integration tests, because they test the communication between a service and a
repository. So they are a perfect fit to introduce this annotation.

•	 The @SqlGroup annotation can be used on classes and methods to group together @
Sql annotations. It can be used as a meta-annotation to create custom composed
annotations. For example, when more than one datasource is involved, it can be
used together with @SqlConfig to group scripts to be executed to prepare the test
environment for a single test case involving both datasources:

@SqlGroup({
 @Sql(scripts = "script1.sql", config = @SqlConfig(dataSource =
"dataSource1")),
 @Sql(scripts = "script2.sql", config = @SqlConfig(dataSource = "dataSource2"))
})

•	 The @SqlConfig is used to specify the configuration of the SQL script.

In the code snippet below, you can see how these annotations can be used to test your service classes.
The first example uses multiple @Sql annotations; the second groups them with @SqlGroup. The example
can be tested by running the UserServiceTest.testCount() method from the 06-ps-tx-practice project/

import org.springframework.test.context.jdbc.Sql;
import org.springframework.test.context.jdbc.SqlConfig;
import org.springframework.test.context.jdbc.SqlGroup;
...

Chapter 5 ■ Data Access

224

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class UserServiceTest {
 @Test
 @Sql(value ="classpath:db/extra-data.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";", commentPrefix = "--"))
 @Sql(
 scripts = "classpath:db/delete-test-data.sql",
 config = @SqlConfig(transactionMode = SqlConfig.TransactionMode.ISOLATED),
 executionPhase = Sql.ExecutionPhase.AFTER_TEST_METHOD
)
 public void testCount(){
 int count = userService.countUsers();
 assertEquals(8, count);
 }

Although the syntax is quite obvious, just in case extra clarifications are necessary, here they are:

•	 the first @Sql annotation specifies a script to be executed to save some data into
the test database before executing the test method. The @SqlConfig is used to
declare specific SQL syntax details, so Spring can execute the extra-data.sql script
correctly.

•	 The second Sql annotation is used to execute the script that will clean the test
database after the test execution. The attribute that specifies when the script is
executed is executionPhase, and in this case, the value used to tell Spring to execute
the script after the test method is Sql.ExecutionPhase.AFTER_TEST_METHOD.

The @SqlConfig annotation is quite powerful and provides attributes to declare isolation level
(transactionMode = SqlConfig.TransactionMode.ISOLATED) and a transactionManager to be used.

(transactionManager="txMng")

The following example has the same behavior as the one above, but for teaching purposes, the two Sql
annotations have been composed using @SqlGroup.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class UserServiceTest {
 // @SqlGroup version
 @Test
 @SqlGroup({
 @Sql(value = "classpath:db/extra-data.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";", commentPrefix = "--")),
 @Sql(
 scripts = "classpath:db/delete-test-data.sql",
 config = @SqlConfig(transactionMode = SqlConfig.TransactionMode.ISOLATED),
 executionPhase = Sql.ExecutionPhase.AFTER_TEST_METHOD
)
 })
 public void testCount() {

Chapter 5 ■ Data Access

225

 int count = userService.countUsers();
 assertEquals(8, count);
 }
}

The @Sql annotation has more attributes, but there is one in particular that you will definitely find
useful: the statements attribute. This attribute allows you to provide a statement to be executed before the
test method.

@Test
@Sql(statements = {"drop table NEW_P_USER if exists;"})
 public void testCreateTable(){
 int result = userRepo.createTable("new_p_user");
 // table exists but is empty
 assertEquals(0, result);
 }

Repository methods can be tested in a transactional context, decoupled from the service methods. This
is useful when the test database must be left unaffected by a test execution. The @Transactiona annotation
can be used on the test method and configured appropriately, and the @Rollback annotation can be used to
fulfill this specific purpose: leave a test database unchanged.

import org.springframework.test.annotation.Rollback;
...
RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class TransactionalJdbcRepoTest {
 @Transactional
 @Test
 public void testFindById() {
 User user = userRepo.findById(1L);
 assertEquals("John", user.getUsername());
 }

 @Test
 @Transactional @Rollback(false)
 public void testCreate(){
 int result = userRepo.createUser
 (5L, "Diana", "mypass", "diana@opympus.com", UserType.BOTH);
 assertEquals(1, result);
 Set<User> dianas = userRepo.findAllByUserName("Diana", true);
 assertTrue(dianas.size() == 1);
 }
}

The @Rollback annotation can be used to specify that no rollback should be performed after a test
method execution, by making use of its default attribute: @Rollback(false). This is equivalent to another
annotation introduced in Spring 4.2: @Commit. As you can probably imagine, you can use one or the other for
this purpose, but you should not use them together unless you really want to confuse the Spring Container.
The results will thus be unpredictable. Both annotations can be used at the class level too, and class level
annotation configuration can be overridden by method level annotation configurations.

Chapter 5 ■ Data Access

226

Before Spring 4.0, the @TransactionConfiguration could be used on a test class used to define the
transactional context for tests. It became deprecated in Spring 4.0, with the introduction of profiles and @
EnableTransactionManagement. But in case you are interested in an example, here it is:

import org.springframework.test.context.transaction.TransactionConfiguration;
...
@TransactionConfiguration(defaultRollback = false,
 transactionManager = "txManager")
@Transactional
public class TransactionalJdbcRepoTest {
 @Test
 public void testFindById() {
 User user = userRepo.findById(1L);
 assertEquals("John", user.getUsername());
 }
 ...
}

The default value for the defaultRollback attribute is true, and it was set to false in the previous
example just to introduce this attribute.

Another useful test annotation is @BeforeTransaction, which can be used to set up or check a test
environment before executing the transactional test method. The @Before annotated method is executed in
the context of the transaction. The method in the following code snippet checks that the test database was
initialized properly outside of a transaction context.

import org.springframework.test.context.transaction.BeforeTransaction;
...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestDataConfig.class, AppConfig.class})
@ActiveProfiles("dev")
public class UserServiceTest {
...
 @BeforeTransaction
 public void checkDbInit(){
 int count = userService.countUsers();
 assertEquals(4, count);
 }
}

Making Third-Party Components Transactional
For situations in which annotations cannot be used to configure transactional execution, this being the
case when a version earlier than Java 1.5 is used or the service is a third-party implementation that cannot
be changed, the Spring transaction management configuration can be achieved using XML to declare a
combination of AOP and tx configuration elements.

<beans ..>
 <!-- daraSource bean -->
 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
 <property name="driverClass" value="org.h2.Driver"/>

Chapter 5 ■ Data Access

227

 <property name="url" value="jdbc:h2:test"/>
 <property name="username" value="test"/>
 <property name="password" value="test"/>
 </bean>

 <!-- target bean -->
 <bean id="userService" class="...UserServiceImpl" />

 <!-- transaction manager bean -->
 <bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <!-- AOP pointcut to select target methods -->
 <aop:config>
 <aop:pointcut id="allMethods"
 expression="execution(* com.ps.service.*.UserService+.*(..))">
 <aop:advisor pointcut-ref="userService"
 advice-ref="transactionalAdvice" />
 </aop:config>

 <!-- Transactional Around advice -->
 <tx:advice id="transactionalAdvice">
 <tx:atributes>
 <tx:method name="find*" read-only="true" timeout="10"/>
 <tx:method name="update*" read-only="false" timeout="30"/>
 </tx:attributes>
 </tx:advice>
</beans>

!  If you want to test your understanding of Spring transaction management, you can open now the 06-ps-tx-
practice project and try to complete the TODOs. There are five tasks for you to solve, numbered from 31 to 35.
The parts missing are marked with a TODO task and are visible in Intellij IDEA in the TODO view.

Task TODO 31, located in the TestDataConfig class, requires you to define a transaction manager bean to be
used to mange transactions.

Task TODO 32, located in the AppConfig class, requires you to enable use of declarative transactions.

Task TODO 33, located in UserServiceImpl, requires you to make all the methods transactional.

Task TODO 34, located in class UserServiceImpl, requires you to complete the transaction definition of the
updatePassword(...) method, to make the transaction writable, and to roll back for the checked exception
thrown by the method.

Task TODO 35, located in test class UserServiceTest, requires you to complete the body of the method testing
the userService.updatePassword(...) method.

If you have trouble, you can take a peek at the proposed solution in the 06-ps-tx-solution project.

Chapter 5 ■ Data Access

228

! Spring Declarative Model Clarification
There is heated argument on the Internet (most of it happening on StackOverflow12) right now regarding
wether @Transactional should be used on repository classes/methods when there is a service layer involved
and service classes/methods are already annotated with @Tranactional. In order to settle this debate, we
have to consider how declarative transactions are implemented in Spring. It was already mentioned at the
beginning of Section 9, How Transaction Management Works in Spring, that AOP is used to decorate beans
with transactional behavior. This means that when we annotate classes or methods with @Transactional, a
proxy bean will be created to provide the transactional behavior, and it is wrapped around the original bean.

In an application that does not use a service layer, to ensure transactional behavior when interacting
with the database, the repository classes/ methods must be annotated with @Transactional. This will tell
Spring to create transactional proxies for the repository classes. The abstract UML diagram for this scenario
is depicted in Figure 5-11, and the target object is the repository bean. When a service layer and service
classes are added, there are two possibilities: we annotate the new service classes with @Transactional and
remove the annotation from the repository, or we annotate the service classes and keep @Transactional on
the repository classes as well. Let’s analyze each of these cases in detail.

Case 1: Only service classes are annotated with @Transactional. In this case, the target object is the
service bean, which contains a reference to the repository bean. When a service method is called, the
following happens:

	 1.	 The transactional proxy calls the transactional advisor to get a transaction.

	 2.	 The transactional proxy forwards the initial call to the target service bean.

	 3.	 The target service object calls the repository method and returns the result to the
proxy.

	 4.	 The proxy calls the transactional advisor to commit the transaction.

	 5.	 The proxy returns the result to the caller.

The Spring service class has a reference to a repository class, which means that at runtime, the service
bean will be created by aggregating the two objects. Actually, when the Spring application context is created,
this is what happens:

	 1.	 A repository bean declaration is found in the configuration, so a repository bean
is created.

	 2.	 A service bean declaration is found in the configuration, so a service bean is
created. The service bean depends on the previously created repository bean, so
the dependency is provided using autowiring. So now the repository is a member
of the service bean.

	 3.	 Then the InfrastructureAdvisorAutoProxyCreator bean creates the proxy
object that wraps around the service bean to provide transactional behavior. So
the service bean becomes now a target object.

So, to summarize: the service method calls the repository method, and this call is done internally by
the target object. The full execution is atomic in the context of the transaction obtained by the proxy from
the Spring transactional advisor. This is important, especially when a service method calls more than one
repository method, because this approach ensures that all repository methods will be executed within the
same transaction. This situation is depicted by the diagram in Figure 5-13.

12The most popular programmers’ social network http://stackoverflow.com

http://stackoverflow.com/

Chapter 5 ■ Data Access

229

To get a look under the hood, you can execute the UserServiceTest.testFindById() method in debug
mode, from project 6-ps-tx-solution in Intellij IDEA and take a look at the userService bean. In the
Variables console, you should see what is depicted in Figure 5-14.

Figure 5-14.  Intellij IDEA execution of test paused to analyze service transactional bean

Figure 5-13.  @Transactional annotated service class

Chapter 5 ■ Data Access

230

Case 2 Service and repository classes are both annotated with @Transactional. In this case, there
are two transactional proxies involved, one for service and one for the repository bean. The service bean
contains a reference to the repository proxy in this case. When a service method is called, the following
happens:

	 1.	 The transactional service proxy calls the transactional advisor to get a
transaction.

	 2.	 The transactional proxy forwards the initial call to the target service bean.

	 3.	 The service bean calls the repository method.

	 4.	 The transactional repository proxy calls the transactional advisor to get a
transaction. The transaction returned depends on the propagation configuration
of the @Transactional annotation declared on the repository class.

	 5.	 The target repository object method is executed, and the result is returned to the
transactional repository proxy.

	 6.	 The transactional repository proxy calls the transactional advisor to commit the
transaction.

	 7.	 The transactional repository proxy returns the result to the caller, in this case the
target service object.

	 8.	 The target service object returns the result to the transactional service proxy.

	 9.	 The transactional service proxy calls the transactional advisor to commit the
transaction.

	 10.	 The transactional service proxy returns the result to the caller.

So, to summarize: the service target object calls the repository method on the repository proxy, which
takes care of establishing a transactional context for the execution of the repository method. This situation is
depicted by the diagram in Figure 5-15.

Chapter 5 ■ Data Access

231

To get a look under the hood, first uncomment the @Transactional annotation from the class
JdbcTemplateUserRepo and then execute the UserServiceTest.testFindById() method from project
6-ps-tx-solution in debug mode in Intellij IDEA and take a look at the userService bean. In the
Variables console you should see what is depicted in Figure 5-16.

Figure 5-15.  @Transactional annotated service and repository class

Chapter 5 ■ Data Access

232

So there you have it, the end of the debate. Use @Transactional in the service layer or the DAO/
repository layer, but not both. The service layer is the usual choice, because service methods call multiple
repository methods that need to be executed in the same transaction. The only reason to make your
repositories transactional is if you do not need a service layer at all, which is usually the case for small
educational applications.

Spring Programatic Transaction Model
With the transaction declarative model, there is the benefit of flexible configuration and clean code, but
transaction management is left fully to the transaction management provider. The programatic model,
although a little more tedious to use, is practical when some control over transaction management is
needed. To be able to have some control over what happens to the transactions, Spring provides the
TransactionTemplate class. In the code snippet below, a programatic transactional service is depicted that
makes use of an instance of TransactionTemplate to manage transactions.

import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.TransactionStatus;
import org.springframework.transaction.support.TransactionCallback;
import org.springframework.transaction.support.TransactionTemplate;
...
@Service("programaticUserService")
public class ProgramaticUserService implements UserService {

 private UserRepo userRepo;

Figure 5-16.  Intellij IDEA execution of test paused to analyze service and repository transactional bean

Chapter 5 ■ Data Access

233

 private TransactionTemplate txTemplate;

 @Autowired
 public ProgramaticUserService(UserRepo userRepo,
 PlatformTransactionManager txManager) {
 this.userRepo = userRepo;
 this.txTemplate = new TransactionTemplate(txManager);
 }

 @Override
 public int updatePassword(Long userId, String newPass)
 throws MailSendingException {
 return txTemplate.execute(new TransactionCallback<Integer>() {
 @Override
 public Integer doInTransaction(TransactionStatus status) {
 try {
 User user = userRepo.findById(userId);
 String email = user.getEmail();
 sendEmail(email);
 return userRepo.updatePassword(userId, newPass);
 } catch (MailSendingException e) {
 status.setRollbackOnly();
 }
 return 0;
 }
 });
 }
 private void sendEmail(String email) throws MailSendingException {
 ... //not relevant for this section
 }
}

The status.setRollbackOnly() method is called to instruct the transaction manager that the only
possible outcome of the transaction may be a rollback, and not the throwing of an exception, which would in
turn trigger a rollback.

**Distributed Transactions
A distributed transaction is a transaction that involves two or more transactional resources. The most
obvious example here is an application that involves JMS and JDBC. Conceptually, what happens when a
distributed transaction involving JMS and JDBC resources is executed is depicted in Figure 5-17.

Chapter 5 ■ Data Access

234

Both JmsService and UserService are transactional. The sequence or execution steps are as follows:

	 1.	 Start messaging transaction.

	 2.	 Receive message requesting update of a user record.

	 3.	 Start database transaction to edit the user record.

	 4.	 Commit the database transaction if database was updated with success.
Otherwise, roll back the transaction.

	 5.	 Commit the messaging transaction if the database transaction was committed
with success. If the database transaction was rolled back, roll back the messaging
transaction.

Using distributed transactions requires a JTA and specific XA drivers.13 There are many open-source
and commercial JTA providers: JBossTS, Java Open Transaction Manager (JOTM), and Atomikos.14 Since
distributed transactions are not a topic for the official certification exam, nor part of the Spring Core
components, this section will end here, because something way more interesting follows.

Figure 5-17.  Conceptual UML sequence diagram for a distributed transaction involving JMS and JDBC resources

13The most popular article about Spring distributed transactions has since 2009 been David Sayer’s http://www.
javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring–with-and-with-
out-xa.html.
14A complete list of steps showing how to configure and use the Atomikos JTA provider is available on the Spring
official blog: https://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/.

http://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring%E2%80%93with-and-without-xa.html
http://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring%E2%80%93with-and-without-xa.html
http://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring%E2%80%93with-and-without-xa.html
https://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/

Chapter 5 ■ Data Access

235

Introducing Hibernate and ORM
The term JPA was introduced earlier, but the time has come for it to be covered in detail. JPA (Java
Persistence API) is an interface for persistence providers to implement. There are many JPA providers
available for Java applications: Hibernate, EclipseLink, Apache OpenJPA, etc.

The most popular of them is Hibernate, one of the open source Red Hat projects. Hibernate ORM is an
object relational mapping framework that provides support for mapping an object oriented domain model
to a relational database. This framework is open-source, and Hibernate has grown over the years into a
full-fledged technology that has been split into numerous tools for domain model validation, indexing and
searching a JPA for NoSQL databases (Hibernate OGM),15 and so on. If you are curious about the Red Hat
Hibernate project family, you can find out more on their official site http://hibernate.org/. In this section,
the basic details for configuring JPA with Hibernate will be covered.

Session and Hibernate Configuration
To configure JPA with Hibernate in a Spring application, the following components must be introduced:

•	 The org.hibernate.SessionFactory interface is the core component of Hibernate.
An object of this type is thread-safe, shareable, and immutable. Usually, an
application has a single SessionFactory instance, and threads servicing client
requests obtain Session instances from this factory. Once a SessionFactory
instance is created, its internal state is set. This internal state includes all of the
metadata about Object/Relational Mapping.

•	 The org.hibernate.Session interface is the hibernate component representing a
single functional unit, and it is the main runtime interface between a Java application
and Hibernate. The session is a stateful object that manages persistent objects within
the functional unit. It acts as a transactional-scoped cache, operations executed in
a session are basically cached, and the changes are persisted to the datasource (the
second-level cache) when the transaction is committed. A Session object can be
obtained by calling sessionFactory.getCurrentSession().

•	 org.springframework.orm.hibernate*.HibernateTransactionManager: this class
is an implementation of PlatformTransactionManager for a single SessionFactory.
Spring 4 currently contains three hibernate packages, one for each version supported
(3, 4, and 5). There is a HibernateTransactionManager in each of them. The version
for Hibernate 3 is currently deprecated and will probably be removed in Spring 5.

import org.springframework.transaction.PlatformTransactionManager;
...
@Bean
public PlatformTransactionManager transactionManager() {
 return new HibernateTransactionManager(sessionFactory());
}

15Hibernate OGM provides Java Persistence (JPA) support for NoSQL solutions. It reuses Hibernate ORM?s engine but
persists entities into a NoSQL datastore instead of a relational database. Read more about it on the official site: http://
hibernate.org/ogm/.

http://hibernate.org/
http://hibernate.org/ogm/
http://hibernate.org/ogm/

Chapter 5 ■ Data Access

236

•	 org.springframework.orm.hibernate5.LocalSessionFactoryBuilder: this is a
utility class that can be used to create a SessionFactory bean. The session factory
bean requires as parameters the datasource used by the application, the package
where the entity classes can be found, and the hibernate properties.

import org.hibernate.SessionFactory;
import org.springframework.orm.hibernate5.LocalSessionFactoryBuilder;
...

@Bean
public SessionFactory sessionFactory() {
 return new LocalSessionFactoryBuilder(dataSource())
 .scanPackages("com.ps.ents")
 .addProperties(hibernateProperties())
 .buildSessionFactory();
}

@Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect",
 "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.use_sql_comments", true);
 hibernateProp.put("hibernate.show_sql", true);
 return hibernateProp;
 }

	 This class was introduced in Spring 3.1 to replace the class org.springframework.
orm.hibernate3.annotation.AnnotationSessionFactoryBean that was used with
Hibernate 3, and it was designed to work with Hibernate 4. As you can probably
infer at this point, a version for Hibernate 5 exists, which was introduced in Spring
4.2. In case you are curious, an XML sample configuration for Hibernate 3 using the
deprecated class is depicted in the following code snippet.

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.
 AnnotationSessionFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="annotatedClasses">
 <list>
 <value>com.ps.ents.User</value>
 <value>com.ps.ents.Pet</value>
 <value>com.ps.ents.Request</value>
 <value>com.ps.ents.Response</value>
 <value>com.ps.ents.Review</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <value>

Chapter 5 ■ Data Access

237

 hibernate.format_sql=true
 hibernate.show_sql=true
 </value>
 </property>
</bean>

	 The "com.ps.ents" is the package in which the entity classes reside. They represent
the metadata that Hibernate needs so it can map them to database objects. XML
configuration of entity classes and Hibernate were used in previous versions,
though not that much now. In the previous code sample, the class annotation.
AnnotationSessionFactoryBean does not have a scanPackages property, so the
entities have to be listed in the XML configuration file as values in a list that is used
as argument to set the annotatedClasses property. The new approach is more
practical, since it removes the necessity of modifying the XML Spring configuration
file when a new entity class is added to the project.

	 The hibernateProperties is a java.util.Properties that contains specific
Hibernate properties. The most useful are listed below:

•	 hibernate.dialect: the value is a dialect class matching the database used in
the application (ex: org.hibernate.dialect.H2Dialect).

•	 hibernate.hbm2ddl.auto: the value represents what Hibernate should do when
the application starts: update the database to apply changes done in the metadata,
re-create the database altogether or do nothing. Possible values: none (default
value), create-only, drop, create, create-drop, validate, update.
This is very practical with embedded test databases, because the developer can
focus on the code instead of setting up the test database. If create-drop is used,
Hibernate will scan all the entities and generate tables and relationships among
them according to the specific annotations placed on their fields.

•	 hibernate.format_sql: if true, and the next property is true also, the generated
SQL statements are printed to the console in a pretty and readable way.

•	 hibernate.show_sql: if true, all the generated SQL statements are printed to
the console.

•	 hibernate.use_sql_comments: if true, Hibernate will put a comment inside the
SQL statement to tell the developer what that statement is trying to do.

•	 Because Hibernate is an evolved tool, it is about time to introduce connection
pooling. For this section, HikariCP was chosen to create the dataSource bean.
HikariCP is open-source, small, and practical, since only one library needs to be
added to the project, and it is said to be the fastest connection pool in the Java
universe.16

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
...
@Bean(destroyMethod = "close")
public DataSource dataSource() {

16You can read more about the project on their GitHub page https://github.com/brettwooldridge/HikariCP.

https://github.com/brettwooldridge/HikariCP

Chapter 5 ■ Data Access

238

 try {
 HikariConfig hikariConfig = new HikariConfig();
 //datasource connection data
 hikariConfig.setDriverClassName(driverClassName);
 hikariConfig.setJdbcUrl(url);
 hikariConfig.setUsername(username);
 hikariConfig.setPassword(password);

 //connection pool specific configuration
 hikariConfig.setMaximumPoolSize(5);
 hikariConfig.setConnectionTestQuery("SELECT 1");
 hikariConfig.setPoolName("springHikariCP");
 hikariConfig.addDataSourceProperty("dataSource.cachePrepStmts", "true");
 hikariConfig.addDataSourceProperty("dataSource.prepStmtCacheSize", "250");
 hikariConfig.addDataSourceProperty("dataSource.prepStmtCacheSqlLimit", "2048");
 hikariConfig.addDataSourceProperty("dataSource.useServerPrepStmts", "true");

 HikariDataSource dataSource = new HikariDataSource(hikariConfig);
 return dataSource;
 } catch (Exception e) {
 return null;
 }
}

The SessionFactory bean is then injected into repositories and is used to create objects of types
implementing org.hibernate.query.Query<R> that are executed and the result is returned, but more about
that after entity classes are covered, just a little to keep things clear.

Hibernate supports all JPA 2.x annotations in the javax.persistence.* package and extends this package
to provide behavior not supported by JPA and to perform specific enhancements. The metadata for Hibernate
is made of annotations placed on classes, fields, and methods that define how those objects should be treated,
what restrictions they have, and so on. The most important annotation is the @Entity annotation, which is part
of the javax.persistence.* and marks classes as templates for domain objects, also called entities.

■■ CC  Classes annotated with @Entity are mapped to database tables matching the class name, unless
specified otherwise using the @Table annotation.

import javax.persistence.Table;
import javax.persistence.Entity;
 ...
@Entity
@Table(name="P_USER")
public class User extends AbstractEntity {
...
}

Entity class members are annotated to specify purpose, column name (if different from the field name),
validation rules, relationships with other entities, and many more that you will discover later in the chapter.

By default, all class members are treated as persistent unless annotated with @Transient. The @Column
annotation is not necessary unless the database column name is required to be different from the field name
or restrictions need to be applied for a field.

Example: unique, nullable, insertable, updatable, length, precision, scale.
The @Id annotation marks the field as the unique identifier for this entity type and matches the primary-

key of the database table. @Entity and @Id are mandatory for a domain class.

Chapter 5 ■ Data Access

239

The access type for entity class members annotated with persistence-specific annotations is FIELD.
Their values are populated by Hibernate using reflection. Using setters and getters can be forced by using
the @Access annotation, but this is not recommended, since it might interfere with other components.
(Example: listeners and AOP advice)

Relationships between tables are defined by fields annotated with @OneToMany, @ManyToOne, @
ManyToMany, @OneToOne, and they match the database-equivalent relationship definitions. In the following
code snippet, a User entity is depicted with most of its fields and annotations. The table that Hibernate will
create in the database will be named P_USER.

The @OneToMany annotation is used to define a foreign key in the P_PET table linking pet records to
records in P_USER and can have attributes defined that specify the behavior of the child entities. For example,
in the code snippet below, using @OneToMany(mappedBy = "owner", cascade = {CascadeType.REMOVE})
tells Hibernate that on deleting a user entity, all children entities of type Pet must be deleted as well.

import org.hibernate.validator.constraints.NotEmpty;
import javax.validation.constraints.NotNull;
import javax.persistence.Column;
import javax.persistence.OneToMany;
...
@Entity
@Table(name="P_USER")
@SequenceGenerator(name = "seqGen", allocationSize = 1)
public class User extends AbstractEntity {

 @NotEmpty
 @Column(nullable = false, unique = true)
 private String username;

 @Column(name="first_name")
 public String firstName;

 @NotNull
 @Enumerated(EnumType.STRING)
 @Column(name = "user_type")
 private UserType userType;

 @NotEmpty
 @Column(unique = true)
 private String email;

 @JsonIgnore
 @OneToMany(mappedBy = "owner",
 cascade = {CascadeType.REMOVE})
 private Set<Pet> pets = new HashSet<>();
...
}

In the Pet entity class, the @ManyToOne part of the relationship is declared, and it defines an exact name
of the foreign key column using @JoinColumn. The foreign key field will be populated with a reference to the
User entity that is a parent of this domain object. In JPA, the entity declaring the @OneToMany relationship is
usually called a parent entity, and the one declaring the @ManyToOne is called a child entity.

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.JoinColumn;

Chapter 5 ■ Data Access

240

import javax.persistence.ManyToOne;
...
@Entity
@Table(name="P_PET")
public class Pet extends AbstractEntity {
...

 @ManyToOne
 @JoinColumn(name = "OWNER_ID", nullable = false)
 private User owner;
}

Also, since we are making use of inheritance to avoid writing duplicated code, an abstract class that
defines common fields for all entity classes was introduced called AbstractEntity, to tell Hibernate that this
class is not an entity class, but a template for other entity classes, the @MappedSuperclass. An architectural
decision was made to group all infrastructure-related fields in this class: the primary key field marked with
@Id and @GeneratedValue, which is used to allow auto-generation of the value, the Date fields that are
modified when the object is edited, and the @Version annotated field that is used to ensure integrity when
one is performing the merge operation and for optimistic concurrency control. An entity class can have only
one field annotated with @Version.

import com.fasterxml.jackson.annotation.JsonIgnore;
import org.springframework.format.annotation.DateTimeFormat;
import javax.validation.constraints.NotNull;
...
@MappedSuperclass
public abstract class AbstractEntity implements Serializable {

 @JsonIgnore
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(updatable = false)
 protected Long id;

 @JsonIgnore
 @Column(name = "CREATED_AT", nullable = false)
 @NotNull
 @DateTimeFormat(pattern = "yyyy-MM-dd")
 protected Date createdAt;
 ...
 @JsonIgnore
 @Version
 public int version;
}

Session and Hibernate Querying
Entities are manipulated by Session instances that provide methods for search, persist, update, delete. This
instance is also in charge of managing transactions and is a good replacement for JPA’s EntityManager. The
current session is obtained from the SessionFactory bean by calling

sessionFactory.getCurrentSession();

Chapter 5 ■ Data Access

241

The queries for these operations are written in Hibernate Query Language, which allows for a more
practical way of writing the SQL queries. HQL queries operate on domain objects and are transformed under
the hood into matching SQL queries.

Example: retrieving an object when we know its ID becomes really easy to do with Hibernate.

@Override
public User findById(Long id) {
 return session.get(User.class, id);
}

And if we want to see the SQL native query generated by Hibernate, all we have to do is look in the log with
the two hibernate SQL-specific parameters show_sql and format_sql set to true for the SessionFactory bean.

select
 user0_.id as id1_5_,
 user0_.CREATED_AT as CREATED_2_5_,
 user0_.MODIFIED_AT as MODIFIED3_5_,
 user0_.version as version4_5_,
 user0_.active as active5_5_,
 user0_.address as address6_5_,
 user0_.email as email7_5_,
 user0_.first_name as first_na8_5_,
 user0_.last_name as last_nam9_5_,
 user0_.password as passwor10_5_,
 user0_.rating as rating11_5_,
 user0_.user_type as user_ty12_5_,
 user0_.username as usernam13_5_
 from
 P_USER user0_
 where
 user0_.id=?

HQL supports placeholders and named parameters in queries written by the developer and can return
single results or collections and does not need a mapping object. Remember the RowMapper<T>? No need
for it with Hibernate. This is what ORM is good at. Based on the metadata represented by the annotations in
the entity classes, Hibernate can easily transform database records into Java objects and vice versa under the
hood. In the code snippet below, you can see a few different HQL queries.

//an empty list is returned when no record matches the criterion
List<Users> list = session.createQuery("from User u where username= ?")
//null is returned when no record matches the criterion
 User user = (User) session.createQuery("from User u where u.id= :id").
 setParameter("id", userId).uniqueResult();

// update the user
User user = (User) session().createQuery("from User u where u.id= :id").
setParameter("id", userId).uniqueResult();
user.setUsername(username);
session.update(user);

//save a new user in the database
public void save(User user) {
 session.persist(user);
}

Chapter 5 ■ Data Access

242

// delete a user
public void deleteById(User user) {
 session.delete(user);
}

To synchronize domain objects with the database, the Session instance provides quite a few methods.
The following are the most used:

•	 update(entity) is used to persist changes done to an existing database object.

•	 persist(entity) is used to save a new domain object into the database. If this
object has other domain objects associated with it and the association is mapped
with cascade="persist", the persist operation will include them as well. This
method does not return a value.

•	 save(entity) is used to save a new domain object into the database. Before saving
the object, an identifier is generated. This operation applies to associated instances
if the association is mapped with cascade="save-update". This method returns the
generated identifier.

•	 saveOrUpdate(entity) is used to save a domain object to the database. If the object
exists, update is performed; otherwise, save is performed and the operation applies
to associated instances if the association is mapped with cascade="save-update".

When Hibernate is used in the application, a repository class will use the sessionFactory bean
to manipulate data objects. The Hibernate-specific implementation of the UserRepo is depicted in the
following code snippet. Notice the sessionFactory bean being injected and obtaining the current session.

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.springframework.transaction.annotation.Transactional;
...

@Repository
@Transactional
public class HibernateUserRepo implements UserRepo {

 private SessionFactory sessionFactory;
 @Autowired
 public HibernateUserRepo(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
 /**
 * @return the transactional session
 */
 protected Session session() {
 return sessionFactory.getCurrentSession();
 }

 @Override
 public List<User> findAll() {
 return session().createQuery("from User u").list();
 }
...

The UML sequence diagram when Hibernate is used with Spring is depicted in Figure 5-18.

Chapter 5 ■ Data Access

243

Aside from all these methods, Hibernate supports execution of native queries with Session instances as
well.

import org.hibernate.query.NativeQuery;
...
 public List<String> findAll() {
 NativeQuery<String> nq = session()
 .createNativeQuery("select first_name from P_USER");
 return nq.getResultList();
 }

Exception Mapping
When things go wrong, Hibernate throws its own exceptions, which are equivalent in meaning to the
Spring data access exceptions that were already covered in a previous section. Hibernate throws runtime
data access exceptions that extend HibernateException, but these exceptions can be translated to Spring
exceptions by declaring an exception translator bean. To enable this behavior, a postprocessor bean has
to be declared that will look for all exception translator beans implementing org.springframework.dao.
support.PersistenceExceptionTranslator and will advise all repository beans (classes annotated with
@Repository) so that the translators can intercept the hibernate exceptions and apply the appropriate
translation. In the code snippet below, you can see the postprocessor bean and the Hibernate-specific
translator bean being declared in the configuration class.

import org.springframework.dao.annotation.
 PersistenceExceptionTranslationPostProcessor;
import org.springframework.orm.hibernate5.
 HibernateExceptionTranslator;
...
@Bean
public PersistenceExceptionTranslationPostProcessor petpp() {

Figure 5-18.  Conceptual UML sequence diagram for operations involving a Hibernate repository class

Chapter 5 ■ Data Access

244

 return new PersistenceExceptionTranslationPostProcessor();
 }

@Bean
public HibernateExceptionTranslator hibernateExceptionTranslator() {
 return new HibernateExceptionTranslator();
}

When exception translation using the PersistenceExceptionTranslationPostProcessor
processor is not possible, perhaps because the repository classes are part of a third-party
library, XML can be used to define an AOP advice that does the translation using the class
PersistenceExceptionTranslationInterceptor.

<bean id="pExInterceptor"
 class="org.springframework.dao.support.PersistenceExceptionTranslationInterceptor" />
...
<aop:advisor pointcut="execution(* * ..Repo+.*(..))"
 advice-ref="pExInterceptor" />

! H ibernate is not a subject for the official certificate exam, but if you want to test your understanding of it,
there is a project called 07-ps-hibernate-practice that has four TODO tasks defined, numbered from 36 to 39.

Tasks 36–38 ask you to write some missing HQL queries in the HibernateUserRepo that can be tested with
classes TestHibernateUserRepo and TestUserService.

Task 39 asks you to complete the SessionFactory bean declaration that is missing in the TestDataConfig class.

The proposed solutions can be found in project 07-ps-hibernate-solution.

When executing any of the tests, search in the console log for the words session and transaction and notice
how Hibernate and Spring work together:

...
DEBUG o.s.b.f.a.AutowiredAnnotationBeanPostProcessor - Autowiring by type
 from bean name ’hibernateUserRepo’ to bean named ’sessionFactory’
DEBUG o.s.b.f.s.DefaultListableBeanFactory - Creating instance of bean
 ’transactionManager’
INFO o.s.o.h.HibernateTransactionManager - Using DataSource
 HikariDataSource (springHikariCP)
 of Hibernate SessionFactory for HibernateTransactionManager
DEBUG o.s.t.a.AnnotationTransactionAttributeSource - Adding transactional method
’HibernateUserRepo.findById’ with attribute: PROPAGATION_MANDATORY,ISOLATION_DEFAULT; ”
DEBUG o.s.o.h.HibernateTransactionManager - Participating in existing transaction
Hibernate:
 select
 user0_.id as id1_5_0_,
 ...
 user0_.username as usernam13_5_0_
 from
 P_USER user0_
 where
 user0_.id=?

Chapter 5 ■ Data Access

245

DEBUG o.s.o.h.HibernateTransactionManager - Initiating transaction commit
DEBUG o.s.o.h.HibernateTransactionManager -
 Committing Hibernate transaction on Session ...
22:34:50.204 main DEBUG o.s.o.h.HibernateTransactionManager -
 Closing Hibernate Session ...

...

Hibernate API can be used to implement data access and participate in Spring-managed transactions.
It is also completely agnostic regarding the database used. It has no dependency on Spring or the entity
classes and provides hooks so Spring can manage transactions in a transparent manner. Implementation
and configuration location for Hibernate sessionFactory instances, transaction manager, and database
can be swapped with other implementations without any changes required in the code. If you use the
LocalSessionFactoryBuilder Spring class to create the SessionFactory bean, it will be wrapped up in a
proxy that will make sure that every session opened by this bean will participate in the current transaction.
When Hibernate is used, declaring transactions as readOnly when they do not perform write operations
could lead to considerable performance optimizations, because Hibernate will skip the flushing of the
session (there is, after all, nothing to flush).

And now that Hibernate has been introduced, some more information about ORM is appropriate before
we dive deep into JPA.

Object Relational Mapping
Object Relational Mapping, or ORM, is a method of mapping database objects to application objects and
vice versa. This makes for easy handling of data objects. Aside from that, it also provides the possibility of
querying the database using an object oriented approach. Hibernate’s full name is Hibernate ORM, because
it implements this technique to allow querying and persisting of data objects. A data object is also called a
domain object or entity. Whatever its name, this object corresponds to a database object, usually a row from
a table. There are more complex objects that can be defined and can encapsulate data from multiple tables,
but since this topic is irrelevant for this book, the details will be kept to a minimum. Domain objects are easy
to use in the application, because they encapsulate all data related to a table row stored in accessible fields.
When a row in a table becomes a domain object, the following correspondences are made:

•	 The primary key value is stored in an ID field. This field is used to identify the
object in the application. In the database, the identity is a simple topic. In Java,
because objects are involved, things are a little different. Two domain objects can
be logically equivalent, but only one of them has the ID field set with a primary key
value, so the equals and hashcode methods must be adjusted to take this aspect into
consideration.

•	 One-to-many relationships from the database are mapped to the HAS-A relationship.
The domain object has a collection of domain objects as a field. Usually this
relationship is bidirectional, and each object in the collection has a field referencing
the parent object. This field is mapped in the database to the foreign key column.

•	 Entries from the same table can be mapped to different types of domain objects in
the same hierarchy using a column value as discriminator.

Using an ORM framework introduces the following benefits:

•	 It provides mapping of database records to application objects.

•	 So no extra code needs to be written for this.

Chapter 5 ■ Data Access

246

•	 It usually provides a rich object query language that is more intuitive and easier to
use than native SQL.

•	 It provides easy navigation through objects using their relationships.

•	 It provides persistence through reachability. Look at the following code snippet:

public class User extends AbstractEntity {
...
@OneToMany(mappedBy = "owner",
 cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
 private Set<Pet> pets = new HashSet<>();
}

The cascade attribute defines what happens with child records from the P_PET table,
which are mapped to Pet objects, when the parent domain object of type User is
modified. If the User object is created together with the Pet objects at the same time,
only the User object must be persisted to the database, since the persist operation
will propagate to the child domain objects because of the CascadeType.PERSIST
value. If the User object is deleted, child domain objects are deleted as well because
of the CascadeType.REMOVE.

•	 It provides concurrency support: multiple processes can update the same data in
parallel.

•	 It provides cache management per level:

•	 per transaction (first-level cache): when an object is first loaded from the
database, the object is stored in this cache, and subsequent requests for it will
use the cache instead of going to the database.

•	 per datasource (second-level cache at SessionFactory level): reduces trips to
the database for read-heavy data and is shared by all sessions created by the
SessionFactory bean. When a domain object is not found in the first-level
cache, the next place to look is this cache. If found, the model object is also
stored in the first-level cache before it is returned.

•	 transaction management and isolation.

•	 key management, since identifiers are automatically propagated and managed.
Example: when a User object and its Pet instances are created in the system, the user
ID (primary key) is generated and used automatically to populate the foreign key
fields in the pet domain objects as well.

•	 ORM-specific code can be reused. (In the sample projects for this book, inheritance
is used for domain objects, repositories, and services).

•	 ORM code has already been tested and is maintained by the creators of the
framework; thus using an ORM reduces the effort of testing.

Aside from Hibernate, Spring supports integration with all major ORM/persistence providers such as
EclipseLink, MyBatis, and Open JPA. Although really practical, ORM introduces a little lag for large amounts
of data, so in this case, JDBC and native SQL should be used when speed of data processing is a performance
criterion.

Chapter 5 ■ Data Access

247

Java Persistence API
The previous example, depicting a Spring repository class using SessionFactory directly, ties Spring
with Hibernate. Java Persistence API, also called JPA, introduces a common interface for object relational
mapping and persistence that allows the ORM framework used to be switched easily. JPA is designed for
operating on domain objects defined as POJOs. It replaces previous persistence mechanisms: EJB and
JDO(Java Data Objects). It was first introduced in 2006 and has overcome initial limitations to successfully
provide a set of specific JPA annotations that are supported by all ORM frameworks and persistence
frameworks for Java. The annotations introduced in the previous section to configure domain objects are
part of the javax.persistence package, which contains all JPA components.

The core JPA components are as follows:

•	 Persistence Context: a context containing a set of domain objects/entities in which
for every persistent entity there is a unique entity instance.

•	 Entity Manager: as the name clearly states, such an object will manage entities, will
take care of creation, update, querying, deletion. Entity Manager classes must extend
javax.persistence.EntityManager, and instances are associated with a persistence
context by annotating them with @PersistenceContext. Usually, these instances’ life
cycles are bound to the transaction in which the method is being executed, so they
are managed by the container (in our case, the Spring container).

•	 Entity Manager Factory: again, the naming is very relevant for the purpose of
such an object. Entity Manager Factory beans have the responsibility of creating
application-managed Entity Manager instances. These factory classes must
implement javax.persistence.EntityManagerFactory. They are thread-safe,
shareable, and they represent a single datasource and persistence context.

•	 Persistence Unit: a group of entity classes defined by the developer to map database
records to objects that are managed by an Entity Manager, basically all classes
annotated with @Entity, @MappedSuperclass, and @Embedded in an application. All
entity classes must define a primary key, must have a non-arg constructor or not
allowed to be final. Keys can be a single field or a combination of fields. This set of
entity classes represents data contained in a single datasource. Multiple persistence
units can be defined within the same application. Configuration of persistence
units can be done using XML. In the official documentation it is specified that a
persistence.xml file must be defined under the META-INF directory, but if Spring
and Java Configuration are used, there is no need for that file. The following code
snippet depicts a persistence.xml sample file.

<persistence>
 <persistence-unit name="petSitterPU">
 <description>This unit manages pets, users,
 requestsm responses and reviews.
 </description>
 </persistence-unit>
</persistence>

Chapter 5 ■ Data Access

248

•	 JPA Provider: the framework providing the backend for the JPA, the one that
it is actually doing the heavy lifting. The most frequently used frameworks that
implement the JPA interface are these:

•	 Hibernate provides an implementation for EntityManager, the org.
hibernate.jpa.HibernateEntityManager, but starting with Hibernate 5.2,
org.hibernate.engine.spi.SessionImplementor is used, because it now
extends EntityManager directly. Of course, these are internal details, since
in the configuration, only the org.springframework.orm.jpa.vendor.
HibernateJpaVendorAdapter class is needed. Hibernate is used inside the JBoss
application server.

•	 EclipseLink: is used inside the Glassfish application server

•	 Apache OpenJPA: is used inside Weblogic, WebSphere, and TomEE.

•	 Data Nucleus: used by Google App Engine.

Any of them can be used outside the application servers as well.

Configure Spring and JPA with Hibernate support
For the code associated with this section, which you can find under project 09-ps-data-jpa-practice,
Hibernate will be used as a JPA provider. The most recent version of Hibernate is production ready,
compliant with JSR-338 for JPA 2.1 Specification, and is still compatible with JPA 2.0. Modifying the
application in project 07-ps-hibernate-practice to support JPA implies the following changes:

	 1.	 The SessionFactory bean declaration is no longer needed, and it will be
replaced by a bean declaring an Entity Manager Factory bean. The Spring-
specific LocalContainerEntityManagerFactoryBean class will be used for this.

import javax.persistence.EntityManagerFactory;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
...
@Configuration
@EnableTransactionManagement
public class TestDataConfig {

@Bean
 public EntityManagerFactory entityManagerFactory(){
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.ps.ents");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }

...
}

Chapter 5 ■ Data Access

249

In the method above, the LocalContainerEntityManagerFactoryBean
is created by explicit instantiation, and is not created by Spring. So the
afterPropertiesSet() that initializes the factory object must be called
explicitly. The LocalContainerEntityManagerFactoryBean object is
used to create a raw EntityManagerFactory bean as returned by the
PersistenceProvider implementation, in this case org.hibernate.
jpa.HibernatePersistenceProvider. The EntityManagerFactory
instance created by the factory bean is retrieved by calling factoryBean.
getNativeEntityManagerFactory().

The HibernateJpaVendorAdapter exposes Hibernate’s persistence provider
and EntityManager extension interface. The locations where the persistence
metadata can be found are set by the setPackagesToScan(...) method, and the
datasource bean is required as well to properly create an EntityManagerFactory.

	 2.	 The HibernateTransactionManager will be replaced by a bean of type
JpaTransactionManager that will use the EntityManagerFactory
implementation to associate Entity Manager operations with transactions.

import org.springframework.orm.jpa.JpaTransactionManager;
...
@Configuration
@EnableTransactionManagement

public class TestDataConfig {@Bean
 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

...
}

	 3.	 The repository classes will be modified to use an instance of type
EntityManager mapped to the application persistence context. The annotation
@PersistenceContext expresses a dependency on a container-managed
EntityManager and its associated persistence context.17 This field does not need
to be autowired, since the @PersistenceContext annotation is picked up by an
infrastructure Spring bean postprocessor bean of type org.springframework.
orm.jpa.support.PersistenceAnnotationBeanPostProcessor (class)
that makes sure to create and inject an EntityManager instance. To create
this instance, the backend ORM is used, in this case Hibernate 5.x, so
the entityManager bean will be of type org.hibernate.engine.spi.
SessionImplementor.

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

17The EntityManager instance annotated with @PersistenceContext cannot be accessed from a constructor, since it
cannot be created and associated with the persistence context in the constructor. The reason for this is the definition of
the @PersistenceContext. This annotation has the following meta-annotation defined: @Target(value=TYPE,METHOD,
FIELD). Full JavaDoc API here: http://docs.oracle.com/javaee/7/api/javax/persistence/
PersistenceContext.html.

http://docs.oracle.com/javaee/7/api/javax/persistence/PersistenceContext.html
http://docs.oracle.com/javaee/7/api/javax/persistence/PersistenceContext.html

Chapter 5 ■ Data Access

250

...
@Repository
public class JpaUserRepo implements UserRepo {

 private EntityManager entityManager;

 @PersistenceContext

 void setEntityManager(EntityManager entityManager) {
 this.entityManager = entityManager;
 }
...
}

In Figure 5-19, the execution of a test was paused in debug mode to depict the type of entity manager
being injected into the repository class.

The methods of the repository need to be modified to make use of the entityManager bean. The most
interesting part of the EntityManager API is depicted in Table 5-1.

Figure 5-19.  TestJpaUserRepo.testFindById() execution paused in debug mode to show the type of the
entityManager bean that was injected into the JpaUserRepo class.

Chapter 5 ■ Data Access

251

JPQL is an acronym for Java Persistence Query Language.
Comparing with the pure Hibernate implementation with Spring, only the declaration of the

transaction manager is changed, the sessionFactory bean, being replaced with entityManagerFactory.
The datasource declaration does not change, and the hibernate properties are still needed, since Hibernate
is still the backing ORM framework. Also, transactions are still needed, so @EnableTransactionManagement
remains as well.

The conceptual UML sequence diagram when JPA is used to search a user by its ID looks like the one in
Figure 5-20.

Table 5-1.  EntityManager JPA methods

Method Action Comment

<T> T find(Class<T> cl, Object pk); Find an entity by its
primary key

Equivalent to: select from table t where
t.pk= PK_VAL

Query createQuery(String ql); Create a JPQLquery Returns a collection if getResultList()
is called on the JPQL Query
object. Returns a single object if
getSingleResult() is called on the JPQL
Query object.

Query createNamedQuery(String
name)

Create a JPQL query from
a named query in the
metadata

Returns a collection if getResultList()
is called on the JPQL Query
object. Returns a single object if
getSingleResult() is called on the JPQL
Query object.

void persist(Object obj) Adds the entity to the
persistence context.

Equivalent to: insert into table...

<T> T merge(T entity); Merge the state of the
given entity into the
current persistence
context.

Equivalent to: update table t... where
t.pk=PK_VAL

void flush() Persist persistence
context contents to the
database immediately.

Use carefully.

void refresh(Object entity) Reload a state for an
entity from the database.

Changes in the persistence context are
discarded, so use carefully.

void remove(Object entity) Removes the entity from
the persistence context.

Equivalent to: delete from table t where
t.pk=PK_VAL

Chapter 5 ■ Data Access

252

JPA Querying
The simplest operation with JPA is querying an object by its ID. There is no need to write a query, since
EntityManager provides a method for this. It returns null when a user cannot be found. It returns an object
of the entity type provided as argument. There is no need for casting, since under the hood, generics are
used, just as with pure Hibernate.

public User findById(Long id) {
 return entityManager.find(User.class, id);
}

JPQL stands for JPA Query language. It is used to write domain object queries in a similar manner to HQL.

public List<User> findAllByUserName(String username, boolean exactMatch) {
 if (exactMatch) {
 return entityManager.createQuery("from User u where username= ?")
 .setParameter(0, username).getResultList();
 } else {
 return entityManager.createQuery("from User u where username like ?")
 .setParameter(0, "%" + username + "%").getResultList();
 }
}

And named parameters are supported too:

public List<User> findAllByUserName(String username, boolean exactMatch) {
 if (exactMatch) {
 return entityManager.createQuery("from User u where username= :un")
 .setParameter("un", username).getResultList();
 } else {
 return entityManager.createQuery("from User u where username like :un")

Figure 5-20.  Conceptual UML sequence diagram when Spring is used with JPA

Chapter 5 ■ Data Access

253

 .setParameter("un", "%" + username + "%").getResultList();
 }
}

Named queries are part of the metadata, and are defined with the annotation @NamedQuery, which must
be placed on the entity class that the query manages. The example above could be simplified by declaring
two named queries. The annotation @NamedQueries can be used to group multiple queries together.

//User.java
import javax.persistence.NamedQuery;
import javax.persistence.NamedQueries;
...
@Entity
@Table(name="P_USER")
@SequenceGenerator(name = "seqGen", allocationSize = 1)
@NamedQueries({
 @NamedQuery(name=User.FIND_BY_USERNAME_EXACT,
 query = "from User u where username= ?"),
 @NamedQuery(name=User.FIND_BY_USERNAME_LIKE,
 query = "from User u where username like ?")

})
public class User extends AbstractEntity {
 public static final String FIND_BY_USERNAME_EXACT = "findByUsernameExact";
 public static final String FIND_BY_USERNAME_LIKE = "findByUsernameLike";

 ...// entity fields and methods
}

//JpaUserRepo.java
import static com.ps.ents.User.FIND_BY_USERNAME_EXACT;
import static com.ps.ents.User.FIND_BY_USERNAME_LIKE;
...

@Repository("userJpaRepo")
public class JpaUserRepo implements UserRepo {

 public List<User> findAllByUserName(String username, boolean exactMatch) {
 if (exactMatch) {
 return entityManager.createNamedQuery(FIND_BY_USERNAME_EXACT)
 .setParameter(0, username).getResultList();
 } else {
 return entityManager.createNamedQuery(FIND_BY_USERNAME_LIKE)
 .setParameter(0, "%" + username + "%").getResultList();
 }
 }
...
}

Named queries support named parameters as well, and this is the recommended way of writing all
queries, because it makes them more readable and prevents errors caused by mistaken parameter indexes.

//User.java
@Entity

Chapter 5 ■ Data Access

254

@Table(name="P_USER")
@SequenceGenerator(name = "seqGen", allocationSize = 1)
@NamedQueries({
 @NamedQuery(name=User.FIND_BY_USERNAME_EXACT,
 query = "from User u where username= :un"),
 @NamedQuery(name=User.FIND_BY_USERNAME_LIKE,
 query = "from User u where username like :un")

})
public class User extends AbstractEntity {
 public static final String FIND_BY_USERNAME_EXACT = "findByUsernameExact";
 public static final String FIND_BY_USERNAME_LIKE = "findByUsernameLike";
 ...// entity fields and methods
}

//JpaUserRepo.java
import static com.ps.ents.User.FIND_BY_USERNAME_EXACT;
import static com.ps.ents.User.FIND_BY_USERNAME_LIKE;
...

@Repository("userJpaRepo")
public class JpaUserRepo implements UserRepo {
bpublic List<User> findAllByUserName(String username, boolean exactMatch) {
 if (exactMatch) {
 return entityManager.createNamedQuery(FIND_BY_USERNAME_EXACT)
 .setParameter("un", username).getResultList();
 } else {
 return entityManager.createNamedQuery(FIND_BY_USERNAME_LIKE)
 .setParameter("un", "%" + username + "%").getResultList();
 }
 }
 ...
}

When the query is expected to return multiple results, the method .getResultList() should be used.
When a single result is expected, the method getSingleResult() should be used, and a casting must be done.

JPA provides another method for querying entities using Criteria Queries. They are a part of the JPA API
that can be used for creating ad hoc queries. It was introduced in JPA 2. Although it might look complicated,
it is quite useful for complicated queries. For a simple query like the one implemented in the following code
snippet, which only searches for users having a common last name, it looks quite impractical.

import javax.persistence.criteria.*;
...
 @Override
 public List<User> findAllByLastName(String username) {
 //create the query
 CriteriaBuilder builder= entityManager.getCriteriaBuilder();
 CriteriaQuery<User> query = builder.createQuery(User.class);

Chapter 5 ■ Data Access

255

 Root<User> userRoot = query.from(User.class);
 ParameterExpression<String> value = builder.parameter(String.class);
 query.select(userRoot).where(builder.equal(userRoot.get("lastName"), value));

 // execute the query
 TypedQuery<User> tquery = entityManager.createQuery(query);
 tquery.setParameter(value,username);
 return tquery.getResultList();
 }

Aside from these methods, JPA also supports execution of native queries, using the method Query
createNativeQuery(String sqlString);, although when not using managed objects, for more control and
efficiency, JdbcTemplate is more appropriate.

import javax.persistence.Query;
...
public List<String> findAllFirstNames() {
 Query query = entityManager.createNativeQuery(
 "select first_name from P_USER"
);
 return query.getResultList();

Persistence operations that fail throw JPA-specific exceptions. But the Spring exception translator bean
takes care of translating these types of exceptions into Spring Data Access as well, thus actually hiding the
persistence provider.

Advanced JPA, JTA, JNDI
When JTA is used in a project, the persistence.xml file must be changed to include the datasource and
the persistence unit declaration:

<persistence>
 <persistence-unit name="petSitterPU">
 <description>This unit manages pets, users,
 requests, responses and reviews.
 </description>
 <jta-data-source>dataSource</jta-data-source>
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <properties>
 <property name="hibernate.dialect"
 value="org.h2.Driver"/>
 <!-- hibernate properties here -->
 </properties>
 </persistence-unit>
</persistence>

When JTA is used and the EntityManagerFactory is provided by an application server such as JBoss or
WebSphere, it can be retrieved using a JNDI lookup.

<jee:jndi-lookup id="entityManagerFactory" jndi-name="persistence/petSitterEMF" />

Chapter 5 ■ Data Access

256

!  If you want to test your understanding of working with Spring and JPA, being backed up by Hibernate, you
can take a look at 08-ps-jpa-practice. It contains only three TODOs, numbered from 40 to 42.

Task 40 is located in the TestDataConfig class and asks you to provide all the properties necessary
for the LocalContainerEntityManagerFactoryBean class so that it can be used to configure a
EntityManagerFactory bean correctly.

Task 41 is also located in the TestDataConfig class and asks to provide a proper transaction manager bean
declaration.

Task 42 is located in the JpaUserRepo class and asks you to annotate the setter for the EntityManager
instance correctly so the tests in TestJpaUserRepo can be executed and they pass.

As a bonus task, you can enrich the UserServiceImpl class with new methods that will be tested by the
UserServiceTest class.

Spring Data JPA
Spring Data is a Spring project designed to help defining repository classes in a more practical way.
Repository classes have a lot of common functionality, so the Spring team tried to provide the possibility
to offer this functionality out of the box. The solution was to introduce abstract repositories that can also
be customized by the developer to reduce the boilerplate code required for data access. To use Spring Data
components in a JPA project, a dependency on the package spring-data-jpa must be introduced.

The central interface of Spring Data is Repository<T,ID extends Serializable>. The full hierarchy
can be seen in Figure 5-21.

Chapter 5 ■ Data Access

257

Figure 5-21.  Spring Data JPA Repository hierarchy

Chapter 5 ■ Data Access

258

The NoRepositoryBean annotation is used to exclude repository interfaces from being picked up, and
repository instances will not be created for them.

Typically, a repository interface defined by a developer will extend one of the interfaces in the
Repository<T,ID extends Serializable> hierarchy. This will expose a complete set of methods to
manipulate entities.

If all that is needed is to extend the Repository<T,ID extends Serializable> interface, but you do not
like the idea of extending a Spring component, you can avoid that by annotating your repository class with
@RepositoryDefinition. This will have the same effect as extending the Repository interface, since this
interface is empty, so it is used as a marker interface that can be replaced by an annotation.

Since the project for this section needs JPA, the repositories will extend the interface JpaRepository<T,
ID extends Serializable>, which contains a set of default method skeletons out of the box, sparing
the developer quite a lot of work. When a custom repository interface extends JpaRepository, it will
automatically be enriched with functionality to save entities, search them by ID, retrieve all of them from the
database, delete entities, flush, etc. (Just look at Figure 5-21, where all methods are listed.)

Usually, repository classes must perform custom and more complex queries that are not covered by
the default methods provided by a Spring Data repository. In this case, the developer must define its own
methods for Spring to implement when the repository instance is created. To tell Spring what those methods
should do, the @Query annotation is used to annotate them. Inside that annotation should be a query
definition that will be executed at runtime and the results returned. In the code snippet below, you can see
what the UserRepo component looks like when Spring Data JPA is used.

package com.ps.repos;

import com.ps.ents.User;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.query.Param;

import java.util.List;

public interface UserRepo extends
 JpaRepository<User, Long> {

 @Query("select u from User u where u.username like %?1%")
 List<User> findAllByUserName(String username);

 // using named parameters
 @Query("select u from User u where u.username= :un")
 User findOneByUsername(@Param("un") String username);

 @Query("select u.username from User u where u.id= :id")
 String findUsernameById(Long id);

 @Query("select count(u) from User u")
 long countUsers();
}

Every Repository interface must be linked to the type of domain object it handles and the type of the
primary key, which is why in the example above, the UserRepo interface extends JpaRepository<User,
Long>. So UserRepo will manage User domain objects with a Long primary key value.

Interfaces like this are called instant repositories, because they can be created instantly by extending
one of the Spring-specialized interfaces. So under the hood, as you are probably suspecting by now, Spring

Chapter 5 ■ Data Access

259

creates a proxy object that is a fullly functioning repository bean. Any additional functionality that is not
provided by default can be easily implemented by defining a method skeleton and providing the desired
functionality using annotations.

To tell Spring that it must create repository instances, a new configuration component must be
introduced. The @EnableJpaRepositories tells Spring that it must create repository instances. As a
parameter, the base package where the custom repository interfaces have been declared must be provided.
Aside from that, the configuration also requires a persistence unit manager. In the code snipped below, you
can see all the beans involved in the Spring JPA configuration.

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager;
import org.springframework.orm.jpa.persistenceunit.PersistenceUnitManager;
...

@Configuration
@EnableJpaRepositories(basePackages = {"com.ps.repos"})
@Import(DataSourceConfig.class)
public class PersistenceConfig {

 @Autowired
 DataSource dataSource;

 @Autowired
 Properties hibernateProperties;

 @Bean
 public EntityManagerFactory entityManagerFactory(){
 LocalContainerEntityManagerFactoryBean
 factoryBean = new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPersistenceUnitManager(persistenceUnitManager());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties);
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public PersistenceExceptionTranslationPostProcessor exceptionTranslation(){
 return new PersistenceExceptionTranslationPostProcessor();
 }

 @Bean
 public PersistenceUnitManager persistenceUnitManager(){
 DefaultPersistenceUnitManager
 persistenceUnitManager = new DefaultPersistenceUnitManager();
 persistenceUnitManager.setPackagesToScan("com.ps.ents");
 persistenceUnitManager.setDefaultDataSource(dataSource);
 return persistenceUnitManager;
 }
}

Chapter 5 ■ Data Access

260

The configuration is not different from the JPA backed up by Hibernate, and Hibernate is used as a
persistence tool in this case, too. The only difference is the introduction of the PersistenceUnitManager
bean. This is used by Spring to provide the internally generated repository with access to datasource and
transactional behavior. Because Spring creates the repositories itself for this exact purpose, the @Repository
annotation is no longer needed.

Because this way of creating repositories is fast and practical, it is currently the preferred way to
implement JPA in the Spring application. The current version of this library as this book is being written is
1.10.2.RELEASE. This library is part of the Spring Data family 18, a project designed to make the creation of
repository components as practical as possible, regardless of the datasource used. In the following section,
you will be introduced to Spring Data MongoDB, the library that provides utilities to integrate Spring with
the NoSQL database called MongoDB.

!  Before starting the next section, you can play with Spring Data JPA in the 09-ps-data-jpa-practice
project. There is a bonus TODO task numbered with 44, located in the UserRepo Java file, that challenges you to
turn that interface into a Spring Data JPA repository so the tests in TestUserRepo class will pass.

**Spring and MongoDB
This is a bonus section, and information covered here does not appear in the official exam. But since
NoSQL databases are getting used more and more, it was considered appropriate at least to scratch the
surface. The NoSQL databases are a product of more and more content being generated and shared via the
Internet. Relational databases are robust, designed to store objects and connections between them in a
very structured manner. But content is not always structured, and the effort to normalize it to be stored in a
relational database can become cumbersome and very costly in resources.

A more appropriate solution would be to have a database that does not require perfectly structured
data, that is cloud friendly and scalable. And thus NoSQL databases were born to support storage and
fast access of such amounts of poorly organized, complex, and unpredictable content, also referred to as
BigData. There are currently over 225 NoSQL databases,19 and depending on their internal organization, they
can be categorized as follows:

•	 Key-Values Stores: a hash table is used with a unique key and a pointer to a
particular item of data (e.g., Amazon SimpleDB, Redis). It is the simplest to
implement, but it is inefficient when only part of a value must be queried or updated.

•	 Column Family Stores: data is organized in columns, keys are still used, but they
point to a column family. They were created to store and process very large amounts
of data distributed over many machines (e.g., HBase, Cassandra).

•	 Document Databases: similar to Key-Values Stores, but the model is versioned
documents of collections of key-value pairs. The semistructured documents are
stored in formats like JSON. This type of database supports efficient querying (e.g.,
MongoDB, CouchDB).

•	 Graph Databases: to store the data, a flexible graph model is used that can scale
across multiple machines (Infinite Graph, Neo4jJ).

18Project official page: http://projects.spring.io/spring-data/
19You can read about them here: http://nosql-database.org/.

http://projects.spring.io/spring-data/
http://nosql-database.org/

Chapter 5 ■ Data Access

261

For the code in this section, MongoDB Community edition20 was used, because it is lightweight and easy
to install on any operating system. The following steps were taken to set up the project 09-ps-mongo-sample:

•	 The first step is to install it on your system. Instructions to install on any operating
system can be found on their official site here: https://docs.mongodb.com/manual/
administration/install-community/.

•	 The next step is to start MongoDB. On every operating system there is an executable
that can do this. The database service will be stared on the 27017 port.

iuliana.cosmina@home - $ mongod --dbpath temp/mongo-db/
CONTROL initandlisten MongoDB starting : pid=89126 port=27017
 dbpath=/Users/iuliana.cosmina/temp/mongo-db/ 64-bit host=home
CONTROL initandlisten db version v3.2.8

•	 Open the mongo shell and test what database is used by executing the db command.
The retuned result should be test.

iuliana.cosmina@home - $ mongo
MongoDB shell version: 3.2.8
connecting to: test
Server has startup warnings:
2016-07-25T22:00:24.783+0300 I CONTROL initandlisten
2016-07-25T22:00:24.783+0300 I CONTROL initandlisten
 ** WARNING: soft rlimits too low.
 Number of files is 256, should be at least 1000
> db
test
>

For the purpose of the code sample in this section, there is no need to create a new
database, so test will do.

•	 Create a domain object class that will be mapped to a MongoDB object. The class
must have an identified field that will be annotated with the Spring Data special
annotation @Id from the package org.springframework.data.annotation.
Instances of this type will become entries in a collection named the same as the class
but lowercased: user.

package com.ps.ents;

import org.springframework.data.annotation.Id;
import java.math.BigInteger;

public class User {

 @Id
 private BigInteger id;
 private String email;
 private String username;
 ... // other fields

20Official site here: https://www.mongodb.com/community.

https://docs.mongodb.com/manual/administration/install-community/
https://docs.mongodb.com/manual/administration/install-community/
https://www.mongodb.com/community

Chapter 5 ■ Data Access

262

 public BigInteger getId() {
 return id;
 }

 public void setId(BigInteger id) {
 this.id = id;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }
... // other setters and getter
 @Override
 public String toString() {
 return "User{" +
 "id=" + id +
 ", email=’" + email + ’\” +
 ", username=’" + username + ’\” +
 ", password=’" + password + ’\” +
 ", rating=" + rating +
 ", active=" + active +
 ", firstName=’" + firstName + ’\” +
 ", lastName=’" + lastName + ’\” +
 ’}’;
 }
}

•	 Create a new UserRepo interface that will extend the Spring Data MongoDB-
specialized interface MongoRepository<T,ID extends Serializable>.

package com.ps.repos;

import com.ps.ents.User;
import org.springframework.data.mongodb.repository.MongoRepository;
import org.springframework.data.mongodb.repository.Query;

import java.util.List;

public interface UserRepo extends MongoRepository<User, Long> {

 @Query("{’username’: { ’$regex’ : ?0 } }")
 List<User> findAllByUserName(String username);
}

Chapter 5 ■ Data Access

263

Every RepoMongoRepositorysitory interface must be linked to the type of object
it handles and the type of unique identifier, which is why in the example above,
the UserRepo interface extends MongoRepository<User, Long>. So UserRepo will
manage User objects with a Long unique identifier.

•	 Create a configuration class and annotate it with @EnableMongoRepositories to
enable creation of MongoDB repository instances. This annotation is similar in
functionality to @EnableJpaRepositories, but needs for the package(s) where
the Mongo repository classes are declared to be provided as a a value for its
basePackages attribute.

package com.ps.config;

import com.mongodb.MongoClient;
...
import org.springframework.data.mongodb.MongoDbFactory;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.SimpleMongoDbFactory;
import org.springframework.data.mongodb.repository.config.
EnableMongoRepositories;

@Configuration
@EnableMongoRepositories(basePackages = "com.ps.repos")
@ComponentScan(basePackages = { "com.ps.init"})
public class AppConfig {

 public static final String DB_NAME = "test";
 public static final String MONGO_HOST = "127.0.0.1";
 public static final int MONGO_PORT = 27017;

 @Bean
 public MongoDbFactory mongoDb() throws Exception {
 return new SimpleMongoDbFactory(new MongoClient(
 MONGO_HOST, MONGO_PORT), DB_NAME);
 }

 @Bean
 public MongoTemplate mongoTemplate() throws Exception {
 return new MongoTemplate(mongoDb());
 }
}

The MongoTemplate is used by the repository instances to manipulate data in the
user collection. Create a test class to test the User data manipulation.

•	 Create a test class to test the User data manipulation.

...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = { AppConfig.class})
public class TestUserRepo {
 @Autowired

Chapter 5 ■ Data Access

264

 UserRepo userRepo;

 @Test
 public void testFindById() {
 List<User> johns = userRepo.findAllByUserName("john");
 assertTrue(johns.size() == 2);
 logger.info(johns.toString());
 }

 @Test
 public void testFindAll() {
 List<User> users = userRepo.findAll();
 assertTrue(users.size() == 5);
 }

 @Test
 public void testNoFindById() {
 User user = userRepo.findOne(99L);
 assertNull(user);
 }

 @Test
 public void testCreate() {
 User diana = DBInitializer.buildUser("diana.ross@pet.com");
 diana.setPassword("test");
 diana = userRepo.save(diana);
 assertNotNull(diana.getId());
 }
...
}

The first time an object is saved in the collection, the collection is created as well. After the first run of
one of the test methods, the mongo shell can be used to inspect the contents of the user collection using the
db.user.find() function. The contents of the collection will be formatted in JSON form. For a pretty print,
use db.user.find().pretty().

> db.user.find().pretty()

{ "_id" : ObjectId("57966a4a17c62e0eae6b4b20"),

 "_class" : "com.ps.ents.User",
 "email" : "johnny.big@pet.com",
 "username" : "johnny.big",
 "rating" : 0,
 "active" : true,
 "firstName" : "johnny",
 "lastName" : "big" }

{ "_id" : ObjectId("57966a4a17c62e0eae6b4b24"),
 "_class" : "com.ps.ents.User",
 "email" : "john.cusack@pet.com",
 "username" : "john.cusack",

Chapter 5 ■ Data Access

265

 "rating" : 0,
 "active" : true,
 "firstName" : "john",
 "lastName" : "cusack" }

As you have probably noticed, transactions have been mentioned nowhere in the MongoDB section.
This is because transactional behavior is handled by a transaction manager. As this book is being written,
there is not yet an implementation of Spring’s PlatformTransactionManager for MongoDB, since this type
of database is not transactional in the ACID sense.

The Spring team has set up a public GitHub repository https://github.com/spring-projects/
spring-data-book containing an example of a Spring simple application with most of the supported NoSQL
databases. If you are curious, feel free to clone it and try the code examples.

There will be no practice section at the end of the chapter, since it was scattered in the chapter after the
essential sections.

Summary
Below, a list of core concepts and important details related to spring Data Access has been compiled for you:

•	 Spring supports data access with a layered architecture; higher layers have no
knowledge about data management.

•	 Spring provides Data Access smart unchecked exceptions that get propagated to
higher layers if untreated.

•	 Spring provides consistent transaction management: declarative and programmatic.

•	 Spring supports most popular persistence and ORM providers, which provide great
support for caching, object management, automatic change detection.

•	 Spring can be used with Hibernate directly, without JPA API.

•	 Spring can be used with JPA API, but must be backed up by a persistence and ORM
providers.

•	 Spring Data JPA helps the developer to avoid boilerplate code when creating
repository components.

•	 Spring Data family project also provides support for NoSQL databases.

•	 Transaction management can be done by Spring-specialized infrastructure beans or
by a transaction manager provided by an Application Server.

•	 Databases can be defined within the Spring configuration or can also be provided
provided by an Application Server.

Quiz
Question 1: What data access technology is supported by the Spring framework?(choose all that apply)

	 A.	 JDBC

	 B.	 Hibernate

	 C.	 JPA

	 D.	 NoSQL

https://github.com/spring-projects/spring-data-book
https://github.com/spring-projects/spring-data-book

Chapter 5 ■ Data Access

266

Question 2: Does Spring support transactional execution when using JdbcTemplate ?

	 A.	 yes, if the methods encapsulating JdbcTemplate are annotated with @
Transactional

	 B.	 no

Question 3: Analyze the following code snippet:

public Set<User> findAll() {
 String sql = "select id, username, email, password from p_user";
 return new HashSet<>(jdbcTemplate.query(sql, rowMapper));
}

What can be said about the rowMapper object ? (choose all that apply)

	 A.	 must implement RowMapper<T> interface

	 B.	 is stateful

	 C.	 provides a method to transform a ResultSet content into User objects

Question 4: Does JdbcTemplate support execution of SQL native queries?

	 A.	 yes

	 B.	 no

	 C.	 if configured so

Question 5: What is not provided by JdbcTemplate ?

	 A.	 JDBC exception wrapping into DataAccessException

	 B.	 data source access

	 C.	 JDBC query execution with named parameters

	 D.	 method to open/close a connection

Question 6: What needs to be done to implement transactional behavior in a Spring application? (choose all
that apply)

	 A.	 enable declarative transaction support by annotating a configuration class with @
EnableTransactionManagement

	 B.	 declare a transaction manager bean

	 C.	 annotate service methods with @Transactional

	 D.	 activate transactional profile

	 E.	 when using XML, declare <tx:annotation-driven/>

Question 7: Which of the following are valid transaction propagation values?(choose all that apply)

	 A.	 MANDATORY

	 B.	 REQUIRED

	 C.	 PREFERED

	 D.	 NOT_ALLOWED

Chapter 5 ■ Data Access

267

Question 8: When should a transaction be declared as readOnly ?

	 A.	 when it does not include any writing statements execution

	 B.	 when a large set of data is read

	 C.	 when no changes should be allowed to the databases

Question 9: Analyze the following code snippet:

@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

 @Transactional(propagation = Propagation.REQUIRES_NEW)
 @Override
 public User findById(Long id) {
 return userRepo.findById(id);
 }
}

What can be said about the findById() method?

	 A.	 the method is executed in a new transaction

	 B.	 when a method is executed, an exception will be thrown because the transaction
is not declared as readOnly

	 C.	 the method is executed in an existing transaction

Question 10: Spring provides programatic transaction management. What are the Spring type of beans that
are used to implement a repository class using programatic transaction management? (choose all that apply)

	 A.	 TransactionTemplate

	 B.	 TransactionDefinition

	 C.	 TransactionService

	 D.	 TransactionCallback

	 E.	 PlatformTransactionManager

	 F.	 TransactionStatus

Question 11: What is the default rollback policy in transaction management?

	 A.	 Rollback for any Exception

	 B.	 Rollback for RuntimeException

	 C.	 Rollback for checked exceptions

	 D.	 Always commit

Question 12: What is used “under the hood” to implement the transactional behavior in Spring?

	 A.	 JDBC

	 B.	 JPA

	 C.	 AOP

Chapter 5 ■ Data Access

268

Question 13: What happens if a method annotated with @Transactional calls another method annotated
with @Transactional ?

	 A.	 a transaction is created for each method

	 B.	 a single transaction is created and the methods are executed as a single unit of
work

	 C.	 depends on the configuration for each @Transactional

Question 14: Which of the following are Hibernate-specific Spring infrastructure beans? (choose all that apply)

	 A.	 SessionFactory

	 B.	 Session

	 C.	 HibernateTransactionManager

	 D.	 HikariDataSource

	 E.	 LocalSessionFactoryBuilder

Question 15: What can be said about the @Entity annotation? (choose all that apply)

	 A.	 is part of the JPA official API

	 B.	 can be used without the JPA API

	 C.	 marks the class as an entity; instances of this class will be mapped to table
records

	 D.	 it can be placed only at class level

Question 16: What is needed to work with JPA in Spring? (choose all that apply)

	 A.	 declare an EntityManagerFactory bean

	 B.	 declare a PersistenceProvider bean

	 C.	 declare a JpaTransactionManager bean

	 D.	 all of the above

Question 17: What can be done to declare an instant repository with Spring Data JPA? (choose all that apply)

	 A.	 extend interface Repository

	 B.	 no need to extend an interface; just annotate the interface with @
RepositoryDefinition

	 C.	 for multiple methods out of the box extend JpaRepository

	 D.	 implement interface Repository

Question 18: What configuration annotation enables creation of repository instances with SpringDataJPA?

	 A.	 @EnableJpaRepositories

	 B.	 @EnableInstantRepositories

	 C.	 @EnableRepositoryGeneration

	 D.	 @EnableTransactionManagement

Chapter 5 ■ Data Access

269

Question 19: Analyze the following code snippet:

public interface UserRepo extends JpaRepository<User, Long> {
 @Query("select u from User u where u.username like %?1%")
 List<User> findAllByUserName(String username);
}

What can be said about the findAllByUserName() method?

	 A.	 it is not a valid Spring Data JPA repository method

	 B.	 the argument for @Query is a JPQL query

	 C.	 the class is not a repository, because it is not annotated with @Repository

	 D.	 this code will not compile

271© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_6

CHAPTER 6

Spring Web

In previous chapters, multilayered style projects were depicted. On top of the service layer was always the
presentation layer, or the Web layer. This layer is the top layer of an application, and its main function is to
translate user actions into commands that lower-level layers can understand and transform results from
them into user-understandable data. Web applications can be accessed using clients such as browsers or
specific applications that can interpret correctly the interface provided by the application such as mobile
applications. So far in this book, only Spring components specific to lower-level layers have been introduced.
This chapter will scratch the surface on components specific to the presentation layer that make the user
interface and implement security.

Spring provides support for development of the web layer as well through frameworks such as Spring
Web MVC and Spring WebFlow. A typical Java Web application architecture is depicted in Figure 6-1.

Figure 6-1.  Typical Java Web application architecture

Chapter 6 ■ Spring Web

272

There can be more layers, but usually web applications have at least these three:

•	 DAO, where data mapping components (domain objects or entity classes) are
defined.

•	 Service (also known as Business), where all classes needed to transform user data
to be passed to the DAO layer are located. The business entities are POJOs that help
with this conversion. All components specific to this layer implement how data can
be created, displayed, stored, and changed.

•	 Presentation, where components that implement and display the user interface and
manage user interaction reside.

Spring Web MVC is a popular request-driven framework based on the Model–View–Controller software
architectural pattern, which was designed to decouple components that by working together make a fully
functional user interface. The typical Model–View–Controller behavior is displayed in Figure 6-2.

The main idea of MVC is that there are three decoupled components. Each of them can be easily
swapped with a different implementation, and together they provide the desired functionality. The view
represents the interface with which the user interacts. It displays data and passes requests to the controller.
The controller calls the business components and sends the data to the model, which notifies the view that
an actualization is needed. The model content is displayed by the view.

The central piece of Spring Web MVC is the DispatcherServlet class, which is the entry point for
every Spring Web application. It dispatches requests to handlers, with configurable handler mappings,
view resolution, locale, timezone, and support for uploading files. The DispatcherServlet converts HTTP
requests into commands for controller components and manages rendered data as well. It basically acts as
a Front Controller for the whole application. The basic idea of the Front Controller software design pattern,
which implies that there is a centralized point for handling requests, is depicted in Figure 6-3.

Figure 6-2.  Typical MVC behavior

Chapter 6 ■ Spring Web

273

The Spring Web MVC provides already configured beans for the implementation of this behavior, and
these beans are contained in two main modules:

•	 spring-web.jar

•	 spring-webmvc.jar

A standard servlet listener is used to bootstrap and shut down the Spring application context. The
application context will be created and injected into the DispatcherServlet before any request is made,
and when the application is stopped, the Spring context will be closed gracefully as well. The Spring servlet
listener class is org.springframework.web.context.ContextLoaderListener

Spring Web MVC is Spring’s web framework, and thus Spring’s typical configuration style is used, and
controller components are beans. Starting with Spring 2.5, annotation configurations were introduced, so
the controller components can be declared with a specialized stereotype annotation: @Controller. A Spring
application can be deployed on an application server, can run on an embedded server like Jetty, or can be
run with Spring Boot. All three flavors will be covered in this chapter.

Spring can be integrated with other frameworks:

•	 Struts 2: an open source framework for building Servlet/JSP from Apache-based
web applications based on the Model–View–Controller (MVC) design paradigm. A
previous version of this framework, Struts 1, was discontinued in 2016, but Struts 2 is
alive and kicking, and on July 7, 2016, version 2.5.2 GA was released, as announced
on their official site. More information can be found on the official site https://
struts.apache.org/.

•	 Wicket: another open source Java web framework from Apache that was born in
2004 and is still alive and kicking; version 1.5.16 was released on August 5, 2016.
This framework was designed with simplicity and separation of concerns as main
purposes. More information can be found on the official site http://wicket.
apache.org/.

Figure 6-3.  Front Controller software design pattern idea

https://struts.apache.org/
https://struts.apache.org/
https://struts.apache.org/
http://wicket.apache.org/
http://wicket.apache.org/

Chapter 6 ■ Spring Web

274

•	 Tapestry 5: a component-oriented framework for creating highly scalable web
applications in Java, also supported by Apache. More information can be found on
the official site http://tapestry.apache.org/.

•	 Spring WebFlow: a Spring framework designed for implementation of stateful flows
and destined for applications that require navigation through sequential steps in
order to execute a business task. More information can be found on the official site
http://projects.spring.io/spring-webflow/.

Using Spring Web MVC writing and running web applications is as easy as writing a simple standalone
application as done in the previous chapters. Spring provides infrastructure beans for everything that is
needed to boot up a web application and even a framework called Spring Boot that makes it easy to create
standalone production-grade Spring-based applications by providing infrastructure beans already set up
with a default general configuration. All this will be covered in this chapter, but keep in mind that the surface
is only scratched on this topic, since Spring Web MVC is part of the set of topics for the Pivotal Certified
Spring Web Application Developer exam and for this, Apress has published a different book.1

Spring Web App Configuration
When a user accesses a URL, an HTTP request is generated to a web application hosted on an application
server. Based on that request, inside the application context an action must be performed. The result of
the action performed is returned, and it needs to be represented using a view. In a Spring Web application,
all HTTP requests first reach the DispatcherServlet. Based on the configuration, a handler is called,
which is a method of a class called controller. The result is used to populate a model that is returned to
the DispatcherServlet, which based on another set of configurations decides which view is to be used to
display the result.

This process is depicted in Figure 6-4.

Figure 6-4.  Request processing steps in a Spring Web application

1Pivotal Certified Spring Web Application Developer Exam; http://www.apress.com/9781484208090.

http://tapestry.apache.org/
http://projects.spring.io/spring-webflow/
http://www.apress.com/9781484208090

Chapter 6 ■ Spring Web

275

The DispatcherServlet is the entry point of the application, the heart of Spring Web MVC
that coordinates all request handling operations. It is equivalent to ActionServlet from Struts and
FacesServlet2 from JEE. It delegates responsibilities to Web infrastructure beans and invokes user web
components. It is customizable and extensible. The DispatcherServlet must be defined in web.xml
when the application is configured using the old-style XML configuration. When using a configuration
without web.xml, a configuration class that extends AbstractDispatcherServletInitializer or
AbstractAnnotationConfigDispatcherServletInitializer must be declared. These two are Spring
specialized classes from the org.springframework.web.servlet.support package that implement org.
springframework.web.WebApplicationInitializer. Objects of types implementing this interface are
detected automatically by SpringServletContainerInitializer, which is bootstrapped automatically
by every Servlet 3.0+ environment. More about specialized classes to be used to bootstrap Spring and
configuring the DispatcherServlet will be covered in this chapter, along with information regarding the
context in which each is used will be provided.

The DispatcherServlet uses Spring for its configuration, so programming using interfaces is a must to
allow swapping different implementations easily.

The DispatcherServlet creates a separate “servlet” application context containing all specific
web beans (controller, views, view resolvers). This context is also called the web context or the
DispatcherServletContext.

The application context is also called RootApplicationContext. It contains all non-web beans and
is instantiated using a bean of type org.springframework.web.context.ContextLoaderListener. The
relationship between the two contexts is a parent–child relationship, with the application context being the
parent. Thus, beans in the web context can access the beans in the parent context, but not conversely.3 This
separation is useful when there is more than one servlet defined for an application, for example, one that
handles web requests and one that handles web services calls, because they can both inherit beans from the
root application context.

Of course, the beans in the root context can be included in the web context, but most nontrivial Spring
applications require separate contexts for the web and the non-web part of the application, since usually
the web part of an application is only a small part of the overall application, production applications having
many concerns that lie outside the web context.

2FacesServlet is a servlet that manages the request processing lifecycle for web applications that utilize
JavaServer Faces to construct the user interface. org.springframework.web.context
3This resembles class inheritance: the superclass inherits the parent class and can access its members.

Chapter 6 ■ Spring Web

276

The DispatcherServlet uses some infrastructure beans called handling mappings to identify a
controller method to call and handler adapters to call it. An abstract diagram describing the call sequence is
depicted in Figure 6-5.

In the Spring MVC versions previous to 2.5, all configuration was done using XML, and the controller
classes had to extend the org.springframework.web.servlet.mvc.AbstractController Spring class. In
Spring 2.5, the new @MVC model and support for annotations were introduced. Configuration still relied
on XML for MVC infrastructure-specific beans, but controller classes no longer need to extend the Spring
specialized class, since only annotating them with the stereotype annotation @Controller was enough for
Spring to know what they are used for. Starting with Spring 3.0, Java Configuration was introduced, which led
to totally removing XML configuration. Almost. Because the web.xml typical configuration file for a Java web
application was still needed. Starting with Servlet 3.0, web.xml is no longer needed as well.

This book focuses more on @MVC and Java Configuration for web applications, since XML is probably
going to be dropped in the future. The surface will be scratched a little on the XML configuration topic, just
to give you an idea.

Quickstart
These are the usual steps taken to develop a Spring Web MVC application:

•	 develop backend application beans (service and DAO) and configuration

•	 develop MVC functional beans, also known as controllers or handlers, that contain
methods also known as handler methods, which will be used to handle HTTP
requests

•	 develop views used to display the results returned by handlers (common *.jsp files)

•	 declare and configure MVC infrastructure beans

•	 configure the web application

Figure 6-5.  Abstract UML diagram for handling a HTTP request

Chapter 6 ■ Spring Web

277

Controllers
Controllers are classes that define methods used to handle HTTP requests. They are annotated with the
stereotype Spring annotation @Controller. Each handler method is annotated with @RequestMapping,
which provides information regarding when this method should be called. In the following code snippet
a controller class is defined, containing one handler method, which will be called when the user sends a
request with the following URL:

http://localhost:8080/mvc-basic/users/list

The URL contains the following elements:

•	 http is HTML protocol definition

•	 localhost is the name/domain/IP of the machine where the application server is
installed

•	 8080 is the port where the application server can be accessed

•	 mvc-basic is the web application context

•	 /users/list is the request mapping value

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
...

@Controller
public class UserController {
 @Autowired
 private UserService userService;

 /**
 * Handles requests to list all users.
 */
 @RequestMapping(value = "/users/list", method = RequestMethod.GET)
 public String list(Model model) {
 logger.info("Populating model with list...");
 model.addAttribute("users", userService.findAll());
 //string used to identify the view
 return "users/list";
 }
}

Spring provides a way to specify the type of HTTP request on which the handler method should be
called, via the method attribute of the @RequestMapping annotation.4 The mapping rules are usually URL
based and they can also contain wildcards and regular expressions. The @RequestMapping can also be used at

4HTTP GET request is used when the user is requesting data from the application. HTTP POST and PUT are requests
that send data to the application.

Chapter 6 ■ Spring Web

278

class level, to simplify mappings at method level when the mappings have common elements. For example, in
case you have many @RequestMapping methods with the common pattern /users, the UserController class
can be annotated with @RequestMapping("/users")], situation depicted in the code snippet below.

...
@Controller
@RequestMapping("/users")
public class UserController {
 //matches http://localhost:8080/mvc-basic/users/list
 @RequestMapping(value = "/list", method = RequestMethod.GET)
 public String list(Model model) { ...}

 //matches http://localhost:8080/mvc-basic/users/105
 @RequestMapping(value = "/{id:\\d*}", method = RequestMethod.GET)
 public String show(Long id, Model model) {
 ...
 }
}

The handler methods have flexible signatures with parameters that provide information about the
request context. Spring will transparently provide arguments when the handler methods are called.
Depending on the URL type, different annotations can be used to tell Spring what values to use.

•	 URL (Uniform Resource Locator)

•	 http://localhost:8080/mvc-basic/showUser?userId=105

Is handled by a method that has a parameter annotated with @RequestParam because the request is
parametrized. If the url parameter has a name different from the method parameter, the annotation is used
to inform Spring of that.

■■ CC T he convention in this case is that if the name of the parameter is not specified in the @RequestParam
annotation, then the request parameter is named the same as the method parameter.

import org.springframework.web.bind.annotation.RequestParam;
...
@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping(value = "/showUser", method = RequestMethod.GET)
 public String show(@RequestParam("userId") Long id, Model model) {
 ...
 }
}

•	 URI (Uniform Resource Identifier) is a cleaner URL request parameters. Handling
URIs is supported starting with Spring 3.0.

http://localhost:8080/mvc-basic/users/105

Chapter 6 ■ Spring Web

279

The previous URI is handled by a method that has a parameter annotated with @PathVariable because
the request URI contains a piece that is variable. That piece is called a path variable and is defined by the
@RequestMapping annotation. If the path parameter has a name different from the method parameter,
the annotation is used to inform Spring of that.

■■ CC T he convention in this case is that if the name of the path variable name is not specified in the
PathVariable annotation, then the path variable is named the same as the method parameter.

import org.springframework.web.bind.annotation.PathVariable;
...
@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping(value = "/{userId}", method = RequestMethod.GET)
 public String show(@PathVariable("userId") Long id, Model model) {
 ...
 }
}

A handler method typically returns a string value representing a logical view name, and the view is
populated with values in the Model object.

■■ CC B y default, the logical view name is interpreted as a path to a JSP page. Controller methods can also
return null or void, and in this case, the default view is selected based on the request URL. Controller methods
can also return concrete views, but this is usually avoided because it couples the controller with the view
implementation.

import org.springframework.web.servlet.ModelAndView;
...
@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping(value = "/{userId}", method = RequestMethod.GET)
 public ModelAndView show(@PathVariable("userId") Long id) {
 User user = ...;// no relevant
 ModelAndView modelAndView = new ModelAndView("user");
 return modelAndView;
 }
}

Chapter 6 ■ Spring Web

280

The model contains the data that will be used to populate a view. Spring provides view resolvers in
order to do this to avoid ties to a specific view technology. Out of the box Spring supports JSP, Velocity
templates, and XSLT views. The interfaces needed to be used to make this possible are ViewResolver
and View. The first provides a mapping between view names and actual views. The second takes care
of preparing the request and forwards it to a view technology. The DispatcherServlet delegates to a
ViewResolver to map logical view names to view implementations. Spring comes out of the box with a few
view resolver implementations. All handler methods must resolve to a logical view name that corresponds to
a file, either explicitly by returning a String, View, or ModelAndView instance or implicitly based on internal
conventions. The core view resolver provided by Spring is the InternalResourceViewResolver; it is the
default view resolver. Inside spring-webmvc.jar there is a file called DispatcherServlet.properties, and
in it all default infrastructure beans are declared. If you look for the default view resolver, you will find the
previously mentioned implementation:

org.springframework.web.servlet.ViewResolver=
 org.springframework.web.servlet.view.InternalResourceViewResolver

The default implementation can be overridden by registering a ViewResolver bean with the
DispatcherServlet. The default view resolver implementation is also customizable, and can be configured
to look for view template files in a different location. The previous code snippets returned string values as
view names. In Figure 6-6, the configuration and the mechanism of resolving views is depicted.

The previous image depicts how DispatcherServlet, UserController and an
InternalResourceViewResolver bean configured by the developer work together to produce a view. Each
action has a number, and the steps are explained below:

	 1.	 The DispatcherServlet identifies the handler method for the users/list GET
request and requests the UserController method to handle the request.

	 2.	 The handler method is executed and a logical view name users/list and
a model object containing the collection named users are returned to the
DispatcherServlet. Note that model={users} is a notation that means that the
users object is contained by the model object.

	 3.	 The DispatcherServlet asks the InternalResourceViewResolver to which view
template the users/list logical view name corresponds.

Figure 6-6.  Custom Internal Resource View Resolver Example

Chapter 6 ■ Spring Web

281

	 4.	 The InternalResourceViewResolver, which is configured as follows:

<bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/"/>
 <property name="suffix" value=".jsp"/>
</bean>

takes the logical view name, applies the prefix (/WEB-INF/) and the suffix (.jsp)
and sends the result (/WEB-INF/users/list.jsp), which is the physical path of
the view template to the DispatcherServlet.

	 5.	 The DispatcherServlet will further use the view template provided by the
InternalResourceViewResolver and the model object received from the
UserController to create a view.

To summarize everything so far, and to be able to dive completely into the Spring MVC configuration, to
configure a Spring web application you must do the following:

•	 define the DispatcherServlet as the main servlet of the application that will handle
all requests in the web.xml file and link it to the Spring configuration or configure this
servlet programmatically by using a class implementing WebApplicationInitializer
(possible only in a Servlet 3.0+ environment)

•	 Define the application configuration (usually in a Spring configuration file named
mvc-config.xml or a Java Configuration class), which should contain the following:

–– Define the MVC context used (handler adapter, handler mapping, and other infrastructure
beans)

–– Define a view resolver (or more)

Sounds pretty straightforward, right?

XML
To define the DispatcherServlet as the main servlet of the application, the web.xml file located under the
webapp\WEB-INF directory must be modified to include this Spring specialized servlet and the parameters for it.

The following configuration snippet is suitable for this scenario:

<!-- web.xml -->
<web-app ...>
 <!-- The front controller, the entry point for all requests -->
 <servlet>
 <servlet-name>pet-dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/mvc-config.xml
 </param-value>

Chapter 6 ■ Spring Web

282

 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Map all requests to the DispatcherServlet for handling -->
 <servlet-mapping>
 <servlet-name>pet-dispatcher</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
 ...
</web-app>

The DispatcherServlet was named pet-dispatcher, and the Spring Web MVC configuration file is
referred into the web.xml file as value for the contextConfigLocation parameter. In the above case, the mvc-
config.xml contains the Spring configuration for the front end (controllers and MVC infrastructure beans),
the file is loaded by the DispatcherServlet, and a web execution context for the application is created.

The servlet-mapping elements map all incoming requests to the DispatcherServlet, and the url-
pattern element can even contain a context to further filter the requests, in case other servlets are used
(example: security handler servlet).

The declaration of a view resolver bean should be located in the mvc-config.xml file, since it is a Spring
infrastructure bean. To match the internal structure of the web application presented earlier, the bean is
customized like this:

<beans ...>
 <bean class="
 org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/"/>
 <property name="suffix" value=".jsp"/>
 </bean>
 ...
</beans>

The InternalResourceViewResolver configured like this receives the logical view name from the
DispatcherServlet, applies the prefix (/WEB-INF/) and the suffix (.jsp), and sends the result, which will be
a something similar to (/WEB-INF/[template_path/template_name].jsp), which is the physical path of the
view template, to the DispatcherServlet, which will use the view template and the model object received
from the controller to create a view that will be displayed to the end user.

The InternalResourceViewResolver has more properties, and an important one is the
requestContextAttribute, which is the context holder for request-specific states, such as current web
application context, current locale, current theme, and potential binding errors. It provides easy access to
localized messages and Errors instances.

<beans ...>
 <bean class="
 org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/"/>
 <property name="suffix" value=".jsp"/>
 <property name="requestContextAttribute" value="requestContext"/>
 </bean>
 ...
</beans>

Chapter 6 ■ Spring Web

283

Localization and personalization are advanced subjects that are not needed for the CORE certification
exam, so they won’t be covered in detail here. The requestContextAttribute was mentioned, because most
developers new to Spring often forget about it and get really confused when changing locale, and themes
doesn’t work even if they declare and configure all the necessary beans. Also, requestContext is used in
the *.jsp files to decide locale and themes. The following JSP snippet depicts how the attribute is used to
implement some of the URLs that will set the locale of the application when clicked. Additional taglibs are
used: JSTL taglib for conditions, and the Spring taglib for internationalization. The complete code sample
can be found in the code attached to the book.

<!-- JSTL taglib import -->
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<!-- Spring taglib import -->
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
...
<c:choose>
 <!-- when locale is English -->
 <c:when test="${requestContext.locale.language eq ’en’}">
 <c:url var="localeUrl" value="/">
 <c:param name="locale" value="de"/>
 </c:url>
 <spring:message code="locale.de"/>
 <!-- text: German -->
 <!-- URL: http://localhost:8080/mvc-basic/?locale=de-->
 </c:when>
 <c:otherwise>
 <!-- when locale is German -->
 <c:url var="localeUrl" value="/">
 <c:param name="locale" value="en"/>
 </c:url>
 <spring:message code="locale.en"/>
 <!-- text: English -->
 <!-- URL: http://localhost:8080/mvc-basic/?locale=en-->
 </c:otherwise>
</c:choose>

The next step: defining a controller. The class was already introduced previously, so the following code
snippet only depicts the core element of a controller class. The method covered here handles a request to
display a user. The id value is part of the URI and is automatically populated by Spring. The userService is
a bean used to extract the data from the database, and the users/show is the logical name of the view, which
will be resolved to the /WEB-INF/users/show.jsp view.

//custom exception, implementation not relevant for context
import com.ps.problem.NotFoundException;
...
@Controller
@RequestMapping("/users")
public class UserController {

Chapter 6 ■ Spring Web

284

 private UserService userService;

 public void setUserService(UserService userService) {
 this.userService = userService;
 }

 @RequestMapping(value = "/{id:\\d*}", method = RequestMethod.GET)
 public String show(@PathVariable Long id, Model model)
 throws NotFoundException {
 User user = userService.findById(id);
 if (user == null) {
 throw new NotFoundException(User.class, id);
 }
 model.addAttribute("user", user);
 return "users/show";
 }
}

The controller bean also has to be declared in the mvc-config.xml file.

<beans ...>
 <!-- by component scanning -->
 <context:component-scan base-package="com.ps.web"/>

 <!-- OR by XML declaration -->
 <bean id="userController" class="com.ps.web.UserController>
 <property name="userService" ref="userService" />
 </bean>

 <bean id="userService" class=" com.ps.service.UserServiceImpl">
 ... <!-- bean definition -->
 </bean>
</beans>

The model is populated with the user object. Now that we have a view resolver and a handler, the show.
jsp view needs to be defined. The view will reference the model object by its name user and display the
values of its properties. The following JSP snippet depict how the user object is used in the code of a JSP
page.

<!-- Spring taglib import -->
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
...
<html>
<body>
<!-- other html elements not relevant here -->
<div class="userDetails">
 <table>
 <tr>
 <th><spring:message code="label.User.firstname"/></th>
 <td>${user.firstName}</td>
 </tr>

Chapter 6 ■ Spring Web

285

 <tr>
 <th><spring:message code="label.User.lastname"/></th>
 <td>${user.lastName}</td>
 </tr>
 <tr>
 <th><spring:message code="label.User.username"/></th>
 <td>${user.username}</td>
 </tr>
 <tr>
 <th><spring:message code="label.User.type"/></th>
 <td>${user.userType}</td>
 </tr>
 <tr>
 <th><spring:message code="label.User.since"/></th>
 <td><fmt:formatDate value="${user.createdAt}"/></td>
 </tr>
 <tr>
 <th><spring:message code="label.User.rating"/></th>
 <td>${user.rating}</td>
 </tr>
 </table>
 </div>
</body>
</html>

The JSP pages are usually developed using taglibs that extend the collection of JSP elements that can
be used in a page and provide a simpler syntax. The Spring taglib declared in the JSP code snippet is used to
extract the text for the table headers according to the locale of the application. For example, when creating
the view to be displayed to the end user, the <spring:message code="label.User.firstname"/> will be
transformed in Firstname if the locale is English and into Vorname if the locale is German.

@MVC
In Spring 3.0, the @MVC introduced a new configuration model. The main component of an MVC
XML configuration is the <mvc:annotation-driven/> element, which registers all necessary default
infrastructure beans for a web application to work: handler mapping, validation, conversion beans, and
many others.

Another component that is important is the <mvc:default-servlet-handler/>. Usually in Spring Web
applications, the default servlet mapping "/" is mapped to the DispatcherServlet. This means that static
resources will have to be served by it too, which might introduce a certain lag in providing a response, since
the DispatcherServlet has to find the resources to which the request url is mapped. Think about it like this:
a request comes to the DispatcherServlet. The default behavior of DispatcherServlet is to start looking for
a controller to handle this request. And when it does not find one, it assumes that this is a request for a
static resource and then asks the static resources handler whether it can handle the request. By declaring
<mvc:default-servlet-handler/>, a handler for static resources is defined with the lowest precedence, and
this handler will be asked first whether it can handle the request.

Technically, the <mvc:default-servlet-handler/> configures a DefaultServletHttpRequestHandler
with a URL mapping of "/*" and the lowest priority relative to all others URL mappings, and its sole
responsibility is to serve static resources.

Chapter 6 ■ Spring Web

286

To use the @MVC elements, the mvc namespace must be specified:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

<!-- Defines basic MVC defaults (handler mapping, date formatting, etc) -->
 <mvc:annotation-driven/>

 <!-- Configures a handler for serving static resources by forwarding to the
 Servlet container’s default Servlet.-->
 <mvc:default-servlet-handler/>
</beans>

There are many out of the box features that can be used with the @MVC model, but they are out of the
scope of this book. If you are interested in knowing more, there is a good Apress book covering Spring Web:
The Pivotal Certified Spring Web Application Developer Exam Study Guide.

Java Configuration for Spring MVC
In Spring 3.1, the @EnableWebMvc annotation was introduced. This annotation, when used on a configuration
class, is the equivalent of <mvc:annotation-driven/>. Of course, there are a few extra details to take care of
to make sure that the configuration works as expected, and they will all be covered in this section.

The fist step is transforming the mvc-config.xml into a configuration class. Each bean definition, each
scanning element must have a correspondence in the web configuration class. The configuration class has
to be annotated with the @Configuration and @EnableWebMvc annotation and has either to implement
WebMvcConfigurer or extend an implementation of this interface, for example WebMvcConfigurerAdapter,
which gives the developer the option to override only the methods he or she is interested in. Annotating
a configuration class with @EnableWebMvc has the result of importing the Spring MVC configuration
implemented in the WebMvcConfigurationSupport class and is equivalent to <mvc:annotation-driven/>.
This class registers many infrastructure Spring components necessary for a web application, and only a part
of them will be covered in this section, since the this topic is not fully needed for the Spring Core certification
exam.

To tell the DispatcherServlet that the configuration will be provided by a configuration class instead of
a file, the following changes have to be made in web.xml:

•	 An initialization parameter named contextClass having as value the full class name
of the Spring class used to create an annotation-based context is defined.

•	 The initialization parameter named contextConfigLocation will have as value the
full class name of the configuration class written by the developer.

Chapter 6 ■ Spring Web

287

<web-app ...>
<!-- The front controller, the entry point for all requests -->
 <servlet>
 <servlet-name>pet-dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.
 support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 com.ps.config.WebConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

The configuration class for what was configured with XML in the previous section looks like this:

package com.ps.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

import org.springframework.web.servlet.view.InternalResourceViewResolver;

...
@Configuration
// <=><mvc:annotation-driven/>
@EnableWebMvc
// <=> <context:component-scan base-package="com.ps.web"/>
@ComponentScan(basePackages = {"com.ps.web"})
public class WebConfig extends WebMvcConfigurerAdapter {

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

Chapter 6 ■ Spring Web

288

 @Bean
 InternalResourceViewResolver getViewResolver(){
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/");
 resolver.setSuffix(".jsp");
 resolver.setRequestContextAttribute("requestContext");
 return resolver;
 }
... // other beans and method implementations that are not in scope
 }

The WebMvcConfigurerAdapter class that was extended by the configuration class here contains more
methods for which the developer must provide implementation, and they are out of scope, but the 10-ps-
mvc-practice project that is the corresponding one for this section contains a full working and documented
configuration that you can take a look at.

Getting Rid of web.xml
Starting with Servlet 3.0+, the web.xml file is no longer necessary to configure a web application. It can
be replaced with a class implementing the WebApplicationInitializer interface (or a class extending
any of the Spring classes that extend this interface). This class will be detected automatically by
SpringServletContainerInitializer (an internal Spring-supported class that is not meant to be used
directly or extended), which itself is bootstrapped automatically by every Servlet 3.0+ container.

The SpringServletContainerInitializer5 extends javax.servlet.ServletContainerInitializer
and provides a Spring-specific implementation for the onStartup method. This class is loaded and
instantiated, and the onStartup is invoked by every Servlet 3.0+ compliant container during container
startup assuming that the spring-web module JAR is present on the classpath. Thus, the web.xml can be
deleted, and, considering we are still using XML configuration, can be replaced with this class:

package com.ps.config;

import org.springframework.web.WebApplicationInitializer;
import org.springframework.web.servlet.DispatcherServlet;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration;

public class WebInitializer implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext servletContext) throws ServletException {
 ServletRegistration.Dynamic registration =
 servletContext.addServlet("pet-dispatcher", new DispatcherServlet());
 registration.setLoadOnStartup(1);

5The code of this class can be found here: https://github.com/spring-projects/spring-framework/blob/
master/ spring-web/src/main/java/org/springframework/web/SpringServletContainerInitializer.java.

https://github.com/spring-projects/spring-framework/blob/master/
https://github.com/spring-projects/spring-framework/blob/master/

Chapter 6 ■ Spring Web

289

 registration.addMapping("/");
 registration.setInitParameter("contextConfigLocation",
 "/WEB-INF/spring/mvc-config.xml");
 }
}

There are more ways than one to write the implementation above. For example, the application context
can be constructed first and then injected into the DispatcherServlet, but that is again out of the scope of this
book.

package com.ps.config;

import org.springframework.web.WebApplicationInitializer;
import org.springframework.web.servlet.DispatcherServlet;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration;

public class WebInitializer implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext servletContext) throws ServletException {
 XmlWebApplicationContext appContext = new XmlWebApplicationContext();
 appContext.setConfigLocation("/WEB-INF/spring/mvc-config.xml");
 ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher", new DispatcherServlet(appContext));
 registration.setLoadOnStartup(1);
 registration.addMapping("/");
 }
}

If a configuration class annotated with @EnableWebMvc is used, then the implementation of the
onStartup(…) method changes to this:

package com.ps.config;

import org.springframework.web.WebApplicationInitializer;
import org.springframework.web.servlet.DispatcherServlet;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration;

public class WebInitializer implements WebApplicationInitializer {

Chapter 6 ■ Spring Web

290

 @Override
 public void onStartup(ServletContext servletContext) throws ServletException {
 ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher", new DispatcherServlet());
 registration.setLoadOnStartup(1);
 registration.addMapping("/");
 registration.setInitParameter("contextConfigLocation",
 "com.ps.config.WebConfig");
 registration.setInitParameter("contextClass",
 "o.s.w.c.s.AnnotationConfigWebApplicationContext");
 }
}

There are many ways to write a configuration using Java Configuration classes
as well, but only the most common way will be depicted here, namely extending the
AbstractAnnotationConfigDispatcherServletInitializer class:

package com.ps.config;

import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;
...
public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {
 @Override
 protected Class<?> getRootConfigClasses() {
 return new Class<?>{
 ServiceConfig.class
 };
 }

 @Override
 protected Class<?> getServletConfigClasses() {
 return new Class<?>{
 WebConfig.class
 };
 }

 @Override
 protected String getServletMappings() {
 return new String{"/"};
 }

 @Override
 protected Filter getServletFilters() {
 CharacterEncodingFilter cef = new CharacterEncodingFilter();
 cef.setEncoding("UTF-8");
 cef.setForceEncoding(true);
 return new Filter{new HiddenHttpMethodFilter(), cef};
 }
}

Chapter 6 ■ Spring Web

291

This class defines a set of methods that can be overridden by the developer to provide a complete
configuration for a web application without needing any XML. It is most suitable and easy to use for
multimodule applications in which the root context should be separated from web context. In the code
depicted previously, the getRootConfigClasses() is called internally, and the configuration classes are used
to create the root application context. The getServletMappings() method is used to set the context of the
DispatcherServlet, and the getServletFilters() is used to set an additional filter for the application.

Using Spring to create web applications is easy and practical, but it is also a wide subject that cannot be
covered in this book, since only the basic idea is a topic for the certification exam.

Running a Spring Web Application
The 10-ps-mvc-practice is one of the projects that can be used to test your knowledge and basic
understanding of Spring Web MVC. The project also contains internationalization and theme configuration
beans, which are properly documented, so the WebConfig configuration class for the Spring Web application
is still pretty straight-forward. The application is simple. It only lists the list of users in the system and allows
you to see the details for each of them by clicking on a link. In Figure 6-7, the users/list.jsp page is
depicted.

Figure 6-7.  Practice Spring Web application

Chapter 6 ■ Spring Web

292

■■ ! T here are three TODO tasks for this section numbered from 45 to 47. If you want to test your
understanding of Spring Web MVC configuration, you can try solving them.

Task TODO 45, located in the WebConfig class, requires you to complete the configuration of this class to
make it usable in creating a web application context.

Task TODO 46, located in the WebConfig class, requires you to provide the configuration for the
InternalResourceViewResolver bean.

Task TODO 47, located in UserControllerTest, requires you to complete the body of a test method
that checks whether the UserController show() method works correctly: whether the view logical name
returned is the correct one and if the model is populated with the correct data. Inspect the implementation
of the UserController class to find the expected values that should be used in the assertion statements. In
the same class, there is a fully implemented method that tests the list() method of the UserController
class. Analyze it and use it for inspiration.

If you have trouble, you can take a peek at the proposed solution in the 10-ps-mvc-solution project.

Running with Jetty
The project can be run on a Jetty embedded server, using the Gretty plugin, which is added in the Gradle
configuration file for this module. The file is named as the module 10-ps-mvc-practice.gradle. This was
a development choice designed to help you identify easily which configuration file matches which module.
The default name for a Gradle configuration file is build.gradle. In a big project such as pet-sitter, it
would have been very difficult to identify the proper build file for a module while using CTRL+SHIFT+N in
Intellij IDEA if all of them were named build.gradle. The following code snippet depicts the contents of the
configuration file for the 10-ps-mvc-practice module.

apply plugin: ’war’
apply from:
 ’https://raw.github.com/akhikhl/gretty/master/pluginScripts/gretty.plugin’

dependencies {
 compile project(’:09-ps-data-jpa’)
 compile misc.joda, spring.jdbc, spring.contextSupport, misc.h2, misc.commons,
 spring.webmvc, misc.hikari,...
 //etc
 testCompile tests.junit, tests.easymock, tests.jmock, tests.mockito,
 spring.test, tests.hamcrestCore, tests.hamcrestLib
}
gretty {
 port = 8080
 // application context
 contextPath = ’/mvc-basic’
}

Chapter 6 ■ Spring Web

293

With this plugin set up, the Spring application can be run in two ways:

•	 from the terminal by running

gradle appRun

•	 If you look in the console, the Gretty log tells you where you can access the web
application.

...
INFO Jetty 9.2.15.v20160210 started and listening on port 8080
INFO mvc-basic runs at:
INFO http://localhost:8080/mvc-basic
Run ’gradle appStop’ to stop the server.

•	 from Intellij IDEA, go to the Gradle projects view, expand the pet-sitter project,
look for 10-ps-mvc-practice, expand the node, and from under it go to Tasks ->
gretty. Under it you will see the appStart task. Double click it, and a console will
appear telling you when the application is started and for how long. Of course,
initially the application won’t be visible in the browser until you solve the TODO
tasks. In Figure 6-8, you can see the Gradle task to run and the console available in
Intellij IDEA.

Figure 6-8.  Spring Web application run with Gradle appStart task in Intellij IDEA

Chapter 6 ■ Spring Web

294

Running with Tomcat
A Spring Web application can be run on an application server as well. The most used application server is
Apache Tomcat. It is an open source implementation of the Java Servlet, JavaServer Pages, Java Expression
Language, and Java WebSocket technologies. It is currently at version 9 and has been around since 1999.
Installing Tomcat is easy on any operating system; just follow the instructions on the official site:

http://tomcat.apache.org/

When building a web application, the result is a *.war archive named the same as the project. In the
previous 10-ps-mvc-practice.gradle file, an extra configuration must be added to make sure that the war
name is mvc-basic, so that when it is deployed on Tomcat, the context of the application will be the same.

war {
 archiveName = ’mvc-basic.war’
}

After running gradle build on the 10-ps-mvc-practice module, under 10-ps-mvc-solution/build/
libs the mvc-basic.war should be present. Deploying this web application to Tomcat is easy: just copy the
mvc-basic.war under tomcat/webapps/ and start the server. The application will be deployed and will be
available at http://localhost:8080/mvc-basic/.

The previous method of deployment is the manual way. When you use an intelligent Java IDE as Intellij
IDEA, things can be made easier. All the developer has to do is create a Tomcat configuration in Intellij IDEA
and add the project that generated the war needed to be deployed. Here are the steps:

•	 Open the Run/Debug Configuration menu and select Edit Configurations
(Figure 6-9).

Figure 6-9.  Intellij IDEA Run/Debug Configuration menu

http://tomcat.apache.org/

Chapter 6 ■ Spring Web

295

•	 Click the + button and from the list select Tomcat Server -> Local , then click Ok
(Figure 6-10).

Figure 6-10.  Intellij IDEA Run/Debug Configuration dialog window, before selecting
configuration type

Chapter 6 ■ Spring Web

296

•	 In the following pop-up, click the Configure button (Figure 6-11).

Figure 6-11.  Intellij IDEA Run/Debug Configuration dialog window, after selecting configuration type

Chapter 6 ■ Spring Web

297

•	 In the Application Server configuration dialog window, click on the + button, add the
Tomcat server you just installed and a name for it, and click Ok (Figure 6-12).

•	 In the Run/Debug Configuration dialog window you should have now in the
Application Server the Tomcat installation you set up previously. It is time to
configure what to deploy on this instance. For this, go to the Deployment tab, and for
each numbered item in Figure 6-13, do the following:

	 1.	 �Introduce a name for the run configuration; mvc-basic should be
appropriate.

	 2.	 Click on the + button.

	 3.	 �From the list of web artifacts that Intellij IDEA identifies, select 10-ps-mvc-
practice-1.0.war. Choose (exploded) if you are interested in running
Tomcat in Debug mode, and use breakpoints.

	 4.	 �In the Application context section, introduce the name of the web
application context, mvc-basic in this case.

Figure 6-12.  Intellij IDEA Run/Debug Application Server Configuration dialog window

Chapter 6 ■ Spring Web

298

Then click Ok in all dialog windows and start the server by selecting the mvc-basic configuration in the
Run/Debug Configuration menu and clicking on the Run button that is evidentiated in Figure 6-9. Intellij
IDEA should automatically open the browser with the main page of the Pet Sitter application.

And this is how the Pet Sitter application can be run with Apache Tomcat 9. The steps are similar even if
a different application server is used.

Spring Security
Spring Security is yet another Spring Framework created to make a developer’s life easy and the work
pleasant, since it is used to secure web applications. It is very easy to use and is highly customizable for
providing access control over units of an application. For writing secure Spring web applications, this is the
default tool developers go for, because configuration follows the same standard with all the Spring projects,

Figure 6-13.  Intellij IDEA Run/Debug Configuration dialog window, the Deployment tab

Chapter 6 ■ Spring Web

299

and infrastructure beans are provided out of the box for multiple types of authentication, all of which is
obviously compatible with other Spring projects. Spring Security provides a wide set of capabilities that can
be grouped into four areas of interest: authentication, authorizing web requests, authorizing methods calls,
and authorizing access to individual domain objects.

In talking about securing an application, the following concepts are important:

•	 Principal is the term that signifies a user, device, or system that could perform an
action within the application.

•	 Credentials are identification keys that a principal uses to confirm its identity.

•	 Authentication is the process of verifying the validity of the principal’s credentials.

•	 Authorization is the process of making a decision whether an authenticated user is
allowed to perform a certain action within the application

•	 Secured item is the term used to describe any resource that is being secured.

There are many ways of authentication, and Spring Security supports all of them: Basic, Form, OAuth,
X.509, Cookies, Single-Sign-On. When it comes to where and how those credentials are stored, Spring
Security is quite versatile, since it supports everything: LDAP, RDBMS, properties file, custom DAOs; even
beans are supported, and many others.6

Authorization depends on authentication. A user has first to be authenticated in order for authorization
to take place. The result of the authentication process is establishing whether the user has the right to access
the application and what actions the user can perform based on roles. Most common user roles within an
application are:

•	 ADMIN is a role used for full power. This kind of role is specific to users that have the
right to access and manipulate all data, including that of other users.

•	 MEMBER is used for limited power. This kind of role is specific to users that can view
data and manipulate only their own details.

•	 GUEST is used for restricted use of the application. This kind of role is used for users
that can view only limited data.

Spring Security is preferred for developing web applications because it is flexible and because of its
portability. Spring Security does not need a special container to run in; it can be deployed simply as a
secured archive (WAR or EAR) and also can run in standalone environments. A web application secured
with Spring Security and archived as a WAR can be deployed on a JBoss or an Apache Tomcat application
server, and as long as the underlying method of storing credentials is configured, the application will run
exactly the same in any of those application servers. Spring Security is very flexible because configuration
of authentication and authorization are fully decoupled. Thus, the storage system of credentials can change
without any action being needed to adapt the authorization configuration. This makes applications very
consistent, because after all, the scopes of authentication and authorization are different, so it is only logical
for them to be covered by different detachable components.

Spring Security is also quite extensible, since almost everything related to security can be extended and
customized: how a principal is identified, where the credentials are stored, how authorization decisions are
made, where security constraints are stored, etc.

6A full list of authentication technologies with which Spring Security integrates can be found here: http://docs.
spring.io/ spring-security/site/docs/current/reference/htmlsingle/#what-is-acegi-security

http://docs.spring.io/
http://docs.spring.io/

Chapter 6 ■ Spring Web

300

Security is a cross-cutting concern, so implementing authorization might lead to code cluttering and
tangling. Spring Security is implemented using Spring AOP with separation of concerns in mind. Under the
hood, Spring Security uses a few infrastructure beans to implement the two processes. In Figure 6-14, the
process of authentication and authorization of a user is depicted in an abstract but accurate manner.

The flow depicted in the previous image can be explained as follows.

	 1.	 A user tries to access the application by making a request. The application
requires the user to provide the credentials so it can be logged in.

	 2.	 The credentials are verified by the Authenticaltion Manager and the user
is granted access to the application. The authorization rights for this user are
loaded into the Spring Security context.

	 3.	 The user makes a resource request (view, edit, insert, or delete information) and
the Security Interceptor intercepts the request before the user accesses a
protected/secured resource.

	 4.	 The Security Interceptor extracts the user authorization data from the security
context and…

	 5.	 …delegates the decision to the Access Decision Manager.

	 6.	 The Access Decision Manager polls a list of voters to return a decision regarding
the rights of the authenticated user to system resources.

	 7.	 Access is granted or denied to the resource based on the user rights and the
resource attributes.

Figure 6-14.  Spring Security under the hood

Chapter 6 ■ Spring Web

301

Spring Security Configuration
To configure Spring security, the developer must take care of three things:

•	 declare the security filter for the application

•	 define the Spring Security context

•	 configure authentication and authorization

XML Configuration
To configure Spring Security, the web.xml must be modified to include the security filter and make the
security context the root context of the application. The elements that need to be added/modified in the
XML configuration of the web application are depicted in the following code snippet.

<web-app ...>
<!-- The root web application context is the security context-->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/security-config.xml
 </param-value>
 </context-param>
<!-- Bootstraps the root web application context before servlet initialization -->
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
...

 <!-- The front controller, the entry point for all requests -->
 <servlet>
 <servlet-name>pet-dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>

Chapter 6 ■ Spring Web

302

 /WEB-INF/spring/mvc-config.xml
 /WEB-INF/spring/app-config.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

■■ ! T he springSecurityFilterChain is a mandatory name that refers to a bean with the same name in
the Spring root application context. The DelegatingFilterProxy bean delegates the calls to a list of chained
security filter beans and acts as an interceptor for secured requests. In the case above, as the <url-pattern
.../> element defines all requests will be intercepted (wildcard used: /*).

Under the hood, in a secured web environment the secured requests are handled by a chain of Spring-
managed beans, which is why the proxy bean is named springSecurityFilterChain, because those filters
are chained. This chain of filters has the following key responsibilities:

•	 driving authentication

•	 enforcing authorization

•	 managing logout

•	 maintaining SecurityContext in HttpSession

The Spring Security framework is built on the foundation of ACEGI Security 1.x. At the beginning,
the security filter beans were manually configured and could be used individually, but this led to complex
XML configurations that were verbose and prone to errors. Starting with Spring Security 2.0, the filter beans
are created and initialized with default values, and manual configuration is not recommended unless it is
necessary to change default Spring Security behavior. All filter beans implement the javax.servlet.Filter
interface. Every bean of type implementing this interface has the purpose of performing tasks filtering on the
request of a resource (a servlet or static content), on the response from a resource, or both. Although these
filters work in the background, a little coverage is appropriate. In Table 6-1, the security filters are listed and
the purpose of each is presented.

Chapter 6 ■ Spring Web

303

Basically every time an HTTP request is received by the server, each of the filters performs its action
if the situation applies. The fun part is that these filters can be replaced by custom implementations. Their
position in the security chain is defined in Spring by a list of enumeration values, and using these values as
parameters for the position attribute of the <custom-filter …/>, a different filter bean can be specified to
use instead of the default one. In the following code snippet, the ConcurrentSessionFilter is replaced by a
custom implementation.

<beans:beans ...>
 <http>
 <custom-filter position="CONCURRENT_SESSION_FILTER"
 ref="customConcurrencyFilter" />

 <beans:bean id="customConcurrencyFilter"
 class="com.ps.web.session.CustomConcurrentSessionFilter"/>
 </http>
</beans:beans>

Table 6-1.  Spring Security chained filters

Filter Class Details

ChannelProcessingFilter Used if redirection to another protocol is necessary

SecurityContextPersistenceFilter Used to set up a security context and copy changes from it to
HttpSession

ConcurrentSessionFilter Used for concurrent session handling package

LogoutFilter Used to log a principal out. After logout a redirect will take place
to the configured view

BasicAuthenticationFilter Used to store a valid Authentication token in the security context

JaasApiIntegrationFilter This bean attempts to obtain a JAAS Subject and continue the
FilterChain running as that Subject

RememberMeAuthenticationFilter Is used to store a valid Authentication and use it if the security
context did not change

AnonymousAuthenticationFilter Is used to store an anonymous Authentication and use it if the
security context did not change

ExceptionTranslationFilter Is used to translate Spring Security exceptions in HTTP
corresponding error responses

FilterSecurityInterceptor Is used to protect URIs and raise access denied exceptions

Chapter 6 ■ Spring Web

304

The list of enumerated values can be found in the spring-security.xsd,7 and a match between the
filters and the values is depicted in Table 6-2.

The equivalent using Java Configuration does not use the position enum values, but a set of methods of
the HttpSecurity object:

addFilterAfter(Filter filter,Class<? extends Filter> afterFilter)

and

addFilterBefore(Filter filter, Class<? extends Filter> beforeFilter). They
receive as a parameter the class of the filter, relative to which the custom implementation should be
placed. In the previous example, the customConcurrencyFilter bean is placed in the chain after the
securityContextPersistenceFilter bean. So the equivalent Java Configuration will look like the following
code snippet. Do not focus on annotations, since they will be covered a little bit later in the section. Just pay
attention to the custom filter definition and the http.addFilterAfter(..) call:

import com.ps.web.session.CustomConcurrentSessionFilter;
import org.springframework.security.web.context.SecurityContextPersistenceFilter;
...

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(jsr250Enabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override
 protected void configure(HttpSecurity http) throws Exception {
 http.addFilterAfter(
 SecurityContextPersistenceFilter.class, customConcurrencyFilter());

Table 6-2.  Spring Security chained filters

Filter Class Position Enumerated Value

ChannelProcessingFilter CHANNEL_FILTER

SecurityContextPersistenceFilter SECURITY_CONTEXT_FILTER

ConcurrentSessionFilter CONCURRENT_SESSION_FILTER

LogoutFilter LOGOUT_FILTER

BasicAuthenticationFilter BASIC_AUTH_FILTER

JaasApiIntegrationFilter JAAS_API_SUPPORT_FILTER

RememberMeAuthenticationFilter REMEMBER_ME_FILTER

AnonymousAuthenticationFilter ANONYMOUS_FILTER

ExceptionTranslationFilter EXCEPTION_TRANSLATION_FILTER

FilterSecurityInterceptor FILTER_SECURITY_INTERCEPTOR

7Available here: http://www.springframework.org/schema/security/spring-security.xsd.

http://www.springframework.org/schema/security/spring-security.xsd

Chapter 6 ■ Spring Web

305

 http
 .authorizeRequests()
 ...
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/");
 }
 ...
 @Bean
 CustomConcurrentSessionFilter customConcurrencyFilter(){
 return new CustomConcurrentSessionFilter();
 }
}

The URLs to intercept are defined in a Spring-specific XML file, and roles allowed to access them are
defined in the Spring Context and loaded there at authentication time. In using XML, a separate file for
security configuration is used called security-config.xml in this example. To make configuration easy
to set up, Spring provides a special namespace named spring-security that contains strictly security
configuration elements. The security configuration file can be written relative to this namespace, which
removes the necessity to use a prefix for security elements. In the code snippet below, a simple version of a
configuration file is depicted that restricts access to users’ pages to only fully authenticated users. The login
form location and logout paths are depicted as well.

<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http>
 <intercept-url pattern="/auth*"
 access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 <intercept-url pattern="/users/**"
 access="IS_AUTHENTICATED_FULLY"/>
 <form-login login-page="/auth" />
 <logout logout-url="/logout" />
 </http>

</beans:beans>

The IS_AUTHENTICATED_ANONYMOUSLY value is processed under the hood by a bean known as a voter,
of type org.springframework.security.access.vote.AuthenticatedVoter. In this class, three values for
the access configuration attribute are defined. The voter will process this security configuration attribute
and decide whether a resource should be available to an anonymous user. The anonymous user is used for
public access (browsing) to a web application and is the type of user that accesses a site without logging in.
The IS_AUTHENTICATED_FULLY configuration attribute is also named in a self-explanatory way: the resource
that matches the associated URL can be accessed only by a user that was logged in, credentials verified, and

Chapter 6 ■ Spring Web

306

identity confirmed. Thus the user has been fully authenticated. Aside from the two configuration attributes,
there is one more: IS_AUTHENTICATED_REMEMBERED. If a resource is protected by such a rule, it can be
accessed only if the user is authenticated fully or authenticated using the remember-me method.8

The <form-login ../> configuration element is used to define the request URL for the login form
where the user can provide its credentials. Using this configuration, when an anonymous user tries to access
a secured resource, the application will direct him to the login form page, instead of just showing a page that
will tell him he does not have access to that resource.

The <logout ../> configuration element is used to define the request URL for the logout form. When
the user clicks on this link, the HTTP session will be invalidated, and then a redirect to "/login?success"
will be done. This behavior can be configured and a different logout success URL can be defined, but most
applications, redirect the user to the login page, and a message such as "You have successfully logged out" is
displayed next to the login form, so the user can log in again if needed.

The paths defined as values for the pattern attribute are pieces of URLs defined using ANT style paths.
The URLs that match them are secured and verified according to rules defined by the <intercept-url …/>
elements. Wildcards can be used to specify a family of related URLs and apply the same security rule to all
of them. The access attribute values are typical security token values used to specify what kind of access the
user needs to have. Access is linked to user roles, so URLs can be configured to be accessed only by users
with certain rights.

<beans:beans ...>
 <http>
 <intercept-url pattern="/users/edit"
 access="ROLE_ADMIN"/>
 <intercept-url pattern="/users/list"
 access="ROLE_USER"/>
 <intercept-url pattern="/users/**"
 access="IS_AUTHENTICATED_FULLY"/>
 </http>
</beans:beans>

■■ ! T he order of defining the URL patterns is important, and the most restrictive must be on top; otherwise,
a more relaxed rule will apply, and some URL will be accessible to users that should not have access to them.

You might have noticed that writing configuration rules for specific URLs is quite annoying if you
are using token values for security rights, since you have to check the documentation to see what you are
allowed to use as a value for the access attribute. But Spring, being the flexible and beautiful technology
that it is, starting with Spring Security 3.0 offers the possibility to use Spring EL expressions to declare access
rules. So the file above can make use of security-specific methods as values for the access attributes, and
all that is required is just to tell Spring Security that you want to use them, by configuring the <http .../>
element accordingly, and setting the use-expressions attribute value to true.

 <beans:beans ...>
 <http use-expressions="true">
 <intercept-url pattern="/auth*" access="permitAll"/>
 <intercept-url pattern="/users/edit"
 access="hasRole(’ROLE_ADMIN’)"/>

8Remember-me or persistent-login authentication refers to web sites able to remember the identity
of a principal between sessions.

Chapter 6 ■ Spring Web

307

 <intercept-url pattern="/users/list"
 access="hasRole(’ROLE_USER’)"/>
 <intercept-url pattern="/users/**"
 access="hasAnyRole(’ROLE_USER, ROLE_ADMIN’)"/>
 </http>
 </beans:beans>

The expressions have really obvious names regarding their purpose and can be combined to declare
complex rules. The following listing depicts only a few of the possibilities:

•	 hasRole(’AnyRole’) checks whether the principal has the role given as argument.

•	 hasAnyRole(’[RoleList]’) checks whether the principal has any of the roles in the
RoleList.

•	 isAnonymous() allows access for unauthenticated principals.

•	 isAuthenticated() allows access for authenticated and remembered principals.

•	 isAuthenticated() and hasIpAddress(’192.168.1.0/24’) allows access
for authenticated and remembered principals in the network with this
IP class: 192.168.1.0/24.

•	 hasRole(’ROLE_ADMIN’) and hasRole(’ROLE_MANAGER’) allows access for principals
that have role ROLE_ADMIN and ROLE_MANAGER.

■■ !  Once the support for SpEL expression has been configured using use-expressions="true", the previous
syntax for access values cannot be used, so roles and configuration attributes cannot be used as values for the
access attribute directly. So mixing the two ways is not possible.

Spring Security 4 introduced a simplification that allows for access expressions to be specified without the
ROLE_prefix in front of them, and thus the configuration above becomes:

 <http use-expressions="true">
 <csrf disabled="true"/>
 <intercept-url pattern="/auth*" access="permitAll"/>
 <intercept-url pattern="/users/edit"
 access="hasRole(’ADMIN’)"/>
 <intercept-url pattern="/users/list"
 access="hasRole(’USER’)"/>
 <intercept-url pattern="/users/**"
 access="hasAnyRole(’USER, ADMIN’)"/>
 </http>

Chapter 6 ■ Spring Web

308

■■ ! A lso in Spring Security 4, the possibility of using CSFR tokens in Spring forms to prevent cross-site
request forgery was introduced.9 A configuration without a <csrf /> element configuration is invalid, and every
login request will direct you to a 403 error page stating:

Invalid CSRF Token ’null’ was found on the request parameter
’_csrf’ or header ’X-CSRF-TOKEN’.

To migrate from Spring Security 3 to version 4, you have to add a configuration for that element, even if
all you do is disable using CSRF tokens.

<http auto-config="true" use-expressions="true">
 <csrf disabled="true"/>
 <intercept-url pattern="/auth*" access="permitAll"/>
 ...
 <form-login login-page="/auth"
 authentication-failure-url="/auth?auth_error=1"
 default-target-url="/"/>
 <logout logout-url="/logout"
 logout-success-url="/"/>
</http>

The authentication-failure-url attribute is used to define where the user should be redirected when
there is an authentication failure. This can be a special error view that depending on the parameter will show
the user a different error message.

The default-target-url attribute is used to define where the user will be redirected after a successful
authentication.

■■ !  Other critical changes are related to the login form: default Spring resources, like the login url (URL that
indicates an authentication request) and names of the request parameters (expected keys for generation of
an authentication token).10 These were changed in order to match JavaConfig. Until Spring 3, the default login
URL value is /j_spring_security_check and the default names for the authentication keys are j_username and
j_password, and thus the login form in the auth.jsp view mapped to path /auth until Spring 3 looks like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
...
 <form action="<c:url value=’/j_spring_security_check’/>" method="post">
 <table>
 <tr>
 <td>

9This is a type of attack that consists in hacking an existing session in order to execute unauthorized commands in a web
application. You can read more about it here: https://en.wikipedia.org/wiki/Cross-site_request_forgery.
10The full list of configuration details changes that were made to match Java Configuration can be found here:
https://jira.spring.io/browse/SEC-2783.

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://jira.spring.io/browse/SEC-2783

Chapter 6 ■ Spring Web

309

 <label for="username">
 <spring:message code="login.username"/>
 </label>
 </td>
 <td>
 <input type=’text’ id=’username’ name=’j_username’
 value=’<c:out value="${user}"/>’/>
 </td>
 </tr>
 <tr>
 <td>
 <label for="password">
 <spring:message code="login.password"/>
 </label>
 </td>
 <td><input type=’password’ id=’password’ name=’j_password’/></td>
 </tr>
 <tr>
 <td colspan="2">
 <button type="submit">
 <spring:message code="login.submit"/>
 </button>
 </td>
 </tr>
 </table>
</form>

Starting with Spring 4, the default login URL value is /login, and the default names for the
authentication keys are username are password, and thus the login form must be modified to:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
 <%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
 ...
 <form action="<c:url value=’/login’/>" method="post">
 <table>
 <tr>
 <td>
 <label for="username">
 <spring:message code="login.username"/>
 </label>
 </td>
 <td>
 <input type=’text’ id=’username’ name=’username’
 value=’<c:out value="${user}"/>’/>
 </td>
 </tr>
 <tr>
 <td>
 <label for="password">
 <spring:message code="login.password"/>
 </label>

Chapter 6 ■ Spring Web

310

 </td>
 <td><input type=’password’ id=’password’ name=’password’/></td>
 </tr>
 <tr>
 <td colspan="2">
 <button type="submit">
 <spring:message code="login.submit"/>
 </button>
 </td>
 </tr>
 </table>
</form>

■■ ! A ll previous examples used default values for login URL and authentication key names: j_spring_security_
check, j_username, j_password (in Spring Security 3), login, username, password (in Spring Security 4), but all
these values can be redefined using Spring configuration. Just set the following attributes for the<form-login ../>
element: login-processing-url, username-parameter, password-parameter with the desired values.

<form-login login-page="/auth"
 login-processing-url="/my-login"
 username-parameter="my-user"
 password-parameter="my-password"
 ...<!-- other attributes-->
/>

Configuring authentication is done in the Spring Security configuration file as well, and the
default authentication provider is the DAO Authentication provider. A specific UserDetailsService
implementation is used to provide credentials and authorities. In the examples in the book, the credentials
are specified directly in the Spring Security Configuration file.

<authentication-manager>
 <authentication-provider>
 <user-service>
 <user name="john" password="doe" authorities="ROLE_USER"/>
 <user name="jane" password="doe" authorities="ROLE_USER,ROLE_ADMIN"/>
 <user name="admin" password="admin" authorities="ROLE_ADMIN"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

But there are other options. To increase application security a little more, the credentials could be
read from a properties file, where the password is stored in encrypted form and a salt can be applied using
configuration. Password-salting is an encryption method used to increase the security of passwords by
adding a well-known string to them.

Chapter 6 ■ Spring Web

311

 <!-- spring-config.xml -->
<authentication-manager>
 <authentication-provider>
 <password-encoder hash="md5" >
 <salt-source system-wide="SpringSalt"/>
 </password-encoder>
 <user-service properties="/WEB-INF/users.properties" />
 </authentication-provider>
</authentication-manager>

#/WEB-INF/users.properties
john=471540bd22898656564b9c85a18b3e80,ROLE_USER
#password: john

jane=1f533ad8d26c7bec84a291f62668a048,ROLE_USER,ROLE_ADMIN
#password: jane

admin=55c98bea671295de1e020621cc670ac4,ROLE_ADMIN
#password: admin

■■ ! T he passwords presented in the following code snippet were generated by postfixing the password value
with the "SpringSalt" text and then applying an MD5 function on the resulting text value. Example:

MD5("john" +"SpringSalt") = "471540bd22898656564b9c85a18b3e80"

On Windows, the MD5 hash can be generated only for files using the FCIV command or the Get-FileHash
command in the PowerShell. On MacOs there is an md5 command, and on Linux systems there is an md5sum
command. In the following code snippet, the call to generate the MD5 hash for a password equal to "john" with
the salt "SpringSalt" for MacOs and Linux are depicted.

#MacOS
$ echo "johnSpringSalt" | md5
471540bd22898656564b9c85a18b3e80
#Linux system
$ echo "johnSpringSalt" | md5sum
471540bd22898656564b9c85a18b3e80

The credentials were decoupled from the configuration by isolating them in a property file. The file can
be edited outside the application, and the properties can be reloaded using a property reader refreshable
bean.11

11A refreshable bean is a dynamic-language-backed bean that with a small amount of configuration can
monitor changes in its underlying source file resource and then reload itself when the dynamic language source file is
changed (for example when a developer edits and saves changes to the file on the filesystem). Official documentation
reference:http://docs.spring.io/spring/docs/current/ spring-framework-reference/
htmlsingle/#dynamic-language-refreshable-beans.

http://docs.spring.io/spring/docs/current/

Chapter 6 ■ Spring Web

312

The credentials property file has a specific syntax:

[username] = [password(encrypted)],[role1,role2...]

In the previous example, the passwords were added to the SpringSalt value and then were encrypted
using the md512 algorithm. But they were all hashed in the exact same way and with the same salt. If someone
could find out the salt that the server uses, they would become crackable. That is why the salt should be a
random value, different for each user, for example a property unique to that user such as its id. The salt-
source can be configured to use a constant user property such as the ID as salt value as well.

<authentication-manager>
 <authentication-provider>
 <password-encoder hash="md5">
 <!-- id property from class User -->
 <salt-source user-property="id" />
 </password-encoder>
 </authentication-provider>
</authentication-manager>

In the above examples, only the MD5 algorithm was used, but there are more of them supported in
Spring Security, and a developer can use one of the supported ones (MD4, Bcrypt, SHA, SHA-256, etc.) or
implement his own.

The in-memory, or directly in the configuration file, approach is useful for testing and development,
but in a production scenario, a securer method of credential storage is usually used. In production
environments, credentials are stored in a database or LDAP system. In this case, the service providing the
credentials must be changed to a JDBC-based one:

<authentication-manager>
 <authentication-provider>
 <jdbc-user-service data-source-ref="authDataSource" />
 </authentication-provider>
</authentication-manager>

The authentication tables must be accessible using the authDataSource bean, and their structure must
respect the following rules: one table is named users, one must be named authorities, and the following
queries must be executed correctly:

SELECT username, password, enabled FROM users WHERE username = ?
SELECT username, authority FROM authorities WHERE username = ?

The Spring Security reference documentation includes some SQL scripts to create the security tables.
The syntax is for HSQLDB, but the scripts can easily be adjusted for any SQL normalized database.13

A few details from this section are general and apply in a Java Configuration environment as well, but
they were mentioned here to paint a full view of the Spring Security framework. And now it is time to see
how Java Configuration can make all these configuration details more practical and quicker to set up.

12Read more about MD5 here: https://en.wikipedia.org/wiki/MD5
13Documentation reference for security table DDL scripts: http://docs.spring.io/spring-security/site/
docs/4.1.3. RELEASE/reference/htmlsingle/#appendix-schema.

https://en.wikipedia.org/wiki/MD5
http://docs.spring.io/spring-security/site/docs/4.1.3
http://docs.spring.io/spring-security/site/docs/4.1.3

Chapter 6 ■ Spring Web

313

Spring XML Configuration without web.xml
If web.xml disappears, what happens with the springSecurityFilterChain filter? The security filter
gets transformed into a class extending a Spring specialized class: org.springframework.security.
web.context.AbstractSecurityWebApplicationInitializer. And the class that matches the
DispatcherServlet declaration must be made to extend the org.springframework.web.servlet.support.
AbstractDispatcherServletInitializer so the root context can be set to be the security context. The
following code snippet depicts the situation in which Spring Security is configured using XML and the web
application is configured using a typical web initializer class.

import org.springframework.security.web.context.
 AbstractSecurityWebApplicationInitializer;
// Empty class needed to register the springSecurityFilterChain bean
public class SecurityInitializer extends AbstractSecurityWebApplicationInitializer {
}

public class WebInitializer extends AbstractDispatcherServletInitializer {

 @Override
protected WebApplicationContext createRootApplicationContext() {
 XmlWebApplicationContext ctx = new XmlWebApplicationContext();
 ctx.setConfigLocation("/WEB-INF/spring/security-config.xml");
 return ctx;
 }

 @Override
 protected WebApplicationContext createServletApplicationContext() {
 XmlWebApplicationContext ctx = new XmlWebApplicationContext();
 ctx.setConfigLocations(
 // MVC configuration
 "/WEB-INF/spring/mvc-config.xml",
 // Service configuration
 "/WEB-INF/spring/app-config.xml");
 return ctx;
 }
 ...
}

Java Configuration
To develop a working configuration for a Spring Security web application, the XML configuration must be
transformed into a security configuration class. The class that replaces the Spring XML configuration should
extend WebSecurityConfigurerAdapter, so the amount of code needed to be written for a valid security
configuration should be minimal. Thus, the XML configuration given as an example so far becomes:

package com.pr.config;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation
 .authentication.builders.AuthenticationManagerBuilder;

Chapter 6 ■ Spring Web

314

import org.springframework.security.config.annotation
 .web.builders.HttpSecurity;
import org.springframework.security.config.annotation
 .web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation
 .web.configuration.WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) {
 try {
 auth.inMemoryAuthentication()
 .withUser("john").password("doe").roles("USER").and()
 .withUser("jane").password("doe").roles("USER","ADMIN").and()
 .withUser("admin").password("admin").roles("ADMIN");
 } catch (Exception e) {
 e.printStackTrace();
 }
}

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/user/edit").hasRole("ADMIN")
 .antMatchers("/**").hasAnyRole("ADMIN","USER")
 .anyRequest()
 .authenticated()
 .and()
 .formLogin()
 .usernameParameter("username") // customizable
 .passwordParameter("password") // customizable
 .loginProcessingUrl("/login") // customizable
 .loginPage("/auth")
 .failureUrl("/auth?auth_error=1")
 .defaultSuccessUrl("/home")
 .permitAll()
 .and()
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/")
 .and()
 .csrf().disable();

 }
}

Chapter 6 ■ Spring Web

315

The @EnableWebSecurity annotation must be used on Security configuration classes that
must also extend org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter and provide implementation for the configure(HttpSecurity http)
method. To simplify the configuration, the configure(WebSecurity web) method can also be overridden to
specify resources that Spring Security should be ignoring, such as style files and images, for example, thus
simplifying the implementation of the configure(HttpSecurity http) method and decoupling unsecured
elements from secured ones.

package com.pr.config;
...
import org.springframework.security.config.annotation.web.
 builders.WebSecurity;
@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/resources/**","/images/**","/styles/**");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/user/edit").hasRole("ADMIN")
 .antMatchers("/**").hasAnyRole("ADMIN","USER")
 .anyRequest()
 .authenticated()
 .and()
 .formLogin()
 .usernameParameter("username") // customizable
 .passwordParameter("password") // customizable
 .loginProcessingUrl("/login") // customizable
 .loginPage("/auth")
 .failureUrl("/auth?auth_error=1")
 .defaultSuccessUrl("/home")
 .permitAll()
 .and()
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/")
 .and()
 .csrf().disable();

 }
}

Chapter 6 ■ Spring Web

316

The antMatcher(…) method is the equivalent of the <intercept-url.../> element from XML, and
equivalent methods are available to replace the configuration for the login form, logout URL configuration,
and CSRF token support. To enable CSRF usage, the configuration above must also define a CSRF provider
bean and use it in the configuration:

...
import org.springframework.security.web.csrf.CsrfTokenRepository;
import org.springframework.security.web.csrf.HttpSessionCsrfTokenRepository;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Bean
 public CsrfTokenRepository repo() {
 HttpSessionCsrfTokenRepository repo = new HttpSessionCsrfTokenRepository();
 repo.setParameterName("_csrf");
 repo.setHeaderName("X-CSRF-TOKEN");
 return repo;
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.
 ...
 .and()
 .csrf().csrfTokenRepository(repo());
 }
}

Out of the box, Spring provides three CsrfTokenRepository implementations that are listed and
explained in Table 6-3.

Table 6-3.  Spring Security chained filters

Filter Class Position Enumerated Value

CookieCsrfTokenRepository Persists the CSRF token in a cookie named “XSRFTOKEN” and reads
from the header “X-XSRF-TOKEN” following the conventions of
AngularJS

HttpSessionCsrfTokenRepository Persists the CSRF token in the HttpSession in the parameter with the
name set by calling method setParameterName() and reads from the
header with the name set by calling the setHeaderName()

LazyCsrfTokenRepository Delays saving new CSRF token until its generated attributes are
accessed.

Chapter 6 ■ Spring Web

317

When CSRF support is used, logging out needs to be implemented accordingly, and make sure that the
CSRF token is erased from existence and disabled so that it cannot be used by malevolent requests.14 So the
simple logout link from Spring 3:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
...
 <a href="<spring:url value="/j_spring_security_logout"/>">
 <spring:message code="menu.logout"/>

Becomes in Spring 4 a full fledged form that sends the CSRF token to the application to be erased:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
...
 <spring:url value="/logout" var="logoutUrl" />
 <form action="${logoutUrl}" id="logout" method="post">
 <input type="hidden" name="${_csrf.parameterName}"
 value="${_csrf.token}"/>
 </form>

 <spring:message code="menu.logout"/>

The <spring:message …/> element used above is a special Spring tag used for internationalization. The
tag library directive must be present in the JSP file, and the values for the specific element are taken from
properties internationalization files that are located under WEB-INF. Since internationalization is not a topic
for the Spring Core certification exam, we won’t go too deeply into this here.

And since the configuration section has covered everything needed, it is time to introduce how to use
the security context and rules in the code.

Security Tag Library
In writing JSP pages, multiple tag libraries are available to make the work easier and less redundant and to
provide functionality. By adding a tag library reference in the JSP page header, JSP elements defined in that
library can be used. Spring provides a tag library that can be used to secure JSP elements.

In the configuration examples presented up to now, access to certain resources was managed via
<intercept-url .../> elements or antMatcher(...) methods.

 //mvc-security.xml
<http auto-config="true" use-expressions="true">
 <intercept-url pattern="/users/show/*"
 access="hasRole(’ADMIN’)"/>
...
</http>

//or SecurityConfig.java
public class SecurityConfig extends WebSecurityConfigurerAdapter {

14Cross-site request forgery or session-riding exploits the trust that a site has in a user’s browser. When the CSRF token is
stored in the session, it has a specific value for the duration of that session. So even if the session is intercepted and data
from it is used by an attacker to access the site, by disabling the CSRF token at logout, sensitive requests that require the
CSRF token are prohibited.

Chapter 6 ■ Spring Web

318

...
Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/users/show/*").hasRole("ADMIN")
 ...
 }
}

Each of the configurations above will deny any user with only USER role access to /users/show/. In
Figure 6-15, the server reply is depicted when a user with USER role tries to access a /users/show/ resource.

But does it make sense to display on the page a link to a forbidden resource at all? Of course not. Also,
production applications are usually quite big and contain many different URLs, so full configuration using
an XML file or a security configuration class can become quite complex. To simplify this, starting with Spring
Security version 2.0 a security tag library is provided that can be used to secure items at JSP level. In the
above example, we can choose to display a column containing the link to the resource based on the security
configuration for the user.

// <!-- /users/list.jsp -->
<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
...
<table>
 <thead>
 <tr>
 <sec:authorize access=’hasRole("ROLE_ADMIN")’>

 <td>
 <spring:message code="label.User.count"/>
 </td>
 </sec:authorize>
 <td>
 <spring:message code="label.User.username"/>
 </td>
 ... <!-- other cells-->

Figure 6-15.  Server response when user is not authorized to view resource

Chapter 6 ■ Spring Web

319

 </tr>
 </thead>
 <c:forEach var="user" items="${users}">
 <tr>
 <sec:authorize access=’hasRole("ROLE_ADMIN")’>
 <td>
 <spring:url var="showUrl" value="show/{id}">
 <spring:param name="id" value="${user.id}"/>
 </spring:url>
 ${user.id}
 </td>
 </sec:authorize>
 <td>
 ${user.username}
 </td>
 ... <!-- other cells-->
 </tr>
 </c:forEach>
 </table>

The <spring:url ../> element is a tag from the Spring tag library that is used to compose a link
dynamically based on a parameter. The definition in the previous code snippet will resolve to links like this:

http://localhost:8080/mvc-security/users/show/12, where 12 is the id of the user.
The <sec:authorize ../> above has the effect that after a user has been authenticated, its roles are

loaded into the security context, and when he accesses the list.jsp page, the response view is computed
taking its roles into account. The security elements in the previous example state that only for users with
ADMIN role should the <td/> elements containing the /users/show/* URL should be part of the view. So
the user john, for example, having only a USER role, will see a different view from that of a user with role
ADMIN, as depicted in Figure 6-16.

Figure 6-16.  /users/show view for roles ADMIN and USER

Chapter 6 ■ Spring Web

320

According to what is said before, the link is not displayed, but what happens if the user enters the link
manually in the browser? If there is no restriction for that link in the configuration, the view will be shown
to the user regardless of its role. So the restriction from the configuration is needed as well. If the restriction
is defined as depicted in the code snippet at the beginning of the section, the security rule can be used
in the JSP code to avoid complicated expressions like ’hasRole("ROLE_ADMIN")’ by replacing the access
attribute with url for the authorize element and replacing the hasRole expression with the URL defined in
the security rule. This will tell Spring to check whether the user has access to that URL before displaying the
view. And if it does not, the message in Figure 6-15 is displayed. This makes it possible to link a security rule
to a url pattern that can be used as a security attribute value to secure resources with any URL path. So the
JSP code above becomes:

// <!-- /users/list.jsp -->
<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>
...
<table>
 <thead>
 <tr>
 <sec:authorize url=’/users/show/*’>
 <td>
 <spring:message code="label.User.count"/>
 </td>
 </sec:authorize>
 <td>
 <spring:message code="label.User.username"/>
 </td>
 ... <!-- other cells-->
 </tr>
 </thead>
 <c:forEach var="user" items="${users}">
 <tr>
 <sec:authorize url=’/users/show/*’>
 <td>
 <spring:url var="showUrl" value="show/{id}">
 <spring:param name="id" value="${user.id}"/>
 </spring:url>
 ${user.id}
 </td>
 </sec:authorize>
 <td>
 ${user.username}
 </td>
 ... <!-- other cells-->
 </tr>
 </c:forEach>
 </table>

But there is another security concern: the method that populates the view is defined in the service layer.
If the application supports web services too, how can we prevent a user from calling that method directly
and getting the data? Or by using a remote REST call? Because the security is currently defined only in the
web layer. The next section is about how Spring Security can be used to secure items on lower levels too.

Chapter 6 ■ Spring Web

321

Method Security
To apply security to lower layers of an application, Spring Security uses AOP. The respective bean is wrapped
in a proxy that before calling the target method, first checks the credentials of the user and calls the method
only if the user is authorized to call it. In XML, the definition of such a proxy is done using the global-
method-security configuration element provided by the security namespace to enable method-level
security and by defining a secured pointcut and the rule that applies to it.

<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <global-method-security>
 <protect-pointcut expression="execution(* com.ps.*.*Service.findById(*))"
 access="hasRole(’ADMIN’)" />
 </global-method-security>

</beans:beans>

But the same can be done more easily using the Spring Security namespace or Java Configuration and
annotations. There are two alternatives for doing this:

	 1.	 Method-level security must be enabled by annotating a configuration class (good
practice is to annotate the Security Configuration class to keep all configurations
related to security in one place) with @EnableGlobalMethodSecurity(secured
Enabled = true). Methods must be secured by annotating them with Spring
Security annotation @Secured

import org.springframework.security.config.annotation
 .method.configuration.EnableGlobalMethodSecurity;
...
@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(securedEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...
}

//UserServiceImpl.java service class
import org.springframework.security.access.annotation.Secured;
...
@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

 @Secured("ROLE_ADMIN")
 public User findById(Long id) {
 return userRepo.findOne(id);

Chapter 6 ■ Spring Web

322

 }

 ...
}

The equivalent configuration using XML makes use of the <global-method-
security ../> element defined in the Spring Security namespace, which is
the XML equivalent of annotation @EnableGlobalMethodSecurity. To enable
method security, the secured-annotations attribute of this element must be
configured to have the enabled value.

<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <global-method-security secured-annotations="enabled" />

 <http ... />

</beans:beans>

	 2.	 Method-level security must be enabled by annotating a configuration class (good
practice is to annotate the Security Configuration class to keep all configurations
related to security in one place) with @EnableGlobalMethodSecurity(jsr250En
abled = true). Methods must be secured by annotating them with JSR-25015
annotations.

import org.springframework.security.config.annotation
 .method.configuration.EnableGlobalMethodSecurity;
...
@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(jsr250Enabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...
}

//UserServiceImpl.java service class
import javax.annotation.security.RolesAllowed;
...
@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

15JSR 250: Common annotations for the JavaTM Platform https://www.jcp.org/en/jsr/detail?id=250.

https://www.jcp.org/en/jsr/detail?id=250

Chapter 6 ■ Spring Web

323

 @RolesAllowed("ROLE_ADMIN")
 public User findById(Long id) {
 return userRepo.findOne(id);
 }

 ...
}

The equivalent configuration using XML makes use of the <global-method-
security ../> element defined in the Spring Security namespace, which is
the XML equivalent of annotation @EnableGlobalMethodSecurity. To enable
method security, the jsr250-annotations attribute of this element must be
configured to have the enabled value.

<beans:beans ...>

 <global-method-security jsr250-annotations="enabled" />

 <http ... />

</beans:beans>

The JSR 250 annotations are standards-based and allow simple role-based
constraints to be applied but do not have the power of Spring Security’s native
annotations.

Both approaches will lead to Spring Security wrapping the service class in a secure proxy. The abstract
schema of how a secured method executes and the components involved is depicted in Figure 6-17.

Figure 6-17.  Abstract schema of a secured method execution

Chapter 6 ■ Spring Web

324

There are four annotations that support expression attributes that were introduced in Spring 3.0 to
allow pre- and postinvocation authorization checks and also to support filtering of submitted collection
arguments or return values: @PreAuthorize, @PreFilter, @PostAuthorize, and @PostFilter. They are
enabled in XML by the pre-post-annotations attribute of the <global-method-security ../> element,
which must be configured to have the enabled value.

<beans:beans ...>

 <global-method-security pre-post-annotations="enabled" />

 <http ... />

</beans:beans>

They are enabled using Java Configuration by the prePostEnabled attribute of the
@EnableGlobalMethodSecurity element that must be configured to have the true value.

import org.springframework.security.config.annotation
 .method.configuration.EnableGlobalMethodSecurity;
...
@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
...
}

The annotation can be used as follows:

import org.springframework.security.access.prepost.PreAuthorize;

...
@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

 @PreAuthorize("hasRole(’USER’)")
 public void create(User user){
 ...
 }
}

But the interesting thing about these annotations is that they can access method arguments. In the
following snippet, the current logged-in user is verified if it has "admin" permission to delete the user given
as argument. It does this using Spring ACL (Access Control List) classes.

import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.security.acls.model.Permission;
import org.springframework.security.acls.model.Sid;
...

Chapter 6 ■ Spring Web

325

@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

 @PreAuthorize("hasPermission(#user, ’admin’)")
 public void delete(User user, Sid recipient, Permission permission){
 ...
 }
}

These annotations provide more granularity, since SpEL expressions can be used to restrict the domain
that a user is allowed to affect with its actions. For example, in the following example, a user is allowed only
to affect a user whose username matches that of the user argument.

import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.security.acls.model.Permission;
import org.springframework.security.acls.model.Sid;
...
@Service
@Transactional(readOnly = true, propagation = Propagation.REQUIRED)
public class UserServiceImpl implements UserService {

 @PreAuthorize("#user.username == authentication.name")
 public void modifyProfile(User user){
 ...
 }
}

Spring Security ACL is very powerful and easy to implement when you can stick to their Spring database
implementation. So if a project requires granulated control over resources, it is definitely the way to go.

■■ ! T his is all that can be said about Spring Security, and before jumping to the next section you can test
your knowledge and understanding by solving the TODO task from project 11-ps-security-practice. There
are seven TODO tasks numbered from 48 to 54, and if you need inspiration or confirmation that your solution is
correct, you can compare it with the proposed solution that you can find in project 11-ps-security-solution.

Task TODO 48, located in the SecurityWebApplicationInitializer class, requires you to complete the
configuration of this class to register the DelegatingFilterProxy bean.

Task TODO 49, located in the SecurityConfig class, requires you to complete the configuration of this
class to enable support for Spring Security.

Task TODO 50, located in the SecurityConfig class, requires you to complete the configuration of this
class to enable securing methods using annotations that express attributes.

Chapter 6 ■ Spring Web

326

Task TODO 51, located in the SecurityConfig class, requires you to complete the configuration of the
http object and define the users in Table 6-4, which you can also find in the auth.jsp page.

Task TODO 52, located in the SecurityConfig class, requires you to complete the configuration of the
http object and ensure that all URLs matching /users/show/* and /users/delete/* are available only to
users with role ADMIN.

Task TODO 53, located in the WebInitializer class, requires you to complete the configuration of this
class so that the spring context is registered as a root context.

Task TODO 54, located in the list.jsp file, requires you to complete the implementation of this JSP
page to hide the column with members’ IDs that contain the URL to the details view.

Spring Boot
Spring Boot is a set of preconfigured frameworks/technologies designed to reduce boilerplate
configuration(infrastructure) and provide a quick way to have a Spring web application up and running. It’s
goal is to allow developers to focus on implementation of the actual required functionality instead of how
to configure an application, by providing out of the box ready-to-use infrastructure beans. On the official
Spring Boot page16 a REST application is given as an example and almost 20 lines of code are needed to have
a runnable application. Impressive right? And this is only one of the advantages of using Spring Boot.

Spring Boot makes it easier for developers to build standalone production-level applications that are
ready to run. Spring Boot can be used to create applications that are packed as a jar and can be run with
java -jar or typical war packed projects that can be deployed on an application server. The new thing is
that web archives can be executed with java -jar as well. The main focus of Spring Boot is on:

•	 Setting up the infrastructure for a Spring project in a really short time.

•	 Providing a default common infrastructure configuration but allowing easy
divergence from the default as the application grows. So any default configuration
can easily be overridden.

•	 provide a range of nonfunctional features common to a wide range of projects
(embedded servers, security, metrics, health checks, externalized configuration).

•	 Remove the need for XML and code configuration.

The current stable version of Spring Boot as this book is being written is 1.4.0.RELEASE, which works
with JDK 7+. In the book, source version 1.4.1.BUILD-SNAPSHOT will be used.

Table 6-4.  Application users

Username Password Role

john doe USER

jane does USER, ADMIN

admin admin ADMIN

16Spring Boot official page: http://projects.spring.io/spring-boot/

http://projects.spring.io/spring-boot/

Chapter 6 ■ Spring Web

327

Configuration
Spring Boot can be used like any Java library. It can be added as a dependency to the project, since it does
not require any special integration tools and can be used in any IDE. Spring Boot provides ‘starter’ POMs to
simplify the Maven configuration of a project. When Maven is used, the project must have as a parent the
spring-boot-starter-parent, so that useful Maven defaults are provided. Since the sources attached to
this book use Gradle, it is very suitable that Gradle is supported too. For Gradle, there is no need to specify a
parent, but Spring provides starter dependencies specific to different types of applications. Thus in the pet-
sitter parent configuration, all starter dependencies and versions will be declared, and subprojects will
use only what is needed. There are different starter dependencies depending on the type of application; in
the sample below, only a few are declared.17 To reuse configuration declarations from the parent project, all
Spring Boot components and versions will be declared in the pet-sitter/build.gradle file.

//pet-sitter/build.gradle configuration file snippet
plugins {
 id ’com.gradle.build-receipt’ version ’1.0’
}
buildReceiptLicense {
 agreementUrl = ’https://gradle.com/terms-of-service’
 agree = ’yes’
}
//gradle build –Dreceipt
allprojects {
 version = ’1.0’
 group = ’com.ps’

 ext {
 //spring libs
 springVersion = ’4.3.2.RELEASE’
 springJpaVersion = ’1.10.2.RELEASE’
 springSecurityVersion = ’4.0.3.RELEASE’
 springBootVersion = ’1.4.1.BUILD-SNAPSHOT’
 aspectjVersion = ’1.8.4’
 yamlVersion=’1.17’
 ...
 boot = [
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$springBootVersion",
 starterWeb :
 "org.springframework.boot:spring-boot-starter-web:$springBootVersion",
 starterJetty :
 "org.springframework.boot:spring-boot-starter-jetty:$springBootVersion",
 starterSecurity :
 "org.springframework.boot:spring-boot-starter-security:$springBootVersion",
 starterJpa :
 "org.springframework.boot:spring-boot-starter-data-jpa:$springBootVersion",
 starterTomcat :

17The full list is available in the Spring Boot Reference documentation http://docs.spring.io/spring-boot/docs/
current/ reference/htmlsingle/#using-boot-starter

http://docs.spring.io/spring-boot/docs/current/
http://docs.spring.io/spring-boot/docs/current/

Chapter 6 ■ Spring Web

328

 "org.springframework.boot:spring-boot-starter-tomcat:$springBootVersion",
 starterTest :
 "org.springframework.boot:spring-boot-starter-test:$springBootVersion",
 Actuator :
 "org.springframework.boot:spring-boot-starter-actuator:$springBootVersion",
 Yaml : "org.yaml:snakeyaml:$yamlVersion"
]
 ...
 }
}
subprojects {
 apply plugin: ’java’
 sourceCompatibility = 1.8

 repositories {
 mavenLocal
 mavenCentral
 maven { url "https://oss.sonatype.org/content/repositories/snapshots/" }
 maven { url "http://repo.spring.io/snapshot/" }
 maven { url "http://repo.spring.io/milestone" }
 }
 ...
}

In the Gradle configuration file of the parent project pet-sitter, versions for main libraries or family
of libraries are declared, as well as repositories from which dependencies are downloaded and the version
of JAVA used for compiling and running the project. The 11-ps-boot-sample is a submodule of the pet-
sitter project. The 11-ps-boot-sample/11-ps-boot-sample.gradle configuration file contains only the
dependencies needed, without versions, because these are inherited from the parent configuration.

//11-ps-boot-sample/11-ps-boot-sample.gradle
apply plugin: ’spring-boot’

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath boot.springBootPlugin
 }
}

dependencies {
 compile boot.starterWeb
 testCompile boot.starterTest
}

jar {
 baseName = ’ps-boot’
}

Chapter 6 ■ Spring Web

329

Each release of Spring Boot provides a curated list of dependencies it supports. The versions of the
necessary libraries are selected so that the API matches perfectly, and this is handled by Spring Boot.
Therefore, manual configuration of dependencies versions is not necessary. Upgrading Spring Boot will
ensure that those dependencies are upgraded as well. This can easily be proved by looking at the transitive
dependencies of the spring-boot-starter-web in Intelij IDEA Gradle view, as depicted in Figure 6-18.

The version for Spring Boot and project version are inherited from the pet-sitter project. To have
this project built and running, all we need is one class annotated with @SpringBootApplication. This
annotation is a top-level annotation designed to use only at class level. It is a convenience annotation that is
equivalent to declaring the following three:

•	 @Configuration, because the class is a configuration class and can declare beans
with @Bean.

•	 @EnableAutoConfiguration is a specific Spring Boot annotation from package
org.springframework.boot.autoconfigure that has the purpose to enable Spring
Application Context, attempting to guess and configure beans that you are likely to
need based on the specified dependencies.

■■ !  @EnableAutoConfiguration works well with Spring-provided starter dependencies, but it
is not directly tied to them, so other dependencies outside the starters can be used. For example,
if there is a specific embedded server on the classpath, this will be used unless there is another
EmbeddedServletContainerFactory configuration in the project. 

Figure 6-18.  11-ps-boot-sample: spring-boot-starter-web transitive dependencies in Intelij IDEA Gradle view

Chapter 6 ■ Spring Web

330

•	 @ComponentScan, because the developer will declare classes annotated with
stereotype annotations that will become beans of some kind. The attribute
used to list the packages to scan used with @SpringBootApplication is
scanBasePackages.

package com.ps.start;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication(scanBasePackages =
 {"com.ps.web", "com.ps.start"})
public class Application {

 public static void main(String... args) {
 SpringApplication.run(Application.class, args);
 System.out.println("Started ...");
 }
}

The main method is the entry point of the application and it follows the Java convention for an
application entry point. This method calls the static run method from the org.springframework.boot.
SpringApplication class that will bootstrap the application and start the Spring IoC container, which will
start the configured embedded web server. So if you run this class in Intellij IDEA or compile and build
the application and execute the jar, the result will be the same: a Spring application will be started with
a number of infrastructure beans already configured with the default, most common, configurations.
Now that we have a Spring application context let’s do something with it, like inspect all the beans. The
easiest way to do this is to add a controller class that will display all those beans. But declaring a controller
means views also have to be resolved, so the simplest way is to use a REST controller. A REST controller is
a controller class annotated with @RestController. This annotation is a combination of @Controller, the
typical stereotype annotation marking a bean as a web component and @ResponseBody an annotation that
basically tells spring that the result returned by methods in this class do not need to be stored in a model and
displayed in a view. The CtxController depicted in the following code snippet contains one method that
returns a simple HTML code containing a list of all beans in the application context.

■■ ! T his CtxController is a special implementation designed to depict the beans names in the browser in
a readable manner, as you will probably use a browser to test this project. The HTML format is not suitable for
REST services, as you will be shown in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-0811-3_7

Chapter 6 ■ Spring Web

331

To register this class, the package should be scanned with @ComponentScan.But this annotation is no
longer needed as @SpringBootApplication has the behavior covered.

//CtxController.java
package com.ps.start;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Arrays;

@RestController
public class CtxController {

 @Autowired
 ApplicationContext ctx;

 @RequestMapping("/")
 public String index() {
 StringBuilder sb = new StringBuilder("<html><body>");

 sb.append("Hello there dear developer,
 here are the beans you were looking for: </br>");

 //method that returns all the bean names in the context of the application
 String beanNames = ctx.getBeanDefinitionNames();
 Arrays.sort(beanNames);
 for (String beanName : beanNames) {
 sb.append("</br>").append(beanName);
 }
 sb.append("</body></htm>");
 return sb.toString();
 }

}
// Application.java
@SpringBootApplication
@ComponentScan(basePackages = {"com.ps.web", "com.ps.start"})
public class Application {

 public static void main(String... args) {
 SpringApplication.run(Application.class, args);
 System.out.println("Started ...");
 }
}

Chapter 6 ■ Spring Web

332

If the application is made only from what was listed up to this point, when running the main method
and accessing http://localhost:8080, the list of all the beans in the application context will be depicted as
in Figure 6-19.

The application will run on an embedded Tomcat container, which can be customized easily to declare
port and context. There are multiple ways, but the easiest way that can also be externalized is to create a file
named application.properties under src/main/resources and create a special bean implementing org.
springframework.boot.context.embedded.EmbeddedServletContainerCustomizer to load those values
and inject them in the embedded server configuration. The structure of the 11-ps-boot-sample project is
depicted in Figure 6-20.

Figure 6-19.  Infrastructure beans of an application context created by Spring Boot

Figure 6-20.  11-ps-boot-sample: Simple Spring Boot project structure

Chapter 6 ■ Spring Web

333

The contents of the application.properties are as follows:

app.port=8080
app.context=/ps-boot

The names of the properties used here are not reserved or fixed by Spring Boot. They can have any
names, and their values will be injected in the bean that uses them in the @Value annotation.18

They are loaded by the following bean:

package com.ps.start;

import org.springframework.boot.context.embedded.ConfigurableEmbeddedServletContainer;
import org.springframework.boot.context.embedded.EmbeddedServletContainerCustomizer;
...
@Component
public class PropertiesConfBean implements EmbeddedServletContainerCustomizer {

 @Value("${app.port}")
 private Integer value;

 @Value("${app.context}")
 private String contextPath;

 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {
 container.setPort(value);
 container.setContextPath(contextPath);
 }
}

The application.properties can be placed in the following locations:

	 1.	 /config subdirectory of the current directory.

	 2.	 the current directory.

	 3.	 classpath config package.

	 4.	 the classpath root.

18There is a long list of Spring Boot common application properties, and you can inspect it in the Spring Boot
Reference documentation: http://docs.spring.io/spring-boot/docs/1.4.0.RELEASE/reference/htmlsingle/
#common-application-properties.

http://docs.spring.io/spring-boot/docs/1.4.0.RELEASE/reference/htmlsingle/

Chapter 6 ■ Spring Web

334

This list is ordered by precedence, and properties defined in upper positions override those in lower
positions. The application.properties file can be provided when the application is executed from the
command line using the spring.config.location argument:

java -jar ps-boot.jar --spring.config.location=
 /Users/iuliana.cosmina/temp/application.properties

The file name can be changed too, by using the spring.config.name in the command line:

java -jar ps-boot.jar --spring.config.name=my-boot.properties

With this configuration, the application can be accessed at http://localhost:8080/ps-boot/. The
configuration above will work when embedded Jetty, Tomcat, or Undertow is used. If something specialized
is needed— let’s assume we are using Tomcat—a TomcatEmbeddedServletContainerFactory bean can be
used. And because the SpringBootApplication also includes scanning capabilities, the whole application
can be written in the Application class by annotating it with the @RestController annotation.

import org.springframework.boot.context.embedded.EmbeddedServletContainerFactory;
import org.springframework.boot.context.embedded
 .tomcat.TomcatEmbeddedServletContainerFactory;
...
@RestController
@SpringBootApplication(scanBasePackages = {"com.ps.start"})
public class Application {

 public static void main(String... args) {
 SpringApplication.run(Application.class, args);
 System.out.println("Started ...");
 }

 @Value("${app.port}")
 private Integer value;

 @Value("${app.context}")
 private String contextPath;

 @Bean
 public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory factory =
 new TomcatEmbeddedServletContainerFactory();
 factory.setPort(value);
 factory.setSessionTimeout(10, TimeUnit.MINUTES);
 factory.setContextPath(contextPath);
 return factory;
 }

Chapter 6 ■ Spring Web

335

 @Autowired
 ApplicationContext ctx;

 @RequestMapping("/")
 public String index() {
 StringBuilder sb = new StringBuilder("<html><body>");

 sb.append("Hello there dear developer,
 here are the beans you were looking for: </br>");

 String beanNames = ctx.getBeanDefinitionNames();
 Arrays.sort(beanNames);
 for (String beanName : beanNames) {
 sb.append("</br>").append(beanName);
 }
 sb.append("</body></htm>");
 return sb.toString();
 }
}

Also, when a Spring Boot application starts, the Spring Boot banner is depicted in the console. This
can be replaced by creating a file named banner.txt under src/main/resources containing the desired
banner in ASCII format. The original Spring Boot banner and the Apress banner are depicted side by side in
Figure 6-21.19

There are quite a few ways to run this application:

	 1.	 In Intellij IDEA, right click on the Application class and select Run
Application.main() from the menu that appears; basically, execute the class
like any other Java class containing a main method.

	 2.	 If the jar plugin is configured in Gradle (and in our project it is so configured by
default for all subprojects), after executing gradle clean build, the executable
ps-boot-1.0.jar artifact is built and saved under 11-ps-boot-sample/build/
libs. The artifact can be executed with java -jar ps-boot-1.0.jar. The jar
plugin can be configured in the module Gradle configuration file, and a different
name can be set for the artifact.

Figure 6-21.  Spring Boot and Apress banner

19You can create your own ASCII banner using this site: http://patorjk.com/software/taag/
#p=display&f=Graffiti&t=Type%20Something%20

http://patorjk.com/software/taag/#p=display&f=Graffiti&t=Type%20Something%20
http://patorjk.com/software/taag/#p=display&f=Graffiti&t=Type%20Something%20

Chapter 6 ■ Spring Web

336

//11-ps-boot-sample/11-ps-boot-sample.gradle
jar {
 baseName = ’ps-boot’
}

When this configuration snippet is present in the Gradle configuration file for a
module, executing gradle clean build will create an executable artifact named
ps-boot.jar and save it under 11-ps-boot-sample/build/libs.

	 3.	 If the boot plugin is configured in Gradle, the application can be run by calling
the boot Gradle task gradle bootRun.

	 4.	 If the war plugin is configured in Gradle, after executing gradle clean war, the
resulting artifact will be a web archive named ps-boot-1.0.war, which can also
be run with java -jar ps-boot-1.0.war. The war plugin can be configured in
the module Gradle configuration file, and a different name can be set for the web
artifact.

//11-ps-boot-sample/11-ps-boot-sample.gradle
apply plugin: ’war’
...
war {
 baseName = ’ps-boot’
}

When this configuration snippet is present in the Gradle configuration file for a
module, executing gradle clean war will create an executable artifact named
ps-boot.war and save it under 11-ps-boot-sample/build/libs.

	 5.	 If the war plugin is configured in Gradle and we want to produce a deployable
web archive that can be deployed on any application server, the embedded
container dependencies need to be marked as provided. Since the project
does not contain a web.xml file, it is mandatory to define a class extending
SpringBootServletInitializer and override its configure method. The
SpringBootServletInitializer class is a Boot-specific class implementing
WebApplicationInitializer, which is needed to run a Spring application from
a traditional WAR deployment. The developer must override the configure()
method and provide the class needed to configure the Spring application,
whence the class annotated with @SpringBootApplication. This will use Spring
Framework’s Servlet 3.0 support, and the application will be configured when
it is run by the servlet container. The preferred practice is to make the class
annotated with @SpringBootApplication extend this class.

//Application.java
import org.springframework.boot.web.support.SpringBootServletInitializer;
import org.springframework.boot.builder.SpringApplicationBuilder;
...
@RestController
@SpringBootApplication(scanBasePackages = {"com.ps.start"})
public class Application extends SpringBootServletInitializer {

Chapter 6 ■ Spring Web

337

 @Override
 protected SpringApplicationBuilder configure
 (SpringApplicationBuilder application) {
 return application.sources(Application.class);
 }

 public static void main(String... args) {
 SpringApplication.run(Application.class, args);
 System.out.println("Started ...");
 }
 ...//etc
}

The web archive resulting in this case when gradle clean war is run must be
deployed on an application server, and when the server starts, the application
will be accessible at http://localhost:8080/ps-boot/.

When you run the application "in place" using the Gradle task bootRun, it would be useful to have the static
resources (those under /src/main/resources) reloaded while the application is running, so development
can take place without restarting the application. This can be done by customizing the bootRun task to use
the effective contents of the resources directory instead of the compiled, processed ones.

//11-ps-boot-sample/11-ps-boot-sample.gradle
bootRun{
 addResources = true
}

For Spring Boot to be able to support this, another Boot-specific library must be added to the classpath:
spring-boot-devtools. In our project setup, we need to add the library to the parent configuration file
under pet-sitter/build.gradle:

//pet-sitter/build.gradle
allprojects {
 boot = [
 ... // other starter libs declarations
 starterWeb :
 org.springframework.boot:spring-boot-starter-web:$springBootVersion",
 devtools :
 "org.springframework.boot:spring-boot-devtools:$springBootVersion"
]

... // other configuration elements
}

Chapter 6 ■ Spring Web

338

Then the module configuration file 11-ps-boot-sample/11-ps-boot-sample.gradle must be updated
to add it as a compile dependency:

//11-ps-boot-sample/11-ps-boot-sample.gradle
apply plugin: ’spring-boot’

dependencies {
 compile boot.starterWeb, boot.devtools, misc.jstl, misc.servlet
 testCompile boot.starterTest
}

war {
 baseName = ’ps-boot’
}
... // other configuration elements

Configuration Using YAML
YAML is a superset of JSON and has a very convenient syntax for storing external properties in a hierarchical
format. The application.properties contains only two properties, but for big production applications,
that file can become quite complex, so it is useful to be able to group properties by their purposes and create
hierarchies. An example of such a file:

spring:
 app:
 name: ps-boot
 datasource:
 driverClassName: org.h2.Driver

 url: jdbc:h2:sample;DB_CLOSE_ON_EXIT=TRUE
 username: sample
 password: sample
 Server:
 port: 9000
 context: /ps-boot

To use YAML, the application.properties must be replaced with application.yml file (the possible
locations for this file are the same as for application.properties) and the snakeyaml dependency added to
the project. A YAML file is transformed into a Java Map<String,Object>, and Spring Boot flattens the map
so that it is one level deep and has period-separated keys. So the application.properties that corresponds
to the application.yml depicted previously looks like this:

spring.app.name: ps-boot

spring.datasource.driverClassName: org.h2.Driver
spring.datasource.url: jdbc:h2:sample;DB_CLOSE_ON_EXIT=TRUE
spring.datasource.username: sample
spring.datasource.password: sample

server.port: 9000
server.context: /ps-boot

Chapter 6 ■ Spring Web

339

To configure the previous application using YAML, we do not have to add a dependency of snakeyaml,
because it is a transitive dependency of the Spring Boot Web Starter. So the only thing to do is the following:

	 1.	 Convert application.properties to application.yml

app:
 port: 8084
 context: /ps-boot
 sessionTimeout:10

	 2.	 Create a class to load and hold the YAML values, and to make things interesting,
the class should be able to work with external configuration files. This can be
done using the Spring Boot specialized annotation @ConfigurationProperties.20
This annotation also provides the possibility to validate the external properties
and define a prefix for the properties. So if there are multiple prefixes, multiple
classes can be defined. The name prefix is used by Spring Boot to identify the
properties that are valid to bind to a configuration object and is defined as a
value for the prefix attribute of the @ConfigurationProperties annotation.

import org.springframework.boot.context.properties.ConfigurationProperties;

import javax.annotation.PostConstruct;
import javax.validation.constraints.NotNull;

@ConfigurationProperties(prefix="app")
public class AppSettings {

 private static Logger logger = LoggerFactory.getLogger(AppSettings.class);

 @NotNull
 private Integer port;

 @NotNull
 private String context;

 @NotNull
 private Integer sessionTimeout;

 public AppSettings() {
 }

 @PostConstruct
 public void check() {
 logger.info("Initialized {} {}", port, context);

 }

...//getters & setters
}

20The @ConfigurationProperties annotation can be used with *.properties files too, but it makes
no sense to mention it twice.

Chapter 6 ■ Spring Web

340

■■ ! A lthough setters and getters are not part of the previous code snippet, they are mandatory, because
Spring Boot uses setters to populate the AppSettings bean properties, and getters are used to access the
values so they can be used.

	 3.	 Enable support for beans annotated with @ConfigurationProperties by
annotating the Configuration class with @EnableConfigurationProperties and
specify the configuration bean class s argument for it.

import org.springframework.boot.context.properties.EnableConfigurationProperties;
...
@RestController
@SpringBootApplication(scanBasePackages = {"com.ps.start"})
@EnableConfigurationProperties(AppSettings.class)
public class Application extends SpringBootServletInitializer {
 ...
}

If this annotation is not used, then the AppSettings class can be annotated
with @Configuration, and Spring Boot will properly create the bean and
load the values from the file. This approach is practical when more than one
configuration class is used.

	 4.	 Use the property values by injecting them where needed. In this
case, the values need to be injected into a class implementing
EmbeddedServletContainerFactory.

@RestController
@SpringBootApplication(scanBasePackages = {"com.ps.start"})
@EnableConfigurationProperties(AppSettings.class)
public class Application extends SpringBootServletInitializer {
...
 @Autowired
 private AppSettings appSettings;

 @Bean
 public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory
 factory = new TomcatEmbeddedServletContainerFactory();
 factory.setPort(appSettings.getPort());
 factory.setSessionTimeout(
 appSettings.getSessionTimeout(), TimeUnit.MINUTES);
 factory.setContextPath(appSettings.getContext());
 return factory;
 }

}

Chapter 6 ■ Spring Web

341

■■ !  Just keep in mind that YAML files can not be loaded via the @PropertySource annotation. This annotation
is specific to properties files.

Logging
Spring Boot uses Commons Logging internally by default, but it leaves the underlying implementation open.
Log4j2, Java Util, and Logback are supported. The application attached to this book uses Logback. The
starters use Logback by default, and it is preconfigured to use the console as output, but it can be configured
via the logback.xml file, which is located under /src/main/resources. By default, ERROR, WARN, and
INFO level messages are logged. To modify this behavior and enable writing DEBUG messages for a category
of core loggers (embedded container, Hibernate, and Spring Boot), the application.properties file must
be edited, and this property must be added: debug=true.

Logging is initialized before the application context, so it is impossible to control logging from using
@PropertySources in @Configuration classes. System properties and conventional Spring Boot external
configuration files should be used. Depending on the logging system that is used, Spring Boot will look for
the specific configuration files, in the order stated below:

•	 logback-spring.xml, logback-spring.groovy, logback.xml, logback.groovy
for Log-back

•	 log4j2-spring.xml, log4j2.xml for Log4j2

•	 logging.properties for Java Util Logging

The logfile name to use by default by Spring Boot can be configured using the logging.file Spring
Environment variable. There are more Spring Environment variables that can be used to configure
Spring Boot logging, and the full list and purposes are available in the Spring Boot official reference
documentation.21 Using filenames postfixes with -spring is recommended, sine when standard
configuration locations are used, Spring cannot completely control log initialization.

Testing with Spring Boot
The most practical way to test a Spring component or bean is not to involve Spring at all. If the class has a
constructor, throw in some JUnit asserts and you are done. With Spring 4.3 it is really easy to test, since the
need to use @Autowired has been removed. In a test environment, as long as there is one constructor, Spring
will implicitly consider it an autowire target. In a more complex application in which integration tests are
needed, testing can get complicated. That is why Spring Boot provides a helper annotation to configure a test
environment.

Testing Spring web applications means testing that controllers work as expected, that they return the
proper results, and that they use the proper views. This can be done outside the application server, but in
case of integration tests, an embedded server would be useful to test them in a web environment. Spring

21Spring Environment logging variables: http://docs.spring.io/spring-boot/docs/current/reference/
htmlsingle/ #boot-features-custom-log-configuration

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

Chapter 6 ■ Spring Web

342

Boot provides the possibility to do just that by providing a specialized annotation @SpringBootTest. This
annotation should be used on a test class that runs Spring Boot-based tests. It provides the following:

•	 If no ContextLoader is specified with @ContextConfiguration, it uses org.
springframework.boot.test.context.SpringBootContextLoader by default.

•	 Automated search for a Spring Boot configuration when nested @Configuration
classes are used.

•	 Loading environment-specific properties via the properties attribute. This attribute
allows for specification of properties (key=value pairs) as values for the attribute.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT,
 properties = {"app.port=9090"})
public class CtxControllerTest {
...
}

•	 Defining different web environment modes and starting a fully running container on
a random port, using the webEnvironment attribute.

•	 Registering a org.springframework.boot.test.web.client.TestRestTemplate
bean for use in web tests that use a fully running container.

Thus with the following controller defined,

@Controller
public class CtxController {

 public static final String INTRO = "Hello there dear developer,
 here are the beans you were looking for: </br>";

 @Autowired
 ApplicationContext ctx;

 @RequestMapping("/")
 @ResponseBody
 public String index() {
 StringBuilder sb = new StringBuilder("<html><body>");
 sb.append(INTRO);
 String beanNames = ctx.getBeanDefinitionNames();
 Arrays.sort(beanNames);
 for (String beanName : beanNames) {
 sb.append("</br>").append(beanName);
 }
 sb.append("</body></htm>");
 return sb.toString();
 }

Chapter 6 ■ Spring Web

343

 @RequestMapping("/home")
 public String home(ModelMap model) {
 model.put("bogus", "data");
 return "home";
 }

}

it can be easily tested with Spring Boot:

import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.ui.ModelMap;
...
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment =
 SpringBootTest.WebEnvironment.RANDOM_PORT)
public class CtxControllerTest {

 @Autowired
 CtxController ctxController;

 private ModelMap model = new ModelMap();

 @Test
 public void textIndex() {
 String result = ctxController.index();
 assertNotNull(result);
 assertTrue(result.contains(CtxController.INTRO));
 }

 @Test
 public void textHome() {
 String result = ctxController.home(model);
 assertEquals("home", result);

 String modelData = (String)model.get("bogus");
 assertEquals("data", modelData);
 }

}

Chapter 6 ■ Spring Web

344

The SpringRunner is an alias for SpringJUnit4ClassRunner introduced in Spring 4.3. More information
on how testing was improved with Spring Boot 1.4 and Spring 4.3 is covered on the Spring official blog.22

Spring Boot is quite a big topic, and it has two chapters in the official certification exam. But it is not
covered fully in the official course. The complete documentation that you should read to be able to harness
its power fully is the official reference documentation available publicly here: http://docs.spring.io/
spring-boot/docs/current/reference/. Spring Boot is a great tool for speeding up development, and
today, more and more companies that develop Spring applications are using it.

Summary
Below, a list of core concepts and important details related to Spring Web MVC, Spring Security, and Spring
Boot has been compiled for you:

•	 Spring Web MVC was built to respect the MVC design pattern.

•	 The entry point in a Spring Web application is the DispatcherServlet, which is a
front controller for the application.

•	 The DispatcherServlet assigns HTTP requests to method calls from classes called
controllers using a collection of web-specific infrastructure beans.

•	 To create a Spring Web MVC application, the DispatcherServlet must be
configured as the entry point of the application, and the application configuration
must contain infrastructure MVC beans and custom controllers and view beans.

•	 The @EnableWebMvc annotation is used on a configuration class for a Spring Web
MVC application.

•	 The MVC configuration class must implement WebMvcConfigurer or extend a class
implementing this interface to customize the imported configuration.

•	 The @MVC model and an application server supporting Servlet 3.0+ allow for an
application without any XML configuration.

•	 Spring Security allows for Authentication to be fully decoupled from Authorization.

•	 URLs can be protected using security rules, JSP elements can be protected
using Security taglibs, and method access can be restricted using @Secured or @
RolesAllowed.

•	 Method security is implemented using AOP using Spring Security-specific and JSR
250 annotations: @Secured, @RolesAllowed, @PreAuthorize, etc.

•	 Encrypting and salting passwords is supported.

•	 @EnableWebSecurity is the annotation used on a configuration class to have Spring
Security enabled.

•	 This class must also implement WebSecurityConfigurer or extend a class
implementing it to customize the imported configuration.

•	 Spring Boot is a set of preconfigured frameworks/technologies designed to reduce
boilerplate configuration and provide a quick way to have a Spring application up
and running.

22Testing improvements in Spring Boot 1.4 https://spring.io/blog/2016/04/15/testing-
improvements-in-spring-boot-1-4.

http://docs.spring.io/spring-boot/docs/current/reference/
http://docs.spring.io/spring-boot/docs/current/reference/
http://docs.spring.io/spring-boot/docs/current/reference/
https://spring.io/blog/2016/04/15/testing-improvements-in-spring-boot-1-4
https://spring.io/blog/2016/04/15/testing-improvements-in-spring-boot-1-4

Chapter 6 ■ Spring Web

345

•	 Spring Boot default configurations can be easily customized.

•	 Spring Boot provides starter dependencies for a multitude of Spring applications.

•	 Spring Boot comes with a wide set of embedded servers, so developers do not have
to download, install, and configure them in a development environment.

•	 Spring Boot does not generate code; it just dynamically wires up beans and settings
and applies them to the application context when the application is started.

•	 Artifacts built with Spring Boot, whether jars or wars, are executable and can be
executed with java -jar.

Quiz
Question 1: Which of the following statements regarding DispatcherServlet is true?

	 A.	 It is used to enable web support for Spring applications.

	 B.	 Intercepts all HTTP requests and delegates them to the appropriate handlers.

	 C.	 It must be declared as a bean in the root context of the application.

	 D.	 DispatcherServlet cannot be configured without the web.xml file.

	 E.	 DispatcherServlet is the main servlet class of a Spring Web application.

Question 2: What does MVC stand for?

	 A.	 Model View Controller

	 B.	 Mapping View Controller

	 C.	 Module View Control

Question 3: What annotation is used to map HTTP Requests to handler methods?

	 A.	 @HandlerMapping

	 B.	 @RequestMapping

	 C.	 @Mapping

Question 4: Considering the following handler method definition:

@RequestMapping(value = "/showUser", method = RequestMethod.GET)
public String show(@RequestParam("userId") Long id, Model model) {
 ...
}

Which of the following requests are mapped to it?

	 A.	 http://localhost:8080/mvc-basic/showUser?userid=105

	 B.	 http://localhost:8080/mvc-basic/showUser?userId=105

	 C.	 http://localhost:8080/mvc-basic/showUser?id=105

	 D.	 http://localhost:8080/mvc-basic/showUser?userId=2c

Chapter 6 ■ Spring Web

346

Question 5: Which class in the following list is the default view resolver in Spring:

	 A.	 JspResourceViewResolver

	 B.	 ResourceViewResolver

	 C.	 InternalResourceViewResolver

Question 6: What is authentication?

	 A.	 the process of securing resources

	 B.	 the process of making a decision whether a user should be allowed to access a
resource

	 C.	 the process of verifying the validity of the principal’s credentials

Question 7: What is authorization?

	 A.	 the process of verifying the validity of the principal’s credentials

	 B.	 the process of making a decision whether an authenticated user is allowed to
perform a certain action within the application

	 C.	 the process of generating credentials for a user

Question 8: What is a principal?

	 A.	 an object storing the credentials for a user

	 B.	 the term that signifies a user, device, or system that could perform an action
within the application

	 C.	 a term that signifies a secured resource

Question 9: What can be said about application security?

	 A.	 is unnecessary

	 B.	 should be provided by third party frameworks

	 C.	 is a cross-cutting concern

Question 10: Consider the following XML configuration snippet:

<web-app ...>
<!-- The root web application context is the security context-->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/security-config.xml
 </param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

Chapter 6 ■ Spring Web

347

 <filter>
 <filter-name>######</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>######</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

What should replace the ’######’ pattern for the configuration above to be valid in a Spring Secure
application?

	 A.	 springSecurityFilterChain

	 B.	 securityFilterChain

	 C.	 securityHandlerChain

Question 11: Consider the following Java Configuration class snippet:

@Configuration
public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override
 protected void configure(HttpSecurity http) throws Exception {
...
 }
}

What is missing from the code above that will enable security at URL and at method level?

	 A.	 @EnableWebSecurity

	 B.	 @EnableWebMvc

	 C.	 @EnableWebSecurity + @EnableWebMvc

	 D.	 @EnableWebSecurity + @EnableGlobalMethodSecurity(jsr250Enabled = true)

	 E.	 @EnableWebSecurity + @EnableGlobalMethodSecurity(secured = true)

Question 12: Which of the following Spring annotations taken together are the equivalent of the @
SpringBootApplication?

	 A.	 @Component

	 B.	 @Configuration

	 C.	 @ComponentScan

	 D.	 @EnableAutoConfiguration

	 E.	 @Controller

349© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_7

CHAPTER 7

Spring Advanced Topics

In the previous chapters, the objects handled by Spring were created on a JVM. These objects were accessed
and manipulated indirectly by the user using the HTTP protocol. In this case, all that the end user needs to
access the objects in the JVM is the web interface of the application.

Remoting and Web Services are ways of communicating between applications. The applications
can run on the same computer, on different computers, on different networks, and can even be written in
different languages (a Python application can consume a web service provided by a Java application, for
example). In remoting, the applications communicating know about each other. There is a server application
and a client application. Because of this, it supports state management options and can correlate multiple
calls from the same client and support callbacks. On the client application, a proxy of the server target object
is created and used to access the object on the server. Remoting can be used across any protocol, but it does
not do well with firewalls. Remoting relies on the existence of common language runtime assemblies that
contain information about data types. This limits the information that must be passed about an object and
allows objects to be passed by value or by reference. The communication is done using a binary, XML, or
JSON format. All these limitations make remoting quite deprecated at the moment this book is being written.
Web services have completely replaced them.

Web Services constitute a cross-platform interprocess communication method using common
standards and able to work through firewalls. They work with messages, not objects. So the client basically
sends a message, and a reply is returned. Web services work in a stateless environment whereby each
message results in a new object created to service the request. Web services support interoperability across
platforms and are good for heterogeneous environments. They expose their own arbitrary sets of operations
such as via WSDL (Web Services Description Language) and SOAP (Simple Object Access Protocol).

REST, or representational state transfer, also called RESTful web services, is currently the most popular
way applications communicate with each other. REST services allow access and manipulation of textual
representations of web resources using a uniform and predefined set of stateless operations. The most
common protocol used with REST services is HTTP, so the HTTP methods map on REST operations such as
GET, POST, PUT, DELETE. Initially, web resources were documents or files accessed using a URL (Uniform
Resource Locator, also known as a web address), but recently, a web resource became able to be anything
(object, entity) that can be accessed via the web and is identified by a URI (Uniform Resource Identifier).

Chapter 7 ■ Spring Advanced Topics

350

The easiest way in which two heterogeneous systems can communicate is using a layer called
middleware. Using this layer, software components like applications, enterprise Java beans, servlets, and
other components that have been developed independently and that run on different networked platforms
can interact with one another. There are three types of middleware:

•	 Remote Procedure Call, or RPC, which allows one application to call procedures
from another application remotely as if they were local calls.

•	 Object Request Broker, or ORB-based, which enables an application’s objects
to be distributed and shared across heterogeneous networks. (Remoting falls in
this category.)

•	 Message Oriented Middleware or MOM-based middleware, which allows distributed
applications to communicate and exchange data by sending and receiving messages.

Spring provides support for the JMS (Java Messaging Service) API, which is an abstraction written in
Java for accessing MOM middleware. Messaging is an implementation to handle the producer–consumer
problem. An application produces messages, and a client application consumes them asynchronously. The
application sending the messages has no knowledge of its client (or clients). Messaging is a form of loosely
coupled distributed communication. The main advantages of using messaging for communication are
the relaxed coupling between the producer and the consumer and the ability to integrate heterogeneous
platforms, reduce system bottlenecks, increase scalability, and respond more quickly to change.

JMX (Java Management Extensions) is a Java technology that supplies tools for managing and
monitoring applications, system objects, devices (such as printers) and service-oriented networks.Those
resources are represented by objects called MBeans (Managed Bean). The JMX support in Spring provides
features to integrate a Spring application into a JMX infrastructure easily and transparently.

All of these topics will be superficially covered in this chapter, except for REST, which has its own
chapter in the official documentation for the core certification exam.

Spring Remoting
Before this chapter, the topics presented were exemplified technically through applications executed on a
single JVM. Service beans were calling repository beans methods, and tests classes were executed to check
the correct communication between them. Figure 7-1 depicts the situation covered so far.

Figure 7-1.  Client and Server applications run in the same JVM context

Chapter 7 ■ Spring Advanced Topics

351

With a traditional remoting client, a ClientService class should be introduced to access remote objects
that will exist in an application being run on a different JVM. Figure 7-2 abstractly depicts the situation
covered in this chapter. The remote object is represented in this figure by the RemoteUserService class.

Figure 7-2.  Client and Server applications run in the different JVM context

Figure 7-3.  The RMI model abstract functional schema

Java Remote Invocation allows for an object running in one JVM to invoke methods on an object
running in another JVM. RMI (Remote Method Invocation) is Java’s version of RPC (Remote Procedure Call).
RMI applications often consist of two processes: a server and a client. The server creates the objects that will
be accessed remotely, and it will expose a skeleton (the interface of the remote object). The client invokes
methods on a stub (proxy object). The RMI model abstract functional schema is depicted in Figure 7-3.

Chapter 7 ■ Spring Advanced Topics

352

The RMI model has a few disadvantages:

•	 The client and server implementations are coupled to the RMI framework.

–– The server interface must extend java.rmi.Remote.

–– The client must catch java.rmi.RemoteException, because it is a checked exception.1

•	 RMI stub and skeleton have to be generated with the rmic compiler, which can be
found in the JAVA_HOME\bin directory.2

•	 And extra code must be written to handle binding and retrieving objects from the
remote server.

To pass objects between server and client, Java marshaling is used. Objects transferred using RMI must
therefore be serializable, and they must implement java.io.Serializable. RMI uses the Java Remote
Method Protocol (JRMP) for remote Java object communication. In the following remote example, the entity
objects defined in 00-ps-core are used, and they were defined as serializable so they could be handled by
Spring JPA.

// User.java
import javax.persistence.*;
...
@Entity
@Table(name="P_USER")
public class User extends AbstractEntity {
 ...
}

// AbstractEntity.java
import java.io.Serializable;

@MappedSuperclass
public abstract class AbstractEntity
 implements Serializable {
 ...
}

Spring provides classes for writing remote applications that are designed to hide the “plumbing”
details. Using class org.springframework.remoting.rmi.RmiServiceExporter, the interface UserService
implemented by class UserServiceImpl, the service bean defined in 09-ps-data-jpa can be exposed
as an RMI object. This class can be used to bind to a registry or expose an endpoint. Using the class
org.springframework.remoting.rmi.RmiProxyFactoryBean, the UserService interface can be accessed via
proxies that are created to communicate with the server-side endpoint and to convert the remoting-specific
exceptions to a runtime hierarchy, all extending the core RemoteAccessException. These two classes are
basically utility classes to help developers write remote applications quickly and easily, because the code
written by the developer is greatly reduced, by using configuration instead.3 The abstract schema of client
and server applications remoting using Spring is depicted in Figure 7-4.

1Oracle JavaDoc API: http://docs.oracle.com/javase/8/docs/api/java/rmi/RemoteException.html.
2http://docs.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html.
3This is an example of how RMI applications can be written without Spring: https://en.wikipedia.org/wiki/
Java_remote_ method_invocation.

http://docs.oracle.com/javase/8/docs/api/java/rmi/RemoteException.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html
https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://en.wikipedia.org/wiki/Java_remote_method_invocation

Chapter 7 ■ Spring Advanced Topics

353

Spring Remote Configuration
Configuring the remote server and client can be done using XML or Java Configuration. The service that will
be exposed remotely is a service bean defined in the 09-ps-data-jpa project that uses a Spring Repository
to create and query users. In order to set up client and server remote applications using Spring that
communicate over the JRMP protocol, the following steps have to be executed:

	 1.	 Configure a bean extending org.springframework.remoting.rmi.
RmiServiceExporter. Using XML:

<!-- rmi-server-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean class="org.springframework.remoting.rmi.RmiServiceExporter"
 p:registryPort="1099"
 p:alwaysCreateRegistry="true"
 p:serviceName="userService"
 p:serviceInterface="com.ps.services.UserService"
 p:service-ref="userServiceImpl"/>

</beans>

Using Java Configuration:

//RmiServerConfig.java
import org.springframework.remoting.rmi.RmiServiceExporter;
...
@Configuration
public class RmiServerConfig {

 @Autowired
 @Qualifier("userServiceImpl")
 UserService userService;

Figure 7-4.  Spring remoting schema depicting the roles of RmiServiceExporter and RmiProxyFactoryBean

Chapter 7 ■ Spring Advanced Topics

354

 @Bean
 public RmiServiceExporter userService() {
 RmiServiceExporter exporter = new RmiServiceExporter();
 exporter.setRegistryPort(1099);
 exporter.setAlwaysCreateRegistry(true);
 exporter.setServiceName("userService");
 exporter.setServiceInterface(UserService.class);
 exporter.setService(userService);
 return exporter;
 }

}

Both of the beans defined previously have the following properties set:

•	 registryPort – the port of the registry for the exported RMI service, has the
default value of 1099, so this property is not required to be set, and it is used in
the example just for pedagogical purposes.

•	 alwaysCreateRegistry – the default value for this property is false. When a
client requests an RMI service, an existing registry is located, and if not found, it
will be created. If this property is set to true, the registry will be created on client
request, to avoid the overhead of locating an existing registry without any client
needing it. Since this property has a default value of false, it is not required to
be configured explicitly by the developer of the application.

•	 serviceName – the exported RMI service is accessible by default to a location
identified by the following template: rmi://host:port/serviceName. The
service name is set by this property and must be set explicitly by the developer of
the application.

•	 serviceInterface – this property is used to set the interface of the bean type
that will be exposed as an RMI service; it must be set explicitly by the developer
of the application.

•	 service – this property is used to set the bean that will be exposed as an RMI
service; it must be set explicitly by the developer of the application.

	 2.	 Create a server application that will contain the remote exported bean and the
application beans that need to be accessed remotely.

Using XML, the configuration looks like the following snippet.

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class RmiExporterBootstrap {

 public static void main(String args) throws Exception {
 ClassPathXmlApplicationContext ctx =
 new ClassPathXmlApplicationContext(
 "spring/rmi-server-config.xml",
 "spring/app-config.xml");

Chapter 7 ■ Spring Advanced Topics

355

 System.out.println("RMI server started.");
 System.in.read();
 ctx.close();
 }
}

The app-config.xml contains all the service and repository beans needed to be
executed on the remote server.

<beans ...">
 <!-- import service configurations -->
 <bean class="com.ps.config.ServiceConfig"/>
 <context:annotation-config/>
</beans>

Using Java Configuration, the context declared in the class RmiExporterBootstrap will have
to be defined as in the following sample:

import com.ps.config.ServiceConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class RmiExporterBootstrap {

 public static void main(String args) throws Exception {

 AnnotationConfigApplicationContext ctx =
 new AnnotationConfigApplicationContext(
 RmiServerConfig.class, ServiceConfig.class);
 System.out.println("RMI reward network server started.");
 System.in.read();
 ctx.close();
 }
}

By executing the RmiExporterBootstrap class, a Java process will start that will provide an RMI service
named userService on port 1099. The System.in.read(); is used to keep the process running until the
user presses a key.

	 3.	 Configure a bean of type org.springframework.remoting.rmi.
RmiProxyFactoryBean that will take care of creating the proxy objects needed on
the client side to access the RMI service. Using XML, the configuration looks like
the following snippet.

<!-- rmi-client-config.xml -->
<beans ...>
 <bean id="userService"
 class="org.springframework.remoting.rmi.RmiProxyFactoryBean"
 p:serviceInterface="com.ps.services.UserService"
 p:serviceUrl="rmi://localhost:1099/userService"/>
</beans>

Chapter 7 ■ Spring Advanced Topics

356

The same configuration using Java Configuration can be written like this:

//RmiClientConfig.java
import org.springframework.remoting.rmi.RmiProxyFactoryBean;

@Configuration
public class RmiClientConfig {

 @Bean
 public UserService userService() {
 RmiProxyFactoryBean factoryBean = new RmiProxyFactoryBean();
 factoryBean.setServiceInterface(UserService.class);
 factoryBean.setServiceUrl("rmi://localhost:1099/userService");
 factoryBean.afterPropertiesSet();
 return (UserService) factoryBean.getObject();
 }
}

Before creating the proxy bean, the factory bean must be initialized, which is why
in the Java Configuration, the method afterPropertiesSet() must be called
explicitly. The serviceUrl property will be set with the URL, where the server
will provide the RMI service and the serviceInterface property should be set
with the Interface that the RMI server bean is implementing. This interface is the
one that the proxy created by the factory bean will implement to allow the client
to call remote methods on the server userService bean. That is why in the last
line of the method, the object returned by factoryBean.getObject() is cast to
UserService.

	 4.	 Create a client application that will use the client factory bean. The easiest
way to do this is to create a test class and inject the client proxy bean that the
RmiProxyFactoryBean will create:

 //RmiTests.java
@ContextConfiguration(locations = {"classpath:spring/rmi-client-config.xml"})
@RunWith(SpringJUnit4ClassRunner.class)
public class RmiTests {

 @Autowired
 private UserService userService;

 public void setUp() {
 assertNotNull(userService);
 }

 @Test
 public void testRmiAll() {
 List<User> users = userService.findAll();
 assertEquals(5, users.size());
 }

Chapter 7 ■ Spring Advanced Topics

357

 @Test
 public void testRmiJohn() {
 User user = userService.findByEmail("john.cusack@pet.com");
 assertNotNull(user);
 }
}

To make sure that the client actually uses a proxy bean, you just have to run one
of the test methods in debug, stop the execution at a breakpoint, and take a peek
at the userService bean. In Figure 7-5 a screenshot from an Intellij IDEA test
execution is depicted. You can clearly see that the userService is actually an
RMI proxy created by the RmiProxyFactoryBean.

Figure 7-5.  Screenshot of an RMI test executed in debug mode

Chapter 7 ■ Spring Advanced Topics

358

If Java Configuration is used, the @ContextConfiguration declaration must be changed to the following:

@ContextConfiguration(classes = RmiClientConfig.class)

As you can notice when implementing and accessing RMI services, Spring can be used in the same
declarative way as presented so far. This means that existing beans can be exposed as RMI services without
modifying their code. Thus, the server interface is not required to implement the Remote interface. On
the client side, using polymorphism, methods can be called directly on the injected bean, and the Spring
remoting exceptions are unchecked (there is a hierarchy of remoting exceptions all extending org.
springframework.remoting.RemoteAccessException), so the code to catch and handle them does not have
to be written.

Spring RmiServiceExporter and RmiProxyFactoryBean can be used with multiple protocols. Spring
provides classes that allow exposing RMI services over HTTP, using a lightweight binary HTTP-based
protocol. The classes to use are HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter. RMI
methods will be converted to HTTP methods: GET and POST. The result of these methods is returned as an
HTTP result. Method parameters and results are serialized using Java serialization, so transferred objects
need to be serializable. Spring’s HttpInvoker is another Java-to-Java binary remoting protocol; it requires
that Spring be used on both the server and the client.

Aside from these two classes used with RMI over HTTP, there are two other protocols that Spring
supports: the Hessian lightweight binary HTTP-based protocol provided by Caucho and Burlap, which is
the XML-based alternative to Hessian. Hessian protocol is a slim binary cross-platform remoting protocol.
Most cross-platform protocols are XML-based, and thus sacrifice a significant amount of performance
to achieve interoperability. Hessian managed to achieves cross-platform interoperability with minimal
performance degradation.

Classes for each of the protocols are provided by Spring: HessianProxyFactoryBean and the
HessianServiceExporter for Hessian and BurlapProxyFactoryBean and BurlapServiceExporter for
Burlap. Basically, to write a Spring RMI application over the HTTP protocol, the RMI specific classes for
creating a proxy on the client side and for exposing a service on the server side must be replaced with HTTP
Spring-specific classes, and the server must be run in a container, such as Apache Tomcat or Jetty. Figure 7-6
should look familiar; it describes the abstract schema for using the Spring Http Invoker classes.

Figure 7-6.  Spring remoting abstract schema

Chapter 7 ■ Spring Advanced Topics

359

Whether the configuration is done in XML or using Java Configuration, on the server side, a bean of type
HttpInvokerServiceExporter must be configured.

<!-- httpinvoker-server-config.xml -->
<beans ...>
 <bean name="/httpInvoker/userService"
 class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter"
 p:service-ref="userServiceImpl"
 p:serviceInterface="com.ps.services.UserService"/>
</beans>

// HttpInvokerConfig.java
@Configuration
public class HttpInvokerConfig {

 @Autowired
 @Qualifier("userServiceImpl")
 UserService userService;

 @Bean(name = "/httpInvoker/userService")
 HttpInvokerServiceExporter httpInvokerServiceExporter(){
 HttpInvokerServiceExporter invokerService = new HttpInvokerServiceExporter();
 invokerService.setService(userService);
 invokerService.setServiceInterface(UserService.class);
 return invokerService;
 }
}

The /httpInvoker/userService is the URL where the HTTP Service is exposed. On the client side,
a bean of type HttpInvokerProxyFactoryBean must be configured.

 <!-- httpinvoker-client-config.xml -->
<beans ...>
 <bean id="userService"
 class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean"
 p:serviceInterface="com.ps.services.UserService"
 p:serviceUrl="http://localhost:8080/invoker/httpInvoker/userService"/>
</beans>

 //HttpInvokerClientConfig.java
 @Configuration
public class HttpInvokerClientConfig {

 @Bean
 public UserService userService() {
 HttpInvokerProxyFactoryBean factoryBean = new HttpInvokerProxyFactoryBean();
 factoryBean.setServiceInterface(UserService.class);
 factoryBean.setServiceUrl
 ("http://localhost:8080/invoker/httpInvoker/userService");
 factoryBean.afterPropertiesSet();
 return (UserService) factoryBean.getObject();
 }
}

Chapter 7 ■ Spring Advanced Topics

360

The properties for the Spring Http Invoker classes have the same meaning as for the RMI Spring classes;
the only difference is that they apply to the HTTP protocol. As you probably noticed, the service URL is not
an RMI URL, but an HTTP URL made from the web application URL [http://hostname:port/context]
concatenated with the name of the invoker service bean. In the current example, the application context,
the URL where the servlet handling HTTP requests is mapped is /invoker, and the invoker bean name is /
httpInvoker/userService.

The web application that exposes the invoker service does not need a complex web interface,
which is why the DispatcherServlet with a full-blown MVC configuration is not needed. All that
is needed is a servlet to intercept requests, and org.springframework.web.context.support.
HttpRequestHandlerServlet is suitable for the job. The configuration for a web application was already
covered in Chapter 6.

 <servlet>
 <servlet-name>invoker</servlet-name>
 <servlet-class>
 org.springframework.web.context.support.HttpRequestHandlerServlet
 </servlet-class>
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 com.ps.remoting.config.HttpInvokerConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

To test the service exposed over HTTP, the previous test class can be used. Only the configuration file
or class must be changed. In the code snippet below you can see all configurations that can be used on the
client test class. Since all the client needs is the interface type of the proxy, where the proxy points is decided
by the configuration.

//@ContextConfiguration(locations = {"classpath:spring/rmi-client-config.xml"})
//@ContextConfiguration(classes = RmiClientConfig.class)

//@ContextConfiguration(locations = {"classpath:spring/httpinvoker-client-config.xml"})
@ContextConfiguration(classes = HttpInvokerClientConfig.class)
@RunWith(SpringJUnit4ClassRunner.class)
public class RmiTests {
...
}

http://dx.doi.org/10.1007/978-1-4842-0811-3_6

Chapter 7 ■ Spring Advanced Topics

361

To make sure the client actually uses an http invoker proxy bean, you just have to run one of the test
methods in debug, stop the execution at a breakpoint, and take a peek at the userService bean. In Figure 7-7,
a screenshot from an Intellij IDEA test execution is depicted. You can clearly see that the userService is
actually an Http Invoker proxy created by the HttpInvokerProxyFactoryBean.

Figure 7-7.  Screenshot of an HTTP Invoker test executed in debug mode

Hessian has been maintained and is still used with Spring 4. Currently in a draft state, Hessian 2 is
the second incarnation of the Hessian protocol, but it is clearly not production ready. Burlap has not been
maintained in a while, and in Spring 4, the Burlap Spring-specific classes BurlapProxyFactoryBean and
BurlapServiceExporter are marked as deprecated and might be removed in Spring 5.

The Hessian-specific configuration is depicted in the following code snippet. (XML and Java
Configuration).

<!-- hessian-service-config.xml -->
<beans ...>
 <bean name="/hessianInvoker/userService"
 class="org.springframework.remoting.caucho.HessianServiceExporter"
 p:service-ref="userServiceImpl"
 p:serviceInterface="com.ps.services.UserService"/>
</beans>

Chapter 7 ■ Spring Advanced Topics

362

<!-- hessian-client-config.xml -->
<beans ...>
 <bean id="userServiceHessian"
 class="org.springframework.remoting.caucho.HessianProxyFactoryBean"
 p:serviceInterface="com.ps.services.UserService"
 p:serviceUrl="http://localhost:8080/invoker/hessianInvoker/userService"/>
</beans>

To test the Hessian remote service, just edit the RmiTests class and use the following configuration:

@ContextConfiguration(locations = {"classpath:spring/ hessian-client-config.xml"})
@RunWith(SpringJUnit4ClassRunner.class)
public class RmiTests {
...
}

The Hessian client proxy factory bean and the server service exporter can be configured using
Java Configuration. And if you feel confident enough, you are invited as a bonus exercise to do the
implementation yourself. The source code used in this section can be found in the Pet Sitter project in
modules 12-ps-remoting-sample and 12-ps-remoting-practice. The 12-ps-remoting-practice projects
contain a server- and client-side implementation for Http Invoker and Hessian remoting using XML
configuration. The 12-ps-remoting-solution is the proposed solution for HttpInvoker and Hessian using
Java Configuration. You can compare this solution with the one you will implement in the 12-ps-remoting-
practice.

Spring JMS
JMS is part of the Java Platform Enterprise Edition and is defined by JSR 914.4 It is a messaging standard that
allows applications with components based on JEE to create, send, receive, and read messages. The basic
building blocks of a JMS applications are:

•	 messages

•	 message producers (publisher)

•	 messages consumers (subscriber)

•	 connections

•	 sessions

•	 connection factories

•	 destinations

In Figure 7-8, you can see all the previously listed components and how they fit into a JMS application.

4Java Community Process defining JMS: https://jcp.org/en/jsr/detail?id=914.

https://jcp.org/en/jsr/detail?id=914

Chapter 7 ■ Spring Advanced Topics

363

In the introduction of this chapter it was mentioned that JMS is an abstraction for accessing Message
Oriented Middleware, which is useful for avoiding vendor lock-in and for an increase in portability. In
this section, the above components will be described briefly along with the process of publishing and
subscribing to messages using a JMS broker using Spring, because as you probably suspect, Spring makes
using JMS pretty easy too. Spring provides a JMS integration framework that makes using JMS API easy. The
framework was developed using a similar approach to Spring JDBC.

JMS Connections and Sessions
The connection factories and destinations are the parts of a JMS application that are maintained
administratively, rather than programmatically, since the technology providing the implementation must
be decoupled from the implementation of JMS API used. JMS clients access these objects through JMS API
standard interfaces. In an enterprise application, the connection factory can be bound to JNDI and managed
externally by an enterprise application server. A JMS connection is obtained from a connection factory,
which is injected into the client.

//XML standalone example
<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:60006"/>
</bean>

//XML connection factory retrieved from JNDI
<jee:jndi-lookup id="connectionFactory"
 jndi-name="jms/ConnectionFactory" />

// using Java Configurations to declare a connection factory
//with JNDI name of jms/ConnectionFactory
@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

Figure 7-8.  The JMS API Programming Model

Chapter 7 ■ Spring Advanced Topics

364

// standalone example
@Bean ConnectionFactory connectionFactory(){
 ActiveMQConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory();
 connectionFactory.setBrokerURL("tcp://localhost:60006");
 return connectionFactory;
}

// Classic configuration
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.jms.*;
...
Properties properties = new Properties();
properties.put(/* JNDI properties */);
Context context = new InitialContext(properties);
ConnectionFactory factory = (ConnectionFactory) context.lookup("jms/ConnectionFactory");

Once a connection factory is obtained all is left to do is get a javax.jms.Connection and then start a
javax.jms.Session to start processing messages:

Connection connection = factory.createConnection();
connection.start();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 // process messages
 ...

The createSession method has two parameters: the first, of type boolean, is used to determine whether
the session should be transacted (when false is used as argument, the resulting session is not transacted),
and the second is used to determine whether the session automatically acknowledges messages when
they have been received successfully. In the previous example, because the Session.AUTO_ACKNOWLEDGE is
provided as an argument, the resulting session will do this.

The JMS session represents a unit of work. When processing messages is done, the session must be
committed or rolled back, depending on the result of the processing.

session.commit(); // all ok
// or
session.rollback(); // something went wrong

The Session object is responsible for creating messages that will be sent to a client.

JMS Messages
The JMS API defines the standard form of a JMS message, which should be portable across all JMS providers.
Although the JMS API was designed to accommodate many existing JMS providers, the message has a
standard structure, being composed of a header and a body. The header contains system-level information
common to all messages, such as the destination and the time it was sent and application-specific
information, stored as keyword/value properties. The body contains the effective application data, and
JMS defines five distinct message body types represented as Java interfaces extending javax.jms.Message.
Thus a JMS message body is an instance of a class implementing any interface in the javax.jms.Message
hierarchy. The five JMS API defined body types are listed in Table 7-1.

Chapter 7 ■ Spring Advanced Topics

365

Messages are created by the Session object, and the following code snippet depicts how each type of
message listed in the previous table is created:

TextMessage message = session.createTextMessage();
message.setText("this is a text message");

MapMessage mm = session.createMapMessage();
mm.set("key", "value");

session.createBytesMessage("bytes array".getBytes());

Table 7-1.  JMS message formats

Message Type Message Content

javax.jms.TextMessage A Java String object

javax.jms.MapMessage A set of key-value pairs with String keys and primitive values, without a
fixed order.

javax.jms.BytesMessage A stream of uninterpreted bytes.

javax.jms.StreamMessage A stream of primitive values in the Java programming language, filled and
read sequentially.

javax.jms.ObjectMessage A Serializable object in the Java programming language

streamMessage = session.createStreamMessage();
//writing primitives on it
streamMessage.writeBoolean(false);
streamMessage.writeInt(223344);
streamMessage.writeChar('q');
//emptying the stream
streamMessage.reset();

//user must be serializable
session.createObjectMessage(user);

JMS Destinations
The javax.jms.Destination interface is implemented on the client side and is used to specify the target
of the messages produced by the client and the source of messages the client consumes, because a client
application can produce messages too, which can be sent as a reply to the JMS application with which it
communicates. Imagine this scenario: the JMS server application sends a data message to the JMS client
application and the client responds with a confirmation message that the data was received. Depending on
the messaging domain, the implementation differs:

•	 a queue in point-to-point domains, where each message has one producer and one
consumer.

•	 a topic in publisher/subscriber domains, where each message that is published is
consumed by multiple subscribers.

Chapter 7 ■ Spring Advanced Topics

366

Destinations can be standalone or retrieved from JNDI:

// using Java Configurations to declare a queue
//with JNDI name of jms/UserQueue
@Resource(lookup = "jms/UserQueue")
private static Queue userQueue;

// using Java Configurations to declare a topic
//with JNDI name of jms/Topic
@Resource(lookup = "jms/Topic")
private static Topic topic;

// using XML to declare a queue
//with JNDI name of jms/Queue
<jee:jndi-lookup id="userQueue"
 jndi-name="jms/UserQueue" />

//XML standalone queue
<bean id="userQueue"
 class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="queue.users"/>
</bean>

//Java Configuration standalone Queue
@Bean
public Queue userQueue(){
 return new ActiveMQQueue("queues.users");
}

Figure 7-9.  Difference between Queues and Topics

The difference between Queues and Topics is depicted in Figure 7-9.

Chapter 7 ■ Spring Advanced Topics

367

The Session object is responsible for creating producers and consumers using destination objects.
Producer objects send messages, and consumer objects receive them.

MessageProducer producer = session.createProducer(userQueue);
ObjectMessage userMessage = session.createMessage(user);
producer.send(userMessage);
...
MessageConsumer consumer = session.createConsumer(userQueue);
Message message = consumer.receive();

So far, only core JMS components have been introduced, but before adding more, a JMS provider must
be covered.

Apache ActiveMQ
There are quite a few JMS implementations out there. Most of them are provided by the Middle Oriented
Middleware providers, example: WebSphere MQ, Oracle EMS, JBoss AP, SwiftMQ,TIBCO EMS, SonicMQ,
ActiveMQ, WebLogic JMS. Some are open source, some are not. For some of them, a native C API also exists
(TIMCO EMS and Sonic MQ). Some of them are implemented in Java itself.

Apache ActiveMQ, which was chosen as a JMS provider for this section, has the following
characteristics:

•	 the most popular and powerful open source messaging and Integration
Patterns server

•	 accepts non-Java clients

•	 can be used standalone in production environments

•	 supports pluggable transport protocols such as in-VM, TCP, SSL, NIO, UDP,
multicast, JGroups and JXTA transports

•	 can be used as an in memory JMS provider, using an embedded broker, to avoid the
overhead of running separate processes when doing unit testing JMS5

•	 the activemq executable starts with a default configuration

•	 can also be used embedded in an application

•	 can be configured using ActiveMQ or Spring configuration (XML or Java
Configuration)

•	 provides advanced messaging features such as message groups, virtual and
composite destinations, and wildcards

•	 provides support for Enterprise Integration Patterns when used with Spring
Integration or Apache Camel

•	 and many more.

5More details on the official Apache ActiveMQ site http://activemq.apache.org/
how-to-unit-test-jms-code.html.

http://activemq.apache.org/how-to-unit-test-jms-code.html
http://activemq.apache.org/how-to-unit-test-jms-code.html

Chapter 7 ■ Spring Advanced Topics

368

The current stable version as this chapter is being written is 5.14.1.6 It can be downloaded from the
official site.7 To run the code sample attached to this chapter, you have to download the archive suitable for
your system and follow the installation instructions on the official site. Basically, you have to unpack the
archive somewhere and make sure it has the content depicted in Figure 7-10. You can see all the previously
listed components and how they fit into a JMS client application.

Figure 7-10.  The contents of the directory apache-activemq-5.14.1

6Official ActiveMQ site: http://activemq.apache.org/how-to-unit-test-jms-code.html.
7Apache ActiveMQ http://activemq.apache.org/activemq-5141-release.html.

In the bin directory there is an executable named activemq (or activemq.bat for Windows) that will
start ActiveMQ on your computer. Just open a terminal (or a Command Prompt) and run the executable with
parameter start.

$./activemq start
or
$ activemq.bat start (Windows)

ActiveMQ comes with a web interface and can be accessed at http://127.0.0.1:8161/admin/. It will
request a user and a password. The official site says that you should use admin/admin. In Figure 7-11 you can
see the Apache ActiveMQ web application, which can be used to monitor the JMS components mentioned
previously: connection factories and destinations.

http://activemq.apache.org/how-to-unit-test-jms-code.html
http://activemq.apache.org/activemq-5141-release.html

Chapter 7 ■ Spring Advanced Topics

369

The application covered by this section will use an ActiveMQ broker hosted at tcp://localhost:61616.
The connection factory will use this broker to create connections. Aside form that, ObjectMessage
objects depend on Java serialization of the marshal/unmarshal object payload. This process is generally
considered unsafe, since malicious payload can exploit the host system. That’s why starting with versions
5.12.2 and 5.13.0, ActiveMQ requires users to explicitly whitelist packages that can be exchanged using
ObjectMessages.8 So the declaration of the connectionFactory bean will have to include packages that
contain classes that can be serialized and used in JMS communication.

<!-- XML configuration -->
<beans ...>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
 <property name="trustedPackages">
 <!-- List<String> argument-->
 <list>
 <value>com.ps</value>
 </list>
 </property>

Figure 7-11.  The Apache ActiveMQ web application

8More info here: http://activemq.apache.org/objectmessage.html.

http://activemq.apache.org/objectmessage.html

Chapter 7 ■ Spring Advanced Topics

370

 <!-- or general and unsafe -->
 <property name="trustAllPackages" value="true"/>
 </bean>
</beans>
//Java Configuration
@Configuration
public class JmsCommonConfig {

 List<String> packagesList= ...;

 @Bean
 public ConnectionFactory nativeConnectionFactory(){
 ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
 cf.setBrokerURL("tcp://localhost:61616");
 cf.setTrustedPackages(packagesList);
 // or or general and unsafe
 cf.setTrustAllPackages(true);
 return cf;
 }
 ...
}

The list of packages to be trusted for serialization can be quite long when objects are complex and
contain fields of different types,9 so for teaching purposes, the trustAllPackages property can be used
instead.

ActiveMQ destinations must be declared as beans of type org.apache.activemq.command.
ActiveMQQueue for queues and org.apache.activemq.command.ActiveMQTopic for topics.

Spring JmsTemplate
Spring enables decoupling of the application from the backend infrastructure, but the application must
be coded against the API. The org.springframework.jms.core.JmsTemplate is the central class of the
Spring JMS core package. It is a helper class that is designed to simplify synchronous JMS message sending
and receiving, by handling creation and release of resources. This template class provides the following
development advantages:

•	 reduces boilerplate code, but the developer can implement callback interfaces,
giving them a clearly defined high-level contract if the task requires it

•	 transparent management of JMS resources

•	 exposes a basic request–reply operation that makes it possible to send a message and
wait for a reply on a temporary queue that is created as part of the operation

•	 provides practical exception handling, by converting JMS exceptions into Spring-
specific JMS unchecked exceptions (extensions of org.springframework.jms.
JmsException)

9Imagine an Object message class that contains three entities from three different packages; then the packageList must
contain [“package1”, “package2”, “package3”].

Chapter 7 ■ Spring Advanced Topics

371

•	 supports custom message converters and destination resolvers

•	 provides convenience methods and callbacks

Starting with Spring Framework 4.1, the org.springframework.jms.core.JmsMessagingTemplate
class was introduced, which is built on the JmsTemplate to provide an integration with the Spring messaging
abstraction org.springframework.messaging.Message<T>, which allows generic message creation.

The JmsTemplate uses implementation of the org.springframework.jms.support.
converter.MessageConverter implementation to convert between objected and Messages. The
SimpleMessageConverter handles basic types: text, serializable object types, maps, and byte[]. For more
complex objects, developers can provide their own implementations or delegate to an OXM marshaller,
which is available starting with Spring 3.

The following code snippet depicts the MessageConverter interface that a developer must implement to
provide a custom message converter.

package org.springframework.jms.support.converter;
...
public interface MessageConverter {

 Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException;

 Object fromMessage(Message message)
 throws JMSException, MessageConversionException;
}

Out of the box, to make things easier, Spring provides a simple implementation for the
MessageConverter class org.springframework.jms.support.converter.SimpleMessageConverter for
default conversion of serializable objects into object messages, and a bean of this type is automatically
created by Spring in JMS applications.

The JmsTemplate bean needs a connection factory and a destination to be initialized. Connection
factories and destinations can be injected into a JmsTemplate bean using their IDs.

<!-- XML configuration -->
<beans ...>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
 <property name="trustAllPackages" value="true"/>
 </bean>
 <bean id="confirmationQueue"
 class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="com.queue.confirmation"/>
 </bean>

 <bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="defaultDestination" ref="userQueue"/>
 <property name="pubSubNoLocal" value="false"/>
 </bean>
</beans>

Chapter 7 ■ Spring Advanced Topics

372

//Java Configuration
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;
...

@Bean
 public ConnectionFactory connectionFactory(){
 ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
 cf.setBrokerURL("tcp://localhost:61616");
 cf.setTrustAllPackages(true);
 return cf;
 }

 @Bean
 public ActiveMQQueue confirmationQueue(){
 return new ActiveMQQueue("com.queue.confirmation");
 }

 @Bean
 public JmsTemplate jmsTemplate(){
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 jmsTemplate.setDefaultDestination(confirmationQueue());
 jmsTemplate.setPubSubNoLocal(false);
 return jmsTemplate;
 }

The pubSubNoLocal property is used to set whether to inhibit the delivery of messages published by
its own connection Default value is false, but in the previous code samples, it is set explicitly for teaching
purposes. When a message is received by the client (consumer), since the communication is asynchronous,
a listener has to be set up to pick it up and do something with it. The interface to implement to provide a
custom message listener is javax.jms.MessageListener, and the implementation for a single method:
onMessage(Message message) must be provided. The message listener is managed by an implementation
of the org.springframework.jms.listener.MessageListenerContainer in a Spring application, usually
DefaultMessageListenerContainer. A bean of this type manages the JMS sessions with which the listener
will be invoked. The DefaultMessageListenerContainer can be configured to set the consumer’s concur-
rency limit for the JmsTemplate instances managed, by setting up the concurrency property (min-max
interval as 5-10, or max value like 10). But each JmsTemplate bean can override this setting by setting up a
different value for its own concurrency property. The implementation and configuration to set these two
beans is depicted in the following code snippet. The UserReceiver class sends a confirmation that the user
message was successfully received.

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;

public class UserReceiver implements MessageListener {

 private Logger logger = LoggerFactory.getLogger(UserReceiver.class);
 //used to generate unique IDs for Confirmation objects
 private static AtomicInteger id = new AtomicInteger();

Chapter 7 ■ Spring Advanced Topics

373

 @Autowired
 MessageConverter messageConverter;

 @Autowired
 ConfirmationSender confirmationSender;

 @Override
 public void onMessage(Message message) {
 try {
 User receivedUser = (User) messageConverter.fromMessage(message);
 logger.info(" >> Received user: " + receivedUser);
 confirmationSender.sendMessage
 (new Confirmation(id.incrementAndGet(), "User "
 + receivedUser.getEmail() + " received."));
 } catch (JMSException e) {
 logger.error("Something went wrong ...", e);
 }
 }

<!-- XML configuration -->
<bean id="containerListener"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="userQueue"/>
 <property name="messageListener" ref="userReceiver"/>
 <property name="concurrency" value="5-10"/>
 </bean>

 <bean id="userReceiver" class="com.ps.jms.UserReceiver"/>

//Java Configuration
 @Bean
 public UserReceiver userReceiver(){
 return new UserReceiver();
 }

 @Bean
 public DefaultMessageListenerContainer containerListener() {
 DefaultMessageListenerContainer listener =
 new DefaultMessageListenerContainer();
 listener.setConnectionFactory(connectionFactory());
 listener.setDestination(userQueue());
 listener.setMessageListener(userReceiver());
 return listener;
 }
}

On the server (producer) side, the message is sent, and different methods of the JmsTemplate bean
can be used for this. The implementation that sends the message is a simple bean with an instance of
JmsTemplate injected as dependency.

Chapter 7 ■ Spring Advanced Topics

374

@Component
public class UserSender {

 @Autowired
 JmsTemplate jmsTemplate;
 public void sendMessage(final User user) {
 jmsTemplate.send ((Session session) -> session.createObjectMessage(user));
 }
}

And the JmsTemplate used on the server(producer) side is defined as presented earlier. The queue used
to send the messages is the userQueue.

@Bean
 public ActiveMQQueue userQueue(){
 return new ActiveMQQueue("com.queue.user");
 }

 @Bean
 public JmsTemplate jmsTemplate(){
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 jmsTemplate.setDefaultDestination(userQueue());
 jmsTemplate.setPubSubNoLocal(false);
 return jmsTemplate;
 }

The JmsTemplate provides methods that receive the destination as a parameter; such methods are
useful when the application needs to send messages to multiple destinations. A custom message converter
can be set on the JmsTemplate, and the convertAndSend methods can be used in this case.

convertAndSend(final Object message)

convertAndSend(Destination destination, final Object message)

convertAndSend(String destinationName, final Object message)

The project assigned to this section is 13-ps-jms-practice. It contains two applications that
communicate using ActiveMQ using two queues of objects. The producer application extracts users from the
database and sends them as messages to the userQueue and then waits to receive a confirmation message on
confirmationQueue. The consumer application receives users as messages on the userQueue and uses the
confirmationQueue to send a confirmation for each user received. The configuration will be provided using
Java Configuration classes. In Figure 7-12 you can see the design of the JMS application that will be used to
test your understanding of JMS with Spring.

Chapter 7 ■ Spring Advanced Topics

375

The two applications have a common configuration class JmsCommonConfig.java. This class contains
the configuration of the JMS infrastructure: the connection factory, the queues, and the message converter.

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.support.converter.MessageConverter;
import org.springframework.jms.support.converter.SimpleMessageConverter;

import javax.jms.ConnectionFactory;

@Configuration
public class JmsCommonConfig {

 @Bean
 public ConnectionFactory connectionFactory(){
 ActiveMQConnectionFactory cf =
 new ActiveMQConnectionFactory();
 cf.setBrokerURL("tcp://localhost:61616");
 cf.setTrustAllPackages(true);
 return cf;
 }

 @Bean
 public ActiveMQQueue userQueue(){
 return new ActiveMQQueue("com.queue.user");
 }

 @Bean
 public ActiveMQQueue confirmationQueue(){
 return new ActiveMQQueue("com.queue.confirmation");
 }

Figure 7-12.  The Producer/Consumer JMS abstract design

Chapter 7 ■ Spring Advanced Topics

376

 @Bean
 public MessageConverter converter() {
 return new SimpleMessageConverter();
 }
}

The JmsTemplate aggressively opens and closes resources such as connections and sessions,
since it assumes that they are cached by the connectionFactory. For this reason, instead of using the
ActiveMQConnectionFactory class as a type for the connectionFactory bean, the Spring-specific
CachingConnectionFactory class should be used to wrap up the native implementation.

import org.springframework.jms.connection.CachingConnectionFactory;
...
@Configuration
public class JmsCommonConfig {

@Bean
 public ConnectionFactory nativeConnectionFactory(){
 ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
 cf.setBrokerURL("tcp://localhost:61616");
 cf.setTrustAllPackages(true);
 return cf;
 }

 @Bean
 public ConnectionFactory connectionFactory() {
 CachingConnectionFactory cf = new CachingConnectionFactory();
 cf.setTargetConnectionFactory(nativeConnectionFactory());
 return cf;
 }
...
}

The classes to start the two applications are simple classes with a main method. They can be run
from Intellij IDEA as Java applications. Each of them instantiates a context from the application classes
and can be stopped from the terminal by pressing the <Enter> key. Before the applications can be run, the
ActiveMQ broker must be started. The communication and the activity on the two queues can be monitored
in the ActiveMQ web interface, in the Queues tab. The producer application should be started first (the
UserProducerApp class), and in the ActiveMQ browser interface, the number of messages produced should
be visible in the Message Enqueued column, as shown in Figure 7-13.

Chapter 7 ■ Spring Advanced Topics

377

The queues are created the first time the producer application is started. The messages can be
purged from the interface. The queues can be deleted from the web interface as well, as long as there is
no application accessing them. After the consumer application (the UserConsumerApp class) is started, the
activity on the second queue application should be visible as well in the Message Dequeued column.
This situation is depicted in Figure 7-14.

Figure 7-13.  The ActiveMQ web application, the Queues tab depicting the two queues used by the application
and messages already produced and stored in the userQueue

Figure 7-14.  The ActiveMQ web application, the Queues tab depicting the two queues used by the application
and messages already produced and consumed

Chapter 7 ■ Spring Advanced Topics

378

The next step in creating Spring JMS applications is to add Spring Boot to the mix. In the
13-ps-jms-practice project module you can find the two JMS applications described so far with a
pre-Boot Java Configuration. In the 13-ps-jms-solution you can find an equivalent Spring JMS application
configured with Spring Boot.

JMS with Spring Boot
Writing Spring JMS applications is even easier with Spring Boot. The application in the project module
13-ps-jms-solution contains a Spring Boot JMS application that sends User instances wrapped up in JMS
Messages to the userQueue.A message listener is configured to process the message and send a confirmation
message on the confirmationQueue. Another listener is defined that waits for the confirmation and prints its
contents. To simplify the application even more, there is no need for a producer class and a consumer class.
There is only one process that publishes and consumes messages from the two queues. The abstract schema
of the Spring Boot JMS application is depicted in Figure 7-15.

Figure 7-15.  Spring Boot JMS application abstract schema

The application is made of only four classes, which have the following purpose:

•	 UserReceiver and ConfirmationReceiver have the responsibility of receiving the
user and confirmation messages. The classes have a more practical implementation,
making use of the @JmsListener annotation. Using this annotation on the methods
that will process the messages allows the developer to escape the JMS restriction of
implementing the MessageListener. This annotation marks the method on which it
is used as a target of a JMS listener on the specified destination, and the connection
factory attribute specifies the bean to use to build the JMS Listener Container.
This annotation is processed by a special Spring bean post processor: org.
springframework.jms.annotation.JmsListenerAnnotationBeanPostProcessor.

// UserReceiver.java
@Component
public class UserReceiver{

 private Logger logger = LoggerFactory.getLogger(UserReceiver.class);
 private static AtomicInteger id = new AtomicInteger();

 @Autowired
 ConfirmationSender confirmationSender;

Chapter 7 ■ Spring Advanced Topics

379

 @JmsListener(destination = "userQueue",
 containerFactory = "connectionFactory")
 public void receiveMessage(User receivedUser) {
 logger.info(" >> Received user: " + receivedUser);
 confirmationSender.sendMessage(
 new Confirmation(id.incrementAndGet(), "User "
 + receivedUser.getEmail() + " received."));
 }
}

//ConfirmationReceiver.java
@Component
public class ConfirmationReceiver {

 private Logger logger = LoggerFactory.getLogger(ConfirmationReceiver.class);

 @JmsListener(destination = "confirmationQueue",
 containerFactory = "connectionFactory")
 public void receiveConfirmation(Confirmation confirmation) {
 logger.info(" >> Received confirmation: " + confirmation);

 }
}

•	 The ConfirmationSender class is just a bean with a JmsTemplate bean injected in it
that is being used to send a confirmation object to the confirmationQueue.

@Component
public class ConfirmationSender {

 @Autowired
 JmsTemplate jmsTemplate;

 public void sendMessage(final Confirmation confirmation) {
 jmsTemplate.convertAndSend("confirmationQueue", confirmation);
 }
}

•	 The Application class is the configuration and starter of the application. It is
annotated with the all-powerful @SpringBootApplication, which will make sure
to scan for beans in the current package and will inject all infrastructure beans
based on the classpath settings. The other annotation on this class is @EnableJms,
and as you can probably speculate, this annotation enables the bean postprocessor
that will process the @JmsListener annotations and will create the message
listener container "under the hood". In this class, the connectionFactory bean was
declared as well. In this example, the type of the bean is org.springframework.
jms.config.JmsListenerContainerFactory, and the implementation
used is the Spring Boot org.springframework.boot.autoconfigure.jms.
DefaultJmsListenerContainerFactoryConfigurer, which will boot up all Spring
Boot infrastructure beans necessary for a JMS application.

Chapter 7 ■ Spring Advanced Topics

380

•	 There is also a converter bean defined of type MappingJackson2MessageConverter
implementing the JMS MessageConverter interface that transforms the sent
objects into text JSON format. Using a text converter is useful, especially when the
messages to send are not of serializable types. And in this example, the User and the
Confirmation classes were not declared to implement Serializable intentionally.

•	 The main method, aside from starting up the application, instantiates a JmsTemplate
object that is used to send a user object.

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.jms.
 DefaultJmsListenerContainerFactoryConfigurer;
import org.springframework.jms.annotation.EnableJms;
import org.springframework.jms.config.DefaultJmsListenerContainerFactory;
import org.springframework.jms.config.JmsListenerContainerFactory;

import org.springframework.jms.support.converter.MappingJackson2MessageConverter;
import org.springframework.jms.support.converter.MessageConverter;
import org.springframework.jms.support.converter.MessageType;
...
@SpringBootApplication
@EnableJms
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws Exception {
 ConfigurableApplicationContext context =
 SpringApplication.run(Application.class, args);
 JmsTemplate jmsTemplate = context.getBean(JmsTemplate.class);

 //Send an user
 System.out.println("Sending an user message.");
 jmsTemplate.convertAndSend("userQueue",
 new User("John.Cusack@pet.com", 5d, true));

 logger.info("Waiting for user and confirmation ...");
 System.in.read();
 context.close();
 }

 @Bean // Serialize message content to json using TextMessage
 public MessageConverter jacksonJmsMessageConverter() {
 MappingJackson2MessageConverter converter =
 new MappingJackson2MessageConverter();
 converter.setTargetType(MessageType.TEXT);
 converter.setTypeIdPropertyName("_type");
 return converter;
 }

Chapter 7 ■ Spring Advanced Topics

381

 @Bean
 public JmsListenerContainerFactory<?> connectionFactory(
 ConnectionFactory connectionFactory,
 DefaultJmsListenerContainerFactoryConfigurer configurer) {
 DefaultJmsListenerContainerFactory factory =
 new DefaultJmsListenerContainerFactory();
 configurer.configure(factory, connectionFactory);
 return factory;
 }
}

The MappingJackson2MessageConverter converter bean has two properties set in the previous code
sample. The targetType is set with the JMS message type to which the information will be serialized.
Default is BytesMessage. For JSON type, TextMessage is suitable, because in this way, the JMS messages
become readable, and thus debugging in case of problems becomes easier. The typeIdPropertyName is used
to name the JMS message property that carries the type ID for the contained object: either a mapped ID
value or a raw Java class name. The default value is NONE, but this property must be set to allow converting
from an incoming message to a Java object. In the previous example, the property is set to _type. Assuming
that a User instance is sent, the JMS message in this instance is converted to look similar to what is depicted
in the following code snippet:

ActiveMQTextMessage {
 commandId = 5,
 responseRequired = true,
 messageId = ID:ROSBZM4044324X-64390-1478342192637-4:3:1:1:1,
 destination = queue://userQueue,
 size = 1140,
 properties = {_type=com.ps.jms.User},
 text = {"email":"John.Cusack@pet.com","rating":5.0,"active":true}}
 ...
}

The @JmsListener was added in Spring version 4.1 and represents a really practical way to configure a
message listener. Methods annotated with it have flexible signatures that can have arguments that the Spring
container injects automatically, such as the JMS session, the exact message object, JMS headers, and others
that you can find listed in the official documentation. The JSON snippet depicted earlier was retrieved by
modifying the UserReceiver implementation and adding a parameter of type Message, which Spring will
replace with the original JMS message at runtime.

@Component
public class UserReceiver{

 private Logger logger = LoggerFactory.getLogger(UserReceiver.class);
 private static AtomicInteger id = new AtomicInteger();

 @Autowired
 ConfirmationSender confirmationSender;

 @JmsListener(destination = "userQueue", containerFactory = "connectionFactory")
 public void receiveMessage(User receivedUser, Message message) {
 logger.info(" >> Original received message: " + message);

Chapter 7 ■ Spring Advanced Topics

382

 logger.info(" >> Received user: " + receivedUser);
 confirmationSender.sendMessage(new Confirmation(id.incrementAndGet(), "User "
 + receivedUser.getEmail() + " received."));
 }
}

The JmsTemplate makes it very easy to send messages to destinations, and in this example is
automatically created by Spring Boot. The connectionFactory is also created by Spring Boot and is backed
up by ActiveMQ running in embedded mode.

JMS can be used as a mechanism to allow asynchronous request processing between backend
components. It is quite useful when data replication is needed or in the execution of long-running
processes of which the end user of an application has no knowledge and that should not impede the
use of the application. Also, publish/subscribe is a good technique to decouple senders from receivers,
thereby increasing the flexibility of an architecture. JMS is still used mostly in flexible processes where
communication is asynchronous and messages can be lost and it is not a problem to resend them.

Spring Web Services
The term “web service” describes a standardized way of communication between web applications
integration using XML, SOAP, WSDL, and UDDI open standards over an internet protocol backbone. This
type of communication allows for a relaxed coupling of the applications doing the communication and is
really useful when the applications are subject to frequent changes, since changes should not affect the
compatibility between them. XML used to be the international language in the web services world, until
JSON came into the picture. XML is a standardized way of organizing data that can be understood by all
major platforms:

•	 Java, uses APIs as SAX, StAX, DOM, JAXB to manipulate XML

•	 .NET uses System.XML or .NET XML Parser

•	 Ruby uses Nokogiri, REXML or XMLSimple

•	 Perl uses LibXML, Perl-XML or XML::Simple

•	 etc.

SOAP is an acronym for Simple Object Access Protocol. It is a protocol specification for exchanging
structured information in the implementation of web services in computer networks. SOAP is not
necessarily linked to web services or RPC, and it encapsulates the key terms that should be respected in
designing loosely coupled applications that need to exchange information: extensibility (security and WS-
routing are among the extensions under development), neutrality (can operate over any protocol such as
HTTP, SMTP, TCP, UDP, or JMS) and independence (allows for any programming model). Basically, SOAP
is what allows communication between applications regardless of the implementation or the underlying
operating system.

Web services implementation details are usually enclosed in the Web Services layer, which
communicates directly with the service layer. The Web Service layer provides the logic to convert software
objects into XML-based representations that can be sent to destination applications. Spring provides
support for web services implementation through its Spring Web Services (Spring-WS), which is a product of
the Spring community focused on creating document-driven Web services. Like all Spring products, its aim
is to provide the infrastructure and support components that make writing web-services-based applications
practical and pleasant. Below are listed a few key features of the Spring-WS.

Chapter 7 ■ Spring Advanced Topics

383

•	 It makes the best practice of using XSD/WSDL first-contracts easy, which is quite
important, since using WSDL is often seen as a hassle by developers, even if the main
advantage is that it solves many interoperability issues.

•	 It provides XML API support: XML messages can be handled using JAXP APIs
such as DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling
technologies.

•	 It offers flexible XML Marshalling: the Object/XML Mapping module supports
almost all known libraries for XML marshalling: OXM, Castor, JAXB 1 and 2,
XStream, etc.

•	 WS-Security provides the tools to sign, encrypt, and decrypt SOAP messages and
integrates with Spring Security.

•	 and many more.

Spring-WS is not a topic for the exam and is also a wide subject, so the surface will only be scratched in this
section. The main points will, however, be covered to help you understand the general idea of designing and
development of web-service-based applications with Spring. Here are the steps of designing a Contract-first:

•	 create sample messages. A simple service user message could look like this:

<userMessage xmlns="http://ws-boot.com/schemas/um" active="true">
 <email>John.Cusack@pet.com</email>
 <rating>5.0</rating>
</userMessage>

•	 define the XSD schema the service message must comply to:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://ws-boot.com/schemas/um">

 <xs:complexType name="userMessage">
 <xs:sequence>
 <xs:element name="email" type="xs:string"/>
 <xs:element name="rating" type="xs:double"/>
 </xs:sequence>
 <xs:attribute name="active" type="xs:boolean"/>
 </xs:complexType>
</xs:schema>

•	 restrict types and values, by enriching the XSD schema. In the next code snippet, a
regular expression pattern is specify to validate the value of the email address.

<xs:element name="email">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[^@]+@[^\.]+\..+"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Chapter 7 ■ Spring Advanced Topics

384

SOAP Messages
SOAP messages have a structure similar to JMS Messages: they have a header and a body that are
enclosed in a special SOAP envelope that identifies the XML document as a SOAP message. Additionally,
a SOAP message can contain fault information regarding the errors that can occur during web service
communication. So a SOAP message containing user information looks like the following XML snippet.

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:um="http://ws-boot.com/schemas/um">
<soapenv:Header/>
<soapenv:Body>
 <um:getUserRequest>
 <um:email>John.Cusack@pet.com</um:email>
 </um:getUserRequest>
</soapenv:Body>
</soapenv:Envelope>

When writing web-services applications there are four possible starting points:

•	 starting from an XML message: in this approach, development starts with an XML
representation of the web-service message. Then a smart editor (like IntelliJ IDEA or
Eclipse) is used to generate a simple XSD schema, which can be further customized.
And from this point on, the development steps are the same as for the next option
in the list. (This is the approach used to develop the web service covered by this
section.)

•	 starting from an XML Schema: in this approach, development begins with an XML
schema (XSD file) that defines XML data structures to be used as parameters and
return types in the web service operations. A smart editor should provide you with
an option to generate Java classes that are needed to represent objects to be handled
by the web service application. Or the Java xjc utility can be used, which will be
introduced soon. In IntelliJ IDEA there are two options for code generation under
the WebServices menu that appears on right-clicking the *.xsd file: generation with
JAXB10 and generation with XMLBeans.11

•	 starting from a Java Class: in this approach, XSD schemas and WSDL can be
generated from existing code using a smart editor or the Java xjc utility, which will
be introduced soon.

•	 starting from a WSDL: this is also called the “contract-first” or “top-down” method,
and in this approach, you begin by defining the web service contract or use a
preexisting one. If you have a *.wsdl file, you can use a smart editor to generate Java
code from Wsdl or the Java xjc utility, which will be introduced soon. (IntelliJ IDEA
has this option under the WebServices menu item.)

10JAXB is one part of the JavaEE standards and refers to Java Architecture for XML Binding. The use of JAXB is
preferred, since it offers an alternative for the processing of XML documents in Java without necessarily having to
understand all the details of XML technology.
11XMLBeans is an open-source project developed by BEA systems, providing similar functionality to JAXB in allowing
XML documents to be accessed. A good background knowledge in XML is, however, required for dealing with
XMLBeans.

Chapter 7 ■ Spring Advanced Topics

385

The XSD schema defines the web service domain and the operations that can be performed using web
services. Spring-WS will export this schema as a WSDL (Web Service Definition Language) automatically.
For the application in 14-ps-ws-sample the XSD schema will contain an operation that uses a user’s email
to extract the user type. The XSD schema is located under src/main/resources/sample and is named
userMessage. This project is created with Spring Boot to set the focus on the implementation of the contract
and not on the application infrastructure.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:um="http://ws-boot.com/schemas/um"
 elementFormDefault="qualified"
 targetNamespace="http://ws-boot.com/schemas/um">

 <xs:element name="getUserRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="email" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="getUserResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="userType" type="um:userType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="userMessage">
 <xs:sequence>
 <xs:element name="email">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="^@+@^\.+\..+"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="rating" type="xs:double"/>
 <xs:element name="userType" type="um:userType"/>
 </xs:sequence>
 <xs:attribute name="active" type="xs:boolean"/>
 </xs:complexType>

 <xs:simpleType name="userType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="OWNER"/>
 <xs:enumeration value="SITTER"/>
 <xs:enumeration value="BOTH"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Chapter 7 ■ Spring Advanced Topics

386

Now that the message structure has been defined, the next step is to generate the backing classes for it.

Generating Java Code with XJC
The JDK comes with a utility executable called xjc. This executable can be used to generate classes to use
in a web service application using the XSD schema. This can be done by running the executable manually
or by creating a Gradle task to do that for you. In the 14-ps-ws-sample project, there is a README.adoc file
that contains the xjc command to generate the required Java classes and save them in an additional source
directory named jaxb. The classes are by default generated with JAXB and thus are annotated with JAXB
annotations.

xjc -d src/main/jaxb -p com.ps.ws src/main/resources/sample/userMessage.xsd

Smart editors like Intellij IDEA have the capability of generating JAVA code from a built-in XSD schema.
Just select the userMessages.xsd file and right click. In the menu that appears, there is a WebServices
option. Click on it, and it will expand. In the submenu there is a Generate Java Code from XML Schema
using JAXB. By selecting this, a pop-up will appear that will require the package name and location where
the classes should be saved. If you open the UserMessage class, you will notice the specific JAXB annotation
everywhere, which tell how objects of that type will be serialized and deserialized:

import javax.annotation.Generated;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlSchemaType;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "userMessage",
 namespace = "http://ws-boot.com/schemas/um",
 propOrder = {
 "email",
 "rating",
 "userType"
})

Figure 7-16.  Spring WS Client/Server applications

In Figure 7-16, a client and server WS application and the way they communicate are depicted.

Chapter 7 ■ Spring Advanced Topics

387

@Generated(value = "com.sun.tools.internal.xjc.Driver",
 date = "2016-10-16T08:23:57+03:00",
 comments = "JAXB RI v2.2.8-b130911.1802")
public class UserMessage {

 @XmlElement(namespace = "http://ws-boot.com/schemas/um",
 required = true)
 @Generated(value = "com.sun.tools.internal.xjc.Driver",
 date = "2016-10-16T08:23:57+03:00",
 comments = "JAXB RI v2.2.8-b130911.1802")
 protected String email;
 @XmlElement(namespace = "http://ws-boot.com/schemas/um")
 @Generated(value = "com.sun.tools.internal.xjc.Driver",
 date = "2016-10-16T08:23:57+03:00",
 comments = "JAXB RI v2.2.8-b130911.1802")
 protected double rating;
...
}

More information about JAXB can be found on the official JAXB site https://jaxb.java.net/.

Spring Boot WS Application
In Figure 7-17 you can see the structure of the 14-ps-ws-sample application.

https://jaxb.java.net/

Chapter 7 ■ Spring Advanced Topics

388

The com.ps.start groups together Spring Boot components.
The com.ps.ws under the src/main/java directory groups together classes related to WS

communication that are written by the developer:

•	 the configuration of WS application, the WebServiceConfig. This class extends the
Spring WS org.springframework.ws.config.annotation.WsConfigurerAdapter,
which is a Spring naked (empty methods) implementation of the web services
core configuration interface org.springframework.ws.config.annotation.
WsConfigurer. This interface defines callback methods to customize the Java-based
configuration for Spring Web Services enabled using the @EnableWs.

import org.springframework.boot.web.servlet.ServletRegistrationBean;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ws.config.annotation.EnableWs;

Figure 7-17.  The structure of the Spring WS application

Chapter 7 ■ Spring Advanced Topics

389

import org.springframework.ws.config.annotation.WsConfigurerAdapter;
import org.springframework.ws.transport.http.MessageDispatcherServlet;
import org.springframework.ws.wsdl.wsdl11.DefaultWsdl11Definition;
import org.springframework.xml.xsd.SimpleXsdSchema;
import org.springframework.xml.xsd.XsdSchema;

@Configuration
@EnableWs
public class WebServiceConfig extends WsConfigurerAdapter {

 @Bean
 public ServletRegistrationBean messageDispatcherServlet
 (ApplicationContext applicationContext) {
 MessageDispatcherServlet servlet = new MessageDispatcherServlet();
 servlet.setApplicationContext(applicationContext);
 servlet.setTransformWsdlLocations(true);
 return new ServletRegistrationBean(servlet, "/ws/*");
 }

 @Bean(name = "userMessage")
 Public DefaultWsdl11Definition defaultWsdl11Definition
 (XsdSchema userMessageSchema) {
 DefaultWsdl11Definition wsdl11Definition = new DefaultWsdl11Definition();
 wsdl11Definition.setPortTypeName("UsersPort");
 wsdl11Definition.setLocationUri("/ws");
 wsdl11Definition.setTargetNamespace(UserMessageEndpoint.NAMESPACE_URI);
 wsdl11Definition.setSchema(userMessageSchema);
 return wsdl11Definition;
 }

 @Bean
 public XsdSchema userMessageSchema() {
 return new SimpleXsdSchema(new ClassPathResource("sample/userMessage.
xsd"));
 }

}

•	 The org.springframework.ws.server.endpoint.adapter.
DefaultMethodEndpointAdapter bean is used to enable the postprocessor
beans that will process the @Endpoint, @RequestPayload, @PayloadRoot,
and @ResponsePayload annotations that are used to configure a WS endpoint.
The messageDispatcherServlet bean is used to intercept SOAP requests.
The application context must be injected into this bean in order to be able to
detect Spring beans automatically. This bean does not override the default
dispatcherServlet bean, so a web interface can be set up for this application as
well; with both servlets configured, this web application could handle normal web
requests and web services requests. The DefaultWsdl11Definition exposes a
WSDL 1.1 using an instance of SimpleXsdSchema instantiated with the
userMessage.xsd schema.

Chapter 7 ■ Spring Advanced Topics

390

•	 The UserMessageEndpoint class is annotated with the Spring specialized annotation
@Endpoint, which marks this class as a web service endpoint that will process
SOAP messages. Classes annotated with @Endpoint handle WS requests in a similar
manner, while classes annotated with @Controller handle web requests.

import com.ps.ws.GetUserRequest;
import com.ps.ws.GetUserResponse;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.RequestPayload;
import org.springframework.ws.server.endpoint.annotation.ResponsePayload;

@Endpoint
public class UserMessageEndpoint {

 public static final String NAMESPACE_URI = "http://ws-boot.com/schemas/um";

 @Autowired
 private UserMessageRepository userMessageRepository;

 @Autowired
 public UserMessageEndpoint(UserMessageRepository userMessageRepository) {
 this.userMessageRepository = userMessageRepository;
 }

 @PayloadRoot(namespace = NAMESPACE_URI, localPart = "getUserRequest")
 @ResponsePayload
 public GetUserResponse getUser(@RequestPayload GetUserRequest request) {
 GetUserResponse response = new GetUserResponse();
 response.setUserType(userMessageRepository.findUserType(request.getEmail()));
 return response;
 }
}

•	 The @Payload annotation marks an endpoint method as the handler for an incoming
request and is identified by Spring WS based on the message’s namespace and the
localPart.

•	 The @ResponsePayload annotation specifies that Spring WS should map the returned
value to the response payload.

•	 The @RequestPayload annotation specifies that the incoming message will be
mapped to the request parameter of the method.

The com.ps.ws package under src/main/jaxb, which is circled with red in Figure 7-17, contains
the classes generated with xjc. They have to be regenerated every time the userMessage.xsd schema is
modified.

Chapter 7 ■ Spring Advanced Topics

391

Publishing WSDL
WSDL defines a network interface that consists of endpoints that get messages and then sometimes reply
with messages. WSDL describes the endpoints, and the request and reply messages. Spring-WS automatically
generates WSDL from XSD when using a DefaultWsdl11Definition bean, which can be accessed at the
URL http://<host>:<port>/ws/userMessage.wsdl and is generated dynamically at runtime. The Default-
Wsdl11Definition builds a WSDL from an XSD schema. This definition iterates over all element elements
found in the schema, and creates a message for all elements. Next, it creates a WSDL operation for all
messages that end with the defined request or response suffix. The recommendation is to use a static WSDL
file on production applications and expose it using a bean of type org.springframework.ws.wsdl.wsdl11.
SimpleWsdl11Definition, since generating a WSDL file might take a long time. During development, having
it generated at runtime is useful, because if the contract changes, the WSDL must adapt.

■■ ! T he location where the WSDL information can be accessed depends on the DefaultWsdl11Definition
bean. Basically, the WSDL information can be found at the location defined like this:
http://<host>:<port>/[locationUri]/[DefaultWsdl11Definition_bean_id].wsdl

For the application described so far, the WSDL information can be found at http://localhost:8080/ws/
userMessage.wsdl, and when opened in a browser, all the information in the XSD schema and some other
information related to the server, such as the SOAP endpoint address, are shown. The address is generated
relative to the URL used to access the WSDL information, because the transformWsdlLocations property of
the DefaultWsdl11Definition bean is set to true. The next XML snippet is a piece of the WSDL generated
by Spring WS for the 14-ps-ws-sample application.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://ws-boot.com/schemas/um"
 targetNamespace="http://ws-boot.com/schemas/um">
 <wsdl:types>
 <xs:schema .../>
 <wsdl:message name="getUserResponse">
 <wsdl:part element="tns:getUserResponse" name="getUserResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getUserRequest">
 <wsdl:part element="tns:getUserRequest" name="getUserRequest">
 </wsdl:part>
 </wsdl:message>
 ...
 <wsdl:service name="UsersPortService">
 <wsdl:port binding="tns:UsersPortSoap11" name="UsersPortSoap11">
 <soap:address location="http://localhost:8080/ws"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Chapter 7 ■ Spring Advanced Topics

392

Testing Web Services applications
To test the application, a test class can be written, and Spring web-services-specific components such as the
WebTemplate can be used to make development practical. The application is written using Spring Boot, so
it is only logical to use Spring Boot to test it. The SpringBootTest annotation is used on the test class that
runs Spring-Boot-based tests and searches for Spring Boot configuration classes that will be used to create
a Spring boot test context. The @LocalServerPort is a Spring Boot annotation that can be used at the field
or method/constructor parameter level to inject the HTTP port that was allocated at runtime. This value is
needed in the test method to create the URL where the web service to be tested is exposed.

import org.springframework.boot.context.embedded.LocalServerPort;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.oxm.jaxb.Jaxb2Marshaller;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.util.ClassUtils;
import org.springframework.ws.client.core.WebServiceTemplate;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class ApplicationTest {

 private static final Logger logger = LoggerFactory.getLogger(Application.class);

 //used to deserialize Web Service messages
 private static final Jaxb2Marshaller marshaller = new Jaxb2Marshaller();
 private static final WebServiceTemplate ws = new WebServiceTemplate(marshaller);

 @LocalServerPort
 private int port;

 @BeforeClass
 public void init() throws Exception {
 marshaller.setPackagesToScan(
 ClassUtils.getPackageName(GetUserRequest.class));
 marshaller.afterPropertiesSet();
 }
 @Test
 public void testSendAndReceive() {
 GetUserRequest request = new GetUserRequest();
 request.setEmail("John.Cusack@pet.com");

 Object responseObject = ws.marshalSendAndReceive(
 "http://localhost:" + port + "/ws", request);
 assertThat(responseObject).isNotNull();
 assertThat(responseObject instanceof GetUserResponse).isTrue();

 GetUserResponse response = (GetUserResponse) responseObject;
 assertThat(response.getUserType()).isEqualTo(UserType.BOTH);
 }
}

Chapter 7 ■ Spring Advanced Topics

393

The WebServiceTemplate class is the equivalent of RestTemplate and JdbcTemplate for Web Services.
It is the central class for client-side Web services and provides a message-driven approach to sending and
receiving WebServiceMessage messages. It simplifies access to web services, since it extracts the object
from the SOAP message body using marshallers/unmarshallers. The WebServiceTemplate object needs to
serialize/deserialize messages and needs a JAXB2Marshaller to transform the messages from XML to Java
Objects and vice versa. To test a SOAP interface and actually see the messages in XML form, the SoapUI12
application can be used as a client or the curl command in Unix-based systems. The SoapUI team also
developed a plugin for IntelliJ IDEA, which can be installed from the IntelliJ IDEA Preferences menu. The
interface of the standalone SoapUI is very similar to the plugin interface, so the images in this section will
also be helpful in case you do not use IntelliJ IDEA for development. In Figure 7-18, the IntelliJ IDEA Plugin
section from the Preferences menu is depicted. Just insert SoapUI in the search box, and when the plugin
appears in the list, click the Install button.

Figure 7-18.  The plugins sections of Intellij IDEA

The installation of the plugin will require a restart of Intellij IDEA. After the restart, two SoapUI tabs will
appear. Start SoapUI from the Tools ➤ SoapUI ➤ Start SoapUI menu, and then open the SoapUI Navigator
tab and create a SOAP project. The WSDL location of the SOAP interface is required as is a name for the
project. The dialog to create a new project is depicted in Figure 7-19.

12http://www.soapui.org/.

http://www.soapui.org/

Chapter 7 ■ Spring Advanced Topics

394

The project will use the WSDL information to generate a skeleton message requesting information
about a user. Since the application uses an email address as a criterion when requesting a user, SoapUI does
not know what data to put in the skeleton message, so it just replaces the missing email with a question
mark. The developer must replace that question mark with an email (e.g., John.Cusack@pet.com) before
sending the request. The application receiving a message containing the user email extracts information
about the user and sends the user type back. So replace the question mark with a valid email and click the
green arrow button surrounded with red in Figure 7-20, and the returned message will be displayed in the
text area on the right.

Figure 7-19.  The SoapUI plugin interface for creating projects

Chapter 7 ■ Spring Advanced Topics

395

SOAP is the precursor of all Web services interfaces, and although REST is rapidly gaining ground,
it is not going away anytime soon, since SOAP 1.2, which was recently introduced, has fixed many of the
perceived shortcomings of the technology and is pushing it to new levels of both adoption and ease of
use. Also, starting with version 1.2, the acronym SOAP no longer stands for Simple Object Access Protocol
from the W3C organization; it is now just the name of the specification. REST uses HTTP/HTTPs protocols,
but SOAP has the main advantage of being more flexible than that, since it can use almost every transport
protocol to send a message, even JMS. The main disadvantage of SOAP is only the use of XML, which is
verbose and takes a lot of time to be parsed. Therefore, even if it is not part of the official exam, this section
might be useful to you in your future projects. There is no practical application for this section, but you are
welcome to modify the userMessage.xsd schema and generate a more complex UserMessage object and add
some more requests in the UserMessageEndpoint class.

Spring REST
REST is an acronym for REpresentational State Transfer. It was introduced and defined in 2000 by Roy
Fielding in his doctoral dissertation. REST is a lightweight alternative to mechanisms like RPC (Remote
Procedure Calls) and Web Services (SOAP, WSDL, etc). REST is an architecture style for designing networked
(distributed) applications. The idea is that rather than using complex mechanisms such as CORBA, RPC,
or SOAP to connect between machines, simple HTTP is used to make calls between machines. RESTful
applications use HTTP requests to post data (create and/or update), read data (e.g., make queries), and
delete data. Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Delete) operations.

Web applications are not used only by browser clients. Programmatic clients can connect using HTTP
(e.g., mobile applications and basically any application that was developed to be able to request and
receive data using HTTP as communication protocol). The REST architectural style describes best practices

Figure 7-20.  The SoapUI Navigator interface for sending a SOAP message

Chapter 7 ■ Spring Advanced Topics

396

to expose web services over HTTP; it is used not only as a transport but as an application protocol. The
following HTTP specifications are used:

•	 HTTP verbs are used as actions to execute on the resources (GET,PUT,PATCH, POST,
DELETE, HEAD, OPTIONS).13 The main REST HTTP methods with their actions are
presented in Table 7-2.

Table 7-2.  Message Converters Table

HTTP method Purpose Observation

GET Read Reads a resource, does not change it. Therefore can be considered safe.
Reading the same resource always returns the same result. Therefore can
be considered idempotent.

POST Create Used to create a new resource. Neither safe nor idempotent. Two identical
POST requests will result in two identical resources being created or errors
at application level.

PUT Update Most often used for update capabilities. It is not safe, since it modifies the
state on the server, but is idempotent (unless subsequent calls of the same
PUT request increments a counter within the resource, for example).

DELETE Delete Used to delete resources. Not safe, but can be considered idempotent.
Because requests to delete a resource that no longer exists will always
return a 404 (not found).

•	 URIs (Uniform Resource Identifiers) are used to identify resources. The resources
are conceptually separate from representations. Representations of the resources
are returned from the server to the client after a client request (typically JSON or
XML). Representations contain metadata information that can be used by the client
in order to modify or delete the resource on the server, provided it has permission to
do so.

•	 HTTP response: response codes, body, and headers are used to deliver the state to
clients. Clients deliver the state using body contents, request headers, and the URI.

A RESTful architecture is a stateless client–server architecture, so the system is disconnected (loosely
coupled). The server might not be available all the time, so operations are asynchronous, since client cannot
assume direct connection to the server. Sometimes, requested resources can be cached and some other
unknown software and hardware layers can be interposed between client and server. Intermediary servers
may improve system scalability and/or security by enabling load-balancing, providing shared caches, and
enforcing security policies. In REST communication the objects handled are representations of resources.
Representations can link to other resources, thus providing the opportunity of extension and discovery.
HTTP headers and status codes are used to communicate results to clients. When it is working with a
specific container, a session is used to preserve the state across multiple HTTP requests. Using REST, there
is no need for this, because REST communication is stateless, which increases the scalability, since the

13Although REST seems strongly connected to HTTP, REST principles can be followed using other protocols too, for
example POP, IMAP, and any protocol that uses URL-like paths and supports GET and POST methods.

Chapter 7 ■ Spring Advanced Topics

397

server does not have to maintain, update, or communicate the session state. Since HTTP is supported by
every platform/language, this means that REST communication can be done between quite a wide range of
different systems, and thus it is very scalable and definitely interoperable.14

To analyze contents of the REST requests and responses, the SoapUI plugin (or application) that was
introduced in the web services section can be used. Start SoapUI from the Tools ➤ SoapUI ➤ Start SoapUI
menu, and then open the SoapUI Navigator tab and create a REST project. A pop-up will require a URL
matching a REST request. After the Request object is created, the green arrow button can be clicked to send
the request, and the server will respond with the representation matching the request. But more about this
after Spring Support for REST is covered. In Figure 7-21 you can see how the SoapUI Intellij IDEA plugin can
be used to create a Rest project.

Figure 7-21.  The SoapUI Navigator interface for sending a REST request

Spring Support for REST
JAX-RS 2.0 is the latest major release of JAX-RS, which is a Java EE standard for building RESTful
applications. JAX-RS focuses on programatic clients, and there are various implementations (Jersey(RI),
RESTEasy, Restlet, CXF). Spring MVC does not implement JAX-RS, but it does provide REST Support starting
with version 3.0, offering programmatic client support, but also browser support. The core class for building
programmatic clients in Java is the RestTemplate. On the server side, the core component for REST support
is Spring MVC. Using the @RequestMapping annotation introduced in the previous chapter, HTTP REST
requests can be mapped to controllers. The REST controllers are special. Although annotated with the
stereotype annotation @Controller, their methods do not return results that can be mapped to a view, but to
a representation. The DispatcherServlet is notified that the result of the execution of a controller does not
have to be mapped to a view by annotating the method with @ResponseBody.

14See footnote 23.

Chapter 7 ■ Spring Advanced Topics

398

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.ResponseBody;

@Controller
public class RestUserController {

 @Autowired
 UserService userService;

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public @ResponseBody List<User> all() {
 return userService.findAll();
 }
...
}

In Spring 4.0, the @RestController annotation was introduced. This annotation is basically a
combination of @Controller and @ResponseBody, and when used on a class, it assumes that all values
returned by the methods in this controller should be bound to the web response body. The @RestController
annotation is a specialized version of the @Controller that does more than just mark a component as being
used for REST requests; thus it is not considered a stereotype annotation, and was declared in a different
package: org.springframework.web.bind.annotation.

import org.springframework.web.bind.annotation.RestController;

@RestController
public class RestUserController {

 @Autowired
 UserService userService;

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public List<User> all() {
 return userService.findAll();
 }
...
}

A URL can be mapped to multiple methods if the method attribute is set with a different HTTP method.
The example above declared the HTTP method type to be GET. The same URL can be used with a POST
method and used to create a user, for example.

import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.http.HttpStatus;
@RestController
public class RestUserController {
...

 @ResponseStatus(HttpStatus.CREATED)
 @RequestMapping(value = "/users", method = RequestMethod.POST)
 public void create(@RequestBody User newUser,

Chapter 7 ■ Spring Advanced Topics

399

 @Value("#{request.requestURL}")
 StringBuffer originalUrl, HttpServletResponse response)
 throws Exception {
 if (newUser.getId() != null) {
 throw new UserException("User found with email "
 + newUser.getEmail() + ". Cannot create!");
 }
 User user = userService.create(newUser);
 response.setHeader("Location",
 getLocationForUser(originalUrl, user.getUsername()));
 }

 protected static String getLocationForUser(StringBuffer url, Object childIdentifier) {
 UriTemplate template = new UriTemplate(url.toString() + "/{$username}");
 return template.expand(childIdentifier).toASCIIString();
 }

}

The getLocationForUser method is a utility method used to create the URI of the created resource,
which is then placed in the HTTP Response Location header. This is really useful, because it generates a
URI that is relative to the application context, which is automatically injected by Spring, so no hard-coding
is needed. In the previous example, the original request URI could be localhost:8080/users, and the
Location header value would be localhost:8080/users/johncusack, which is created by concatenating the
original URL with the username value. The URL parameter $username15 is replaced by calling the template.
expand(...) method. This URI can be used further by the client to request the newly created resource
representation.

■■ !  You may have noticed in the previous example that the identification key for a user resource is its
username. Since the username is unique in our database and the database ID should not be exposed for
security reasons, the username is a more suitable choice for an identifier in this case. Also keep in mind that
case-sensitive values in the URL might cause trouble, especially when the server application is installed on a
case-insensitive operating system like Windows.

Web applications use a collection of status codes to let the client know what happened to a request,
whether it was successfully processed and the state of the resource. The most familiar to you is probably the
404 Not Found status code that is returned when a requested resource cannot be found. A full list of HTTP
status codes can be found on Wikipedia, and you can look at it if you are curious and unfamiliar with HTTP
status codes.16

15The $ sign was used as a prefix in the path variable name, to make it obvious that this piece of URI is a variable that
will be replaced with an actual value.
16http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 7 ■ Spring Advanced Topics

400

With Spring MVC, the status code of a response can be set easily using the @ResponseStatus annotation
on controller methods. This annotation can receive as value any of the constants defined in the Spring class
HttpStatus. Table 7-3 contains the most common response statuses used in RESTful applications.

Table 7-3.  HTTP status codes table

HTTP Status HttpStatus constant Observation

200 OK Successful GET with returned content

201 CREATED Successful PUT or POST; location header should con-
tain URI or new resource.

204 NO_CONTENT Empty response, after successful PUT or DELETE

404 NOT_FOUND Resource was not found.

403 FORBIDDEN Server is refusing to respond to the request, because the
response is not authorized.

405 METHOD_NOT_ALLOWED Http method is not supported for the resource identified
by the Request URI.

409 CONFLICT Problems when making changes, when PUT or POST try
to save data that already exists and is marked as unique.

415 UNSUPPORTED_MEDIA_TYPE The server is refusing to service the request because the
entity of the request is in a format not supported by the
requested resource for the requested method.

Having a controller method annotated with @ResponseStatus will stop the DispatcherServlet from
trying to find a view to render. Thus controller methods that return void will just return a response with an
empty body. The methods that return an empty body are usually the DELETE methods:

@RestController
public class RestUserController {
...
 @ResponseStatus(HttpStatus.NO_CONTENT)
 @RequestMapping(value = "/users/{$username}", method = RequestMethod.DELETE)
 public void delete(@PathVariable("$username") String username)
 throws UserException {
 User user = userService.findByUsername(username);
 if (user == null) {
 throw new UserException("No user found for username " + username);
 }

 userService.deleteById(user.getId());
 }
}

Starting with Spring 4.3, composed annotations have been introduced that can replace the @
RequestMapping annotation with a certain HTTP method. They are grouped in the org.springframework.
web.bind.annotation package. In Table 7-4, Spring annotations and other equivalents are listed.

Chapter 7 ■ Spring Advanced Topics

401

■■ ! T he difference between @GetMapping and @RequestMapping is that the former does not support the
consumes attribute of @RequestMapping. (This attribute will be introduced a little bit later in this section.)

If for some reason @RestController cannot be used, in Spring MVC, type org.springframework.http.
ResponseEntity can be used as the return value from a @Controller method to tell the dispatcher that the
response is to be serialized and forwarded to the client instead of being resolved to a view:

@Controller
public class UserController {

 @Autowired
 UserService userService;

 @Autowired
 PetService petService;

 @RequestMapping(value = "/pets/{$username}", method = RequestMethod.POST)
 public ResponseEntity<String> createPet(@PathVariable("$username") String username,
 @RequestBody Pet pet,
 @Value("#{request.requestURL}") StringBuffer url)
 throws UserException {
 User owner = userService.findByUsername(username);
 if (owner == null) {
 throw new UserException("User not found with username " + username);
 }
 petService.save(pet);
 HttpHeaders headers = new HttpHeaders();
 headers.add("Location", getLocationForPet(url, pet.getRfid()));
 return new ResponseEntity<>(headers, HttpStatus.CREATED);
 }

 /**
 * Determines URL of pet resource based on the full URL of the given request,
 * appending the path info with the given childIdentifier using a UriTemplate.
 */
 protected static String getLocationForPet(StringBuffer url, Object petRfid) {
 UriTemplate template = new UriTemplate(url.append("/{$petid}").toString());
 return template.expand(petRfid).toASCIIString();
 }
}

Table 7-4.  HTTP status codes Table

HTTP Method @RequestMapping Spring 4.3 Annotation

GET @RequestMapping(method=RequestMethod.DELETE) @GetMapping

POST @RequestMapping(method=RequestMethod.POST) @PostMapping

DELETE @RequestMapping(method=RequestMethod.DELETE) @DeleteMapping

PUT @RequestMapping(method=RequestMethod.PUT) @PutMapping

Chapter 7 ■ Spring Advanced Topics

402

In the previous code snippet, a Pet record is created for user identified by $username path variable.
After the object is created, a response is sent with the location where the Pet record can be accessed via
REST requests. So if the original URI was http://localhost:8080/pets/johncusack, the returned result is
a ResponseEntity that contains the following URI: http://localhost:8080/pets/johncusack/11223344,
with 11223344 being the Pet RFID value.

Exception Handling
Sometimes REST requests cannot be resolved successfully. Perhaps the client requested a resource no
longer available, or some action requested by the client generated an error on the server. In this case ,the @
ResponseStatus can be used on controller exceptions handler methods to give the client a basic idea of why
the request was not processed correctly.

@RestController
public class RestUserController {
...
 /**
 * Maps IllegalArgumentExceptions to a 404 Not Found HTTP status code.
 * Requested resource was not found
 */
 @ResponseStatus(HttpStatus.NOT_FOUND)
 @ExceptionHandler({IllegalArgumentException.class})
 public void handleNotFound() {
 // just return empty 404
 }

 /**
 * Maps DataIntegrityViolationException to a 409 Conflict HTTP status code.
 * Creating a resource was not possible
 */
 @ResponseStatus(HttpStatus.CONFLICT)
 @ExceptionHandler({DataIntegrityViolationException.class})
 public void handleAlreadyExists() {
 // just return empty 409
 }
...
}

Another method to process REST request-related exceptions is to define a specialized exception class
for a REST controller and a specialized component to intercept those types of exceptions and treat them in
a certain way. For example, considering a class called UserException that is thrown every time a method
in the RestUserController is not executed correctly, the class defined in the following code snippet will
intercept such exceptions and transform them into JSON error objects that the client can interpret easily.
This behavior is configured using the @ControllerAdvice annotation, which is a specialization of
@Component, allowing for implementation classes to be autodetected through classpath scanning. Classes
annotated with this annotation typically declare one or more methods annotated with @ExceptionHandler
that will take care of the exception handling.

import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;

Chapter 7 ■ Spring Advanced Topics

403

import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.ResponseStatus;

@ControllerAdvice
public class RestExceptionProcessor {

 @ExceptionHandler
 @ResponseStatus(value = HttpStatus.NOT_FOUND)
 @ResponseBody
 public JsonError exception(UserException ex) {
 return new JsonError(ex.getMessage());
 }
}

In the previous code sample, the exception type is used as a parameter in the handler method, so that
only exceptions of that type will be intercepted and treated. Also, catching custom exceptions is useful,
because they usually contain specific information related to what went wrong. Similar restrictions can be
implemented also by configuring the @ControllerAdvice annotation. The scope for a controller advice can
be limited to exceptions thrown by methods of controllers declared in a specific set of packages by setting
the basePackages attribute.

...
@ControllerAdvice(basePackages = {"com.ps.web", "com.ps.rest"})
public class RestExceptionProcessor {

 @ExceptionHandler
 @ResponseStatus(value = HttpStatus.NOT_FOUND)
 @ResponseBody
 public JsonError exception(Exception ex) {
 return new JsonError(ex.getMessage());
 }
}

The scope of a controller advice can also be limited to a class or hierarchy of classes, by setting the
basePackageClasses attribute.

...
@ControllerAdvice(basePackageClasses = RestExceptionProcessor.class)
public class RestExceptionProcessor {

 @ExceptionHandler
 @ResponseStatus(value = HttpStatus.NOT_FOUND)
 @ResponseBody
 public JsonError exception(UserException ex) {
 return new JsonError(ex.getMessage());
 }
}

Chapter 7 ■ Spring Advanced Topics

404

HTTP Message Converters
The @ResponseBody introduced earlier is also used to facilitate understanding of the REST message format
between client and server. As mentioned at the beginning of the section, the resource representation
can have different formats: XML, JSON, HTML, etc. The client must know the format to use, or request
a resource with a representation it understands form the server. Representations are converted to HTTP
requests and from HTTP responses by implementations of the org.springframework.http.converter.
HttpMessageConverter<T> interface. Message converters are automatically detected and used by Spring
in applications configured with <mvc:annotation-driven/> or @EnableWebMvc. In the code sample for
this chapter, the representations are in JSON format, so MappingJackson2HttpMessageConverter is used.
Spring comes with a default wide list of supported message converters, but in case of need, a developer can
provide his own implementation of the HttpMessageConverter<T>. Here is a list of the most commonly used
message converters and the datatype handled:

17Of course, the preferred approach is to do an update operation, then do a GET request to extract the saved data, but for
teaching purposes, the two were combined.

Table 7-5.  Message Converters Table

Message Converter Data Type Observation

StringHttpMessageConverter text/plain

MappingJackson2HttpMessageConverter application/*+json Only if Jackson 2 is present on the
classpath

AtomFeedHttpMessageConverter application/atom+xml Only if Rome is present on the
classpath

RssChannelHttpMessageConverter application/rss+xml Only if Rome is present on the
classpath

MappingJackson2XmlHttpMessageConverter application/*+xml Only if Jackson 2 is present on the
classpath

As the name of the annotation so obviously implies, @ResponseBody is applied to the response, and its
presence on a controller method tells Spring that the response should be processed with an HTTP message
converter before being sent to the client. If the method requires an argument that needs to be processed
by the same HTTP converters, then the parameter must be annotated with RequestBody. Take a controller
method resolving a PUT request. This method receives a user representation from the client that must be
converted to a User instance before its state is updated into the database.17 This method also returns the
representation of the updated instance, so it needs both of the annotations present.

import org.springframework.http.MediaType;
...
@RestController
public class RestUserController {
 @ResponseStatus(HttpStatus.OK)
 @RequestMapping(value = "/users/{$username}",
 method = RequestMethod.PUT,
 consumes = MediaType.APPLICATION_JSON_UTF8_VALUE

Chapter 7 ■ Spring Advanced Topics

405

 produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
 public User updateByEmail(
 @PathVariable("$username") String username,
 @RequestBody User newUser) throws UserException {
 User user = userService.findByUsername(username);
 if (user == null) {
 throw new UserException("User not found with username " + username);
 }
 copyProperties(newUser, user);
 userService.update(user);
 return user;
 }
...
}

In the previous example, the consumes and produces annotation attributes of the @RequestMapping
were used. These two attributes are used to narrow the primary mapping for a request.

The consumes attribute defines the consumable media types of the mapped request (defined on the
server), and the value of the Content-Type header (defined on the client side) must match at least one of the
values of this property in order for a method to handle a specific REST request.

The produces attribute defines the producible media types of the mapped request, narrowing the
primary mapping, and the value of the Accept header (on the client side) must match at least one of the
values of this property in order for a method to handle a specific REST request.

■■ ! T he approach presented above to update a user is far from what you would use in practice. It was
designed especially to prove how the two attributes work and how they can be used together. The example
works, though, and you can test it by running the 15-ps-ws-rest-practice project, which is to be used when
testing knowledge acquired after traversing this section.

Spring MVC Configuration for RESTful Applications
A Spring Web RESTful application is basically a Spring MVC application ,so the configuration is the same
as presented in Chapter 6: Spring Web, no matter whether XML or Java Configuration is used. To support
a custom HTTP message converter implementation, the dependency must be added to the classpath of
the application, and a special bean must be declared in the configuration. In the following code snippet,
the configuration for a Spring Web RESTful application is depicted, and it contains a bean of type
MappingJackson2HttpMessageConverter that will be automatically used by Spring to convert objects to
JSON representations and vice versa.

Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.ps.web", "com.ps.exs"})
public class WebConfig extends WebMvcConfigurerAdapter {

 //Declare our static resources.
 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/images/**")

http://dx.doi.org/10.1007/978-1-4842-0811-3_6

Chapter 7 ■ Spring Advanced Topics

406

 .addResourceLocations("/images/")
 // cache them to speed up page loading
 .setCachePeriod(31556926);
 }
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 //One simple view, to confirm the application is up
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("welcome");
 }

 @Bean
 InternalResourceViewResolver getViewResolver(){
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/");
 resolver.setSuffix(".jsp");
 return resolver;
 }

 @Bean
 public MappingJackson2HttpMessageConverter
 mappingJackson2HttpMessageConverter() {
 MappingJackson2HttpMessageConverter
 mappingJackson2HttpMessageConverter =
 new MappingJackson2HttpMessageConverter();
 // when client is a browser JSON response is displayed indented
 mappingJackson2HttpMessageConverter.setPrettyPrint(true);
 //set encoding of the response
 mappingJackson2HttpMessageConverter.setDefaultCharset
 (StandardCharsets.UTF_8);
 mappingJackson2HttpMessageConverter.setObjectMapper(objectMapper());
 return mappingJackson2HttpMessageConverter;
 }

 @Bean
 public ObjectMapper objectMapper() {
 ObjectMapper objMapper = new ObjectMapper();
 objMapper.enable(SerializationFeature.INDENT_OUTPUT);
 objMapper.setSerializationInclusion
 (JsonInclude.Include.NON_NULL);
 return objMapper;
 }

Chapter 7 ■ Spring Advanced Topics

407

 @Override
 public void configureMessageConverters(
 List<HttpMessageConverter<?>> converters) {
 super.configureMessageConverters(converters);
 converters.add(mappingJackson2HttpMessageConverter());
 }
}

Using RestTemplate to Test RESTful Applications
A RESTful application can be accessed by any type of client that supports creating the type of request
supported by the application:18 browsers, mobile applications, desktop applications, etc. The RestTemplate19
is Spring’s central class for synchronous client-side HTTP access. This class provides a wide set of methods
for each HTTP method that can be used to access RESTful services. A correspondence between HTTP
methods and RestTemplate methods that can be used to access REST Services is depicted in Figure 7-22.

Figure 7-22.  RestTemplate API to HTTP methods correspondence

18HTTP requests in our case, but as mentioned previously, REST can be used with other protocols as well.
19JavaDoc for this class can be found here: http://docs.spring.io/spring/docs/current/javadoc-api/
org/springframework/web/client/RestTemplate.html.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Chapter 7 ■ Spring Advanced Topics

408

As you can see, the execute and exchange methods can be used for any type of REST calls as long as
the HTTP method is given as a parameter for the methods. All methods are polymorphic,20 and using one or
another depends on the requirements and the developer’s preferences. URI instances are returned to identify
resources, and RestTemplate methods support URI templates. So the following two calls are identical:

//using URI Template
String url = "http://localhost:8080/users/{$username}";
User user = restTemplate.getForObject(url, User.class, "johncusack");

// using URI
String url = "http://localhost:8080/users/johncusack";
User user = restTemplate.getForObject(url, User.class);

■■ !  Just as a reminder, the path variable $username is valid, and it works as expected: the $ character is
allowed to be part of a path variable name. This peculiar name for path variables was chosen to make it really
obvious to you, the developer, that this part of the URL is a variable that must be replaced with an actual value
when making a REST request.

The username was chosen as a key to identify users, because it is unique in the database, and even if the
database is truncated and reloaded, the username will not change. The database ID should not be exposed
for security reasons, and it is also subject to change in case the database is truncated and reloaded while the
application is running.

The execute method can also be given an org.springframework.web.client.RequestCallback
implementation as a parameter that will tell the RestTemplate what to do with the request before sending
it to the server. Considering this, a GET Request for a User instance with username=johncusack could be
written with the exchange method like this:

String url ="http://localhost:8080/users/{$username}";
 Person person = restTemplate.execute(url, HttpMethod.GET,
 new RequestCallback() {
 @Override
 public void doWithRequest(ClientHttpRequest request)
 throws IOException {
 HttpHeaders headers = request.getHeaders();
 headers.add("Accept", MediaType.APPLICATION_JSON_UTF8_VALUE);
 System.out.println("Request headers = " + headers);
 }
 }, new HttpMessageConverterExtractor<User>(User.class,
 restTemplate.getMessageConverters())
 , new HashMap<String, Object>() {{
 put("username", "johncusack");
 }});

20Multiple methods with the same name but different signatures are provided. RestTemplate http://docs.spring.io/
spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html.

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Chapter 7 ■ Spring Advanced Topics

409

Objects passed to and returned from the methods getForObject(), postForLocation(), and put()
are converted to HTTP requests and from HTTP responses by HttpMessageConverters.

The exchange method uses an HttpEntity object to encapsulate request headers and use it as a
parameter. The method returns a ResponseEntity object containing the result of a REST request, and its
body is automatically converted using the registered HttpMessageConverter implementation.

import org.springframework.http.ResponseEntity;
...

public class RestUserControllerTest {
 public void editUser() {
 String url = "http://localhost:8080/users/{$username}";
 User user = new User();
 user.setEmail("MissJones@pet.com");
 user.setUsername("jessicajones");
 //set other properties
 ..

 final HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON_UTF8);
 final HttpEntity<User> userRequest = new HttpEntity<>(user, headers);
 ResponseEntity<User> responseEntity = restTemplate.
 exchange(url, HttpMethod.PUT, userRequest, User.class,
 "jessicajones");

 User editedUser = responseEntity.getBody();
 assertNotNull(editedUser);
 assertEquals("MissJones@pet.com", editedUser.getEmail());
 }
}

Message converters are automatically detected and used by Spring in applications configured with
<mvc:annotation-driven/> or @EnableWebMvc. In the code sample for this chapter, the representations
are in JSON format, so MappingJackson2HttpMessageConverter is used. And because the message is
supported by default, the HttpMessageConverterExtractor<T> is not necessary in the previous example.
Also, if no Accept header is specified, all those supported by Spring will be considered, so in this case,
RequestCallback becomes unnecessary too, and we can stick to the simpler restTemplate.getForObject
method mentioned in the previous code snippet, because even in production applications, you will rarely
need anything else.

The application contained in the 15-ps-ws-rest-practice is a Spring Web RESTful application
that can be used to test your understanding of Spring support components for REST applications. The
RestUserController class provides controller methods that resolve REST requests. The client is represented
by the RestUserControllerTest class. This test class has a RestTemplate injected in it that can be used to
test all REST operations with users exposed by the RestUserController controller. The web application

Chapter 7 ■ Spring Advanced Topics

410

has no context, and the REST Services exposed by the controller are available using URIs like http://
localhost:8080/users/*. The RestUserControllerTest class contains methods to test REST requests
using the four main HTTP methods:

•	 GET: method used to retrieve a representation of a resource; might have length
restrictions depending on server settings and client used.21 When resource is not
found, a 404 (Not found) status code is returned, 200(OK) otherwise. In Figure 7-23,
the GET request and response contents are depicted.A REST GET request can be sent
with a RestTemplate instance: all that is needed is the REST URI and a username
to identify the resource. The path variable was named $username, prefixed with $ to
make the parametrized piece of the URI really obvious. The following code snippet
depicts the test method performing a GET request for a user resource that has
username equal to “johncusack”.

21Most web servers have a limit of 8192 bytes (8KB), which is usually configurable in the server configuration. As for
the client, the HTTP 1.1 specification warns about URI lengths bigger than 255 bytes, because older client or proxy
implementations might not properly support them.

Figure 7-23.  GET request and response example

public class RestUserControllerTest {
 private static final String GET_PUT_DEL_URL =
 "http://localhost:8080/users/{$username}";
 private RestTemplate restTemplate = null;
 @Before
 public void setUp() {
 restTemplate = new RestTemplate();
 }

 //Test GET by username
 @Test
 public void findByUsername() {
 User user = restTemplate.getForObject(GET_PUT_DEL_URL,
 User.class, "johncusack");
 assertNotNull(user);
 assertEquals("John.Cusack@pet.com", user.getEmail());
 }
}

Chapter 7 ■ Spring Advanced Topics

411

•	 POST: method used to create a new resource. When the resource being created
requires a parent that does not exist, a 404 (Not found) status code is returned.22
When an identical resource already exists, a 409 (Conflict) status code is returned.
When the resource was created correctly, a 201 (Created) status code is returned. In
Figure 7-24, the POST request and response contents are depicted.

Figure 7-24.  POST request and response example

22e.g., a POST request to create a pet contains a username of the owner. If an owner with the specified username does not
exist in the database, a 404 should be used to notify the client of the failure.

A REST POST request can be sent with a RestTemplate instance: all that is needed is
the REST URI and user object. The URI is identical to the one used to retrieve a user
resource, but the HTTP method is different.

import org.springframework.http.*;
...
public class RestUserControllerTest {
 private static final String GET_PUT_DEL_URL =
 "http://localhost:8080/users/{$username}";
 private static final String GET_POST_URL = "http://localhost:8080/users";
 private RestTemplate restTemplate = null;
 @Before
 public void setUp() {
 restTemplate = new RestTemplate();
 }

 //Test POST
 @Test
 public void createUser() {
 User user = new User();
 user.setEmail("Doctor.Who@tardis.com");
 user.setUsername("DoctorWho");
 ...
 final HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);

Chapter 7 ■ Spring Advanced Topics

412

 final HttpEntity<User> crRequest = new HttpEntity<>(user, headers);
 URI uri = restTemplate.postForLocation(GET_POST_URL,
 crRequest, User.class);
 assertNotNull(uri);
 assertTrue(uri.toString().contains("doctorwho"));

 // test insertion
 User newUser = restTemplate.getForObject(uri, User.class);
 assertNotNull(newUser);
 assertNotNull(newUser.getId());
 }
}

In this case, the method postForLocation is used, because the successful creation of
the resource must be tested afterward. The HttpHeaders object is used to set headers
of the request, such as the media type of the message, so Spring will know what
message converter to use to convert the JSON representation into the user instance
that needs to be saved.

•	 PUT: updates an existing resource or creates it with a known destination URI. The
URI of a resource contains an identifier for that resource. When a PUT request refers
to an existing resource, the resource is updated; otherwise, a new resource with the
identifier from the URI and the contents in the request body is created. When the
resource being updated requires a parent that does not exist,23 or if the resource
requested to be updated does not exist, a 404 (Not found) status code is returned.

When the resource is updated correctly and nothing is returned as a response body,
a 204 (No content) response status is returned.

When the resource does not exist, PUT acts like a POST and creates it, and
the location of the resource is returned. The response status in this case is
201(CREATED).

23A REST service that allows you to change the owner of a pet needs the username of that owner. If a username that is
not present in the database is specified, the user should be notified that the resource does not exist by returning a 404
HTTp response code.

Chapter 7 ■ Spring Advanced Topics

413

In Figure 7-25, the PUT request and response contents are depicted.

Figure 7-25.  PUT request and response example

A REST PUT request can be sent with a RestTemplate instance: all that is needed is
the REST URI and user object. The URI is identical to the one used to retrieve a user
resource, but the HTTP method is different.

import org.springframework.http.*;
...
public class RestUserControllerTest {
 private static final String GET_PUT_DEL_URL =
 "http://localhost:8080/users/{$username}";
 private static final String GET_POST_URL = "http://localhost:8080/users";
 private RestTemplate restTemplate = null;
 @Before
 public void setUp() {
 restTemplate = new RestTemplate();
 }

 // Test PUT
 @Test
 public void editUser() {
 User user = new User();
 user.setEmail("MissJones@pet.com");
 user.setUsername("JessicaJones");
 ...

 final HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON_UTF8);

Chapter 7 ■ Spring Advanced Topics

414

 final HttpEntity<User> userRequest = new HttpEntity<>(user, headers);
 ResponseEntity<User> responseEntity = restTemplate.exchange
 (GET_PUT_DEL_URL, HttpMethod.PUT, userRequest, User.class,
 "JessicaJones");

 User editedUser = responseEntity.getBody();
 assertNotNull(editedUser);
 assertEquals("MissJones@pet.com", editedUser.getEmail());
 }
}

The exchange method was used here just for teaching purposes, but RestTemplate
provides put methods with various signatures that are much easier to use.

•	 DELETE: deletes a resource. When the resource being deleted does not exist,
a 404 (Not found) status code is returned. When the resource was deleted correctly,
a 200 (OK) status code is returned. In Figure 7-26, the DELETE request and response
contents are depicted.

Figure 7-26.  DELETE request and response example

A REST DELETE request can be sent with a RestTemplate instance: all that is needed
is the REST URI and username. The URI is identical to the one used to retrieve a user
resource, but the HTTP method is different.

import org.springframework.http.*;
...
public class RestUserControllerTest {
 private static final String GET_PUT_DEL_URL =
 "http://localhost:8080/users/{$username}";
 private static final String GET_POST_URL = "http://localhost:8080/users";
 private RestTemplate restTemplate = null;
 @Before
 public void setUp() {
 restTemplate = new RestTemplate();
 }

 // Test DELETE
 @Test
 public void deleteUser() {
 restTemplate.delete(GET_PUT_DEL_URL, "doctorwho");
 }
}

Chapter 7 ■ Spring Advanced Topics

415

The delete response has an empty body if the operation succeeds. The only way
to test the success of a deletion is to request the resource with URI equal to
http://localhost:8080/users/doctorwho and expect a failure or a response
with 404 (Not Found) status to be returned, because the resource has already be
en deleted.

A Spring RESTful application can be tested without deploying it on a server by declaring a mock
restful server and using mock dependencies, so the REST requests can be tested in isolation. The class
that provides this is part of the Spring Test library and is called org.springframework.test.web.client.
MockRestServiceServer. A RestTemplate will be bound to this mock server, and this is where all requests
will be sent. Not being an actual server, the full URL for a request is unnecessary, only the request mapping
defined on the controller method. In every test method, the following steps are traversed:

	 1.	 The mock server first defines what request it expects to receive, how many times,
and how it will answer.

	 2.	 The RestTemplate method will be called with the request mapping URL chunk
(e.g., "/users")

	 3.	 The asserts method is performed to make sure the restTemplate request actually
received the response defined at step 1.

The StandaloneRestUserControllerTest class in project 15-ps-ws-rest-solution can be used to test
a RESTful application in a test mock context. A static internal class named TestConfig is defined to provide
mock dependencies to the test context. JMock and Mockito components are used to provide mock objects so
that the REST communication (request and response) can be tested in isolation.

import org.mockito.Mockito;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpMethod;
import org.springframework.http.MediaType;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.client.MockRestServiceServer;
import org.springframework.web.client.RestTemplate;

import static org.junit.Assert.*;
import static org.springframework.test.web.client.match.
 MockRestRequestMatchers.method;
import static org.springframework.test.web.client.match.
 MockRestRequestMatchers.requestTo;
import static org.springframework.test.web.client.ExpectedCount.once;
import static org.springframework.test.web.client.response.
 MockRestResponseCreators.withSuccess;
...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {WebConfig.class,
 StandaloneRestUserControllerTest.TestConfig.class})
@WebAppConfiguration
public class StandaloneRestUserControllerTest {

Chapter 7 ■ Spring Advanced Topics

416

 @Configuration
 static class TestConfig {
 @Bean
 UserService userService() {
 return Mockito.mock(UserService.class);
 }
 }

 private RestTemplate restTemplate = null;

 private MockRestServiceServer server = null;

 @Before
 public void setup() {
 restTemplate = new RestTemplate();
 server = MockRestServiceServer.bindTo(restTemplate).build();
 }

@Test
 public void findByUsername() {
 //step 1
 server.expect(once(), requestTo("/users/johncusack"))
 .andExpect(method(HttpMethod.GET))
 .andRespond(withSuccess("{\n" +
 " \"id\" : 1575,\n" +
 " \"username\" : \"johncusack\",\n" +
 " \"firstName\" : \"John\",\n" +
 " \"lastName\" : \"Cusack\",\n" +
 " \"password\" : \"test\",\n" +
 " \"userType\" : \"OWNER\",\n" +
 " \"email\" : \"John.Cusack@pet.com\",\n" +
 " \"rating\" : 0.0,\n" +
 " \"active\" : true\n" +
 "}", MediaType.APPLICATION_JSON_UTF8));

 //step 2
 User user = restTemplate.getForObject("/users/{$username}",
 User.class, "johncusack");
 //step 3 assertNotNull(user);
 assertEquals("John.Cusack@pet.com", user.getEmail());
 assertEquals(UserType.OWNER, user.getUserType());
 }
...
}

Advantages of REST
•	 REST is simple.

•	 REST is widely supported.

•	 Resources can be represented in a wide variety of data formats (JSON, XML, etc.).

Chapter 7 ■ Spring Advanced Topics

417

•	 You can make good use of HTTP cache and proxy server to help you handle high
load and improve performance.

•	 It reduces client/server coupling.

•	 Browsers can interpret representations.

•	 Javascript can use representations.

•	 A rest service can be consumed by applications written in different languages.

•	 It makes it easy for new clients to use a RESTful application, even if the application
was not designed specifically for them.

•	 Because of statelessness of REST systems, multiple servers can be behind a load-
balancer and provide services transparently, which means increased scalability.

•	 Because of the uniform interface, little or no documentation of the resources and
basic operations API is necessary.

•	 Using REST does not imply specific libraries at client level in order to communicate
with the server. With REST, all that is needed is a network connection.

REST services can be secured, but since the interaction between client and server is stateless,
credentials have to be embedded in every request header. Basic authentication is the easiest to implement
without additional libraries (HTTP Basic, HTTP Digest, or XML-DSIG or XML-Encryption), but it guarantees
the lowest level of security. Basic authentication should never be used without TLS (formerly known as
SSL) encryption, because the credentials can be easily decoded otherwise. In Figure 7-27, you can see how
basic authentication is used when a client communicates with a RESTful application that requires basic
authentication.

Figure 7-27.  Basic authentication when RESTful systems are used

Practice Section
The 15-ps-ws-rest-practice is an incomplete project; there are annotations and method bodies missing.
To test your understanding of implementing Spring RESTful applications and testing them, you can try
completing it. There are seven TODO tasks numbered from 55 to 61, and if you need inspiration or a
confirmation that your solution is correct, you can compare it with the proposed solution that you can find
in project 15-ps-ws-rest-solution.

Task TODO 55, located in the RestUserController class, requires you to complete the configuration of
this class to register this class as a controller that handles REST requests.

Task TODO 56, located in the RestUserController class, requires you to complete the configuration
of the create method, so that it can handle an HTTP POST request and create a User instance. If you
want to test the method right away, start the application with gradle appRun in the command line or by

Chapter 7 ■ Spring Advanced Topics

418

executing the appStart from the Gradle Projects tab under this module node and solve task TODO 59 in the
RestUserControllerTest class to use the restTemplate object to send an HTTP POST request.

Task TODO 57, located in the RestUserController class, requires you to complete the configuration
of the update method so that it can handle an HTTP PUT request and update a User instance. If you
want to test the method right away, start the application with gradle appRun in the command line or by
executing the appStart from the Gradle Projects tab under this module node and solve task TODO 60 in the
RestUserControllerTest class to use the restTemplate object to send an HTTP post request.

Task TODO 58, located in the RestUserControllerTest class, requires you to complete the test method
body to make a REST call using restTemplate to request a user instance with username="johncusack".

Task TODO 61, located in the RestUserControllerTest class, requires you to complete the test
method body to make a REST call using restTemplate to request deletion of the user instance with
username=“doctorwho”.

To test the result of your operations, you can run the test method getAll() from class
RestUserControllerTest, which will print in the console all the users in the database. Or you can access
the URIs right from the browser, since the browser knows how to render the JSON response properly.
Another solution if you do not want to leave the editor is to use the SoapUI Intellij Idea plugin mentioned
at the beginning of the section. Just create a project and add requests with the proper URIs. In Figure 7-28,

Figure 7-28.  The SoapUI http://localhost:8080/users/johncusack REST request and response

the request for the user with username johncusack is depicted. After clicking the green arrow button, the
response is depicted in the textfield on the right.

RESTful Spring Application with Spring Boot
The 15-ps-ws-rest-practice application is configured using plain Spring MVC and has even a view resolver
configured, so that if the application is started successfully, a web page becomes accessible at location
http://localhost:8080/. The simplest way to configure a RESTful Spring application is using Spring Boot,
because the simplest RESTful application will need fewer than 20 lines of code. The module 15-ps-rest-
boot-sample contains a Spring Boot RESTful application that provides the same HTTP methods as the Spring
MVC application. The only difference is, to keep things simple, a simple version of the User class is used,
and no JPA is present. In Figure 7-29, the 15-ps-rest-boot-sample application structure is depicted.

Chapter 7 ■ Spring Advanced Topics

419

The Application class is the entry point of the application. Run this class as an application in Intellij
IDEA, and the REST services will become available.

package com.ps.rest;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import java.io.IOException;

@SpringBootApplication
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws IOException {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }
}

Figure 7-29.  The 15-ps-rest-boot-sample Spring RESTful Boot application structure

Chapter 7 ■ Spring Advanced Topics

420

The RestUserControllerTest contains methods to test all the REST requests exposed by the
RestUserController class. The RestUserController class is identical to the one introduced earlier; the URIs
are the same. The only difference is that it gets the user instances from a map structure.

...

@RestController
public class RestUserController {

 // replacement for JPA UserService
 private Map<String, User> userService = new HashMap<>();

 // create some users so we can test the controller
 @PostConstruct
 public void init() {
 User user = new User("johncusack", "John.Cusack@pet.com", 5d, true);
 userService.put(user.getUsername(), user);
 user = new User("jessicajones","Jessica.Jones@pet.com", 4d, true);
 userService.put(user.getUsername(), user);
 }

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public List<User> all() {
 return new ArrayList<>(userService.values());
 }

 @ResponseStatus(HttpStatus.CREATED)
 @RequestMapping(value = "/users", method = RequestMethod.POST)
 public void create(@RequestBody @Valid User newUser,
 @Value("#{request.requestURL}")
 StringBuffer originalUrl, HttpServletResponse response)
 throws UserException {
 if (userService.containsKey(newUser.getUsername())) {
 throw new UserException("User found with email "
 + newUser.getEmail() + ". Cannot create!");
 }
 userService.put(newUser.getUsername(), newUser);
 response.setHeader("Location", getLocationForUser(originalUrl,
 newUser.getUsername()));
 }
 ...
}

Spring Boot is very practical for writing RESTful applications, because it automatically configures the
infrastructure beans necessary in the background, and all that is left for the developer to do is to create
REST controller classes. This is all that can be said about REST support in Spring, and it is time for the last
advanced topic in this chapter, which it is not part of the official certification exam, but you might consider it
useful.

Chapter 7 ■ Spring Advanced Topics

421

Spring JMX
JMX is an acronym for Java Management Extensions, and this technology provides the tools for building
distributed, Web-based, modular, and dynamic solutions for managing and monitoring devices,
applications, and service-driven networks.24 JMX technology can be used to monitor and manage the Java
Virtual Machine (Java VM) as well. The JMX specification defines the architecture, design patterns, APIs, and
services in the Java programming language for management and monitoring of applications and networks.
JMX allows configuration properties to be changed at runtime, can report cache hit/miss ratios at runtime,
and can even invoke or simulate a client call.

In JDK versions 5.0 and 6, the JMX technology was developed as Java Specification Request JSR 3,25 Java
Management Extensions, and JSR 160,26 JMX Remote API. Evolutions of the JMX API and JMX Remote API
in JDK version 7 are covered by JSR 255, JMX API 2.0. JMX is dynamic, so information about an application’s
internal status can be gathered during runtime. So basically, the JDK comes with JMX out of the box.
And it is not hard to use. You must create an interface that ends with MXBean or use the annotation. Of
course, there must be an implementation as well. The implementation is than used to manage facets of the
application.

Using JMX, a given resource can be instrumented by one or more components called Management
Beans, or simply MBeans. These are objects containing management metadata. The MBeans are registered
in a core-managed object server, known as the MBean server. The MBean server acts as a management
agent and can run on most devices that have been enabled for the Java programming language.

JMX Architecture
The JMX architecture is depicted in Figure 7-30. The JMX architecture is structured into three layers:

•	 Instrumentation layer: where resources are wrapped in MBeans.

•	 Agent layer: the management infrastructure consisting of the MBean Server and
agents that provide the following JMX services:

–– Monitoring

–– Event notification

–– Timers

24Oracle official definition found here: http://www.oracle.com/technetwork/articles/java/
javamanagement-140525.html.
25Official page: https://jcp.org/en/jsr/detail?id=3.
26Official documentation here: http://www.jcp.org/en/jsr/detail?id=160.

http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
https://jcp.org/en/jsr/detail?id=3
http://www.jcp.org/en/jsr/detail?id=160

Chapter 7 ■ Spring Advanced Topics

422

•	 Management layer: Defines how external management applications can interact
with the underlying layers in terms of protocols, APIs, and so on. This layer uses an
implementation of the distributed services specification (JSR-077), which is part of
the Java 2 Platform, Enterprise Edition (J2EE) specification.27

The JMX technology defines standard connectors (known as JMX connectors) that enable you to access
JMX agents from remote management applications. The MBean server acts as a broker for communication
between local MBeans and agents and between MBeans and remote clients. The MBean server keeps a
keyed reference as evidence of all registered MBeans. Common and accessible clients for the MBean Server
are provided within the JDK: jconsole, jvisualvm, and jmc. And there is also an open source tool named
VisualVM.28

An MBean is a managed Java object that follows the design patterns set in the JMX specification. An
MBean can represent a device, an application, or any resource that needs to be managed. MBeans expose a
management interface that consists of the following:

•	 attributes (properties), which can be readable, writable, or both

•	 operations (methods)

•	 self description

Figure 7-30.  JMX architecture

27J2EE TM management official page: https://jcp.org/en/jsr/detail?id=077.
28VisualVM official page https://visualvm.github.io/.

https://jcp.org/en/jsr/detail?id=077
https://visualvm.github.io/

Chapter 7 ■ Spring Advanced Topics

423

There are five type of MBeans defined by the JMx specification:

•	 Standard MBeans, also known as Simple MBeans

•	 Dynamic MBeans

•	 Open MBeans

•	 Model MBeans

•	 MXBeans

The management metadata can be defined statically by implementing a Java interface or by annotating
the implementation, and it will automatically be generated at runtime.

Plain JMX
The plainest example of a JMX MBean interface can look like this.

package com.ps.jmx;

public interface JmxCounterMBean {
 int getCount(); // attribute "count"
 void add(); // operation "add
}

public class JmxCounter implements JmxCounterMBean{
 public int getCount() {
 ...
 }

 public void void add() {
 ...
 }
}

■■ CC  By convention, an MBean interface takes the name of the Java class that implements it, with the suffix
MBean added.

Once a resource has been instrumented by MBeans, the management of that resource is performed by a
JMX agent.

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
ObjectName name = new ObjectName("com.ps.jmx:type=UserCounter");
UserCounter mbean = new UserCounter();
mbs.registerMBean(mbean, name);

Chapter 7 ■ Spring Advanced Topics

424

Spring JMX
As usual, using native APIs is cumbersome, so Spring JMX was introduced to make developers’ lives easy by
providing a practical way to integrate a Spring application into a JMX infrastructure. Spring’s JMX support
provides four core features:

•	 The automatic registration of any Spring bean as a JMX MBean.

•	 A flexible mechanism for controlling the management interface of your beans.

•	 The declarative exposure of MBeans over remote JSR-160 connectors.

•	 The simple proxying of both local and remote MBean resources.

These features are provided without the need for writing complex code and without coupling the
application to Spring or JMX classes or interfaces. The JMX infrastructure can be configured using the
context namespace or using Java Configuration. Spring beans can be exposed as MBeans using annotations
or XML. JMX beans can be consumed using a proxying mechanism transparently. Until now there is nothing
new; this is what Spring provides for most commonly used APIs.

The core class in Spring’s JMX framework is the MBeanExporter, responsible for taking your Spring
beans and registering them with a JMX MBeanServer. Declaring the server and the exporter beans is done in
a typical Spring manner.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- Configuration for JMX exposure in the application -->
 <context:mbean-server />
 <context:mbean-export />
</beans>

The <context:mbean-server/> declares a bean of type org.springframework.jmx.support.
MBeanServerFactoryBean. This bean has the responsibility of obtaining a javax.management.MBeanServer
reference from the the standard JMX 1.2 javax.management.MBeanServerFactory API.

The <context:mbean-export/> declares a bean of type org.springframework.jmx.export.
MBeanExporter, and this is the bean that allows exposing any Spring-managed bean to a MBeanServer
without the need to define any Spring-managed bean to a MBeanServer without the need to define any JMX-
specific information in the bean classes.

An equivalent Java Configuration is depicted in the following code snippet. Basically, the two context
elements from XML become two beans in a configuration class:

import org.springframework.jmx.export.MBeanExporter;
import org.springframework.jmx.support.MBeanServerFactoryBean;
...
@Configuration
public clas JmxConfig(){

Chapter 7 ■ Spring Advanced Topics

425

 // equivalent of <context:mbean-server />
 @Bean
 MBeanServerFactoryBean mbeanServer(){
 return new MBeanServerFactoryBean();
 }

 // equivalent of <context:mbean-export />
 @Bean
 MBeanExporter exporter(){
 MBeanExporter exporter = new MBeanExporter();
 exporter.setAutodetect(true);
 exporter.setBeans(map);
 return exporter;
 }

}

The project 16-ps-jmx-sample is assigned to this section. It contains the implementation with
Spring Boot, because in this way, the setup becomes even easier, since all that is needed is one annotation:
@EnableMBeanExport.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.context.annotation.EnableMBeanExport;

@SpringBootApplication
@EnableMBeanExport
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws IOException {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }
}

The @EnableMBeanExport is very important, because it enables default exporting of all standard MBeans
from the Spring context, as well as all @ManagedResource annotated beans. Behind the scenes, it basically
declares and registers a bean of type JmxMBeanServer and a bean of type AnnotationMBeanExporter for you
that will take care of registering and will expose your Spring managed beans as MBean, so that you don’t
have to.

Chapter 7 ■ Spring Advanced Topics

426

After starting the application, you can check that the two beans have been created for you by analyzing
the console log. You should find some log entries like these:

...
INFO o.s.j.e.a.AnnotationMBeanExporter - Registering beans for JMX exposure on startup
DEBUG o.s.j.e.a.AnnotationMBeanExporter - Autodetecting user-defined JMX MBeans
...
DEBUG o.s.j.s.JmxUtils - Found MBeanServer:
 com.sun.jmx.mbeanserver.JmxMBeanServer@7c05a4af
DEBUG o.s.b.f.s.DefaultListableBeanFactory -
 Creating instance of bean 'mbeanExporter'
DEBUG o.s.b.f.s.DefaultListableBeanFactory -
 Creating shared instance of singleton bean 'mbeanServer'
...

Spring MBeanExporter exposes existing POJO beans to the MBeanServer without the need to write the
registration code. Spring beans must be annotated with the proper annotations.

import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;

import javax.annotation.ManagedBean;

@ManagedResource(description = "sample JMX managed resource"
 , objectName="bean:name=jmxCounter")
public class JmxCounterImpl implements JmxCounter {

 private int counter =0;

 @ManagedOperation(description = "Increment the counter")
 @Override
 public int add() {
 return ++counter;
 }

 @ManagedAttribute(description = "The counter")
 @Override
 public int getCount() {
 return counter;
 }
}

The ObjectName of the managed bean is either derived from the fully qualified class name or passed as
attribute to the @ManagedResource. The @ManagedResource marks all instances of a JmxCounterImpl as JMX
managed resources. @ManagedOperation marks the method as a JMX operation. @ManagedAttribute marks a
getter or setter as one half of a JMX attribute.

Chapter 7 ■ Spring Advanced Topics

427

The MBeanExporter receives the managed resources as arguments in a map:

@Configuration
public class JmxConfig {

 @Bean
 MBeanExporter exporter(){
 MBeanExporter exporter = new MBeanExporter();
 Map<String, Object> map = new HashMap<>();
 map.put("bean:name=jmxCounter1", jmxCounter());
 exporter.setBeans(map);
 return exporter;
 }
 ...
}

 // in this case the JMX bean must be annotated with @Component
@Component
@ManagedResource(description = "Sample JMX managed resource",
 objectName="bean:name=jmxCounter")
public class JmxCounterImpl implements JmxCounter {
...
}

But the MBeanExporter bean can detect all JMX beans if configured so: set the autodetect property to true.

@Configuration
public class JmxConfig {

 @Bean
 MBeanExporter exporter(){
 MBeanExporter exporter = new MBeanExporter();
 exporter.setAutodetect(true);
 return exporter;
 }
 ...
}

 // in this case the JMX bean must be annotated with @Component
@Component
@ManagedResource(description = "Sample JMX managed resource",
 objectName="bean:name=jmxCounter")
public class JmxCounterImpl implements JmxCounter {
...
}

But when the @EnableMBeanExport annotation is used, there is no need to configure the exporter
bean explicitly.

Chapter 7 ■ Spring Advanced Topics

428

The objectName attribute contains the name of the resulting MBean, so any client, local or remote,
will have to look for jmxCounter. Now that we have the JMX configuration and a Spring bean exposed as an
MBean, the application can be started and the search for the Spring managed bean can begin.

As a client, Java Mission Control from Oracle will be used for the current example.29 If you have the
JAVA_HOME variable set in your system and the JAVA_HOME\bin on the classpath, open a terminal (or a
Command Prompt on Windows) and type jmc. In Figure 7-31, you can see the JMC window.

Figure 7-31.  Java Mission Control connected to the 16-ps-jmx-sample application and depicting the
jmxCounter MBean

29You can also use jconsole, jvisualvm, or the outsource visualvm. In this book, JMC is covered, because it has recently
become one of the most competent monitoring and analysis tools for Java Applications. It can be used to generate and
analyze full or partial thread and memory dumps.

Chapter 7 ■ Spring Advanced Topics

429

In the JMC, you will see a tab called JVM Browser that displays all the JAVA processes running on the
system. You can recognize the Java process corresponding to the 16-ps-jmx-sample by the name of the main
class com.ps.start.Application. Double click and expand the node; then double click on the MBeanServer
node. A tab named MBean Browser will be opened, and in it under the bean node, on expanding it, you
will see the jmxCounter, which can be inspected by clicking on the tabs on the right. If you click on the
operations tab, you will see the two operations and a button named Execute that you can use to execute the
jmxCounter MBean methods.

It was mentioned before that client applications can access the MBeans through proxies. The Spring
JMX architecture allows this, since it is the standard remoting communication between Spring applications.
In Figure 7-32 you can see the Spring JMX architecture.

So basically, the server exposes Spring beans as MBeans managed by the MBeanServer, and the client
accesses them using proxies. Typical Spring, right?

To be able to create a Spring client for the MBean, a connector that the client will use to
access the MBean must be defined for it on the server side. For this, we need a bean of type
ConnectorServerFactoryBean to be configured.

@SpringBootApplication
@EnableMBeanExport
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 @Bean
 ConnectorServerFactoryBean connector(){
 return new ConnectorServerFactoryBean();
 }

 ...
}

Figure 7-32.  Spring JMX Architecture

Chapter 7 ■ Spring Advanced Topics

430

By default, ConnectorServerFactoryBean creates a JMXConnectorServer bound to
"service:jmx:jmxmp://localhost:9875", and this is the URL that the client will use to access the
MBean. The client in this case will be a test class with a bean of type MBeanServerConnectionFactoryBean
injected into it that will be used to access the MBean remotely, through a proxy object of course. The
JMXMP protocol is marked as optional by the JSR 160 specification: currently, the main open-source JMX
implementation, MX4J, and the one provided with the JDK do not support JMXMP. So the easier way is
to expose the MBean through RMI. For this, the server configuration must be changed to include an RMI
registry and connector beans.

import org.springframework.jmx.support.ConnectorServerFactoryBean;
import org.springframework.jmx.support.MBeanServerFactoryBean;
import org.springframework.remoting.rmi.RmiRegistryFactoryBean;
....
@SpringBootApplication
@EnableMBeanExport
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 @Bean
 @DependsOn("rmiRegistry")
 ConnectorServerFactoryBean connector() {
 ConnectorServerFactoryBean cf = new ConnectorServerFactoryBean();
 try {
 cf.setObjectName("connector:name=rmi");
 } catch (MalformedObjectNameException e) {
 return null;
 }
 cf.setServiceUrl(
 "service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi");
 return cf;
 }

 @Bean
 RmiRegistryFactoryBean rmiRegistry() {
 RmiRegistryFactoryBean rmiRegistryFactoryBean = new RmiRegistryFactoryBean();
 rmiRegistryFactoryBean.setAlwaysCreate(true);
 rmiRegistryFactoryBean.setPort(1099);
 return rmiRegistryFactoryBean;
 }
...
}

On the client side we need a MBeanServerConnection bean to be able to connect to the RMI
server, which will be created by the MBeanServerConnectionFactoryBean factory bean, and a
MBeanProxyFactoryBean that will take care of creating the JmxCounter proxy.

import com.ps.start.JmxCounter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jmx.access.MBeanProxyFactoryBean;
import org.springframework.jmx.support.MBeanServerConnectionFactoryBean;

Chapter 7 ■ Spring Advanced Topics

431

import javax.management.MBeanServerConnection;

@Configuration
public class TestConfig {

 @Bean
 MBeanServerConnection connection() {
 MBeanServerConnectionFactoryBean conn = new MBeanServerConnectionFactoryBean();
 try {
 conn.setServiceUrl(
 "service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi");
 conn.afterPropertiesSet();
 return conn.getObject();
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 @Bean
 MBeanProxyFactoryBean proxy() throws MalformedObjectNameException {
 MBeanProxyFactoryBean proxy = new MBeanProxyFactoryBean();
 proxy.setObjectName("bean:name=jmxCounter");
 proxy.setProxyInterface(JmxCounter.class);
 proxy.setServer(connection());
 return proxy;
 }
}

The test class just has to retrieve the proxy and do some actions on it:

...
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TestConfig.class})
public class TestClient {
 private static Logger logger = LoggerFactory.getLogger(TestClient.class);

 @Autowired
 JmxCounter counter;

 @Test
 public void test() {
 assertNotNull(counter);
 counter.add();
 assertEquals(1, counter.getCount());
 }
}

Chapter 7 ■ Spring Advanced Topics

432

Summary
After reading this chapter you should have a proper understanding of how Spring can be used to provide
and consume quite a few types of services. Below, you can find a simple list of topics, which you should keep
handy when reviewing the acquired knowledge, but keep in mind that only Spring REST is part of the official
certification exam.

•	 What does RMI stand for?

•	 What are the disadvantages of the RMI model?

•	 What is the HttpInvoker used for?

•	 Explain JMS core concepts like publisher, subscriber, producer, consumer,
destinations.

•	 How many types of JMS messages are there?

•	 What is JmsTemplate used for?

•	 What does JMS stand for?

•	 How many types of Destinations are there?

•	 What is the structure of a JMS message?

•	 What is SOAP?

•	 Advantages and disadvantages of SOAP.

•	 @EnableWs is the key configuration annotation for a Spring WS application.

•	 How can classes for a WS implementation be generated?

•	 @Endpoint is the annotation that marks a class as a web service endpoint.

•	 What is REST?

•	 What type of clients can access a web application?

•	 How are resources exposed to the client?

•	 How many types of representations are supported?

•	 What is the difference between @Controller and @RestController?

•	 Make sure you can describe Spring MVC support for RESTful applications.

•	 Understand how to access Request/Response Data.

•	 What are @ResponseBody and @RequestBody used for?

•	 Use MessageConverters.

•	 Is Spring MVC needed in the classpath in the configuration of a RESTful application?

•	 RestTemplate is the core Spring class for creating clients for REST applications.

•	 Spring JMX allows practical export of Spring managed Beans as MBeans to a JMX
MBeanServer.

•	 Spring JMX provides an easy way to configure JMX applications, so that the
developer can focus on the Spring Bean implementation.

•	 @EnableMBeanExport is the key configuration annotation for a Spring JMX
application.

Chapter 7 ■ Spring Advanced Topics

433

Quick Quiz
Question 1: What is REST?

	 A.	 a software design pattern

	 B.	 a framework

	 C.	 an architecture style

Question 2: Which of the methods below are HTTP methods?

	 A.	 PUT

	 B.	 GET

	 C.	 SUBMIT

	 D.	 OPTIONS

Question 3: What Spring class can be used to access and test REST services?

	 A.	 RestTemplate

	 B.	 RmiTemplate

	 C.	 Both

	 D.	 None

Question 4: What does the RestTemplate handle?

	 A.	 Resources

	 B.	 Representations

	 C.	 Both

Question 5: What can be said about the @RestController annotation?

	 A.	 It is used to declare a controller providing REST Services.

	 B.	 It is annotated with @Controller and @ResponseBody.

	 C.	 In controllers annotates with this annotation @RequestMapping methods
assume @ResponseStatus semantics by default.

Question 6: What is the effect of annotating a method with @ResponseStatus?

	 A.	 The default behavior for resolving to a view for methods returning void or null is
overridden.

	 B.	 The HTTP Status code matching the @ResponseStatus is added to the response body.

	 C.	 It forces use of HTTP message converters.

Chapter 7 ■ Spring Advanced Topics

434

Question 7: Which of the following HTTP message converters are supported by Spring MVC?

	 A.	 StringHttpMessageConverter

	 B.	 MappingJackson2HttpMessageConverter, but Jackson2 must be in the classpath

	 C.	 YamlMessageConverter

Question 8: Which of the following RestTemplates can be used to make a GET REST call to a URL?

	 A.	 restTemplate.getForObject(...)

	 B.	 optionsForAllow(...)

	 C.	 getForEntity(...)

	 D.	 exchange(..., HttpMethod.GET,...)

Question 9: Does the following REST handler method comply with the HATEOAS constraint?

@ResponseStatus(HttpStatus.CREATED)
@RequestMapping(value = "/create", method = RequestMethod.POST,
 produces = MediaType.APPLICATION_JSON_UTF8_VALUE,
 consumes = MediaType.APPLICATION_JSON_UTF8_VALUE)
 public Person createPerson(@RequestBody @Valid Person newPerson) {
 logger.info("-----> CREATE");
 Hospital hospital = hospitalManager.findByCode(
 newPerson.getHospital().getCode());
 newPerson.setHospital(hospital);
 Person person = personManager.save(newPerson);
 logger.info("-----> PERSON: " + person);
 return person;
}

	 A.	 Yes, because it returns a representation of the object that was created.

	 B.	 No, because it does not set the location header to the URI of the created resource.

	 C.	 This is not a REST handler method

	 D.	 No, because no Link object is added to the returned resource.

435© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3_8

CHAPTER 8

Spring Microservices with
Spring Cloud

Microservices are a specialization and implementation approach for service-oriented architectures
(SOA), and they are used to build flexible, independently deployable services. Microservices is a paradigm
that requires for services to be broken down into highly specialized instances as functionality and be
interconnected through agnostic communication protocols (like REST, for example) that work together to
accomplish a common business goal. Each microservice is a really small unit of stateless functionality, a
process that does not care where the input is coming from and does not know where its output is going. It
has no idea what the big picture is. Because it is specialized and decoupled, each problem can be identified,
the cause localized and fixed, and implementation redeployed without affecting other microservices. This
means that microservices systems have high cohesion of responsibilities and really low coupling, and these
qualities allow the architecture of an individual service to evolve through continuous refactoring, reduce the
necessity of a big up-front design, and allow for software to be released earlier and continuously.

Microservices have grown in popularity in recent years, and because of the small granularity and
lightweight communication protocols, they have became the preferred way to build enterprise applications.
Microservices’ modular architectural style seems particularly well suited to cloud-based environments. This
architectural method is quite scalable and is considered ideal when multiple platforms and devices must be
supported. Consider the biggest players on the Web right now: Twitter, Netflix, Amazon, PayPal, Soundcloud,
and others. They have large-scale websites and applications that have evolved from monolithic architecture
to microservices so that they can be accessible from every kind of device.

Classic application development is characterized by multiple types of services being developed
as a single monolithic, autonomous unit and deployed on a server for clients to access. Usually, these
applications are multilayered, and each layer corresponds to different functional areas of the application.
The monolithic application would handle HTTP requests, execute business logic, and also handle database
operations. In a monolithic infrastructure, the services that make the system are organized logically within
the same code base and unit of deployment. The disadvantage of monolithic applications is that changes
end up being tied to other changes, and sometimes problems are harder to identify when there are multiple
layers involved. A modification made to a small section of an application might require building and
deploying an entirely new version. And obviously, regression tests to verify that code previously developed
and tested still performs correctly even after it was changed are mandatory. Thus, underlining Thus,
underlining advantages and disadvantages of microservices can be done only by comparing them to old
style monolithic architecture.

A summary of microservices’ advantages is listed below:

•	 increased granularity

•	 increased scalability

•	 easy to automate deployment and testing

Chapter 8 ■ Spring Microservices with Spring Cloud

436

•	 easy to test

•	 increased decoupling

•	 enhanced cohesion

•	 suitable for continuous refactoring, integration, and delivery

•	 increased module independence

•	 organized around capabilities

•	 improved agility and velocity, because when a system is correctly decomposed into
microservices, each service can be developed and deployed independently and in
parallel with the others

•	 each service is elastic,1 resilient, composable, minimal, and complete

•	 improvement of fault isolation

•	 elimination of long-term commitment to a single technology stack, because
microservices can be written in different programming languages

•	 makes it easier to integrate new developers in a team

A summary of microservices’ disadvantages is listed below:

•	 Microservices introduce additional complexity and the necessity of careful handling
of requests between modules.

•	 Handling multiple databases and transactions can be painful.

•	 Testing microservices can be cumbersome, since each dependency of a microservice
must be confirmed valid before the service can be actually tested.

•	 Deployment becomes complex as well, requiring coordination among modules.

The conclusion so far is that the new-age titan applications that need to support multiple clients and
platforms are very good candidates for microservices. Microservices help break up monolithic applications
into individual units of deployment, which are able to evolve their own scaling requirements irrespective of
the other subsystems. Let’s see whether Spring can make development of microservices-based applications
as practical as it has made monolithic applications development.

Microservices with Spring
Microservices architectural idea is similar to how beans are managed by the Spring container and how they
communicate in a Spring application context. Imagine it like this: if a Spring Application Context is a forest,
than each bean is a tree. Microservices are the full-blown ecosystem. This example was given to you because
programming is nothing other than modeling the real world using software components, and it might make
the idea of microservices more approachable. The demo application built throughout this book is basically
a site where people register themselves and their pets so they can provide pet-sitting services. If it were built
with microservices, separate microservices would have to be developed for user, pet, request, reply, and
reviews management. This also means that a few moving components would be needed to set up such a

1A microservice must be able to scale, up or down, independently of other services in the same application.

Chapter 8 ■ Spring Microservices with Spring Cloud

437

system, because communication between microservices must be covered too. Figure 8-1 depicts the classic
monolith architecture and the microservices architecture side by side.

Figure 8-1.  Monolith and Microservices architecture

The figre is quite generic, and it might lead to the idea that each microservice has its own database,
which is correct, but there is not actually a need to provision a database server for each service. The database
used in development can be relational (SQL Based) or nonrelational (NoSQL). If a relational database is
used, there are three options of database implementation strategies:

•	 private-tables-per-service: each service owns a set of tables that must be accessed
only by that service

•	 schema-per-service: each service has a database schema that is private to that service

•	 database-server-per-service: each service has its own database server

The chosen microservice database strategy implementation influences the type of database that is most
suitable for the application. Private-tables-per-service and schema-per-service have the lowest overhead.
Using a schema per service is appealing, since it makes ownership clearer. Also, if there is one database
server that is shared among microservices, a relational database is suitable, since all the data is in one
place and has been organized properly by following normalization standards. Having a different database
for each service might make sharing data among services difficult and introduce data redundancy. NoSQL
databases are more suitable for this type of implementation, since they are better at handling redundant
data. Also, keep in mind that a downside of not sharing databases is that maintaining data consistency and
implementing queries is more challenging.

Chapter 8 ■ Spring Microservices with Spring Cloud

438

Spring is the best framework for developing advanced applications such as those based on the
microservices architecture, because of the following characteristics:

•	 dependency injection and integration

•	 super-practical configuration and service creation

•	 straightforward service discovery registry

To develop a microservices application with Spring components, good knowledge of the following
Spring technologies is needed:

•	 a service registration and discovery technology like Netflix’s OSS Eureka

•	 Spring Cloud projects like Eureka or Consul

•	 REST concepts

Spring Boot makes it easy to create standalone, production-grade Spring-based applications that you
can “just run.” This has been already covered in the book, in Chapter 6, and it is the only way to develop
Spring microservices applications, since Spring Boot is designed for developer-heightened productivity
by making common concepts, such as RESTful HTTP and embedded web application runtimes, easy to
wire up and use. It is flexible, allowing the developer to select only the modules they want to use, removing
overwhelming or bulky configurations and runtime dependencies.

Spring Cloud is a big umbrella project that provides development tools designed to ease the
development of distributed applications. It contains components designed to be used to build common
patterns in distributed systems:

•	 configuration management (Spring Cloud Config provides centralized external
configuration backed by a Git repository)

•	 service discovery (Eureka is an AWS Service registry for resilient midtier load
balancing and failover and is supported by Spring Cloud)

•	 circuit breakers (Spring Cloud supports Netflix’s Hystrix, which is a library that
provides components that stop calling services when a response is not received by a
predefined threshold)

•	 intelligent routing (Zuul, used to forward and distribute calls to services)

•	 micro-proxy (client-side proxies to midtier services)

•	 control bus (a messaging system can be used for monitoring and managing the
components within the framework, as is used for “application-level” messaging)

•	 one-time tokens (used for data access only once with Spring Vault)

•	 global locks (used to coordinate, prioritize, or restrict access to resources)

•	 leadership election (the process of designating a single process as the organizer of
some task distributed among several nodes)

•	 distributed sessions (sessions distributed across multiple servlet servers)

•	 cluster state (cluster state request is routed to the master node, to ensure that the
latest cluster state is returned)

•	 client-side load balancing

http://dx.doi.org/10.1007/978-1-4842-0811-3_6

Chapter 8 ■ Spring Microservices with Spring Cloud

439

In case you are interested in building microservices applications with Spring Cloud, the documentation
provided by the Spring team is available here: http://projects.spring.io/spring-cloud/spring-cloud.html.
It covers every topic in the previous list and more.

Coordinating distributed systems is not easy and can lead to boilerplate code. Spring Cloud just makes
it easier for developers to write this type of management code, and the result works in any distributed
environment including a development station, data centers, and managed platforms such as Cloud
Foundry.2 Spring Cloud builds on Spring Boot, and it comes with the typical Spring Boot advantages:
out-of-the-box preconfigured infrastructure beans, which can be further configured or extended to create a
custom solution. It follows the same Spring declarative approach, relying on annotations and property files.

Spring Cloud Netflix provides integration with Netflix OSS (Open Source Software). Tofficial GitHub
page https: //netflix.github.io/ is basically a collection of open-source libraries that their developers
wrote to solve some distributed-systems problems at scale. Written in Java, it is now among the most
frequently used software solutions for writing microservices applications in Java.

Registration and Discovery Server
The microservices architecture ensures that a set of processes will work together toward a common goal,
providing the end user a competent and reliable service. For this to work, the processes must communicate
efficiently. To communicate with each other, they first have to know “of” each other. This is where the Neflix
Eureka registration server comes in. And because it is open-source, it was incorporated in Spring Cloud,
and the simplicity principles of Spring now apply. A registration or discovery server that will be used by
the processes of a microservices application to register and discover each other can be declared as in the
following snippet, which is part of the 17-ps-micro-sample.

package com.ps.server;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;
import java.io.IOException;

@SpringBootApplication
@EnableEurekaServer
public class DiscoveryServer {

 private static Logger logger =
 LoggerFactory.getLogger(DiscoveryServer.class);

 public static void main(String args) throws IOException {
 // Tell server to look for discovery.properties or discovery.yml
 System.setProperty("spring.config.name", "discovery");

2Spring Cloud projects are publicly available on Github: https://github.com/spring-cloud.

http://projects.spring.io/spring-cloud/spring-cloud.html
https://github.com/spring-cloud

Chapter 8 ■ Spring Microservices with Spring Cloud

440

 ConfigurableApplicationContext ctx =
 SpringApplication.run(DiscoveryServer.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }

}

■■ ** T he System.in.read(); call is used so that you can stop the application gracefully by pressing the
<ENTER> key.

To use the Eureka Server in a project, the spring-cloud-starter-eureka-server starter project
must be included as a dependency of the project. Notice the @EnableEurekaServer annotation, which is
responsible for injecting a Eureka server instance into your project. The server has a home page with a UI
and HTTP API end- points according to the normal Eureka functionality under /eureka/*.

The discovery.yml file contains settings for this server. By default, Spring Boot looks for a file named
application from which to read the configuration. To specify that the configuration should be read from a
different file, the name of the file must be added as a value for the system property spring.config.name, by
calling System.setProperty("spring.config.name", "discovery"); before creating the Spring context.

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false # do not auto-register as client
 fetchRegistry: false
server:
 port: 3000 # where this discovery server is accessible
 waitTimeInMsWhenSyncEmpty: 0

■■ ! I f the port value is not specified, the default value for the port is implicitly set to 8761. (In the above
example, the port is set to 3000 just as an example.)

The server will be available on the 3000 port, and when the above class is run, the server interface
depicting a few stats and registered microservices becomes accessible from the browser at location
http://localhost:3000/. Figure 8-2 depicts the interface of a naked Eureka Server, with no microservices
registered yet.

Chapter 8 ■ Spring Microservices with Spring Cloud

441

Netflix’s original version of the Eureka Server avoids answering clients for a configurable period of
time if it starts with an empty registry. The waitTimeInMsWhenSyncEmpty property controls this behavior,
and it was designed so that clients would not get partial/empty registry information until the server has had
enough time to build the registry. In the previous example, it is set to zero, to start answering clients as soon
as possible.

■■ ! I f not set, the default value for the server.waitTimeInMsWhenSyncEmpty is 5 minutes.

The eureka.client.registerWithEureka property has “true” as a default value and is used to register Eureka
clients. Since the application above registers a server, it must be explicitly set to "false" to stop the server from
trying to register itself.

Now that we have the server, the microservices must be developed.

Figure 8-2.  Spring Eureka web interface

Chapter 8 ■ Spring Microservices with Spring Cloud

442

Microservices Development
To create a microservice, a service implementation and a class that will interact with the registration
and discovery server to register itself as client are needed. The implementation of the service is a typical
Spring service, and in our example we’ll have three microservices: one that will handle users, one that will
handle pets, and one that will connect the functionality of the two. In Figure 8-3, a schema of how these
microservices interact is depicted.

Figure 8-3.  17-ps-micro-sample project structure

A microservice is a standalone process that handles a well-defined requirement. When creating a
distributed application that is based on microservices, each microservice component should be wrapped
up in packages based on their purpose, and the overall implementation should be very loosely coupled, but
very cohesive. The three microservices will have separate packages in the project structure, and they will
communicate with each other using RESTful requests. In Figure 8-4, the 17-ps-micro-sample is depicted.

Chapter 8 ■ Spring Microservices with Spring Cloud

443

In Figure 8-5, all the beans making up the microservices and their interactions are depicted:

Figure 8-4.  17-ps-micro-sample project structure

Chapter 8 ■ Spring Microservices with Spring Cloud

444

The pet-service and user-service microservices implementations are similar. Each of them uses a
Spring Data JPA repository bean (JpaRepository implementation) and a Spring REST controller to provide a
RESTful interface to expose their data.

@RestController
@RequestMapping("/pets")
public class PetController {

 @RequestMapping("/")
 public List<Pet> all() {
 ... // gell all pets
 }

 @RequestMapping("/owner/{id}")
 public List<Pet> byOwner(@PathVariable("id") Long ownerId) {
 // get all pets for owner with id = ownerId
 }
...
}

Figure 8-5.  17-ps-micro-sample project architecture

Chapter 8 ■ Spring Microservices with Spring Cloud

445

What is special about this implementation is the PetServer class, which is a SpringBoot special class
that is used to register itself with the Eureka discovery and registration server configured in the previous
section.

package com.ps.pet;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.context.ConfigurableApplicationContext;

@EnableAutoConfiguration
@EnableDiscoveryClient
@Import(PetServiceConfig.class)
public class PetServer {

 private static Logger logger = LoggerFactory.getLogger(PetServer.class);

 public static void main(String args) throws IOException {
 // Tell server to look for pet-server.properties or pet-server.yml
 System.setProperty("spring.config.name", "pet-server");
 ConfigurableApplicationContext ctx =
 SpringApplication.run(PetServer.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }
}

The @EnableAutoConfiguration annotation is used instead of @SpringBootApplication, because
some custom configuration comes from the PetServiceConfig class, and we want control of that. But the
application is still a Spring Boot application.

Notice the @EnableDiscoveryClient annotation, which is the key component that transforms this
application into a microservice, because it enables service registration and discovery. The process registers
itself with the application name pets-service and specifies that it will be available on port 4000 in the
pet-server.yml configuration file. Its contents are depicted in the following configuration snippet.

Spring properties
spring:
 application:
 name: pets-service # Service registers under this name

HTTP Server
server:
 port: 4000 # HTTP (Tomcat) port

Chapter 8 ■ Spring Microservices with Spring Cloud

446

Discovery Server Access
eureka:
 client:
 registerWithEureka: false
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:3000/eureka/

 instance:
 leaseRenewalIntervalInSeconds: 5
 preferIpAddress: false

The previous configuration snippet contains three sections:

•	 The Spring section defines the application name as pets-service. The microservice
will register itself with this name with the Eureka server.

•	 The Server section defines the custom port to listen on. All the microservice
processes in the application use Tomcat by default, because it is the implicit
dependency of the spring-boot-starter-web and by default will try to use the 8080
port, and only one process can listen on a port at one time. So each microservice
will have a different port assigned via configuration. pets-service has 4000, user-
service has 4001, and web-service has 4002.

•	 The Eureka section defines the URL where the server to register to is located using
the eureka.client.serviceUrl.defaultZone. Other properties can be set to
customize the interaction with the Eureka server.

■■ ! T he eureka.client.registerWithEureka property has "true" as a default value and is used to register
Eureka clients. It is used here explicitly for teaching purposes, to make it more obvious that the pets-service
microservice is a client.

•	 Eureka clients fetch the registry information from the server and cache it locally.
After that, the clients use that information to find other services. Since the pets-
service does not need to communicate with other microservices, it has no use for
the registry information. So the eureka.client.fetchRegistry is set to false to
avoid wasting time and resources on a useless operation.

•	 Eureka clients need to tell the server that they are still active by sending a
signal called heartbeat. By default, the interval is 30 seconds. But it can be
set to smaller intervals by customizing the value of the eureka.instance.
leaseRenewalIntervalInSeconds property. During development, it can be set to a
smaller value, which will speed up registration, but on production, this will generate
extra communication with the server that might cause service lag. For production,
the default value should not be modified.

•	 The eureka.instance.preferIpAddress is used to tell the Eureka server whether
it should use the domain name or an IP. In our case, because everything is working
on the same machine, we prefer the domain name (localhost), which is why the
property is set to false.

Chapter 8 ■ Spring Microservices with Spring Cloud

447

All these details and much more are available on the Netflix GitHub page https://github.com/
Netflix/ eureka/wiki/Understanding-eureka-client-server-communication. Only those important for
the implementation given as an example were quoted and explained here.

The PetServer class introduced a new Spring Boot main class, so the Gradle build will fail now, because
it does not know what main class to execute. So the Gradle configuration must be modified to specify the
main class of the application. But since 17-ps-micro-sample is a distributed application, the purpose is to
be able to start it multiple times:

•	 once with the role of the discovery and registration server, listening on the 3000 port

•	 once with the role of pets-service microservice, listening on the 4000 port

•	 once with the roles of users-service microservice, listening on the 4001 port

•	 once with the role of web-service microservice, listening on the 4002 port

This means that the main class should start a different Spring application based on the argument given
to it. For the application given as example, the main class looks like this:

 package com.ps;

import com.ps.pet.PetServer;
import com.ps.server.DiscoveryServer;
import com.ps.user.UserServer;
import com.ps.web.WebServer;

import java.io.IOException;
public class Application {

 public static void main(String args) throws IOException {
 if (args.length == 0) {
 System.out.println("Specify application to start!
 (Options: reg, user, pet, web)");
 } else {
 switch (args0) {
 case "reg":
 DiscoveryServer.main(args);
 break;
 case "user":
 UserServer.main(args);
 break;
 case "pet":
 PetServer.main(args);
 break;
 case "web":
 WebServer.main(args);
 break;
 default:
 System.out.println("Specify application to start!
 (Options: reg, user, pet, web)");
 }
 }
 }
}

https://github.com/Netflix/eureka/wiki/Understanding-eureka-client-server-communication
https://github.com/Netflix/eureka/wiki/Understanding-eureka-client-server-communication
https://github.com/Netflix/eureka/wiki/Understanding-eureka-client-server-communication

Chapter 8 ■ Spring Microservices with Spring Cloud

448

To tell the Spring Boot plugin that this is the main class of our application, we add the following
configuration snippet to the Gradle configuration file:

springBoot {
 mainClass = "com.ps.Application"
}

Now the Gradle application can be built again with the gradle clean build. The result of this build
will be the ps-micro-1.1.0.RELEASE.jar, located under 17-ps-micro-sample/build/libs. The easiest way
to run multiple instances of the application is to open multiple terminals (command prompt instances in
Windows) and execute java -jar ps-micro-1.1.0.RELEASE.jar with all the different arguments available
in the application. This is also practical for shutting them down gracefully, or when only one of the services
must be stopped. In Figure 8-6, four terminals for starting different instances of the application are depicted.

Figure 8-6.  Starting different instances of the 17-ps-micro-sample application

Registration of a service takes up to 30 seconds, if not set otherwise through a smaller value for the
eureka.instance.leaseRenewalIntervalInSeconds property, so be patient and watch the console log
of the registration server. All the main classes end with the Started ... text being displayed. If this text is
displayed and no exceptions can be seen in any of the consoles, this means that all instances were started
correctly. After registration, when accessing the http://localhost:3000/ interface for the Eureka server,
you should see all the client services that were registered in the instances tab, as depicted in Figure 8-7.

Chapter 8 ■ Spring Microservices with Spring Cloud

449

You can see more details about the registered microservices in the http://localhost:3000/eureka/apps/.

<applications>
 <versions__delta>1</versions__delta>
 <!-- how many instances are up: 3 -->
 <apps__hashcode>UP_3_</apps__hashcode>

 <application>
 <name>PETS-SERVICE</name>
 <instance>
 <instanceId>192.168.56.1:pets-service:4000</instanceId>
 <hostName>192.168.56.1</hostName>

Figure 8-7.  Client microservices registered with the Eureka Server

Chapter 8 ■ Spring Microservices with Spring Cloud

450

 <app>PETS-SERVICE</app>
 <ipAddr>192.168.56.1</ipAddr>
 <status>UP</status>
 <overriddenstatus>UNKNOWN</overriddenstatus>
 <port enabled="true">4000</port>
 <healthCheckUrl>http://192.168.56.1:4000/health</healthCheckUrl>
 ...
 </application>
 <!-- the others users-services and web-services -->
 ...
</applications>

The same information is available at http://192.168.56.1:3000/eureka/apps/PETS-SERVICE if the
service was started correctly. Otherwise, a 404 error will be displayed.

At registration time, each microservice gets a unique registration identifier from the server. If another
process registers with the same ID, the server treats it as a restart, so the first process is discarded. To run
multiple instances of the same process—for reasons of load balancing and resilience and because, after
all, it is a distributed application and it should be possible to do this—we have to make sure that the server
generates a different registration ID. The simplest way in which this can be done is by providing the option
of specifying a different port for the microservice. The registration ID with the configuration used so far, the
one in the <instanceId> element, is the default naming template; it appears as follows:

${ipAddress}:${spring.application.name:${server.port}}

The registration Id can be set using Eureka property configurations:

eureka:
 instance:
 metadataMap:
 instanceId:
 ${spring.application.name}:${spring.application.instance_id:${server.port}}

If the spring.application.instance_id is not defined, it will revert to the default format mentioned
earlier. The spring.application.instance_id is set only when Cloud Foundry is used,3, and it conveniently
provides a unique ID number for each instance of the same application.

For running a microservices application locally, the method with a parametrizable port is more
practical. This can be done easily by setting the server.port property before starting the application.

 // in the Application.main(...) method
 ...
case "pet":
 if (args.length == 2) {
 System.setProperty("server.port", args1);
 }
 PetServer.main(args);
 break;
...

3Cloud Foundry is an open-source cloud platform as a service (PaaS) on which developers can build, deploy, run, and
scale applications on public and private cloud models. It was created by VMware and kept by Pivotal after the takeover.
There is a Spring Cloud project that makes it easy to run Spring Cloud apps in Cloud Foundry https://cloud.
spring.io/spring-cloud-cloudfoundry/

http://192.168.56.1:3000/eureka/apps/PETS-SERVICE
https://cloud.spring.io/spring-cloud-cloudfoundry/
https://cloud.spring.io/spring-cloud-cloudfoundry/

Chapter 8 ■ Spring Microservices with Spring Cloud

451

So, now we can start as many pets-service instances as we need, by executing the following code:

java -jar build/libs/ps-micro-1.1.0.RELEASE.jar pet PORT

In Figure 8-8, you can see that two pets-service instances were started and registered, the default one
on port 4000, and a second one on port 4003.

Figure 8-8.  Two different PETS-SERVICE microservices registered with the Eureka Server

Microservices Communication
It has already been said that microservices processes communicate using agnostic protocols such as REST.
The users-service and pets-service both expose RESTful interfaces over HTTP (although different
protocols can be set up as well: JMS or AMQP, for example), and in the presented example, another service
called web-service was introduced that uses them to access their data. To consume RESTful services,
Spring provides the RestTemplate class, which can be used to send HTTP requests to a RESTful server and
fetch data in a number of formats such as XML and JSON. For the simplicity of the application, we’ll use
the default format for the data, which is XML. The web-service microservice client uses a RestTemplate to
connect and request data from the other two registered microservices while remaining agnostic as to their
location and the exact URL, since Spring will automatically configure the locations for it.

The implementation of the web-services is a little different, since a web interface is configured for it.
The Eureka server uses FreeMarker templates by default, so if a different implementation is desired, these
have to be first ignored via configuration, by setting the spring.application.freemarker.enabled to
false. The configuration file for the web-service is depicted in the following code snippet.

spring:
 application:
 name: web-service
 freemarker:
 enabled: false #Do not use FreeMarker templates
 thymeleaf: #Thymeleaf templates will be used
 cache: false
 prefix: classpath:/web-server/templates/

Chapter 8 ■ Spring Microservices with Spring Cloud

452

error:
 path=/error

eureka:
 instance:
 leaseRenewalIntervalInSeconds: 5
 client:
 serviceUrl:
 defaultZone: http://localhost:3000/eureka/

HTTP Server
server:
 port: 4002 # HTTP (Tomcat) port

The central class of this microservice is the AllWebController, which is the one that uses the
AllWebService that requests information from the pets-service and the users-service microservices,
and wraps it up in objects that can be rendered in a Thymeleaf view. The code for the AllWebController is
nothing special, just a typical Spring controller class using a service instance to access data.

 @Controller
public class AllWebController {

 private static Logger logger = LoggerFactory.getLogger(AllWebController.class);

 @Autowired
 private AllWebService allWebService;

 public AllWebController(AllWebService allWebService) {
 this.allWebService = allWebService;
 }

 @RequestMapping("/all/{ownerId}")
 public String byOwner(Model model,
 @PathVariable("ownerId") Long ownerId) {
 UserSkeleton owner = allWebService.findUserById(ownerId);
 if (owner != null) {
 owner.setPets(allWebService.findByOwnerId(ownerId));
 }
 model.addAttribute("owner", owner);
 return "all";
 }

 @RequestMapping("/pets/{type}")
 public String byOwner(Model model,
 @PathVariable("type") String type) {
 List<PetSkeleton> pets = allWebService.findByType(type);
 model.addAttribute("pets", pets);
 model.addAttribute("type", type);
 return "pets";
 }

}

Chapter 8 ■ Spring Microservices with Spring Cloud

453

The implementation for this service is depicted in the following code snippet.

 package com.ps.web;

import com.ps.ex.UserNotFoundException;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.HttpClientErrorException;
import org.springframework.web.client.RestTemplate;
...

@Service
public class AllWebService {

 private static Logger logger = LoggerFactory.getLogger(AllWebService.class);

 @Autowired
 @LoadBalanced
 private RestTemplate restTemplate;

 private String petsServiceUrl;
 private String usersServiceUrl;

 public AllWebService(String usersServiceUrl, String petsServiceUrl) {
 this.usersServiceUrl = usersServiceUrl;
 this.petsServiceUrl = petsServiceUrl;
 }

 public UserSkeleton findUserById(Long id) {
 logger.info("findUserById(" + id + ") called");
 User user = null;
 try {
 user = restTemplate.getForObject(usersServiceUrl
 + "/users/id/{id}", User.class, id);
 }catch (HttpClientErrorException e) {
 // no user
 throw new UserNotFoundException(id);
 }
 return new UserSkeleton(user.getId(), user.getUsername());
 }

 public List<PetSkeleton> findByOwnerId(Long ownerId) {
 logger.info("findByOwnerId(" + ownerId + ") called");
 Pet pets = null;
 try {
 pets = restTemplate.getForObject(petsServiceUrl
 + "/pets/owner/{id}",
 com.ps.pet.Pet.class, ownerId);
 } catch (HttpClientErrorException e) {
 // no pets
 }

Chapter 8 ■ Spring Microservices with Spring Cloud

454

 if(pets == null || pets.length ==0) {
 return null;
 }
 List<PetSkeleton> petsList = new ArrayList<>();
 for (Pet pet : pets) {
 petsList.add(new PetSkeleton(pet.getName(),
 pet.getAge(), pet.getPetType().toString()));
 }
 return petsList;
 }
}

The previous implementation is a normal Spring service class, annotated with the @Service stereotype
annotation. It is a wrapper for a RestTemplate instance that accesses two beans that are references to the
microservices pets-service and users-service. The classes UserSkeleton and PetSkeleton are stripped
versions of the entity classes and were introduced to simplify the implementation a little, since the focus of
the section is on the microservices’ implementation and logic. The code for the two classes is nothing but the
most basic implementation of a POJO and is path of the com.ps.web package from the 17-ps-micro-sample.

The only novelty is the @LoadBalanced annotation, which marks the injected RestTemplate bean to be
configured to use a LoadBalancerClient implementation.

As you probably recall from the previous chapter, the RestTemplate is thread-safe, so it can be used to
access any number of services in different parts of an application. In this example, two microservices are
accessed by the same RestTemplate bean.

The petsServiceUrl and usersServiceUrl should be resolved before being injected into the
AllWebService bean. For this to happen, the auto-scanning on the main Spring Boot class must be disabled,
and beans must be declared explicitly.

@SpringBootApplication
@EnableDiscoveryClient
@ComponentScan(useDefaultFilters = false) // Disable component scanner,
// needed because of the microservices we need access to
public class WebServer {

 private static Logger logger = LoggerFactory.getLogger(WebServer.class);

 public static final String USERS_SERVICE_URL = "http://USERS-SERVICE";

 public static final String PETS_SERVICE_URL = "http://PETS-SERVICE";

 public static void main(String args) throws IOException {
 // Tell server to look for web-server.properties or web-server.yml
 System.setProperty("spring.config.name", "web-server");
 ConfigurableApplicationContext ctx =
 SpringApplication.run(WebServer.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }

Chapter 8 ■ Spring Microservices with Spring Cloud

455

 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 @Bean
 public AllWebService allWebService() {
 return new AllWebService(USERS_SERVICE_URL, PETS_SERVICE_URL);
 }
 @Bean AllWebController allController() {
 return new AllWebController(allWebService());
 }

 @Bean
 public HomeController homeController() {
 return new HomeController();
 }
}

On starting this application, the service URLs are provided by the main program to the AllWebService.

■■ ! I n case you are confused as to why the term URL is used everywhere, although we are working with
REST, here is the explanation. The two microservices URLs http://USERS-SERVICE and http://PETS-SERVICE
are resolved to http:/localhost:4001 and http:/localhost:4000, so they are in fact URLs (locations). They
become URIs (resources) when concatenated with /users/id/{id} and /pets/owner/{id}.

The two microservices are identified by their application names, those that were set in their
configuration files and that were used to register themselves with the discovery-server. The casing is not
important, but it makes it obvious that PETS-NAME is a logical host that will be obtained via discovery and
not an actual hostname. Also, previously, when the microservices details were depicted, you could see that
the app name in the <app> element was depicted in uppercase as well. So this makes it quite obvious which
service should be discovered and will be used further. In this example, the logical hostnames were hard-
coded, but in production applications they are usually configured externally.

Since we are using Netflix software, the RestTemplate bean will be intercepted and auto-configured by
Spring Cloud to use a custom HttpRequestClient that uses Netflix Ribbon4 to do the microservice lookup.

The RibbonLoadBalancerClient implementation is the one that takes the logical service name (as
registered with the discovery server) and converts it to the actual hostname of the chosen microservice. The
method that does this is called reconstructURI, and the code is depicted in the following code snippet.

package org.springframework.cloud.netflix.ribbon;

import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.client.loadbalancer.LoadBalancerClient;
import org.springframework.cloud.client.loadbalancer.LoadBalancerRequest;
...

4Ribbon is yet another Netflix OSS. It provides client-side software load-balancing algorithms. More about it here:
https://github.com/Netflix/ribbon/wiki.

http://users-service/
http://pets-service/
https://github.com/Netflix/ribbon/wiki

Chapter 8 ■ Spring Microservices with Spring Cloud

456

public class RibbonLoadBalancerClient implements LoadBalancerClient {
 public URI reconstructURI(ServiceInstance instance, URI original) {
 Assert.notNull(instance, "instance can not be null");
 String serviceId = instance.getServiceId();
 RibbonLoadBalancerContext context = this.clientFactory
 .getLoadBalancerContext(serviceId);
 Server server = new Server(instance.getHost(), instance.getPort());
 IClientConfig clientConfig = clientFactory.getClientConfig(serviceId);
 ServerIntrospector serverIntrospector = serverIntrospector(serviceId);
 URI uri = RibbonUtils.updateToHttpsIfNeeded(original, clientConfig,
 serverIntrospector, server);
 return context.reconstructURIWithServer(server, uri);

 }
 @Override
 public ServiceInstance choose(String serviceId) {
 Server server = getServer(serviceId);
 if (server == null) {
 return null;
 }
 return new RibbonServer(serviceId, server, isSecure(server, serviceId),
 serverIntrospector(serviceId).getMetadata(server));
 }

...
}

Ribbon can be used to select from multiple instances of the same service, the proper one to use,
meaning the one to respond most rapidly, and this is usually done in ClientHttpRequestFactory by first
calling the choose(...) method, also presented in the code snippet above.

More Novelties
Writing a microservices-based distributed application requires advanced knowledge of Spring Boot and
Spring Cloud. The 17-ps-micro-sample is detached form the pet-sitter project, because of its special
setup and all the novelty software that is used. The Gradle setup is different, and many new annotations have
been introduced, which should be explained before you are asked to solve the TODO tasks for this project.
So here goes:

•	 The databases for the two microservices are separate, and even if JPA is used, a one-
to-many relationship cannot be established between the P_USER and the P_PET in the
classical way, using @OneToMany and @ManyToOne annotations, so the fact that a pet
belongs to a certain user is implemented using a long field containing the owner ID.
The AllWebService implementation starts with a user ID and checks its existence
on the user database by requesting that information from the users-service
microservice. If the user is found, it then uses the user ID as a search criterion for the
pets-service microservice.

•	 @EntityScan configures the base packages used by auto-configuration when
scanning for entity classes. This is a Spring Boot annotation that “under the
hood” configures a LocalContainerEntityManagerFactoryBean and sets the
packagestoScan property to the value of the annotation default attribute.

Chapter 8 ■ Spring Microservices with Spring Cloud

457

•	 The versions of the libraries used to build the application are externalized into the
gradle.properties file. This is yet another way in which Gradle configuration can
be done.

•	 Thymeleaf was used for the web interface, because it is supported by Eureka and
little configuration is needed to get it working.

After all the application instances are in place, you can start playing with them. Try to access:

•	 http://localhost:4000/pets/: displays all pet information in XML format

•	 http://localhost:4000/pets/1122664455: displays information about pet with
RFID=1122664455 in XML format

•	 http://localhost:4000/pets/owner/1: displays all pets for owner with id=1 in XML
format

•	 http://localhost:4001/users/: displays all user information in XML format

•	 http://localhost:4002/: displays the index page of the web-service microservice
with clickable URLs to test the access to pets-service and users-service
microservices; he index page is depicted in Figure 8-9

Figure 8-9.  Index page for the web-service

Practice Section
The 17-ps-micro-sample contains a method in the PetController class that is not fully implemented. This
method should extract the pets that have a common type.

@RequestMapping("/type/{type}")
public List<Pet> byPetType(@PathVariable("type") String type) {
// TODO 62
return null;
}

Chapter 8 ■ Spring Microservices with Spring Cloud

458

Complete the method body so that when the http://localhost:4000/pets/type/DOG request is sent to
the microservice, all dog information in the system will be returned.

Task TODO 63, located in the AllWebService class, requires you to complete the implementation of this
method so that when http://localhost:4002/pets/DOG is accessed, a page with all dogs in the system will
be displayed.

Summary
After reading this chapter you should have a proper understanding of how Spring can be used to develop
distributed applications based on the microservices architecture. Below, you can find a simple list of topics
that you should keep handy when reviewing what you have learned.

•	 Describe the microservices architecture.

•	 Spring Cloud is built on Spring Boot.

•	 What are typical Spring cloud annotations used in developing microservices
applications?

•	 Netflix has developed and outsourced numerous projects designed to support
development and running of distributed applications.

•	 How is Service Discovery set up?

•	 How is a microservice RESTful interface accessed?

•	 What is Eureka?

•	 What is Ribbon?

Quick Quiz
Question 1: Which of the following affirmations describe the microservices architecture?

	 A.	 In a microservices architecture, services should have small granularity, and the
communications protocols should be lightweight.

	 B.	 In a microservices architecture, the interprocess communication can be done
only using RESTful interfaces.

	 C.	 In a microservices architecture, the design is unified, and components are
interconnected and interdependent.

Question 2: Which of the following are advantages of the microservices architecture?

	 A.	 Microservices-based applications are highly scalable.

	 B.	 There is improvement in fault isolation.

	 C.	 Transaction management is not needed.

	 D.	 Deploying microservices-based application is painless.

Chapter 8 ■ Spring Microservices with Spring Cloud

459

Question 3: Which of the following is the core component of a microservices-based distributed application?

	 A.	 a service implementation

	 B.	 a database

	 C.	 a registry and discovery server

Question 4: What can be said about Spring Cloud?

	 A.	 It is built on Spring Boot.

	 B.	 It is an umbrella project that provides tools for developers to quickly build some
of the common patterns in distributed systems.

	 C.	 It is a proprietary Pivotal service for building distributed applications available
only by paid subscription.

Question 5: Which of the following annotations is used to declare an instance of a Eureka server?

	 A.	 @EnableNetflixEureka

	 B.	 @EurekaAutoConfiguration

	 C.	 @EnableEurekaServer

Question 6: Which of the following annotations is used for service registration and discovery with a
discovery server?

	 A.	 @EnableDiscoveryClient

	 B.	 @EnableEurekaClient

	 C.	 @EnableSeviceRegistration

461© Iuliana Cosmina 2017
I. Cosmina, Pivotal Certified Professional Spring Developer Exam, DOI 10.1007/978-1-4842-0811-3

�       � A
Access Control List (ACL), 324
Apache ActiveMQ, 367–370
Apache Tomcat, 294, 298–299, 358
Aspect Oriented Programming (AOP)

advice implementation
after advice, 176–177
around advice, 177–178
before advice, 172
IllegalArgumentException method, 173
returning, 173–174
target method, 173
UML sequence diagram, 172

aspects, 153
business/base code, 153
cross-cutting concerns, 153
problem solving

code tangling and scattering, 157
conceptual schema, 156
database implementation, 154
repository components, 156
transactions, 156
UML call diagram, 155

spring
advice implementation, 172–177
application, 164
AspectJ, 157
aspect support configuration, 165
@EnableAspectJAutoProxy method, 161
findById method, 160
framework, 157
IDEA debugger view, 164
injected bean, 163
JdbcTemplateUserRepo

method, 159–160, 179
JdkDynamicAopProxy method, 163
libraries, 158
limitation, 178
pointcut definition, 165–171
proxy nature via UML sequence

diagram, 180–181

proxyTargetClass parameter, 161
terminology, 158–159
testFindById method, 162
testProxyBubuDeps method, 180
updateDependencies method, 180
UserRepoMonitor method, 162
userTemplateRepo proxy bean, 163

�       � B
Bean LifeCycle and configuration

@Bean and @Component methods, 112
bean definition, 112
configuration class, 113
connections, 17
default scope, 111
dependency injection, types of, 11, 117
development style

AbstractRepo interface, 18
contextual menu, 23
Intellij IDEA console, 23
JUnit test failure, 23
operations, 19
production and test environment, 20
repository interfaces hierarchy, 17–18
sequence of, 22
service interfaces and

implementations, 19–20
SimpleOperationsService class

definition, 21
stub implementations, 18
test environment, 21
UserRepo interface, 21

factory post processor, 113
IoC (see Inversion of Control (IoC))
meaning, 17, 111
quizBean bean definition, 112
Spring applications, 110
Spring IoC container, 114
stereotype annotations, 112

Bean LifeCycle andconfiguration. See Spring
configuration

Index

■ INDEX

462

�       � C
Constructor injection

bean definition, 31
code and configuration, 31
ComplexBeanImpl class, 31
ComplexBean types, 34
configuration element, 33
handle constructors, 32
index attribute, 32
value attribute, 32

�       � D
DAO layer, 272
Data access

HibernateORM (see Object relational
mapping (ORM))

JDBC
database, 187
implementation, 187
source code, 187–189

NoSQL, 185
software application architecture, 185–186
Spring (see Spring data access)
transactional environment

abstract schema, 210
hibernate configuration, 210
JPA configuration, 211
JTA Spring environment, 212
local JDBC configuration, 210
properties, 209
transaction manager, 210

Data accessexceptions. See Spring data access
Data Definition Language (DDL), 206
Data Manipulation Language (DML), 206
DataSourceTransactionManager, 213
Dependency injection

bean definition, 40
CollectionHolder, 41–42
collection properties, 42
conversion definition, 39
injected elements, 43
logger.info statement, 43–44
MultipleTypesBean type, 40–41
primitive types, 38
PropertyEditor implementations, 38
reference wrapper types, 38
set element, 43
SimpleBean elements, 43
util namespace, 44
XML configuration, 38

Dependencyinjection. See Inversion of
Control (IoC)

Declarative transactions, 217

�       � E
EntityManager JPA methods, 251
Exception handling, 402–403

�       � F
findById() method, 156

�       � G
Gradle 2.x project, 8–10

�       � H
Hibernate configuration, 210
HibernateTransactionManager, 213
HTTP message converters, 404–405

�       � I
Inversion of Control (IoC)

application context, 26–27
application development process, 24
configuration file, 28
datasource.properties file, 28
repository, 25–26
UserService implementation, 25
XML Spring configuration file, 26

�       � J, K, L
Java configuration and annotations

bean naming
@AliasFor, 97
@Bean and @Component method, 96
JavaConfigurations, 94–95
loginTimeout method, 97
meta-annotation, 98
source code, 98

beans
creation, 107
definitions loading, 107
dependencies, 107
lifecycle and scopes, 106

constructor injection, 102
core annotation, 87–88

autowiring and initialization, 88
JSR 250 annotations, 89
stereotypes, 88

definition, 85
dependency injection

advantages, 110
@Bean annotation, 108
dataSource method, 105

■ INDEX

463

initMethod attribute, 108
@Lazy, 109
transaction, 109
@Value annotation, 106
XML, 107

field, constructor and setter injection, 98–101
multiple sources

AnnotationConfigApplicationContext
method, 93

@ContextConfiguration method, 91
@Import annotation, 93
@ImportResource annotation, 91–92
jdbcRequestRepo method, 93–94
PropertySource annotation, 89, 90

prefixes and corresponding paths, 105
setter injection, 103
source code, 86
Spring evolution, 86
Spring security section, 104
test class, 87

Java Database Connectivity (JDBC)
database, 187

implementation, 187
source code, 187–189

Java Data Objects (JDO), 247
Java Management Extensions (JMX)

architecture
layers, 418, 421–422
MBeans, 422–423
plain JMX, 423
spring JMX, 419, 424–427, 429–431

definition, 350, 421
JDK versions 5.0 and 6, 421
MBeans, 421

Java Messaging Service (JMS)
Apache ActiveMQ, 367–370
API programming model, 363
client application, 362
components, 362
connections and sessions, 363–364
description, 350
destinations, 365–367
JmsTemplate

ActiveMQ web application, 376–377
advantages, 370–371
connection factories and

destinations, 371–372
connection factory, queues and message

converter, 375–376
convertAndSend methods, 374
JmsCommonConfig.java, 375
MessageConverter, 371
producer/consumer, 375
pubSubNoLocal property, 372
userQueue, 374

UserReceiver class, 372–373
UserSender class, 373

messages, 364–365
SpringBoot (see Spring Boot JMS application)

Java Open Transaction Manager (JOTM), 234
Java Persistence API (JPA), 235

Apache OpenJPA, 248
components, 247
data nucleus, 248
definition, 247
EclipseLink, 248
entity manager factory, 247
hibernate, 248
JTA and JNDI, 255–256
MongoDB and Spring project

basePackages attribute, 263
column family stores, 260
db.user.find() function, 264–265
document databases, 260
graph databases, 260
key-values stores, 260
NoSQL databases, 260
operating system, 261
source code, 261–262
user data manipulation, 263–264
UserRepo interface, 262

persistence context, 247
persistence unit, 247
provider, 248
queries, 252–253, 255
Spring configuration

conceptual UML sequence diagram,
251–252

debug mode, 250
EntityManager mapped, 249
EntityManager JPA methods, 251
Entity Manager operations, 249
SessionFactory bean, 248

Spring project
definition, 256
instant repositories, 258
MongoDB, 260
NoRepositoryBean annotation, 258
repository hierarchy, 256–258
source code, 259

Java Persistence Query Language (JPQL), 251
Java Remote Method Protocol (JRMP), 352–353
Java Web application architecture, 271
JdbcTemplate

abstraction framework, 190
configuration file, 190
embedded database, 192
JdbcTemplateUserRepo code, 194–195
location files, 196–197
NamedParameterJdbcTemplate

■ INDEX

464

DDL database, 206
DELETE, 206
DML, 206
findById method, 204
INSERT, 205
relationship, 203
SELECT queries, 205
source code, 204, 206
UPDATE, 205

project structure, 197–198
queries

callback approach, 200
HTMLUserRowCallbackHandler, 201
ORM, 200
queryForObject, 198
ResultSet, 198–199
source code, 203
testing and auditing, 199
UserWithPetsExtractor, 202

sequece steps, 196
source code, 190–191
TestJdbcTemplateUserRepo code, 195–196
XML source code, 193–194

JMX. See Java Management Extensions (JMX)
JpaTransactionManager, 213
JtaTransactionManager, 213

�       � M, N
Microservices

17-ps-micro-sample
application, 448
architecture, 444
structure, 442–443

advantages, 435–436
classic application, 435
communication

AllWebController, 452
AllWebService, 452–455
PETS-NAME, 455
protocols, 451
RestTemplate, 454
Ribbon, 456
RibbonLoadBalancerClient

implementation, 455–456
Spring Boot class, 454–455
UserSkeleton and PetSkeleton, 454
web-services, 451–452

description, 435
Eureka clients, 446
functionality, 442
monolithic application, 435
Netflix GitHub page, 447
per-service and user-service, 444

PetController class, 457
PetServer class, 447
pet-sitter project, 456–457
popularity, 435
registration and discovery

server, 439–441, 448–451
RESTful interface, 444
spring

characteristics, 438
database implementation strategies, 437
monolith architecture, 437
Spring Boot, 438
Spring Cloud, 438–439
Spring Cloud Netflix, 439
technologies, 438

Spring Boot, 445, 448
Mock object

EasyMock, 126
findByName method, 126–127
SimpleUserService, 125
TestObjectsBuilder, 126

jMock
findAllByUser method, 128–129
generic types, 128
SimpleRequestService, 127

libraries and frameworks, 124
Mockito

findAllByUser method, 131
InjectMock methods, 133
SimpleReviewService method, 130
static methods, 133
verify and times methods, 132

PowerMock, 133
Model–View–Controller (MVC)

design paradigm, 273
behavior, 272
Java Configuration, 286–288
software, 272

�       � O
Object relational mapping (ORM)

benefits, 245–246
cache management, 246
domain object, 245
entries, 245
exception mapping, 243–245
framework, 235
JPA (see Java Persistence API (JPA))
one-to-many relationships, 245
queries

AbstractEntity, 240
repository class, 243
dataSource bean, 237
hibernateProperties, 237

JdbcTemplate (cont.)

■ INDEX

465

Hibernate Query Language, 241
HQL queries, 241
Session instances, 243
SessionFactory, 238, 240–242
synchronize domain objects, 242

session and hibernate configuration
entities, 238
@ManyToOne annotation, 239–240
@OneToMany annotation, 239
source code, 236
Spring application, 235–236

�       � P, Q
Password-salting (encryption method), 310
Plain Old Java Objects (POJOs), 17
Pet Sitter project

account type, 11
application layers, 13
entity class hierarchy, 14
modules, 11–12
UML diagram, 15

Pointcut expression
advice target object, 170
definition, 165–166
identify methods, 166
JointPoint methods, 171
named pointcuts, 168–169
parameter methods, 166
repoUpdate and serviceUpdate

method, 169
return type, 166–167
update methods, 168–169
UserRepo method, 167

Pseudoobject. See Mock object

�       � R
Remote Method Invocation

(RMI), 351–352, 356–358
Remoting

client and server applications, 350–351
configuration

bean of type, 355
client application, 356–357
Hessian protocol, 358, 361–362
HessianProxyFactoryBean, 358
HessianServiceExporter, 358
Http Invoker classes, 358, 360
Http Invoker proxy, 361
HttpInvokerProxyFactoryBean, 359
HttpInvokerServiceExporter, 359
HTTP Invoker test, 361
HTTP methods, 358
Intellij IDEA test execution, 357

Java, 353–354, 356
properties, 354
proxy points, 360
RmiExporterBootstrap, 355
RmiServiceExporter and

RmiProxyFactoryBean, 352–353, 358
server application, 354–355
web application, 360
XML, 353

Java marshaling, 352
RMI model, 351–352
service beans, 350
and web services, 349

Representational state transfer (REST)
advantages, 416–417
architecture, 396–397
description, 349
exception handling, 402–403
HTTP message converters, 404–405
HTTP specifications, 396
mechanisms, 395
message converters, 396
requests and responses, 397
RestTemplate

controller method, 415
DELETE method, 414–415
exchange method, 408, 409
execute method, 408
GET method, 410
HTTP methods, 407
JMock and Mockito components, 415–416
message converters, 404, 409
POST method, 411–412
PUT method, 412–414
ResponseEntity object, 409
StandaloneRestUserControllerTest

class, 415
URI templates, 408

SoapUI Intellij IDEA plugin, 397
SoapUI Navigator interface, 395
Spring Boot, 418–420
Spring MVC, 405–407
spring support

controller methods, 400
DELETE methods, 400
getLocationForUser method, 399
HTTP status codes, 399–401
JAX-RS 2.0, 397
@ResponseBody, 397
@RestController, 398
SoapUI Navigator interface, 397
Spring MVC, 401
URL, 398–399

TODO tasks, 417–418
web applications, 395

■ INDEX

466

REST. See Representational state transfer (REST)
RMI. See Remote method invocation (RMI)
RootApplicationContext, 275

�       � S
Setter injection

advantage, 36
bean definition, 34–35
creation (bean), 37
dependencies, 34
setSimpleBean method, 35
XML definition, 36

Simple Object Access Protocol (SOAP), 382,
384–386, 394–395

SOAP. See Simple Object Access Protocol (SOAP)
Spring Boot, 326, 438

configuration, 327, 329–331, 333–338
logging, 341
using YAML, 338–340

testing, 341–344
Spring Boot JMS application

abstract schema, 378
ActiveMQ web application, 377–378
Application class, 379
ConfirmationSender class, 379
JmsTemplate object, 380
MappingJackson2MessageConverter, 380–381
mechanism, 382
MessageConverter interface, 380
message listener, 381
message type, 381
UserReceiver and ConfirmationReceiver

classes, 378–379
Spring Boot WS application, 387–390
Spring Cloud Netflix, 439
Spring configuration

application context
application-configuration.xml file, 50
ApplicationContext implementation, 48
bean definitions, 49
configuration files, 52
directories, 51
Gradle view, 52
in-memory database, 50
prefixes and corresponding paths, 48
professional database, 50
resources directory, 51
test classes, 48
types, 49
unit testing, 50
XML files, 49

bad bean naming, 62
bean definition inheritance, 57

configuration file, 57

overrides, 58
bean factories

FactoryBean interface, 47
getObject method, 46
static method, 45

bean scopes
AOP framework, 85
configuration file, 84
context classes, 83
scope attribute, 83–84
session scope, 84
singleton design pattern, 84

context and bean lifecycle
application lifecycle, 66–67
initialization phase, 65
phases, 64

expression language, 57
hood

afterProperties method, 73
afterPropertiesSet() method, 72
bean creation steps, 67–68
BeanFactoryPostProcessor method, 69
close method, 80
CommonAnnotationBeanPostProcessor, 76
ComplexBean class, 74–75
configuration file, 82–83
context namespace, 73
dependencies, 78
destroy method, 80
DisposableBean method, 81
finalize method, 79
initialization stage, 71
initMethod method, 71, 77
InstantiatingBean interface, 72
Intellij IDEA, 78
load bean definition, 68
log files, 76
@PostConstruct method, 73, 75
PropertyPlaceholderConfigurer, 69
stages, 70

inner beans, 58–59
Java (see Java configuration and

annotations)
name definition

application context, 61, 63
bean definition, 61
configuration file, 60, 62
convention, 61
CustomDateEditor method, 59
detailed explanation, 62
getBeanDefinitionNames()

method, 60
getBeansOfType(…) method, 60
getBean(…) method, 60
override, 63

■ INDEX

467

namespaces
memory datasources, 54
read properties, 54
typed collections, 53
util namespace, 53

reading properties
advantage, 56
bean namespace, 55
context file, 55
util namespace, 56

schema declaration, 29
XML configuration

application context, 48–52
bean definition, 30
bean factories, 45–47
constructor injection, 31–34
dependency injection, 38–39, 41, 43–45
setter injection, 34–37
XML-based metadata, 29

Spring data access
exceptions

branches, 208
data sources, 207
hierarchy, 207
non-transient, 208
TODO view, 209
transient, 208

JdbcTemplate (see JdbcTemplate)
repository classes interact, 189
transaction management

atomic execution, 218–219
@BeforeTransaction, 226
conceptual UML sequence diagram, 213–214
configuration support, 214
console log, 220
declarative model clarification, 228–232
declare transactional methods, 215–217
dirty reads, 221
distributed transaction, 233–234
isolation attribute, 221
manager framework, 213
nested transaction, 218, 220
noRollbackFor attribute values, 222
phantom reads, 222
programatic transaction model, 232–233
propagation attribute, 218
readOnly attribute, 217
repeatable read, 221
@Rollback annotation, 225
rollbackFor attribute values, 222
serialization, 222
testing methods, 223–225
third-party implementation, 226–227
@Transactional annotation, 222–223
@TransactionConfiguration, 226

transactionManager attribute, 217
UML sequence diagram, 212–213

Spring project, 1
certification exam, 3–4
core components, 3
development environment

build tool, 8–10
IDE, 10
JVM, 8
Pet Sitter, 11–12, 14–15

flash drive, 4
frameworks, 1
infrastructure beans, 1
Java application, 2
libraries, 1
nutshell, 3
objectives, 3
structure

author information, 7
code downloads, 7
conventions, 7
list of, 5–6
modules, 6

use of, 5
web stack, 2

Spring Security, 298–300
chained filters, 303–304, 316
configuration, 301
Java Configuration, 313–317
method security, 321–325
security tag library, 317–320
XML configuration, 301–312

Spring Web, 271
App Configuration, 274–276
application, 291
controllers, 277–281
@MVC, 285–286
running application, 291–292
running with jetty, 292–293
running with Tomcat, 294–295, 297
steps to develop MVC

application, 276
XML, 281–285

Spring WebFlow, 271, 274
Spring Web MVC application, 344

�       � T
Testing

integration test, 117, 146
Mockito methods

Gradle test task, 148–149
Intellij IDEA, 148
pet-sitter project build, 150–151
web report, 149–150

■ INDEX

468

mock object
EasyMock, 125–127
jMock, 127–129
libraries and frameworks, 124
Mockito, 130–133
PowerMock, 133

Spring application
buildPet method, 136
configuration classes, 139
@ContextConfiguration annotation, 139
integration test, 136–137
Java Configuration classes, 138
mapping interface, 141
profiles, 144–146
repo dependency, 138–139
rules, 142
simplePetService, 134–135, 138
source code, 140
spring-test, 134
stereotype annotations, 138
test class, 143–144
test context, 142
TestObjectsBuilder method, 136

stubs
abstract class, 119–120
assert* methods, 124
delete methods, 123
JUnit components, 124
PetRepo methods, 120, 121
SimplePetService, 117–118
SimplePetServiceTest methods, 122–123

test-driven development, 115, 116
types of, 115
unit testing, 116–117, 147

Tomcat, 294–295, 297–299, 332, 334
Transaction management

configuration support, 214–215
declare transactional methods, 215–217
@EnableTransactionManagement, 215
explicit exception, 216
transactionManager attribute, 217

console log, 220–221
declarative model

clarification, 228
IDEA execution, 229
repository transactional bean, 231–232
service method, 228, 230
@Transactional service class, 229

distributed transaction, 233–234
isolation attribute, 221
manager framework, 213
nested transaction, 218–220
noRollbackFor attribute values, 222

operation, 214
programatic transaction model, 232–233
propagation attribute

MANDATORY, 218
NESTED, 218
NEVER, 218
NOT_SUPPORTED, 218
REQUIRED, 218
REQUIRES_NEW, 218
SUPPORTS, 218

readOnly attribute, 217
rollbackFor attribute values, 222
testing methods, 223–225

@BeforeTransaction, 226
defaultRollback attribute, 226
repository methods, 225
@Rollback annotation, 225
third-party implementation, 226–227
@TransactionConfiguration, 226

@Transactional annotation, 222–223
transactionManager attribute, 217
UML sequence diagram, 212–213

�       � U, V
Uniform Resource Locator (URL), 278
Unit testing, 116–117

�       � W
WebLogicJtaTransactionManager, 213
WebMvcConfigurerAdapter class, 288
Web services

description, 349, 382
designing and development, 383
Java Code with XJC, 386–387
and remoting, 349
and remotingfeatures, 382–383
and remotingXML, 382
SOAP messages, 382, 384–386
Spring Boot WS application, 387–390
testing, 392–395
WSDL, 391

Web Services Description Language (WSDL), 391
WSDL. See Web Services Description

Language (WSDL)

�       � X
XML, Spring Web, 281–285

�       � Y, Z
YAML, 338–340

Testing (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Book Overview
	 What Is Spring and Why Should You Be Interested in It?
	 What Is the Focus of This Book?
	 Who Should Read This Book?
	 About the Certification Exam
	 How to Use This Book as a Study Guide
	 How Is This Book Structured ?
	 How Each Chapter Is Structured
	Conventions
	Downloading the Code
	Contacting the Author

	 Recommended Development Environment
	 Recommended JVM
	 Recommended Project Build Tool
	 Recommended IDE
	 The Project Sample

	Chapter 2: Spring Bean LifeCycle and Configuration
	 Old Style Application Development
	 Spring IoC and Dependency Injection
	 Spring Configuration
	 Providing Configuration via XML
	Constructor Injection
	Setter Injection
	Injecting Dependencies That Are Not Beans
	Using Bean Factories
	Creating an Application Context

	 Spicing Up XML Configuration
	Spring Namespaces
	How to Read Property Files in Spring Evolution
	Spring Expression Language
	 Bean Definition Inheritance
	 Inner beans
	Bean Naming

	 Application Context and Bean Lifecycle
	Bean Lifecycle Under the Hood
	 Bean Scopes

	 Providing Configuration Using Java Configuration and Annotations
	The Annotations
	Using Multiple Sources of Configuration
	Bean Naming
	Field, Constructor, and Setter Injection
	Injecting Dependencies That Are Not Beans
	Bean Lifecycle and Scopes
	Bean Definitions Loading
	Bean Creation
	Injecting Dependencies
	 Bean Destruction

	 Summary
	 2.1 Quick quiz

	Chapter 3: Testing Spring Applications
	 A Few Types of Testing
	 Test-Driven Development
	 Unit and Integration Testing
	 Testing with Stubs
	 Testing with Mocks
	EasyMock
	 jMock
	 Mockito
	 PowerMock

	 3.1 Testing with Spring
	 Using Profiles

	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 4: Aspect Oriented Programming with Spring
	 Problems Solved by AOP
	 Spring AOP
	 AOP Terminology
	 Quick Start
	 Aspect Support Configuration using XML
	 Defining Pointcuts
	 Implementing Advice
	Before
	After Returning
	After Throwing
	After
	Around

	 Conclusions

	 Summary
	 Quick Quiz
	 Practical Exercise

	Chapter 5: Data Access
	 Basic Data Access Using JDBC
	 Spring Data Access
	 Introducing JdbcTemplate
	Querying with JdbcTemplate
	Querying with NamedParameterJdbcTemplate

	 Spring Data Access Exceptions

	 Data Access Configuration In a Transactional Environment
	 How Transaction Management Works in Spring
	 Configure Transactions Support
	Testing transactional methods
	Making Third-Party Components Transactional
	! Spring Declarative Model Clarification
	Spring Programatic Transaction Model
	**Distributed Transactions

	 Introducing Hibernate and ORM
	 Session and Hibernate Configuration
	 Session and Hibernate Querying
	 Exception Mapping
	 Object Relational Mapping
	 Java Persistence API
	Configure Spring and JPA with Hibernate support
	JPA Querying
	Advanced JPA, JTA, JNDI

	 Spring Data JPA
	 **Spring and MongoDB

	 Summary
	 Quiz

	Chapter 6: Spring Web
	 Spring Web App Configuration
	 Quickstart
	 Controllers

	 XML
	 @MVC
	 Java Configuration for Spring MVC
	 Getting Rid of web.xml
	 Running a Spring Web Application
	 Running with Jetty
	 Running with Tomcat

	 Spring Security
	 Spring Security Configuration
	 XML Configuration
	 Spring XML Configuration without web.xml
	 Java Configuration
	 Security Tag Library
	 Method Security

	 Spring Boot
	 Configuration
	 Configuration Using YAML
	 Logging
	 Testing with Spring Boot

	 Summary
	 Quiz

	Chapter 7: Spring Advanced Topics
	 Spring Remoting
	 Spring Remote Configuration

	 Spring JMS
	 JMS Connections and Sessions
	 JMS Messages
	 JMS Destinations
	 Apache ActiveMQ
	 Spring JmsTemplate
	 JMS with Spring Boot

	 Spring Web Services
	 SOAP Messages
	 Generating Java Code with XJC
	 Spring Boot WS Application
	 Publishing WSDL
	 Testing Web Services applications

	 Spring REST
	 Spring Support for REST
	 Exception Handling
	 HTTP Message Converters
	 Spring MVC Configuration for RESTful Applications
	 Using RestTemplate to Test RESTful Applications
	 Advantages of REST
	Practice Section
	RESTful Spring Application with Spring Boot

	 Spring JMX
	 JMX Architecture
	 Plain JMX
	 Spring JMX

	 Summary
	 Quick Quiz

	Chapter 8: Spring Microservices with Spring Cloud
	 Microservices with Spring
	 Registration and Discovery Server
	 Microservices Development
	 Microservices Communication

	 More Novelties
	 Practice Section

	 Summary
	 Quick Quiz

	Index

