
www.allitebooks.com

http://www.allitebooks.org

Yogesh Shetty
Samir Jayaswal

Practical .NET for
Financial Markets

5645ch00FM.qxd 3/3/06 2:14 PM Page i

www.allitebooks.com

http://www.allitebooks.org

Practical .NET for Financial Markets

Copyright © 2006 by Yogesh Shetty and Samir Jayaswal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-564-0

ISBN-10: 1-59059-564-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Ravi Anand
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic
Shakeshaft, Jim Sumser, Keir Thomas, Matt Wade

Project Manager and Production Director: Grace Wong
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor and Production Artist: Kinetic Publishing Services, LLC
Proofreader: April Eddy
Indexer: Valerie Perry
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

5645ch00FM.qxd 3/3/06 2:14 PM Page ii

www.allitebooks.com

http://www.allitebooks.org

I dedicate this book to my father, Narshima, and to my mother,
Saroja—without her sacrifices I wouldn’t have reached so far.

—Yogesh Shetty

I dedicate this book to my father, who, despite being from a small city,
had a vision of providing the best education and life to his children

three decades ago, and to my mother, who relentlessly furthered his vision for
20 long years after he passed away.

—Samir Jayaswal

We also collectively dedicate this book to our dear friend, Rajesh Mestry,
who was with us for a very short time before he left for the other world.

—Yogesh Shetty and Samir Jayaswal

5645ch00FM.qxd 3/3/06 2:14 PM Page iii

www.allitebooks.com

http://www.allitebooks.org

5645ch00FM.qxd 3/3/06 2:14 PM Page iv

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors. xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Introducing the Equities Market . 1

■CHAPTER 2 The Order-Matching Engine . 41

■CHAPTER 3 The Data Conversion Engine . 105

■CHAPTER 4 The Broadcast Engine . 171

■CHAPTER 5 The Application Operation Engine . 235

■CHAPTER 6 STP Security. 299

■CHAPTER 7 STP Interoperability . 347

■CHAPTER 8 Equity Arbitrage. 403

■CHAPTER 9 .NET 2.0 . 447

■APPENDIX A .NET Tools . 477

■APPENDIX B References . 481

■INDEX . 483

v

5645ch00FM.qxd 3/3/06 2:14 PM Page v

www.allitebooks.com

http://www.allitebooks.org

5645ch00FM.qxd 3/3/06 2:14 PM Page vi

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors. xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Introducing the Equities Market . 1

What Is a Capital Market? . 1

What Is Equity, and What Are Equity Shares? . 2

Why Do People Trade?. 3

Understanding Entities in the Equities Market . 5

Stock Exchanges . 6

Members of the Exchange . 8

Indexes . 12

Clearing Corporations . 14

Banks . 15

Depositories . 15

Exploring the Life Cycle of a Trade . 18

Order Initiation and Delivery . 19

Risk Management and Order Routing . 20

Order Matching and Conversion into Trade. 22

Affirmation and Confirmation . 23

Clearing and Settlement . 24

Exploring the Precursor to Straight Through Processing (STP) 28

Understanding .NET in an Equities Market . 30

What Is a Techno-Domain Architect? . 34

Understanding the Three I’s (Intelligence) of Performance
in Capital Markets . 35

Machine Intelligence . 36

Domain Intelligence . 37

Human Intelligence . 37

Introducing the Upcoming Business Cases . 38

■CHAPTER 2 The Order-Matching Engine . 41

Understanding the Business Context of Order Matching . 41

The Need for Efficient Order Matching . 41

Actors: Exchanges and Brokers . 42
vii

5645ch00FM.qxd 3/3/06 2:14 PM Page vii

www.allitebooks.com

http://www.allitebooks.org

Types of Orders . 43

Order Precedence Rules . 44

Introducing .NET Collections . 48

Introducing Specialized Collections . 58

ListDictionary . 58

HybridDictionary. 58

Introducing Multithreading . 59

Thread Pools. 59

Asynchronous Delegate Infrastructure . 60

Manual Thread Management . 63

UI Widgets and Multithreading . 81

Server Timer. 83

Examining the Business-Technology Mapping . 84

Class Details. 88

Code Snippets . 88

Summary . 103

■CHAPTER 3 The Data Conversion Engine. 105

Introducing Data Management . 105

Understanding the Business Infoset. 106

Reference Data . 107

Variable Data . 107

Derived Data. 107

Computed Data . 108

Static Data . 108

Introducing Reference Data . 108

Framework for Data Conversion. 111

Entering the XML World . 115

Reading and Writing Data . 117

Introducing Specialized Streams . 119

TextReader and TextWriter . 120

BinaryReader and BinaryWriter . 120

XmlReader and XmlWriter. 121

Looking at the Types of Parsers . 122

Tree-Based Parser . 122

Fast-Forward Parser . 122

Reading XML . 123

Writing XML . 128

Introducing XML Serialization . 131

Introducing XML Schema Document (XSD) . 136

Examining the Business-Technology Mapping . 143

CSV Conversion Rule . 148

Class Details. 151

■CONTENTSviii

5645ch00FM.qxd 3/3/06 2:14 PM Page viii

www.allitebooks.com

http://www.allitebooks.org

Conversion Example . 166

XML Output. 167

Refined Conversion Rule . 167

XML Output. 168

Summary . 169

■CHAPTER 4 The Broadcast Engine . 171

What Is Market Data? . 171

Participants in the Market Data Industry . 172

Example of Market Data . 173

Role of Market Data. 173

Market Data Service . 175

Why Is the Timeliness of Market Data Important? 175

Level Playing Field . 177

Introducing Networking . 177

Internet Protocol. 179

Transport Layer (User Datagram Protocol) . 185

Transport Layer (Transmission Control Protocol) . 191

Asynchronous Market Data Producer and Consumer 195

Network Byte Order . 201

Message Framing . 202

Broadcast . 209

Unsolicited Broadcast . 210

Solicited Broadcast . 213

Protocol Tweaking . 216

Exploring the Business-Technology Mapping . 220

Class Details. 222

Summary . 234

■CHAPTER 5 The Application Operation Engine . 235

Understanding the Trading Operational Requirement . 235

Exploring the Multiple Facets of an Object . 238

Understanding .NET Remoting Infrastructure . 240

Exploring the Multiple Facets of a Remoting Object. 242

Introducing Local Process Communication (LPC) . 244

Configuring Infrastructure Services . 250

Shadow Copying Infrastructure Services. 252

Finding the AppDomain Treasure . 253

Introducing Remote Process Communication (RPC). 254

Understanding Proxies. 261

Understanding Distributed Garbage Collection . 267

Configuring Remoting . 271

■CONTENTS ix

5645ch00FM.qxd 3/3/06 2:14 PM Page ix

www.allitebooks.com

http://www.allitebooks.org

Lifetime Management . 273

Versioning . 274

Error Handling . 274

Security. 275

Debugging . 275

Understanding Aspect-Oriented Programming (AOP) in .NET 275

Examining the Business-Technology Mapping . 283

Class Details. 284

PrimaryController . 290

AgentInfo. 292

LogManagement . 293

Primary Controller Remoting Configuration . 293

Primary Controller Host . 294

AgentController . 294

AppManagement . 295

Agent Remoting Configuration . 296

Agent Host . 297

Order-Matching Application . 297

Summary . 298

■CHAPTER 6 STP Security . 299

Exploring the Business Context . 299

Custodian Service Provider. 299

STP Service Provider . 300

Driving Factors Behind STP . 300

A Perspective of STP . 301

How Is STP Achieved?. 303

Implementing Security in the STP Space . 307

Confidentiality. 308

Integrity. 322

Digital Signatures. 324

Digital Certificates . 327

Exploring the Business-Technology Mapping . 331

Class Details. 333

Code Example . 343

Summary . 344

■CHAPTER 7 STP Interoperability . 347

What Is Interoperability? . 347

Why Is Interoperability Required? . 349

Challenges in Achieving Interoperability . 350

■CONTENTSx

5645ch00FM.qxd 3/3/06 2:14 PM Page x

Introducing Service-Oriented Architecture . 351

Web Services . 352

WSDL . 354

SOAP . 358

Platform Infrastructure for Web Services . 359

STP and Web Services. 360

STP Provider Consortium: Using UDDI . 370

WS-Specification (WS-*) . 379

Web Services Enhancement (WSE) 2.0 . 380

WS-Security . 384

WS-Policy . 395

WS-Addressing . 397

WS-MetadataExchange. 398

WS-Referral . 399

Web Service Performance in the Financial Market. 400

Exploring the Business-Technology Mapping . 400

Summary . 402

■CHAPTER 8 Equity Arbitrage . 403

Introducing Arbitrage . 403

Costs Involved in Arbitrage Transactions . 404

Other Forms of Arbitrage. 405

Pure and Speculative Arbitrage . 406

Risks Associated in Arbitrage . 407

Building an Equity Arbitrage Engine: Arbitrage in Equity Shares. 407

Introducing Code Generation . 415

Types of Code Generators . 416

Code Generation and Reflection. 417

User Interface. 418

Code Wizards . 420

Code Documentation . 420

Code Inflator . 422

Model-Driven Generator . 422

Specialized Class . 423

Just-in-Time Code Cutting . 423

Introducing the CodeDOM . 424

Introducing Reflection . 434

Code Generation Using Reflection.Emit . 439

Examining the Business-Technology Mapping . 442

Summary . 445

■CONTENTS xi

5645ch00FM.qxd 3/3/06 2:14 PM Page xi

■CHAPTER 9 .NET 2.0 . 447

Language Improvements. 447

Generics . 447

Inheritance on Generic Types . 451

Constraints on Generic Types . 452

Anonymous Methods. 457

Iterators. 459

Partial Types . 460

Nullable Types . 461

Counting Semaphore . 462

Memory Gate . 464

Garbage Collector . 464

SGen . 465

Data Compression . 467

Network Information . 468

Remoting. 471

Shared Assembly . 472

Implementation of Market Info Cache Server . 472

Remoting Configuration of Market Info Cache Server 472

Market Info Cache Server Host. 473

Market Info Cache Client (Back-Office Applications) 473

Remoting and Generics . 474

Summary . 476

■APPENDIX A .NET Tools . 477

■APPENDIX B References . 481

■INDEX . 483

■CONTENTSxii

5645ch00FM.qxd 3/3/06 2:14 PM Page xii

About the Authors

■YOGESH SHETTY is an expert in development for financial markets, with more
than eight years of experience in Microsoft technologies. He has extensive
knowledge and experience in the design and development of trading engines,
using the Microsoft .NET Framework, ADO.NET, C#, VB .NET, SQL Server, and
other technologies. Yogesh has built and deployed front-office and back-office
solutions for major financial institutions. He was responsible for developing
a Straight Through Processing (STP) back-office product with real-time con-
nectivity to exchanges and has participated in the Microsoft .NET Center of
Excellence for Financial Markets. Yogesh is currently consulting for a major
investment bank on WallStreet where he is responsible for delivering .NET
based solutions for algorithmic trading and electronic market-making busi-
ness. You can contact Yogesh at Yogesh.Shetty@gmail.com.

■SAMIR JAYASWAL heads the Product Management & Product Development
Group for treasury and risk management products at 3i Infotech Limited
(http://www.3i-infotech.com). He has about a decade of experience in
conceptualizing, leading, and managing product development for financial
markets in domains such as fixed income, equities, foreign exchange, com-
modities, and derivatives. These products have been successfully deployed
in banks, exchanges, financial institutions, and brokerages worldwide and
have fulfilled functions such as trading, surveillance, risk management,
and settlements. He is a computer science graduate and a postgraduate in
international finance. He is an avid investor and a voracious reader. You can
contact Samir at leosamir@yahoo.com.

xiii

5645ch00FM.qxd 3/3/06 2:14 PM Page xiii

5645ch00FM.qxd 3/3/06 2:14 PM Page xiv

About the Technical Reviewer

■RAVI ANAND is a technical manager and vice president at a large investment
bank in midtown Manhattan. Ravi has an executive MBA degree from
Rutgers University in New Jersey and has more than 13 years of experience
in software architecture and development, primarily using Microsoft tech-
nologies. In his current role, Ravi has been intensely involved with C# and
WinForms to develop solutions for algorithmic trading.

xv

5645ch00FM.qxd 3/3/06 2:14 PM Page xv

5645ch00FM.qxd 3/3/06 2:14 PM Page xvi

Acknowledgments

Writing this book was an extremely long journey for me. The toughest part was balancing full-time
work and writing. I wish there were banks that could loan time instead of money!

I started programming at a very young age and entered the financial world at the age of 18. The
credit for this goes to Sajit Dayanand, who hired me as a programmer. Thanks, Sajit, for trusting my
knowledge and giving me the opportunity to unleash my potential. I also want to thank Dewang
Neralla and Jignesh Shah, who played equally important roles in shaping my professional life.

My interest in computers started when I was in the fifth grade, and at that time, I made up my
mind to follow a career in some computer-related field. During those days, learning computers was
expensive, and only a few people could afford to do it. Seeing my enthusiasm, one of my good friends,
Agnel Tangaraj, stepped forward and helped me financially in obtaining basic education from a highly
reputed institute. Thanks, Agnel—needless to say, I couldn’t have come this far without your support.
I also want to thank some other people—S.P Sir, Fabian Dias, and Prabhakar—who helped me during
difficult days to shape my career.

I would also like to take this opportunity to thank my friends Jaideep, Ashish, Prasad, Kiran,
Ramkrishna, Bala, Prateek, Mala, and Shonali for their love and support. My special thanks to Ravi
and Gulzar for always being there for me. Thanks to my naughty brother, Mukesh, for his support
and encouragement; you are the best, and I am fortunate to have you as my younger brother. Thanks
to Nishtha for showering me with lots of love and her million-dollar smiles. Many thanks to Parag
Ajmera for providing me with support, especially when I needed it the most. I also want to thank
Leon Pesenson for giving me the opportunity to further explore my potential. I may have missed
many other friends who have walked with me in various phases of life and made impressions on
me that have one way or another contributed to this success that I wish to share with them today.

Writing a book is not an individual effort. It is a team effort, and many people worked in the
background to make this book. First I would like to thank Dominic Shakeshaft, who went through
our proposal and believed in our vision. Thanks to Jayashree Raghunathan, who worked very hard
and helped me in making the book proposal presentable. My sincerest thanks to Kim Wimpsett,
who was our copy editor and who went through every single detail to ensure quality and readability.
Many thanks to Grace Wong for keeping us all on track. I finally would like to thank Ewan Buckingham,
Lori Bring, and the entire production staff who worked on this book.

My final gratitude to the Almighty, who has been there with me at every step as he guided me,
kept me in good health, gave me opportunities, encouraged me to purse my dream, and helped me
stay motivated and focused while bringing a new challenge every day.

Yogesh Shetty

While this book was written because of our interest in the techno-financial issues faced in financial
markets, there are several individuals without whom this book would have never seen light.

I would like to thank my family members—my wife, Shalika; my sister, Surbhi; my mother; my
uncle; and Mr. Awtar Singh for helping me at every point of my life and career and motivating me to
pursue writing as an activity despite severe time constraints.

I would also like to acknowledge my first employers—Jignesh Shah, Sajit Dayanandan, and
Dewang Neralla—who were responsible for grooming me professionally and providing me with rare

xvii

5645ch00FM.qxd 3/3/06 2:14 PM Page xvii

insight and experience in this market. They also taught me an important lesson—age is never a fac-
tor for attempting to achieve anything. I have never met someone who can see the future as clearly
as Jignesh. Thanks, Jignesh, for recruiting me when I needed it most.

A few teachers helped me in school and later years—Mrs. Bhat, Mr. Narang, Mrs. D’Souza, Mrs.
Abedin, Mr. and Mrs. Arun, Mr. Prakash, Mr. Natarajan, Mrs Joglekar, Mrs. Kankane, Mrs. Gupte, and
Dr. Chopa. Thanks also to teachers who weren’t designated as teachers but who taught me nonethe-
less—Mr. Utpal, Mr. Deval, and Mr. Anjal.

Thanks to my friends Hem and Yash who were there with me since my childhood, watching
and helping me in every step I took. Thanks to Jayashree and Anjali who took on the onus of editing
the chapters in this book but could not continue because of lack of time.

Special thanks to my coauthor, Yogesh, for his relentless follow-ups, which kept the momentum
for this entire project intact.

Big thanks to Dominic Shakeshaft and his entire team for believing in our vision and working
hard to publish this book. Thanks to Kim Wimpsett, our copy editor, who tightened every line we
wrote to make it more interesting. Thanks to Grace Wong for keeping us all on schedule. I would
also like to thank Lori Bring, Ewan Buckingham, Tom Debolski, Kurt Krames, and the entire pro-
duction staff.

Samir Jayaswal

■ACKNOWLEDGMENTSxviii

5645ch00FM.qxd 3/3/06 2:14 PM Page xviii

Introduction

Practical .NET for Financial Markets was born because we were convinced no focused literature
existed for people involved in application/product development in financial markets using .NET.
Although a lot of .NET-related material is available, most often it is not relevant for developers in
the finance domain. The finance domain poses some interesting issues and challenges. Reliability,
accuracy, and performance are tested to the hilt.

Given the number of professionals worldwide who are engaged in implementing solutions
using Microsoft technologies as well as the impending changes that .NET will bring about in all
future applications, this book will be of considerable interest to a lot of readers. While the same
concepts can be extrapolated to various types of markets, we have kept our discussion restricted to
equities markets because most readers are familiar with them and because the level of technology
absorption in equities markets is quite high when compared to other markets.

Strictly speaking, this book is for those who want to understand the nuances of financial applica-
tions and the implementation of technologies in financial markets using .NET. Solution providers for
financial markets in general and equities markets in particular will find this book exceptionally useful.
Developers who want to understand .NET and also get exposed to the fundamentals of financial mar-
kets will also find this book invaluable. The book covers techno-domain issues in an unprecedented
way. The issues discussed are practical in nature, and readers will almost immediately start relating
issues discussed in this book with their day-to-day work.

This book is clearly divided into business sections and technical sections. The business sections
first discuss the functional aspects of the issues that the market is facing. Once you read the business
section in each chapter, you will have a reasonable grasp of the business flow for that particular topic.
The technical section picks up where the business section leaves off and discusses the issues faced
and their possible solutions using .NET. We do not stop at merely discussing the .NET Framework. In
most places, we have written a small prototype to make each topic easy to understand and easy to
implement.

The implicit goal of the book is to provide insight into the practical, day-to-day challenges posed
by domain-specific issues. The book provides in-depth engineering solutions for the exchange mar-
kets while covering all aspects of the .NET Framework. We believe that multiple solutions to a problem
may coexist. The solutions provided in this book may or may not be an optimized solution for a par-
ticular problem but will surely be one of the solutions to address the issue.

Because both problems and solutions are interwoven in every chapter, you will get a sense of
completeness with each chapter, which covers both the business aspects and the relevant .NET fea-
tures and framework. This also means we will deal with every aspect of .NET in its proper context by
explaining how the features are relevant and applicable to a real-life business case.

Our aim in writing this book is twofold. We want to educate readers on Microsoft .NET technol-
ogy, and we want to discuss key challenges that developers and solutions architects in the financial
technology space face in their day-to-day development.

xix

5645ch00FM.qxd 3/3/06 2:14 PM Page xix

5645ch00FM.qxd 3/3/06 2:14 PM Page xx

C H A P T E R 1

■ ■ ■

Introducing the Equities Market

Luck in life always exists in the form of an abstract class that cannot be instantiated directly and
needs to be inherited by hard work and dedication.

This chapter provides a broad overview of the equities market by explaining its fundamental con-
cepts. It does not assume any understanding of financial markets. Our goal is to give you a brief tour
of the trading world. After reading this chapter, you will appreciate the basics of capital markets
(more specifically, the equities market), and you will understand the various entities that come
together to create a marketplace and how trading and settlement take place. As you read this book,
the coverage of markets becomes more detailed. Although all the other chapters cover technical
aspects of markets, this chapter covers only the business aspects of the equities market. The busi-
ness topics covered in this chapter are by themselves a vast subject, and it is nearly impossible to
address every facet of them. Therefore, we will focus on the entities and basic workflow involved in
the trading and settlement business.

What Is a Capital Market?
A capital market is the part of a financial market where companies in need of capital come forward
and look for people to invest in them in search of returns. Companies raise money either through
bonds or through stocks. Bonds are issued against an interest-bearing loan that the company takes.
The loan assures that bondholders will get periodic interest payments, which are more or less guar-
anteed by the company that issues the bonds. Investors who are risk averse or who want to diversify
their portfolios in safer areas invest in bonds. Stocks do not assure periodic payments like bonds do.
Hence, stocks are considered riskier than bonds. Companies raise money to fund a new venture, an
existing operation, or a new takeover; to purchase new equipment; to open new facilities; to expand
into new markets; to launch new products; and so on. Companies list their stocks on stock exchanges
to create a market for them and to allow their shares to be traded subsequently. (We discuss listings
in more detail in a moment.) Sometimes companies can issue stocks even when the company is not
listed but has the intention of getting listed.

■Note Stocks of companies are also popularly called scrips, instruments, and securities.

1

5645ch01.qxd 3/3/06 11:00 AM Page 1

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET2

Sometimes a company directly approaches a market in search of investors and issues securities.
The company hooks up with agencies called lead managers, or merchant bankers, that help the com-
pany raise money. In cases where investors are directly providing money to companies, the process
is called a public offering. If it’s the first time the company is raising money from the public, the process is
called an initial public offering (IPO). A market where a public offering is made and companies
raise money directly from investors is called a primary market.

Once the public offering takes place, investors have the securities, and the company has the
money. The company then lists the securities on one or multiple stock exchanges. Companies apply
to the exchange to get their stocks listed. They pay a listing fee to the exchange for listing and comply
with the exchange’s specified listing requirements. Listing makes the securities available for subse-
quent buying and selling through current and potential investors. This enables investors to make
profits, cut risks, invest in potential growth areas, and so on. A market where shares are subsequently
traded after issuance is called a secondary market.

What Is Equity, and What Are Equity Shares?
Equity is the capital that is deployed to start a company. It has all the risk and gives a share in the
profit that the corporation makes. Equity shares are instruments that grant ownership on equity and
thus the underlying company. Shareholders are owners of a company. Their ownership is proportional
to the percentage of shares held in the company. Usually shareholders and managers of the company
are different, but they can also be the same. Shareholders appoint the company’s board and chief
executive officers (CEOs). The company makes profits and losses in the usual course of its business.
The profit that the company makes is distributed amongst the shareholders in proportion to the
number of shares they hold. The profit shared with shareholders is a dividend. When the company
incurs a loss, no dividend is paid, and shareholders have to wait for a better year that brings in profits.

Owning stocks has some other benefits. If you buy stocks at an attractive price in a profit-making
company, chances are you will witness capital appreciation as stock prices rise. Prices rise because
people are willing to pay higher prices in anticipation of an increase in a company’s profit. Simply
put, these shares are not merely pieces of paper—they have real companies behind them. When the
fortunes of these companies improve because of improved business conditions or an increase in the
demands of a company’s products, the value of shares representing the company also rises, resulting
in profits for shareholders. However, during times of losses, the share prices can decline; and at times
these declines can be substantial. These declines can hurt shareholders by eroding their holding values.
Buying and holding shares thus requires patience, insight, and risk-taking ability on the part of the
shareholder.

When a company whose securities are traded on a stock exchange tries to issue stock, its already
prevailing prices determine how much money the company can raise per share for its fresh issue.
Investors and researchers do an inherent valuation of the company’s stock to arrive at the price the
shares will trade at after the stock issue and then, depending on the offer price, invest accordingly.
A company whose offer price is lower than the intrinsic value will receive a good response in terms
of investor participation, and a company whose offer price is at a premium will receive a lukewarm
response.

This form of financing is not available to sole proprietorships and partnerships.

5645ch01.qxd 3/3/06 11:00 AM Page 2

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 3

Why Do People Trade?
Several entities—such as banks, mutual funds, pension funds, brokering firms, insurance compa-
nies, corporations, and individuals who possess resources for investments—classify as investors, or
traders. Throughout the book, we will use the words investors, traders, and dealers interchangeably
because they are more or less the same. They access the markets with a motive of making profits;
the differences are in their approaches, frequency of trading, and aggression of trading. Although
dealers and traders are the same, the term investor implies people who are a tad risk averse and
whose trading frequency is less. Investors usually remain with a specific position for a longer term
than dealers/traders. We will ignore these differences, however, because these are general distinctions.
Investors trade to invest in an asset class, to speculate, or to hedge their risks. Investors trade with an
objective of profiting from the transaction by buying and holding securities in the case of rising prices
and by selling and protecting themselves from price declines in the case of a falling market.

Trading is a two-person, zero-sum game. In each transaction, one party makes money, and the
other loses money. Since the prices of shares or any asset traded is bidirectional, you generally have
a 50 percent chance of making a profit and a 50 percent chance of losing money. Traders know this,
yet they trade. This is because they have a price and value forecast/view of the security that they
believe is correct, and they want to profit from the view.

Transactions are normally driven by two factors:

Information: The purchaser/seller genuinely thinks the prices will go up/down. This under-
standing is usually backed by some commercial development, news, research, or belief. An
asset is undervalued when the ongoing market price is less than the intrinsic worth of the asset
and overvalued when the ongoing market price is higher than the intrinsic worth.

Buyers buy and hold securities because they think prices will go up. This simple strategy is called
going long, and this position is called a long position. Buyers of securities may or may not have
the money to finance their purchases. Buyers who don’t have the money to pay can look out for
financing their positions. Similarly, investors sell securities if they anticipate a price decline.
They usually sell and deliver securities to the buyer. However, certain categories of sellers sell but
don’t have the securities to deliver. These types of sellers are called short sellers, and this position
is called a short position. Short sellers either close out their position by accepting profit/loss
or look for a securities lender to lend them securities so they can meet their delivery obligations.

Liquidity: Holders of securities know they need to hold securities longer in order to make
a reasonable profit but are unable to hold them because they need money urgently for some
other reason. Traders keep shuffling between assets in search of superior returns. If they know
one particular security gives them a better opportunity to earn, they might liquidate investments
made in another security even if their investment objective in that particular security has not
matured. Such transactions are liquidity-driven transactions. Even when traders are not shuffling
between asset classes, they may be forced to liquidate positions simply because they have mone-
tary obligations that they can no longer postpone.

It is not difficult to visualize that most trades happen because of differences in opinion about
a stock’s price (see Figure 1-1). Therefore, the value of securities fluctuates from time to time. Buyers
are thinking a particular security has a potential upside, and sellers are thinking the opposite. In
certain extreme conditions, no difference in opinion exists. In such cases, markets really become
illiquid, and it becomes difficult to push through transactions. One such example was the condition
of stock markets worldwide after the September 11 disaster.

5645ch01.qxd 3/3/06 11:00 AM Page 3

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET4

Although traders knew for certain there would be value erosion in most securities because of the
loss and resultant slowdown in the economy, they did not agree on the quantum, and no one was
even willing to hazard a guess. More specifically, no one knew what the economic impact would be
on the share prices of companies and at what levels prices would stagnant. Security prices went into
a free fall. While prices fell, the entire market was of the view that prices should fall; hence, no differ-
ence of opinion existed, and therefore no buyers existed. Buyers surfaced only after a large fall. At
these levels, potential buyers were convinced they were once again getting value for their money;
hence, they became counterparties to sale transactions, and that is when transactions started hap-
pening. Such conditions of market stress directly impact liquidity.

Liquidity is the ease at which you can trade a particular asset. When traders demand liquidity,
they expect their transactions to be executed immediately. Liquidity is also determined by market
width, which is the cost of executing the transaction of a specified size, and by market depth, which
is how much quantity can be executed at a given cost. In markets where securities are relatively
illiquid, possibilities exist that the market is willing to bet on only one side; that is, either the players
are willing only to buy or only to sell. Even when two-way quotes exist, the depth could be small.
This means not enough orders could be in the system to match a large order. This will make traders
go through an agonizing wait if not enough takers exist for their orders. This is a condition most
traders/investors abhor. In fact, large investors are known to avoid stocks that are illiquid.

Traders go long on a stock they think will go up in price. Such traders are called bullish on the
stock. Similarly, traders go short on stocks they think will decline in price. Such traders are called
bearish on the stock. At any given time, a trader could be bullish on one stock while being bearish
on another. Or, even for a particular stock, the trader could be bullish at a particular price and bear-
ish at another price. To see the price at which a security is trading, traders need to refer to a quote.
A quote could be a purchase price or a sale price. It could also be a two-way quote. A two-way
quote comprises a bid price (the purchase price) and an offer price (the sale price). The bid price is
the price a counterparty is willing to pay you in case you want to sell your securities to that party.
The offer price is the price the party is asking for in case you want to buy securities from that party.

The offer price will logically be higher than the bid price. When you ask for a quote, for example,
you will get a figure such as $54.10/$54.15 (see Figure 1-2).

Figure 1-1. Trades happen because of differences in opinion.

Figure 1-2. Two-way quote comprising bid price and offer price

5645ch01.qxd 3/3/06 11:00 AM Page 4

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 5

In a two-way quote, the first price is the bid price. In other words, $54.10 is the price you will
get if you want to sell your securities; the condition is called hitting the bid. If you want to buy, the
trader will sell that security to you for $54.15. This is called taking the offer. The difference between
the bid price and offer price is called the spread. The spread is the profit the trader makes by provid-
ing a two-way quote and doing a round-turn transaction (both buy and sell) at that quote. In this
example, the spread is $0.05. Spread is thus a profit for the quote-providing trader and a cost for the
investor.

Some traders also do arbitrage. Arbitrage is buying a stock (or any asset) from a market where
its quote is cheaper and selling it in a different market simultaneously where its quote is at a higher
rate. Though it sounds simple, arbitrage has its own nuances and risks. We will discuss the arbitrage
business in more detail in Chapter 8.

Understanding Entities in the Equities Market
Generally, you can divide an entire market into a buy side and a sell side (see Figure 1-3). The buy
side includes fund managers, institutions, individual investors, corporations, and governments that
are looking for investment avenues and solutions to issues they face. For example, corporations
could be looking to issue fresh equity and thus be looking for investors. Corporations could also be
hedging their existing exposure. This means they would be buying or selling some assets to cut risk
they are already facing. Fund managers could be looking for avenues to park their funds to provide
returns to their unit holders. Portfolio managers play a similar role and could be looking for oppor-
tunities to sell and make profits.

The sell side includes entities that provide liquidity services and solutions to the buy side. Examples
of sell-side entities include stock exchanges, clearing corporations, and depositories. Fund managers
and portfolio managers could trade on an exchange and settle their transactions through clearing
corporations. Corporations could access the market’s issuance mechanism to raise money. In short,
the sell side comes forward to provide services to the buy side.

The equity market comprises a lot of entities, including stock exchanges, clearing corporations,
clearing members, members of the exchange, depositories, banks, and so on. In the subsequent
sections, we will describe the roles played by individual entities in the equities market.

Figure 1-3. Markets can be divided into a buy side and a sell side. Banks are both investors and settlement
facilitators and hence appear on both sides.

5645ch01.qxd 3/3/06 11:00 AM Page 5

Stock Exchanges
Stock exchanges are organized markets for buying and selling securities. These securities include
bonds, stocks, and derivative instruments such as options and futures. Because stock exchanges are
one of the most important entities in a capital market, this section discusses them in more detail.
A stock exchange provides players with a platform where transactions can take place. The function
of a stock exchange is to bring all the buyers and sellers together in order to minimize transaction
costs, which are a reality of life and have to be incurred by traders and investors. Apart from obvious
costs such as commissions, taxes, and statutory levies, other costs such as spreads, impact costs, and
search costs are built into the transaction costs.

We have explained spread as a round-turn cost. It is the cost you will incur if you buy some shares
and sell them immediately. Exchanges minimize spreads by taking steps to improve the overall
liquidity in stocks. Since exchanges bring all the participants interested in a security together, liquidity
improves dramatically. Traders now compete with each other to buy and sell securities, and rates
become realistic. The better the rates become, the narrower the spread becomes.

Impact cost is the cost incurred when someone is trying to push a large trade or when an informed
trader wants to deal with someone in particular. Counterparties become suspicious when a large
order is pushed through, especially when someone known to be an informed trader pushes it. For
such orders, they don’t want to transact at the prevailing price and want to include a risk premium.
The counterparty is thus subjected to a different price immediately, which is inferior to the ongoing
price. This difference becomes an impact cost.

Bringing buyers and sellers together reduces the search cost dramatically. Assume, for example,
that you want to buy a secondhand car. Usually, people who want to sell their cars put an advertisement
in the classifieds column of a newspaper. Potential buyers read this listing and contact the sellers.
When the basic price details and requirements match, they travel to meet face to face, inspect the
car, and sometimes get a mechanic to do an appraisal. They negotiate the rates and other terms,
and then the sale takes place. This entire process takes a couple of days to a week’s time. Such
secondhand car markets are relatively illiquid. To improve liquidity in such a market, some second-
hand car dealers organize sales where they request all sellers to display their cars in a fair. They also
organize such meetings online. Potential buyers then visit the area (or log on to the Internet) and
negotiate terms there and then. They also feel comfortable because they can compare all offers
simultaneously. Suddenly, liquidity increases. Such markets have a potential of doing a lot more
transactions in the same time frame, which benefits the buyers and the sellers. Both incur fewer costs
in doing the deal, and both get the best possible price. Thus, getting buyers and sellers together
improves liquidity, reduces search costs, and increases the confidence of the participants. A stock
exchange performs precisely this function.

Stock exchanges worldwide are going through a lot of transformation. You probably remember
seeing television footage of a typical stock exchange where thousands of traders shout in order to
place orders. Since an exchange’s trading floor is a big area and the number of traders is large, how
could it then be possible or at least easy for people to find interested counterparties in a particular
security? What if one trader wanted to transact on a security that is not so popular? It wouldn’t be
easy to find a counterparty.

In reality, an exchange floor has areas earmarked for each security. Traders desirous to trade
a certain security have to go to the area demarcated for that security and find counterparties. What
you usually see on television is traders shouting their bids or offer prices for a particular security.
Others listen to their prices and commit to transactions when they hear favorable prices. Once
a transaction is committed, it is immediately recorded manually so that it is honored later even when
prices turn against one of the parties.

■Note To cut down on shouting, traders devised methods of negotiating by using actions through their fingers
and palms. This method of trading is, however, fraught with a lot of lacunae.

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET6

5645ch01.qxd 3/3/06 11:00 AM Page 6

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 7

Stock exchanges usually never accept orders directly from investors; instead, order requests are
directed to exchanges via brokers. A broker is a member of an exchange who acts as an intermediate
agent between an investor and the exchange. (We will discuss brokers in the “Members of the Exchange”
section.) We will use the words broker and member interchangeably because they both refer to members
of a stock exchange. To place an order, investors have to call/meet their brokers or brokers’ agents
and dictate their orders. (A broker’s agent would forward the order to the broker.) The broker would
then go or send a representative to the floor of the exchange to execute the order. Once the execution
is done, the investor is informed about the execution. In the past, it was not unusual for the broker
to club (aggregate) the order from various investors in a common security while going to get it executed.
This execution could have then happened in multiple fills at different prices. Brokers then decided
which price to pass on to which investor. Investors had no mechanism to know whether the purchase/
sale price being passed to them by their brokers was correct and meant for them. This area was
ambiguous and fraught with manipulation. In less-advanced financial markets, brokers would
normally pass on purchase requests from customers at the highest price of the day and pass on sale
transactions at the lowest price of the share on that day. Brokers would pocket the difference between
the highest/lowest price and actual purchase/sale prices. This became a good form of earning for the
brokers, and in many cases, income from this was even higher than the commissions they earned.

With the advancement of technology and expectation of markets came the desire to reduce
dependency on such traders and bring about transparency in the entire trading process. When you
have a huge nation with vibrant retail participation, the potential number of orders that hit the exchange
is large. It becomes virtually impossible for brokers to do justice to individual investors, which in turn
affects the quality and price of execution and raises a lot of ethics-related issues. This problem gave
birth to screen-based trading.

Most advanced nations have adopted screen-based trading. All the crowded and noisy
exchanges are a thing of past now in most countries. All brokers are connected electronically to
their exchanges through their trading terminals. Brokers can see every order that hits the exchange
on their trading terminals and can bid or offer shares for an order by entering their corresponding
buy/sell orders. These trading terminals are installed at the brokers’ offices, thereby dramatically
increasing the reach of exchanges to the common trading public. This virtually brings the exchange
to an investor’s doorstep. In some countries, investors connect to the exchange directly by trading
software provided by their brokers. Their orders are first routed to the broker’s surveillance system,
which conducts the necessary risk management checks and then routes the order to the exchange
for execution.

The screen-based trading system has many advantages over the traditional system. First, the
process of trading has a lot of transparency. Traders know the exact prices at which their transactions
go through. They also can access the exchange’s order books (with, of course, certain restrictions)
and know the touchline prices, which are the last transacted prices. Access to the order books also
helps traders know the best bid and offer rates prevailing in the markets. This means they know at
what prices their next orders are likely to be transacted.

Second, trading systems have broken geographical barriers and reduced communication costs
drastically. In the earlier model, a lot of trading was centered in large cities that had a physical pres-
ence of a stock exchange. Investors from other cities were required to hook up with representatives
of members of these exchanges, and the order flow used to happen on the phone. A large number of
orders used to miss out or sometimes used to get transacted on a security different from what the
investor had demanded. Many exchanges still prefer floor-based trading because dealers see their
counterparties in person and decide immediately whether they are more informed or less informed
than them and whether trading with them will prove profitable. In adverse cases, dealers get an
opportunity to revise their quotes to suit themselves.

Exchanges provide fair access to all members, and members expect that their orders will be
executed in a fair manner without bias. Automated trading provides them with comfort because
computers behave the way they have been programmed without any bias. Exchanges are usually
open between fixed times during the day, and they allow all members to log in and trade during this

5645ch01.qxd 3/3/06 11:00 AM Page 7

time. This time slot is called the trading session. Most exchanges allow order entry even before the
trading session in a session called the pre-opening session. This session is a slot of about 15 to 20
minutes before the trading session commences. Members are allowed to enter orders in this session,
but the orders don’t get transacted. Exchanges arrive at the fair opening prices of all scrips by getting
a feel of prices contained in the orders for all securities. This is also useful because it prevents the
exchange system from being burdened by a huge number of orders being entered when the trading
starts. Trading stops at a designated time. Exchanges are particular about timing because even a few
seconds’ deviation could benefit some members at the cost of others.

Historically, most exchanges worldwide were nonprofit organizations owned by their members.
This ownership structure has continued for more than a century now. This, however, raised a lot of
governance issues in many countries because members made policies suiting them at the cost of
their clients. Clients started shying away from such exchanges, and liquidity shifted to other exchanges
that had better and more transparent ownership and management structures.

Many exchanges are now trying to de-link ownership and membership on the lines of profes-
sionally managed companies. They are now offering shares to institutions and listing those shares on
the same/multiple exchanges. Once a share is listed on an exchange, the exchange and its functioning,
fundamentals, and financials become the subject of public scrutiny. This form of change is called the
demutualization of the exchange. Exchanges make money from charging listing fees, membership fees,
and transaction charges and by selling market data. Market data is trading- and settlement-related
data and is used by most market participants who base their trading decisions on this information.
(We will cover market data and its importance in the trading business in Chapter 4.) Apart from
exchanges, brokers get data from a variety of sources, including depositories, clearing corporations,
and third-party agencies such as Reuters, Bloomberg, and internal data repositories. (We discuss the
various kinds of data required for trading activities and related issues in Chapter 3.)

The New York Stock Exchange (NYSE) and the American Stock Exchange (AMEX) are the major
stock exchanges in the United States; both are located in New York City. Some regional stock exchanges
operate in Boston, Cincinnati, Chicago, Los Angeles, Miami, Philadelphia, Salt Lake City, San Francisco,
and Spokane. In addition, most of the world’s developed nations have stock exchanges. The larger
and more successful international exchanges are in London, Paris, Hong Kong, Singapore, Australia,
Toronto, and Tokyo. Another major market in the United States is the NASDAQ stock market (formerly
known as the National Association of Securities Dealers Automated Quotation system). The European
Association of Securities Dealers Automated Quotation system (EASDAQ) is the major market for
the European Union (EU). NASDAQ is a major shareholder in EASDAQ.

Members of the Exchange
Members of the exchange are also called brokers. On the NYSE today, two kinds of brokers exist:
floor brokers and specialists.

Floor Brokers
Floor brokers act as agents of their customers and buy and sell on their customers’ behalf and for
the organizations for which they work (see Figure 1-4). It is mandatory for clients to access the
exchange only through designated brokers. Clients cannot do trades otherwise. Brokers solicit busi-
ness from clients, get their orders to the exchange, and match them on the exchange’s matching
system. They also settle their clients’ trades. Some even get the orders matched outside the system,
but most countries have a regulation that trades resulting from such orders be reported immediately
to the exchange system for the entire market to know.

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET8

5645ch01.qxd 3/3/06 11:00 AM Page 8

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 9

Clients specify which security they want to trade and under what conditions. Some clients want
to trade immediately regardless of the prevailing price. Some are willing to wait the entire day for
a good price, and some are willing to wait for several days for a favorable price. These restrictions
are explained to the brokers, and the brokers try to arrange trades accordingly. These conditions can
be captured gracefully in order attributes, or order terms. (We cover various attributes associated with
orders in Chapter 2.)

Though clients pay commissions to floor traders to get their transactions executed, they get a lot
of benefits indirectly. Brokers have access to an exchange’s order-matching system where they execute
orders at competitive prices. They undertake the responsibility of clearing and settling those trades
in a hassle-free, standardized, transparent method. In addition, brokers are generally better informed
than their customers. Sometimes their advice can be valuable. Professional brokers, however, con-
centrate only on brokering and refrain from giving advice. They normally execute what their clients
instruct. Some brokers give advice as a value-added service but don’t accept any liability for that
advice not materializing. Brokers also extend a credit facility to customers in need who have a good
reputation with the broker. They execute the orders on behalf of the customer first and collect money
from the customer later. In many markets, brokers extend a similar facility through banks. This is
called margin trading.

Brokers also execute transactions on their own accounts through house accounts. Profits and
losses from these trades accrue to the broker and not to any client. Such transactions are called
principal transactions. Floor brokers thus perform the role of agents as well as principals. Acting as
an agent as well as a principal becomes an ethical issue and is a cause of key concern in many mar-
kets, especially in those markets that are not very advanced. When brokers buy the same security
for themselves that they also buy for their customers, how can the customers be sure brokers are
passing on transacted prices to them?

For example, assume a stock has moved from $40 to $42 during a trading session. A client has
placed an order to buy this stock at $41. Assume that the broker also has interest in this stock and
wants to purchase at roughly the same rate. When the broker goes to the floor to trade, the broker
executes two buy orders. One gets filled at $41, and the other gets filled at $40.75. Now it’s a tough
decision for the broker. If the broker has not segregated the order initially before executing, he will
not know which one to pass on to his customer and which one to keep for himself. If he passes on
the lot executed at $40.75, he keeps the customer happy but loses money (it’s still debatable whether
this money was his to begin with), and if he passes the execution of $41, then it’s an ethics issue.
Automated trading systems have a neat method of solving this problem. At an order level, the bro-
ker has to specify whether the order is meant for the customer or for his own account. If it’s for the
customer, the broker also has to specify the client code of the customer. The code is required so the
broker does not pass on an execution meant for one customer to another.

Figure 1-4. Brokers help investors access the pool of liquidity that is otherwise not available to investors.

5645ch01.qxd 3/3/06 11:00 AM Page 9

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET10

Dishonest brokers also do front running. When they receive a large order from an informed
investor, they first trade on their own accounts in the same security and build up a similar interest
as the client wants to build up, and then they trade for the client. In this case, the client builds the
position she desires, but she may be saddled with relatively inferior prices as compared to the bro-
ker who traded before the client and thereby put his own interest ahead of the client’s. Front running
is a punishable offense.

Many brokers also solicit business through Internet trading sites where customers who want to
trade log on and place their orders. These brokers are also floor traders.

Specialists
Specialists are a second category of brokers; they provide two-way quotes and execute orders for
floor brokers (see Figure 1-5). They are also called market makers for their designated securities and
maintain their own inventories of shares (for which they are specialists). They will buy from anyone
who wants to sell and sell to anyone who wants to buy. They are key liquidity providers. Designated
market makers exist in many securities in many markets. They provide liquidity to anyone who wants
to buy/sell in the absence of other counterparties. Specialists wait for others to trade with them. Thus,
they are brokers who will be always willing to act as counterparties to anyone who wants to buy or
sell. Anyone who wants to transact with such specialists will ask for a quote. Since they don’t initiate
transactions, they have to be extra careful about the rates at which they choose to transact.

Specialists normally provide a two-way quote. Depending upon the quote, traders decide
whether to trade immediately or wait for a more favorable price to be quoted. Depending upon
a quote, a trader may also decide whether to buy or sell at that particular price. While providing
a two-way quote, specialists don’t really know whether the trader wants to buy from him or sell to
him. Actually, it does not make much of a difference to them because they earn through spreads and
through price changes on the inventories of shares they maintain (provided the quantity is small
and the counterparty is less informed). When specialists want to trade aggressively, they narrow the
spread by bringing the bid price and offer price closer to each other. When they want to be cautious
and want to discourage others from trading, they widen the spread. This increases the cost of doing
a round-turn transaction for other traders, and it discourages others from trading with specialists.
Note that liquidity in most securities is high, and adjusting the bid/offer rates even by a couple of
cents creates a large difference in the demand and supply. Millions of shares can be bought or sold
in a matter of seconds.

The quotes provided by specialists are often referred to as firm or soft. A firm quote is a quote that,
once provided, cannot be changed. When a specialist provides a quote to any trader, the specialist
becomes liable to trade with the trader at that particular price should the trader so desire. On the
other hand, the specialist can modify a soft quote once the trader wants to transact. After giving

Figure 1-5. Specialists provide quotes on request and give others the option to trade with them.

5645ch01.qxd 3/3/06 11:00 AM Page 10

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 11

a soft quote, a specialist can also refuse to transact with the trader. Specialists are generally wary of
transacting with traders who potentially know more than them. This apprehension is obvious—if an
owner of a company is trying to sell a large block of her own company’s shares and it is known that
the transaction is not liquidity driven, it is obvious that she thinks her company’s stock is fully valued
and that chances of further appreciation are rare. People who are more informed than the specialists
are normally those who have an insider view of the company. If specialists are wary that they will lose
out financially to the trader if they enter into the trade, they are likely to back out before transacting
or at least modify the quote to suit them. People who know about corporate developments and trade
to profit from them before the news comes out in the public domain are called insiders. Insider
trading is an offense and is punishable in all markets.

A specialist’s business is interesting as well as important for the overall market. They help in the
price discovery process and help the market reach an equilibrium position. During times of market
stress, they provide necessary liquidity, thereby giving opportunity to others to invest/exit. They are
generally better informed about the security than other traders. Depending upon the urgency of
other traders, the outlook of the company behind the security, and the overall market conditions,
specialists determine the bid and offer prices. Needless to say, just like other traders, they like to
keep a larger inventory of shares when the prices are looking up and want to cut their inventories
when the prices seem to be going down. The size of the inventory that they maintain largely depends
upon the bid and offer rates they are quoting.

Since all other traders looking for liquidity want to transact with specialists, a high offer price
from a specialist will tempt traders to sell their holdings to the specialist. This in turn will increase
the inventory size the specialist is holding. A price rise will then benefit the specialist. Conversely,
when the outlook is grim and the specialist wants to offload inventory, the specialist will revise the
prices and quote a lower offer price. This will tempt other traders to buy shares from the specialist
at the lower price. The specialist will then manage to offload his position in favor of other traders.
Thus, you have seen how specialists trade on both the buy side and the sell side and how they
attract and regulate liquidity by adjusting the bid and offer prices. At a particular level of inventory,
however, they would want to maintain a constant stock. In such cases, they quote bid and offer prices
in such a way that the rate at which other traders sell to them matches the rate at which other traders
buy from them, and at this point demand for that stock equals the supply available. This position is
called an equilibrium position, and this price is called the equilibrium price.

Becoming a Member
Through this entire discussion, it would seem that brokers are individuals. Some of them are. However,
brokering as a business requires tremendous power and operational and marketing strength. Most
members (brokers) are thus institutions. Even individuals who hold membership rights maintain
a corporate structure and employ people who run the entire business for them. So, are the members
the same people who you see trading on the exchange floor? Maybe, but in most cases they are not.
They are member representatives who are authorized by the members to trade for them.

Large institutions and traders prefer to become members themselves to protect their interests and
have better control over the entire trading and settlement process. In case volumes of their proprietary
transactions are very high, they save good money that would have otherwise been spent on commissions.

To become an exchange member, a trader or an institution must acquire a membership in the
exchange. Each exchange has a different set of norms and requirements. Indeed, having a member-
ship in any renowned exchange is a matter of prestige. In most exchanges, memberships can be bought
and sold like any stock. The cost at which membership can be acquired fluctuates and is a function
of the demand and supply of memberships. However, money alone cannot buy membership. Most
exchanges have strict screening criteria, and the candidates have to demonstrate a good understanding
of the securities business, a commitment to their customers, and financial integrity. Membership
on the NYSE is called a seat because in the earlier years of its existence, members had to sit in
assigned seats during roll calls. In December 2005, two seats sold on the NYSE for $3,500,000 each.

5645ch01.qxd 3/3/06 11:00 AM Page 11

71faaa86f01e1350c2e3f80cf3a26d14

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET12

The highest price paid for a membership in the history of the NYSE was $4,000,000 in December 2005.
As of December 15, 2005, the NYSE had 1,366 members.

Although some exchanges do not issue fresh memberships easily (thereby forcing potential
members to buy from existing members), some exchanges offer memberships on a tap basis. This
means that anyone wanting a membership can approach the exchange anytime and complete the
necessary formalities to become a member.

Indexes
Though an index is not a real entity, any discussion of the equities market cannot be complete
without a discussion of indexes. The movement of indexes has now become synonymous with the
movement of markets and stocks. An index’s price is undoubtedly the most sought after number or
piece of information by traders, investors, researchers, and so on. Investors and researchers do a lot
of analysis to predict where an index is headed and what its direction means to each market participant.

Basically, an index is a measure of relative values. When discussed in equities market parlance,
changes in an index measure changes in market values and hence the market capitalization of
underlying securities. If someone says, “stock prices rose” or “the market was up,” they’re generally
referring to an index. A stock index is built on a specific group of stocks. Whether its value is up or
down reflects the combined price movements of all the stocks in the index.

Indexes are created and maintained by exchanges normally through an index committee.
However, several popular indexes are created and maintained by external companies, agencies,
and newspaper houses.

Widely cited indexes include the following:

• The Dow Jones Industrial Average (DJIA) tracks stock prices of 30 major companies.

• Standard & Poor’s 500, commonly referred to as the S&P 500, combines the stock prices of
500 large companies.

• The NYSE Composite Index includes all common stocks traded on the NYSE.

Apart from miming trends in the market, indexes provide investors with a cheaper method of
creating interest in a market. Most popular indexes are heavily traded, and they enjoy extremely
good liquidity. The impact cost of trading in these indexes is low, and they enjoy good spreads. Indexes
are also not bound by the limitation of availability as compared to corporate stocks. (Corporate stocks
are finite in number; indexes are not finite because they are just numbers.) All these factors make
indexes a desirable product on which to trade. You can track indexes through an index fund or through
index options and futures. Some investors prefer taking a position in an index itself rather than
investing in individual securities. Mutual fund managers build a position in indexes to hedge their
positions in stocks.

Suppose a fund manager holds $10 billion worth of securities in a portfolio. Also assume that
the fund manager expects the market to fall in the medium term by 10 percent. Assuming that the
securities in the portfolio are perfectly correlated with the market and the market actually falls by
10 percent, the portfolio should also see an erosion of about 10 percent. Now the fund manager
faces a strange situation. Although she knows the market will fall, she cannot go ahead and sell indi-
vidual securities because if she sells them individually, their prices would fall anyway because of
impact. Since impact cost is much less in an index than in individual securities, the fund manager
can go short (sell) on the index. Now if the market actually declines, the fund manager will lose money
on the portfolio but will buy back the index she short sold and make money on her short position
on the index. If the quantum of index that is sold short is calculated scientifically, the losses on the
portfolio of stocks will be more or less covered by the profit on the index position. Indexes thus pro-
vide an inexpensive but potent way of eliminating portfolio risk.

We will now show how a basic index is computed and what it means when someone says that
“the index has gone up by 100 points.” As discussed earlier, an index is a relative measure. But what
does it measure, and what does it mean?

5645ch01.qxd 3/3/06 11:00 AM Page 12

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 13

Market capitalization measures the total current replacement value of a company. In other
words, it is the price you would have to pay if you wanted to buy out the company fully (with the
assumption that the prices would not rise with the buying, an unlikely case). In other words, it also
indicates the amount of money it would take if someone decided to create an exact replica of the
company with the same products, manufacturing, and distribution capabilities and the same brand
value (in an environment where the first company is absent so the two don’t compete with each other).

Market capitalization is measured by multiplying the total number of outstanding shares that
the company has issued by its current market price:

Market capitalization = Total number of outstanding shares * Current market price

While constructing any index, some stocks from industries that best represent the economy are
selected for inclusion in the index. These stocks are the best representatives of companies in the indus-
try they represent. Selecting stocks that will participate in an index requires considering a number of
criteria. Some of these are as follows:

• The quality of representation of the company in the industry segment to which the company
belongs

• How much less the impact cost is when a transaction on this stock is executed

• The liquidity of the stock on the exchanges on which it is listed and traded

• The stock holding pattern—how widely the stock is held

Normally, the 80-20 rule applies here, meaning 20 percent of the stocks usually represent 80
percent of the market capitalization. So, a handful of about 30–50 stocks are selected. Which stocks
are selected and what criteria was used is public domain information; you can get it for any index
from the exchange/index owner. With about 30 stocks, their market capitalizations are added up to
arrive at the market capitalization of the entire market. Thus, the market capitalization of an entire
market (assuming 30 stocks have been selected) for the creation of an index is as follows (where market
capitalization equals i):

Σ i = 1 to 30

Since an index is a relative measure of market capitalization, the current market capitalization
is compared to the market capitalization of a selected base year. And usually 100 is taken as the
starting point of the index. Using this concept, you can arrive at a number. Thus, the index is as follows:

(Current market capitalization / Average market capitalization in the base year) * 100

So, when you read that some index is at 4,000, it means the market capitalization of that partic-
ular market has gone up 40 times compared to the market capitalization of the base year. Note that
you divide 4,000 by 100 in this interpretation because you multiplied the index by 100 to start. It is
not compulsory that all indexes are multiplied by 100, though; it depends upon the calculation used
from index to index.

If the index adds 100 points in one day and moves from 4,000 to 4,100, it means that the relative
market capitalization has gone up from 40 times to 41 times. In other words, it means the market
has added the kind of worth in one day that is equal to its total worth during the base year. The base
year that is chosen for computing the index whose market capitalization is used as a benchmark is
one where the markets were relatively stable and were not characterized by a bull or bear run. The
average market capitalization is public domain information and can be calculated/obtained from
the exchange/index owner.

Since market capitalization uses the current market prices of stocks and these prices change
every second, the index changes every second. With the previous formula of the index and all other
factors being constant, you can now compute the effect of change in an index with a change of prices
in any security dollar by dollar.

5645ch01.qxd 3/3/06 11:00 AM Page 13

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET14

Clearing Corporations
A stock exchange is an interesting market. Traders enter into hundreds of thousands of transactions
with other traders without settling them immediately. They simply trust that other traders/members
will honor their purchases and sale commitments. In reality, with such a complex web of transactions,
any default could start a chain of defaults and could prove catastrophic. Therefore, a clearing corpora-
tion settles all trades executed in a stock exchange. In this section, we will first cover the importance
of the role played by clearing corporations, and then we will cover how a clearing corporation functions.

Even with differences in opinion about the value of a security, trades will happen only when
the parties involved in the trade are comfortable with each other, especially on the front of financial
soundness. When members transact with each other, they need to believe their trade commitments
will be honored. Large institutions would otherwise shy away from trading with smaller traders if they
perceive the risk that small traders will not honor their commitments. Advanced exchanges have
thousands of members. Even assuming 1,000 members, there could be 999,000 potential trading
relationships. It is not possible for each member to verify the financial stability of the others before
they enter into a trade, especially on an ongoing basis. The costs associated with this verification
would be immense, and this would make markets very illiquid. In a market that does not foster
confidence, few will come forward to trade.

Clearing corporations take on the onus of doing credit checks on each member. They lay down
capital adequacy guidelines and make the members adhere to them. They provide exposure limits on
the amount of collateral collected from members. This collateral is in the form of cash, fixed deposits,
and bank guarantees. In addition to this collateral, clearing corporations ask for day-to-day margins,
which are commensurate to the positions that members take on a daily basis. The position limits of
members are monitored closely. Margin calls are made to members who the clearing corporation
thinks can endanger the financial integrity of the overall market. In the event of a member breach-
ing his limits, the clearing corporation immediately recommends disconnecting the trading facility
for that particular member until the member brings additional collateral.

Most clearing corporations identify only members. They don’t identify a member’s customers
and don’t maintain personal- and trading-related data for a member’s customers. However, in reality
it is a member’s customers who place the majority of orders on any exchange. Just as the clearing
corporation takes responsibility of verifying the credit worthiness of its members, it leaves the veri-
fication of credit worthiness of end customers to its members. Members by and large use the same
concept of asking for margins and collateral from their customers to cover their risks, and they in
turn validate a customer’s exposure vis-à-vis collateral and margins submitted.

Running credit checks only does not suffice, though. What if a member or customer defaults
after all the precautions have been taken? A member might not put in fresh trades, but adverse
price changes could result in severe losses and could make him a defaulter. In addition to having
stringent credit checks, clearing corporations also guarantee transaction settlement through the
concept of novation, discussed in detail in Chapter 2.

The level of guarantee that clearing corporations provide goes a long way in providing peace
of mind to institutions and large investors, so much so that now most trading is anonymous. This
means that while trading on a screen-based system, traders don’t even know who they are trading
with. With novation, they know that legally, their counterparty is the clearing corporation itself,
and in case the counterparty defaults, the clearing corporation will make their losses good.

Every exchange usually hooks up with one or more clearing corporations to settle its trades.
The clearing corporation normally levies a small fee and builds a corpus of funds over a period of
time to provide this kind of guarantee. This fund is normally called a trade guarantee fund. Some
even buy insurance policies to cover this kind of default risk.

Every member of the exchange either has a clearing agreement with one of the members of
a clearing corporation or directly holds membership in the clearing corporation. Members of a clearing
corporation settle either their own trades or the trades of other trading members. One trading mem-
ber who is a member of a clearing corporation may sometimes choose to route trades through other
clearing members because they have reached their clearing limits.

5645ch01.qxd 3/3/06 11:00 AM Page 14

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 15

For trades executed on the NYSE, the National Securities Clearing Corporation (NSCC) acts as
the clearing corporation and guarantees and settles transactions between market professionals and
ensures sellers are paid and buyers receive their securities in a manner that reduces risk, cost, and
post-trade uncertainties.

Since losses arising from becoming a central counterparty could be huge, clearinghouses pay
a lot of attention to the credit quality of members. They also pay a lot of attention to the settlement
risks faced by the clearing corporation from time to time. Risk is also controlled by the imposition
of margins from members in correlation to the position they hold in the market at any given point
of time.

We will now discuss how settlement takes place in brief and cover it in detail in subsequent
sections. At the end of every trading period (also known as the settlement period), the clearing corpo-
ration arrives at figures relating to every member’s obligation toward the clearing corporation and the
clearing corporation’s obligation toward the members. The members deliver securities and cash to
discharge their obligations at the time of pay-in and receive money from the clearing corporation at
the time of pay-out. Cash is interchanged through the banking channel, and securities are moved
through demat accounts. This entire process is called settlement.

In terms of technology and capacity, clearing corporations must be able to handle average vol-
umes but also peak volumes, such as the market could have witnessed after the September 11 disaster.
Any shortfall in handling capacity could potentially doom the entire financial market, which in turn
would become a catalyst to its demise.

Banks
Banks play two roles. Some banks are designated as clearing banks with whom members of a clear-
ing corporation open clearing accounts. All settlement between the clearing member and clearing
corporation relating to funds happens through debit and credit in this account only.

Investors and traders also maintain bank accounts, and fund-related settlements happen from
these bank accounts. It is never mandatory for the investor and broker to have accounts in the same
bank. Having a swift and robust banking infrastructure is highly desirable to enable initiatives such
as STP and T+1 settlements. (STP and T+1 are marketwide initiatives to reduce the settlement period.
We will discuss these in detail in subsequent sections of this chapter.) If transferring money from one
account to another is enabled only through conventional methods such as checks and takes three
days to clear, how can market participants honor their monetary obligations within one day or two
days as stipulated by the T+1 and T+2 regimes? A lot of study and changes are being made/suggested
in the banking sector so that it can meet this kind of challenge.

Banks play a crucial role in enabling online trading. Members enable online trading by providing
a browser-based interface. Such members hook up with banks where investors are asked to open
accounts. For any buy order that the investor places through the Internet, the trading system routes
the order to the bank, which in turn debits the investor’s account to the extent of the value of shares
purchased. Investors are required to maintain either a separate account or a normal account where
the bank holds a power of attorney to debit the client’s account.

Depositories
A depository can be compared to a bank for shares. Just as a bank holds cash in your account and pro-
vides all services related to transactions of cash, a depository holds securities in electronic form and
provides all services related to transactions of equity shares, debt instruments, or other securities.

A depository plays an important role in settling transactions. To increase their reach, just like
banks, depositories have accredited agencies that represent them. In many countries, members of
the clearing corporation themselves become agencies of the depository and provide brokering as
well as depository services to their customers. In other countries, the agency is called a depository
participant. Apart from brokers, banks and financial institutions also become depository partici-
pants. The Depository Trust Corporation (DTC) is the largest depository in the world.

5645ch01.qxd 3/3/06 11:00 AM Page 15

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET16

An investor requiring depository services has to approach the member or the depository par-
ticipant to open an account. The investor has to fill out an account opening form and fulfill some
documentation requirements. Once the documentation is complete, the agency interacts with the
depository and opens the account. The investor is given an account number, which he has to pro-
vide for reference for all future transactions. Shares are then kept in electronic form in this account
just like money is kept in the form of electronic credits in any bank account.

The type of accounts depositories have vary from country to country. Two types of accounts are
found in most depositories:

• A beneficiary account is an account held by an investor. As the name suggests, this type of
investor enjoys all the benefits that accrue to him as a virtue of being a shareholder. These
benefits include price appreciation and benefits arising from corporate actions such as divi-
dends, bonuses, rights issues, and so on, declared on the stocks held in the beneficiary account.

• A clearing member account is held by a clearing member and used for facilitating settlements.
This account works as a conduit, and shares flow from investors into this account and from
this account to clearing corporations for pay-in, and vice versa for pay-out.

Worldwide depositories operate on a variety of architectures. Some hold the details of an investor’s
accounts, including details of the shares held. Others maintain details at the agency level and require
that agencies maintain the details of investors and investor accounts. Some depositories use a hybrid
model, meaning they hold details about the holdings of an investor and also make it mandatory for
agencies to hold the same information. Though this setup means redundancy in data, at times it may
be a good approach if the connectivity between the depository and the agency is not reliable or the
depository is untested and is working in a relatively new environment.

The kind of transactions that depositories support varies from country to country and from
market to market. Some common types of transactions in every market are as follows:

Off-market transfer: As the name suggests, these are transfers that are not backed by any market
transactions on the exchange. These are transfers from one beneficiary account to another.
A friend giving shares to another friend or a husband moving shares from his account to his wife’s
account is an example of off-market transfers where no market buying/selling is involved. This
type of transfer usually takes place in large corporate deals such as acquisitions and stake sales
where shares are transferred from one corporate entity to another.

Market transfers: These are transfers that result from the purchase/sale of transactions in the
market (read: exchange). An investor doing a sale transaction, for example, will have to go to
the depository agency and give an instruction to debit his account and credit the account of
the broker through which the transaction was conducted. Similarly, if he has done a buy trans-
action and the broker has received securities in his account on behalf of the investor, the broker
will have to give a debit instruction to debit his account and credit the account of the investor.

Interdepository transfers: This is the transfer of securities from one account in one depository
to another account maintained in another depository. Depositories normally maintain connectiv-
ity with each other for these kinds of transactions, and such transactions take place as a batch
process at one time or at multiple times during the day.

Pledge: An investor holding securities can pledge his securities in favor of someone to raise
money or for any other reason. The securities that have been pledged cannot be transferred.
When the term of the pledge expires or when both parties agree, the pledge can be closed, and
the securities are again moved to the free balance. Once securities move to the free balance, they
can be transferred freely.

5645ch01.qxd 3/3/06 11:00 AM Page 16

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 17

Most of these instructions are tagged with an execution date. When the investor/broker gives
a debit or credit instruction, they also specify when the transfer has to take place. The depository
conducts the transfers on that particular date. All transactions within the depository can be executed
instantaneously. All transfers that happen are irrevocable in nature, which means that once the
transfer is complete, it cannot be transferred back without the consent and signature of the recipient.

Note that a risk is associated with a debit instruction from any investor’s account. Hence, it is
mandatory that investors include their signatures and expressly give all debit instructions. Credit
instruction has no such risk. The investors are required to give a standing instruction once, and then
all credits will flow automatically into their account. This method reduces the number of instructions
flowing to the depository and provides convenience to investors. An analogy of this is a bank where
you need to write a check to get your account debited, but for any credits coming in, you don’t give
any instructions. The credit just flows in. Institutions, however, don’t use this facility much. They also
keep a check on what securities are flowing into their accounts. Hence, they expressly give instructions
for crediting their accounts.

Most brokers make investors sign a power of attorney. They use this power of attorney to generate
debit instructions automatically on behalf of the investors for sale transactions they do on behalf of
the investors. This saves an investor’s time and effort, considering the strict timelines imposed for
meeting T+2 settlements.

Depositories perform millions of such transfers daily. Apart from the transfers, depositories also
safely keep shares. Instead of keeping their shares with themselves, investors hold them in a depository
and don’t risk losing them. Depositories also keep track of corporate actions and facilitate in providing
benefits of these corporate actions to investors. For all these services, depositories levy a small fee. The
agencies of depositories with which the investors interact increase these charges to levy their own charges.

Having shares in a dematerialized form is a prerequisite for T+1 and T+2 settlements. This elimi-
nates the risk of bad deliveries to a large extent and provides a lot of operational convenience. It was
not unusual during the physical certificate days to see truckloads of certificates being brought to
a clearing corporation for the delivery of large orders. Imagine the effort it took for the clearinghouse
to count, sort, and redistribute those shares to the buyers. In all, it used to take a lot of time and effort.
In the depository system, the ownership and transfer of securities takes place by means of electronic
book entries. At the outset, this system rids the capital market of the dangers related to handling paper.
This system provides a lot of other benefits too:

Elimination of risks associated with physical certificates: Dealing in physical securities has the
associated security risks of theft of stocks, mutilation of certificates, loss of certificates during
movements through and from the registrars (thus exposing the investor to the cost of obtaining
duplicate certificates and advertisements), and so on. This risk does not arise in the depository
environment.

Some governments exempt stamp-duty requirements for transferring any kind of securities
in the depository. This waiver extends to equity shares, debt instruments, and units of mutual
funds.

Immediate transfer and registration of securities: In the depository environment, once the secu-
rities are credited to the investor’s account on pay-out, the investor becomes the legal owner of
the securities. The investor has no further need to send the security to the company for regis-
tration. Having purchased securities in the physical environment, the investor has to send it to
the company’s registrar so that the change of ownership can be registered. This process is cum-
bersome and takes a lot of time.

Faster settlement cycle: Markets could offer T+3, T+2, and so on—down from T+5—because
dematerialized mode enables faster turnover of stock and more liquidity with the investor.

Having discussed various important entities, we will now provide a brief overview of how
a typical trade life cycle moves from the order initiation phase to the final settlement phase.

5645ch01.qxd 3/3/06 11:00 AM Page 17

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET18

Exploring the Life Cycle of a Trade
In this section, we will show how an order flows from an investor to an exchange, how it gets converted
into a trade, and how it gets settled. Each order that is initiated by an investor follows a defined life
cycle from initiation to settlement (see Figure 1-6). This life cycle is defined worldwide by the exist-
ing operational practices of most institutions, and the processes are more or less similar. The emphasis
is on getting the orders transacted at the best possible price and on getting trades settled with the
least possible risk and at manageable costs. Designated employees in the member’s office ensure
that each trade that takes place through them or in their house account gets settled properly. Unsettled
trades lead to liability, risk, and unnecessary costs.

Figure 1-6. Life cycle of a trade: schematic view

The following steps are involved in a trade’s life cycle:

1. Order initiation and delivery

2. Risk management and order routing

3. Order matching and conversion into trade

4. Affirmation and confirmation (this step is relevant for institutional trades only)

5. Clearing and settlement

Steps 1 and 3 are generally called front-office functions, and steps 4–5 are called back-office
functions. The risk management part in step 2 is a middle-office function, and the routing part is
again a front-office function. In the trading and settlement value chain, steps that take place before

5645ch01.qxd 3/3/06 11:00 AM Page 18

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 19

the order gets executed are called pre-trade. These include order initiation, order delivery, order
management and routing, order-level risk management, and so on. Similarly, steps that take place
after the order is matched and converted into a trade are called post-trade. The entire gamut of
clearing and settlement is known as post-trade activity.

We will cover each of these steps in detail in the following sections. Though the underlying
philosophies of executing orders at the lowest costs and performing risk-free settlements remain
the same, the operational steps differ from member to member and also from country to country.
Also, given an institution, the steps followed differ from client to client. This is actually more linked
to the client type rather than to the client. An individual person trading is classified as a retail customer
and is hence considered risky. Corporate customers, funds, banks, and financial institutions are
called institutional investors. For example, risk management before order routing may be a step that
takes place compulsorily for a retail client but could be waived for an institutional client, especially
if the institution has a sound financial standing in the market. Additional steps are involved in settling
an institutional trade in comparison to a retail trade. This difference is because institutions normally
outsource their settlement function, and members have to talk to this additional agency. Institutions
also have a number of checks and balances that each member has to follow.

Order Initiation and Delivery
This is the first step, and it involves accepting orders from a client and forwarding them to the
exchange after doing risk management checks.

Clients keep a close eye on the markets and keep scouting for investment opportunities. They
form a view about the market. View alone, however, is not enough to produce profits. Profits come
from maintaining a position in the market. Positions are the results of trades that investors execute
in the markets. Clients place orders with their brokers through multiple delivery channels. Some
popular channels for placing orders include phones, faxes, the Internet, and interactive voice response
systems (IVRSs). The majority of brokers have built-in capabilities to allow clients to submit their
orders through personal digital assistants (PDAs) and other handheld devices. Institutions usually
place a large number of orders. Most institutions submit their orders in soft-copy format through
a floppy disk or any other bulk-upload medium.

Those who trade a lot in a particular market may even demand that the broker gives them
a dedicated trading terminal. They may also set up their own trading terminal that connects to the
broker’s trading terminal/server through a proprietary protocol or industry-standard protocol such
as Financial Information Exchange (FIX), which is a technical specification prepared in collabora-
tion with brokers, exchanges, banks, and institutional investors to enable the seamless exchange of
trading information between their systems. Systems with broker and trading institutions generate
orders automatically depending upon the market conditions. Trading on such automatically gener-
ated orders is called program trading and is not allowed in some markets because it is perceived to
cause volatility. Regardless of the methodology used for order delivery, the broker carefully records
the orders so that there is no ambiguity or mistakes in processing. Almost all brokers record the
conversation between clients and brokers, which can be used later for dispute resolution in case
any ambiguity exists over what was communicated and what was interpreted and executed.

Institutions normally speak to a sales desk of the broker and get a feel for the market. An insti-
tution or the fund manager who places the order may be managing multiple funds. At the time of
placing the order, however, the fund manager may not know to which fund he will allocate the secu-
rities bought/sold. At the point of placing the order, the fund manager just instructs the sales desk
of the broker to execute the order.

An individual order received from a client is tagged with some special conditions such as good
till cancelled (GTC), good till date (GTD), limit order, market order, and so on. These conditions
dictate the rate and condition at which the customer expects the orders to be executed. (We will
discuss these conditions in more detail in Chapter 2.) The member on a best-effort basis accepts the
order. Unless an institution specifically demands it, there is no standard practice of giving back-order

5645ch01.qxd 3/3/06 11:00 AM Page 19

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET20

confirmation details. This essentially means that the clients work with brokers on good faith that the
broker has understood their order terms clearly and will get it executed at the best possible price. It
is important that brokers preserve the sanctity of the conditions specified and get the orders executed
within the boundaries of specification. Failure to do so will result in the client moving to a different
brokerage house.

■Note Reputation is far more important than any other attribute in this business. Institutions like brokers who
get their orders executed at the best possible prices and save them money. Standard methodologies are available
for institutions to measure the performance of brokers.

Risk Management and Order Routing
Regardless of how an order gets generated or delivered, it passes through a risk management matrix.
This matrix is a series of risk management checks that an order undergoes before it is forwarded to
the exchange. We discussed earlier that the onus of getting the trades settled resides with the broker.
Any client default will have to be made good to the clearing corporation by the broker. Credit defaults
are thus undesirable from the point of view of the broker who puts money and credibility on the line
on behalf of the customer. Hence, these credit and risk management checks are deemed necessary.

Institutions are normally considered less risky than retail customers. That is because they have
a large balance sheet compared to the size of orders they want to place. They also maintain a lot of
collateral with the members they push their trades through. Their trades are hence subjected to
fewer risk management checks than retail clients.

The mechanisms followed when orders are accepted and sent to exchanges for matching are the
same for both institutions and retail clients. However, for retail customers the orders are subjected to
tighter risk management checks and scrutiny. The underlying assumption in all such risk management
checks is that retail clients are less credit worthy and hence more susceptible to defaulting than
institutions. A recent extension of retail trading has been trading through the Internet. This exposes
brokers to even more risk because the clients become faceless. In the good old days of “call and trade”
(receiving orders by phone), most brokers executed transactions of clients they knew. With the
advancement in trading channels, the process of account opening became more institutionalized,
and the numbers came at the expense of client scrutiny. Most brokers who operate on behalf of retail
clients these days operate on the full-covered concept. This means that while accepting orders from
retail clients, they cover their risks as much as possible by demanding an equal value of cash or near
cash securities.

We’ll briefly cover how a retail transaction is conducted so you can understand the benefit
provided by risk management. The method utilized is more or less the same in call and trade as in
Internet trading. The order delivery mechanism changes, but the basic risk management principle
implemented remains the same. Here are the steps:

1. The client calls the broker to give the orders for a transaction (in Internet trading the client
logs on to the Internet trading site, provides credentials, and enters orders).

2. The broker validates that the order is coming from a correct and reliable source.

5645ch01.qxd 3/3/06 11:00 AM Page 20

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 21

3. In case the client gives a buy order, the broker’s system makes a query to ascertain whether
the client has enough balance in a bank account or in the account the client maintains with
the broker. In case the client does not have enough balance, the order is rejected even before
forwarding to the exchange. If the client has the balance, the order is accepted, but the value
of the order is deducted from the client’s balance to ensure that he does not send a series of
orders for which he cannot make an upfront payment. Many brokers still do not have direct
interfaces to a banking system. In such cases, they ask the client to maintain a deposit and
collateral in the form of cash and other securities; they keep the ledger balances of a client’s
cash and collateral account in their back-office system and query this system while placing
the order to ensure that the client has enough money in his account (see Figure 1-7).

4. In case a client gives a sell order, the broker checks the client’s custody/demat account to
ensure that he has a sufficient balance of securities to honor the sale transaction. Short sell-
ing is prohibited in most countries, and brokers need to ensure that the client is not short of
securities at the time of settlement, especially in markets that do not have an adequate stock-
lending mechanism in place. Most markets have an auction mechanism in place for bailing
out people with short positions, but such bailouts could be very expensive. Once the sale
transaction is executed, the broker keeps a record and updates the custody balance’s system
if it is in-house or keeps reducing the figures from the figures returned by the depository to
reflect the client’s true stock account position. In many countries, brokers have a direct
interface with the depository system that lets them query the amount of shares of a particular
company in which the client has balances. Wherever a direct interface is absent, the broker
maintains the figures in parallel; the broker then does a periodic refresh of this data by upload-
ing the figures provided by the depository and maintains a proper intraday position by debiting
figures in his system when the clients give sale orders that are executed on the exchange
(see Figure 1-8).

Figure 1-7. Buy orders of retail clients are usually validated against the amount held in the
bank/account with the broker.

Figure 1-8. Sell orders are validated against the stock balance held by the client in the
custody/demat account.

5645ch01.qxd 3/3/06 11:00 AM Page 21

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET22

5. Once the risk management check passes, the client’s order is forwarded to the exchange.

6. On receipt of the order, the exchange immediately sends an order confirmation to the broker’s
trading system.

7. Depending upon the order terms and the actual prices prevailing in the market, the order
could get executed immediately or remain pending in the order book of the exchange.

You can appreciate the role technology plays when you consider that the entire process of
receiving the order, doing risk management checks, forwarding the order to the exchange, and get-
ting back the confirmation is expected to take a few hundredths of a second. Any performance not
conforming to this standard is considered unacceptable and could be a serious reason for clients to
look for other brokers who can transact faster and get them more aggressive prices.

One of the ways of implementing risk management is through margining. A margin is an amount
that clearing corporations levy on the brokers for maintaining positions on the exchange. The amount
of margin levied is proportional to the exposure and risk the broker is carrying. Since positions may
belong to a broker’s clients, it is the broker’s responsibility to recover margins from clients. Margins
make the client stand by trades in case the market goes against the client by the time the trades get
settled.

Let’s examine this concept using an example: Suppose a client purchased 1,000 Microsoft
shares at $45 per share. The total amount needed to be paid to the clearing corporation at the time
of settling the transaction is $45,000. But this is payable only after two days of executing the transac-
tion. This is because in most markets there is a lag of two days between executing the transaction and
finally settling it. Assume on the next day of transacting—that is, T+1—there is adverse news about
Microsoft that causes the stock price to drop 10 percent. The client would see an erosion of $4,500
straight from his account if he has to honor the position. The client would have a strong incentive to
default in this transaction merely by not showing up to the broker to make the payment. To protect
the market from such defaulters, clearing corporations levy margins on the date of the trade. Margins
are computed and applied to a client’s position in many ways, but the underlying philosophy of
levying margins is to tie the customer to a position and preserve the integrity of the market even if
a large drop in stock prices occurs.

Order Matching and Conversion into Trade
All orders are aggregated and sent to an exchange for execution. Chapter 2 explains the entire process
of order matching in detail. Stock exchanges follow defined rules for matching all the orders they
receive. While protecting the interests of each client, the exchange tries to execute orders at the best
possible rates. The broker’s trading system communicates with the exchange’s trading system on
a real-time basis to know the fate of orders it has submitted.

A broker keeps a record of which orders were entered during the day, by whom, and on behalf
of which client. A broker also maintains details of how many orders were transacted and how many
are still pending to be executed. Using this system, a broker can modify the order and order terms,
cancel the order, and also split the order if required depending upon the behavior of the market and
instructions from the clients. Once the order is executed, it gets converted to a trade. The exchange
passes the trade numbers to the broker’s system. The broker in turn communicates these trade
details to the client either during the day or by the end of the day through a contract note or through
an account activity statement. The contract note is a legal document that binds the broker and the
client. Contract note delivery is a legal requirement in many countries. Apart from the execution
details, the contract note contains brokerage fees and other fees that brokers levy for themselves or
collect on behalf of other agencies such as the clearing corporation, exchange, or state.

5645ch01.qxd 3/3/06 11:00 AM Page 22

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 23

Affirmation and Confirmation
This step is present only when the trading client is an institution. Every institution engages the services
of an agency called a custodian to assist them in clearing and settlement activities (see Figure 1-9).
As the name suggests, a custodian works in the interest of the institution that has engaged its services.
Institutions specialize in taking positions and holding. To outsource the activity of getting their
trades settled and to protect themselves and their shareholder’s interests, they hire a local custodian
in the country where they trade. When they trade in multiple countries, they also have a global custo-
dian who ensures that settlements are taking place seamlessly in local markets using local custodians.

As discussed earlier, while giving the orders for the purchase/sale of a particular security, the
fund manager may just be in a hurry to build a position. He may be managing multiple funds or
portfolios. At the time of giving the orders, the fund managers may not really have a fund in mind in
which to allocate the shares. To avoid a market turning unfavorable, the fund manager will usually
give a large order with the intention of splitting the position into multiple funds. This is to ensure
that when he makes profits in a large position, it gets divided into multiple funds, and many funds
benefit.

The broker accepts this order for execution. On successful execution, the broker sends the trade
confirmations to the institution. The fund manager at the institution during the day makes up his
mind about how many shares have to be allocated to which fund and by evening sends the broker
these details. These details are also called allocation details in market parlance. Brokers then prepare
the contract notes in the names of the funds in which the fund manager has requested allocation.

Along with the broker, the institution also has to liaise with the custodian for the orders it has
given to the broker. The institution provides allocation details to the custodian as well. It also pro-
vides the name of the securities, the price range, and the quantity of shares ordered. This prepares
the custodian, who is updated about the information expected to be received from the broker. The
custodian also knows the commission structure the broker is expected to charge the institution and
the other fees and statutory levies.

Using the allocation details, the broker prepares the contract note and sends it to the custodian
and institution. In many countries, communications between broker, custodian, and institutions are
now part of an STP process. This enables the contract to be generated electronically and be sent
through the STP network. In countries where STP is still not in place, all this communication is manual
through hand delivery, phone, or fax.

Figure 1-9. Affirmation and confirmation process

5645ch01.qxd 3/3/06 11:00 AM Page 23

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET24

On receipt of the trade details, the custodian sends an affirmation to the broker indicating
that the trades have been received and are being reviewed. From here onward, the custodian initi-
ates a trade reconciliation process where the custodian examines individual trades that arrive from
the broker and the resultant position that gets built for the client. Trades are validated to check the
following:

• The trade happened on the desired security.

• The trade is on the correct side (that is, it is actually buy and not sell when buy was specified).

• The price at which the trade happened is within the price range specified by the institution.

• Brokerage and other fees levied are as per the agreement with the institution and are correct.

The custodian usually runs a software back-office system to do this checking. Once the trade
details match, the custodian sends a confirmation to the broker and to the clearing corporation that
the trade executed is fine and acceptable. A copy of the confirmation also goes to the institutional
client. On generation of this confirmation, obligation of getting the trade settled shifts to the custo-
dian (a custodian is also a clearing member of the clearing corporation).

In case the trade details do not match, the custodian rejects the trade, and the trades shift to
the broker’s books. It is then the broker’s decision whether to keep the trade (and face the associated
price risk) or square it at the prevailing market prices. The overall risk that the custodian is bearing
by accepting the trade is constantly measured against the collateral that the institution submits to
the custodian for providing this service.

Clearing and Settlement
With hundreds of thousands of trades being executed every day and thousands of members get-
ting involved in the entire trading process, clearing and settling these trades seamlessly becomes
a humungous task. The beauty of this entire trading and settlement process is that it has been taking
place on a daily basis without a glitch happening at any major clearing corporation for decades. We
discussed earlier that apart from providing a counterguarantee, one of the key roles of a clearing
corporation is getting trades settled after being executed. We will now cover in brief how this entire
process works.

After the trades are executed on the exchange, the exchange passes the trade details to the
clearing corporation for initiating settlement. Clearing is the activity of determining the answers to
who owes the following:

• What?

• To whom?

• When?

• Where?

The entire process of clearing is directed toward answering these questions unambiguously.
Getting these questions answered and moving assets in response to these findings to settle obliga-
tions toward each other is settlement (see Figure 1-10). Thus, clearing is the process of determining
obligations, after which the obligations are discharged by settlement. It provides a clean slate for
members to start a new day and transact with each other.

5645ch01.qxd 3/3/06 11:00 AM Page 24

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 25

Figure 1-10. The clearing corporation computes the obligations for every member arising from trades
and communicates it to members as a first step toward settlement.

When members trade with each other, they generate obligations toward each other. These obli-
gations are in the form of the following:

• Funds (for all buy transactions done and that are not squared by existing sale positions)

• Securities (for all sale transactions done)

Normally, in a T+2 environment, members are expected to settle their transactions after two days
of executing them. The terms T+2, T+3, and so on, are the standard market nomenclature used to
indicate the number of days after which the transactions will get settled after being executed. A trade
done on Monday, for example, has to be settled on Wednesday in a T+2 environment.

As a first step toward settlement, the clearing corporation tries to answer the “what?” portion
of the clearing problem. It calculates and informs the members of what their obligations are on the
funds side (cash) and on the securities side. These obligations are net obligations with respect to the
clearing corporation. Since the clearing corporation identifies only the members, the obligations of
all the customers of the members are netted across each other, and the final obligation is at the member
level. This means if a member sold 5,000 shares of Microsoft for client A and purchased 1,000 shares
for client B, the member’s net obligation will be 4,000 shares to be delivered to the clearing corporation.
Because most clearing corporations provide novation (splitting of trades, discussed in more detail
in Chapter 2), these obligations are broken into obligations from members toward the clearing
corporation and from the clearing corporation toward the members. The clearing corporation com-
municates obligations though its clearing system that members can access. The member will normally
reconcile these figures using data available from its own back-office system. This reconciliation is
necessary so that both the broker and the clearing corporation are in agreement with what is to be
exchanged and when.

In an exchange-traded scenario, answers to “whom?” and “where?” are normally known to all
and are a given. “Whom?” in all such settlement obligations is the clearing corporation itself. Of course,
the clearing corporation also has to work out its own obligations toward the members. Clearing
members are expected to open clearing accounts with certain banks specified by the clearing cor-
poration as clearing banks. They are also expected to open clearing accounts with the depository.
They are expected to keep a ready balance for their fund obligations in the bank account and similarly
maintain stock balances in their clearing demat account. In the questions on clearing, the answer to
“where?” is the funds settlement account and the securities settlement account.

The answers to “what?” and “when?” can change dramatically. The answer to “when?” is provided
by the pay-in and pay-out dates. Since the clearing corporation takes responsibility for settling all
transactions, it first takes all that is due to it from the market (members) and then distributes what
it owes to the members. Note that the clearing corporation just acts as a conduit and agent for settling
transactions and does not have a position of its own. This means all it gets must normally match all
it has to distribute.

5645ch01.qxd 3/3/06 11:00 AM Page 25

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET26

Two dates play an important role of determining when the obligation needs to be settled. These
are called the pay-in date and the pay-out date. Once the clearing corporation informs all members
of their obligations, it is the responsibility of the clearing members to ensure that they make available
their obligations (shares and money) in the clearing corporation’s account on the date of pay-in,
before the pay-in time. At a designated time, the clearing corporation debits the funds and securities
account of the member in order to discharge an obligation toward the clearing corporation. The
clearing corporation takes some time in processing the pay-in it has received and then delivers the
obligation it has toward clearing members at a designated time on the date of pay-out. It is generally
desired that there should be minimal gap between pay-in and pay-out to avoid risk to the market.
Earlier this difference used to be as large as three days in some markets. With advancement in tech-
nology, the processing time has come down, and now it normally takes a few hours from pay-in to
pay-out. Less time means less risk and more effective fund allocation by members and investors.
The answer to “when?” is satisfied by the pay-in and pay-out calendar of the clearing corporation,
which in turn is calculated depending upon the settlement cycle (T+1, T+2, or T+3).

Answers to “what?” depend on the transactions of each member and their final positions with
respect to the exchange. Suppose a member has done a net of buy transactions; he will owe money
to the clearing corporation in contrast to members who have done net sell transactions, who will
owe securities to the clearing corporation. To effect settlements, the clearing corporation hooks up
with banks (which it normally calls clearing banks) and depositories. It has a clearing account with
the clearing bank and a clearing account with the depository as well. A clearing bank account is used to
settle cash obligations, and a clearing account with a depository is used to settle securities obligations.

Funds Settlement
Funds settlement is relevant for all buy transactions that are not netted off by offsetting the sale
transaction. This is required because brokers have to pay for all the securities they have purchased.
For funds settlement, every broker is required to open a clearing account with a clearing bank
designated by the clearing corporation. The broker then needs to ensure that he parks the required
amount, as specified in funds obligation by the clearing corporation, in the clearing account before
the pay-in.

For obligations arising because of transactions done by the client, the broker has to collect money
from the client. Hence, the following takes place:

1. For a buy transaction, the client issues a check-in favor of his broker or pays money through
other acceptable payment channels.

2. The broker calculates (and also receives as a notice from a clearing corporation) his total
monetary obligation and deposits money accordingly in the clearing account. (Since this
deposit is a routine activity, he normally keeps a deposit in the clearing account much like
a current account, and the clearing corporation keeps debiting and crediting his account
depending upon whose obligation is toward whom. The clearing corporation also pays
money to the clearing member in case a member is a net seller of securities; in this case,
the money is the sale proceeds of the member.)

3. The clearing corporation debits this clearing account by the amount of money required to
meet the settlement obligation at the time of pay-in. As discussed in the previous step, if the
obligation is in favor of the broker, the clearing corporation credits the broker’s clearing account
during pay-out.

In case a client has sold securities and needs to be paid, the broker will issue a check after receiving
the money from the clearing corporation during pay-out.

All funds obligation is therefore managed by debiting and crediting this clearing account. Moving
money from and to this account rarely takes place through checks these days. Standard banking
interfaces and electronic funds movement channels move money from one account to another.

5645ch01.qxd 3/3/06 11:00 AM Page 26

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 27

Also note that the clients can be based in a city that is different from where the broker has a clearing
account. Clients are not required to deposit checks directly in the clearing account. They submit their
checks locally to the broker’s office, and the broker’s staff can deposit the check in a local branch or
forward it to the head office. As discussed earlier, all money required to meet the obligation has to
reach the clearing account by T+2 in a T+2 settlement regime. This makes keeping large working capital
necessary. In some countries, brokers have special arrangements with their banks to treat money in
the local branch accounts as money in the clearing account and will honor the clearing request made
by the clearing corporation as long as the sum of all money in such accounts is more than the demand
made by the clearing corporation. They also have the facility to move this money swiftly, often on an
intraday or next-day basis, so that such obligations can be met.

With funds settlement, settlement is only partially complete. Even the securities side has to be
settled for settlement to be complete.

Securities Obligation
All efforts are directed toward ensuring that the clearing corporation receives the shares before the
pay-in time. Just like a broker maintains a clearing account for funds with a designated clearing
bank, brokers are required to maintain a clearing account for securities with the depository. At the
time of pay-in, the clearing corporation just puts its hands in this clearing account and takes whatever
has been placed there for meeting the securities obligation.

The clearing account for the securities of a broker can be logically divided into three parts, as
shown in Figure 1-11.

Whatever securities the broker is required to deliver to meet his pay-in requirements move to
the delivery account. Note that the existence of a delivery account is logical only in theory. Hence,
there is no movement of shares per se. What actually happens is that brokers give special instructions
earmarking securities for pay-in. It is an express statement that authorizes the clearing corporation
to pick up these shares and use them toward the discharge of a broker’s obligation. This express state-
ment is necessary because at the time of pay-in, the broker may have a large reserve of securities in
his pool account that may not be meant for delivery, and all such securities need to be ignored while
picking up the securities.

Just like funds obligation arises from purchase transactions, securities obligation arises from
sale transactions of a client. To discharge this obligation, clients need to move securities from their
accounts to the clearing corporation accounts. They do this using a three-step process:

1. The client gives a debit instruction in his account and credits the broker’s securities account
with the required number of shares. With completion of this step, the shares move from the
client’s securities account to the broker’s pool account.

2. The broker marks these securities for pay-in and moves them logically from his pool account
to the delivery account.

3. At the time of pay-in, the clearing corporation takes all the securities in the delivery account
to discharge the broker’s securities obligation.

Figure 1-11. Logical breakdown of a securities clearing account

5645ch01.qxd 3/3/06 11:00 AM Page 27

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET28

Figure 1-12. Settlement comprises pay-in and pay-out.

This, however, does not complete settlement. Note that the broker could also be a buyer of
some securities. He will receive these securities in his receipt account during pay-out. This receipt
account is also a logical account. The shares will actually reside in the pool account itself, but they
will be properly classified as “received in pay-out for a particular settlement.”

For the settlement of securities that clients have purchased through a broker, the broker gives
a debit instruction in his securities account favoring the client. As a result, shares move from the
broker’s account to the client’s account. A broker will move shares to the client’s account after the
client has paid for the purchase. Figure 1-12 illustrates this process.

Transactions are thus called settled when both the funds part and the securities part are settled.
This provides traders with a clean slate to trade afresh without worrying about the consequences of
trades they did in the past. Settlements ensure that their transactions have reached finality and that
the benefits of executing the transactions will accrue to them.

After understanding the basics of how transactions are executed and settled, you will now explore
another important aspect, STP. STP plays an important role in getting all the participants together
in a way that good synergy is achieved and that the operational time, risk, and cost of getting this
entire cycle from order initiation to settlement is automated.

Exploring the Precursor to Straight Through
Processing (STP)
To understand STP, you need to understand the concepts of the front office, middle office, and back
office (see Figure 1-13). These are, role-wise, the segregation in a member’s office or trading institution’s
office. The front office is responsible for trading. In a broker’s office, the front office speaks to various
customers and solicits business. The front-office staff is also responsible for managing orders and
executing them. The back-office staff is responsible for settling transactions. The back office ensures
that all obligations toward the clearing corporation are met seamlessly and that the member receives
its share during pay-out. While this entire process is happening, the middle office monitors all limits

5645ch01.qxd 3/3/06 11:00 AM Page 28

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 29

and exposures, and thus risks, that the firm is assuming. The middle office is also responsible for
reporting, especially where corporate-level reporting is required. Since a broker’s office is organized
into front, middle, and back offices, solution providers structure their products in the same fashion
in the form of modules. Although many vendors provide solutions for all three sections, it is not
mandatory for a broker to buy all three modules from the same vendor. If a broker goes for different
vendors, though, then they have an issue of intermodule communication. Most brokers want all the
three modules to be integrated. If they are not, then data will have to be entered multiple times in
these modules. To obviate from this problem, brokers rely on a concept called STP (see Figure 1-14).

STP, as defined by the Securities Industry Association (SIA), is “...the process of seamlessly pass-
ing financial information to all parties involved in the transaction process, spanning the investment
manager decision through to reconciliation and statement production, without manual handling or
redundant processing in real time.”

Two types of STP exist: internal and external. In the case just discussed, internal STP is required
because you need to connect modules installed in a broker’s office. But some other entities such as
custodians, fund managers, and so on, play an equally important role in settlement. To achieve true
STP, even these need to be connected to each other. Any attempt to connect such entities beyond
the organization in pursuit of STP is called external STP. We will lay the foundation for STP in this
section and discuss some related but advanced concepts in Chapters 6 and 7.

The industry wants to put processes in place that will allow an order to flow right from deal
entry to conversion to trade to affirmation and confirmation and finally through settlement and
accounting without manual intervention. This is because the industry wants to move toward T+1
settlement. This means trades done on one day will get settled the next day. This is an ambitious
plan because it will call for a lot of process change, technology change, and industry change. Appli-
cations will have to come together and orchestrate the entire business process.

STP provides a lot of benefits to industry participants:

Figure 1-13. Front, middle, and back offices

Figure 1-14. Conceptual view of STP

5645ch01.qxd 3/3/06 11:00 AM Page 29

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET30

• STP reduces settlement time. This essentially reduces risk because transactions will be settled
faster and will be irrevocable. Settlements are said to be irrevocable when they are considered
to be final and cannot be reversed. Reduced settlement time also means better utilization of
capital.

• Less manual intervention will mean fewer operational risks and errors. It will also mean
fewer costs.

• STP will force the entire industry to move toward standard communication protocols. This
will mean standardized systems and fewer system development and maintenance costs.
Interoperability will be a prerequisite for this to happen; we will go into depth about this in
Chapter 7.

• Increased automation will lead to increased throughput in transaction processing, thereby
enabling institutions to achieve greater transaction volumes.

Equity trading and STP by itself are vast subjects, and understanding every minute business
detail in a single go is not possible; furthermore, the functioning of every stock exchange is different
from one another (though the concepts are fairly standard). We hope you by now understand the
importance of financial markets, why equities are issued, and how they are traded and settled. We
will discuss STP concepts in more detail in Chapters 6 and 7. You should also be in a position to
understand the various entities in a financial system relating to equities trading and settlement.

Understanding .NET in an Equities Market
Figure 1-6 clearly demonstrates the amount of business complexity involved in achieving end-to-
end automation. To technically realize this entire business case, you need a rock-solid technology
platform that is capable of providing an intelligent solution to various aspects of the business. In the
equities market, we broadly categorize business functionality in the form of the front office, middle
office, and back office. The target audiences of this business are different, and obviously their
expectations from the system are different. For instance, front-office systems are highly performance-
oriented, and the audience using them demands an instant response. Front-office systems are (near)
real-time systems, and their core responsibility is to open new business opportunities by providing
the correct information at the correct time. On the other hand, back-office systems are database
oriented and somewhat relaxed in terms of real-time performance. Back-office systems are the
information backbone of the organization and provide a strong reporting and regulatory compliance
feature. Similarly, middle-office systems are designed for managing risk and are used by both front-
office and back-office systems. Performance is important in all phases of a trade’s life cycle, but
a tolerance factor determines to what extent systems can bend and lends itself to quirks and rapid
changes in market conditions. In the front-office system, the tolerance factor needs to be absolutely
low, but the same may not be true for back-office systems.

Figure 1-15 depicts the technology stack used in the pre-.NET days to implement front-office,
middle-office, and back-office functionality. C/C++ stands out as the most favorable candidate in
designing front-office systems, and the primary reason behind such a decision is the multitude of
resources offered by the language. C/C++ offers a broad range of programming features to equip
developers so they can deal with all spectrums of programming such as the operating system, graphical
user interface, network, multithreaded programming, and so on. Back-office systems are designed
using rapid application development (RAD) tools such as Visual Basic and are backed with extremely
powerful relational database management systems (RDBMSs) such as SQL Server or Sybase. Finally,
a middle-office system’s implementation varies and is mainly driven by the business requirement.
If a lot of analytics are involved that require complex mathematical calculation, then Microsoft Excel
is the primary programming tool.

5645ch01.qxd 3/3/06 11:00 AM Page 30

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 31

Figure 1-15. Pre-.NET days

There is no doubt that when performance forms the key factor to success of the trading business,
then C/C++ is used. C/C++ has both a bright side and a dark side. The dark side is the time-consuming
coding tasks and hard-to-detect memory leaks faced in a production environment. Some good inte-
grated development environments (IDEs) are available to bring down the development time to some
extent, but they never meet a developer’s satisfaction. Despite all these problems, you must appreciate
that Microsoft is always full of new ideas.

For example, Microsoft introduced the Component Object Model (COM) technology with an aim
of revolutionizing the Microsoft programming world. COM architecture heavily promoted reusability
among Microsoft programming languages, which in turn opened the door for implementing a new
hybrid programming approach, as depicted in Figure 1-16. The performance-critical code was
developed in C++ and happily exposed to the outside world as COM components. The consumers
of these components could be any COM-aware programming language. The organization started
devising a new strategy in which the majority of tasks were implemented using RAD tools, and only
the small portion that is performance sensitive is implemented in C/C++ and exposed as COM
components. This in turn increased developer productivity and promoted faster development time.

But such language monogamy among Microsoft products was not striking enough to face the
competition from its rivals, and with business complexities growing day by day Microsoft clearly needed
a deeply integrated programming model. This is where .NET came to the rescue (see Figure 1-17).

Figure 1-16. COM days

Figure 1-17. .NET days

5645ch01.qxd 3/3/06 11:00 AM Page 31

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET32

Innovation is the culmination of an individual’s imagination, and .NET innovation is the culmi-
nation of the “Redmondian” imagination. It filled many of the gaps and also answered many of the
key decisions in determining the platform selection. The whole programming model was revisited
and reengineered from the ground up, giving birth to the common language runtime (CLR). The CLR
is a modern run-time system and welcomes developers into a new “managed world” where managed
code is written in a managed language and executed in a managed environment. The CLR provides
the execution environment and other core services to managed code that form one of the strong
foundations in designing a robust and secure application.

.NET as a language offers rich programming features and also overcomes most of the deficiencies
that were evident in the earlier Windows programming languages. Because of this, .NET gave impe-
tus to major financial organizations to look at their business realms and reconsider their decisions
and investments. .NET clearly provides all the features of a good programming language:

Automatic garbage collection: Trading-related applications usually fall prey to memory-related
problems, and diagnosing such leaks is every programmer’s nightmare. Even though one of the
basic tenets of programming is to allocate resources when required and reclaim the memory
when it is not required, this is an explicit step that a programmer needs to strictly follow. Although
most programmers follow this discipline religiously, as with all human endeavors, mistakes tend
to creep in. .NET relieved developers from battling these memory leaks by introducing nonde-
terministic garbage collection. Programs written in .NET completely depend upon garbage
collection, which uses a heuristics-based algorithm to reclaim memory from unused or unreach-
able resources. It is also nondeterministic because the timing of performing garbage collection
is not determined and comes into action when memory pressure is felt, finally freeing up memory
space.

Deployment: The ease of deploying applications is considered to be one of the key attributes in
determining the adaptability of applications. Deployment was extremely painful during the COM
days; with advent of .NET, this task is made extremely simple by embracing the XCOPY-style
deployment approach. The only prerequisite required to execute .NET-based applications is the
.NET Framework; after installing the framework, developers or users can install .NET applications
simply by copying the binaries.

Openness: With .NET, Microsoft has entered into community development for the first time,
breaking the long-standing wall between consumers and producers. This is made possible by
outlining a specification known as the Common Language Infrastructure (CLI). The specifica-
tion defines everything from execution environment to metadata information that would enable
anyone to build a concrete implementation. The .NET Framework itself adheres to this specifi-
cation. To encourage community participation, Microsoft released Shared Source CLI, popularly
known as Rotor, which basically is a spin-off from the original .NET Framework. Shared Source
CLI contains source code that provides a deep understanding of the language infrastructure.

Platform neutrality: Applications written in .NET are no longer limited to the Windows platform;
they can be targeted on any platform as long as the underlying execution runtime is available
and adheres to the CLI standard. Mono (http://www.go-mono.com) is one of the successful imple-
mentations of CLR available for the Linux platform.

Security: In the olden days, application security was always an afterthought. But with the advent
of .NET, the equation has changed; security is given important consideration and is baked into
every aspect of the framework. Security is branched into two forms: code access security and
data security. Code access security is all about protecting resources based on the identity and
origin of the code. This is in contrast to data security, which is used to enable secure message
exchange using various cryptographic algorithms.

5645ch01.qxd 3/3/06 11:00 AM Page 32

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 33

Interoperability: The base framework in .NET provides most of the features required for day-to-day
operation. However, it still falls short of some of the functionality available in the Win32 world.
The same applies to the COM technology. .NET provides backward compatibility and allows
seamless integration with legacy COM components or Win32 DLLs by using the Platform-Invoke
(P/Invoke) API. This will motivate organizations to migrate to this new platform without losing
the investment done on legacy code.

Business-to-business integration: The next big wave in software development is connecting
various heterogeneous systems deployed in an organization. The biggest problems faced are
integration and interoperability between systems; to resolve these issues, you need a platform
that connects this system and takes advantage of investments made in existing systems. .NET
heavily promotes this goal by providing unconditional and unstinted support to Web services–based
development. Web services are the implementation backbone and vehicle for connecting sys-
tems using industry-established open standards and protocols.

Language rich: .NET is language rich. Currently, more than 20 programming languages are
available, and such an influx of languages completely eliminates the steep learning curve required
for an individual. Organizations can smoothly mobilize their development forces based on the
favored in-house programming language. For example, if COBOL is the most suitable language
for the organization’s software automation, then the developers can use COBOL.NET.

Handheld computing: The .NET Compact Framework is a slim version of the .NET Framework
that facilitates the development of applications targeted for handheld and mobile devices. The
overall resource bandwidth in handheld devices is limited and hence needs to be judiciously
utilized. Considering this resource limitation, Microsoft shipped Compact Framework, which is
optimized for both the time and space dimensions of an application. Even though not all features
of the .NET Framework are available in the Compact Framework, the available class hierarchy
is inline with .NET Framework classes. This provides a smooth learning curve and transition for
any developer who wants to develop programs for handheld devices.

Productivity: Visual Studio .NET 2003/2005 is a full-blown IDE that offers RAD, deployment and
packaging, versioning, debugging, IntelliSense help, dynamic help, and many more features
that help to increase software development productivity. Furthermore, the VS .NET IDE is fully
extensible to allow developers to automate most common routine daily tasks by packaging them
inside macros. Macros are .NET-based executables written in VB .NET or C# but are designated
to execute inside the IDE shell.

Community support: You can gauge the growing popularity of .NET by the amount of contribution
from the open source development community. . NET introduced a new posture toward the open
source initiative by encouraging thousands of developers around the globe to develop open source
applications based on the .NET Framework. This support is further backed by the strong com-
munity support available in the form of blogs and newsgroups.

Academic research: .NET has not only gained success in the commercial world but has also
stretched its wings into academic research. Popular universities now consider .NET a part of
their course curriculums. Several new research projects are also underway. Such solid commit-
ments will further help reshape the future of .NET-related technologies.

Development methodology: .NET has emerged as a leading platform that makes software quality
endeavors much simpler to implement. With .NET, most of the manual development processes
are automated, thereby infusing discipline into every stage of the software life cycle. This automation
has resulted in higher productivity and fewer software defects.

5645ch01.qxd 3/3/06 11:00 AM Page 33

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET34

Potentiality: With the industry already moving toward a 64-bit computing initiative, there is
heavy demand for the 64-bit CLR. As of this writing, Microsoft has already floated a 64-bit CLR
designed to work with Windows 2003 64-bit editions. There is virtually no rework involved in
moving the existing 32-bit versions of .NET applications, and the existing managed code base
can be migrated to the 64-bit CLR with little or no change.

So far we have discussed only the most important features of .NET. We will discuss several other
important aspects of .NET in subsequent chapters.

What Is a Techno-Domain Architect?
An architect is a creator who crafts the destiny of a vision or a goal, and a software architect is no dif-
ferent from a civil architect in this aspect. When it comes to the final objective, a software architect’s
ultimate mission is to provide a strong foundation. It is important for a civil architect to build a strong
base for constructing a building. If the foundation is weak, it will create a devastating effect and even
risk lives. The same analogy applies to a software architect; a loose foundation will shake the business
of an organization. As the first person to enter the application development arena, the software
architect’s primary role is to understand the requirements of the organization and apply the appro-
priate technology mix that is best suited for the organization.

In today’s world where every area of computer science has seen many forms of growth and
given the depth and breadth of current technologies, it is extremely challenging to keep abreast of
all these aspects. It is virtually impossible to achieve mastery over all areas. To keep pace with growing
technologies, software architects have started to specialize in various forms, including as enterprise
architects, security architects, infrastructure architects, interoperability architects, information architects,
and so on. As their names suggest, each architect’s roles and responsibilities are clearly defined,
which in turn helps to clearly articulate their technical strengths.

Techno-domain architects can be considered as one of the branches of the software architect
tree. Unlike architects from other branches whose core focus is sharpening only technical skills,
a techno-domain architect has excellent command over both the domain and the technology. Such
specialized architects are limited in number because people’s skill sets are usually one-sided: a per-
son is specialized either in the hard-core technology or in the business aspects of the domain. Thus,
a techno-domain architect is a vertical specialist who has gathered tremendous knowledge in a par-
ticular niche area by designing and executing real-life systems and in the process assimilated both
the nutrients of the system (that is, the domain knowledge and the underlying technology to realize
the business case).

Techno-domain architects are not meant to replace business analysts. Business analysts will
continue to play a key role in the requirements-gathering phase. Vertical specialists, with their knowledge
of the particular niche area, will help to strengthen the team as a whole.

Both technology and businesses change over a period of time. But changes in business are
frequent and are driven by changes in the external environment. Moreover, there is no longevity
associated with business; once a business feature is outdated, it carries no further value. However,
technology has an associated aging factor and is a slowly decaying process. Thus, keeping abreast of
both these aspects of a system is a challenging task for a vertical specialist.

5645ch01.qxd 3/3/06 11:00 AM Page 34

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 35

Understanding the Three I’s (Intelligence) of
Performance in Capital Markets
Performance is the mantra for all high-performance or mission-critical applications. This is generally
overlooked in small-scale applications where the number of users is limited and the number of trans-
actions conducted is relatively small. Performance goals in such small-scale applications are often
sidelined or considered only during the design phase, and no additional thought process is usually
invested subsequently. This is in direct contrast to mission-critical applications where performance is
given serious thought in every phase, is continuously refined, and is constantly evidenced in the form
of significant growth and improvement in the overall functioning of the system.

Efficiency of applications revolves around the following main objectives of performance:

Responsiveness: Responsiveness is measured by how fast the system reacts to a user request.

Latency: Latency is the quantum of time taken to get a response. Latency is usually high in
a networked application.

Throughput: Throughput is often measured during a peak time and depicts the application’s
full potential to handle the maximum load in a given amount of time.

Scalability: Scalability is often overstressed, but in reality it relates to the scaling of hardware
resources.

Several guidelines provide a wealth of information about how to achieve these objectives, and
even some best programming practices will elevate the performance of an application to a certain
level. However, remember that performance is an art and cannot be achieved by applying some
straightforward cookbook rules. You can achieve these goals only by closely evaluating the environ-
ment under which the application is sheltered and then applying the appropriate intelligence that
best suits the environment. In fact, sometimes techniques applied to boost performance in one
environment prove to be ill-suited for another environment.

In the financial world, performance holds center stage, and a lack of good performance is
a primary reason for discarding an existing application and then rebuilding it from scratch. It also
means that the performance of an application is tightly coupled with its underlying design. It is the
application’s design that is not capable of meeting the required quality of service that a typical busi-
ness demands. Also, such problems do not spring up immediately but become evident as time passes.
It also implies a direct relationship between design and time, as shown in Figure 1-18.

Figure 1-18. Relationship between an application’s design and time

5645ch01.qxd 3/3/06 11:00 AM Page 35

Figure 1-19. The three levels of intelligence

In Figure 1-18, the lower rectangular bar represents time, and the upper bar represents design. On
the left, notice that until a certain point, design is completely in sync with time; however, design loses
track as the height of the design bar increases. This phase reflects a change in design either because
of a drastic change in the business requirement that was unwarranted at this stage of time or because
of some poor assumption based on which the design was realized and finally failed to meet the required
expectations. In the final stage, the design bar returns to its original shape and size, but notice that
the inner filling in the bar is shaded, which is different from the original bar. This indicates that the
old design has been completely scrapped, resulting in a completely new design. On the right, the design
is completely in sync with time and therefore considered to be a good design.

So, what makes a good design? Some audiences consider even a badly designed application
that has the potential to cater to a business expectation as a good design. Therefore, it is difficult to
provide a definition of good design; however, a good design is one that considers the three constel-
lations of time: past, present, and future. A rock-solid design must be designed from the past, designed
with the present, and designed for the future. It means a design must fill all the missing gaps in the
past, must handle all the current requirements, and must handle any future needs. In a nutshell,
a good design is a time traveler.

Although performance is an important aspect of design, you must consider another important
aspect: user requirements. At the end of the day, if the application fails to win customer hearts by
not meeting their business needs, it would still be considered a bad design even if it is free from any
architectural flaws. In the financial world, both performance and user requirements are key sensi-
tive areas. User requirements are expected to change, which is inevitable, but performance-related
issues are avoidable. In a broader sense, you can achieve good performance by applying the three
levels of intelligence in an application shown in Figure 1-19.

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET36

In fact, by mixing these three levels of intelligence in the right proportion, you can develop
a rock-solid application.

Machine Intelligence
Machine intelligence is inclined toward the programmatic perspective of an application. The best way
to implement this intelligence is by religiously following the best programming practices and apply-
ing well-proven architectural standards. The most common practices followed in high-performance
applications are applying parallelism, which is achieved using multithreading; devising a highly
optimized algorithm; and exploiting platform- or hardware-specific capabilities.

5645ch01.qxd 3/3/06 11:00 AM Page 36

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 37

Domain Intelligence
Domain intelligence goes hand in hand with machine intelligence. To apply such intelligence, the
team must be cognizant of both domain- and technology-specific details. When domain intelligence
is applied at the right place, it gives a multifold increase in the performance of the application. This
intelligence is often ignored during the performance-engineering phase of a system where a team’s
energy is primarily mobilized toward implementing all sorts of machine-level intelligence.

Let’s take a market data example where introducing domain intelligence along with machine
intelligence provides a tremendous performance boost: Market data applications broadcast the
latest price of a stock. Several consumers then process this information. These real-time prices are
often displayed on most financial Web sites. The price of stocks tends to lose tempo whenever there
is a swing in the market behavior. This swing period lasts for a short span of time, and during this
period almost every stock price is affected. This period is called a data-quake because the system
will notice a huge surge of data, and this sometimes may even lead to a system crash. Even if you
assume that the first line of defense is strong and the market data service is able to survive this data-
quake, remember that this information needs to further trickle down to the consumers; thus, the
consumers of this information could also face the same disaster.

So, how do you escape from such a deluge of data? Although no easy solution exists, you can
deal with this by applying domain-level intelligence. Before applying this intelligence, you need to
understand the business implication behind this data that will help control the flow of data. Let’s
say your investigation disclosed that most stock prices tend to change at least 100 times a second.
So, instead of pushing this change immediately to downstream systems, you can throttle it for a second.
During this throttling period, data will not be pushed; rather, it will undergo a price-replacement
process that will blindly override the old price of a stock with the new price. As data gets published
only after the expiry of 1 second, it effectively controls the flow of data from flooding the market
data ecosystems. Even though the first line of market data service will receive roughly about 100
messages per second for any given stock, this will not affect downstream systems because they will
receive throttled messages at the rate of one message per second.

Human Intelligence
Human intelligence is user-centric. This may come as a surprise; the question that is immediately
raised is, what type of contribution will users make toward improving the performance of the appli-
cation? To be more precise, it is not the performance specification from users but their postures
toward the system that will drive the performance of the application. You must follow the important
principle What-You-Ask-Is-What-You-Get (WYAIWYG) to provide users with what they demand
rather than what is merely provided by the system. For example, it does not make sense to paint the
user screen with thousands of orders that are far beyond the range of the human eyeball, even if the
system has the capacity to provide this. It is also important to keep a close eye on a user’s behavior
toward applications and also spend a fair amount of effort gathering this intelligence by spending
time with users and watching their screen interactions and mouse movements.

You can further optimize the market data service discussed in the earlier “Domain Intelligence”
section by infusing elements of human intelligence into it. You already know that any given stock
price is updated at least 100 times a second, and if the user has subscribed to 100 stocks, this would
result in the system processing 10,000 message per second. But in reality, the user may not view all
100 stocks but keep a watch over only a few volatile stocks. So, if the system temporarily suspends
subscribing to a stock that is not viewed by the user, then it would give a fair amount of breathing
space to system resources, which would in turn be less taxed and also effectively utilized. This clearly
explains the merit of applying human intelligence, which is often overlooked.

5645ch01.qxd 3/3/06 11:00 AM Page 37

Figure 1-20. The .NET Framework and solutions for the financial world

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET38

Thus, it is important to apply both domain and human intelligence to extract every bit of per-
formance. Furthermore, it is also important to understand that a threshold factor is associated with
machine-level intelligence. After a certain level, you will have no room left for any kind of improvement,
and once you have exhausted this resource, the only alternative is to leverage the domain and human
intelligence in a balanced manner.

Introducing the Upcoming Business Cases
The rest of the chapters in this book elaborate on business cases that play important roles in the trad-
ing life cycle. Individual chapters cover both domain and technology know-how in specific areas. The
implicit theme of each chapter is to provide insight into the practical day-to-day challenges posed by
domain-specific issues and how you can address these issues using the .NET technology. The motive
of this book is to deeply explore the .NET Framework base class library (BCL).

The .NET Framework BCL is an exhaustive collection of reusable types that facilitates the faster
development of applications (see Figure 1-20). The BCL arms you with the ability to develop nearly
all kinds of applications spanning from GUI-based to (near) real-time applications. It is impossible
to explore this library in one gulp. Hence, the next step will be to cover some of the important libraries
and their immediate counterparts in the business world. The primary goal of this exercise is to pro-
vide theoretical insight into .NET and its practical applications and discuss solutions to challenges
faced in the real world.

The following are the areas that will be covered in depth in subsequent chapters:

Order-matching engine (collections and threading): The order-matching engine satisfies the quest
for moving toward a centralized order book. Order matching represents the exchange-side
process that receives orders from different sources, and based on various parameters associated
with an individual order, it performs a matching process. Chapter 2 discusses the important data
structures and threading features available as part of the BCL and demonstrates their usability
by showing how to build a simple-to-use order-matching engine.

Data conversion engine (XML): It is well-known that in spite of advances in technology, the
communication of information using flat files is still prevalent and considered to be one of the
most reliable vehicles for packaging and delivering information to the final end system. Chapter 3
recognizes this and addresses the issue usually encountered in systems where information
originates from different sources, particularly flat files, instead of data entered by a data-entry
operator. File import and export activity are commonly encountered in a settlement system
where various kinds of data are required for reporting purposes. Such systems are flooded with
data import and export code, so Chapter 3 discusses the need for a generic conversion framework
and also designs one using XML.

5645ch01.qxd 3/3/06 11:00 AM Page 38

CHAPTER 1 ■ INTRODUCING THE EQUIT IES MARKET 39

Broadcast engine (sockets): A broadcast engine is the heart of a trading system. The main goal
of a broadcast engine is to publish the best asking and offer prices prevailing in the exchange.
However, this doesn’t restrict using a broadcast engine to only market data; it can also be used
in implementing other types of trading broadcasts. The most important aspect that needs serious
thought in realizing this engine is the timely delivery of data. Furthermore, a large number of
users would be using this data, and users are also geographically distributed. Chapter 4 covers
the .NET socket programming domain and shows how you can leverage it to build a simple-to-use
broadcast engine.

Application-monitoring engine (remoting): A trading system is built upon several individual
subcomponents. Each subcomponent is physically distributed on a separate machine and shares
a particular piece of task. In such an environment, it is important to manage and monitor the
task of all subcomponents from one central location. An application-monitoring engine is tasked
with this responsibility of hosting the individual subcomponents and periodically monitoring
the activity. Chapter 5 discusses how to create an application-monitoring engine using .NET
Remoting as an underlying infrastructure for managing the subcomponents of an application.

STP security (data security): Security is a key concern for all market participants, and its imple-
mentation remains the greatest challenge in the current vulnerable markets. In an STP space
where interaction among business participants cross organizations and geographic boundaries,
it is important to have the proper mechanisms in place to ensure the legitimacy of a business
participant and also shield the confidentiality of business transactions. Chapter 6 covers cryp-
tography and discusses various security measures that you can implement to achieve both internal
and external STP.

STP interoperability (Web services): Chapter 7 is geared toward the implementation of external STP
where the goal is to bring entities such as the broker, fund manager, and clearing corporation
under one common roof in pursuit of achieving T+1. Chapter 7 will explore the Web services
platform and the WS-* standards in achieving integration and interoperability among different
entities.

Equity arbitrage engine (CodeDOM): With millions of data packets hitting a system every second
and price ticks being revised tens of times every second, evaluating scenarios and generating
orders automatically are challenges for all solution providers. Chapter 8 talks about leveraging
automated code generation and how you can use it in designing a simple rule-based arbitrage
system.

Each chapter provides insight into how you can address issues confronting the financial markets
using the .NET Framework BCL. This means we will deal with every aspect of .NET in its proper con-
text by explaining how it is applicable to real-life business cases. Interweaving both domain and
technology aspects in every chapter will further solidify your understanding of the class library by
specializing it to the specific needs of a business. Finally, at the end of this book, we will give overview
of .NET 2.0 and explain some of the important features that further solidify .NET as a complete
end-to-end technology platform.

5645ch01.qxd 3/3/06 11:00 AM Page 39

5645ch01.qxd 3/3/06 11:00 AM Page 40

C H A P T E R 2

■ ■ ■

The Order-Matching Engine

The beauty of time is that it controls the construction and destruction of each instance of the human type.

This chapter discusses an important wing of the trading system—the order-matching decision
process. All trading systems must be able to process orders placed by multiple customers from mul-
tiple locations, with several orders arriving at the same time and desperately trying to grab the best
price in the market at that particular moment. Therefore, it is not surprising to note that trading
systems face an influx of data during peak periods. Thus, the systems must easily withstand the
heavy traffic of orders and still be able to judiciously find the best price in the market for a given
order at the given time.

In this chapter, we explain how an order is matched as soon as it is received and explain the
variants that an order exhibits, which in turn affects the matching process. The first part of this chapter
discusses the business know-how; then the chapter covers the .NET Framework and exposes the
tools that will enable the fulfillment of the discussed business case. Specifically, we explain the differ-
ent types of collection classes available in the .NET Framework, and we then continue the technical
exploration with in-depth coverage of the threading features and the types of synchronization methods
that are essential for building a thread-safe system. This is followed by the merging stage where every
aspect of business is directly mapped to its low-level technical implementation. Finally, we provide
illustrative code samples for the prototype of an order-matching engine written in C#.

Understanding the Business Context of Order
Matching
The following sections cover the business context of the order-matching engine.

The Need for Efficient Order Matching
The two primary objectives in the financial marketplace are to keep transaction costs at a minimum
and to avoid credit defaults. Although several market practices have been devised to fulfill these
objectives, efficient order matching is an important factor for achieving these goals.

A market’s liquidity is measured by how easily a trader can acquire (or dispose of) a financial
asset and by the cost associated with each transaction. For example, if you wanted to sell a house,
you could place an advertisement or go through a real estate agent. Both of these options have costs
associated with them. It may also take a month to locate a buyer who is willing to match the price you
desire. In this case, the house is considered to be relatively illiquid. But imagine a marketplace where
all sellers and buyers of houses in the city came together in one area and tried to find a match—the
search would be easier, the chances for finding a buyer would be greater, and the convergence of all
buyers and sellers would result in price discovery and hence better prices. In this case, the house is

41

5645ch02.qxd 3/3/06 11:19 AM Page 41

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE42

considered highly liquid. If you extend this example to a marketplace where company instruments
(shares and debt instruments) are traded, you get a stock exchange, as introduced in Chapter 1. To
avoid search costs (and of course to enforce other legal statutes), buyers and sellers come together
in a stock exchange on a common platform to transact. Since many buyers and sellers are present at
any point in time, searching for a counterpart for an order is relatively easy.

An order is an intention to enter into a transaction. Each order has certain characteristics such
as type of security, quantity, price, and so on. Initiators of orders notionally announce their willing-
ness to transact with the specified parameters.

Each player in the market wants to get the best possible price. There is a huge scramble to get
one’s order executed at the right time and at the best available market price. Efficient order match-
ing is thus a highly desirable tenet of an advanced market.

Also, anonymity is considered good for a financial market. This means traders do not know any
information about the people with whom they are trading. This is desirable when the participants
in the market do not have the same financial strength and when it becomes important for the mar-
ket to protect the interests of the small players. Anonymity also prevents large players from exerting
undue influence on the trade conditions. In such a situation, to protect the integrity of the market,
precautions must be taken to ensure that no credit defaults take place. As mentioned in Chapter 1,
this is the job of a clearing corporation, which takes away the credit risk concerns of large players
through novation. This process also takes care of matching large orders with several potential small
players.

Actors: Exchanges and Brokers
Let’s examine who the actors are in this matching process. Two counterparties, at a minimum, are
required with opposing views to trade with each other—after all, one must be willing to buy when
another is willing to sell. And their orders must converge on a common platform, which is the exchange.
Generally, exchanges support two forms of trading:

• Oral auctions

• Electronic trading

In an oral auction, traders meet each other face to face on the exchange’s trading floor. They
shout their bids and offer prices for other traders to hear; the other traders constantly write down
these quotes. When two traders agree on a price and an associated quantity, a transaction takes
place. Some traders may provide a two-way quotation (a bid price and an asking price) and enter
into a transaction only with another trader willing to take the offer or accept the bid.

Oral auctions are the conventional form of trading used in absence of automation, but with the
advent of electronic trading, they are on verge of decline. Electronic trading offers the same function
through a computer and a trading screen. Traders log their orders through the trading system, and
their orders are recorded in the exchange’s order book. These orders are then considered for poten-
tial matches as designated per the order-matching rules and algorithm defined by exchange.

The most common matching logic uses the concept of priority based on price and time:

• All buy orders received by the exchange are first sorted in descending order of bid price and
in ascending order of time for the same prices. This means orders where traders are willing
to pay the highest price are kept on the top, reflecting the highest priority. If two orders have
the same bid price, the one entered earlier gains a higher priority over the one entered later.

• All sell orders are sorted in ascending order by offer price and in ascending order of time for
the same offer prices. This means orders where traders are willing to accept the lowest rate
are kept on the top, giving them the highest priority. Two orders asking the same price would
be prioritized such that the one entered earlier gets a higher priority.

5645ch02.qxd 3/3/06 11:19 AM Page 42

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 43

For example, consider traders A, B, and C who want to buy shares of Microsoft and traders D, E,
and F who want to sell shares of Microsoft. Assuming the last traded price of Microsoft (MSFT) shares
was $40, consider the scenario shown in Table 2-1.

Table 2-1. Traders Who Want to Buy/Sell MSFT Orders

Traders Who Want to Buy Traders Who Want to Sell

A wants to buy 1,000 @ $40. D wants to sell 250 @ $40.10.

B wants to buy 500 @ $40.10. E wants to sell 500 @ $41.20.

C wants to buy 10,000 @ $39.50. F wants to sell 250 @ $41.50.

A separate bucket is assigned for each company’s stock, and all orders for the company are
grouped into the specific bucket. In business lingua, this bucket is called the order book. Thus, the
order book for the example in Table 2-1 will look like Table 2-2.

Table 2-2. MSFT Order Book

Buy Sell

Quantity Rate Rate Quantity

500 $40.10 $40.10 250

1,000 $40 $41.20 500

10,000 $39.50 $41.50 250

All transactions happen on the rate reflected in the topmost row of the order book. This price is
popularly called the touchline price. The touchline price represents the best ask (lowest sell) price and
best bid (highest buy) price of a stock.

In the previous example, because there is a consensus on the rates from both the buyer and the
seller, at the touchline price the order will get matched to the extent of 250 shares at $40.10. Thus,
the order book will look like Table 2-3.

Table 2-3. Updated MSFT Order Book After Buy and Sell Order
Matched at Touchline Price

Buy Sell

Quantity Rate Rate Quantity

250 $40.10 $41.20 500

1,000 $40 $41.50 250

10,000 $39.50

Types of Orders
The following are the most common types of orders:

Good till cancelled (GTC) order: A GTC order is an order that remains in the system until the
trading member cancels it. It will therefore be able to span several trading days until the time it
gets matched. The exchange specifies the maximum number of days a GTC order can remain
in the system from time to time.

5645ch02.qxd 3/3/06 11:19 AM Page 43

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE44

Good till date (GTD) order: A GTD order allows the trading member to specify the days or a date
up to which the order should stay in the system. At the end of this period, the order will auto-
matically get flushed from the system. All calendar days, including the starting day in which the
order is placed and holidays, are counted. Once again, the exchange specifies the maximum
number of days a GTD order can remain in the system from time to time.

Immediate or cancel (IOC) order: An IOC order allows a trading member to buy or sell a security
as soon as the order is released into the market; failing that, the order will be removed from the
market. If a partial match is found for the order, the unmatched portion of the order is cancelled
immediately.

Price conditions/limit price order: This type of order allows the price to be specified when the
order is entered into the system.

Market price order: This type of order allows buying or selling securities at the best price, obtain-
able at the time of entering the order. The price for such orders is left blank and is filled at the
time of the trade with the latest running price in the exchange.

Stop loss (SL) price/order: SL orders allow the trading member to place an order that gets acti-
vated when the market price of the relevant security reaches or crosses a threshold price. Until
then, the order does not enter the market. A sell order in the SL book gets triggered when the
last traded price in the normal market reaches or falls below the trigger price of the order.

Note that for all of these order types, the behavior of an order is determined by a set of special
attributes. Every order entered by a buyer or seller follows the same basic principle of trading, but
this special attribute further augments the nature of an order by having a direct (or indirect) effect
on the profitability of a business. For example, if an order’s last traded price was $15 and a limit buy
order was placed with a limit price of $15.45 with a stop loss at $15.50, this order would be sent to
the market only after the last traded price is $15.50, and it would be placed as a limit price order
with the limit price of $15.45.

Order Precedence Rules
The order precedence rules of an oral auction determine who can bid (or offer) and whose bids and
offers traders can accept. To arrange trades, markets with order-matching systems use their order
precedence rules to separately rank all buy and sell orders in the order of increasing precedence. In
other words, they match orders with the highest precedence first.

The order precedence rules are hierarchical. Markets first rank orders using their primary order
precedence rules. If two or more orders have the same primary precedence, markets then apply their
secondary precedence rules to rank them. They apply these rules one at a time until they rank all
orders by precedence.

All order-matching markets use price priority as their primary order precedence rule. Under
price priority, buy orders that bid the highest prices and sell orders that offer the lowest prices rank
the highest on their respective sides. Markets use various secondary precedence rules to rank orders
that have the same price. The most commonly used secondary precedence rules rank orders based
on their times of submission.

Most exchanges give an option to traders to hide the total quantity of shares they want to trans-
act. This is to discourage other traders from changing their bids/offers in case a large order hits the
market. In this case, displayed orders are given higher precedence over undisclosed orders at the same
price. Markets give precedence to the displayed orders in order to encourage traders to expose their
orders. Though disclosure is encouraged, traders also have the option of not displaying the price in
order to protect their interests.

5645ch02.qxd 3/3/06 11:19 AM Page 44

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 45

Size (quantity) precedence varies by market. In some markets, small orders have precedence over
large ones, and in some markets the opposite is true. Most exchanges allow traders to issue orders
with size restrictions. Traders can specify that their entire order must be filled at once, or they can
specify a minimum size for partial execution. Orders with quantity restriction usually have lower
precedence than unrestricted orders because they are harder to fill.

Order Precedence Ranking Example
Assume that some traders enter the orders shown in Table 2-4 for a particular security.

Table 2-4. Buy and Sell Orders Sorted Based on Order Arrival Time

Time (a.m.) Trader Buy/Sell Quantity Price

10:01 Anthony Buy 300 $20

10:05 Anu Sell 300 $20.10

10:08 Nicola Buy 200 $20

10:09 Jason Sell 500 $19.80

10:10 Jeff Sell 400 $20.20

10:15 Nicholas Buy 500 Market price order

10:18 Kumar Buy 300 $20.10

10:20 Doe Sell 600 $20

10:29 Sally Buy 700 $19.80

The exchange will send an order acknowledgment to the traders’ trading terminals and fill the
order book as shown in Table 2-5.

Table 2-5. Order Book (Pre-Match)

Buy Order Buy Order Buy Sell Sell Order Sell Order
Time Stamp Quantity Price Buyer Price Quantity Seller Time Stamp

10:15 500 Market Nicholas $19.80 500 Jason 10:09

10:18 300 $20.10 Kumar $20 600 Doe 10:20

10:01 300 $20 Anthony $20.10 300 Anu 10:05

10:08 200 $20 Nicola $20.20 400 Jeff 10:10

10:29 700 $19.80 Sally

Note the following in the order book:

• Jason’s sell order has the highest precedence on the sell side because it offers the lowest price.

• Nicholas’ buy order has the highest precedence on the buy side because it is a market price
order.

• Anthony’s order and Nicola’s order have the same price priority, but Anthony’s order has time
precedence over Nicola’s order because it arrived first.

• In the actual order book, names are not stored and not displayed to traders because the trading
system preserves anonymity.

5645ch02.qxd 3/3/06 11:19 AM Page 45

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE46

The Matching Procedure
The first step is to rank the orders. Ranking happens on a continuous basis when new orders arrive.

Then the market matches the highest-ranking buy and sell orders to each other. If the buyer is
willing to pay as much as the seller demands, the order will be matched, resulting in a trade.

A trade essentially binds the two counterparties to a particular price and quantity of a specific
security for which the trade is conducted.

If one order is smaller than the other, the smaller order will fill completely. The market will then
match the remainder of the larger order with the next highest-ranking order on the opposite side of
the market. If the first two orders are of the same size, both will fill completely. The market will then
match the next highest-ranking buy and sell orders. This continues until the market arranges all
possible trades.

Order-Matching Example
If the traders in the previous example (see Table 2-5) submit their orders, the market will match the
orders as follows:

1. Nicholas’s buy order at market price will match Jason’s sell order. This will result in the first
trade, and both the orders will be removed from the order book.

2. Kumar’s order of 300 buy will get matched to Doe’s order of 600 sell. Interestingly, this order
will get matched at $20.10 even though Doe wanted to sell at $20. Exchange systems are
designed to protect the interests of both buyers and sellers. Since there was a passive order
from Kumar willing to buy at $20.10 and Doe’s order comes in later asking only for $20, she
will still get $20.10. Since Kumar’s order is completely filled, it will be removed completely
from the order book. However, Doe’s order of 600 is only half-filled. So, 300 shares of Doe
will remain in the order book.

3. In the next step, Anthony’s buy order of 300 shares will get fully filled by Doe’s balance of 300
at $20, and both orders will be removed from the order book.

4. Now Nicola wants to buy 200 at $20, but Jeff will sell only at $20.20. There is no agreement in
price; hence, there will be no further matching, and the matching system will wait either for
one of the parties to adjust the price or for a new order at a price where either a buy or a sell
can be matched.

Table 2-6 shows the trade book for trades resulting from these orders.

Table 2-6. Trade Book

Trade Buyer Seller Quantity Price

1 Nicholas Jason 500 $19.80

2 Kumar Doe 300 $20.10

3 Anthony Doe 300 $20

Table 2-7 shows the order book after matching.

Table 2-7. Order Book (Post-Match)

Buy Order Buy Order Buy Sell Sell Order Sell Order
Time Stamp Quantity Price Buyer Price Quantity Seller Time Stamp

10:08 200 $20 Nicola $20.20 400 Jeff 10:10

10:29 700 $19.80 Sally

5645ch02.qxd 3/3/06 11:19 AM Page 46

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 47

When the buy side matches with the sell side at an agreed price, the order finds a match, thereby
converting it to a trade. Each order can get converted into a single trade or multiple trades, in case
the order size is large. Traders whose orders get executed have to make payments when they buy or
have to deliver the securities when they sell.

Containment of Credit Risk and the Concept of Novation
Millions of orders get executed everyday, with each trader transacting hundreds and sometimes
thousands of trades. In such a process, traders potentially commit to pay others (from whom they
bought) and anticipate the receipt of money from others (to whom they sold). Imagine if one of the
traders exhausted his payment capacity and defaulted. His default would actually give rise to a chain
of defaults, and the integrity of the market as a whole would be in danger. In such a scenario, it would
be difficult for large traders to transact with small traders. This, in turn, would raise transaction costs,
because traders would start selectively trading with each other. To circumvent this credit risk and
bring about confidence in the minds of traders, clearing corporations implement novation.

■Note Novation is a Latin word that means splitting.

Novation essentially splits every transaction into two parts and replaces one party in the trade
with the clearing corporation. So, each party in the transaction feels they have transacted with the
clearing corporation.

For example, assume that the orders of buyer A and seller B match for 10,000 shares of
Microsoft. In the absence of novation, the trade will look like Figure 2-1.

With novation in place, the trade gets split in two and looks like Figure 2-2.

Buyer A pays money and receives the shares from the clearing corporation. The clearing corpo-
ration, in turn, collects the shares and pays the money to seller B.

This brings us to the end of the discussion about the business know-how of order matching. The
next section explains the relevant features of .NET that you can use to automate this business case.

Figure 2-1. Example of trade without novation

Figure 2-2. Example of trade with novation

5645ch02.qxd 3/3/06 11:19 AM Page 47

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE48

Introducing .NET Collections
Data structures provide a container for storing “arbitrary” data and provide a uniform mechanism to
operate on this data. Data structures and algorithms share a bloodline relationship—each algorithm
is specifically designed and tuned to work with a specific data structure. Therefore, when a specific
algorithm is applied on the appropriate data structure, it yields the best possible result. For instance,
numerous algorithms can iterate over data stored in a data structure, but often one will work faster
than the other when applied in the appropriate environment.

The real litmus test for the performance of an algorithm is to apply it on a huge collection of data
elements and then compare the results with that of other similar algorithms. The reason for such an
evaluation is that algorithms tend to predict satisfactory results—or at worst only marginal differ-
ences when applied on a small amount of data with poor data density. It is only when the number of
elements in the data structure increases that the algorithm loses its strength and eventually deterio-
rates in performance.

The venture of a right algorithm and data structure is the Holy Grail of any good data operation
exercise. The scope of a data operation is not only limited to inserting or deleting a data element but,
more important, is also limited to seeking data elements. The key to the success of any “data-seeking”
activity is directly attributed to the efficiency of the algorithm, denoted by the number of iterations
it takes to locate an item. This number is derived from the worst-case scenario list; for example, in
a linear list of 50 elements where items are inserted in sequential order, it can take at most 50 itera-
tions to locate an item. So, the efficiency of the algorithm is determined by the number of elements
stored inside the data structure and is measured based on the following two factors:

• Time (the amount of computation required by the algorithm)

• Space (the amount of memory required by the algorithm)

The efficiency of an algorithm is represented in Big-O notation, which acts as a barometer for
measuring the efficiency of algorithms. Big-O notation allows a direct comparison of one algorithm
over another. The value denoted by Big-O form is sufficient enough to draw a rational comparison
between two algorithms without looking at the real code and understanding the real mechanics.

This concludes the brief introductory journey into algorithms; it is time to step back into the .NET
world and understand the various types of data structures defined under the System.Collections
namespace.

Arrays
Arrays have been in existence since the genesis of the computing world. They are a basic necessity
of every developer; hence, you will find their implementations molded into all programming languages.
Arrays are tightly coupled types, and therefore they are known as homogenous data structures (see
Figure 2-3). This means once an array of a particular data type is declared, it ensures that the data
elements stored must be of the same type.

Figure 2-3. Linear arrangement of a homogeneous order using an array

5645ch02.qxd 3/3/06 11:19 AM Page 48

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 49

The following code example demonstrates how to use an array data structure in .NET:

using System;

class ArrayContainer

{

class Order

{}

static void Main(string[] args)

{

//Create orders

Order order1 = new Order();

Order order2 = new Order();

Order order3 = new Order();

//Declare array of order type

//and add the above three order instance

Order[] orderList = { order1,order2,order3};

//Access the order

Order curOrder = orderList[1] as Order;

}

}

In the previous code, an array of the Order type is declared by allocating space for three elements.
Then the code assigns a value to an individual element of an array. The primary benefit of using an
array is the simplicity it provides in manipulating data elements. An individual data element is accessed
by its ordinal position, using an index. An array is extremely efficient when it comes to searching for
a data element, even if the number of elements stored in the array is large. Another benefit of using
an array is it provides good locality of reference because data elements are arranged in a contiguous
block of memory. An array is one of the basic foundations for building sophisticated data structures.
These data structures are queues, stacks, and hash tables, and their underlying implementations in
.NET are based on arrays.

Array Lists
Array lists inherit the same characteristics of arrays but are specifically designed to address the
shortcomings of arrays (see Figure 2-4).

The foremost problem faced by an array is it is a fixed size—once allocated, an array cannot be
resized in a straightforward manner. The array size is defined either during runtime or during compile
time. After that, the size remains fixed for the entire duration of the program. The only way to redi-
mension an array is to apply a crude approach—by allocating a separate temporary array (which
acts as a temporary storage container for the old data elements), moving the elements from the
source array to the temporary array, and then reallocating a different size to the source array, as
illustrated in the following code:

Figure 2-4. Linear arrangement of a heterogeneous order using an array list

5645ch02.qxd 3/3/06 11:19 AM Page 49

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE50

using System;

class ArrayCopy

{

class Order{}

[STAThread]

static void Main(string[] args)

{

//Create an order array

Order[] orderList = { new Order(),new Order(),

new Order(),new Order()};

//Create a temp array of exactly the same size

//as original order container

Order[] tempList = new Order[4];

//copy the actual items stored in the order array

//to temp order array

Array.Copy(orderList,0,tempList,0,4);

//resize the order array

orderList = new Order[5];

//copy the order items from the temp order array

//to the original order array

Array.Copy(tempList,0,orderList,0,4);

}

}

Array lists alleviate the fixed-size problem faced by arrays. Behind the scenes, array lists follow
the same crude mechanism demonstrated in the previous code, but the mechanism is transparent to
developers. Developers, without worrying about dimension issues, can add data element at runtime.

The other major problem faced by an array is the “type coupleness” behavior. An array list solves
this problem by acting as a universal container and allows you to insert a data element of any data
type. This means an instance of both the value types and the reference type is allowed. However, be
careful when dealing with value types because of the implicit boxing and unboxing penalty cost
incurred at runtime. The internal storage implementation of an array list is of the reference type, and
an instance of the value type that is allocated on the stack cannot be straightforwardly assigned to
a reference type. To achieve this task, the instance of the value type needs to be converted to a ref-
erence type through a process known as boxing. Similarly, in the reverse process known as unboxing,
the boxed value type that is a reference type is converted to its original value type.

The following code example demonstrates various operations performed on array lists and
how different types of orders are added, retrieved, and finally removed:

using System;

using System.Collections;

class ArrayListContainer

{

class Order

{}

class LimitOrder

{}

class IOCOrder

{}

[STAThread]

static void Main(string[] args)

5645ch02.qxd 3/3/06 11:19 AM Page 50

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 51

{

ArrayList orderContainer;

orderContainer = new ArrayList();

//Add regular order

Order order = new Order();

orderContainer.Add(order);

//Add limit order

LimitOrder limOrder = new LimitOrder();

orderContainer.Add(limOrder);

//Add IOC order

IOCOrder iocOrder =new IOCOrder();

orderContainer.Add(iocOrder);

//Access limit order

limOrder = orderContainer[0] as LimitOrder;

//Remove limit order

orderContainer.RemoveAt(0);

//Display total elements

Console.WriteLine("Total Elements : " +orderContainer.Count);

}

}

Quick Sort and Binary Search
Both arrays and array lists provide a simple way to insert and delete an item. However, you must
also take into account the cost involved in locating a specific data element. The simple technique is to
conduct a sequential search where the entire array is enumerated element by element. This approach
sounds sensible if you have only a few elements but proves to be inefficient for large numbers of
items. Additionally, often you have requirements to sort arrays in either ascending order or descending
order. This requirement for both searching and sorting elements illustrates the need for efficient
searching and sorting algorithms. Although several well-known, robust sorting and searching algo-
rithms exist, .NET provides out-of-the-box quick sort and binary search algorithms to cater to the sort
and search requirements. The quick sort is considered to be one of the most highly efficient sorting
algorithms.

The following code demonstrates how elements of arrays are sorted using the quick sort
algorithm:

using System;

class QuickSort

{

static void Main(string[] args)

{

//elements arranged in unsorted order

int[] elements = {12,98,95,1,6,4,101};

//sort element using QuickSort

Array.Sort(elements,0,elements.Length);

//display output of sorted elements

for(int ctr=0;ctr<elements.Length;ctr++)

{

5645ch02.qxd 3/3/06 11:19 AM Page 51

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE52

Console.WriteLine(elements[ctr]);

}

}

}

Similarly, to locate items in an array, the .NET Framework provides a binary search algorithm.
The only prerequisite required for this search algorithm is that the array must be sorted. So, the first
step is to apply a quick sort to ensure that the arrays are sorted either in ascending order or in descend-
ing order. With the incredible increase in the processing power of computers, a search conducted
on 1,000 elements using either sequential search or binary search would make no difference to the
overall performance of an application. However, the binary search technique would easily outper-
form the sequential search when the underlying array contains an extremely large number of items.

The following code demonstrates how to use the built-in binary search algorithm to locate
a specific item in an array:

using System;

class BinarySearch

{

static void Main(string[] args)

{

//elements arranged in unsorted order

int[] elements = {12,98,95,1,6,4,101};

//sort element using quick sort

Array.Sort(elements,0,elements.Length);

//find element using binary search

//i.e find 95

int elementPos = Array.BinarySearch(elements,0,elements.Length,95);

//if exact match found

if (elementPos >= 0)

{

Console.WriteLine("Exact Match Found : " +elementPos);

}

else

//nearest match found

{

//bitwise complement operator

elementPos = ~elementPos;

Console.WriteLine("Nearest Match : " +elementPos);

}

}

}

The search is initiated by calling the Array.BinarySearch static method. If this method returns
a positive value, then it is a success indicator and represents the index of the searched item. However,
if the method fails to find the specified value, then it returns a negative integer, and to interpret it
correctly, you need to apply a bitwise complement operator. By applying this operator, you get a posi-
tive index, which is the index of the first element that is larger than the search value. If the search
value is greater than any of the elements in the array, then the index of the last element plus 1 is
returned.

The code for the binary search and quick sort demonstrated is based on a single-dimensional
fixed array. But in the real world, you will be using an array list to store custom objects such as instru-
ments and order information. Moreover, the binary search and sorting will be based on some
specific attributes of custom objects. So, the interesting question is, how do you apply sorting on

5645ch02.qxd 3/3/06 11:19 AM Page 52

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 53

specific user-defined attributes of the data element? This is possible with the help of the IComparer
interface. The role of this interface is to provide a custom hookup that influences the decision made
by the quick sort and binary search algorithms.

The following code example shows how orders stored in an order container of the ArrayList type
are sorted by order price in ascending order and by quantity in descending order:

using System;

using System.Collections;

class OrderComparer

{

public class Order

{

public string Instrument;

public int Qty;

public int Price;

public Order(string inst, int price,int qty)

{

Instrument= inst;

Qty= qty;

Price= price;

}

}

[STAThread]

static void Main(string[] args)

{

//order collection

ArrayList orderCol = new ArrayList();

//add five orders

orderCol.Add(new Order("MSFT",25,100));

orderCol.Add(new Order("MSFT",25,110));

orderCol.Add(new Order("MSFT",23,95));

orderCol.Add(new Order("MSFT",25,105));

//Invoke the sort function of the ArrayList, and pass the custom

//order comparer

orderCol.Sort(new OrderSort());

//Print the result of the sort

for (int ctr = 0;ctr<orderCol.Count;ctr++)

{

Order curOrder = (Order)orderCol[ctr];

Console.WriteLine(curOrder.Instrument+ ":"

+curOrder.Price +"-" +curOrder.Qty);

}

}

public class OrderSort : IComparer

{

public int Compare(object x, object y)

{

Order ox = (Order)x;

Order oy = (Order)y;

//Compare the price

int priceCompare = ox.Price.CompareTo(oy.Price);

5645ch02.qxd 3/3/06 11:19 AM Page 53

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE54

//Compare the quantity

int qtyCompare = ox.Qty.CompareTo(oy.Qty);

if (priceCompare == 0)

{

//return value multiplied with -1

//will sort quantity in descending order

return qtyCompare * -1;

}

//returns indication of price comparison value

return priceCompare;

}

}

}

In this code, a new instance of OrderSort is created that implements IComparer and is passed
as an argument to the Sort method of ArrayList. OrderSort implements the Compare method of
IComparer. This method compares two values and returns 0 if the first argument is equal to the second
argument. Similarly, if the first argument is less than the second argument, then it returns -1; and in
case the first argument is greater than the second argument, then it returns 1. The value 0, -1, or 1
determines the sort order position of an element in an array. To sort an array in descending order,
you simply multiply this value with -1, which basically reverses the original logical operator.

Queues
In real life, thousands of orders are submitted to the trading system for final processing. These orders
originate from different sources, and it is important to process each order based on its arrival time.
It is also important to acknowledge these individual orders first and then process them asynchronously.
Processing each order synchronously would lead to a higher turn-around time to traders/system users,
which is totally unacceptable during peak trading hours. This scenario demands a data structure that
can do both of these tasks—storing and retrieving data based on its arrival time. A queue is a data
structure that meets this condition. It places data at one end called the entry point and removes it
from the other end called the exit point. Because of this characteristic, a queue is called a first-in,
first-out (FIFO) data structure (see Figure 2-5).

Figure 2-5. Order processed in a FIFO manner

5645ch02.qxd 3/3/06 11:19 AM Page 54

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 55

The following code demonstrates how orders are processed in a FIFO manner using a queue
data structure:

using System;

using System.Collections;

class OrderQueue

{

class Order

{

public string Instrument;

public Order(string inst)

{

Instrument = inst;

}

}

static void Main(string[] args)

{

//Create Queue collection

Queue orderQueue = new Queue();

//Add MSFT order

orderQueue.Enqueue(new Order("MSFT"));

//Add CSCO order

orderQueue.Enqueue(new Order("CSCO"));

//Add GE order

orderQueue.Enqueue(new Order("GE"));

//retrieves MSFT order

Order dequedOrder = orderQueue.Dequeue() as Order;

//peek at CSCO order but do not remove from the queue

Order peekedOrder = orderQueue.Peek() as Order;

}

}

In this code, a queue data structure is constructed by creating an instance of Queue. This class
provides Enqueue and Dequeue methods. Enqueue adds an order at the rear end of the queue, and
Dequeue removes the order from the front end of the queue. Oftentimes you may want to peek at the
front end of the queue and not remove it; in such cases you can use the Peek method, which does
not modify the queue and returns the item without removing it. Also, you can use a Count property
to return the total number of items in Queue.

Stacks
Stacks are popularly known as last-in, first-out (LIFO) data structures (see Figure 2-6); from a func-
tionality point of view, they do the reverse of queues. In a queue, items are served based on a FIFO
basis, whereas in a stack, items are served on a LIFO basis. Stacks push the new item on top of all
the other items, and when requesting data, they pop up the topmost item. Modern compilers use
a stack data structure extensively during the parsing and compilation process.

5645ch02.qxd 3/3/06 11:19 AM Page 55

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE56

Figure 2-6. Order processed in a LIFO manner

The following code demonstrates how orders are processed in a LIFO manner using a stack
data structure:

using System;

using System.Collections;

class OrderStack

{

class Order

{

public string Instrument;

public Order(string inst)

{

Instrument = inst;

}

}

static void Main(string[] args)

{

//create empty stack

Stack orderStack = new Stack();

//push MSFT order

orderStack.Push(new Order("MSFT"));

//push CSCO order

orderStack.Push(new Order("CSCO"));

//pop CSCO order

Order poppedOrder = orderStack.Pop() as Order;

}

}

In this code, a stack data structure is constructed by creating an instance of Stack. This class
provides Push and Pop methods. Push places the new order on top of all orders, and Pop removes and
returns the topmost order. Also, a Count property returns the total number of orders stored in Stack.

Hash Tables
Consider a scenario where a humongous list of orders is stored in an array list. Rarely would you
access an order by its array index; instead, you will be interested in accessing an individual order by
its unique order ID. To accomplish this, you will build your own custom search implementation

5645ch02.qxd 3/3/06 11:19 AM Page 56

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 57

using IComparer, apply a quick sort on the array list, and finally search the order using the binary search
technique. But when the size of the list starts growing at a rapid rate, then this approach sounds
inefficient because on every order insert or delete activity the entire array list needs to be re-sorted.
This is clearly unacceptable from a performance point of view, and therefore you need a different
data structure that conducts efficient searching even during stress conditions. This is where you can
use a hash table. A hash table is one of the most commonly used data structures, and its primary goal
is to increase search efficiency. The search cost incurred by a hash table to locate an item easily out-
performs an array list. Furthermore, this data structure allows you to associate a unique key identifier
to an individual data element to form the base for all kinds of activity. So, any subsequent operation
(such as the search, update, or delete) of a data element on a hash table is conducted using this unique
key identifier.

The following code shows how orders stored in a hash table are tagged by order ID. This key
value then forms the basis for all other operations such as searching or deleting a specific order.

using System;

using System.Collections;

class HashTbl

{

//Order Domain class

public class Order

{}

static void Main(string[] args)

{

//create empty hash table

Hashtable orderHash = new Hashtable();

//add multiple order, order ID is the key

//and the actual instance of Order is the value

orderHash.Add("1",new Order());

orderHash.Add("2",new Order());

orderHash.Add("3",new Order());

//locate a specific order using order ID

Order order = orderHash["1"] as Order;

//Remove a particular order

orderHash.Remove("1");

//check whether order exists with a particular ID

if (orderHash.ContainsKey("2") == true)

{

Console.WriteLine("This order already exist");

}

}

}

In this code, the Hashtable class represents a hash table data structure, and orders are added
using the Add method. This method has two arguments; the first argument is a unique key identifier,
which in this case is the order ID, and the second argument is the actual data element, which is an
instance of Order. After inserting a new order, you can retrieve it using its unique order ID. You can
also delete orders from Hashtable using the Remove method. The previous code also demonstrates the
ContainsKey method, which is used to validate duplicate orders.

5645ch02.qxd 3/3/06 11:19 AM Page 57

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE58

Introducing Specialized Collections
The .NET Framework provides other types of collections specifically tuned for performance and
storage. These collections are grouped under the System.Collections.Specialized namespace.

ListDictionary
ListDictionary is primarily used when the total number of elements to be stored is relatively small.
The internal storage implementation of any data structures is realized in two ways: a linked list or
a vector (array). But in .NET the majority of important data structures such as Hashtable, Queue, and
Stack are based on vectors. ListDictionary is the only collection in which the underlying storage
implementation is based on a linked list. The benefit of using a linked list is that you conserve storage
cost by allocating space only when needed. ListDictionary is recommended only when the total
number of data elements is ten or fewer.

The following code example demonstrates how to use the ListDictionary data structure:

using System;

using System.Collections.Specialized;

class ListDict

{

class Order

{

public string Instrument;

public Order(string inst)

{

Instrument = inst;

}

}

static void Main(string[] args)

{

//create empty list dictionary

ListDictionary listDict = new ListDictionary();

//add MSFT order

listDict.Add("MSFT",new Order("MSFT"));

//add CSCO order

listDict.Add("CSCO",new Order("CSCO"));

//retrieve MSFT order

Order order = listDict["MSFT"] as Order;

Console.WriteLine(order.Instrument);

}

}

HybridDictionary
HybridDictionary, as the name suggests, provides the characteristics of both ListDictionary and
Hashtable. The internal storage implementation of this collection initially uses ListDictionary;
however, as soon as the collection starts growing, it switches to Hashtable, and subsequent opera-
tions are performed on the Hashtable. This decision-making process is completely transparent to
developers. So, in a nutshell, this collection offers the best of both worlds.

5645ch02.qxd 3/3/06 11:19 AM Page 58

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 59

Introducing Multithreading
Financial applications, particularly server-side applications, demand high performance and increased
throughput. The tasks executed by this application are both computational and input/output (I/O)
intensive. Therefore, applications of this kind are usually deployed on multiprocessor machines
where tasks can execute concurrently. Multithreaded programming is the optimal way of leveraging
these hardware resources to their maximum potential. The bright side of multithreading is it is easy
to implement but requires a good amount of understanding of the application design and the under-
lying hardware infrastructure. Threads are one of the expensive resources, and creating too many
threads will impose a serious penalty on the overall performance of applications; on other hand,
fewer threads will result in the underutilization of the processor. Hence, you need to plan a balanced
approach; this is what you will do in the following sections. The .NET Framework offers several ways
of implementing concurrency in managed applications:

• Using .NET thread-pool capabilities

• Using asynchronous delegate infrastructure

• Manually managing threads

Thread Pools
The rationale behind the design of a thread pool in .NET is to utilize the available limited resources
effectively. Although threads are an easy way to achieve parallelism, more threads by any means don’t
represent a scalable application. A hidden cost is associated with an individual thread in terms of
high memory consumption and context switches. Therefore, to reduce this cost, .NET introduces
the concept of a thread pool. Using a thread pool relieves the developer of having to know the details
of how threads are created and managed. This responsibility shifts to the CLR, which creates a pool
of reusable threads to process any type of request. By default, the pool is empty and contains no
threads, but as soon as a new task is allocated, it creates a new thread and starts processing the task.
After completing the task, the thread is not immediately destroyed. Instead, it is recycled back to the
pool, waiting for the arrival of a new task request. When a new task arrives, then the reused thread
immediately picks it up.

The algorithm of a thread pool in .NET is implemented in such a way that when receiving multi-
ple task requests, the number of threads in the pool increases. However, an upper limit exists on the
number of threads, and no new threads are spawned once this maximum value is reached. A thread
pool by default is allowed to create a maximum of 25 worker threads and 25 I/O threads per available
processor. The I/O threads are specifically used to execute I/O-related operations such as reading
data from a disk or network socket. Now, what happens when the pool hits its limit? In this case, the
task request gets queued and is processed as soon as busy threads in the pool complete executing the
allocated task. The pool also has sophisticated logic that monitors the processor utilization before
creating a new thread. If the processor utilization is at its fullest extent, then no new threads are created.
On other hand, when there are no more tasks to execute, then (after a preconfigured time interval
that is internally maintained) the threads in the pool are automatically released.

In .NET the System.Threading.ThreadPool class represents a thread pool. The following code
demonstrates how orders are processed concurrently using a thread pool:

using System;

using System.Threading;

class OrderProcessor

{

public class Order

{

5645ch02.qxd 3/3/06 11:19 AM Page 59

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE60

public string Instrument;

public Order(string inst)

{

Instrument=inst;

}

}

static void Main(string[] args)

{

//Process order using a thread pool

ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessOrder),

new Order("MSFT"));

ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessOrder),

new Order("CSCO"));

Console.ReadLine();

}

public static void ProcessOrder(object order)

{

Order curOrder = order as Order;

Console.WriteLine("Processing Order :" + curOrder.Instrument);

}

}

Tasks in the thread pool are queued by calling the QueueUserWorkItem static method. This method
accepts two arguments; the first argument represents the method to be executed on thread-pool threads
and is defined by an instance of the WaitCallBack delegate. The second argument specifies user-defined
data passed to the method referenced by the WaitCallBack delegate instance. Based on this declaration,
you define the ProcessOrder static method, which drives the actual processing logic of an individual order.

Asynchronous Delegate Infrastructure
The .NET Framework, with the help a delegate, provides a new asynchronous execution pattern that
allows you to execute any method asynchronously. As you know, a delegate is basically an object-
oriented representation of a function pointer, and it can represent any method as long as the method
signature matches the delegate declaration. This is one of the benefits of using a delegate, but the most
important feature is the standard asynchronous infrastructure to execute asynchronous operations.
Typically, when an instance of a delegate is invoked, the underlying method referenced is executed
synchronously. What is interesting is that you can use the same delegate instance to initiate an asyn-
chronous execution of the method, and you can do this with the help of the BeginInvoke and EndInvoke
methods that are automatically defined by the CLR. Additionally, the runtime uses a thread pool to
process the request received from a delegate’s asynchronous method, thus ensuring the effective
utilization of resources.

BeginInvoke defines the asynchronous execution of a method, and upon invocation the control
is immediately returned to the caller. EndInvoke then collects the actual result of the method initiated
by BeginInvoke. Of course, the initiation of the asynchronous method always takes place on a worker
thread and not on the caller thread; however, when it comes to collecting an execution result, an
asynchronous infrastructure offers several approaches to obtain it. In the rest of this section, we discuss
this approach with the help of the following order-processing code example that uses the delegate’s
asynchronous infrastructure to process the order, which in turn generates trades:

using System;

class AsyncDelegate

{

//Order Domain class

5645ch02.qxd 3/3/06 11:19 AM Page 60

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 61

public class Order{}

//Trade Domain class

public class Trade{}

//Delegate used to process order, which in turn returns trades

//generated as a result of this new order

public delegate Trade[] OrderHandler(Order order);

static void Main(string[] args)

{

//instantiate a new order

Order newOrder = new Order();

//create a delegate instance that refers to the processing order

//method

OrderHandler processOrder = new OrderHandler(ProcessOrder);

//begin the processing order in an asynchronous fashion

IAsyncResult orderResult = processOrder.BeginInvoke(newOrder,null,null);

//blocks the current thread until the processing of the order

//that is executed on a thread-pool thread is completed

orderResult.AsyncWaitHandle.WaitOne();

//collect the trades generated as a result of

//asynchronous order processing

Trade[] trades = processOrder.EndInvoke(orderResult);

//display the trades

Console.WriteLine("Total Trade Generated : " +trades.Length);

}

//order processing

public static Trade[] ProcessOrder(Order order)

{

//Process the order

//ideally submit it to matching engine

//and get the trades

//Let's assume we hit some trades for this order

return new Trade[]{new Trade()};

}

}

The previous code example uses a blocking approach to collect the asynchronous method out-
put. Let’s start with the declaration of BeginInvoke. The signature of this method contains the
same parameters as the underlying method referenced by the delegate instance in addition to two extra
parameters that are explained shortly. Using BeginInvoke, the asynchronous processing of the order
is initiated, which is implemented inside ProcessOrder. Upon queuing this task successfully, an
asynchronous token is returned to the caller of the asynchronous method, which is represented by
an instance of IAsyncResult.

The beautiful thing about IAsyncResult is it provides multiple ways of querying the status of an
asynchronous operation; one of them is the blocking approach. Using this approach, the caller thread
is blocked until the asynchronous operation completes. The caller, instead of blocking for an indefinite
period of time, can also specify a timeout value that after expiration resumes executing the caller

5645ch02.qxd 3/3/06 11:19 AM Page 61

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE62

thread regardless of the status of the asynchronous operation. Both of these flavors of blocking are
achieved with the help of the AsyncWaitHandle property of IAsyncResult. This property returns
a WaitHandle object, and the actual blocking happens on the invocation of WaitOne, which is an
overloaded method that supports both indefinite and timeout-based blocking.

When the asynchronous call is completed, the next step is to call EndInvoke to collect the result.
EndInvoke takes an asynchronous token to identify the correct asynchronous operation and return
the method result. Similarly, in the previous code example, to retrieve trades, you call EndInvoke on
an instance of an OrderHandler delegate by correctly passing the IAsyncResult object.

In most situations, you will want to use the callback notification approach to obtain the result
of the asynchronous operation. The callback approach relieves the caller from actively monitoring
the status of the asynchronous operation; instead, a notification method is registered during the
initiation of the asynchronous operation, and the asynchronous infrastructure invokes this method
on the completion of the operation. Another great benefit of this approach is that the processing of
both the asynchronous operation and the notifications are executed on thread-pool threads.

To further demonstrate this concept, the following code notifies trades using a callback
mechanism:

using System;

class OrderProcessorCallback

{

//Order Domain class

public class Order{}

//Trade Domain class

public class Trade{}

//Delegate used to process order, which in turn returns trades

//generated as a result of this new order

public delegate Trade[] OrderHandler(Order order);

static void Main(string[] args)

{

//instantiate a new order

Order newOrder = new Order();

//create a delegate instance that refers to the processing order

//function

OrderHandler processOrder = new OrderHandler(ProcessOrder);

//callback function to be invoked when order processing is completed

AsyncCallback processComplete = new AsyncCallback(TradeGenerated);

//begin the processing order in an asynchronous fashion

//passing the callback delegate instance

IAsyncResult orderResult =

processOrder.BeginInvoke(newOrder,processComplete,processOrder);

Console.ReadLine();

}

//order processing

public static Trade[] ProcessOrder(Order order)

{

//Process the order

//ideally submit it to the matching engine

//and get the trades

5645ch02.qxd 3/3/06 11:19 AM Page 62

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 63

//Let's assume we hit some trades for this order

return new Trade[]{new Trade()};

}

//callback notification after successfully processing order

public static void TradeGenerated(IAsyncResult result)

{

//retrieve the correct method delegate reference

OrderHandler processOrder = ((AsyncResult)result).AsyncDelegate as OrderHandler;

//collect the trades generated as a result of

//asynchronous order processing

Trade[] trades = processOrder.EndInvoke(result);

//display the trades

Console.WriteLine("Total Trade Generated : " +trades.Length);

}

}

To enable asynchronous callback notification, the caller must register the callback method
during the initiation of BeginInvoke. This method accepts two extra parameters that are specifically
related to the callback notification. The first parameter is an instance of the AsyncCallback delegate
that represents the callback method to be invoked when the asynchronous operation completes.
The second parameter represents user-defined information passed to the callback method.

When the operation completes, the asynchronous infrastructure invokes the method referenced
by the AsyncCallback instance. The signature of AsyncCallback contains the IAsyncResult parame-
ter that represents the asynchronous token. On receiving the method completion notification, the
code inside the callback method must invoke EndInvoke on the correct delegate instance to obtain
the result. To do this, you must cast the IAsyncResult parameter to the AsyncResult object in order
to access the AsyncDelegate property that returns the correct delegate instance.

Manual Thread Management
Creating threads manually is the most conventional approach of handling asynchronous-based
operations or introducing parallelism in applications. When threads are constructed manually,
developers are solely responsible for the proper synchronization and handling of interthread com-
munications either using callbacks or using some other mechanism. Developers use this approach
when they require absolute control over the execution of threads. You have to keep a few things in
mind when adopting this approach:

• Code synchronization

• Deadlock prevention

• Interthread notification

Code Synchronization
A program’s execution is said to be consistent when its data or variables’ values are not unintentionally
modified, staying intact and consistent. These are key indicators that drive the overall consistency
of a program. A wrong variable value can change the program execution adversely, giving unexpected
results. Such diversion in the execution of programs to an unexpected state or inconsistent state is
highly visible in multithreaded applications. This is because usually one copy of data is shared
across multiple threads. So, when multiple threads read shared data at the same time and issue an
update operation, then the last thread update is preserved, overwriting the previous thread’s update.

5645ch02.qxd 3/3/06 11:19 AM Page 63

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE64

This is called a race condition and, if not handled properly, could result in corrupted data and could
seriously hamper the overall flow of the application. To avoid race conditions, you must protect the
code in such a way that it is accessible to only one thread at a time; in other words, the code must be
synchronized. This will ensure that at any moment, no more than one thread will execute the code.

In .NET, you can use Monitor to ensure thread-safe access to shared resources. Monitor is a light-
weight and efficient locking mechanism available in a managed environment. It weaves a thread
synchronization block, and code defined inside this block is known as a critical section and is always
thread-safe. The idea is that when a thread tries to execute a critical section of code, it must first
request exclusive ownership on that code, which is initiated by Monitor.Enter. This method accepts
an Object instance on which the exclusive ownership is requested. The key point is that the owner-
ship can be provided to only one thread at a time. So, if multiple threads are requesting at the same
time, then Monitor.Enter guarantees that only a single thread can safely enter and execute the criti-
cal section of code. This way, the execution of code is serialized, and the access to shared resources
is synchronized. A thread, after successfully acquiring ownership on the Object instance, must also
release it to give an opportunity to other blocked threads that require exclusive access to the critical
section of code. To release the exclusive ownership, use Monitor.Exit. Notice that both
Monitor.Enter and Monitor.Exit are paired methods and weave thread-safe code.

The following code example demonstrates how to use Monitor in implementing a central order
book in which multiple threads access this shared resource:

using System;

using System.Collections;

using System.Threading;

class SyncOrder

{

//Order Domain Model

public class Order

{

public string Instrument;

public Order(string inst)

{

Instrument = inst;

}

}

//Order book that stores an individual order

public class OrderBook

{

//arrays to hold orders

ArrayList orderList = new ArrayList();

//synchronization object

private object syncObj = new object();

public void Add(object order)

{

Order newOrder = order as Order;

//acquire exclusive synchronization lock

//start of critical section

lock(syncObj)

{

Console.WriteLine("Order Received : " +newOrder.Instrument);

//Add order into array list

orderList.Add(order);

//update the downstream system

5645ch02.qxd 3/3/06 11:19 AM Page 64

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 65

}

//end of critical section

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//start pumping orders

Order order = new Order("MSFT");

Order order1 = new Order("GE");

//start updating the order book with multiple orders on multiple threads

ThreadPool.QueueUserWorkItem(new WaitCallback(orderBook.Add),order);

ThreadPool.QueueUserWorkItem(new WaitCallback(orderBook.Add),order1);

Console.ReadLine();

}

}

This code example depicts a real-life scenario of a central order book that is a shared resource
and is subject to concurrent access by multiple threads. The operation typically performed on this
shared resource is usually an insert or update of orders. Therefore, it is extremely important to serial-
ize access to an order book to maintain the integrity of information. You do this with the help of the
lock statement, which is a compiler-synthesized statement for Monitor.Enter and Monitor.Exit.

Deadlock Prevention
Multithreading brings better performance to an application. But it also introduces complexity into the
overall execution of the application. To be precise, it is extremely difficult to debug a multithreaded
program, particularly in a situation where bugs are unusual and hard to reproduce. Deadlock between
threads is one of the toughest problems to detect.

The following code explains the cause of deadlock:

using System;

using System.Collections;

using System.Threading;

class DeadLock

{

//Order Domain Model

public class Order

{}

//Position book that maintains instrument net position

public class PositionBook

{

//position book synchronization object

public object posSync = new object();

public OrderBook OBook;

//update and reevaluate instrument position

public void UpdateOrder(object order)

{

//acquire exclusive ownership on position book

lock(posSync)

{

5645ch02.qxd 3/3/06 11:19 AM Page 65

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE66

//acquire exclusive ownership on order book

lock(OBook.orderSync)

{}

}

}

}

//Order book that stores individual order

public class OrderBook

{

public PositionBook PBook;

//order book synchronization object

public object orderSync = new object();

public void Add(object order)

{

//acquire exclusive ownership on order book

lock(orderSync)

{

//acquire exclusive ownership on position book

lock(PBook.posSync)

{}

}

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//create position book

PositionBook posBook = new PositionBook();

//assign reference to respective books

orderBook.PBook = posBook;

posBook.OBook = orderBook;

//create order

Order order = new Order();

//update order book

ThreadPool.QueueUserWorkItem(new WaitCallback(orderBook.Add),order);

//update position service

ThreadPool.QueueUserWorkItem(new WaitCallback(posBook.UpdateOrder),order);

Console.ReadLine();

}

}

This code demonstrates how the order book and position book are interrelated; the order book
maintains the orders, and similarly, the position book maintains the net position of the individual
instrument. By looking at the code, it may seem foolproof and free from any kind of error. However,
upon execution, you will notice that the application occasionally goes into a hung state. The code is
clearly the victim of deadlock because both the order book and position book updates are executed
on a separate thread, and each of these threads is waiting for each other to release exclusive owner-
ship on the shared resources. Assume that the order book successfully acquires a lock on orderSync

5645ch02.qxd 3/3/06 11:19 AM Page 66

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 67

and then attempts to obtain exclusive access on the position book by requesting a lock on
PBook.posSync. This request will never get satisfied because the position book, which has received
an update request from another thread, has already acquired a lock on posSync and is trying to
obtain exclusive access on the order book by requesting a lock on OBook.orderSync. In a nutshell,
neither the order book nor the position book will release its acquired lock, and both will go into an
indefinite waiting period.

The solution to solving deadlock problems resides in the Monitor class. It provides a TryEnter

that is similar to Enter, but it will never go into an indefinite waiting period; instead, it accepts a time-
out value, specifying how long the thread should wait for the lock. When the timeout value expires,
TryEnter returns a value of false, which is an indicator of a deadlock problem in the program.

The following code explains it well:

using System;

using System.Threading;

class DeadLockFree

{

public class PositionBook

{

public object posSync = new object();

public OrderBook OBook;

public void UpdateOrder(object order)

{

//try to obtain position book lock

if (!Monitor.TryEnter(posSync,TimeSpan.FromSeconds(5)))

throw new ApplicationException("Failed to obtain Position Book Lock");

try

{

//try to obtain order book lock

if (!Monitor.TryEnter(OBook.orderSync,TimeSpan.FromSeconds(5)))

throw new ApplicationException("Failed to obtain Order Book Lock");

try

{

//update order book

}

finally

{

//release order book lock

Monitor.Exit(OBook.orderSync);

}

}

finally

{

//release position book lock

Monitor.Exit(posSync);

}

}

}

public class OrderBook

{

public PositionBook PBook;

public object orderSync = new object();

5645ch02.qxd 3/3/06 11:19 AM Page 67

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE68

public void Add(object order)

{

//try to obtain order book lock

if (!Monitor.TryEnter(orderSync,TimeSpan.FromSeconds(5)))

throw new ApplicationException("Failed to obtain Order Book Lock");

try

{

//try to obtain position book lock

if (!Monitor.TryEnter(PBook.posSync,TimeSpan.FromSeconds(5)))

throw new ApplicationException("Failed to obtain Position Book Lock");

try

{

//update position book

}

finally

{

//release position book lock

Monitor.Exit(PBook.posSync);

}

}

finally

{

//release order book lock

Monitor.Exit(orderSync);

}

}

}

}

Interthread Notification
Interthread notification is the most common requirement in a multithreaded application where the
action of one thread depends upon the action of other threads. More simply, the thread is waiting
on a specific condition that is supposed to be satisfied by another thread. For example, say you have
a central order book where orders are queued by one thread, and a dedicated thread is assigned to
dequeuing and processing these orders. This is the most commonly used threading pattern, and we
will demonstrate it by creating a managed thread that provides full control over the execution of the
underlying operating system thread. This is in contrast to the thread pool and asynchronous delegate
where developers are shielded from the underlying complexities of manual thread management.

Here’s the code:

using System;

using System.Collections;

using System.Threading;

class InterThreadSignal

{

public class Order

{}

public class OrderBook

{

Thread orderSweeper;

//event object initially set to nonsignal state

ManualResetEvent manualEvent = new ManualResetEvent(false);

5645ch02.qxd 3/3/06 11:19 AM Page 68

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 69

//create a thread-safe version of queue

Queue orderQueue = Queue.Synchronized(new Queue());

public OrderBook()

{

//create order sweeper thread

orderSweeper = new Thread(new ThreadStart(Process));

//start thread execution

orderSweeper.Start();

}

public void Add(Order order)

{

//enqueue the order

orderQueue.Enqueue(order);

//signal the sweeper thread about arrival of new order

manualEvent.Set();

}

public void Process()

{

while(true)

{

//wait for order to be enqueued

manualEvent.WaitOne();

//set the event to nonsignal state

manualEvent.Reset();

//process the order

while(orderQueue.Count > 0)

{

Console.WriteLine("Processing Order");

//dequeue the order

orderQueue.Dequeue();

}

}

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//start pumping orders

//that will be concurrently processed by sweeper thread

for(int ctr=0;ctr<=10;ctr++)

{

orderBook.Add(new Order());

}

Console.ReadLine();

}

}

5645ch02.qxd 3/3/06 11:19 AM Page 69

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE70

This code is structured in such a way that the queuing of orders is happening on the application’s
default thread, and the processing of orders takes place on a separate worker thread (an order sweeper
thread) that is manually created by instantiating an instance of Thread. This class contains an over-
loaded constructor method that takes an instance of the ThreadStart delegate, which represents the
method to be executed on this new thread. Calling Start on an instance of Thread starts the actual
execution of the managed thread.

It is possible for the order sweeper thread to monitor the arrival of the new order by continuously
iterating over the order queue. But this is not an efficient approach; imagine the amount of proces-
sor utilization consumed when iterating over the queue in a tight-loop fashion, especially when the
queue is empty. What you need is some of kind of notification mechanism that will inform the order
sweeper thread about the arrival of a new order. This is where ManualResetEvent and AutoResetEvent
come to the rescue.

ManualResetEvent and AutoResetEvent are the synchronization event classes used for cross-thread
notification. This notification takes the form of signal state and nonsignal state. Signal state indicates
that the event has occurred, and nonsignal state indicates that the event has yet to occur. So, generally,
threads wait on this event by calling ManualResetEvent.WaitOne or AutoResetEvent.WaitOne, and if the
event is in a nonsignal state, then the thread will get blocked until some action puts it in a signal state
by calling ManualResetEvent.Set or AutoResetEvent.Set. But when it comes to resetting signal
state to nonsignal state, then both ManualResetEvent and AutoResetEvent adopt a different approach.
If ManualResetEvent is used, then you need to explicitly call ManualResetEvent.Reset to set it back to
nonsignal state. In the case of AutoResetEvent, it will automatically reset to nonsignal state as soon
as the waiting thread is notified. To achieve event synchronization in the previous code, we used an
instance of ManualResetEvent that is by default initialized to nonsignal state. This way, the order
sweeper thread will get blocked until it receives a signal, which happens as soon as a new order is
inserted in the queue. After processing all orders from the queue, the order sweeper thread again
blocks, waiting for a signal.

Another important difference between AutoResetEvent and ManualResetEvent is their way of
notifying waiting threads about the signal event. ManualResetEvent is suitable for notifying one or
multiple waiting threads, which is different from AutoResetEvent where only one waiting thread is
notified at a time.

Mutex
Mutex is another form of synchronization mechanism similar to the Monitor class. The mission of
both of these classes is to emit thread-safe code and grant the exclusive access of shared resources
to only one thread at a time. Locks acquired using Mutex are known as heavyweight locks; locks
acquired using Monitor are known as lightweight locks. Mutex gets its heavyweight title because
acquiring and releasing a Mutex-based lock incurs an extra amount of processing overhead. Further-
more, lightweight locks are highly optimized but are specifically tuned to work within the boundaries
of a currently running process. On the other hand, a Mutex is capable of synchronizing code across
multiple processes. Such types of mutexes are known as system-named mutexes.

To illustrate the benefit of a mutex, we’ll show an example of thread synchronization among
multiple processes. In a capital market, most trading systems installed on the trading member end use
a proprietary class library provided by the exchange itself to communicate with their systems. These
libraries are usually single-threaded, and even exchange systems are designed in such a way that only
one request at a time is allowed from an individual broker or institution. Various reasons exist for such
limitations, primarily that exchange systems are legacy systems and are not equipped to handle the
current market infrastructure’s expectations. Therefore, various services running on the broker or
institution end must ensure that only one request at a time is issued to the exchange system.

This scenario is clearly depicted in the following code where the order management service
and the exchange market data service are running as two separate operating system processes. The
order management service is responsible for sending orders to the exchange, and the market data

5645ch02.qxd 3/3/06 11:19 AM Page 70

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 71

service is tasked with the responsibility of periodically retrieving market data from the exchange
system. It is extremely important for both these services to synchronize their interaction with the
exchange, and this is achieved with the help of a Mutex.

using System;

using System.Threading;

class OrderMgmtSvc

{

class Order{}

class OrderBook

{

//create system named mutex

Mutex syncExchange = new Mutex(false,"SyncExchange");

//send order to exchange

public void SendToExchange(Order order)

{

//only one request is allowed to submit to exchange

//therefore it is important to synchronize this access

//among all services

//acquire exclusive ownership

syncExchange.WaitOne();

//send order to exchange

Console.WriteLine("Order sent to Exchange");

Console.ReadLine();

//release the lock allowing other service

//such as exchange mkt data to interact

//with exchange

syncExchange.ReleaseMutex();

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//create order

Order order = new Order();

//send order to exchange

orderBook.SendToExchange(order);

}

}

This code mimics the functionality of an order management service, and its primary task is
sending orders to the exchange that are defined in the SendToExchange method of OrderBook. To ensure
that at any given point of time only one thread is allowed to send a request, you use a system-named
Mutex to achieve this goal. You create a system-named mutex by passing two parameters to the over-
loaded constructor method of Mutex. The first parameter indicates whether the ownership of this
mutex is to be given to the calling thread, and the second argument represents a user-friendly name
of the Mutex. In the previous code example, we specified a default value of false, which doesn’t pro-
vide exclusive ownership of the mutex, followed by a unique mutex name—SyncExchange. When it
comes to sending data to the exchange, at that time the Mutex.WaitOne method is invoked to request
the exclusive ownership of a mutex. If ownership is granted, then the requesting thread resumes its

5645ch02.qxd 3/3/06 11:19 AM Page 71

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE72

execution, or else it is blocked until the mutex is released by its current owner. Assuming the thread
acquires a mutex, then it can safely perform its exchange-related operations, and after completing
this activity, the ownership of the mutex is released by calling Mutex.ReleaseMutex.

The next part of the code describes the market data service that is responsible for market data
management:

using System;

using System.Threading;

class ExchangeMktDataSvc

{

class MktDataManager

{

//create system named mutex

Mutex syncExchange = new Mutex(false,"SyncExchange");

public void RetrieveData()

{

//since we know only one request at a time

//is allowed to submit to exchange

//therefore it is important to

//synchronize this access among all services

syncExchange.WaitOne();

//retrieve market data from exchange

Console.WriteLine("Market Data Service");

//release the lock allowing other service

//such as order mgmt service to interact

//with exchange

syncExchange.ReleaseMutex();

}

}

static void Main(string[] args)

{

//create market data mgr; its primary

//responsibility is retrieving market data published by exchange

MktDataManager mktData = new MktDataManager();

//retrieve market data

mktData.RetrieveData();

Console.ReadLine();

}

}

The importance of the Mutex is clearly highlighted in the RetrieveData method defined in
MktDataManager. To ensure thread synchronization with the order management service, which is
a separate process, an instance of a system mutex is created by passing the same name used by the
order management service. It is important to know the user-friendly name beforehand because that
is the only way to get hold of a shared system mutex.

5645ch02.qxd 3/3/06 11:19 AM Page 72

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 73

Atomic Operation
In a multithreaded environment, an operation is said to be atomic when its multiple steps are com-
bined and executed as a single operation and the current executing thread will not be preempted by
another thread during the execution of this atomic operation. .NET’s Interlocked class provides
atomic operation for variables that are accessed or updated from multiple threads:

using System;

using System.Threading;

class InterLock

{

//Order Domain Model

public class Order

{

public int OrderID;

}

//Order Book

class OrderBook

{

//Static variable that keeps track of last order ID generated

public static int orderId;

//factory method to create new order

public Order CreateOrder()

{

//create order

Order newOrder = new Order();

//create unique order ID

//increment the shared variable value in an atomic manner

int newOrderId = Interlocked.Increment(ref orderId);

//assign the new order ID

newOrder.OrderID = newOrderId;

return newOrder;

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//create new order

Order newOrder = orderBook.CreateOrder();

}

}

The previous code depicts a scenario of generating a unique order ID and assigning it to a newly
created order. To keep a track of this order ID, a static variable of the integer data type is declared in
OrderBook. This variable is accessed and updated by multiple threads, and therefore you need to
implement some kind of synchronization mechanism to maintain the integrity of this value. The
Interlocked class provides methods that enable the synchronization of shared variables in an atomic
manner. Furthermore, the intelligence behind Interlocked is directly implemented inside processor
hardware; therefore, it is faster than other synchronization primitives such as mutexes and critical
sections. Interlocked also provides a Decrement method that is used to decrement values as an atomic
operation.

5645ch02.qxd 3/3/06 11:19 AM Page 73

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE74

Thread Scheduling
When building highly multithreaded applications, the question that is often debated is, what is the
upper limit on the number of threads an individual application can create? Well, the basic rule is to
use as few threads as possible—possibly that the total number of threads must not exceed the total
number of processors installed in a machine—but this is not how it works in the real world. The
purpose of this section is to highlight some important facts about multithreading that will help you
devise a better strategy in outlining the design of a server-side trading application.

Threads are the basic unit of execution, and multiple threads are executed on a single-processor
system. This is possible because of the preemptive scheduling system implemented by Windows
where multiple threads are allowed to create and execute, giving the illusion of parallel execution even
though in reality at any point of time only one thread is being addressed by an individual processor.
A thread is scheduled to execute by the operating system scheduler for a particular amount of time
called a quantum. This quantum value differs from system to system and is managed by the operating
system, but by default on Windows XP the thread length time is 20 milliseconds, and on Windows 2003
it is 120 milliseconds. When a thread is scheduled to run by the scheduler, the thread runs for its allo-
cated quantum; after this quantum expires, the scheduler initiates a process known as context switching
in which the currently active thread state information is saved, a new thread is selected to run, and
its state is loaded and finally executed. Context switching also happens for the following reasons:

• A high-priority thread preempts a low-priority thread.

• A running thread enters a wait state when trying to get exclusive ownership on a resource.

• An active running thread suspends its operation.

• An active running thread enters sleep mode.

Context switching is an expensive operation, and a system with a high number of threads will
encounter a high number of context switches. Therefore, a common solution to reduce context
switches is to create a pool of reusable threads and use this pool to process all application requests.
The System.Threading.ThreadPool class already offers this functionality, and we already covered it
in the “Thread Pools” section.

As already noted, threads are scheduled in a round-robin fashion, but the most important factor
that drives the internal thread-scheduling algorithm is the priority levels associated with an individual
thread. Without going into the low-level details, Figure 2-7 shows how the priority of threads affects
the scheduler’s scheduling policy.

Figure 2-7. Thread scheduling

5645ch02.qxd 3/3/06 11:19 AM Page 74

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 75

By default, when a managed thread is created in .NET, it is assigned a normal thread priority.
You can assign the priority of a thread with the help of the Thread.Priority property. This property
accepts an enumerated value of the ThreadPriority type. Even though ThreadPriority defines five
levels of thread priorities, in reality Windows internally uses 32 priority levels from 0–31; Table 2-8
represents this mapping.

Table 2-8. Thread Priority Levels

Managed Thread Priority Level Windows Internal Thread Priority Level

ThreadPriority.Lowest 6

ThreadPriority.BelowNormal 7

ThreadPriority.Normal 8

ThreadPriority.AboveNormal 9

ThreadPriority.Highest 10

The Windows scheduler internally maintains a queue for the individual priority level. This
individual queue contains a list of ready threads waiting to be executed. The scheduler schedules
threads stored in this queue, which starts at priority level 31. Note that a higher number indicates
a higher priority level. Threads with higher priority values will always run and preempt lower-priority
threads. This also means a high-priority thread will always get a much larger share of the processor
compared to a low-priority thread.

When building front-office systems, sometimes it is necessary to tweak a thread’s priority level
to get better performance. For example, multiple order books are created for individual instruments,
and during peak times not all instruments are active. It is only a few specific instruments that are
highly volatile in nature. So, assuming that the processing of an individual order book is assigned to
an individual thread, then you can lift the thread priority of a highly volatile instrument order book
to a higher level so that it gets a good amount of processor time to process orders quickly.

The following code example illustrates this scenario where a thread assigned to process the MSFT
order book gets a higher priority:

using System;

using System.Threading;

class OrderBookPriority

{

class OrderBook

{

//dedicated thread to process orders

private Thread orderSweeper;

public OrderBook(string instrument,bool highPriority)

{

orderSweeper = new Thread(new ThreadStart(Process));

//if it is a high-priority order book

//then we need to ensure that this order book

//gets maximum processing time

if (highPriority == true)

orderSweeper.Priority = ThreadPriority.Highest;

//start thread execution

orderSweeper.Start();

}

5645ch02.qxd 3/3/06 11:19 AM Page 75

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE76

public void Process()

{

//order-processing code goes here

}

}

static void Main(string[] args)

{

//create MSFT order book

//we want to make sure the orders of Microsoft are quickly processed

//and therefore we raised the thread priority to highest

OrderBook orderBook = new OrderBook("MSFT",true);

Console.ReadLine();

}

}

On a multiprocessor system, the scheduler schedules an individual thread’s execution on an
available processor. The scheduler will always attempt to schedule an individual thread on its previ-
ously assigned processor, but during a heavy system load it may not always succeed and will be
forced to assign a different processor. The scheduler also supports thread affinity, which enables
a thread to be affinitized on a specific processor. In the trading world, this feature proves extremely
useful in establishing a processor balance between multiple threads. For example, imagine an order
book–processing application installed on a multiprocessor machine. This machine contains four
processors and handles the load of twenty instruments, with individual instrument processing
offloaded to a dedicated thread. So, the Windows scheduler will schedule these twenty newly created
threads on four processors. But from a business point of view, out of twenty instruments, only ten of
them will be highly volatile, and the rest of them will not be that active. Taking this into account, we
affinitized the first three processors with threads of the highly volatile instruments, and the remain-
ing threads were assigned to the last processor. This will ensure that the scheduler will schedule all
three threads on an individual processor that is different from the last processor in which a total of
ten threads are configured to run. This is equivalent to assigning a dedicated processor to process
only three instruments.

The following code demonstrates this example:

using System;

using System.Threading;

using System.Diagnostics;

class InstrumentBalancing

{

//Enumerated flag used to specify

//the list of processor on which threads are

//affinitized

[Flags]

public enum Processor

{

CPU1=1, //1st bit

CPU2=2, //2nd bit

CPU3=4, //3rd bit

CPU4=8 //4th bit

}

class OrderBook

{

//dedicated thread to process orders

private Thread orderSweeper;

Processor procMask;

5645ch02.qxd 3/3/06 11:19 AM Page 76

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 77

public OrderBook(string instrument,Processor mask)

{

procMask = mask;

//create order sweeper thread

orderSweeper = new Thread(new ThreadStart(OrderProcess));

orderSweeper.Start();

}

public void OrderProcess()

{

//Get current running process instance

Process curProcess = Process.GetCurrentProcess();

//Get the list of threads running in this process

foreach(ProcessThread osThread in curProcess.Threads)

{

//ProcessThread represents an operating system thread

//whereas Thread represents managed thread

//we need to find the corresponding OS thread for the

//current managing thread

//Get managed thread ID

int threadId = AppDomain.GetCurrentThreadId();

//check thread ID with current as thread ID

if (osThread.Id == threadId)

{

int mask = (int)procMask;

//Set processor affinity

osThread.ProcessorAffinity = (IntPtr)mask ;

}

}

//start processing the order

}

}

static void Main(string[] args)

{

//Allocate first CPU for processing MSFT orders

OrderBook msftBook = new OrderBook("MSFT",Processor.CPU2);

//Allocate second CPU for processing IBM orders

OrderBook ibmBook = new OrderBook("IBM",Processor.CPU2);

//Allocate third and fourth CPUs for processing GE orders

OrderBook geBook= new OrderBook("GE",Processor.CPU3 | Processor.CPU4);

Console.ReadLine();

}

}

Collections and Multithreading
Data structures such as arrays, queues, and so on, are the primary storage mechanisms used for
storing in-memory data. It also means that data will be simultaneously accessed or updated by
multiple threads. .NET offers two variants of data structures primarily for a queue, hash table, stack,

5645ch02.qxd 3/3/06 11:19 AM Page 77

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE78

and array list. The first variant is meant to be used in single-threaded applications, and the second
variant is specifically meant to be used in multithreaded applications.

The following code represents a list data structure that is not thread-safe and, when accessed
by multiple threads, results in inconsistent program output:

using System;

using System.Collections;

class SingleThreadArray

{

static void Main(string[] args)

{

//not a thread-safe list

ArrayList orderList = new ArrayList();

}

}

To guarantee thread safety, you need to use a thread-safe list, as illustrated in the following
code example:

using System;

using System.Collections;

class MultiThreadArray

{

static void Main(string[] args)

{

//thread-safe list

ArrayList orderList = ArrayList.Synchronized(new ArrayList());

}

}

You obtain a thread-safe version of the list data structure by invoking the Synchronized static
method defined in the ArrayList class. Such a similar method is available on the Hashtable, Stack,
and Queue classes. Upon the successful invocation of the Synchronized method, a new instance of
SyncArrayList is created, which is basically a thread-safe wrapper over ArrayList. For example:

public static ArrayList Synchronized(ArrayList list)

{

if (list == null)

{

throw new ArgumentNullException("list");

}

return new ArrayList.SyncArrayList(list);

}

SyncArrayList is derived from ArrayList, and its visibility mode is private, which means it is
not publicly accessible to the external world. The internal implementation of this class overrides
only those methods that modify or access shared data. For instance, as shown in the following code,
the Add and Remove methods are overridden because both of these methods can be invoked by mul-
tiple threads and the operation performed by them directly affects the state of the shared data.

[Serializable()]

private class SyncArrayList : ArrayList

{

private ArrayList _list;

//sync root

private object _root;

5645ch02.qxd 3/3/06 11:19 AM Page 78

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 79

internal SyncArrayList(ArrayList list) : base(false)

{

this._list = list;

this._root = list.SyncRoot;

}

public override int Add(object value)

{

int num1;

//acquire lock

lock (this._root)

{

num1 = this._list.Add(value);

}

return num1;

}

public override void Remove(object value)

{

//acquire lock

lock (this._root)

{

this._list.Remove(value);

}

}

}

The previous code snippet is a partial implementation of SyncArrayList. By looking at the code
of the Add and Remove methods, you should be able to understand the technique used in achieving
code synchronization. A monitor object, _root, is used to guarantee thread safety.

The other interesting property of ArrayList is SyncRoot, which returns the internal root object
used by SyncArrayList to gain an exclusive lock before performing any update operations. The pur-
pose of this property is to provide a way for other parts of the application code that are beyond the
control of SyncArrayList to synchronize with collections. For example, the order book container
that uses ArrayList to store orders also provides support to enumerate an individual order such as
top-five functionality. Top-five functionality refers to the best five orders at that moment in time.
The biggest problem with enumeration is that it is not a thread-safe operation, and other threads
can still add or remove orders from the order book while enumeration is in progress. To guarantee
thread safety, you should lock the list.

The following code shows how to achieve this:

using System;

using System.Threading;

using System.Collections;

class SyncRoot

{

//Order Domain model

class Order{}

//Order Book

class OrderBook

{

//create thread-safe list

ArrayList orderList = ArrayList.Synchronized(new ArrayList());

public void Add(object order)

{

5645ch02.qxd 3/3/06 11:19 AM Page 79

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE80

//Add order

orderList.Add(order);

}

public void Remove(object order)

{

//Remove order

}

public ArrayList TopFive()

{

//create temporary list to hold top-five orders

ArrayList topFive = new ArrayList();

//Lock the collection so that the orders

//returned are accurate

lock(orderList.SyncRoot)

{

//Iterate and retrieve top-five orders

int ctr=0;

foreach(Order order in orderList)

{

topFive.Add(order);

if (ctr > 5)

break;

else

ctr++;

}

}

return topFive;

}

}

static void Main(string[] args)

{

//create order book

OrderBook orderBook = new OrderBook();

//start inserting orders on different thread

Order newOrder = new Order();

ThreadPool.QueueUserWorkItem(new WaitCallback(orderBook.Add),newOrder);

//create another new order

newOrder = new Order();

ThreadPool.QueueUserWorkItem(new WaitCallback(orderBook.Add),newOrder);

//Retrieve top-five orders on different thread

ThreadPool.QueueUserWorkItem(new WaitCallback(TopFiveOrder),orderBook);

}

public static void TopFiveOrder(object oBook)

{

//Retrieve top-five orders

OrderBook orderBook = oBook as OrderBook;

ArrayList topFive = orderBook.TopFive();

}

}

5645ch02.qxd 3/3/06 11:19 AM Page 80

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 81

UI Widgets and Multithreading
Even though we have not covered anything about user interface (UI) widgets, it is essential for you
to know the quirks and foibles of implementing multithreading in Windows form–based applications.
It is true that the user interface for an application is the first step of attracting user attention. It also
stamps an indelible impression that has a long-lasting effect. Most of the time, developers do a pretty
decent job of embellishing the user interfaces of applications by using sophisticated UI controls. After
completing the look-and-feel task, the next biggest challenge is to increase user responsiveness by
allowing users to perform multiple tasks at the same time and also provide a way to abort a long-
running task.

An example commonly found in the financial world is implementing parallelism in a bulk order
upload form. This form uploads bulk order information that is stored in a tab- or comma-delimited
text file. Such upload activity is a time-consuming process, and sometimes the total number of orders
to be uploaded is significantly large. To stop users from falling sleep, developers make the upload
activity more interactive by displaying a progress bar that continuously displays the status of the
upload along with a cancel button that allows users to abandon the entire upload process.

Developing this type of upload program is pretty simple. You need to create a new form, lay out
the appropriate widgets such as a progress bar and a cancel button on the form, and eventually write
a code that spawns an additional worker thread along with the default thread created by the appli-
cation. This worker thread is assigned the task of reading individual order information from a source
file and notifying the progress bar control of its status. With the worker thread doing the heavy lifting,
the default application thread becomes highly responsive to user actions.

Now imagine if you offload this heavy-lifting task from the worker thread to the default application
thread; the user interface activities freeze, and the application remains unresponsive until the upload
activity completes. The reason for this kind of behavior is that even though the application’s default
thread shares the same characteristics of the worker thread, the default thread is assigned the additional
task of processing user interface–related messages. The application thread spawned by a Windows
form application, because of its special purpose, is called a UI thread, as shown in Figure 2-8.

Figure 2-8. UI thread processing messages stored in a UI queue

From a technical implementation perspective, every UI action (such as a form click, a button
click, a window move, a window resize, and so on) that is triggered by users is materialized in the
form of a UI message. You have two ways of generating UI messages. One is an implicit way, which
is generated as a result of a user action, and the other one is the explicit way, which is triggered
when widget aesthetic characteristics are programmatically modified, which in turn forces a repaint
of the controls. The UI messages are stored in a special queue known as the UI message queue, and

5645ch02.qxd 3/3/06 11:19 AM Page 81

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE82

an individual message is then processed by a UI thread in a sequential manner. A strong bond exists
between the UI queue and the UI thread, because the UI thread is aware of this queue and knows
how to honor messages residing in this queue.

So, what are the repercussions of modifying UI widget properties from a worker thread? Well,
this certainly shakes the fundamentals of GUI programming in Windows. The general principle is
that the widget member must be invoked only from the UI thread and not from any other thread. So,
when the worker thread wants to update the widget, it must employ a bit of a trick. Widgets available
in a Windows control collection expose thread-safe members, Invoke and BeginInvoke, that allow
freehand invocation from any thread. BeginInvoke is an asynchronous version of Invoke, and both
methods are defined in System.Windows.Forms.Control, which is a base class for UI controls. These
members are termed as thread-safe because the execution of these members always happens on
the UI thread, regardless of the thread from which they are being invoked.

To further simplify this concept, we have designed a WinForm application, as depicted in
Figure 2-9, with a progress bar and two command buttons rendered on a bulk order upload form.

Figure 2-9. Bulk order upload form

By clicking the Upload button, the bulk order import activity starts and is executed on the
worker thread. The code for achieving this task is as follows:

private void btnUpload_Click(object sender, System.EventArgs e)

{

//Starts the bulk order upload on worker thread

ThreadPool.QueueUserWorkItem(new WaitCallback(BulkOrderUpload));

}

The core logic of uploading the bulk order is defined in BulkOrderUpload, which is executed on
one of the threads from the thread pool. With the help of a progress bar control, users are informed
about the progress of this bulk import activity. So, somehow the worker thread must send a message
to the UI thread to update the progress bar control; this happens by calling the Invoke method on
the progress bar control, as shown in the following code. The Invoke method accepts a delegate and
an optional parameter list and always arranges the execution of the delegate on the UI thread.

public delegate void SetProgressBar(int value);

private void UpdateProgressBar(int current)

{

//update the progress bar control

uploadProgressBar.Value = current;

}

private void BulkOrderUpload(object state)

{

int ctr=0;

int totalRecords=1;

5645ch02.qxd 3/3/06 11:19 AM Page 82

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 83

//Read bulk order import file, and initialize the values

//such as total number of orders to import

//start iterating individual order

while(ctr < totalRecords)

{

//update progress bar control value

//this needs to be done on UI thread

uploadProgressBar.Invoke(new SetProgressBar(UpdateProgressBar),

new object[]{ctr});

}

}

Server Timer
An event is a notification that is triggered in response to an action. This action could be initiated by
users or could be because of a change in state. Based on this action, events are broadly classified as
user events, state-change events, and timer events:

• User events are generated as a result of user actions. Examples of such events are the user
clicking the mouse or navigating around controls using the keyboard.

• State-change events are generated as a result of programmatic action. For example, program-
matically updating the text of a textbox widget forces a redraw of the UI control and also raises
an event.

• Timer events are recurring events and are triggered at particular intervals.

Timer events play an important role in implementing actions that are configured to occur at
a predefined interval. In the financial world, the most notable example of a timer event is the periodic
exchange of heartbeat messages between a trader’s system and the exchange’s system. Failure to
dispatch a message by the trader’s system in a timely manner would sometimes result in the abrupt
termination of a session with the exchange system, which in turn would bring the trading operation
to a complete halt. So, from a technical implementation perspective, you need an effective timer
architecture that provides both accuracy and scalability, and this is where the Timer class defined in
the System.Threading namespace comes into action. This class uses threads in a .NET thread pool
to raise and execute events when the user-defined timer interval expires.

The following code illustrates how a server timer is configured to send a heartbeat message to
the exchange system at an interval of 2 seconds:

using System;

using System.Threading;

class ServerTimer

{

class ExchangeGateway

{

//Server Timer

public Timer hbTimer;

//Callback method invoked at an interval of 2 seconds

public void SendHeartBeat(object state)

{

//Disable the timer

//to avoid code-reentrancy problem

hbTimer.Change(Timeout.Infinite,Timeout.Infinite);

//Send message to exchange

5645ch02.qxd 3/3/06 11:19 AM Page 83

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE84

//Enable the timer

//schedule start and subsequent invocation of callback

//after every two seconds

hbTimer.Change(TimeSpan.FromSeconds(2),TimeSpan.FromSeconds(2));

}

public ExchangeGateway()

{

//Create server timer, and pass the callback method that

//is periodically notified at an interval of two seconds

//start the timer immediately

hbTimer = new Timer(new TimerCallback(SendHeartBeat),null,0,2000);

}

}

static void Main(string[] args)

{

//create exchange gateway responsible

//for all communication with exchange

ExchangeGateway gateWay = new ExchangeGateway();

Console.ReadLine();

}

}

You can enable a server timer by constructing an instance of Timer. This class has four overloaded
constructors, and each one differs mainly by how timer interval values are assigned. The first param-
eter requires an instance of the TimerCallback delegate, which actually represents the timer callback
method. The second parameter defines application-specific information that is supplied to the call-
back method. The third and fourth arguments are essential and determine the timer interval. To
immediately schedule the timer, pass a value of 0 to the third argument, or you can also specify an
amount of time (in milliseconds) to wait before scheduling the first timer execution. The last argu-
ment determines the frequency of the timer (in milliseconds). In the previous code, we immediately
start the timer and configure it to send a heartbeart message to the exchange, which is defined in
SendHeartBeat of ExchangeGateway at a 2-second interval.

Since the execution of a callback method always takes place on thread-pool threads, it may lead
to a code-reentrancy problem. This may happen if the total execution time of the callback method
exceeds a timer’s firing interval. To guard timer code from multithreaded problems, the timer must
be disabled and reenabled on the entry and exit of the callback method. You can do this by invoking
the Change method, which reconfigures the start time and frequency of the timer.

Examining the Business-Technology Mapping
This section covers how to translate the order-matching business requirement into a technical
implementation. The key element in designing an order-matching engine is efficiency, which is how
quickly an order gets matched with its counterpart. Furthermore, when the market is at its peak,
thousands of orders are queued, with each order trying to locate its best fit and eventually resulting
in a successful trade. If you analyze this scenario from a technical standpoint, it would involve some
kind of data container that holds all these orders. Data containers are usually built based on the nature
of an order, that is, one container for buy orders and another for sell orders. Each order searches
through the other container to find a successful match. Matching can be further categorized as follows:

• In-memory matching

• Out-memory matching

5645ch02.qxd 3/3/06 11:19 AM Page 84

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 85

In-memory matching, as the name indicates, is a match that is performed in the memory. Such
matching demands a larger memory capacity, because the entire data needs to be hosted in mem-
ory. Data constructed in the memory results in a fast pass-through, and orders are quickly located.
Absolutely no disk I/O activity is involved.

On the other hand, out-memory matching is conducted with the help of a commercial,
off-the-shelf database product such as Sybase, Oracle, or SQL Server. Here data is stored in database
tables in the form of rows and columns. This is less efficient than in-memory because it brings
relational database overheads. Also, every data read/write operation needs to be transaction aware
and logging aware, which leads to a heavy amount of disk I/O operations. This also brings some
attention to the three aspects that are crucial from a data container design perspective:

• How fast an item gets attached to its underlying container (insertion)

• How fast an item gets detached from its underlying container (deletion)

• How efficiently an item gets sought (search)

It is clear that the underlying storage mechanism of data containers must be efficient and pro-
vide support for an implementation of a time-proven search algorithm. The search algorithm must
not only allow for the faster seeking of an individual item but also must live up to its promise of not
deteriorating performance when the items in the container keep increasing exponentially.

If you extend the concept of algorithm implementation to the relational database world, data is
stored in the form of rows and columns and encapsulated inside a table. This is an abstraction wrapped
over the actual data container by the vendor. However, the underlying implementation is kept close
to the vendor’s chest and hence provides fewer controls for fine-tuning. This does not mean it is not
optimal to use a relational database; rather, it requires a developer to take advantage of RDBMS indexes
and the power of Transact-SQL to perform a one-to-one match. In addition to this, each database
vendor provides specific database settings that are exclusively designed to work in their own database
products, which ultimately give a double-edged performance boost.

But in the case of in-memory matching, many options are available. In-memory matching brings
together the virtues of both a robust data container and an efficient algorithm. It also allows working
at low levels of precision wherever possible. However, the business requirement is the key driver that
influences the decision of out-memory over in-memory matching. Also, keep in mind that extra fea-
tures come with extra cost. The cost associated with in-memory matching is that the data is held in
volatile storage, making it transient in nature. In the event of an abrupt failure, data will be wiped
out. To overcome this problem, you may require a fair amount of “plumbing” code to make the
data immortal. In the case of out-memory matching, data is persistent and hence automatically
reconstructible.

Now that you understand the domain problems, it’s time to implement the data structures and
threading covered in the earlier technical sections of this chapter. Order-matching applications are
mainly founded upon data structures, and so far we have covered the basic data structures (such as
arrays, array lists, hash tables, queues, and so on) that come as part and parcel of the base framework.
You can easily extend these basic collections to form new specialized data containers. Moreover,
another rationale behind in-memory matching is the need for high-end performance, which is pos-
sible only when data is manipulated in memory. The candidates that best fit this list are the classes
under the System.Collection namespace that provide the virtues of both a robust data container
and an efficient algorithm.

In Figure 2-10, various sources provide orders. Some of these orders originate from a broker’s
trading desk, and some of them come directly from customers through the Internet. These orders
are then funneled into what we will call a business domain. A business domain maps a business entity
or a business unit. The equities market is treated as a separate domain from the foreign currency
market domain.

5645ch02.qxd 3/3/06 11:19 AM Page 85

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE86

Once the business domain receives orders, the orders are then handed over to an order proces-
sor that handles the scalability aspects of the framework by providing an order-processing platform
for a single instrument or a group of instruments. The order processor is built upon a queue in which
orders are queued based on arrival time, and a dedicated order dispatcher continuously monitors and
processes this queue. When new orders arrive, the order dispatcher processes them, and the central
order book is updated. From an implementation point of view, the queue of the order processor is
realized by the System.Collections.Queue class, and the order dispatcher responsible for processing
orders from the queue is realized by the System.Threading.Thread class. To further optimize the
monitoring of operations performed by the order dispatcher, a signal-based notification approach
is adopted. This approach uses System.Threading.ManualResetEvent, which will signal the order dis-
patcher thread on the arrival of a new order.

Figure 2-10 shows a one-to-one mapping between the order processor and instrument. So, if
there are 250 instruments, then 250 order processors will be created. But you should avoid this strategy;
because every new order processor results in the creation of one dedicated thread, too many threads
will result in a higher number of context switches, eventually deteriorating performance. The most
sensible approach is to create a dedicated order processor for highly volatile instruments and then
create the necessary order processor for a group of instruments.

The next step that the order processor undertakes is to perform bookkeeping by placing the new
order in the central order book, as shown in Figure 2-11.

From a conceptual standpoint, the order book represents the massive storage of orders arranged
in a table. If you transform this conceptual view into a technical implementation, then you can nest
orders in the System.Collections.ArrayList class. Using System.Collections.ArrayList undoubtedly
meets this requirement; from a flexibility standpoint, it is a hardwired approach. Hence, you can adopt
a mixed approach by using both System.Collections.Hashtable and System.Collections.ArrayList.

Figure 2-10. High-level implementation of an order-matching engine

5645ch02.qxd 3/3/06 11:19 AM Page 86

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 87

The monolithic order book is segregated into a tree structure, where every node occupies one
of the key attributes of the order. Such hierarchical arrangement of data compared to raw tabulated
data gives further flexibility in grouping orders. Orders can now be easily classified based on certain
business characteristics. These business characteristics are laid down in the form of individual tree
nodes, and three levels have been identified in the tree:

• Level 1 (Instrument)

• Level 2 (Order Type)

• Level 3 (Buy/Sell)

Level 1 of the tree is mapped to an instrument; for example, MSFT and IBM will form two nodes
at Level 1. Level 2 is defined according to the order types that are categorized based on a special set
of attributes associated with every order. This attribute identifies the type of order, such as a market
price order, limit price order, IOC order, and so on. The final leaf level in the tree is mapped to the buy
and sell legs of an order. Hence, it is logical to have two nodes representing Buy and Sell, because the
business logic performed on these leaf levels will be different. Below the leaf level resides the internal
storage implementation of the order book where orders are finally seated.

A tree is implemented using the System.Collections.Hashtable class; similarly, System.
Collections.ArrayList is used to store orders. The reason for using System.Collections.ArrayList
is that, besides its programming simplicity combined with its sequential nature of arranging elements,
it also offers ready-to-use sort (quick sort) and search (binary search) algorithms. Figure 2-11 illus-
trated the need for quick sort and also explained that in the business specification the buy-side orders
are arranged in descending order of bid prices and the sell-side orders are arranged in ascending order
of offer prices. Although the quick sort algorithm solved one of the most important requirements of
the business, elements stored inside System.Collections.ArrayList are custom order objects. So, to
sort these data elements based on a particular field, the System.Collections.IComparer class is used.
This drives both sort and search behavior in an ArrayList.

Figure 2-11. Central order book

5645ch02.qxd 3/3/06 11:19 AM Page 87

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE88

So far, we have discussed the storage aspect of an order, not the matching component. The
matching component hides the core matching logic and varies from market to market. Therefore,
the matching component needs to be separated from the order-matching framework. In this way,
the order-matching framework is solely responsible for looking after the infrastructure details such
as optimizing data structure, parallelism, and so on, and the business logic is defined outside the
context of the framework and plugged at runtime. The operations performed inside this matching
component have a direct effect on the state of an order. Orders are classified into three states, as fol-
lows, and the transition from one state to another is determined by a condition that usually differs
from business to business:

Active (pre-insert): The order before insertion is in the “active” state. It gives an opportunity to
the business component to execute any business-related logic that may even cancel this insert
operation based on certain conditions.

Passive (insert): The order when permanently stored in the order container is considered to be
in the “passive” state. It is not necessary for every order to go into the passive state. It is possible
that an active order, when passed to a business-matching component, may immediately find
a counterpart order and not satisfy the condition required to go into the passive state.

Inactive (removed): The order when finally removed from the underlying container is switched
to an “inactive” state.

This concludes the business-technology mapping section. The next section covers the code-level
details required to implement a prototype of an order-matching engine.

Class Details
Figure 2-12 shows the order-matching engine class diagram, and Figure 2-13 shows the order-matching
engine VS .NET project structure.

Figure 2-12. Order-matching engine class diagram

Code Snippets
The following sections show the code for each class of the order-matching engine.

5645ch02.qxd 3/3/06 11:19 AM Page 88

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 89

Order
Order is the triggering point of a successful transaction, and its values directly contribute to the
overall functioning of the order-matching engine. But in the real world, you can further classify
information that constitutes an order by its commonality and variability attributes. Every order,
regardless of the context in which it is created (context in this sense implies the underlying market
such as the equities market, the derivatives market, the forex market, or the auction market), com-
prises the following common attributes:

Instrument: This is the name of the product for which an order is initiated. Product is a more
generic term and often gets translated to more domain-specific terms that fit well in the domain’s
vocabulary. In the equities world, an instrument maps to a symbol; similarly, in a book’s auction
market, an instrument maps to the name of the book that is to be traded.

Order type: This represents the nature of an order that allows the imbibing of some domain-
specific peculiarities.

Buy or sell: This attribute represents the actual motive or intention of an order.

Price: This is the price at which the buyer or seller is willing to offer this order.

Quantity: The number of shares.

Order ID: The unique ID that allows easy traceability of an order.

Time stamp: The creation time of an order.

The previous common information is captured in an abstract Order class from which every
concrete order class must derive.

Here’s the code for Order:

using System;

using System.Threading;

namespace OME.Storage

{

public abstract class Order

Figure 2-13. Order-matching engine project structure

5645ch02.qxd 3/3/06 11:19 AM Page 89

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE90

{

string instrument;

string buySell;

string orderType;

double price;

int quantity;

static long globalOrderId;

long orderId;

DateTime orderTimeStamp;

public Order()

{

//Generate Default Values

//Global unique order ID

orderId = Interlocked.Increment(ref globalOrderId);

//Order Time Stamp

orderTimeStamp = DateTime.Now;

}

public DateTime TimeStamp

{

get{return orderTimeStamp;}

}

public string Instrument

{

get{return instrument;}

set{instrument=value;}

}

public string OrderType

{

get{return orderType;}

set{orderType=value;}

}

public string BuySell

{

get{return buySell;}

set{buySell=value;}

}

public double Price

{

get{return price;}

set{price=value;}

}

public int Quantity

{

get{return quantity;}

set{

if (value < 0)

quantity = 0;

else

quantity=value;

}

}

5645ch02.qxd 3/3/06 11:19 AM Page 90

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 91

public long OrderID

{

get{return orderId;}

set{orderId=value;}

}

}

}

EquityOrder
EquityOrder is a specialized order inherited from the Order abstract class. This class allows the fur-
ther augmentation of an order by allowing annotation of additional information that is applicable
only in an equities market.

Here’s the code for EquityOrder:

using System;

using OME.Storage;

namespace EquityMatchingEngine

{

public class EquityOrder : Order

{

public EquityOrder(string instrument,string orderType,

string buySell,double price,int quantity)

{

this.Instrument = instrument;

this.OrderType = orderType;

this.BuySell = buySell;

this.Price = price;

this.Quantity = quantity;

}

}

}

PriceTimePriority
The PriceTimePriority class defines the logic of how orders are ranked; this determines the positional
placement of an order in an order book. You are already aware that in an equities market orders are
arranged by price and time priority and matching is performed at a touchline price. In an order book,
the highest buy price and the lowest sell price occupy the top positions. This class is decoupled
from the framework’s internal implementation, which allows developers to easily replace the order-
ranking logic.

Here’s the code for PriceTimePriority:

using System;

using System.Collections;

using OME.Storage;

namespace EquityMatchingEngine

{

public class PriceTimePriority:IComparer

{

public int CompareOrder(Order orderX,Order orderY,int sortingOrder)

{

//Compares the current order price with another order price

int priceComp = orderX.Price.CompareTo(orderY.Price);

5645ch02.qxd 3/3/06 11:19 AM Page 91

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE92

//If both prices are equal, then we also need to sort according to

//order time stamp

if (priceComp == 0)

{

//Compare the current order time stamp with another order time stamp

int timeComp = orderX.TimeStamp.CompareTo(orderY.TimeStamp);

return timeComp;

}

//since the sorting order for the buy and sell order book is different

//we need to ensure that orders are arranged accordingly

//buy order book - highest buy price occupies top position

//sell order book - lowest sell price occupies top position

//therefore, sortingOrder helps to achieve this ranking

//a value of -1 sorts orders in descending order of price and ascending

//order of time

//similarly, a value of 1 sorts orders in ascending order of price

//and ascending order of time

return priceComp * sortingOrder;

}

public int Compare(object x, object y)

{

Order orderX = x as Order;

Order orderY = y as Order;

//For a buy order, the highest buy price occupies the top position

if (orderX.BuySell == "B")

return CompareOrder(orderX,orderY,-1);

else

//For a sell order, the lowest sell price occupies the top position

return CompareOrder(orderX,orderY,1);

}

}

}

Container
Container to the outside world is a repository of orders. It is important to raise the abstraction level
to the outside world of how orders are inserted and deleted in a repository by wrapping them inside
a Container class; remember, the deletion, insertion, and search (DIS) ingredients play a key role in
determining the storage efficiency of an order-matching engine. If a particular data structure proves
to be inefficient in meeting a business need, then it can be transparently replaced with no interven-
tion from the outside world.

Here’s the code for Container:

using System;

using System.Collections;

using System.Data;

namespace OME.Storage

{

public class Container : IEnumerable

{

//Container Name

protected string contName;

//Reference to Leaf items where the actual order are stored

5645ch02.qxd 3/3/06 11:19 AM Page 92

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 93

protected ContainerCollection leafItems = new ContainerCollection();

protected OrderBook orderBook;

//Reference to Parent Container

protected Container parentContainer;

public ContainerCollection ChildContainers

{

get{return leafItems;}

}

public Container(OrderBook oBook,string name,Container parent)

{

orderBook=oBook;

contName=name;

parentContainer=parent;

}

//This method determines the order-processing logic

public virtual void ProcessOrder(Order newOrder)

{}

//Order Iteration Support

public virtual IEnumerator GetEnumerator()

{

return null;

}

}

}

ContainerCollection
ContainerCollection is a container for the collection of Container. It allows a reference to a specific
Container with the help of an indexer method.

Here’s the code for ContainerCollection:

using System;

using System.Collections;

namespace OME.Storage

{

public class ContainerCollection

{

//Container collection represents individual container

//For example, all regular orders for MSFT will be arranged

//in a separate container; similarly, all buy orders falling under

//regular order category will form a separate container but with

//reference to its parent container, which is "regular order container"

Hashtable contCollection = new Hashtable();

//Check for existence of specific container

public bool Exists(string containerName)

{

return contCollection.ContainsKey(containerName);

}

//Get reference to specific container

public Container this[string name]

5645ch02.qxd 3/3/06 11:19 AM Page 93

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE94

{

get{return contCollection[name] as Container;}

set{contCollection[name]=value;}

}

}

}

LeafContainer
LeafContainer represents the final leaf level in the tree depicted in Figure 2-11. This class extends
the Container class, thus inheriting all the behavior supported by a container. The actual order is
stored and arranged at this level and hence considered to be the core class mainly when it comes to
boosting the performance of the order-matching engine. The data structure used by this class to store
orders is an ArrayList.

Here’s the code for LeafContainer:

using System;

using System.Collections;

namespace OME.Storage

{

public class LeafContainer : Container , IEnumerable , IEnumerator

{

private int rowPos = -1;

//The internal implementation of the order is based on an ArrayList,

//but, remember, based on performance criteria this implementation

//can be easily changed without affecting the business component code

ArrayList orderDataStore = ArrayList.Synchronized(new ArrayList());

public LeafContainer(OrderBook oBook,string name,Container parent)

:base(oBook,name,parent)

{}

public override IEnumerator GetEnumerator()

{

Reset();

return this;

}

public override void ProcessOrder(Order newOrder)

{

//Access the buy order book of this instrument

Container buyBook = parentContainer.ChildContainers["B"] ;

//Access the sell order book of this instrument

Container sellBook = parentContainer.ChildContainers["S"] ;

//create a event arg object containing reference to newly created

//order along with reference to buy and sell order book

OrderEventArgs orderArg = new OrderEventArgs(newOrder,buyBook,sellBook);

//Invoke the OrderBeforeInsert event, which will also notify

//the matching business component, which will then perform

//its internal matching

//the order becomes active in this stage

orderBook.OnOrderBeforeInsert(orderArg);

5645ch02.qxd 3/3/06 11:19 AM Page 94

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 95

//Check the quantity of the newly created order

//because if the order has been successfully matched by matching

//business component, then quantity will be 0

if (newOrder.Quantity > 0)

{

//If order is partially or not at all matched,

//then it is inserted in the order collection

orderDataStore.Add(newOrder);

//Re-sort the order collection because of addition

//of new order

orderDataStore.Sort(orderBook.OrderPriority);

//Invoke the OrderInsert event,

//which will again notify the matching business component

//the order becomes passive in this stage

orderBook.OnOrderInsert(orderArg);

}

}

//This group of code is scoped toward controlling the

//iteration behavior. C# introduced a convenient way of

//iterating over elements of an array using a foreach statement.

//We have provided similar support to the Container class that allows

//developer to iterate through orders stored inside the Container class.

//In the case of the LeafContainer class, this behavior is overridden by

//implementing the IEnumerable and IEnumerator interfaces. We provided

//a custom implementation to the Reset, Current, and MoveNext methods.

//The Boolean value returned by the MoveNext method acts as a terminator

//condition of a foreach loop.

public void Reset()

{

rowPos=-1;

}

public object Current

{

get{return orderDataStore[rowPos];}

}

public bool MoveNext()

{

//The code in the MoveNext method validates an order by checking

//its quantity. If the quantity is equal to zero,

//then it is deleted from ArrayList

//and the row pointer is positioned to the next element in the ArrayList.

//This check is continuously repeated inside a loop until it encounters an

//Order whose quantity is greater than zero.

rowPos++;

while(rowPos < orderDataStore.Count)

{

Order curOrder = orderDataStore[rowPos] as Order;

if (curOrder.Quantity == 0)

orderDataStore.RemoveAt(rowPos);

else

return true;

}

5645ch02.qxd 3/3/06 11:19 AM Page 95

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE96

Reset();

return false;

}

}

}

OrderBook
OrderBook is the facade exposed to the outside world to access the order book. OrderBook is a focal
point when it comes to tweaking the behavior of the order book; the important feature it offers is
the assignment of order-matching priority logic. It provides various kinds of order notification events
that allow you to hook up custom business logic implementations.

Here’s the code for OrderBook:

using System;

using System.Collections;

namespace OME.Storage

{

public delegate void OrderEventHandler(object sender,OrderEventArgs e);

public class OrderBook

{

//Event invoked before inserting order - active order

public event OrderEventHandler OrderBeforeInsert;

//Event invoked after inserting order - passive order

public event OrderEventHandler OrderInsert;

//Order-ranking logic

private IComparer orderPriority;

//This variable holds the root node of the order tree

//that in turn allows navigating the entire tree.

private ContainerCollection bookRoot;

public ContainerCollection Containers

{

get{return bookRoot;}

}

//Internal method to trigger active order notification

//to external business component

internal void OnOrderBeforeInsert(OrderEventArgs e)

{

if (OrderBeforeInsert != null)

OrderBeforeInsert(this,e);

}

//Internal method to trigger passive order notification

//to external business component

internal void OnOrderInsert(OrderEventArgs e)

{

if (OrderInsert != null)

OrderInsert(this,e);

}

public IComparer OrderPriority

{

5645ch02.qxd 3/3/06 11:19 AM Page 96

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 97

get{return orderPriority;}

set{orderPriority=value;}

}

public OrderBook()

{

//instantiate the root container of the order tree

bookRoot = new ContainerCollection();

}

private Container ProcessContainers(ContainerCollection contCollection,

string name,Order order,Container parent)

{

//Check for presence of this specific container

//in the case it is not found, then create a new container

if (contCollection.Exists(name) == false)

contCollection[name] = new OME.Storage.Container(this,name,parent);

OME.Storage.Container currentContainer = contCollection[name];

//invoke the order processing on that container

currentContainer.ProcessOrder(order);

return currentContainer;

}

//This method looks after the arrangement of order in the order tree,

//based on key attributes of the order, it seeks appropriate node

//in tree; in the case a node doesn't exist, it creates a new node

//by instantiating the appropriate Container class. The logic deviates

//a bit when it comes to the creation of leaf node of the tree

//(i.e. Buy or Sell Node); we fall back to LeafContainer class that is

//where the actual order is rested.

public void Process(Order order)

{

Container container = ProcessContainers(bookRoot,order.Instrument,

order,null);

container = ProcessContainers(container.ChildContainers,

order.OrderType,order,container);

//Logic deviates a bit; if it is a buy or sell node,

//then leafcontainer is created that actually holds the order

if (container.ChildContainers.Exists(order.BuySell.ToString()) == false)

{

//create buy and sell leaf container

LeafContainer buyContainer = new LeafContainer(this,"B",container);

LeafContainer sellContainer = new LeafContainer(this,"S",container);

container.ChildContainers["B"] = buyContainer;

container.ChildContainers["S"] = sellContainer;

}

//Based on the buy/sell attribute of the order

//access the underlying leaf container

LeafContainer leafContainer =

container.ChildContainers[order.BuySell.ToString()] as LeafContainer;

//process the order

leafContainer.ProcessOrder(order);

5645ch02.qxd 3/3/06 11:19 AM Page 97

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE98

}

}

}

OrderEventArgs
The OrderEventArgs class works closely with the OrderBook class. We discussed the various event
notification mechanisms that OrderBook supports. When events are notified to interested sub-
scribers, an instance of OrderEventArgs is created that is passed along with the event. The class
encapsulates the handy information along with an instance of Order that triggered this event.

Here’s the code for OrderEventArgs:

using System;

namespace OME.Storage

{

public class OrderEventArgs

{

private Order order;

private Container buyBook;

private Container sellBook;

public OrderEventArgs(Order newOrder,Container bBook,Container sBook)

{

order = newOrder;

buyBook = bBook;

sellBook = sBook;

}

public Order Order

{

get{return order;}

}

public Container BuyBook

{

get{return buyBook;}

}

public Container SellBook

{

get{return sellBook;}

}

}

}

OrderProcessor
OrderProcessor spawns a separate processing thread and allocates a dedicated queue in which
orders targeted for a particular order processor are queued. The processing thread dequeues the
orders and passes them to the next chain in the processing; in this case, it is submitted to OrderBook.
To enable the efficient utilization of processor, ManualResetEvent is used to signal the start of the
dequeuing processing, and during idle time the thread is put in a waiting state.

5645ch02.qxd 3/3/06 11:19 AM Page 98

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 99

Here’s the code for OrderProcessor:

using System;

using System.Threading;

using System.Collections;

using OME.Storage;

namespace OME

{

public class OrderProcessor

{

Queue msgQueue ;

Thread msgDispatcher;

ManualResetEvent processSignaller;

BizDomain bizDomain;

public OrderProcessor(BizDomain domain,string wspName)

{

//Domain under which this order processor is assigned

bizDomain = domain;

//create a order queue

msgQueue = Queue.Synchronized(new Queue());

//create a event notification object

//which notifies the enqueuing of a new order

processSignaller = new ManualResetEvent(false);

//create a dedicated thread to process the order stored

//in queue collection

msgDispatcher = new Thread(new ThreadStart(ProcessQueue));

//start the processing

msgDispatcher.Start();

}

public void EnQueue(object newOrder)

{

//Enqueue the order, and signal the event object

msgQueue.Enqueue(newOrder);

processSignaller.Set();

}

private void ProcessQueue()

{

//start of order-draining process

while(true)

{

//wait for signal notification

processSignaller.WaitOne(1000,false);

//iterate through queue

while(msgQueue.Count > 0)

{

//dequeue the order

Order order = msgQueue.Dequeue() as Order;

5645ch02.qxd 3/3/06 11:19 AM Page 99

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE100

//submit it to order book for further processing

bizDomain.OrderBook.Process(order);

}

}

}

}

}

BizDomain
BizDomain is a business-level abstraction imposed by the order-matching engine. It is by using this
class that a single instance of the order-matching engine can satisfy the interest of multiple stake-
holders of different business origins. BizDomain is also responsible for managing and creating the
order processor.

Here’s the code for BizDomain:

using System;

using System.Collections;

using OME.Storage;

namespace OME

{

public class BizDomain

{

//Hashtable to store order processor instances

private Hashtable oprocItems = Hashtable.Synchronized(new Hashtable());

//array of order processor name to be created under this biz domain

private string[] oprocNames;

//creation of order book

private OrderBook orderBook = new OrderBook();

public BizDomain(string domainName,string[] workNames)

{

oprocNames= workNames;

}

public OrderBook OrderBook

{

get{return orderBook;}

}

public void Start()

{

//Iterate through all order processor names, and

//create a new order processor object

for (int ctr=0;ctr<oprocNames.Length;ctr++)

{

//Instantiates new order processor that in turn creates a

//dedicated thread and queue

OrderProcessor wrkObj= new OrderProcessor(this,oprocNames[ctr]);

oprocItems[oprocNames[ctr]] = wrkObj;

}

}

//A facade method to the outside world,

//through which orders are submitted and queued in

//appropriate order processor.

5645ch02.qxd 3/3/06 11:19 AM Page 100

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 101

public void SubmitOrder(string procName,Order order)

{

OrderProcessor orderProcessor = oprocItems[procName] as OrderProcessor;

orderProcessor.EnQueue(order);

}

}

}

EquityMatchingLogic
The real business logic of order matching is fanned out inside the EquityMatchingLogic class. The
business logic is folded with the order-matching engine infrastructure by subscribing to the
OrderBeforeInsert event of OrderBook. The matching logic is partitioned based on the buy or sell
type of an order.

Here’s the code for EquityMatchingLogic:

using System;

using OME;

using OME.Storage;

using System.Collections;

namespace EquityMatchingEngine

{

public class EquityMatchingLogic

{

public EquityMatchingLogic(BizDomain bizDomain)

{

//Hook up to active order event of the order book

bizDomain.OrderBook.OrderBeforeInsert +=

new OrderEventHandler(OrderBook_OrderBeforeInsert);

}

private void OrderBook_OrderBeforeInsert(object sender, OrderEventArgs e)

{

//Check buy/sell leg of the order

//as the matching logic is different

if (e.Order.BuySell == "B")

MatchBuyLogic(e);

else

MatchSellLogic(e);

}

private void MatchBuyLogic(OrderEventArgs e)

{

//since the order to be matched is a buy order,

//start iterating orders in sell order book

foreach(Order curOrder in e.SellBook)

{

//If the current price of sell order price is less

//than the price of buy order, then it is a best match

if (curOrder.Price <= e.Order.Price && e.Order.Quantity > 0)

{

//Generate Trade

Console.WriteLine("Match found..Generate Trade..");

//get the buy order quantity

int quantity = e.Order.Quantity;

5645ch02.qxd 3/3/06 11:19 AM Page 101

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE102

//subtract the buy order quantity from current sell order quantity

curOrder.Quantity = curOrder.Quantity - e.Order.Quantity;

//assign the remaining quantity to buy order

e.Order.Quantity = e.Order.Quantity - quantity;

}

else

{

break;

}

}

}

private void MatchSellLogic(OrderEventArgs e)

{

//since the order to be matched is a sell order,

//start iterating orders in buy order book

foreach(Order curOrder in e.BuyBook)

{

//If the current price of buy order is greater

//than the price of sell order, then it is a best match

if (curOrder.Price >= e.Order.Price && e.Order.Quantity > 0)

{

//Generate Trade

Console.WriteLine("Match found..Generate Trade..");

//get sell order quantity

int quantity = curOrder.Quantity;

//subtract sell order quantity from current buy order quantity

curOrder.Quantity = curOrder.Quantity - e.Order.Quantity;

//assign the remaining quantity to sell order

e.Order.Quantity = e.Order.Quantity - quantity;

}

else

{

break;

}

}

}

}

}

OMEHost
OMEHost is the host class that loads the matching infrastructure, creates a new BizDomain along with
three new order processors, instantiates the appropriate business logic class, and assigns the matching
priority logic. Several orders are generated and submitted to the matching infrastructure that are
ranked and matched based on the price and time priority rule.

Here’s the code for OMEHost:

using System;

using OME.Storage;

using OME;

5645ch02.qxd 3/3/06 11:19 AM Page 102

CHAPTER 2 ■ THE ORDER-MATCHING ENGINE 103

namespace EquityMatchingEngine

{

class OMEHost

{

[STAThread]

static void Main(string[] args)

{

BizDomain equityDomain;

//Create equity domain with three order processors dedicated to process

//MSFT, IBM, and GE orders

equityDomain = new BizDomain("Equity Domain",

new string[]{"MSFT","IBM","GE"});

//Assign the order-ranking logic

equityDomain.OrderBook.OrderPriority = new PriceTimePriority();

//Assign the business component

EquityMatchingLogic equityMatchingLogic =

new EquityMatchingLogic(equityDomain);

//Start the matching engine

equityDomain.Start();

//Submit buy order

equityDomain.SubmitOrder("MSFT",new EquityOrder("MSFT","Regular","B",20,3));

//Submit sell order

//this will also generate a trade because

//there is a matching counter buy order

equityDomain.SubmitOrder("MSFT",new EquityOrder("MSFT","Regular","S",20,2));

Console.WriteLine("Press any key to Stop");

Console.ReadLine();

}

}

}

Summary
This chapter covered the following points:

• We explained how the order decision process takes place based on various matching criteria
such as price and time priority.

• We provided a basic overview of the important data structures available in the .NET Framework.

• We discussed various approaches provided by the .NET Framework to achieve parallelism in
processing orders.

• We covered different types of thread synchronization techniques that are essential for protecting
the integrity of shared data from multiple thread access.

• We introduced thread scheduling and how thread priority and CPU affinitization further allows
you to balance the processor utilization.

• We discussed the advantages of using server timers.

• Finally, we implemented a prototype of an order-matching engine that basically sums up the
important features discussed in this chapter.

5645ch02.qxd 3/3/06 11:19 AM Page 103

5645ch02.qxd 3/3/06 11:19 AM Page 104

C H A P T E R 3

■ ■ ■

The Data Conversion Engine

Parents are the real programmers who programmed us. It is because of their continuous refactoring
and unit testing effort that we turn out to live a bug-free life in this unmanaged world.

This chapter provides insight into the problems encountered during data conversion. Simply defined,
data conversion is the process of decomposing data structured in an incompatible data format and
recomposing it again using different semantics and a different data format. During this conversion,
data is structurally rearranged. Data conversion occupies a central place in organizations with busi-
ness goals that depend on the integration of multiple applications. These applications may be legacy
systems, homegrown applications, or vendor-based applications. In this chapter, we discuss the
various hurdles faced in the financial world during the data conversion process and how XML provides
a solution to these problems.

Introducing Data Management
Data originates from a variety of sources. Many times, the same data is presented in different for-
mats. Figure 3-1 illustrates how information is consumed from different newspapers. Although the
information produced in each of these newspapers is the same, the information differs in style, rep-
resentation, and structure. For example, the New York Times may publish sports news on page 16 in
a columnar format, the Star Ledger may produce the same information as a summary on page 1
with details on the last page of the paper, and Fox Magazine may publish the same information with
less verbiage and more emphasis on pictures and a small description at the bottom of each picture.
The primary objective of all these newspapers is to publish accurate information/data, but each
one adopts a totally different approach and style. This is called information enlargement where the
integrity of data is maintained but presented differently.

105

5645ch03.qxd 3/3/06 12:06 PM Page 105

CHAPTER 3 ■ THE DATA CONVERSION ENGINE106

A human brain weighs just 3.5 pounds, but it is one of the most complex organs and continu-
ously interprets data for us. In the computing world, however, things are different—machines lack
consciousness, intellect, and capacity for thought. Although computers are better than the human
brain in calculating speed and power, they have to be specifically instructed/coded to conduct/
perform/execute an activity. However, it will always be true no matter how much progress we make
in technology advancements that there is no substitute for human creativity, diligence, and judgment.

Thus, if Figure 3-1 is to be replicated in a computing environment, a new program has to be
developed to interpret the needs of the New York Times, the Star Ledger, and Fox Magazine. This trend
does not stop here; in the future, if a new newspaper comes into the market, then a new program
specifically to interpret the information published by this newspaper needs to be developed. The truth
is that every organization reinvests/mobilizes funds for “interpreting” already “interpreted” data.

In the financial world, various applications use a lot of data related to securities, prices, market
conditions, clients, and other entities for the fulfillment of trade. Applications do trade enrichment
on the basis of this data and also make a lot of decisions. Data comes from a variety of sources. Market
data, news, and analysis are bought from third-party content service providers such as Reuters, and
the institutions generate the rest themselves in the normal course of their day-to-day activities. The
latter relates to transaction- and settlement-related data. Institutions obtain some data from agencies
such as stock exchanges, clearing corporations, regulators, and so on, by virtue of being members of
those agencies. Maintaining this data is expensive. Some data has to be purchased, and some has to
be filtered (unnecessary data has to be removed), validated, and stored.

Understanding the Business Infoset
Business infoset is synonymous to information; it comprises a lot of data items in various forms. What
and how an organization decides on various issues largely depends upon the kind of data that is
presented to its business managers, including its presentation format and perspective. Business
infoset can be decomposed into granular data elements. Each data element has its own characteris-
tics and can be classified as one of the following:

• Reference data

• Variable data

• Derived data

• Computed data

• Static data

Figure 3-1. The same information originates from multiple sources and in a different format.

5645ch03.qxd 3/3/06 12:06 PM Page 106

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 107

To understand this classification, let’s discuss various attributes of an order, as shown in
Table 3-1.

Table 3-1. Attributes of an Order

Order Attribute Description Type of Data

Market of operation Geography from where order is placed Static data

Client code Client placing the order Reference data

Exchange Stock exchange on which the order is being Reference data
placed

Traded asset/ISIN/SEDOL/ Security that needs to be transacted Reference data
scrip code

Company name Name of the company issuing shares Derived data

Order type Buy/sell Static data

Quantity Number of shares to be purchased Variable data

Order price Price at which the client expects his Variable data
order to get through

Currency Currency of transaction Reference data

Segment Exchange segment Reference data

Broker code/Counterparty Counterparty Reference data

Order validity Date and time conditions Variable data

Reference Data
Reference data is any data that is created and maintained outside the purview of the system but is
required by the system to meet business or computational needs. To meet these needs, systems
may decide to maintain a copy of reference data or have links to other systems and use the link to
access this data on an online or real-time basis. Reference data is used to categorize transactional
data and can be used to link to data from other organizations.

Variable Data
Data whose value changes over a period of time is called variable data. Variable data may or may
not lie in a fixed range, but its values can be random and unpredictable. A typical example is a stock
price. Stock prices depend upon the market perception of the earnings and on the cash flows a company
can generate, but the day-to-day price is impossible to predict. Prices also keep changing on a daily
basis. Hence, stock prices fall under variable data. Similarly, a company’s earnings keep changing
from quarter to quarter so can also be classified as variable data.

Derived Data
Derived data is any data that derives its value from any other data. For example, if you have a list of
countries and capitals and you try to access the capital using a country—say by retrieving the capi-
tal by using “United States of America” and getting the value “Washington DC”—then “Washington
DC” (capital) becomes derived data since its value is based on the value “United States of America”
(country). In this chapter’s example of order attributes (see Table 3-1), the company name becomes
derived data, because its value depends upon the International Securities Identification Number
(ISIN) code.

5645ch03.qxd 3/3/06 12:06 PM Page 107

Figure 3-2. Reference data plays a central role in all functions.

Computed Data
Any data that results from manipulating other data or another set of data is called computed data.
For example, if you attempt to calculate the average stock price quoted across the month, the
resulting average figure will be computed data because its value is derived using some computation
over some other set of base data.

Static Data
Static data is data whose value does not change over a period of time. In the order attribute example
in Table 3-1, the order type (that is, “buy” or “sell”) is an example of static data. Even if you revisit the
order type after a long time, each order will still be either “buy” or “sell.”

Introducing Reference Data
Data is the lifeblood of any organization. The success of an organization also depends on the quality
of data it possesses, because strategic decisions may be based on the data. Every act of an organiza-
tion requires input of data and generates (or enhances) data at the end of the activity. Financial
institutions and organizations are making a lot of investments in the area of reference data manage-
ment. Though institutions maintain reference data for their quick reference, they rely on other
agencies to create this data and supply it to them. They then upload a copy of this data in their sys-
tem and use it for quick reference to add value to their transactional data. Departments and operations
have traditionally been compartmentalized in the form of front, middle, and back offices, and each
department forms its own systems to cater to its needs. This results in the duplication of activity
because each operational area tends to replicate a lot of referential data within its own system to
reduce its interdependence on other systems. This also gives rise to another problem of having and
managing redundant reference data.

Note that even when institutions import required reference data in their systems, they also need
to convert it into a format defined in their systems and acceptable to it. This acceptable format and
content changes as data moves down from one link in the value chain to another. This calls for a lot
of conversion even during the life cycle of a single trade. Let’s examine the business need of convert-
ing this data using the trading value chain and examine this concept in more detail (see Figure 3-2).

CHAPTER 3 ■ THE DATA CONVERSION ENGINE108

5645ch03.qxd 3/3/06 12:06 PM Page 108

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 109

The trading value chain is divided into front office, middle office, and back office (described in
Chapter 1). We will look at these concepts in more detail here. An order is originated and is delivered
to the exchange by the front office. Dealers interact with investing institutions to get their orders,
and when the order is executed, they charge brokerage from those deals. The order flows through
a defined process (discussed in Chapter 1).

The middle office holds the reference data that is shared between the front office and the back
office. At most places, the middle office is also responsible for risk management on the orders that
hit the trading system and for orders getting converted into trades during the process. The middle
office conducts a lot of validations, checks limits, and validates the resulting trade values against the
ledger balances that clients hold with the broker, who is executing the order.

Once a trade gets generated and hits the trading system, it is routed to the back office for settle-
ment. On the basis of trades, the settlement obligation of every client is determined, and the payment/
receipts are generated and affect the settlements. Let’s revisit each of these steps to analyze the data
requirements and also examine why data conversion is necessary when organizations are forced to
maintain multiple copies of data. To illustrate these steps, we will use the example of an instrument
master that is extensively used in the trading chain.

When a client calls up the broker to place the order, he will either give the company name or
use a popular code to refer to the security. For example, if the customer wants to purchase Microsoft
shares, he will either say “Buy equity of Microsoft Corporation” or say “Buy MSFT.N.” If the order
originates from a different country, chances are that the institution placing the order will use a code
that is completely different from the code used by the exchange. Even though a standard unique code
called an ISIN code is associated with every security, each exchange (instead of adhering to this ISIN
code) devises its own local security code.

The ISIN code is a standard code for a security that is supposed to be unique across the world.
The ISIN for each security is generated by the regulatory body of a country or by any other agency
mandated by the regulatory agency. Though ISIN codes are standard codes that are supposed to be
used worldwide, trading systems rarely (almost never) use ISIN codes. Most settlements, however,
happen on ISIN codes. No specific reason exists for this anomaly. ISIN codes are longer to use and
confusing to type; hence, they are kept out of trading systems. Additionally, other codes such as the
Stock Exchange Daily Official List (SEDOL) have been popular for a long time among the dealing
circles. Dealers tend to understand each other without ambiguity when they use SEDOL codes while
referring to any security. A fixed format is defined for constructing an ISIN code. An ISIN code has
a 12-character structure in the following format: USAAAABBBCCD. The characters break down as
follows:

• The first two characters (“US” in this example) stand for the country code.

• The next four characters (represented by “AAAA”) are alphanumeric and represent the issuer.

• The next three characters (represented here as “BBB”) stand for the type of asset. The second
and third position can also be used as a running serial number.

• The next two characters (represented as “CC”) are alphanumeric and represent the type of
stock issued. These two are also used as the sequence number for every security issuance.

• The last character (represented as “D”) is a control digit.

It is not mandatory that the exchange where the transaction is routed uses the SEDOL or ISIN
code for its reference. Each exchange uses its own proprietary code for trading, and their systems
are designed to support their proprietary codes. In the front office itself, we come across the potential
to use three different codes while referring to one security. A data mapping mechanism will hence
be required to interpret these codes while the information passes on so that each entity understands
the information completely and without ambiguity, as shown in Figure 3-3.

5645ch03.qxd 3/3/06 12:06 PM Page 109

CHAPTER 3 ■ THE DATA CONVERSION ENGINE110

Now let’s examine where reference data comes into use in this entire order flow chain. The
institution placing the order will use a system to maintain a portfolio. Assuming a global investor,
the client holding the position will be maintained locally in different countries, and each will have
a local name and sometimes even different code for the same security. While placing the order, the
institution will reference its database to arrive at the exact name of the security to be transacted.
The institution will give the order as the name appears in its database. Assume that the database
lists “Microsoft Corporation equity shares” as “MICROSOFT EQ.” Thus, the order from the institution
to the brokerage house will look like this: Buy 10000 MICROSOFT EQ.

The dealer or sales desk person in the brokerage house will now enter the order in the broker’s
system. Let’s assume the broker’s system is configured using SEDOL. Hence, in this case, the system
will not understand “MICROSOFT EQ,” and therefore the broker will manually convert the order to
“2588173” (the SEDOL of Microsoft) and place the order. If the institution provided the order as a soft
copy, the order will get validated in the broker’s system, resulting in an exception stating that it does
not understand “MICROSOFT EQ.” The user will then override these cases and manually replace all
“MICROSOFT EQ” instances with “2588173.” If the broker does a lot of business with this institution
(and receives a lot of orders from it on a daily basis), it will not be long before someone realizes that
it will be worthwhile to maintain a mapping in the system to convert the institution’s codes to the
SEDOL codes, as shown in Table 3-2.

Table 3-2. Mapping Between Institution and SEDOL Code

Institution Code SEDOL Code

Microsoft EQ 2588173

INTEL EQ 2463247

The order for Microsoft EQ is now interpreted by the broker system. The issue, however, does
not get resolved here. As discussed, each exchange may use its own local code. To forward the order
to the exchange in a way that the exchange recognizes the order properly, it needs to provide the
exchange with its local code. This in turn means the broker system will have to maintain an additional
mapping between the SEDOL codes and the local codes understood by the exchange, as shown in
Table 3-3.

Table 3-3. Mapping Between SEDOL and Local Exchange Code

SEDOL Code Local Exchange Code (NASDAQ)

2588173 MSFT.O

2463247 INTC.O

The need for security code mapping does not end here. After the exchange confirms that orders
have been executed, the broker needs to send a trade confirmation to the institution and institution’s
custodian. The broker needs to remap the exchange codes to the language understood by the
institution. Additionally, to get the trades settled, the broker will have to interact with the clearing

Figure 3-3. Instrument mapping in the front office

5645ch03.qxd 3/3/06 12:06 PM Page 110

Figure 3-4. The trade confirmation must happen in a language understood by the client, and the
settlement must happen in a language understood by the clearing corporation and depository.

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 111

corporation and depository. Chances are that the clearing corporation and depository will commu-
nicate using ISIN codes. The broker will thus have to maintain an additional mapping of exchange
codes vis-à-vis ISIN codes in the back office system, as shown in Table 3-4.

Table 3-4. Exchange Code Mapped to ISIN Code for Settlement

Local Exchange Code (NASDAQ) ISIN Code

MSFT.O US5949181045

INTC.O US4581401001

Figure 3-4 shows the flow of the order confirmation back to the broker and from the broker back
to the client, clearing corporation, and depository.

All communication that the clearing corporation and depository has with the member will be
in ISIN codes. It is hence important for the broker’s system to understand and convert these codes
and then communicate this information to their clients.

Framework for Data Conversion
Data conversion means different things to different people and institutions. To a stock exchange, it
could mean converting very old prices into electronic format. To a museum, it could mean creating
a soft-copy repository of images of the priceless paintings it possesses. Whatever the notion, data
conversion involves taking data from one system (which could be any legacy system, hard copy, digital
media, analog device, and so on) and migrating to another. Usually the target system is a new system.

Getting a new system to accept any data is a big process, especially if the data is coming from
a legacy system and the target system is a new system built on more recent technologies and not
built with the thought that reference data would be coming from a legacy system. There is an
established methodology for migrating/importing this data in the new system. Of course, the first-
time migration/import takes a lot of time because of field-level mapping and the finalization of the
structure. However, once the structure is finalized, subsequent imports do not require this kind of
effort. Let’s examine the conversion methodology in some detail.

5645ch03.qxd 3/3/06 12:06 PM Page 111

CHAPTER 3 ■ THE DATA CONVERSION ENGINE112

The entire step of populating data from a legacy system to a new system comprises the follow-
ing two broad processes:

• Cleansing the data received from the source system

• Changing the data format to suit the new system and translating/integrating it into a structure
where it can be stored in the database of the new system

Data cleansing is a method or series of steps to address the cleaning of dirty data that is incon-
sistent, incomplete, and/or not uniform. Data could be dirty because of typing mistakes or missing
essential entries, or it could be inconsistently coded. Before data is converted and migrated in a new
system, it needs to be cleaned. It is not uncommon to see institutions maintaining several copies of
such data; unfortunately, this compounds creation, storage, and referring costs. Apart from actual
costs, this also creates the problem of duplication where the institution is really not sure which data
has to be used.

For example, assume that a client has specified two different addresses and phone numbers in
two different systems. Until the systems are integrated, both systems’ users are unaware of the exis-
tence of a different address and phone number in the other system. If the institution undertakes the
exercise of integrating the two systems, it will be meaningless to maintain two different sets of addresses
and phone numbers; if they decide to merge the data, they will be in a state of confusion as to which
address and phone number is correct, and a decision may be made to retain the more recent infor-
mation. This is a simple example. If this same thing is extrapolated over a number of instruments,
markets, trades, and settlement-related data, this problem tends to be overwhelming.

The presence of data in silos raises a number of issues:

• Institutions have to manage a lot of external vendors who manage/maintain external systems.

• Since data is parked in multiple systems, the institution may be forced to maintain a number
of licensed copies of software used for maintenance.

• A lot of storage space and hardware is utilized.

• Data definition standards are poor; hence, the same data cannot be referenced by multiple
systems.

• Trades have to be frequently corrected, leading to high operational costs.

• Making data corrections is time-consuming and expensive.

Recently, financial institutions and banks are under greater regulatory and market scrutiny
because of compliance requirements for the Sarbanes-Oxley and Patriot Acts. Market forces have
compelled institutions to take a consolidated view of risk management and other financial numbers.
Institutions are now trying to integrate all data that is present in silos. Reference data management
is a huge challenge for institutions that operate from multiple geographies and that trade in multiple
products.

Cleaning dirty reference data has its own methodology, and the approach depends purely on the
complexity of data and the extent of its inconsistency. Most cleansing processes and methodologies
use application programs to convert data from proprietary formats to standardized formats. Extensible
Markup Language (XML) is widely used in the cleansing process.

The deployment of XML for the data cleansing process provides speedy and effective resolution.
In its basic form, the data cleansing process has three stages, as shown in Figure 3-5:

• Import and conversion

• Cleansing

• Enrichment

5645ch03.qxd 3/3/06 12:06 PM Page 112

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 113

Figure 3-5. Steps in cleaning reference data

Import and Conversion
In the first step, data is extracted from multiple sources such as legacy applications, customer rela-
tionship management (CRM) applications, and current settlement systems. It is converted to basic
XML format. During the conversion process, care is exercised to see that no data is lost or dropped.
Converting data is a tedious process. A lot of data could be in an unorganized form. For example,
libraries could have data in the form of printed books. Stock exchanges could have stock rates in
magnetic tapes with defined reference structures. The reference structure itself could differ from
time to time. Analysts doing data-cleansing activities must refer to these structures and convert data
appropriately and carefully. After the conversion process is over, a warehouse of XML data is created.

Cleansing
In this step, imported data is verified for missing items, duplicates, and referential integrity. For
example, if you refer to the earlier ISIN master example where the following business rules must be
followed:

• All securities must have ISIN codes assigned.

• ISIN codes must be unique.

• ISIN codes must be 12 characters in length.

• The first two characters of the ISIN code must be a country-specific prefix.

In the cleansing process, if the system comes across cases where the ISIN code is not populated
against a security or is not 12 characters in length, or cases where the same ISIN code is allotted to
two securities, then the system needs to analyze such cases and correct them. All such cases are col-
lected, and correct codes are found by checking other systems, by contacting a third-party data service
provider, or by contacting the agency that generates ISIN codes in the specific country. Multiple scans
of the same data through the same business validations may be required to arrive at a correct and
clean repository.

5645ch03.qxd 3/3/06 12:06 PM Page 113

CHAPTER 3 ■ THE DATA CONVERSION ENGINE114

Enrichment
In this step, the existing data set is analyzed critically to see whether any further information needs
to be tagged along with the data that is being cleaned. For example, while compiling the ISIN-related
data, it could be beneficial to tag the face value of the securities along with the existing data (assuming
that the face value is not in the existing data). The face value will have to be extracted from a different
data source and updated along with current ISIN codes using a join or some other update method.

The presence of clean reference data can deliver the following benefits to the organization:

• It can help in the availability of accurate and timely data on which business decisions can be
based. Data forms the heart of all CRM activities. Good-quality data has a direct correlation
to customer satisfaction.

• It frees up software and hardware resources, thereby lowering operational costs.

• Software licenses can be used more effectively. Manual development and maintenance costs
are reduced.

• It requires less manual intervention, which results in fewer trade failures, which in turn
reduces the operational costs.

• Redundant operations can be combined, resulting in operational efficiency.

• Clean and accurate data benefits several downstream applications, ensuring their proper
functioning.

If these benefits were summarized, they would fall under the following headings:

Operational benefits: Helps in cost reduction, improves efficiency in operations, and removes
redundancy.

Technology benefits: Reduces total cost of ownership and reduces pain involved in maintaining
several applications and silos of data.

Organizational benefits: Improves risk management and compliance. Better performance leads
to greater client satisfaction.

Several vendors provide reference data solutions. Each vendor, however, has a different approach.
Whatever the method or approach, the following common threads run through a successful reference
data implementation:

• The underlying data needs to be clean. No amount of technical approach will help if the
underlying data is not clean. While implementing a reference data solution, care has to be
taken to clean the data and remove any format/version issues.

• Pareto’s 80-20 rule works here as well. This means that some steps will give magnified bene-
fits with small and incremental effort. Such steps have to be identified and implemented first.

• The build or buy dilemma is common in the case of reference data solutions. It is not a good
approach to implement both in isolation. Most of the time a mix of both is required. Many
financial institutions are looking at outsourcing the data management and exception-handling
process to further reduce costs.

■Note Vilfredo Pareto was an economist who during 1906 created a theory that 20 percent of the population in
his country owns 80 percent of the wealth. This principle was then followed in various other areas such as quality
management, marketing management, and business.

5645ch03.qxd 3/3/06 12:06 PM Page 114

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 115

This brings an end to the business section, and we will continue the ISIN master example to
see how to do data conversion from a technical perspective. We will discuss the technical issues
encountered in each step so you can understand how the concepts are implemented in real life.

Entering the XML World
In the computing world, XML is a basic necessity. It is the equivalent of food, clothes, and shelter to
a human being; life would be crippled without it. Today millions of systems are using XML as their
basic foundation in one form or another. XML has established itself as the building block of a good
system design, and therefore every new system design built today is centered on XML.

XML is a markup language, and the success of XML is based primarily on its most important
quality—its ability to describe both the data and the intelligence behind the data. This ability to
model a data branch under the category of data-oriented language is the unique strength of XML.

An XML document is a new form of content extension that is similar to an executable file or
dynamic link library. But the comparison ends there; XML documents contain ordinary text that is
expressed using XML syntax instead of low-level machine instruction. The plain-text data is easy to
read and is primarily comprised of elements and attributes. Elements are represented in the form of
start and end angle brackets, and the data is enclosed between these angle brackets. Attributes are
the equivalent of a name-value pair, where the value represents the actual data. Both elements and
attributes are tagged with a meaningful name that is easy to understand. Although no cookbook rules
exist for naming conventions used in XML documents, it’s a basic tenet of good XML document design
that an element or attribute name must express the real hidden meaning of the data encapsulated
within the markup. The formation of an XML document is simple; the Notepad application is suffi-
cient for creating an XML-based document. No additional or special tools are required.

This innate ability of XML to engineer the information in a plain-text format has formed the
important glue in achieving integration among heterogeneous systems. The plain text is encoded
and decoded using ASCII standards. Data based on ASCII standards are understood by most of the
commercially available operating systems and applications. Such standardization of data emphasizes
an important fact: XML is platform neutral and a perfect candidate in achieving enterprise application
integration (EAI). Over the last decade, EAI has been in the limelight and has also become one of
the key factors in determining the growth of an organization. In a typical large-scale organization,
thousands of systems are hosted in a multiplatform environment. Most of these systems run inde-
pendently, catering to the needs of the individual departments/divisions within an organization.
The industry needed a universal language that would enable these systems to communicate with
each other. XML, with its innate characteristic of platform neutrality, bridges this gap. It has further
enlarged the scope of integration by crossing the periphery of organizational boundaries to establish
the free flow of information exchange with business partners as well.

To further illustrate the power of XML, let’s take the following real-life example of an ISIN master
file that also forms the basis of the discussion in the rest of this chapter. Listing 3-1 and Listing 3-2
represent different formats of the ISIN master. Listing 3-1 is an ordinary comma-delimited text file,
and Listing 3-2 is an XML file.

Listing 3-1. ISIN Master (CSV Format)

ISINMASTER12122004

US5949181045,MSFT,10,5,Active

EXCHANGE,NASDAQ,MSFT.O

EXCHANGE,NYSE,MSFT.N

ISINEOF

5645ch03.qxd 3/3/06 12:06 PM Page 115

CHAPTER 3 ■ THE DATA CONVERSION ENGINE116

Listing 3-2. ISIN Master (XML Format)

<ISINMaster>

<ISIN ISINCode="US5949181045"

Symbol="MSFT"

FaceValue="10"

MarketLot="5"

Status="Active" >

<Exchanges>

<Exchange Code="NASDAQ"

ScripCode="MSFT.O" />

<Exchange Code="NYSE"

ScripCode="MSFT.N" />

</Exchanges>

</ISIN>

</ISINMaster>

If you quickly compare these two versions, the XML version is an eye-catcher and is more
intuitive compared to the text-based version. In addition, the XML version also offers other important
characteristics, as described next.

Domain Knowledge
In the XML version of the ISIN master, the real content is enclosed between start and end tags. This
clearly helps you recognize both the content and the underlying domain knowledge supporting this
content. This is remarkable compared to the text version, which is not easy to understand unless it is
supplemented by some user documentation that describes the offset of every field and its business-
level interpretation. XML is called a self-describing document because of its unique ability to convey
both data and metadata (domain knowledge). This self-describing nature of the document breaks
all kinds of barriers arising in information sharing and makes it possible to share XML documents
with all types of audiences such as business analysts, developers, and users.

Data Arrangement Uniformity
The most noticeable difference between the CSV and XML versions is the arrangement of data. The
CSV version has a tabular arrangement with every field delimited by a comma. However, keep in
mind that text files have different structural representations as well, including tab-delimited, fixed-
delimited, and custom-delimited representations. Such structural-level inconsistency completely
shuts down the door to standardization. This is in direct contrast to the XML version where data is
arranged hierarchically and follows certain well-established vocabulary such as an element name
being represented inside angled brackets with every start tag having a corresponding end tag, and
so on. The XML version of the ISIN master can be categorized as a well-formed document because it
meets the structural criteria of an XML document. Such well-formed documents are boons because
several parser tools are currently available that can help you iterate, read, and easily understand any
XML document as long as it is well-formed.

Context-Oriented Data (COD)
Context-oriented data (COD) cannot be accessed on its own; it must be referenced from its context.
For example, referring to the CSV version of the ISIN master (in Listing 3-1), it would be difficult to
extract the data “MSFT” because multiple occurrences of “MSFT” exist. You can extract the data
only after providing the context in the form of row and column numbers. Hence, in this example,
you must provide row 2 and column 2 to obtain the data “MSFT” falling under this context. Once

5645ch03.qxd 3/3/06 12:06 PM Page 116

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 117

again, keep in mind that this context may differ for different types of text files. For example, in
a fixed-based file format, you can extract the context by passing the offset position and length of the
data to be extracted. In an XML-based document, the context is provided in the form of an element
or attribute name. Such uniformity in the context allows a standard mechanism to programmatically
access the data.

Extensibility
The CSV version of the ISIN master is fragile—if you insert a new column at the beginning of a row,
then it will completely distort your interpretation. Starting from the user specification document
and continuing to the data converter program, everything will need to be fixed. Fixed-based file for-
mats are highly vulnerable to such changes because they completely break down the whole offset
number-crunching process. Such types of breaking changes are harmful to applications and leave
no room for extensibility. XML is free from such curse and provides complete freedom to mix new
elements or attributes with no side effects.

The previously mentioned benefits by themselves are sufficient to show the advantages of
using XML-based data; the rest of this chapter highlights the various XML-related features available
in the .NET Framework that will further encourage you to drive in the XML highway.

Reading and Writing Data
Data is valuable and precious. Hence, every effort must be undertaken to preserve and store data in
a data store. A data store is an abstract container that allows you to store and query data. A data
store can take the form of a file on disk or in memory. (In other words, data can be either saved as
a disk file or stored in memory or on a central Web site.) The underlying common storage denomi-
nator of any data is a collection of bits, but the retrieval implementation of the stored bits differs
based on the kind of data store used.

A stream is a generic wrapper around a data store. The rationale behind a stream is to abstract
the intricacies involved in handling data and also provide a uniform interface for all types of data
input- or output-related operations. The .NET Framework respects this uniformity by encapsulating
all read/write operations in a common Stream class. It is an abstract class and is packaged inside the
System.IO namespace. All concrete stream providers are inherited from this abstract class. Develop-
ers are not required to learn the know-how of the underlying storage devices. As long as they are
under the shelter of the Stream class, they can perform basic operations such as reading and writing
data. Table 3-5 describes the Stream subclasses.

Table 3-5. Stream Subclasses

Subclass Description

FileStream FileStream is the commonly used class for reading or writing data to a file. This
stream also supports the random seeking of data in the file. Furthermore, this
stream can operate on process standard input and output. By default, the keyboard
is the process standard input stream, and the monitor is the standard output
and error stream. You can use FileStream to redirect the standard input stream
(from a keyboard) and output stream (to a monitor) to a file.

MemoryStream MemoryStream is the equivalent of FileStream from the perspective of its
functionality. However, data is fetched/persisted solely in memory rather than
in a physical file on disk. MemoryStream is a perfect candidate for short-lived
temporary data that is generated on the fly and is accessed multiple times and
eventually discarded upon the termination of an application.

Continued

5645ch03.qxd 3/3/06 12:06 PM Page 117

CHAPTER 3 ■ THE DATA CONVERSION ENGINE118

Table 3-5. Continued

Subclass Description

BufferedStream Disk I/O–related operations, with their heavy-duty data spinning (reading or
writing operations), are the most expensive operations in an application. They
can easily bring down the performance of the application. In such a scenario it
is always advisable to perform read/write operations in a chunk of bytes instead
of an individual byte. BufferedStream is intended for this purpose and used in
conjunction with FileStream and MemoryStream to provide caching service. This
improves the read/write performance. FileStream is buffered internally, so there
is no need to wrap the BufferedStream shield around this class.

NetworkStream NetworkStream is specifically designed to handle the intercommunication aspects
between applications. It is used in network-related data I/O operations. This
class allows reading or writing data to or from a network pipe, which is usually
a Socket.

CryptoStream CryptoStream is the focal class of the .NET cryptography kingdom. This
stream is used in conjunction with any data stream to perform cryptographic
transformation (encryption or decryption).

The subclasses mentioned in Table 3-5 share the same goal—to provide uniform access to data.
But each stream’s underlying characteristics are different and tuned to meet specific data needs.
Table 3-6 describes some of the common properties and methods that Stream and its descendant
classes provide.

Table 3-6. Common Properties/Methods Provided by the Stream Class

Property/Method Description

Length This property returns the length of data.

Position The Position property allows you to get or set the seek pointer in the stream.
Even though the stream supports the random seeking of data; the seeking
behavior is not welcomed by all Stream subclasses, particularly the
NetworkStream class.

CanRead This property determines whether the stream supports read operations.

CanWrite This property determines whether the stream supports write operations.

CanSeek This property determines whether the stream supports seek operations.

Read This method reads raw bytes from a stream.

Write This method writes raw bytes to a stream.
Both the Read and Write methods allow the reading or writing of data in
chunks. You can do this by specifying the number of bytes to read/write
from/to a stream.

Close This method closes the stream and also reclaims the memory by releasing the
operating system resource used by the Stream class.

The Stream class also provides an asynchronous version of read and write operations.
Asynchronous-based operations are the building blocks for designing highly scalable applications.
These asynchronous flavors are available through the BeginRead and BeginWrite methods.

The Stream class is fairly simple to use from a coding perspective. To prove it, we will demonstrate
a code example that reads a comma-delimited text version of the ISIN master file from Listing 3-1.
Stream is an abstract class; therefore, you need to use the FileStream class to read the contents of
this file.

5645ch03.qxd 3/3/06 12:06 PM Page 118

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 119

Listing 3-3 shows the example code.

Listing 3-3. Reading the Comma-Delimited Version of the ISIN Master

using System;

using System.IO;

using System.Text;

class StreamExample

{

[STAThread]

static void Main(string[] args)

{

//File to read

string csvFile = @"C:\CodeExample\Chpt3\StreamExample\CSVISINMaster.csv";

//Open a file stream in read/access mode

FileStream isinStream = new FileStream(csvFile,FileMode.Open,FileAccess.Read);

//allocate a byte array of size 10

byte[] byteBuffer = new byte[10];

//read until the stream pointer reaches the end of the file

while (isinStream.Position < isinStream.Length)

{

//read data

int byteRead= isinStream.Read(byteBuffer,0,byteBuffer.Length);

//display data

Console.Write(Encoding.ASCII.GetString(byteBuffer,0,byteRead));

}

//close stream

isinStream.Close();

}

}

The code shown in Listing 3-3 is pretty straightforward; you first allocate a byte array of size 10
and then enter a loop that reads raw bytes into this byte array with the help of the Read method. The
loop will terminate as soon as you have read all the bytes, which is determined with the help of the
Position and Length properties of a Stream class. To display this raw byte on the console, you need
to convert it into a string, which you do using the Encoding class available as part of the System.Text
namespace.

Introducing Specialized Streams
The .NET Framework provides special-purpose reader and writer classes whose inner workings are
specialized based on specific characteristics of data. These classes are not inherited from the Stream
class but are directly related to it when it comes to reading or writing data. The need for specializa-
tion arises from the byte-oriented nature—only bytes are used to push in or pull out from a stream.
Such flexibility of working at the byte level provides absolute power because it allows you to regulate
the flow of data. But this may not be feasible in certain scenarios. In Listing 3-3, while reading the
content of the ISIN master, you are forced to convert an array of bytes read from a FileStream to the
string data type before displaying it on the console.

Specialized stream classes are paired classes with the read and write operations decoupled and
placed in their own separate classes. This is in direct contrast to the Stream class, which provides both
the reads and writes under one roof. The following sections cover some common reader and writer
classes available within the .NET Framework.

5645ch03.qxd 3/3/06 12:06 PM Page 119

CHAPTER 3 ■ THE DATA CONVERSION ENGINE120

TextReader and TextWriter
Both TextReader and TextWriter classes are designed to read or write series of characters. The
TextReader class allows reading groups of characters from an underlying stream. This underlying
stream could fall under any one of the concrete stream classes such as MemoryStream or FileStream.
TextReader is intelligent enough to understand the semantics of a text file and is highly recommended
when it comes to reading data from an ordinary text file. It provides a ReadToEnd method that allows
reading the content of the entire text file in a single iteration.

It also provides a ReadLine method, which can be used to read a group of characters until
a carriage return is reached. TextReader is an abstract class and cannot be instantiated directly by
the code. It needs to be used in conjunction with StreamReader and StringReader, which are concrete
classes and are inherited from TextReader. The underlying data source of StreamReader is backed by
Stream, and similarly, the underlying data source of StringReader is backed by string.

The following code demonstrates how to use TextReader when reading the content of the CSV
version of the ISIN master:

using System;

using System.IO;

class TextStreamExample

{

[STAThread]

static void Main(string[] args)

{

string csvFile = @"C:\CodeExample\Chpt3\TextStreamExample\CSVISINMaster.csv";

//Open the CSV file

TextReader isinReader = new StreamReader(csvFile);

//read the entire content of the file

string content = isinReader.ReadToEnd();

//display content

Console.WriteLine(content);

//close the stream

isinReader.Close();

}

}

BinaryReader and BinaryWriter
Unlike TextReader and TextWriter, which were meant to handle ordinary text data, BinaryReader
and BinaryWriter are designed to read and write primitive data types. Both classes preserve the
encoding scheme, which is by default UTF-8, during read and write operations. BinaryReader and
BinaryWriter are recommended for reading and writing data where the underlying precision of the
data type in the data needs to be preserved.

This feature is implemented by providing a collection of ReadXXX and overloaded Write methods
that are specialized for reading or writing data of a particular data type. The following code demon-
strates how to read and write ISIN data in the form of binary values:

using System;

using System.IO;

namespace BinaryExample

{

struct ISINRecord

5645ch03.qxd 3/3/06 12:06 PM Page 120

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 121

{

public string isinCode;

public char securityType;

public double faceValue;

public long lotSize;

}

class BinaryExample

{

[STAThread]

static void Main(string[] args)

{

string filePath = @"C:\CodeExample\Chpt3\isin.dat";

//Initialize the ISIN data

ISINRecord newRecord = new ISINRecord();

newRecord.isinCode = "US5949181045";

newRecord.faceValue = 10;

newRecord.lotSize = 100;

//Open binary file for writing

FileStream fStream = new

FileStream(filePath,FileMode.CreateNew,FileAccess.Write);

//Create a binary writer

BinaryWriter bwrt = new BinaryWriter(fStream);

//write ISIN data

bwrt.Write(newRecord.isinCode);

bwrt.Write(newRecord.securityType);

bwrt.Write(newRecord.faceValue);

bwrt.Write(newRecord.lotSize);

//Close the stream

fStream.Close();

ISINRecord isinRecord;

//Open the binary file

fStream = new FileStream(filePath,FileMode.Open,FileAccess.Read);

//Create a binary reader

BinaryReader br = new BinaryReader(fStream);

//read ISIN code

isinRecord.isinCode= br.ReadString();

//read security type

isinRecord.securityType= br.ReadChar();

//read face value

isinRecord.faceValue= br.ReadDouble();

//read lot size

isinRecord.lotSize = br.ReadInt32();

}

}

}

XmlReader and XmlWriter
Considering the popularity of XML, the .NET Framework introduced two additional special-purpose
XML classes that understand the well-formed discipline of XML data. These classes have been designed
from the ground up to gain performance. The next sections discuss these classes and their important
members in detail.

5645ch03.qxd 3/3/06 12:06 PM Page 121

CHAPTER 3 ■ THE DATA CONVERSION ENGINE122

Looking at the Types of Parsers
The .NET Framework provides several ways to read an XML document by offering different types of
XML parsers. In the pre-.NET days, the only way to read an XML document was to install a separate
set of Microsoft XML libraries. With the advent of .NET, XML parsers are built in and bundled as part
of the framework, and hence no additional deployment is required. The core responsibility of these
parsers is to ensure that each document adheres to the XML discipline and vocabulary, mainly veri-
fying whether the document is well-formed. If the document fails to meet the well-formed criteria,
then it provides a detailed error message in the form of a .NET exception. These exceptions provide
the appropriate element name or attribute name in which the structural inconsistency was found.
The parsers are realized in a separate class altogether, and they provide rich functionality in the form
of members and properties that allow you to tweak every nook and cranny of an XML document.

XML parsers are broadly categorized into two forms, discussed in the following sections.

Tree-Based Parser
A tree-based parser is drawn upon a tree-based model. It loads an XML document as an in-memory
collection of objects that are arranged hierarchically. This parser is similar to the TreeView widget,
which we have all worked with in some form or the other. The TreeView widget provides a program-
matic way of traversing and manipulating every node in a tree. An XML document is intrinsically
structured in a tree form. Therefore, every element and attribute is accessible in the form of a con-
crete node object. An element may become a parent node or leaf node based on the number of child
elements. From an object-oriented perspective, an XML document represents a tree of objects. This
parser has both an upside and a downside. It is extremely unhealthy for the application if the XML
document is massive in size. The entire document needs to be flattened in memory, which means
that loading several large documents will tax both the memory and the efficiency of the application.
On a brighter side, this parser is highly suited for hosting a low-end mini–data store, thus avoiding
the need for a mid-scale database engine. Most commonly used application data is persisted in an
XML file and fetched into memory with the help of this parser. A tree-based parser is realized in the
form of an XML Document Object Model (XML DOM) parser. This parser is part of the .NET Frame-
work and available in the form of the System.Xml.XmlDocument class.

Fast-Forward Parser
This parser is the equivalent of a server-side fast-forward database cursor. The fast-forward nature
of the cursor makes it highly efficient when it comes to iterating a large number of records. The only
caveat is that it provides access to only one record at a time. A forward-only XML parser inherits the
same behavior of a database cursor. It too provides access to only one node at a time. This is in sharp
contrast to a tree-based parser, which allows free-flow navigation from the top to the bottom of
a tree, or vice versa. This stateless nature of parsers offloads the responsibility of retaining the state
of a document to the caller. The most unique benefit this parser offers is that it demands a slim
memory footprint, which makes it highly attractive when it comes to reading huge documents.
A forward-only parser is available in the following two flavors. These flavors are differentiated based
on how the data is made available to the application.

Push: A parser of this type publishes data to the application using a callback mechanism. Appli-
cations interested in reading XML documents must register a callback handler with a parser,
and this handler is invoked whenever a node in the document is visited. The parser controls
the modus operandi of reading the document. Hence, it is more parser driven than application
driven. Simple API for XML (SAX) parsers fall under this category and are designed specifically
to overcome problems faced in the DOM, primarily the memory issue. Even though the .NET
Framework has no direct support for SAX parsers, they are still available as part of the Microsoft
XML 4.0 COM Library.

5645ch03.qxd 3/3/06 12:06 PM Page 122

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 123

Pull: Pull-based parsers are application driven and not parser driven. They provide unstinted
and unconditional control to applications. Only applications have the sole authority over inter-
ested elements or attributes and are free to discard the remaining unwanted information. The
.NET Framework bundles this type of parser in the form of the System.Xml.XmlReader class,
which is explained in detail later in this section.

Thus, .NET provides the best of both worlds; it has support for tree-based parsers (XmlDocument)
and fast-forward parsers (XmlReader). There are no hard-and-fast rules about which parser is good;
rather, the decision of which parser to apply is driven by the scenario because each parser has its
own unique selling points. Although there is no out-of-the-box support for the SAX parser in .NET,
given the extensibility mechanism the XmlReader class offers, it is easy to emulate SAX-based behavior.

Table 3-7 summarizes the important features each parser provides.

Table 3-7. Important Parser Features

Feature Tree-Based Parser (DOM) Push (SAX) Pull (XmlReader)

Memory footprint Fat Slim Slim

Cached? Yes No No

Navigation Free flow One-way (forward only) One-way (forward only)

Ownership Application driven Parser driven Application driven

W3C industry Yes Yes No
standard?

Functionality Rich Limited Limited

Read/write Read and write Read Read

Reading XML
The necessary ingredients required to read an XML document are enclosed in the XmlReader class.
XmlReader and all the other important classes related to XML are packaged inside the System.Xml

namespace. This is an abstract class that provides general-purpose functionality and delegates
other specific functionality to its descendants. This abstract class is interweaved with a common
set of methods and properties that allow the navigation and inspection of every node in an XML
document. XmlReader has three concrete inherited classes: XmlTextReader, XmlValidatingReader,
and XmlNodeReader. Each of these concrete classes is refined to meet the different goals of an XML
document.

XmlValidatingReader is used when a document needs to be validated with an XML Schema
Document (XSD); this is discussed later in the “Introducing XML Schema Document (XSD)” section.
XmlNodeReader reads XML content from XmlNode. XmlNode is a fragment that is extracted from a DOM-
based XML document. Similarly, XmlTextReader allows the reading of XML content from a stream or
file on a file system. It supports forward-only navigation and provides read-only access to a document.
This one-way, fast-forward nature makes XmlTextReader extremely lightweight in terms of memory
consumption and allows a large document to easily fit in. However, an inherent constraint at
the framework level restricts the size of the file to be smaller than 2GB. Besides this limitation,
XmlTextReader is ideal when the XML content needs to be processed quickly to extract data that in
turn must be provided to an intermediate in-memory data store.

We will now demonstrate how to write your first version of XML-aware code using XmlTextReader.
Listing 3-4 reads the XML version of the ISIN master file to populate an intermediate in-memory
data store.

5645ch03.qxd 3/3/06 12:06 PM Page 123

CHAPTER 3 ■ THE DATA CONVERSION ENGINE124

Listing 3-4. Reading the XML Version of the ISIN Master

using System;

using System.Collections;

using System.Xml;

class ReadXml

{

//ISIN Domain Model

public class ISINInfo

{

public string Symbol;

public double FaceValue;

public int MarketLot;

public ArrayList exchangeList = new ArrayList();

}

//Exchange Domain Model

//that holds exchange-specific instrument

//code for a particular ISIN

public class ExchangeInfo

{

public string ExchangeCode;

public string ScripCode;

}

[STAThread]

static void Main(string[] args)

{

//declare ArrayList for the in-memory data store

ArrayList isinDataStore = new ArrayList();

//ISINMaster XML path

string xmlPath = @"C:\CodeExample\Chpt3\ReadXml\ISINMaster.xml";

//Create Xml text reader

XmlTextReader txtReader = new XmlTextReader(xmlPath);

//loop until we have read the entire file

//returns true as long as there is content to be read

while (txtReader.Read())

{

//check the type of node that we just read to be an Element type

switch(txtReader.NodeType)

{

case XmlNodeType.Element:

//check the name of the current node being read

//If ISIN node is read

if (txtReader.LocalName == "ISIN")

{

//create an instance of the ISINInfo class, and

//assign various properties by querying attribute

//nodes of the ISIN element

ISINInfo isinInfo = new ISINInfo();

isinInfo.Symbol = txtReader.GetAttribute("Symbol");

isinInfo.FaceValue =

XmlConvert.ToDouble(txtReader.GetAttribute("FaceValue"));

isinInfo.MarketLot =

XmlConvert.ToInt32(txtReader.GetAttribute("MarketLot"));

5645ch03.qxd 3/3/06 12:06 PM Page 124

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 125

isinDataStore.Add(isinInfo);

}

//If Exchange node is read

if (txtReader.LocalName == "Exchange")

{

//Get reference to latest isin instance added in arraylist

ISINInfo isinInfo =

isinDataStore[isinDataStore.Count - 1] as ISINInfo;

//create instance of exchange, and assign various

//properties by querying attribute node of exchange element

ExchangeInfo exchInfo = new ExchangeInfo();

exchInfo.ExchangeCode = txtReader.GetAttribute("Code");

exchInfo.ScripCode = txtReader.GetAttribute("ScripCode");

//add exchange instance into isin exchange list

//reflects isin-exchange mapping

isinInfo.exchangeList.Add(exchInfo);

}

break;

default:

break;

}

}

//close the text reader

txtReader.Close();

//Display the ISIN

foreach(ISINInfo isin in isinDataStore)

{

Console.WriteLine("ISIN :" +isin.Symbol);

//Display Exchange

foreach(ExchangeInfo exchange in isin.exchangeList)

{

Console.WriteLine("Exchange {0} Scrip Code {1} ",

exchange.ExchangeCode,exchange.ScripCode);

}

}

}

}

In Listing 3-4, the first line of code declares an ArrayList that represents an in-memory data
store. The array collection holds object instances of ISINInfo, which is basically an object-oriented
representation of the ISIN element, fetched from the XML file. ISINInfo also references the ExchangeInfo
class, which is an object-oriented representation of the Exchange element defined under the ISIN element.

The XML reading process starts with the instantiation of the XmlTextReader class, which accepts
a full path of the XML file. The next line of code is a while loop that gets triggered by invoking the Read
method of the XmlTextReader class. This method is the analog to a database cursor row pointer that
knows the current row position in a cursor; similarly, the internal implementation of the Read method
is such that it also knows the current node position. Thus, the repeated invocation of this method
increments its internal position pointer and moves it to the next node in the XML document. The
Read method returns a Boolean value to indicate whether a read request was successful in locating
the next node in the XML document. A return value of false indicates the end of the file and also
the criteria for exiting the loop. Also, an important point to note is that the Read method navigates
node by node, and the XML attributes are not considered to be nodes; instead, attributes are treated
as the auxiliary information of a node. Figure 3-6 depicts a graphical representation of a node vis-
ited in the while loop code.

5645ch03.qxd 3/3/06 12:06 PM Page 125

CHAPTER 3 ■ THE DATA CONVERSION ENGINE126

Figure 3-6. Graphical representation of while loop code

In Figure 3-6, both start and end tags are considered to be nodes and therefore must be excluded
from the evaluation logic. You can do this with the help of the NodeType property. This property returns
the type of the visited node, and a list of all possible node types is supplied by the XmlNodeType enu-
meration. Because you are interested only in the ISIN and Exchange elements that contain the required
domain information, you narrow the evaluation logic by favoring only the XmlNodeType.Element node
and specifically checking for the existence of both these elements by querying the LocalName property.
This property returns the name of the current node; in this example, it returns the name of the element.

So, when the code encounters ISIN and Exchange elements, it enters a conditional block of code
that instantiates an appropriate object based on the element name. Elements are just tags to the core
information that resides inside an XML attribute. The essential information in this case is stored inside
Symbol, FaceValue, and MarketLot attributes that are extracted with the help of the GetAttribute
method by passing the correct attribute name. The return value of the GetAttribute method is of
string type and needs to be converted to the object field’s underlying type. The type conversion takes
place with the help of the XmlConvert class. This class is introduced to achieve a locale-independent
conversion and to respect the XSD data type specification. With the help of the XmlConvert class, the
attribute value is converted to the appropriate underlying CLR type, is assigned to the newly instan-
tiated object field, and finally is inserted into an in-memory data store.

It is also essential to handle the whitespace encountered while reading an XML document.
Although in Figure 3-6 whitespace is not discussed explicitly, it is considered a distinct node and
therefore forms part of the read iteration process. If efficiency is the key goal of an application where
every bit of performance is counted, then it is recommended that you turn off the processing for
whitespace nodes using the WhiteSpaceHandling property.

The XmlTextReader class houses several other important members and properties that are useful
for handling XML documents from all dimensions. Most of the members and properties are bound
contextually, which means their values are dynamic and populated based on the current node.
Table 3-8 lists some of the important properties of the XmlTextReader class. Table 3-9 lists the impor-
tant methods supported by XmlTextReader, and Table 3-10 lists the navigation methods.

Table 3-8. Important Properties of the XmlTextReader Class

Properties Description

AttributeCount This property returns the total number of attributes in the current node.

BaseURI This property is useful for determining the location of an XML document.

Depth The XML document is structured in a tree-based fashion, and every element or
attribute in the tree belongs to a particular level in the tree. This property
returns the tree level of the current node.

EOF This is useful to determine whether the stream has finished reading the entire
document and its position pointer has reached the end of the file.

HasAttribute This property indicates whether the current node has any attributes.

IsEmptyElement This property comes in handy when you need to know whether the current
node is an empty element. For example, in the ISIN master, an occurrence of
text such as <ISIN/> represents an empty element.

5645ch03.qxd 3/3/06 12:06 PM Page 126

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 127

Table 3-9. Important Methods of the XmlTextReader Class

Members Description

Skip When invoked, this method skips all the children in the current node, and the node
pointer is positioned on the next element in the tree level. For example, if the node
pointer was positioned on the Exchanges element and the Skip method was invoked,
the node pointer skips the entire children node branching under this element, thereby
skipping all Exchange elements. Therefore, the node pointer directly jumps to the end
node of the ISINMaster element.

Table 3-10. Navigation Methods of the XmlTextReader Class

Navigation Members Description

MoveToAttribute This is an overloaded method that allows navigation to a specific
attribute by passing its attribute name or attribute index position
within the element node.

MoveToFirstAttribute This moves to the first attribute in the element node.

MoveToNextAttribute This moves to the next attribute in the element node. Both
MoveToFirstAttribute and MoveToNextAttribute return a Boolean value
that indicates whether traversal to the next attribute was successful.

MoveToElement This method is useful to reset the navigation pointer to the element in
the current attribute node.

To further illustrate the application of navigation methods, we’ll show how to add some intelli-
gence to the parsing code. The current parsing code is well-crafted to read mandatory information;
ISIN-related information is built upon Symbol, FaceValue, and MarketLot attributes, and Exchange-
related information is built upon Code and ScripCode attributes. The following code introduces an
additional visual cue in the Exchange element-processing block that will display unwanted informa-
tion that surfaces in the form of unknown XML attributes:

using System;

using System.Xml;

class NodeNavigation

{

[STAThread]

static void Main(string[] args)

{

//ISINMaster Xml path

string xmlPath = @"C:\CodeExample\Chpt3\ReadXml\ISINMaster.xml";

//Create Xml text reader

XmlTextReader txtReader = new XmlTextReader(xmlPath);

//loop until we have read the entire file

//returns true as long as there is content to be read

while (txtReader.Read())

{

switch(txtReader.NodeType)

{

case XmlNodeType.Element:

//If Exchange node is read

if (txtReader.LocalName == "Exchange")

{

//Iterate through all attributes of the exchange element

5645ch03.qxd 3/3/06 12:06 PM Page 127

CHAPTER 3 ■ THE DATA CONVERSION ENGINE128

for(int ctr=0;ctr<=txtReader.AttributeCount-1;ctr++)

{

//Move to attribute with specified index

txtReader.MoveToAttribute(ctr);

//display additional unwanted attribute

if (!(txtReader.Name == "Code" || txtReader.Name == "ScripCode"))

{

Console.WriteLine("Unknown Attribute Node "

+txtReader.Name +" Found ");

Console.WriteLine("Attribute Value : " +txtReader.Value);

}

}

}

break;

default:

break;

}

}

}

}

You have seen that XmlTextReader is XML-oriented and can extract XML-based data from any
given underlying file or stream. The only feature it does not support is writing XML data that is
separated in an XmlTextWriter class, as discussed in the next section.

Writing XML
We see two classifications of developers in our day-to-day work. The first category is adventurous and
is always in search of some new programming tools and techniques that will be eagerly implemented
in their day-to-day development routines. The second category is more narrow minded and reluctant
to adopt new approaches. This classification also applies to writing XML documents. XML docu-
ments, because of their text-centric characteristics, can be easily crafted by concatenating a bunch
of strings. Such an approach will be happily implemented by the second category of developers
using the StringBuilder class. With this approach, although it meets the goal of churning out a well-
formed XML document, in reality a lot of time and effort is invested in ensuring that the final output
adheres to the XML standards. There are high possibilities for errors, such as missing end tags, missing
quotes, and so on.

When adventurous developers look into the .NET Framework, they will discover a new
class—XmlWriter—as part of the System.Xml namespace. It is an abstract base class that provides
a forward-only and noncached way of generating XML documents. Using this class, developers no
longer have to worry about missing angled brackets or missing quotes. The XmlWriter class provides
the logic that will help build a well-formed XML document. It offers several versions of WriteXXX
methods for each possible XML node type.

XmlTextWriter is the immediate specialization of the XmlWriter class. This class writes XML
output to a stream or file in a file system. Listing 3-5 illustrates how to use this class by reading the
object-oriented format of ISIN data and persisting it in an XML document.

Listing 3-5. Writing the ISIN Master XML Document

using System;

using System.Collections;

using System.Xml;

using System.Text;

5645ch03.qxd 3/3/06 12:06 PM Page 128

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 129

class WritingXml

{

public class ExchangeInfo

{

public string ExchangeCode;

public string ScripCode;

}

public class ISINInfo

{

public string Symbol;

public double FaceValue;

public int MarketLot;

public ArrayList exchangeList = new ArrayList();

}

[STAThread]

static void Main(string[] args)

{

//initialize in-memory isin data store

ArrayList isinList = new ArrayList();

//create isin

ISINInfo isinInfo = new ISINInfo();

isinInfo.Symbol ="MSFT";

isinInfo.FaceValue = 10;

isinInfo.MarketLot = 5;

//create exchange

ExchangeInfo nasdaqInfo = new ExchangeInfo();

nasdaqInfo.ExchangeCode = "NASDAQ";

nasdaqInfo.ScripCode = "MSFT.O";

//add exchange to isin exchange list

isinInfo.exchangeList.Add(nasdaqInfo);

//add isin to array list

isinList.Add(isinInfo);

//create XML text writer

XmlTextWriter xmlWriter = new

XmlTextWriter(@"C:\ISINMaster.xml",Encoding.UTF8);

xmlWriter.Formatting = Formatting.Indented;

//write the root element

xmlWriter.WriteStartElement("ISINMaster");

//iterate through individual isin

foreach(ISINInfo curIsin in isinList)

{

//write isin element

xmlWriter.WriteStartElement("ISIN");

//write attributes of isin

xmlWriter.WriteAttributeString("Symbol",curIsin.Symbol);

xmlWriter.WriteAttributeString("FaceValue",

XmlConvert.ToString(curIsin.FaceValue));

xmlWriter.WriteAttributeString("MarketLot",

XmlConvert.ToString(curIsin.MarketLot));

//write parent element of exchange

5645ch03.qxd 3/3/06 12:06 PM Page 129

CHAPTER 3 ■ THE DATA CONVERSION ENGINE130

xmlWriter.WriteStartElement("Exchanges");

//iterate through individual exchange

foreach(ExchangeInfo curExchange in curIsin.exchangeList)

{

//write exchange element

xmlWriter.WriteStartElement("Exchange");

//write attributes of exchange

xmlWriter.WriteAttributeString("Code",curExchange.ExchangeCode);

xmlWriter.WriteAttributeString("ScripCode",curExchange.ScripCode);

xmlWriter.WriteEndElement();

}

//exchange end tag

xmlWriter.WriteEndElement();

//exchanges end tag

xmlWriter.WriteEndElement();

}

//root end tag

xmlWriter.WriteEndElement();

//close xml text writer

xmlWriter.Close();

}

}

In Listing 3-5, first an XmlTextWriter object is instantiated by passing the path of the file to
which the XML output is redirected. The next line of code is where the XML writing journey begins;
first the root element of the document is written with the help of the WriteStartElement method.
The method name that starts with WriteStartXXX is called a paired method. The first leg of the
paired method represents the start of the node with WriteStartElement and WriteStartAttribute,
and the final leg indicates the end of the node with WriteEndElement and WriteEndAttribute. So,
every WriteStartXX method has a corresponding WriteEndXX method.

After generating an opening angled bracket for the ISINMaster element, the program enters
into a loop that reads the ISIN master from an in-memory ArrayList data store. The ISIN element is
emitted with the help of WriteStartElement. Information about ISIN—such as Symbol, FaceValue, and
MarketLot—forms part of the XML attribute, and this information is written out with the help of the
WriteAttributeString method.

You also use the same approach to generate the Exchange information that is inside a nested loop
associated with the current ISIN. When the code exits from the nested loop, the WriteEndElement
method is invoked two times. The first invocation is meant to close the Exchanges element, and the last
invocation is meant to close the ISIN element. The code also includes a final call to WriteEndElement
to close the root element.

Observe that the code described in Listing 3-5 does not concatenate the strings to generate the
XML document; instead, it leverages the XmlTextWriter class. This guarantees that the generated
final document adheres to the well-formed XML standard. Table 3-11 lists the important members
available in the XmlTextWriter class, and Table 3-12 lists the important formatting properties.

5645ch03.qxd 3/3/06 12:06 PM Page 130

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 131

Table 3-11. Important Members of the XmlTextWriter Class

Members Description

WriteComment This member provides XML-style comments, such as <!--...-->. The
comments are passed as a string argument to this method.

WriteBase64 A Base64 encoding scheme is used to convert binary data into ASCII characters.
XML documents do not support raw binary data; only ASCII characters are allowed
as part of an element value or attribute value. The only mechanism to embed
binary data inside an XML document is to convert it into a Base64 encoding
scheme. The WriteBase64 method accepts a byte array as the method argument
and encodes this byte array to Base64 format.

Table 3-12. Important Formatting Properties of the XmlTextWriter Class

Formatting Properties Description

Formatting This property indicates how the XML output must be formatted, and an
appropriate value is assigned using the Formatting enumeration. The
possible Formatting enumeration values are None and Indented. By default
no formatting is performed, so when the document is opened in Notepad,
or any other text editor, the content is arranged in a series of lines instead
of in a hierarchical arrangement.

IndentChar This property defines the character used for indenting.

Indentation This property defines the number of IndentChar to be written at each
level in the hierarchy.

QuoteChar This defines the quotation mark character to be used to enclose the
attribute value.

XmlReader and XmlWriter form the core classes in the .NET Framework. Although they are inde-
pendent classes, encapsulating read and write operations in a distinct, separate class allows for the
cleaner separation of responsibilities. You can extend both of these classes to read and write non-XML
data. XmlReader and XmlWriter also provide a strong foundation for designing other XML-based services
such as XML integration in ADO.NET, XML serialization, and so on.

Introducing XML Serialization
Modern systems are modeled around the basic tenets of object-oriented programming where business
requirements are distilled into fine, granular objects. Undoubtedly, object-oriented programming
models are safe bets when the scope of communication is confined to the local periphery of an
application. But in today’s era, the automation of organizations is built upon disparate systems, and
exchanging data between such systems is a major bottleneck. The data required for the exchange
purpose is in place and also encapsulated inside an object, but the object itself is a runtime representa-
tion and affiliated to a specific runtime system and operating system. For example, an object instantiated
by a .NET system cannot be passed, as is, to a Java-based system. This demands a mechanism to
hydrate an in-memory representation of an object that can be easily understood by another system.
Serialization is the process of flattening the in-memory object state into a common representation
format that can be easily transferred over the wire or persisted to a stream. Similarly, deserialization
is the reverse ability to resurrect an in-memory object state from disk storage or any other in-memory
data source. The serialization and deserialization process is managed by the serialization engine,

5645ch03.qxd 3/3/06 12:06 PM Page 131

CHAPTER 3 ■ THE DATA CONVERSION ENGINE132

which defines the scope of the object to be serialized and the format of the serialized object. The
serialization engine not only provides the ability to serialize a given object but also conducts a deep
traversal of objects to flush out the entire object graph contents. The serialization engine primarily
operates in two modes:

Full-type fidelity mode: In this mode, the object’s state and its contextual information or object
identity information is serialized. For example, when a .NET type is serialized in full-type fidelity
mode, the object’s public and private fields—along with its assembly information such as the
assembly name, its version number, public key, and assembly culture—also get recorded. The
serialization engine enforces stringent norms during the deserialization phase in this mode.
An object serialized in one context can be resurrected only when the context at the deserializing
end matches the serialized context. Hence, the serialization engine in this mode (in such types)
is context-centric; therefore, even if there are no changes in the structure of an object, minor
assembly version number increments are sufficient to invalidate the deserialization process.
This mode is useful in a distributed environment where both the client and the server are physically
separated and the types shared between them demand a strict versioning policy.

Partial-type fidelity mode: In partial-type fidelity mode, only the object state is serialized;
contextual information is completely sidelined during the deserialization phase.

Three types of serialization engines are built in and readily available within the .NET Framework:

Binary serializer: The binary serializer is one of the fastest serializers that hydrates object state
into raw bytes, and vice versa. The raw bytes generated are compact in size and highly efficient
for transfer over the wire. Binary serialization is achieved with the help of the BinaryFormatter
class and is used heavily by the .NET Remoting Communication Infrastructure.

SOAP serializer: The SOAP serializer converts object state into SOAP messages that are designed
upon XML standards. The primary goal of this serializer is to achieve platform neutrality. SOAP
serialization is achieved with the help of the SoapFormatter class.

XML serializer: The XML serializer serializes object state into XML format. The behavior of this
serializer is controlled with the help of .NET attributes and has pioneered a new declarative
style of programming.

The declarative style of programming is a novel approach introduced in the C# programming
language. It allows annotating additional information called attributes. Attributes are simply infor-
mation markers or additional metadata associated with programming elements such as types, fields,
methods, and properties. This metadata augments the functionality of the entity to which it is applied.
With the help of the .NET reflection technique, these attributes can be easily queried or inspected,
and the appropriate interpretation of the attributes can be performed during either runtime or
compile time. Attributes complement the existing coding syntax by allowing a cleaner approach.
You do this by decoupling the core logic from the consumer class and allowing the consumer class
to consume this logic by explicitly expressing it in the form of attributes. Attributes are easy to debug
and locate because of their placement rule; they are allowed only before the declaration of any pro-
gramming element. Attributes are deeply rooted in the .NET Framework and can handle a variety of
tasks such as assembly versioning information, code access security, and so on.

Listing 3-6 demonstrates how to use attributes.

Listing 3-6. Using Attributes

[Serializable]

public class ISINInfo

{

public string Symbol;

public double FaceValue;

5645ch03.qxd 3/3/06 12:06 PM Page 132

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 133

public int MarketLot;

public ArrayList exchangeList = new ArrayList();

}

In Listing 3-6, you will notice an attribute named Serializable annotated on the ISINInfo type.
By annotating this attribute, you augment the functionality of the ISINInfo type by allowing its object
instances to be serializable. Attributes themselves are object instances of the Attribute class. Attri-
butes are further classified into custom attributes and pseudo-attributes. Custom attributes are defined
by developers, and pseudo-attributes are system-level attributes defined by the CLR. Now that you
know about the fundamentals of attributes, you can look at the XmlSerializer class where attributes
play an important role in achieving serialization.

XmlSerializer is housed inside the System.Xml.Serialization namespace. It mediates between
a CLR type and an XML document and weaves some plumbing code that allows for the seamless
translation between a CLR type and an XML document, and vice versa. This plumbing code is gen-
erated based on a set of known mapping rules that are defined with the help of an XML serialization
attribute that is explained shortly. Attributes are placed on the class property or on fields. Once they
are defined, they form input to the XML serialization engine, which dictates how to persist the value
of the field or property in XML format—whether to represent the field or property as an XML element
or an attribute. Also, certain attributes are driven by the underlying data type of the field or property.
They provide additional hints to the XML serialization engine about how to handle a complex data
type associated with a field or property. To illustrate this mechanism, let’s return to the topic of
XML content being read using the XmlReader class. You can achieve the same task with the help
of XmlSerializer.

But before that, the following classes need to be persist aware, which is achieved with the help
of attributes:

public class ISINInfo

{

[XmlAttribute("Symbol")]

public string Symbol;

[XmlAttribute("FaceValue")]

public double FaceValue;

[XmlAttribute("MarketLot")]

public int MarketLot;

[XmlArray("Exchanges")]

[XmlArrayItem("Exchange",

typeof(ExchangeInfo))]

public ArrayList exchangeList =

new ArrayList();

}

public class ExchangeInfo

{

[XmlAttribute("Code")]

public string ExchangeCode;

[XmlAttribute("ScripCode")]

public string ScripCode;

}

[XmlRoot("ISINMaster")]

public class ISINDataStore

{

private ISINInfo[] isinStore;

5645ch03.qxd 3/3/06 12:06 PM Page 133

CHAPTER 3 ■ THE DATA CONVERSION ENGINE134

[XmlArray("ISINS")]

[XmlArrayItem("ISIN",typeof(ISINInfo))]

public ISINInfo[] Items

{

get{return isinStore;}

set{isinStore=value;}

}

}

The only noticeable change is the recruitment of appropriate attributes. You should note that
at this point no structural changes have been made to the class in any form either by injecting a new
method or by deriving from any existing base classes. Attributes were the only ingredients that were
needed to mix with your class to achieve XML serialization. Table 3-13 describes individual attributes
in detail.

Table 3-13. Attributes and Their Descriptions

Attribute Name Description

XmlRoot The valid programming element for this attribute is a CLR type. This attribute
represents the root element of an XML document. In the example, ISINMaster
is the root element, and therefore you declared this attribute on the
ISINDataStore type.

XmlAttribute This attribute is used on a class public field or property. It accepts the attribute
name as part of the argument and persists the value of the field or property to
an XML attribute node type. Referring to the previous ISINInfo class, the public
field is decorated with XmlAttribute, which in turn gets mapped to the attribute
node type when represented in the XML document form.

XmlElement This attribute maps the field or property value to an XML element node.

XmlIgnore This is a useful attribute, and it comes in handy when sensitive or unwanted
information needs to be excluded from getting serialized. When this attribute
is annotated on a public field or property, the serialization engine completely
ignores it, and the value of the field or property will not be serialized in any form.

XmlArray These two attributes go hand in hand and are promising when the field or
XmlArrayItem property to be serialized returns an array of objects. The definition of an array

in this context is any class that implements the IEnumerable interface. This
expands the list of classes that are serializable from a simple primitive array to
a complex collection of objects. If you look closely at the ISINDataStore and
ISINInfo classes, you will find the presence of these attributes declared on a field
of the ArrayList data type. We all know that there will be multiple occurrences
of ISIN, with each ISIN holding multiple Exchange records. Such one-to-many
mappings between ISIN and Exchange can be achieved in conjunction with the
XmlArray and XmlArrayItem attributes.
XmlArray also allows you to define the name of the parent element node, and
XmlArrayItem allows you to define the name of the inner child element node of
this parent node. The XmlArrayItem attribute also allows the mapping of the inner
child element node to the appropriate CLR type.

XmlEnum This attribute allows you to tweak the serialization of enumeration values.

XmlAnyAttribute This attribute is annotated on a field or property that returns an array of
XmlAttribute. This array acts as a generic container for storing all attributes
that do not have a corresponding mapped field or property.

XmlAnyElement This attribute is annotated on a field or property that returns an array of XmlNode
or XmlElement. The array acts as a generic container for storing all elements that
do not have a corresponding mapped field or property.

5645ch03.qxd 3/3/06 12:06 PM Page 134

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 135

Now that you have a clear understanding of serialization attributes, let’s look at its application.
So far, you used XmlTextReader and XmlTextWriter for reading and writing XML-based data. Using
XmlTextReader, you read an XML document from a stream and traversed each node, and in the process
you extracted the appropriate node value and assigned it to an object public field. You did exactly
the reverse using XmlTextWriter, where object fields were assigned to an appropriate XML node,
and generated a well-formed XML document. The only downside with this approach is that you need
to manually hand-roll the code to “XMLify” object fields. With XmlSerializer in action, you are relieved
from having to write low-level parsing code; you can achieve the same task with a minimum amount
of code. The following snippet demonstrates both serialization and deserialization:

using System;

using System.Collections;

using System.Xml.Serialization;

using System.IO;

public class XmlPersist

{

[XmlRoot("ISINMaster")]

public class ISINDataStore

{

[XmlArray("ISINS")]

[XmlArrayItem("ISIN",typeof(ISINInfo))]

public ArrayList isinStore = new ArrayList();

}

public class ISINInfo

{

[XmlAttribute("Symbol")]

public string Symbol;

[XmlAttribute("FaceValue")]

public double FaceValue;

[XmlAttribute("MarketLot")]

public int MarketLot;

[XmlArray("Exchanges")]

[XmlArrayItem("Exchange",typeof(ExchangeInfo))]

public ArrayList exchangeList = new ArrayList();

}

public class ExchangeInfo

{

[XmlAttribute("Code")]

public string ExchangeCode;

[XmlAttribute("ScripCode")]

public string ScripCode;

}

[STAThread]

static void Main(string[] args)

{

string isinPath = @"C:\CodeExample\Chpt3\XmlSerialization\ISINMaster.xml";

//read isin content

StreamReader xmlDoc = new StreamReader(isinPath);

//create a new instance of XML serializer

XmlSerializer isinXml = new XmlSerializer(typeof(ISINDataStore));

//deserialize isin master

5645ch03.qxd 3/3/06 12:06 PM Page 135

CHAPTER 3 ■ THE DATA CONVERSION ENGINE136

ISINDataStore dataStore = isinXml.Deserialize(xmlDoc) as ISINDataStore;

//write isin content

StreamWriter newXmlDoc = new StreamWriter(@"C:\NewISINMaster.xml");

//serialize isin master

isinXml.Serialize(newXmlDoc,dataStore);

//close the stream

xmlDoc.Close();

newXmlDoc.Close();

}

}

The Serialize and DeSerialize methods of the XmlSerializer class dictate the serialization
and deserialization of any arbitrary type. The arbitrary type is supplied as a constructor argument to
the XmlSerializer class. Based on this arbitrary type, XmlSerializer implements a just-in-time
code-cutting technique that generates code by reflecting a class public field and property that need
to be serialized, and then XmlSerializer compiles this code into a .NET assembly that is loaded in
the program’s memory. Furthermore, the underlying source from which data is fetched during the
deserialization phase or persisted during the serialization phase could be any valid Stream object.
Chapter 8 describes the inner workings of the XmlSerializer class in detail.

The XmlSerializer class is a powerful weapon in a developer’s arsenal. Developers are often
faced with a requirement to sprinkle an XML layer over a runtime object, or vice versa. You can use
the XML serializer to achieve this layering by abstracting away the core complexities and not forcing
parsing code down the developer’s throat.

Introducing XML Schema Document (XSD)
Before getting into an explanation of XSD, we’ll cover the assumptions made in the ISIN master XML
document (refer to Listing 3-2). The XML version of the ISIN document poses some serious short-
comings that were overlooked during the parsing stage. Although you can overlook such negligence
in a perfect world where everything behaves in an expected manner, this is not true in the real com-
puting world. In the computing world, any action executed based on assumptions tends to be brittle
in nature. The following questions, when raised, are sufficient to cripple the strong assumptions used
to develop the parsing logic:

• What happens when an XML document deviates from the expected standard? For example,
what if there is no occurrence of an ISINMaster element or one of its child elements?

• What happens when the necessary information in the document is arranged in an
unordered fashion? For example, what if Exchange elements are nested under ISIN elements
instead of the Exchanges element?

• What happens when partial information is received from the XML document? For example,
what if a Symbol attribute is missing from an ISIN element?

• What happens when there is a data type mismatch? For example, what if the FaceValue
attribute of the ISIN element contains a string value instead of a numeric value?

• What happens when the ISIN master document contains extraneous information that bloats
up the size of the document and the visible side effect of such large document is negatively
impacted performance?

The previous questions often lead to a common syndrome that is directly related to document
structure validation and integrity. To overcome such problems, developers start building a whole
suite of validation frameworks to function across different XML node touch points. The addition of
a validation framework further increases the development time, and above all it shifts the main

5645ch03.qxd 3/3/06 12:06 PM Page 136

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 137

focus of a developer. Instead of concentrating on building core domain components, the developer
is actively engaged in building a validating parser component. XML Schema comes to the rescue to
alleviate this parsing problem. It is one step ahead of parsing.

XML Schema is analogous to a database table in a relational database system. A database table
encapsulates the structural information of a row in the form of column definitions and also allows
the enforcement of data-level validations, such as defining primary keys, constraints, rules, and so on.
In the XML world, XML Schema mimics the functionality of a database table and defines the structural
and content aspects of an element and attribute in an XML document.

XML Schema enriches the value of an XML document by mainly capturing three types of
information:

Structural information: XML Schema defines the hierarchical arrangement of elements in the
XML document. It captures the names of elements and attributes that are considered to be
valid nodes in the document.

Content information: In XML documents, node values are represented in text that defaults the
underlying data type to string. With the help of XML Schema, it is possible to define the under-
lying data type of a node. XML Schema supports several data types and includes all primitive
types such as string, int, long, datetime, and so on.

Content restriction: XML Schema, along with its ability to define data types, provides the facility
to define constraints on the data type. For example, an integer data type could be further cus-
tomized to create a user-defined data type that accepts a restricted range of numbers.

XML Schema is defined using XML vocabulary and therefore in itself is an XML document. This
means it is a well-formed document, and like other XML documents, it can be loaded and inspected
by any XML parser. The only striking difference is that XSD is built on a fixed set of XML vocabulary
that is leveraged to define the structural model of an XML document. This vocabulary comprises a fixed
number of XML elements and attributes, and each of these markup nodes has its own distinct meaning
when it comes to validating an XML document. Listing 3-7 is a full-blown XML Schema of the ISIN
master.

Listing 3-7. XML Schema of the ISIN Master

<xs:schema id="ISINSchema" xmlns=""

xmlns:mstns="http://tempuri.org/ISINSchema.xsd"

xmlns:xs="http://www.w3.org/2001/XmlSchema">

<xs:complexType name="ISINModel">

<xs:sequence>

<xs:element name="Exchanges" type="ExchangesModel" />

</xs:sequence>

<xs:attribute name="Symbol" type="xs:string" use="required" />

<xs:attribute name="FaceValue" type="IntDataType" use="required" />

<xs:attribute name="MarketLot" type="IntDataType" use="required" />

<xs:attribute name="Status" type="StatusDataType" use="required" />

<xs:attribute name="ISINCode" type="ISINCodeDataType" use="required" />

</xs:complexType>

<xs:simpleType name="StatusDataType">

<xs:restriction base="xs:string">

<xs:enumeration value="Active" />

<xs:enumeration value="InActive" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="ExchangeModel">

<xs:sequence />

<xs:attribute name="Code" type="xs:string" use="required" />

5645ch03.qxd 3/3/06 12:06 PM Page 137

CHAPTER 3 ■ THE DATA CONVERSION ENGINE138

<xs:attribute name="ScripCode" type="xs:string" use="required" />

</xs:complexType>

<xs:element name="ISINMaster">

<xs:complexType>

<xs:sequence>

<xs:element name="ISIN" type="ISINModel"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:key name="PrimaryKeyISINCode">

<xs:selector xpath=".//ISIN" />

<xs:field xpath="@ISINCode" />

</xs:key>

</xs:element>

<xs:complexType name="ExchangesModel">

<xs:sequence>

<xs:element name="Exchange" type="ExchangeModel"

minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:simpleType name="IntDataType">

<xs:restriction base="xs:int">

<xs:minExclusive value="0" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ISINCodeDataType">

<xs:restriction base="xs:string">

<xs:pattern value="US[A-Z0-9]*" />

<xs:length value="12" />

</xs:restriction>

</xs:simpleType>

</xs:schema>

In Listing 3-7, the declaration of xs:schema defines the root element of the XML Schema docu-
ment. Primarily, three types of elements nest under this xs:schema element:

Complex type elements: A complex type element describes the structural characteristics of the
XML elements. It is represented by the xs:complextype element and is composed of the following
information:

• A list of all attributes housed inside an element that is defined by the xs:attribute element.
This xs:attribute element also exposes a type attribute that allows you to associate the
underlying data type of the attribute value. The content of the attribute node can be
string, integer, or any custom data type.

• A list of all child elements defined with the help of compositor elements. Child elements
are represented by xs:element but are defined within the scope of the compositor element.
Compositors are also the driving force in ensuring elements are arranged in the appro-
priate order. Compositor elements are nested under the xs:complextype element. The
xs:sequence element is a commonly used compositor element, and it directs the order of
the nested child elements. Furthermore, xs:element also allows you to define the occur-
rence constraint that controls the minimum and maximum number of child elements. This
element range restriction is fed to the minOccurs and maxOccurs attributes of xs:element.

5645ch03.qxd 3/3/06 12:06 PM Page 138

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 139

Simple type elements: Simple type elements provide the notion of user-defined data types. This
is inclined more toward content, unlike complex type elements that are centered on the structural
aspects of the content. Simple type elements are derivations of built-in data types, but they offer
additional flexibility to developers to customize this base data type to accept only a subset of
data. Such restriction on data is usually determined by business requirements. A simple type
element is analogous to a user-defined data type in a relational database and is represented by
the xs:simpletype element.

Document root elements: A root element is represented by xs:element, but it directly branches
as a child of the xs:schema element. This element determines the starting root element of the
underlying XML document.

Although manually designing XML Schema documents is time-consuming, this should not be
used as an excuse for not adopting this approach. The development community has addressed this
problem well, and hence you will find a plethora of XML Schema designing tools that make the job
easier by overcoming many challenges and drastically increasing productivity. The VS .NET IDE comes
with a sophisticated XML Schema designer tool. With a few clicks and a drag-and-drop interface, you
can quickly generate an XSD. In fact, the XML Schema described in Listing 3-7 was generated using
VS .NET Schema Designer.

We’ll now walk through the XML schema file described in Listing 3-8 and explain the one-to-one
mapping of individual schema elements with the ISIN XML document, which will further solidify your
understanding. The following is an XML fragment of the ISIN element described in Listing 3-2:

<ISIN ISINCode="US5949181045"

Symbol="MSFT"

FaceValue="10"

MarketLot="5"

Status="Active">

Listing 3-8. XML Schema of the ISIN Element

<xs:complexType name="ISINModel">

<xs:sequence>

<xs:element name="Exchanges" type="ExchangesModel" />

</xs:sequence>

<xs:attribute name="Symbol" type="xs:string" use="required"/>

<xs:attribute name="FaceValue" type="IntDataType" use="required"/>

<xs:attribute name="MarketLot" type="IntDataType" use="required"/>

<xs:attribute name="Status" type="StatusDataType" use="required"/>

<xs:attribute name="ISINCode" type="ISINCodeDataType"

use="required" />

<xs:simpleType name="StatusDataType">

<xs:restriction base="xs:string">

<xs:enumeration value="Active" />

<xs:enumeration value="InActive" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="IntDataType">

<xs:restriction base="xs:int">

<xs:minExclusive value="0" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ISINCodeDataType">

<xs:restriction base="xs:string">

5645ch03.qxd 3/3/06 12:06 PM Page 139

CHAPTER 3 ■ THE DATA CONVERSION ENGINE140

<xs:pattern value="US[A-Z0-9]*" />

<xs:length value="12" />

</xs:restriction>

</xs:simpleType>

Listing 3-8 represents the structural model of the ISIN element. The ISIN element is defined as
a complex type and is named ISINModel. ISINModel also encloses mandatory attributes such as
FaceValue, Symbol, MarketLot, and Status. Also, notice the data type of the FaceValue, MarketLot, and
Status attributes. They are based on IntDataType and StatusDataType, which are simple types and are
customized to accept only restricted data.

Another good thing about the simple type is that it allows you to apply regular expressions on
data. The previous example, as part of the business validation check, defines a rule using the regular
expression syntax that states the ISIN code will always start with US as the first two characters and will
accept only uppercase characters along with numeric digits. The declaration of the attribute node is
further strengthened with the use attribute that instructs the schema parser to treat this attribute as
one of the mandatory attributes and also raise an exception when it fails to locate this attribute in the
XML document. You will also discover an element named Exchanges. The underlying complex type of
this element is ExchangesModel, which is as shown in Listing 3-9. Listing 3-10 represents the structural
model of the Exchange element that is enclosed inside the ExchangeModel complex type.

Listing 3-9. The Exchange Element

<Exchanges>

<Exchange

Code="NASDAQ"

ScripCode="NMSFT" />

Listing 3-10. XML Schema of the Exchange Element

<xs:complexType name="ExchangesModel">

<xs:sequence>

<xs:element name="Exchange" type="ExchangeModel"

minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExchangeModel">

<xs:sequence />

<xs:attribute name="Code" type="xs:string" use="required" />

<xs:attribute name="ScripCode" type="xs:string" use="required" />

</xs:complexType>

The Exchange element does not contain any child elements, so the only node it supports is Code
and the ScripCode attributes. Exchange elements are repeatable elements and hence appear multiple
times for a particular ISIN. Therefore, it is nested inside the Exchanges element that is schematically
mapped to the ExchangesModel complex style. The important attributes to observe are minOccurs and
maxOccurs associated with xs:element. These attributes control the minimum and maximum occur-
rences of the child elements. In Listing 3-10, we expressed a mandatory validation that there should
be at least one Exchange but no limit on the maximum number of Exchange. The next and final element
to be addressed is the root element, which is as follows:

<ISINMaster>

Listing 3-11 shows the XML Schema of the root element.

5645ch03.qxd 3/3/06 12:06 PM Page 140

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 141

Listing 3-11. XML Schema of the Root Element

<xs:element name="ISINMaster">

<xs:complexType>

<xs:sequence>

<xs:element name="ISIN" type="ISINModel"

minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:key name="PrimaryKeyISINCode">

<xs:selector xpath=".//ISIN" />

<xs:field xpath="@ISINCode" />

</xs:key>

</xs:element>

The root element of the XML document is ISINMaster, and in Listing 3-7 it is defined as a direct
descendant of the xs:schema element. The ISINMaster root element contains multiple ISIN elements,
and this arrangement is achieved with the help of xs:element named as ISIN, and the underlying
type of this element is mapped to ISINModel, which is a complex type. Another interesting thing to
note is that the validation of the XML document is further tightened by defining a primary key con-
straint on the ISIN code. The benefit of this constraint is reaped during the XML Schema validation
stage when the parser checks for the duplicate existence of the ISIN code.

This completes the discussion of the XML Schema. This discussion, so far, has focused on the
individual characteristics of both the XML and its underlying schema. In the following section, you
will see how to bring these two documents together. In addition, an XML document must satisfy
two important conditions. Along with its well-formed nature, it must also gain the status of a valid
document. You can accomplish this task by validating the document against the correct schema.
Thus, the desperate missing piece is the schema parser that carries an inherent knowledge of the
vocabulary in the XML Schema. The schema parser loads both the XML document and the schema
document in the memory. After loading, it reads each node from the document and validates both
the content and structure of this node against the schema document and ensures that the node is
not violating any rule and that it satisfies all the conditions expressed in the schema document. The
.NET Framework provides this kind of schema parser in the form of the XmlValidatingReader class.

XmlValidatingReader is also bundled in the System.Xml namespace along with the XmlReader
and XmlWriter classes. XmlValidatingReader is a direct descendant of the XmlReader class, and this
leaves no room for doubt that its data-reading tactics are based on the pull model. It reads data node
by node and then validates it against the specified schema specification. Such step-by-step validation
of each individual node, from a performance perspective, is highly rewarding. The following code
snippet represents the applicability of XmlValidatingReader that validates the ISIN master XML
document (see Listing 3-2) against the ISIN master schema file (see Listing 3-7):

using System;

using System.Xml;

using System.Xml.Schema;

class SchemaValidation

{

public static bool isDocumentValid=true;

[STAThread]

static void Main(string[] args)

{

string path = @"C:\CodeExample\Chpt3\SchemaValidation\";

//read ISIN XML

XmlTextReader reader = new XmlTextReader(path +"ISINMaster.xml");

//create schema validator

XmlValidatingReader validateReader = new XmlValidatingReader(reader);

5645ch03.qxd 3/3/06 12:06 PM Page 141

CHAPTER 3 ■ THE DATA CONVERSION ENGINE142

//associate validation event handler

validateReader.ValidationEventHandler +=new

System.Xml.Schema.ValidationEventHandler(ValidationEventHandler);

//add schema file path

validateReader.Schemas.Add("",path +"ISINSchema.xsd");

//validate the XML file with XSD

while(validateReader.Read())

{

if (isDocumentValid == false)

break;

}

//check boolean value; the value of this variable

//is assigned in validation handler code

if (isDocumentValid == true)

{

Console.WriteLine("Document is Valid...");

}

}

private static void ValidationEventHandler(object sender,

System.Xml.Schema.ValidationEventArgs e)

{

//error in XML document

isDocumentValid=false;

//display the error message

Console.WriteLine(e.Message);

}

}

XmlValidatingReader can read a schema document from a Stream or XmlTextReader. Since you
are already familiar with the XmlTextReader class, the previous code uses XmlTextReader, which maps
to the ISINMaster.xml file. This newly constructed XmlTextReader object is passed as a constructor
argument to the XmlValidatingReader class. The next line of code contains the error-handling code.
XmlValidatingReader exposes a ValidationEventHandler event that allows the chaining of a user-defined
method with the help of a delegate. This event gets bubbled up as soon as the XmlValidationReader

notices a structural ambiguity in the current processing node that does not adhere to a defined structure
or rules in the schema document. Because we have associated our own custom ValidationEventHandler

method with this event, we must have the necessary error handler code in place along with the correct
path of the XML document that needs to be validated. The only missing information is the path to
the schema file, and that is provided in the next line of code.

XmlValidatingReader provides a Schemas property. This property returns an XmlSchemaCollection
object, which is part of the System.Xml.Schema namespace. XmlSchemaCollection allows multiple
schema files to be inserted, and each of these schema files can be identified by a unique namespace.
In the previous code, the XML document does not contain a namespace; we have passed an empty
string as the namespace name along with an absolute path to the schema file. Once the necessary
information is provided to the XmlValidatingReader class, the document validation process starts
by declaring an empty body loop that traverses one node at a time. From each traversed node, the
XmlValidatingReader locates the structural information in the schema document and, if found, vali-
dates it for data sanctity. This happens even though you have not placed any code inside the read
loop. The exit criteria for this validating loop is reached either when the end of the file is encountered
or when a validation exception occurs because of a structural mismatch between the XML document
and schema document, which in turn raises the ValidationEventHandler and also internally triggers

5645ch03.qxd 3/3/06 12:06 PM Page 142

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 143

the registered error handler method. After exiting the loop, to indicate whether the document vali-
dation is successful, the value of the static Boolean variable is inspected. If the resulting value is true,
it indicates that no errors have been flagged by the parser, and hence the document can be considered
to be well-formed and valid. A false value assigned by the error-handling code indicates an invalid
XML document.

The XmlValidatingReader class and XML Schema addressed concerns relating to the data sanc-
tity of the ISIN master XML document. Looking closely at the previous code, notice that not even
a single line of code checks for node structural ambiguity or node content data type mismatch. You
have completely decoupled the data validation logic, expressed it in a schema document, and used
XmlValidatingReader to do the rest of the validation magic.

In summary, XML Schema is beneficial because it alleviates the need for programmatically val-
idating the content and structure of an XML document. The business community has adopted XML
Schema extensively; we all know that to trade, one party needs to sign a business contract with the
counterparty. In today’s information exchange world where most business is conducted electroni-
cally, it is important to have a data contract mutually agreed on by both parties. An XML Schema is
basically a kind of a data contract that is shared with all interested parties; based upon this contract,
information is prepared and exchanged.

Examining the Business-Technology Mapping
In this section, we will architect a data conversion framework to address the conversion needs. The
whole essence of this framework is to offer a service that is easy and friendly to use and brings higher
productivity to a developer. Developers no longer have to undergo the painful task of writing parsing
code to extract data from an unstructured file, which basically pollutes the code, losing code legibility,
and also becomes a daunting task to reverse engineer the logic from code. The most important goal
of the conversion framework is to weed out the parsing logic from the code and strongly motivate
developers to develop real code by applying the core domain knowledge on the parsed information.

In the financial world, information built on external data sources passes through the following
main stages:

Conversion: This is always the first stage and an entry point to this chain. This stage governs the
conversion rule that instructs how raw data needs to be managed. The input to this stage is the
raw data that is in an unstructured format, and the output from this stage is data in a structured
format that is mainly defined by the developer.

Cleansing: The primary responsibility of this layer is to perform data-level validation and fix
grammatical errors with the help of reference data. For example, consider the CSV version of
the ISIN master file (refer to Listing 3-1), which is converted to a user-defined format. During
this conversion process, the ISIN code is validated against the ISIN master repository. Assuming
that this repository is a table stored in a relational database and a query of ISIN code in this
central database results in an unsuccessful match, instead of completely grinding the process
to a halt at this stage by throwing an exception, developers can undertake an alternate route of
applying the cleansing technique. By adopting the cleansing path, the ISIN code can be closely
matched to the data in the central repository with the help of a pattern-matching algorithm to
find a similar ISIN code to replace the wrong ISIN code with the correct code. Additionally, the
cleansing process can also propose alternate values for a bad input value and demand user
intervention to ensure correct replacement.

5645ch03.qxd 3/3/06 12:06 PM Page 143

CHAPTER 3 ■ THE DATA CONVERSION ENGINE144

Enrichment: The enrichment layer goes hand in hand with the cleansing layer. But the separation
is important because the cleansing layer is meant to operate only on data originating from the
original source, but in the enrichment stage the information is further augmented by associating
additional missing information that did not originate from the actual data source. Using the ISIN
master example, if one of the secondary attributes of ISIN, such as the company name, is miss-
ing from the comma-delimited version of the file and is required by the business component in
the next stage, it can be fetched from the ISIN central repository, packaged with other primary
attributes of the ISIN, and dispatched to the final stage.

Business logic: This is the last stage and is the stage in which core business logic is executed.
The business logic component always acts on the finished data.

You saw how data passes through these four stages and how each stage morphs the intent of
the data in terms of its usage. Each stage, from a technical architecture view, could be realized as
independent subcomponents and later integrated to build a complete end-to-end data management
solution. Building such a solution is way beyond the scope of this chapter, and hence the scope of
this discussion is limited to how to handle the conversion stage, which provides the business logic
with the finished data and also introduces data uniformity.

The merit of using uniform data at the business logic layer is even if a new file format is intro-
duced whose data is structurally rearranged, the conversion layer takes care of this format, leaving
the business logic undisturbed. By providing uniform data, the business logic is completely oblivious
to the underlying data format and representation and can focus on application-centric concerns
instead of data-centric concerns.

It is important to clearly lay out the objectives that every framework must address. The following
is a list of the important goals of the conversion framework:

• Use XML as a strong foundation to define conversion rules.

• Act as integration middleware to enable EAI.

• Allow bidirectional data movement to facilitate data import and export activities.

• Provide for faster development time.

• Provide support for any arbitrary text file format, such as CSV, fixed length, SWIFT, EDI,
and so on.

• Provide a unified API.

• Bring down software maintenance costs.

It is wiser to solve a problem by first looking at it from a higher level and then slowly factoring
in each of the granular problems. Such an approach leads to a vivid and watertight design. As a first
step in this exercise, let’s analyze the various types of file formats described in Table 3-14 that are
normally encountered in the financial world. In Table 3-14, a record represents a unit of information
and is composed of rows and columns.

Table 3-14. Various Types of File Formats Encountered in the Financial World

Record-Row-Column
File Format Cardinality Example Description

Delimited 1-1-* US5949181045,10,10 A record is represented by
a single row and multiple
columns, but the length of
the column is dynamic and
determined by a delimiter,
which is usually a comma.

5645ch03.qxd 3/3/06 12:06 PM Page 144

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 145

Record-Row-Column
File Format Cardinality Example Description

Positional 1-1-* US594918104500100010 A single row with multiple
columns representing
a record, but each column is
of fixed length, and the
column values are retrieved
by passing the offset
position and length of the
character that must be
extracted.

SWIFT 1-*-1 US5949181045 Multiple rows with a single
10 column representing
10 a record.

Master-detail 1-*-* US5949181045,00100010 A master-detail file format is
EXCHANGEASX,12 considered to be a complex
EXCHANGENASDAQ,13 file format when it comes

to parsing. A record in this
context is composed of
multiple rows and columns
with each row representing
a different aspect of the
information. For example,
ISIN information is defined
in the first row followed by
the local exchange mapping
information.

Having looked at the different file formats, you will see one common element; regardless of its rep-
resentation, every record finally comes down to a row and column matrix, as represented in Figure 3-7.

Data is plotted inside this matrix, and you need to know the proper coordinates—mainly, the
row and column position—to access this data. Figure 3-7 depicts a matrix, and each rectangular block
inside this matrix stores a series of characters. A row represents a collection of columns in a hori-
zontal order; similarly, a band represents a collection of rows in vertical order. It is necessary to get
well-versed with the terms row, column, and band because the following discussion on the framework
is based on this concept:

Figure 3-7. Representation of a record as a matrix

5645ch03.qxd 3/3/06 12:06 PM Page 145

CHAPTER 3 ■ THE DATA CONVERSION ENGINE146

Band: A band is the actual container, and it holds a collection of rows. The decision whether to
interpret a particular line in the data source file is determined by the criteria defined at the band
level. A band acts as an entry point to the underlying rows and columns; if the current line read
from the source file satisfies the band criteria, then the inner row and column is evaluated; else
the band is bypassed and skipped to the next band in the chain. The need for this extra shell
over rows and columns is to aggregate a collection of rows as a single row. This grouping at the
band level comes in handy when the file format is arcane in nature, such as the SWIFT standard,
where multiple sections are nested inside a row and each section is an elastic type, that is, it can
be expanded/collapsed based upon the presence of certain values. The following are important
attributes of a band:

• Identifier: This attribute is used to search text, which is in turn evaluated by the band to
decide whether the inner rows require processing.

• Loop: This attribute determines whether the current band supports iterations in the pres-
ence of a repetitive value. Iteration is achieved by checking the presence of the identifier
attribute value in the current processing line. This attribute is useful when the detail
rows need to be enumerated line by line. In the case of header and footer lines where
the occurrence is only once, the value will be single. To further simplify the loop and
identifier concept, let’s look at a CSV version of the ISIN master:

ISINMASTER12122004

US5949181045,MSFT,10,5,Active

EXCHANGE,NASDAQ,MSFT.O

EXCHANGE,NYSE,MSFT.N

ISINEOF

By looking at content, you can visualize four bands altogether. The first band represents
the header information, and it is identified by the presence of the ISINMASTER text, which
also forms the band identifier. Next, you need to find out the number of times the header
information is repeated; in this case it is repeated only once at the beginning of file, and
therefore the loop attribute value of this band needs to be single.

The second band represents ISIN information and contains attributes such as the ISIN
code, instrument name, market lot, face value, and instrument status. The ISIN infor-
mation is identified by the presence of the US text that forms the band identifier. Since
there will be multiple ISIN information, it is obvious that the loop attribute value of this
band will be repeatable.

Local exchange information comes under the jurisdiction of the third band, and it is
identified by the presence of the EXCHANGE text, which is also the band identifier. The
loop attribute value of this band will be repeatable.

The final band represents the footer information, which is identified by the presence of
the ISINEOF text. The loop attribute value of this band will be single.

• Start: This attribute provides the offset position to extract the value of the identifier.

• Length: This attribute provides the length of the value of the identifier.

• Suppress: A Boolean value of this attribute determines whether to include or exclude data.

Row: A row is similar to a band. Although it inherits all the properties of a band, it is a container
for a collection of columns or a child band. A child band provides enormous flexibility in the form
of recursiveness. It is a perfect candidate to cater to the complex requirements of a master-detail
file format. SWIFT-based formats contain various subsections that are a part of a distinct record
but are repetitive and dynamic in nature. The effectiveness of a child band is maximized in this
kind of scenario. The absence of this feature would have given rise to a lot of common inherent
problems associated with SWIFT formats.

5645ch03.qxd 3/3/06 12:06 PM Page 146

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 147

Column: A column is the final element in the matrix. Rows and bands are the data pathways to
get to a column. Columns encapsulate the real field-level mapping that in turns yields the actual
data. The following are the important attributes of a column:

• Start: Provides offset position to extract the data.

• Length: Provides the length of the data.

• Suppress: A Boolean value of this attribute determines whether to include or exclude data.

Moving one step further, it is time to compartmentalize your thought process and start mixing
the applicability of XML in the data conversion arena. Figure 3-8 depicts a conceptual end-to-end
flow of the conversion framework.

The central piece of this conceptual model is the converter that knows both sides of the environ-
ment. Mainly it has access to all the supporting artifacts that are within the internal conversion
framework and also accessible to the external user. External users interact with the converter by
feeding two input files. The first file is the primary data file that needs to be converted, and the sec-
ond file is the rule file that defines the structural representation of the primary file and is embedded
with the logic for demystifying the data scattered in the primary file. The rule file is based on the matrix
principle described previously. In other words, it contains band-, row-, and column-level information.
The rule file is an XML document, and it comprises a series of band, row, and column elements. Each
of these elements is further supported by attributes that capture mandatory information associated
with them. It is necessary for the rule file to be free from any ambiguous information because this
may negatively impact the parsing behavior, resulting in the wrong finished information.

To ensure that rule file is free from errors, an XSD document is created that forms a part of the
rule repository. This schema document exactly represents the structural content of the rule file and
sanitizes the data by enforcing all possible data-level validation. Both the rule file and the schema
document are brought together using the XmlTextReader and XmlValidatingReader classes to verify
whether the files are well-formed and valid. Using the schema document at this stage proves to be
nifty because it saves you from writing a whole bunch of validation code.

The next step is to blend the contents of the rule file in an object representation form so that it
can be accessed by the downstream components. The straightforward approach is to read the con-
tent using the XmlTextReader class and traverse each node to determine the appropriate node type
and assign its value to an object field or property. However, because this method involves writing
a large amount of code, you can use the XML serialization technique to achieve the same task. XML

Figure 3-8. End-to-end flow of a conversion framework

5645ch03.qxd 3/3/06 12:06 PM Page 147

CHAPTER 3 ■ THE DATA CONVERSION ENGINE148

serialization eases the coding burden when it comes to deserializing the XML content to an object
and provides for a declarative style of programming.

So far you have put all the necessary apparatus in place; you have passed through a battery of
checks such as ensuring that the rule file is well-formed and valid and also eventually serializing it
into an object. Next you step into the parsing stage, which plays an important role in breaking up the
unstructured data and providing it in the finished form. Parsing heavily relies upon the rule informa-
tion because it is just a driver that blindly drives based on the direction plotted inside the rule file.
Three types of parsers are specialized to meet the distinct needs of band, row, and column. The parser
reads raw data from the primary data file using the TextReader class and with the help of the rule
definition extracts the appropriate chunk of data. This extracted data is then handed over to the writer,
which is entrusted with the responsibility of creating the parsed information in a format that can be
easily understood by developers creating the business logic component. This extra layer helps devel-
opers take advantage of the fact that the final parsed information can be easily molded as per the needs
of the technology. The writer can be technically materialized in the following flavors:

XML data writer: This writer enriches the data by surrounding it with angle brackets like XML
attributes and elements. The business logic component then fully leverages the capabilities of
the built-in XML classes of the .NET Framework to operate on this data. We will bundle this as
the default writer of the conversion framework.

DataSet writer: This writer arranges the data in the form of relational table rows and columns,
packaging it in the form of a DataSet. The business logic component can then use most of the
ADO.NET features to access the data.

Because there are no limits to the different types of writers, the data conversion framework has
appropriately outsourced writers as pluggable components instead of providing them as built-in
functionality. This opens the door for developers to write their own custom writers that suit their
need. Once the writer finishes its job, the business logic can start to process the finished information,
completely unaware of the various cycles that the information has gone through to reach this stage.

It is time to use some real code to illustrate this. In the next section, we will use a comma-delimited
version of the ISIN master as a real-life example to write a conversion rule that will transform an
unstructured format to XML format. This XML format will be considered as the uniform format on
which the business logic will depend.

CSV Conversion Rule
The conversion rule described in Listing 3-12 embodies the structural description of the ISIN master
CSV file. This rule file is also the technical realization of the conceptual matrix depicted in Figure 3-7—it
flawlessly interprets the band, row, and column concept. A row is sandwiched between a band, and
a column is placed between rows. Both the header information and the footer information in the CSV
file are repeated once, so the loop attribute of their band is assigned a single value. The detail band
is interesting; its loop attribute is marked repeatable, and it nests both a row and a child band named
Exchanges. This child band iterates over all exchange-related rows. The identifier attribute available
at the band or row level acts as a marker, and with its help, the parser interprets information correctly
and knows where to draw an end-of-information (EOI) mark.

Listing 3-12. ISIN Master CSV Conversion Rule File

<?xml version="1.0" encoding="utf-8" ?>

<matrix>

<bands>

<band name="Header" identifier="ISINMASTER" start="0" loop="single">

<rows>

<row name="HeaderInfo" identifier="" length="0" coldelimeter="">

5645ch03.qxd 3/3/06 12:06 PM Page 148

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 149

<cols>

<col name="InfoDateTime" length="7" start="11"/>

</cols>

</row>

</rows>

</band>

<band name="Detail" identifier="US" start="0" loop="repeatable">

<rows>

<row name="ISIN" identifier="" length="0" coldelimeter=",">

<cols>

<col name="ISINCode" length="12" start="0"/>

<col name="Symbol" length="12" start="0"/>

<col name="FaceValue" length="12" start="0"/>

<col name="MarketLot" length="12" start="0"/>

<col name="Status" length="12" start="0"/>

</cols>

</row>

<row>

<band name="Exchanges" identifier="EXCHANGE" start="0" loop="repeatable">

<rows>

<row name="Exchange" identifier="" length="0" coldelimeter=",">

<cols>

<col name="ExchangeTag" length="12" start="0"/>

<col name="Code" length="12" start="0"/>

<col name="ScripCode" length="12" start="0"/>

</cols>

</row>

</rows>

</band>

</row>

</rows>

</band>

<band name="Footer" identifier="ISINEOF" start="0" loop="single">

<rows>

<row name="FooterInfo" identifier="" length="0" coldelimeter="">

<cols>

<col name="FooterTag" length="7" start="0"/>

</cols>

</row>

</rows>

</band>

</bands>

</matrix>

Rule Schema
The following XSD dictates both the content and structural layout of the conversion rule file. Rule
files are first validated against this schema before forwarding it to the parsing stage.

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XmlSchema"

elementFormDefault="qualified">

<xs:simpleType name="IntAttribute">

<xs:restriction base="xs:int" />

</xs:simpleType>

<xs:complexType name="bandType">

<xs:sequence>

5645ch03.qxd 3/3/06 12:06 PM Page 149

CHAPTER 3 ■ THE DATA CONVERSION ENGINE150

<xs:element name="rows" type="rowsType" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="identifier" type="xs:string" use="required" />

<xs:attribute name="start" type="IntAttribute" use="required" />

<xs:attribute name="loop" type="LoopDataType" use="required" />

<xs:attribute name="suppress" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:simpleType name="LoopDataType">

<xs:restriction base="xs:string">

<xs:enumeration value="single" />

<xs:enumeration value="repeatable" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="bandsType">

<xs:sequence>

<xs:element name="band" type="bandType" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="colType">

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="length" type="IntAttribute" use="required" />

<xs:attribute name="start" type="IntAttribute" use="required" />

<xs:attribute name="suppress" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:complexType name="colsType">

<xs:sequence>

<xs:element name="col" type="colType" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:element name="matrix">

<xs:complexType>

<xs:sequence>

<xs:element name="bands" type="bandsType" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="rowType">

<xs:choice>

<xs:element name="cols" type="colsType" />

<xs:element name="band" type="bandType" />

</xs:choice>

<xs:attribute name="name" type="xs:string" use="optional" />

<xs:attribute name="identifier" type="xs:string" use="optional" />

<xs:attribute name="length" type="IntAttribute" use="optional" />

<xs:attribute name="coldelimeter" type="xs:string" use="optional" />

<xs:attribute name="suppress" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:complexType name="rowsType">

<xs:sequence>

<xs:element name="row" type="rowType" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:schema>

5645ch03.qxd 3/3/06 12:06 PM Page 150

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 151

Class Details
Figure 3-9 shows the data conversion framework class diagram, and Figure 3-10 shows the data
conversion framework project structure.

Figure 3-9. Data conversion framework class diagram

Figure 3-10. Data conversion framework project structure

5645ch03.qxd 3/3/06 12:06 PM Page 151

CHAPTER 3 ■ THE DATA CONVERSION ENGINE152

CellsAttribute
CellsAttribute is an abstract class inherited by the Band, Row, and Column classes. The intent of this
abstract class is to group all common properties.

This is the CellsAttribute class:

using System;

using System.Xml.Serialization;

namespace DCE.Repository

{

public abstract class CellsAttribute

{

private string dataIdentifer;

private int offSet;

private string name;

private int index;

private int dataLength;

private CellsAttribute parentCell;

private bool isSuppressed;

[XmlIgnore]

public CellsAttribute ParentCell

{

get{return parentCell;}

set{ parentCell= value;}

}

[XmlIgnore]

public int Index

{

get{return index;}

set{ index=value;}

}

[XmlAttribute("name")]

public string Name

{

get{return name;}

set{ name= value;}

}

[XmlAttribute("identifier")]

public string Identifier

{

get{return dataIdentifer;}

set{ dataIdentifer=value;}

}

[XmlAttribute("start")]

public int Start

{

get{return offSet;}

set{ offSet= value;}

}

5645ch03.qxd 3/3/06 12:06 PM Page 152

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 153

[XmlAttribute("length")]

public int Length

{

get{return dataLength;}

set{ dataLength = value;}

}

[XmlAttribute("suppress")]

public bool IsSuppressed

{

get{return isSuppressed;}

set{ isSuppressed= value;}

}

}

}

Band
The Band class is an object-oriented representation of the band element defined in the conversion
rule file. It is inherited from the CellsAttribute abstract class and introduces some additional
attributes specific to the band.

This is the Band class:

using System;

using System.Xml.Serialization;

namespace DCE.Repository

{

public enum LoopType

{

[XmlEnum("repeatable")]

Repeatable,

[XmlEnum("single")]

Single

}

public class Band : CellsAttribute

{

private Row[] rows = {};

private LoopType loopMode;

public Band()

{

}

[XmlAttribute("loop")]

public LoopType LoopMode

{

get{return loopMode;}

set{loopMode=value;}

}

5645ch03.qxd 3/3/06 12:06 PM Page 153

CHAPTER 3 ■ THE DATA CONVERSION ENGINE154

[XmlArray("rows")]

[XmlArrayItem("row",typeof(Row))]

public Row[] Rows

{

get{return rows;}

set{rows = value;}

}

}

}

Row
The Row class is an object-oriented representation of the row element defined in the conversion
rule file.

This is the Row class:

using System;

using System.Xml.Serialization;

namespace DCE.Repository

{

public class Row : CellsAttribute

{

private Column[] columns = {};

private Band childBand;

private string colDelimeter;

public Row()

{

}

[XmlAttribute("coldelimeter")]

public string ColDelimeter

{

get{return colDelimeter;}

set{colDelimeter=value;}

}

[XmlElement("band")]

public Band ChildBand

{

get{return childBand;}

set{childBand= value;}

}

[XmlArray("cols")]

[XmlArrayItem("col",typeof(Column))]

public Column[] Columns

{

get{return columns;}

set{columns= value;}

}

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 154

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 155

Column
The Column class is an object-oriented representation of the column element defined in the conver-
sion rule file.

This is the Column class:

using System;

using System.Xml.Serialization;

using System.Runtime.InteropServices;

namespace DCE.Repository

{

public class Column : CellsAttribute

{

private string dataPrefix;

public Column()

{

}

[XmlAttribute("prefix")]

public string Prefix

{

get{return dataPrefix;}

set{dataPrefix = value;}

}

}

}

Matrix
The Matrix class represents an object-oriented form of the dce element, which is a root container.
This class acts as a surrogate container for the collection of all bands, and therefore there is no need
to inherit it from the CellsAttribute class.

This is the Matrix class:

using System;

using System.Xml.Serialization;

namespace DCE.Repository

{

[XmlRoot("matrix")]

public class Matrix

{

private Band[] bands = {};

public Matrix()

{

}

[XmlArray("bands")]

[XmlArrayItem("band",typeof(Band))]

public Band[] Bands

{

get{return bands;}

set{bands = value;}

}

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 155

CHAPTER 3 ■ THE DATA CONVERSION ENGINE156

All the classes discussed so far belong to the illustrated conceptual matrix depicted in Figure 3-7.
Each class maps to a particular section of the conversion rule file and is appropriately annotated with
a serialization attribute. Certain properties, specifically ParentCell and Index of the CellAttribute
class, are ignored during the serialization phase. The purpose of both these properties is explained
in the DataConverter class.

BooleanCursor
BooleanCursor is the internal data source reader class of the data conversion framework. This class
supplies unstructured data to the framework; basically, it reads data from the source file. BooleanCursor
is the equivalent of a Boolean variable that can hold two specific states. Thus, BooleanCursor also stores
two copies of data. The first copy represents the previously read data, and the final copy represents
the latest read data. Using such a caching technique is extremely beneficial and provides the in-memory
file-seeking capability.

This is the BooleanCursor class:

using System;

using System.Collections;

using System.IO;

namespace DCE

{

public class BooleanCursor

{

private TextReader _dataReader;

private string[] _data;

private int _readCounter = 0;

public BooleanCursor(TextReader dataSource)

{

_dataReader = dataSource;

_data = new string[2];

_readCounter = 1;

}

public TextReader BaseReader

{

get{return _dataReader;}

}

public string Previous()

{

_readCounter = 0 ;

return _data[_readCounter];

}

public string Next()

{

if (_readCounter == 0)

{

_readCounter = 1;

}

else

{

_readCounter = 1;

_data[0] = _data[1];

5645ch03.qxd 3/3/06 12:06 PM Page 156

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 157

_data[1] = _dataReader.ReadLine();

}

return _data[_readCounter];

}

}

}

Parser
The Parser class groups all the common behavior that a parser should provide, specifically the abstract
Parse method. RowParser, ColumnParser, and BandParser are inherited from this abstract class and
override the Parse method by supplying a concrete implementation. The concrete Parser class is
driven by the information provided to them. This information is none other than the conversion rule
that is wrapped inside the Matrix class.

This is the Parser class:

using System;

using DCE.Repository;

using DCE;

namespace DCE.Parser

{

public abstract class Parser

{

private string data;

private BooleanCursor dataReader;

private CellsAttribute cellInfo;

public Parser(BooleanCursor reader)

{

dataReader = reader;

}

//The value of this property governs the entire parsing process.

//It represents the conversion rule and must be a Band or Row or Column class.

public CellsAttribute CellsAttribute

{

get{return cellInfo;}

set{cellInfo = value;}

}

//This property gives the parser class access to the

//underlying information data source.

public BooleanCursor Reader

{

get{return dataReader;}

}

//Parser needs to have access to the raw data before it

//could apply its parsing logic. It is with the help of this property that

//data is retrieved or assigned.

public string Data

{

get{return data;}

set{ data = value;}

}

5645ch03.qxd 3/3/06 12:06 PM Page 157

CHAPTER 3 ■ THE DATA CONVERSION ENGINE158

public abstract bool Parse();

}

}

BandParser
BandParser provides the concrete implementation of parsing the band section of the conversion
rule file.

This is the BandParser class:

using System;

using System.IO;

using DCE.Repository;

using DCE;

namespace DCE.Parser

{

public class BandParser : Parser

{

private int _iterationCount = 0;

public BandParser(BooleanCursor dataReader, string data,

CellsAttribute cellInfo) :base(dataReader)

{

this.Data = data;

this.CellsAttribute = cellInfo;

}

public override bool Parse()

{

//Retrieve the band information

Band curBand = (Band)CellsAttribute;

//If data to be processed is null, then terminate the parsing

if (Data == null)

return false;

//Referring to the band section, specifically the loop attribute,

//if the current loop mode is single, then it needs to process

//only once for the current section.

if (curBand.LoopMode == LoopType.Single)

{

if (_iterationCount >= 1)

{

_iterationCount = 0 ;

Reader.Previous();

return false;

}

else

{

_iterationCount++;

return true;

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 158

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 159

//If the loop attribute is of repeatable type, then it

//evaluates data for the presence of an identifier-defined band

//section of the conversion rule file. If parser is not able to

//locate the identifier in the data, then it resets the

//read pointer of the data source to its previous location by

//invoking the Previous member of the BooleanCursor class.

if (curBand.LoopMode == LoopType.Repeatable)

{

if ((curBand.Identifier.Length <= Data.Length - curBand.Start) &&

Data.Substring(curBand.Start,curBand.Identifier.Length) ==

curBand.Identifier)

{

return true;

}

Reader.Previous();

}

_iterationCount = 0 ;

return false;

}

}

}

RowParser
RowParser provides a concrete implementation of parsing the row section of the conversion rule file.

This is the RowParser class:

using System;

using DCE;

using DCE.Repository;

namespace DCE.Parser

{

public class RowParser : Parser

{

public RowParser(BooleanCursor dataReader,

string data, CellsAttribute cellInfo)

:base(dataReader)

{

this.Data = data;

this.CellsAttribute = cellInfo;

}

public override bool Parse()

{

//The parser checks for the presence of a identifier

//defined in the row section of rule file. If the parser is

//not able to locate the identifier in the data, then it

//resets the read pointer of the data source to its previous

//location by invoking the Previous member of the BooleanCursor class.

if (CellsAttribute.Identifier.Length > 0 &&

Data.Substring(CellsAttribute.Start,CellsAttribute.Length) !=

CellsAttribute.Identifier)

{

Reader.Previous();

return false;

}

5645ch03.qxd 3/3/06 12:06 PM Page 159

CHAPTER 3 ■ THE DATA CONVERSION ENGINE160

return true;

}

}

}

ColumnParser
ColumnParser provides a concrete implementation of parsing the col section of the conversion
rule file.

This is the ColumnParser class:

using System;

using DCE.Repository;

using DCE;

namespace DCE.Parser

{

public class ColumnParser : Parser

{

private string[] splittedData;

public ColumnParser(BooleanCursor dataReader)

:base(dataReader)

{

}

public override bool Parse()

{

Row curRow = (Row)CellsAttribute.ParentCell;

//This is the final processing logic in the parsing chain.

//A check is performed to see whether a column delimiter has

//been specified. If a column delimiter is found, then a Split

//operation is performed that splits out an array of strings based

//on the character delimiter passed to it. The array of string returned

//from the Split operation is assigned to the array. This splitting process

//is conducted only once - during the parsing of first column - and

//subsequent access to data is retrieved from a cached array.

if (curRow.ColDelimeter.Length > 0)

{

if (this.CellsAttribute.Index == 1)

splittedData = Data.Split(curRow.ColDelimeter.ToCharArray());

this.Data = splittedData[this.CellsAttribute.Index - 1];

}

else

{

//If there is no delimiter specified, then it is assumed that it is a

//fixed-length file format, and data is retrieved using the offset position

//and length of data.

this.Data =

this.Data.Substring(CellsAttribute.Start,CellsAttribute.Length);

}

return true;

}

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 160

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 161

IWriter
IWriter is the interface implemented by the concrete data writer class. The responsibility of this class
is to furnish finished information that is in turn submitted to the business logic component. Using
this interface ensures full cooperation by concrete classes that provide real code implementation.
This interface is referenced by the Parser class to invoke the appropriate operation during important
stages of parsing.

This is the IWriter class:

using System;

using System.IO;

using DCE.Repository;

using DCE.Parser;

namespace DCE.Writer

{

public interface IWriter

{

//This paired method is invoked by ColumnParser during the parsing phase

void WriteStartColumn(CellsAttribute metaDataInfo, string data);

void WriteEndColumn(CellsAttribute metaDataInfo);

//This paired method is invoked by RowParser during the parsing phase

void WriteStartRow(CellsAttribute metaDataInfo,string data);

void WriteEndRow(CellsAttribute metaDataInfo);

//This paired method is invoked by BandParser during the parsing phase

void WriteStartBand(CellsAttribute metaDataInfo,string data);

void WriteEndBand(CellsAttribute metaDataInfo);

TextWriter BaseWriter{get;}

}

}

XmlDataWriter
XmlDataWriter realizes a concrete XML writer and annotates semifinished data with elements and
attributes to produce the finished information.

This is the XmlDataWriter class:

using System;

using System.Xml;

using System.IO;

using DCE.Repository;

using DCE.Parser;

namespace DCE.Writer

{

public class XmlDataWriter: IWriter

{

private XmlTextWriter xmlWriter;

private TextWriter baseWriter;

public XmlDataWriter(TextWriter dataWriter)

{

xmlWriter = new XmlTextWriter(dataWriter);

xmlWriter.Formatting= Formatting.Indented;

xmlWriter.Indentation = 4;

baseWriter = dataWriter;

}

5645ch03.qxd 3/3/06 12:06 PM Page 161

CHAPTER 3 ■ THE DATA CONVERSION ENGINE162

public void WriteStartColumn(CellsAttribute metaDataInfo, string data)

{

if (metaDataInfo.IsSuppressed == true) return;

xmlWriter.WriteStartAttribute(metaDataInfo.Name,"");

xmlWriter.WriteString(data);

}

public void WriteEndColumn(CellsAttribute metaDataInfo)

{

if (metaDataInfo.IsSuppressed == true) return;

Row rowCell = metaDataInfo.ParentCell as Row;

xmlWriter.WriteEndAttribute();

}

public void WriteStartRow(CellsAttribute metaDataInfo, string data)

{

if (metaDataInfo.IsSuppressed == true) return;

xmlWriter.WriteStartElement(metaDataInfo.Name);

}

public void WriteEndRow(CellsAttribute metaDataInfo)

{

if (metaDataInfo.IsSuppressed == true) return;

xmlWriter.WriteEndElement();

}

public void WriteStartBand(CellsAttribute metaDataInfo, string data)

{

if (metaDataInfo.IsSuppressed == true) return;

xmlWriter.WriteStartElement(metaDataInfo.Name);

}

public void WriteEndBand(CellsAttribute metaDataInfo)

{

if (metaDataInfo.IsSuppressed == true) return;

xmlWriter.WriteEndElement();

}

public TextWriter BaseWriter

{

get{return baseWriter;}

}

}

}

DataConverter
DataConverter is the facade class that is visible to the outside world. The responsibility of this class
is to dovetail the classes discussed so far by instantiating them and initializing them with an appro-
priate state. The important member in this class is Convert, which kicks off the conversion stage.
On its successful completion, this method gathers the finished data with the help of an underlying
stream wrapped inside the XmlDataWriter class.

This is the DataConverter class:

using System;

using System.IO;

using System.Xml.Serialization;

5645ch03.qxd 3/3/06 12:06 PM Page 162

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 163

using DCE.Repository;

using DCE.Parser;

using DCE;

using DCE.Writer;

using System.Xml;

using System.Xml.Schema;

using System.Configuration;

namespace DCE

{

public class DataConverter

{

private Matrix dceSchema;

private IWriter dataWriter;

private BooleanCursor dataReader;

private string ruleFile;

private string ruleSchema;

public DataConverter(string rulePath,string ruleSchemaPath)

{

//Rule file is validated with a framework schema file

//that checks for well-formed characteristics and conformity,

//ensuring that all mandatory attributes/elements are present

//and arranged in a defined order.

ruleFile = rulePath;

ruleSchema = ruleSchemaPath;

XmlTextReader xmlRule = new XmlTextReader(ruleFile);

XmlValidatingReader xsdSchema = new XmlValidatingReader(xmlRule);

xsdSchema.ValidationEventHandler +=new

ValidationEventHandler(xsdSchema_ValidationEventHandler);

xsdSchema.Schemas.Add("", ruleSchema);

while(xsdSchema .Read()){}

xsdSchema.Close();

xmlRule.Close();

//Rules stored in Xml file are dehydrated

//in an object representation format.

FileStream schemaStream = new FileStream(rulePath, FileMode.Open);

XmlSerializer schemaSz = new XmlSerializer(typeof(Matrix));

dceSchema = (Matrix)schemaSz.Deserialize(schemaStream);

schemaStream.Close();

//This loop invokes the AssignIndex function that

//assigns a running sequence number to every instance of the Band, Row, and

//Column objects. This sequence number is assigned recursively to the Index

//property of CellsAttribute. There is no way to capture this information

//during the deserialization stage; therefore, it needs to be manually assigned.

foreach (Band curBand in dceSchema.Bands)

{

AssignIndex(curBand);

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 163

CHAPTER 3 ■ THE DATA CONVERSION ENGINE164

public void Convert(BooleanCursor reader,IWriter writer)

{

dataWriter = writer;

dataReader = reader;

//Parsing kicks off with the invocation of this method.

//The parsing code has been packaged inside the ConvertBand, ConvertRow, and

//ConvertCol methods. These methods instantiate an appropriate parser, and

//based on the return value of Parse method, it invokes

//the Writer WriteXXX method.

foreach (Band curBand in dceSchema.Bands)

{

ConvertBand(curBand, dataReader.Next());

}

//Close the underlying reader and writer

dataReader.BaseReader.Close();

dataWriter.BaseWriter.Close();

}

private void ConvertBand(Band band,string data)

{

//This method is responsible for the initiating parsing of the

//band section. A new instance of band parser is created

//by passing the current data and band information

BandParser bandParser;

bandParser = new BandParser(dataReader,data,band);

//loop until data contains the appropriate band identifer

while (bandParser.Parse()== true)

{

//invoke the writer band start method

dataWriter.WriteStartBand(band,bandParser.Data);

//iterate through individual row of band

foreach (Row row in band.Rows)

{

//a row can be a child band

//if it is, then a recursive call to CovertBand

//is triggered

if (row.ChildBand != null)

ConvertBand(row.ChildBand,data);

else

ConvertRow(row,data);

//get the next data

data = dataReader.Next();

}

//invoke the writer band end method

dataWriter.WriteEndBand(band);

bandParser.Data = data;

}

}

private void ConvertRow(Row row,string data)

{

//This method is responsible for initiating the parsing of

//row section. A new instance of row parser is created

//by passing the current data and row information

5645ch03.qxd 3/3/06 12:06 PM Page 164

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 165

RowParser rowParser = new RowParser(dataReader,data,row);

//invoke the writer band start method

dataWriter.WriteStartRow(row, rowParser.Data);

//invoke row parser

if (rowParser.Parse() == false)

{

//if there is no matching data found based on the row identifier,

//then bypass the column processing and invoke

//the writer row end method

dataWriter.WriteEndRow(row);

return ;

}

//initiate the column parsing

ColumnParser colParser = new ColumnParser(dataReader);

//iterate through individual columns

//and process the column level information

foreach (Column col in row.Columns)

{

colParser.Data = data;

colParser.CellsAttribute = col;

ConvertCol(row,col,data,colParser);

}

//invoke the writer row end method

dataWriter.WriteEndRow(row);

}

private void AssignIndex(Band curBand)

{

if (curBand == null) return ;

int rowIndex;

int colIndex;

rowIndex=1;

foreach(Row curRow in curBand.Rows)

{

curRow.Index = rowIndex;

curRow.ParentCell= curBand;

AssignIndex(curRow.ChildBand);

colIndex=1;

foreach(Column curCol in curRow.Columns)

{

curCol.Index = colIndex;

curCol.ParentCell= curRow;

colIndex++;

}

rowIndex++;

}

}

private void ConvertCol(Row row,Column col,string data,ColumnParser colParser)

{

//This method is responsible for initiating the parsing of

//column section

colParser.Parse();

//invoke writer column start and end method

5645ch03.qxd 3/3/06 12:06 PM Page 165

CHAPTER 3 ■ THE DATA CONVERSION ENGINE166

dataWriter.WriteStartColumn(col, colParser.Data);

dataWriter.WriteEndColumn(col);

}

private void xsdSchema_ValidationEventHandler(object sender,

ValidationEventArgs e)

{

throw new ApplicationException(e.Message);

}

}

}

Conversion Example
The following sample code illustrates a data conversion example. Before invoking the Convert
method of the DataConverter class, it instantiates an appropriate reader and writer object and
passes the newly created instance to the Convert method.

using System;

using System.IO;

using System.Configuration;

using System.Xml.Serialization;

using DCE.Repository;

using DCE.Parser;

using DCE.Writer;

using DCE;

namespace DCE

{

class DCEExample

{

[STAThread]

static void Main(string[] args)

{

string filePath = @"C:\CodeExample\Chpt3\Framework\";

//Assign the framework rule schema

string ruleSchema = filePath +"RuleSchema.xsd";

//ISIN Master - comma-separated

BooleanCursor dataRdr = new BooleanCursor(new

StreamReader(filePath +"CSVISINMaster.csv"));

//Create XML data writer

XmlDataWriter dataWrt= new XmlDataWriter(new StringWriter());

//Instantiate Data Converter passing the ISIN conversion rule file

DataConverter _dataConverter= new DataConverter(

filePath +"ISINConversionRule.xml",ruleSchema);

//Start of conversion phase

_dataConverter.Convert(dataRdr,dataWrt);

//Display XML output

Console.WriteLine(dataWrt.BaseWriter.ToString());

}

}

}

5645ch03.qxd 3/3/06 12:06 PM Page 166

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 167

XML Output
The following is the finished data produced by the parser based on the rule defined in the conversion
rule file (see Listing 3-12):

<Header>

<HeaderInfo InfoDateTime="2122004" />

</Header>

<Detail>

<ISIN ISINCode="US5949181045" Symbol="MSFT" FaceValue="10"

MarketLot="5" Status="Active" />

<Exchanges>

<Exchange ExchangeTag="EXCHANGE" Code="NASDAQ" ScripCode="MSFT.O" />

</Exchanges>

<Exchanges>

<Exchange ExchangeTag="EXCHANGE" Code="NYSE" ScripCode="MSFT.N" />

</Exchanges>

</Detail>

<Footer>

<FooterInfo FooterTag="ISINEOF" />

</Footer>

The previous XML output doesn’t reproduce the ISIN master XML format described in Listing 3-2.
We did this for demonstration purposes. We purposely shaped our conversion rule file in such
a fashion where every section (that is, band, row, and col) can get its share of pie in the final gener-
ated XML document.

Refined Conversion Rule
The whole concept of a matrix upon which the conversion framework is cemented is so rigorous
that almost all kinds of file formats can be conceptualized and easily materialized. To prove this, we
paid a second visit to the conversion rule and refined it to produce XML output that matches the
format described in Listing 3-2.

Here’s the code:

<?xml version="1.0" encoding="utf-8" ?>

<matrix>

<bands>

<band name="ISINMaster" identifier="ISINMASTER" start="0" loop="single"

suppress="false">

<rows>

<row name="HeaderInfo" identifier="" length="0"

coldelimeter="" suppress="true">

<cols>

<col name="InfoDateTime" length="7" start="11" suppress="true"/>

</cols>

</row>

<row>

<band name="ISIN" identifier="US" start="0"

loop="repeatable" suppress="false">

<rows>

<row name="ISIN" identifier="" length="0"

coldelimeter="," suppress="true">

<cols>

<col name="ISINCode" length="12" start="0"/>

<col name="Symbol" length="12" start="0"/>

<col name="FaceValue" length="12" start="0"/>

<col name="MarketLot" length="12" start="0"/>

5645ch03.qxd 3/3/06 12:06 PM Page 167

CHAPTER 3 ■ THE DATA CONVERSION ENGINE168

<col name="Status" length="12" start="0"/>

</cols>

</row>

<row>

<band name="Exchanges" identifier="EXCHANGE" start="0"

loop="repeatable" suppress="false">

<rows>

<row>

<band name="Exchanges" identifier="EXCHANGE" start="0"

loop="repeatable" suppress="true">

<rows>

<row name="Exchange" identifier=""

length="0" coldelimeter="," >

<cols>

<col name="ExchangeTag" length="12" start="0"/>

<col name="Code" length="12" start="0"/>

<col name="ScripCode" length="12" start="0"/>

</cols>

</row>

</rows>

</band>

</row>

</rows>

</band>

</row>

</rows>

</band>

</row>

</rows>

</band>

<band name="Footer" identifier="ISINEOF" start="0" loop="single"

suppress="true">

<rows>

<row name="FooterInfo" identifier="" length="0" coldelimeter=""

suppress="true">

<cols>

<col name="FooterTag" length="7" start="0" suppress="true"/>

</cols>

</row>

</rows>

</band>

</bands>

</matrix>

XML Output
Here’s the XML output:

<ISINMaster>

<ISIN ISINCode="US5949181045" Symbol="MSFT" FaceValue="10"

MarketLot="5" Status="Active">

<Exchanges>

<Exchange ExchangeTag="EXCHANGE" Code="NASDAQ" ScripCode="MSFT.O" />

<Exchange ExchangeTag="EXCHANGE" Code="NYSE" ScripCode="MSFT.N" />

</Exchanges>

</ISIN>

</ISINMaster>

5645ch03.qxd 3/3/06 12:06 PM Page 168

CHAPTER 3 ■ THE DATA CONVERSION ENGINE 169

Summary
In this chapter, we covered the following key points:

• Data is the lifeblood of an organization, and the success of an organization depends on the
quality of the data it possesses. Data related to securities, prices, market conditions, clients,
and trades is used by various trading applications for the fulfillment of trades. Data comes
from a variety of sources, and this leads to a data conversion problem where data taken from
one system needs to be migrated to another.

• We illustrated the power of XML and how it can act as the glue in enabling data integration
among heterogeneous systems.

• We covered the XML classes in the .NET Framework that allow the parsing, reading, and
writing of XML documents.

• We explained the benefit of XSD and how it can be used to define and validate the structure
of an XML document.

• We provided a basic overview of the declarative style of programming and how it is being lever-
aged by the XML serializer to convert in-memory objects to XML representation formats.

• We designed a data conversion framework that is built upon XML and supports the conversion
of an unstructured text file format to XML format.

5645ch03.qxd 3/3/06 12:06 PM Page 169

5645ch03.qxd 3/3/06 12:06 PM Page 170

C H A P T E R 4

■ ■ ■

The Broadcast Engine

99 percent perspiration + 1 percent luck = 100 percent success

In this chapter, we explain what market data is and its importance in the trading world. Market data
reflects information about the performance of an organization as a whole; several actors in the
trading world depend upon this information. The important fact about this information is that it is
time critical. Furthermore, market data information requires no further intelligence or any kind of
sophisticated processing; it just needs to be forwarded from one end to another. Such data forwarding
demands a good amount of groundwork from systems that utilize a network communication library,
which forms the basis of this chapter’s technical sections; we will discuss various aspects of the net-
work programming model in detail.

What Is Market Data?
Financial engineers, dealers, and traders require timely and accurate information about the securities
they trade in so they can arrive at a proper price for them. Changing market scenarios and world
events keep altering perceptions about the value of financial assets, and hence these factors also
change their prices. For most financial assets, these changes are so fast that they translate into price
changes every second. Every change in price represents an opportunity for dealers to either buy these
assets and build more positions or sell these assets and square these positions to book profit or loss.
Dealers and traders whose positions run into the millions of dollars pay special attention to these
changing scenarios, which could change the prices of assets they hold or intend to trade in. The moment
they see a rate favorable to them, they buy the asset and dispose of it when they have reasons to believe
that they are overpriced. These perceptions and beliefs that dealers have about financial assets are
made possible by the market data available to them (of course, their judgment is also a key contributor)
through an exchange trading system or through other third-party market data service providers such
as Reuters, Bloomberg, Moneyline Telerate, and so on.

Market data can be defined as information that traders need for analysis to make informed
trading decisions while trading in a market. Since the scope of this book is equities only, we will
cover the market data requirements and associated issues for equities. Going by the definition, you
can classify the following information as market data:

171

5645ch04.qxd 3/3/06 12:11 PM Page 171

CHAPTER 4 ■ THE BROADCAST ENGINE172

• Quotes such as bid/offer rates for a particular financial instrument (including stocks, bonds,
derivatives, and so on) that is either traded in a market such as an exchange or available for
transaction in an interbank or other financial market

• News such as earnings reports, raw news, senior management speeches, and any other
information that could impact the profitability and in turn stock prices

• Macro- and micro-economic data and related analysis relating to gross domestic product
(GDP), gross national product (GNP), employment ratios, import and export figures, fiscal
deficit, and other economic data

• Analyst reports/opinions on stocks, bonds, and other investment instruments

• News about competitors and related information

Market data is normally provided in the form of a broadcast to its subscribed recipients. This
broadcast is provided either by exchanges or by third-party market data service providers. The timely
receipt of market data is one of the highest priorities for any institution’s information technology (IT)
and dealing rooms. Stale information could mean delayed action and missed opportunities for the
institution; hence, a lot of emphasis is put on obtaining this data on a real-time basis.

Participants in the Market Data Industry
The following are the participants in the market data industry:

Stock exchanges: Stock exchanges are one of the prime generators of market data. They constantly
broadcast the prevailing rates of all securities traded on that exchange, as well as volume and
depth information. Most exchanges also provide data about the total number of trades, the
number of securities advanced in a day, the number of declines, the total volume of transactions,
the total percentage of transactions that resulted in delivery, and so on. All this information is
useful for traders, analysts, and brokers who have an interest in the securities listed and traded
on that stock exchange. Most exchanges sell this data either directly or through other market
data service providers such as Reuters and Bloomberg. This is a major source of revenue for
many exchanges. Some exchanges are known to earn about 35 percent of their annual revenues
through the sale of market data. Since the generation of this data is continuous and a lot of
trading interest is built on these exchanges, many firms subscribe to these data services.

Issuers: Since most trading interest is centered on corporate- and government-issued securities,
any news related to the performance of corporate changes in prices of their finished goods or
raw materials, the fiscal position of the country, and micro- and macro-economic issues forms
part of market data. Issuers do not sell market data proactively. Their actions—such as issuing
bonuses, issuing rights, consolidating/splitting shares, conducting mergers, and so on—become
news. Data related to these actions (also called corporate action) becomes relevant market data.

Market data providers: These are agencies/companies that collect data from various sources, do
some value addition on it, and send it as a broadcast to all subscribed recipients. Some exam-
ples of market data service providers are Reuters, Thomson Financials, Moneyline Telerate, and
Bloomberg. These service providers provide data in multiple formats: news broadcasts, streaming
quotes, messages, XML dumps, messages on mobile phones, messages on PDAs, and stream-
ing video. Data service providers normally have two kinds of services: delayed and real time.
Delayed data has multiple types; data with 5-minute, 10-minute, 15-minute, and 20-minute
delays is the most common. Real-time data is far more expensive than delayed data. This dis-
tinction exists to provide services at a lower cost to institutions that don’t need real-time data.

5645ch04.qxd 3/3/06 12:11 PM Page 172

CHAPTER 4 ■ THE BROADCAST ENGINE 173

Figure 4-1. Market data (Source: http://www.nyse.com; December 2, 2005)

Recipients: These are institutions/people who are the consumers of market data. They are normally
institutions that trade and maintain positions across various markets such as fixed-income secu-
rities, foreign exchanges, equities, commodities, and related derivatives. These institutions
normally trade across markets in several countries and hence look for service providers that
can give them data across various markets, exchanges, and countries. They either analyze raw
data mentally or put it through a system that analyzes raw market data and converts it to a mean-
ingful and usable form.

Example of Market Data
Figure 4-1 could qualify as an example of market data.

Role of Market Data
Market data has a lot of meaning and importance to professionals across the financial trading value
chain. An institution buys market data to support professionals employed in that institution and to
provide them with high-quality information that enables them to make informed decisions. Judg-
ments based on information that is derived from quality data could be superior when compared to
those based on low-quality data or data that is not timely in nature.

Market data is important for professionals engaged in the following areas:

• Analysis

• Trading and dealing

• Risk management

• Back office and settlement

Analysts need a lot of information for the valuation of a particular stock. They analyze past div-
idend statistics, latest earning figures, and news and couple all that with their own judgment about
the industry and company to arrive at the future cash flows of a company. Using this kind of market
data, they are in a reasonably informed position to arrive at the overall valuation of the company.
They also analyze information about the macro- and micro-economic position of the environment
under which a particular company is operating. They then refer to the current capital structure of
the company to arrive at the per-share net worth of the company and the projected net worth. Since
the market price of the company on a stock exchange depends upon the future earning potential
and the future net worth of the company, they are in a position to determine whether the company
is currently undervalued, overvalued, or reasonably valued on the stock exchange. Market data is
crucial in helping analysts decide on these valuations.

All the types of data discussed previously qualify as market data and are exceptionally important
for these kinds of analysis. Analysis and investment research are continuous activities. Once a particu-
lar valuation is arrived at, analysts keep track of all happenings in that sector through the constant
availability of market data.

5645ch04.qxd 3/3/06 12:11 PM Page 173

Once the analysts arrive at these future valuations, they circulate it amongst internal portfolio
managers, dealing rooms, private clients, and so on, and these analysis reports result in buy/sell or
hold calls for the institutions holding these shares or wanting to get into that security. Interestingly,
these analysis reports and buy/sell calls are also circulated as market data. Market data service providers
buy these research reports and distribution copyrights and then broadcast the analysts’ opinions to
their clients. Such types of market data form value-added information for other customers who would
have to otherwise process a lot of the raw data discussed earlier to arrive at these buy/sell calls.

On the basis of these reports (of course, the demand to purchase/sell originates from a variety
of sources; these reports are only one of them) and depending upon how much an institution needs
to invest/divest, the buy or sell order is given to the trading desk. Assume for the purpose of brevity
that the call is a purchase call. We will use this example to ascertain the need of market data for traders.

When a purchase order is given to the trading desk or brokerage desk, it is usually given along
with a limit within which all purchases have to be made. During trading hours, the trading desk
receives a continuous broadcast of bid and offer rates and a minimum volume available against
each rate. In this example, the trader has to purchase shares below a certain limit.

Market data received in the broadcast becomes crucial for this trader, too. This data is constantly
flashed on the trading terminal. Traders’ performance is monitored by their abilities to get the spec-
ified number of shares below the limit price (provided the share itself trades below this limit price on
that day after the trader has received the order). The share in question may trade below and above the
limit specified a number of times during the day. If the stock is relatively illiquid, a small buy order
from someone else may push the stock up, and vice versa. This may prove a bit tricky for a trader.
The market data about this stock related to the order book position will help the trader ascertain
how many of these shares they can get at a particular price (say at the limit price or lower).

Traders will also refer to the volume of shares already transacted during the day. This figure is
normally available as part of market data in terms of both the number of shares transacted during
the day and the value of shares transacted. Some market data providers also provide the weighted
average price for the day. This helps the trader know how far an order’s price is from the weighted
average price of the day. After knowing all this information, the trader will push through the purchase
order either in one go or in multiple lots during the day. The continuous broadcast of market data
relating to bid/offer prices, the volumes available, and the volume transacted become the lifeline
for such traders.

Subscribers normally call for market data for the same instruments from multiple exchanges
and markets. This data is routed in analysis systems to provide various kinds of analysis to help the
dealers. Suppose the sales desk receives a relatively large order, say, for the sale of 100,000 shares of
Microsoft Corporation. The client demands the best possible rate for this deal. Now, shares of Microsoft
Corporation are traded on a number of stock exchanges. Each exchange has its own bid/offer rates,
which will be different from each other (but not substantially different). This difference may be large
enough to tempt the trader to place the order on multiple exchanges, get it transacted, and get the
best available price for the placed order. Such kind of analysis is possible only when the trader has
access to a market data system that has the capability of providing real-time bid/offer rates for mul-
tiple exchanges. Arbitrageurs also use this kind of data to spot price differences for the same security
across markets and exploit these differences by buying on markets where prices are lower and sell-
ing simultaneously where prices are higher.

Risk managers who measure and manage risks on a continuous basis feed on market data. Every
order that can potentially be converted into a trade is taken, and the order quantity is multiplied by
the rates available in a real-time broadcast to arrive at the potential exposure this order would add
to the existing portfolio if it were to get transacted. Apart from the orders flowing in, even the existing
portfolio is valued constantly to arrive at an overall market-to-market profit/loss. For such computa-
tion, every security in the portfolio is chosen, and its valuation is calculated by multiplying the current
prevailing price by the number of shares held in the portfolio. Such analysis is required on a contin-
uous basis to take proactive steps for managing and minimizing risk, especially when the market is
volatile. Sophisticated risk management techniques such as Value at Risk use the data about prices

CHAPTER 4 ■ THE BROADCAST ENGINE174

5645ch04.qxd 3/3/06 12:11 PM Page 174

CHAPTER 4 ■ THE BROADCAST ENGINE 175

prevailing in the past five years. Some use data such as current volatility, past volatility, and details
about the correlation of movement of the stock with the index, and so on. It is clear that market data
service providers cannot provide all these services. Institutions do a careful analysis to check what
data they can get ready from market data service providers and what they need to store in their existing
application repositories. Data from both sources (from repositories and from market data service
providers) is used with a good amount of computation to achieve business results.

A purchase order, once it is a transacted order, needs to be paid for and settled. (Chapter 1
discussed the entire cycle of payment and settlement.) Settlement and back office people require
a lot of market data such as ISIN codes, SEDOL codes, the pay-in/pay-out dates of the clearing
corporation, and so on, to complete the settlement of these trades. This is required to bring about
uniformity in communication.

Thus, you see that the market data service is crucial to everyone in the securities trading value
chain. However, most of the time data that is received from such service providers is in a raw form
and needs a good amount of cleaning, processing, and value adding before various consumers of
the data can use it.

Market Data Service
Market data service providers usually provide the same set of information. This explains why you
get the same news when you move from one financial portal to another (chances are they have sub-
scribed to the same service provider). Key differentiators in market service providers revolve around
the following:

Timeliness of data: This is whether data is coming real time or is delayed. If historical data is
also available, then how long is the history? We devote the next section of this chapter to
understanding why timeliness is important as far as market data is concerned.

Coverage of data: This means data is covered across markets such as forex, stocks, bonds,
derivatives, and so on. Some market data service providers provide more intensive coverage
about some classes of instruments than other service providers and provide preanalyzed
(value-added) data.

Geographical reach: Some service providers specialize in certain geographies such as North
America, Southeast Asia, Japan, and so on. Institutions that want more intensive coverage of
a particular geography subscribe to these services.

Institutional investors whose stakes are high in the market and who can bear the costs normally
subscribe to two or three service providers and use each of their strengths.

Why Is the Timeliness of Market Data Important?
Institutions ensure that the market data they receive is absolutely on time. At times, even delays of
a few milliseconds are undesirable and could lead to a lot of trading losses and missed opportunities.
Several institutions (the number runs into the thousands) have trading interests in financial assets
such as government-issued bonds, corporate fixed-income securities, foreign currencies, equities,
commodities, real estate, and their related derivatives. As discussed earlier, these institutions contin-
uously price these assets and generate buy/sell orders accordingly. Since so many interested parties
exist for any asset/security at any given time, people who have access to the latest or high-quality
information will be in a better position to arrive at a future valuation compared to those who receive
this information late. Assume that a fund manager sitting in the United States tracks a particular sec-
tor such as chemicals closely, has a good grip on the sector, and has been able to make reasonable
assessment of the sector and of the major companies in this sector.

The fund manager knows that a company registered in the United States and producing Polypthalic
Anhydride (PTA) is facing difficult times because one of its major raw materials, Dimethyl Terephthalate
(DMT), has gone up in price drastically. The jump in price is so much that it begins threatening the

5645ch04.qxd 3/3/06 12:11 PM Page 175

profitability of the company. The fund manager also knows that the sales of the company are strong
but that the rise in raw material prices of DMT is hurting badly; therefore, the fund manager speaks
to experts in the chemical industry and finds out that prices of DMT are going to remain high for years
to come. In addition, a chance exists that DMT prices will remain high forever, and its consumers
must accept this fact. The company in question wants to take drastic steps.

Another company produces Naphtha and sells it in the market. The fund manager understands
the chemical business better than the rest of the market and understands well that PTA can also be
produced from Naphtha. He speaks to management and learns that management is determined to
cut raw material prices. He also comes to know that a series of meetings has been scheduled by the
company’s senior management with the senior management of the company producing Naphtha.
He quickly concludes that the company may be considering abandoning the DMT route to produce
PTA and take up the Naphtha route. He calculates the increase in the bottom line from switching
raw materials and also calculates the capital expenditure the company will have to undergo to make
this change. Finally, he arrives at a per-share rate of the post-change scenario. He can work out the
quick numbers on how much more the company could add to its bottom lines because of this change
in raw materials. He can then arrive at the change in the company’s valuations because of this
change. He will then be able to forecast how much change this news will bring to the company’s
share prices. If the change is large enough to trade on, he will call his broker and place a buy order
on this company’s shares.

Assume that his news was correct, and the next week the management announces this policy
change. Market data service providers will pick up this news and broadcast it worldwide. It will also
be reported in all the leading newspapers and broadcast as news on TV. Analysts will then place a buy
recommendation on the stock, and a lot of traders will buy. This surge in demand will cause the prices
to rise. In this entire euphoria, the biggest beneficiary will be the fund manager who deciphered this
vital piece of information and who acted on this news one week prior to the entire market. He ends
up making much more profit in percentage terms than any of his peers in the market. One day of lead
in getting this crucial information could mean a fortune to a lot of people like the fund manager. Of
course, in an attempt to get this kind of news directly from the issuing company (and at most times
before anyone else gets it), many operators jump the gun and commit insider trading, which is pun-
ishable by law in most countries. Insider trading is trading on price-sensitive information that is not
available simultaneously to all.

We will introduce another example where a delay of even seconds could mean losses to
institutions. As normal practice, institutional investors and fund managers talk to the sales desk in
a brokerage house continuously to get feedback on the prices, global and local trends, market outlook,
and investment opportunities. These discussions result in orders on securities that are then passed
to the brokerage firm, and the brokerage firm executes them. Assume that a sales desk in an institu-
tion does not have access to tick-by-tick real-time market data because of system or implementation
issues and is working on data that is delayed by a few milliseconds.

The sales desk, however, believes that the data available to them is real time (because they have
subscribed to real-time service) and doesn’t realize the potential damage the delayed feed can beget.
In the course of this discussion, assume that the sales desk convinces the institution that Microsoft
Corporation is a good stock to buy at the current trading prices. The institution asks about the pre-
vailing price of Microsoft stocks. The salesperson looks at her terminal and says $45.10. The institution
says, “Fine—buy 10,000 for me at $45.10.” Now this order can be executed in two ways. It can be sent
as a limit order with $45.10 as the limit, or if the salesperson is fast enough, she can risk sending
a market order to buy. In case the market price when the market order hits the exchange is still $45.10,
she will get the shares at $45.10.

Now assume the salesperson was working on data she thinks is real time but is actually delayed.
This means that on volatile days, the prices prevailing on the exchange at any given time are different
from the prices the salesperson is seeing on her terminal. In this example, if the salesperson sends
a market order to buy Microsoft Corporation stocks and the prices have actually moved to $46 by

CHAPTER 4 ■ THE BROADCAST ENGINE176

5645ch04.qxd 3/3/06 12:11 PM Page 176

CHAPTER 4 ■ THE BROADCAST ENGINE 177

then, her order will get filled at $46. This could irk the institution on behalf of which the purchase was
made, and the salesperson will have to give a lot of explanation to explain this difference between
the asked price and the executed price. If the salesperson gives a limit order to curtail this risk of
overpriced execution, this order will not be executed since the market price has moved to $46.
Nonexecution could mean missed opportunity, which most institutions do not like. A couple of such
cases of this would be enough for the institution to start looking for another broker or another salesper-
son. Delayed market data can thus mean loss of trust, reputation, and eventually loss of business.

Sophisticated clients measure the performance of the executing brokers very closely. Their
consistent ability of getting shares/instruments below the specified price is rewarded by giving
more execution orders (which in turn means more brokerage). Similarly, those who consistently
underperform in terms of getting favorable rates or miss getting orders executed are relied less
upon and are not trusted with critical or voluminous orders.

Some market data is sold as delayed data. This comes in about 5 to 15 minutes delayed. Institu-
tions accept these delays because either their trading interest or position in these markets/instruments
is not very high or they don’t intend to trade in these markets/instruments in the near future. Or, maybe
they have subscribed direct services from the exchange that is also providing real-time data through
a separate channel and is being monitored by other dealers.

Level Playing Field
After this discussion on the timeliness of market data, you are now in a position to appreciate why
the availability of market data to all is important. This is to ensure that one recipient does not have
any edge over another in terms of the timeliness of data or its content. The timing of market data is
extremely crucial. Traders rely on its timing and accuracy to push through trades worth millions of
dollars. Every tick of data coming to them conveys something and means potential opportunity. If
market data service providers miss providing some ticks of information or if the tics get delayed, it
means loss of trade opportunity for the recipient institution. It is thus highly desirable that the service
provider offering the data services provide its direct recipients with a level playing field. This essentially
means that no preference must be given to any recipient over another for a particular level of service.

Normally market data service providers inform every recipient institution about their various
services and levels of service and provide them an equal opportunity to purchase them. Institutions
then purchase services depending upon the cost incurred and the benefits they yield. A particular
service could have multiple recipient institutions. Market data service providers ensure that no one
gets precedence over the other in terms of the quality of service, level of support and communication,
timing of data dissemination, data quality, and provision of data backup and recovery.

This brings an end to the business topics; in next section, we begin the journey into the network
programming world and explain the relevant area that plays an important role in realizing this busi-
ness case study.

Introducing Networking
Networking between computers brought revolutionary changes both in the digital world and in the
human world. In the digital world, a new branch named distributed system was born. Distributed
systems are built around networks, and one of the real-life examples of such a system is the Internet.
The Internet is one of the largest distributed systems in the world; it interconnects computers all
around the globe using different types of networks, and it provides various other useful services such
as e-mail and file transfer. The availability of such services had a direct impact on the human world
by forming one of the basic necessities of today’s modern life. Moreover, network computing yielded
a major shift in software architecture and design space; it revolutionized the way we think about
computing by providing the following benefits:

5645ch04.qxd 3/3/06 12:11 PM Page 177

Resource sharing: Resource is a general term used to represent both software and hardware
resources inside a computer. A hard disk represents hardware resources. Software resources are
represented in the form of files, databases, and so on. Resources are scarce and also costly, but
with a communication backbone in place, both expensive software and hardware resources are
now easily shared with other computers in the network.

Connecting heterogeneous systems: Networks not only opened the communication door to personal
desktops but also allowed communications with heterogeneous systems of different breeds such
as mainframes, handheld devices, wireless devices, and so on.

Scalability: Software systems have fully embraced a distributed style of architecture, factoring
out the code in the form of network components, deploying it on a faster machine, and finally
sharing it among all clients.

When it comes to the implementation of a network, it is mainly three major components that
cohabit, and their sole interaction and coordination determines the success of the network:

Transmission media: Transmission media plays a pivotal role in a network; it connects media
devices such as computers, routers, and hubs to form a network. In a local network environment,
cable wire transmits messages from one device to another device. However, in a wide area network,
the transmission media could be a telephone device or a dedicated leased line.

Hardware components: Hardware components handle the complexities involved in interfacing
with transmission media; additionally, they contain sufficient knowledge to oil the raw messages
directly received from the transmission media, translate them to the correct encoding format,
and pass them to the software components. The most commonly found hardware components
in a network are routers, network interface cards (NICs), and so on.

Software components: Messages received from hardware components are forwarded to network
device drivers that reside in the kernel part of the operating system. This message, once processed
by the device driver, is then passed over a chain of software abstraction layers where multiple
software components employ further application-specific processing logic. Software components
such as the Windows socket library or remote procedure library are extensively utilized in build-
ing a networked software system. This library abstracts away the low-level network details and
provides developer-friendly network programming interfaces.

These three components play a major role by conducting a series of micro-operations under
the hood that are totally transparent; discussing each of these micro-operations is outside the scope
of this book. However, the software component is the primary target, and the rest of this chapter delves
into this topic in detail.

A protocol in general terms is an agreed method of exchanging views or opinions. In a network
world, identifying and defining a suitable protocol is important, and based on this agreed protocol,
the message will then be exchanged among nodes. A node is a device such as a computer, hub, router,
and so on, that is attached to a network. To meet this need, TCP/IP (Transmission Control Protocol/
Internet Protocol) was invented. TCP/IP is a ubiquitous protocol and is universally accepted as
a communication backbone of the Internet. TCP/IP is not a one-organization effort; it was the brain-
child of many researchers, universities, and organizations. It has been in existence for the last couple
of decades, and over this period, it has evolved to form one of the most robust communication
protocols.

Communication between two nodes in a network is established using TCP/IP, but TCP/IP is
not a single protocol; it is a suite of protocols where each protocol is layered one on top of another.
Figure 4-2 shows a condensed version of the most popular Open System Interconnection (OSI)
model.

CHAPTER 4 ■ THE BROADCAST ENGINE178

5645ch04.qxd 3/3/06 12:11 PM Page 178

Figure 4-2. TCP/IP layers

CHAPTER 4 ■ THE BROADCAST ENGINE 179

A message triggered from a client is received and processed by all four layers depicted in Figure 4-2.
An individual layer appends its own layer-specific information to the message before dispatching it
to the destination. A similar action is carried out on the receiving end (the server); the layer-specific
information padded by the client is stripped out as it is promoted to each layer, and finally the message
is submitted to the application layer. When an application message is passed from the application layer
to the transport layer, this message is padded with additional transport layer information, and the
newly formed message is known as a segment. A segment is then passed to the Internet layer that is
again appended with the Internet layer–specific information to form a datagram. The datagram is
passed to the final layer that transforms it to a frame and finally into bits (that is, 0 or 1) that are then
delivered over the transmission media. Such a layered architecture model is one of the distinct
strengths that singles out TCP/IP from the rest of the other communication protocols. Here are the
roles played by individual layers:

Network interface layer: This layer is primarily linked with the transmission media and hardware
component; it is responsible for decomposing the network packets into a common transmission
medium and recomposing them again on the receiving end.

Internet layer: The Internet layer is responsible for addressing a node on a network and routing
a network packet to the destination host in a network. Additionally, this layer also looks after
the diagnostic aspect in a network, such as conducting a node health check to find out whether
a specific node in a network is reachable.

Transport layer: The transport layer provides advanced functionality to the application layer, such
as handling sessions, delivering data reliably, regulating the flow of data on a network, ensuring
the ordering of the message during the sending and receiving phases, and so on.

Application layer: The application layer comprises applications that satisfy the network need of
the applications. This is the highest layer in the TCP/IP suite, and the most commonly used
applications in this layer are Simple Mail Transfer Protocol (SMTP) to exchange mails or File
Transfer Protocol (FTP) to upload a file to a remote machine.

Internet Protocol
The first common requirement in any type of communication is to have at least two entities; one is
the sender, and the other is the receiver. Both of these entities need to know each other’s address. A
real-life analogy is a postal mailing address; to deliver an important parcel, it is mandatory to know
the destination address as well as the source address, so in the case of a delivery failure, the parcel
will be returned to the sender. So, in a TCP/IP-based network world, you need a similar addressing
mechanism that allows the individual node to communicate with other nodes in a network. IP is

5645ch04.qxd 3/3/06 12:11 PM Page 179

CHAPTER 4 ■ THE BROADCAST ENGINE180

Figure 4-3. IPConfig output

Figure 4-4. Bridging networks with routers

responsible for addressing nodes in a network by assigning a unique 32-bit address known as an IP
address. The IP address, along with the addressing, is also responsible for the movement of the net-
work packet between nodes. Figure 4-3 depicts a common scenario of finding out the IP address of
the local host in a network.

In Figure 4-3, the IP address is denoted in four decimal-based integers, and each delimited
digit occupies 8 bits, so a binary representation of 10.255.243.51 is 11000000 10101000 00000000
01100100. A 32-bit IP address would theoretically allow 232 nodes in a network to be addressed, but
in reality this is not how it works. The IP address is broken down into two parts; the first part stores
the physical network ID, and the second part stores the unique ID of a node in that physical network.
Hosts on the same physical network can directly communicate with each other; however, when an
individual host wants to exchange data with another host on a different network, then the data
need to be handed over to a network router (see Figure 4-4).

A network router is a device that is connected to more than one network, and its primary job is
to route packets from one network to another network. So, a router bridges a path between two separate
networks, but the actual allotment of IP addresses in a network is implemented by following standard
rules established by the Internet community. Five predefined network address classes determine the
number of networks and number of hosts in a network (see Table 4-1).

5645ch04.qxd 3/3/06 12:11 PM Page 180

CHAPTER 4 ■ THE BROADCAST ENGINE 181

Table 4-1. Network Address Classes

Bytes Bytes Binary Number of
Allocated Allocated Format Total Hosts per IP Address

Class (Network) (Host) (Network) Network Network Range

Class A 1 3 0xxxxxxx 126 16,777,214 1.x.x.x–126.x.x.x

Class B 2 2 10xxxxxx xxxxxxxx 16,384 65,534 128.x.x.x–
191.255.x.x

Class C 3 1 110xxxxx xxxxxxxx 2,097,152 254 192.x.x.x–
223.255.255.x

As you can see in Table 4-1, only the first three network classes are described because Class D is
explained in the “Broadcast” section of this chapter and Class E is used purely for experimentation
purposes. Class A has the maximum potential to address the large number of hosts per network com-
pared to Class C, which has a lower capacity to address hosts per network. Additionally, the total
number of bytes allocated to the network is not utilized to their full storage capacities; all three network
classes mandate a particular portion of high-order bits to follow a specific pattern. For example, in
a Class B network, the first two high-order bits are always set to binary 10.

Class A also contains a loopback address, 127.x.x.x, that is used mainly to test network applica-
tions that are detached from the physical network. This loopback address is a special-purpose IP
address similar to any other IP address; the only difference is that the processing of data terminates
at the IP layer instead of at the network layer. Besides the loopback address, there is also a specific
range of IP addresses assigned for multicast IP addresses; we cover them in more detail later in the
“Broadcast” section.

The IP address, besides containing the network ID and host ID, also contains the subnet ID.
With the help of the subnet ID, a large physical network is further partitioned into a logical subnet-
work and then accordingly groups relevant nodes in this newly created subnetwork. For example,
a small-scale firm assigned with a Class C IP address will allow 254 hosts per network, but in an effort
to create a smaller network, this firm can further adopt a strategy to subdivide its existing network
based on organizational divisions such as Marketing, HR, and so on. That is the reason you see a subnet
mask entry in Figure 4-3; a subnet mask determines the number of subnetworks and hosts inside
a network.

The host ID portion is used to create a subnet division, so in a Class C network where 1 byte is
assigned to an address host, a network administrator can assign 4 bits of this byte to a subnet ID and
the remaining 4 bytes to a host ID. Therefore, according to this new formula, given a single IP address
in a physical network, you can form 16 logical subnetworks and 16 hosts per logical subnetwork. The
representation format of a subnet mask is similar to the IP address format. For example, the default
subnet mask for a Class C address is 255.255.255.0, so to create 16 logical subnetworks and 16 hosts
per logical subnetwork, the new subnet mask would be 255.255.255.240. The mask contains 1s for
the subnet ID and 0s for the host ID, so the binary representation of this mask would be 11111111
11111111 11111111 11110000.

IP is an unreliable protocol even though it attempts a best-effort delivery service. It poses some
serious shortcomings such as it offers no guarantee that the packet will get delivered to the target host.
Furthermore, the packet may get delivered in a nonsequential manner; as a result, the target host will
notice messages are being received in an out-of-sequence order. Despite such problems, IP is still
a cornerstone of the TCP/IP communication backbone, and its limitations are nicely handled by its
upper layer.

The IP datagram, along with the actual message to be delivered, also contains its own header
fields that are required to properly route a message to the destination host. The following sections
describe the key fields of the IP header and are categorized according to their usage.

5645ch04.qxd 3/3/06 12:11 PM Page 181

CHAPTER 4 ■ THE BROADCAST ENGINE182

Addressing
The two most important fields of the IP header are the source address and destination address. Both
addresses represent the IP address of the sender and the destination host in a network, and each
field occupies 4 bytes of memory storage.

Data Length
This 2-byte field stores the total length of the IP datagram, which also includes the length of the
data. Based on this value, it would allow you to send 65,535 bytes of the IP datagram, but the actual
maximum size is determined based on the underlying network maximum transmission unit (MTU).
The MTU determines the maximum size of packet that could float on a network. The MTU of a network
is computed based on the end-to-end communication link of two hosts. For example, if a sending
host in a local area network communicates with a target host that is geographically distributed and
connected using telephone lines, then the smallest MTU between the two hosts is computed.

Fragmentation
When the IP datagram size exceeds the MTU capacity, it undertakes a fragmentation and reassem-
bling process. Fragmentation happens on the sender’s end, and during this stage, the IP datagram is
broken into a smaller datagram to fit within the range of the MTU. The IP datagram is then tagged
with the additional information, described as follows, that is important to successfully reassemble
the message on the receiving end:

Flags: Based on this field value, it is determined whether the IP datagram is fragmented.

Identification: A 2-byte autoincrement field used to uniquely identify the IP datagram. The IP
datagram constructed because of the fragmentation process shares the same identification
number; this allows the target host to know how to reassemble this fragmented packet into
original data.

Fragment offset: The fragment offset denotes the original position of the fragmented datagram
relative to the original unfragmented datagram.

Diagnostic
The following are the important fields that are used to maintain the integrity of a message:

Header checksum: This is a mathematical hashed value of an IP header computed to verify the
integrity of the IP datagram.

Time to live: The lifetime of the datagram wandering on a network is based on this value; every
time a datagram passes through the router, this value is decremented by a factor of one. When
it reaches zero, it is deemed to be a dead packet and finally discarded.

The IP layer is also responsible for monitoring the health status of the network and reporting
appropriate error messages or additional information in the case of a network outage. This functional-
ity is not part of IP; it is offloaded to Internet Control Message Protocol (ICMP), which is part of the
IP layer. ICMP acts as a messenger that reports errors and feedbacks about activity happening inside
a network. Activities such as a failure to transmit packets to a destination host are recorded and
encapsulated inside an ICMP message; the sender is then notified of this message using the IP
unreliable delivery service. ICMP messages are embedded inside the IP datagram and form part of
the data section. The following are some of the most commonly noticed ICMP messages:

5645ch04.qxd 3/3/06 12:11 PM Page 182

CHAPTER 4 ■ THE BROADCAST ENGINE 183

Figure 4-5. Ping output

Echo request: An echo request message is generated to check the network availability of the
remote host

Echo reply: A message generated in response to the echo request message

Destination unreachable: A message generated by intermediate routers to notify the senders
about a failure to deliver the datagram to the designated host

The most popular program used by developers to diagnose network-related problems is the
Packet Internet Groper Utility (PING). The PING program is bundled with the operating system and
used to generate both the echo request and echo reply messages. When a sender initiates a ping to
the destination host, the PING program on the sender end generates an echo request message and
sends it to the destination host. On receiving this message successfully, the destination host generates
an echo reply message and transmits it to the sender. The output of the PING program also contains
the round-trip time (RTT) that forms a strong basis to find out the strength of the underlying network
(see Figure 4-5). The RTT value computed is the difference of time between the echo request message
and the echo reply message.

In Figure 4-5, the destination host is addressed using the IP address. There is no doubt that the
IP address directs the pathway of a network packet, but given the nature of the IP address, which is
encoded in numeric format, it is highly nonintuitive for a human to reckon it. To overcome this
problem, a new service, the Domain Name System (DNS), was implemented.

DNS is a set of protocols used in a TCP/IP network environment to assign a human-
understandable name to an individual host in a network. Each host name is then mapped to an IP
address, and this mapping information is centrally stored and maintained by the DNS server. DNS,
because of its mapping capabilities, is also popularly known as a name server. It is a central database
where the host name and its corresponding IP addresses are stored and retrieved on demand. DNS
also provides a bidirectional resolution capability to resolve a host name to an IP address, and vice
versa.

The database of DNS is distributed; multiple DNS servers exist and are hierarchically arranged,
and individual DNS servers know their parent DNS servers. When a DNS server receives a request to
resolve a host name, a search is first conducted against its own local database. If the local database
fails to satisfy the request, then DNS undertakes a “recursive resolution” mode where the request

5645ch04.qxd 3/3/06 12:11 PM Page 183

CHAPTER 4 ■ THE BROADCAST ENGINE184

starts bubbling up to the parent DNS server. The immediate parent DNS then conducts a similar
search operation in its local database, and on failure it delegates to its parent. This escalation is
iterative in nature and terminates when it reaches the root DNS server where the final result is deter-
mined. To speed up the resolving request, DNS also maintains a cache database; this caching technique
is employed to decrease the search cost that is incurred when the recursive-resolution process triggers.
DNS along with the local database querying also enumerates the cache database before escalating
to its parent DNS.

To demonstrate the benefit provided by the DNS service, we will show the first code of this
chapter. The .NET Framework BCL provides a rich set of network class libraries; these libraries allow
you to design a highly robust and scalable network application and are available as part of the
System.Net and System.Net.Sockets namespaces.

Listing 4-1 shows how to resolve a host name to its IP address.

Listing 4-1. Host Translator

using System;

using System.Net;

namespace HostTranslator

{

class Translator

{

[STAThread]

static void Main(string[] args)

{

//Get Local Host Name

string hostName = Dns.GetHostName();

Console.WriteLine("Local HostName : " +hostName);

//Ask user to enter IP address or host name

Console.Write("Enter IP Address or Host Name : ");

string hostOrip =Console.ReadLine();

//Resolve the host/IP address

IPHostEntry entry = Dns.Resolve(hostOrip);

Console.WriteLine("HostName : " +entry.HostName);

//Get the IP address list that resolves to the host names

foreach(IPAddress address in entry.AddressList)

{

Console.WriteLine("IP Address : " +address.ToString());

byte[] addressBytes = address.GetAddressBytes();

for(int ctr=0;ctr<addressBytes.Length;ctr++)

{

Console.WriteLine("Byte : " +ctr +" : " +addressBytes[ctr]);

}

}

}

}

}

In Listing 4-1, the program accepts either an IP address or a host name and then passes this infor-
mation to the DNS service to resolve it. The DNS resolution service from a programmatic perspective is
provided by the Dns class, and it supports both forward-lookup and reverse-lookup capabilities. When
resolving is performed using a host name, it is known as forward lookup; similarly, when resolving is
done using an IP address, it is known as reverse lookup. Both resolving techniques take place by
a Resolve of the Dns class. Resolve is a time-intensive operation, and keeping this aspect in mind, Dns
provides an asynchronous flavor of the Resolve method in the form of BeginResolve and EndResolve.

5645ch04.qxd 3/3/06 12:11 PM Page 184

CHAPTER 4 ■ THE BROADCAST ENGINE 185

Figure 4-6. HostTranslator console output

The result returned by Resolve is encapsulated in an instance of the IPHostEntry class. The
IPHostEntry class provides both the host name and IP address information; the host name is displayed
by invoking the HostName property, and the IP address is displayed by accessing the AddressList
property, which returns an array of IPAddress.

IPAddress is a programmatic representation of the host IP address, and it wraps the dotted
quad notation IP address in a byte array and is accessed by invoking the GetAddressBytes method.

When the previous translator program is compiled and executed, it displays the output to the
console (see Figure 4-6); the input provided to the program is the host name of the local machine,
which returns the IP address.

Transport Layer (User Datagram Protocol)
The IP layer handles the communication between two hosts; similarly, the transport layer is responsible
for the communication between two networked applications. The transport layer provides a data
delivery service to the application layer. It is the network face to the applications, and the developer
invokes the appropriate API exposed by this layer in order to deliver a message to the destination host.
The host in a network is identified by a 4-byte IP address, and the message exchange between two
hosts is performed using this IP address. This addressing mechanism is useful only when the commu-
nication is between two hosts. When the communication is between applications and with multiple
applications running inside a host, you need a different addressing mechanism. To address this
requirement, the transport layer contains network port information; the network port (the transport
layer) and IP address (the IP layer) are combined to form a network endpoint that is associated with
an individual application.

A perfect example of an endpoint in the real world is the customer service care of a bank. It is
almost like a virtual bank that provides all kinds of support such as opening an account, transacting
an inquiry, and so on. Customers avail of this support by dialing a toll-free number provided by a bank;
after dialing this number, the customer is connected to the Interactive Voice Response System (IVRS)
that lists all the bank’s services and their corresponding extension numbers. The customer dials the
appropriate extension, and the call is transferred to a customer representative who is specifically
trained in the selected customer service area. The gist of this example is to further widen your under-
standing that in the computer network world, the toll-free number is the IP address, and the extension

5645ch04.qxd 3/3/06 12:11 PM Page 185

CHAPTER 4 ■ THE BROADCAST ENGINE186

Figure 4-7. Market data producer (MDP) and market data consumer (MDC)

number is the port number. Moreover, multiple applications are specialized to provide different
kinds of services. To avail of this service, it is mandatory to know both the IP address and the port
number.

The transport layer provides TCP and User Datagram Protocol (UDP), which encapsulates and
forwards messages from one network endpoint to another endpoint, and the existence of both of
these protocols is meant to cover different goals of the application.

UDP, unlike TCP (discussed in the next section), is a connectionless protocol; communication
between applications using UDP is simple and straightforward. There is no set-up cost involved in
setting up a UDP communication channel; instead, UDP-driven applications can directly exchange
messages with each other solely based on their endpoint information. The only major drawback with
UDP is that it provides no guarantee that a message will successfully reach its destination. To address
this limitation faced by UDP, applications at the application layer have to devise and implement their
own logic that ensures the successful delivery of messages. UDP is just an additional layer above the
IP layer, and it blindly forwards the message received from applications to the IP layer with no further
intelligence applied to it. This doesn’t mean UDP is singled out; UDP is still needed and plays an
important role in implementing the network broadcast, which is explained shortly.

UDP and TCP form the message delivery backbone of today’s modern distributed application,
and network programming using this protocol is fairly easy because of the abstraction provided by
the underlying network library; this abstraction is exposed in the form of a socket. A socket is a net-
work data conduit that allows the sending and receiving of raw bytes. A socket is similar to a stream
that hides the underlying storage details. A socket hides the implementation-level detail of the under-
lying network protocol such as IP, TCP, UDP, ICMP, and so on, and provides a uniform interface to
interact with them. Using a socket, we will show how to implement the first market data example
that uses UDP to deliver the message. This example represents a typical data producer and consumer
scenario, where there is a single producer and multiple consumers of the market data message (see
Figure 4-7).

Listing 4-2 shows the code for the market data producer service.

Listing 4-2. Market Data Producer (Using UDP)

using System;

using System.Collections.Specialized;

using System.Collections;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace MDP

{

class MDP

{

5645ch04.qxd 3/3/06 12:11 PM Page 186

CHAPTER 4 ■ THE BROADCAST ENGINE 187

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Producer Service Started");

//Market Data

string mktPrice = "MSFT;25,IBM;24";

//Market Data Recipient List

EndPoint[] mdcEndPointList = new EndPoint[]{new

IPEndPoint(IPAddress.Loopback,30000)};

//Build a network data conduit

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

//Convert the data into array of bytes

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

//Iterate through recipient list, and transmit the data

foreach(EndPoint mdcEndPoint in mdcEndPointList)

{

mdpSocket.SendTo(sendBuffer,mdcEndPoint);

}

Console.WriteLine("Market Data Sent to all Market-Data consumer clients");

Console.ReadLine();

//Free the resources

mdpSocket.Close();

}

}

}

The program described in Listing 4-2 plays the role of a market data producer (the server); it
internally maintains a list of clients with whom the market price information is shared. With this
code, you also mark the beginning of your journey into the socket programming world. The two
important namespaces to add in your mental toolkit are System.Net and System.Net.Sockets. Both
these namespaces provide a gamut of network classes.

The actual market data contains the name of the underlying and current price; a semicolon
concatenates this information. Also, it’s repeatable information, so we have used a comma charac-
ter as a record delimiter.

string mktPrice = "MSFT;25,IBM;24";

The information about the market data consumer (the clients) waiting to receive data is stored in
an array. The underlying type of array element is EndPoint. EndPoint is an abstract class that encap-
sulates the address of a network resource and is subclassed by IPEndPoint.

EndPoint[] mdcEndPointList = new EndPoint[]{new

IPEndPoint(IPAddress.Loopback,30000)};

IPEndPoint represents the address of a UDP- or TCP-based application and is created for indi-
vidual market data consumer clients by combining the IP address and the port number. The first
argument of the IPEndPoint constructor method expects an instance of IPAddress, and accordingly
IPAddress.Loopback value is passed. IPAddress.Loopback represents a loopback address. The second
argument represents the port number.

Next, you create a new instance of Socket. Socket builds a network data conduit that allows the
application to send or receive data across the network. Three pieces of information are required to
successfully start the data flow. These are the network address type, socket type, and protocol type,
as shown here:

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

5645ch04.qxd 3/3/06 12:11 PM Page 187

CHAPTER 4 ■ THE BROADCAST ENGINE188

The network address type defines the addressing scheme to resolve an EndPoint, and the most
commonly used network address type is AddressFamily.InterNetwork that recognizes IPv4 addresses.
You then assign the socket type and protocol type; this information goes hand in hand and dictates
a strict combination. For instance, when the protocol type is ProtocolType.Udp, the only socket type
supported is SocketType.Dgram.

After instantiating a new instance of a Socket, the next step is to deliver data. The data is always
encapsulated in a strongly typed object, and it needs to be converted into raw bytes. This conversion
is achieved by the Encoding defined in the System.Text namespace. Encoding provides various types
of encoding implementations that support converting strings to and from array of bytes.

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

The most important code is where individual client endpoint information is retrieved from the
MDC recipient list; this information and actual data is then supplied to the SendTo method that finally
transmits data to the specified endpoint:

foreach(EndPoint mdcEndPoint in mdcEndPointList)

{

mdpSocket.SendTo(sendBuffer,mdcEndPoint);

}

In the final leg of the code, as follows, you close the socket connection, which also releases the
underlying memory allocated by Socket. A word of caution: Socket, once closed, can no longer be
used to either send or receive messages over a network.

Console.WriteLine("Market Data Sent to all Market-Data consumer clients");

Console.ReadLine();

mdpSocket.Close();

This brings an end to the market data producer aspect of this example. The next step is to look
at the market data consumer code; the main function of the code in Listing 4-3 is to receive data
published by the market data producer, so the technique employed is more or less similar to the
market data producer service.

Listing 4-3. Market Data Consumer (Using UDP)

using System;

using System.Collections.Specialized;

using System.Collections;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace MDC

{

class MDC

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Consumer Service Started");

byte[] receiveBuffer = new byte[512];

EndPoint bindInfo = new IPEndPoint(IPAddress.Loopback,30000);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

5645ch04.qxd 3/3/06 12:11 PM Page 188

CHAPTER 4 ■ THE BROADCAST ENGINE 189

try

{

//Associates socket with a particular local endpoint

mdcSocket.Bind(bindInfo);

EndPoint endPoint = new IPEndPoint(IPAddress.Any,0);

//receives a datagram, and the call blocks until data is received

int bytesReceived = mdcSocket.ReceiveFrom(receiveBuffer,ref endPoint);

//market data sender information is recorded

IPEndPoint mdpEndPoint = (IPEndPoint)endPoint;

string mktPrice = Encoding.ASCII.GetString(receiveBuffer,0,bytesReceived);

Console.WriteLine("Market-Data Received : " +mktPrice);

Console.WriteLine("Market Data Producer IP Address {0} Port {1} "

,mdpEndPoint.Address.ToString(), mdpEndPoint.Port);

}

catch(SocketException e)

{

Console.WriteLine(e.ToString());

}

Console.ReadLine();

mdcSocket.Close();

}

}

}

In Listing 4-3, we have explicitly added the socket exception handler that is excluded in the
market data producer code. By enclosing network-related operations inside a try-catch block, you
get the opportunity to catch SocketException. SocketException provides additional information
that is extremely valuable in troubleshooting network-related failures. The ErrorCode property of
SocketException returns a socket-specific code, and to correctly interpret it, you will have to refer to
Windows Socket Version 2 API error code documentation in MSDN.

Listing 4-3 contains a new instance of IPEndPoint and Socket. The arguments supplied to the
IPEndPoint constructor method must match the market data recipient list maintained by the market
data producer service.

EndPoint bindInfo = new IPEndPoint(IPAddress.Loopback,30000);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

After creating a socket, Bind is invoked, which associates a Socket instance with a particular
local endpoint:

mdcSocket.Bind(bindInfo);

A local endpoint contains both the IP address and the port number, but the IP address is sufficient
to identify the underlying NICs associated with it. Bind proves to be very nifty in a multihomed sce-
nario. A multihomed host is equipped with two or more NIC, and each NIC is assigned a different IP
address. A multihomed host provides multiple channels to communicate data, and by calling Bind,
you explicitly specify the channel from which data is communicated. It is absolutely necessary to call
Bind if the application is configured to receive data.

Bind is never called in the market data producer code because during the data delivery phase
you were not concerned with any specific local endpoint and instead delegated this task to the under-
lying network service provider that uses an appropriate local endpoint. But if a need arises to know
the local endpoint of a Socket, you can always get this information by accessing the LocalEndPoint
property of Socket.

The next step is to receive data, which is done by invoking ReceiveFrom. This method blocks
until data is received, so when new data arrives, the method unblocks and populates the byte array
and remote host information. The remote endpoint contains the IP address and port number used

5645ch04.qxd 3/3/06 12:11 PM Page 189

CHAPTER 4 ■ THE BROADCAST ENGINE190

Figure 4-8. MDC (UDP) console output

Figure 4-9. MDP (UDP) console output

by the market data producer service to deliver this data. Additionally, this method also returns an
exact number of bytes read. Accordingly, you extract that number of bytes using the GetString
method of the Encoding.ASCII class.

EndPoint endPoint = new IPEndPoint(IPAddress.Any,0);

int bytesReceived = mdcSocket.ReceiveFrom(receiveBuffer,ref endPoint);

IPEndPoint mdpEndPoint = (IPEndPoint)endPoint;

string mktPrice = Encoding.ASCII.GetString(receiveBuffer,0,bytesReceived);

Console.WriteLine("Market-Data Received : " +mktPrice);

Console.WriteLine("Market Data Producer IP Address {0} Port {1} "

,mdpEndPoint.Address.ToString(), mdpEndPoint.Port);

Finally, the connection is closed, and the underlying memory used by Socket is released:

mdcSocket.Close();

With this code, you have completed the first example. Figure 4-8 and Figure 4-9 show the con-
sole output generated by the MDC and MDP.

This example provided a first-hand taste of socket programming in the .NET world, and you
implemented it using UDP. Although in reality UDP comes into action only in a specific scenario,
most of the time applications are designed using TCP. UDP undoubtedly is the fastest delivery
transport protocol, but it has some serious drawbacks:

Unreliable: UDP provides no guarantee that data will ever reach its destination; this means in
the previous example the market data information published may or may not reach the market
data consumer. If you are looking for this kind of reliability feature, then you have no other
choice but to hand-roll custom logic at the application level.

Unordered sequence: Consider an example where market data is continuously pumped by the
market data producer service, and in such cases the consumer will face a huge surge of data. If
you look at the pattern of information published, you will find a case where a price of a stock is
sent, and immediately an updated price for the same stock is delivered. In such cases UDP does
not guarantee that the updated price information will be delivered only after the old price infor-
mation is delivered. On the receiving end, you can imagine the impact on the application and
its downstream components when it first receives the updated price and when afterward it
receives the stale price.

5645ch04.qxd 3/3/06 12:11 PM Page 190

CHAPTER 4 ■ THE BROADCAST ENGINE 191

Network congestion: A strong flow control is required that can sense the network, find out its
maximum capacity, and based on its current utilization throttle the amount of data pumped
on network. This will ensure the optimum utilization of the network, but UDP doesn’t support
such features, so it is pretty easy to choke the network by continuously generating and sending
messages.

UDP is a simple protocol, but it lacks many of the characteristics that are essential for conducting
reliable communication. To address the caveats faced by UDP, TCP was invented and is considered
to be the most robust transport protocol available for any type of internetwork communication.

Transport Layer (Transmission Control Protocol)
The most appealing features of TCP are its various out-of-band features that are offered to ensure
the reliable delivery of application data. The reliability service provided by TCP has strongly estab-
lished its presence in the Internet world where millions of systems exchange data using TCP. TCP is
a connection-oriented protocol; this means both the sender and the receiver must perform a hand-
shaking before exchanging data. After successful handshaking, a TCP connection is established
between the sender and the receiver; using this connection, the sending application sends data to
the destination application, or vice versa. Many popular protocols such as SMTP, FTP, and HTTP are
built on top of TCP. Some of the important features supported by TCP are as follows:

Reliable: TCP implements the reliability service by acknowledging each message sent to the
destination host, and the failure to receive an acknowledgment receipt from the destination
host within a predefined time will initiate a retransmission of the message. This mechanism is
implemented by tagging every TCP segment with a unique sequence number, and both the source
and destination applications know each other’s last sequence number received or sent by them.
Another benefit of the sequence number is it helps to detect and resolve the message duplication
or out-of-order issues. In a case where the TCP message arrives out of order, TCP waits for its
predecessor message to arrive and reassembles them in the correct order before passing them
to the application.

Handshaking: UDP is very informal when it comes to sending or receiving messages; besides
knowing each other’s endpoint information, no additional steps are needed either from the send-
ing host or from the receiving host. This is in contrast to TCP where before the data exchange
takes place, both the sender and the receiver first negotiate the protocol initialization information.
This includes information such as the sender and receiver starting sequence number, the TCP
window size, and the TCP maximum segment size (MSS). The MSS is equivalent to the MTU, but
the MTU represents a network; similarly, the MSS represents TCP. The MSS determines the largest
size of the TCP segment, and during the TCP connection set-up phase, both the sender and the
receiver announce their MSS values. Most of the time, the MSS mirrors the host MTU. The MSS
lessens message fragmentation happening at the IP layer. Fragmentation is an expensive operation
and seriously hampers the performance of the application.

TCP follows a similar negotiation technique when the connection is closed. During the connection
closing stage, TCP ensures that both the sending and receiving hosts don’t have pending data to
be delivered or received.

5645ch04.qxd 3/3/06 12:11 PM Page 191

CHAPTER 4 ■ THE BROADCAST ENGINE192

Flow control: TCP handles a fast producer and slow consumer scenario well. In this scenario, the
producer generates the message and transmits to the consumer at a rate higher than the consumer
ability to consume it. To stop the sender from bursting messages to the receiver, TCP implements
an adaptive sliding window technique.

A data receive buffer, also known as window size, is allocated for the individual TCP connection
established between the client and server. This buffer acts as intermediate storage for the receiver
and represents the maximum capacity of data it can handle at one time from the sender. When
TCP data is received, it is first copied into this buffer and is emptied only when the application
makes an explicit request. Until that time, data is temporarily stored in this TCP buffer. So, if
the application is executing computational-intensive tasks in parallel, then it is quite possible
that it may not be able to read data in a timely manner, which will introduce a slow consumer
scenario. In such cases, the receive buffer will get quickly filled up, and the sender will immedi-
ately stop sending more data. Therefore, it is extremely important that the application quickly
read data from the TCP buffer and queue it in the application-maintained in-memory storage.
An application can request data from this buffer either in a large chunk or in a smaller chunk.

This TCP buffer from the sender point of view becomes the sender window size and from the
receiver point of view becomes the receiver window size. The window size is dynamic in nature
and mainly depends on how quickly the application is able to read data from this buffer. The
receiver window size value is always stored inside an acknowledgment message sent by the receiver
to the sender and forms the basis of implementing a strong flow control. The sender checks the
window size published by the receiver as part of the TCP acknowledgment message, and if its value
falls below zero, then the sender will stop sending any further data until it notices an increase in
window size.

Now we will show how to reimplement the earlier market data example (see Listing 4-2 and
Listing 4-3) using TCP. From a coding perspective, Listing 4-4 is more or less similar to its UDP coun-
terpart; however, certain prerequisite are required to be set up before the market data consumer (the
client) requests data from the market data producer (the server). The following code is the TCP version
of the market data producer (the server) and listens for a request from the market data consumer
(the client). As soon as the client connects, the data is prepared and delivered using TCP.

Listing 4-4. Market Data Producer (Using TCP)

using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

namespace TCPMDP

{

class MDP

{

[STAThread]

static void Main(string[] args)

{

IPEndPoint localEP = new IPEndPoint(IPAddress.Loopback,20000);

Console.WriteLine("Market-Data Producer Service Started - Using TCP");

//Market Data

string mktPrice = "MSFT;25,IBM;24";

//Create network data conduit

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

//Associate socket with particular endpoint

5645ch04.qxd 3/3/06 12:11 PM Page 192

CHAPTER 4 ■ THE BROADCAST ENGINE 193

mdpSocket.Bind(localEP);

//server starts listening for client connection

mdpSocket.Listen(10);

while(true)

{

//synchronously extracts the first pending connection request

Socket mdcSocket = mdpSocket.Accept();

IPEndPoint mdcRemoteEP = mdcSocket.RemoteEndPoint as IPEndPoint;

Console.WriteLine("MDC EndPoint Info {0} {1} :

",mdcRemoteEP.Address.ToString(),mdcRemoteEP.Port);

//data is flatted into array of bytes and

//dispatched to client

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

mdcSocket.Send(sendBuffer);

//client connection is closed

mdcSocket.Shutdown(SocketShutdown.Both);

mdcSocket.Close();

}

}

}

}

In the UDP version of the market data producer (described in Listing 4-2), you should have
observed the sender directly sending data to a particular endpoint, assuming the receiver on the
other end is waiting to receive it. There is no implicit way to determine whether the receiver has
successfully received the data. But in a connection-oriented world, it’s a different story; the receiver
beforehand must know the sender endpoint information and explicitly connect to this endpoint.
A connection is deemed to be successful only after the sender accepts it.

In Listing 4-4, the first step is to define a local endpoint to which the market data consumer
client will connect to receive market data. In this example, you identify the loopback address and
port number 20000. In the next step, a socket is created, the socket type passed is SocketType.Stream,
and the protocol type is ProtocolType.Tcp. This newly created Socket is then associated with the
local endpoint by invoking the Bind method.

IPEndPoint localEP = new IPEndPoint(IPAddress.Loopback,20000);

Console.WriteLine("Market-Data Producer Service Started - Using TCP");

string mktPrice = "MSFT;25,IBM;24";

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

mdpSocket.Bind(localEP);

The Listen method, shown next, puts the Socket in listening mode. A Socket in listening mode
actively listens for an incoming client connection request. The argument passed to this method
determines the maximum number of entries in the TCP incoming connection request queue. When
a client connection request arrives, it is first placed in this connection request queue and is dequeued by
the application with a call to Accept. In a stress scenario where multiple connection requests arrive in
a concurrent fashion, it is important for the application to dequeue this connection request fast
enough so that the number of entries in the queue doesn’t exceed the maximum limit.

mdpSocket.Listen(10);

Socket mdcSocket = mdpSocket.Accept();

IPEndPoint mdcRemoteEP = mdcSocket.RemoteEndPoint as IPEndPoint;

Console.WriteLine("MDC EndPoint Info {0} {1} :

",mdcRemoteEP.Address.ToString(),mdcRemoteEP.Port);

5645ch04.qxd 3/3/06 12:11 PM Page 193

CHAPTER 4 ■ THE BROADCAST ENGINE194

Accept drains the connection request queue in a FIFO fashion, and on finding no pending
connection request, it blocks until a new request gets enqueued. A successful return from Accept
establishes a connection between the client and the server. The Socket instance returned by the
method represents a client connection. The endpoint information of the client is available through
the RemoteEndPoint property.

Two types of Socket exist on the server side; the first one is the listening socket, and the other is
the client socket. The purpose of the listening socket is to honor the client connection request; it
doesn’t support any type of data exchange activity. The Socket returned by the Accept method repre-
sents the client socket, and data exchange is performed on this socket.

After the connection is established successfully, market data is serialized into raw bytes, and using
Send it is dispatched to the MDC client:

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

mdcSocket.Send(sendBuffer);

The TCP connection established between the client and server is full-duplex in nature. This
means data is allowed to flow from both directions of the connection. TCP provides a feature that
allows one end of the connection to disable its sending or receiving activity. For example, if a market
data consumer client is never going to send data and its only intention is to receive data, then it may
very well block the sending end of the connection. You can apply the same technique to the market
data producer server; if it is never going to receive data, then it can block the receiving end of the
connection. This feature is called TCP half-close, and you use Shutdown to implement it:

mdcSocket.Shutdown(SocketShutdown.Both);

Shutdown also takes care of any pending data that needs to be delivered or received and ensures
data on the connected Socket is flushed out before closing it down. The argument supplied to
Shutdown is one of these enumerated values of SocketShutdown:

SocketShutdown.Receive: Disables the receiving end of the Socket

SocketShutdown.Send: Disables the sending end of the Socket

SocketShutdown.Both: Disables both the sending and receiving ends of the Socket

Finally, the TCP connection is closed, and the underlying memory used by Socket is released:

mdcSocket.Close();

With the code example illustrated in Listing 4-4, you have completed the TCP version of the
market data producer service. The next step is to implement the TCP version of the market data
consumer service (see Listing 4-5).

Listing 4-5. Market Data Consumer (Using TCP)

using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

namespace TCPMDC

{

class MDC

{

[STAThread]

static void Main(string[] args)

{

5645ch04.qxd 3/3/06 12:11 PM Page 194

CHAPTER 4 ■ THE BROADCAST ENGINE 195

Figure 4-10. MDP (TCP) console output

Figure 4-11. MDC (TCP) console output

Console.WriteLine("Market-Data Consumer Service Started - Using TCP");

IPEndPoint mdpEP = new IPEndPoint(IPAddress.Loopback,20000);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

//Establishes connection with market data server

mdcSocket.Connect(mdpEP);

byte[] receiveBuffer = new byte[512];

//Receive market data

int bytesReceived = mdcSocket.Receive(receiveBuffer);

string mktPrice = Encoding.ASCII.GetString(receiveBuffer,0,bytesReceived);

Console.WriteLine(mktPrice);

//Close connection

mdcSocket.Shutdown(SocketShutdown.Both);

mdcSocket.Close();

Console.ReadLine();

}

}

}

In Listing 4-5, the code works by first identifying the server endpoint information, which is
then fed to the Connect method that synchronously establishes a connection with the remote server.
After you are connected, the server immediately sends the data. The data is received and converted
into a readable format before being displayed on the console. After displaying the data, the connec-
tion is closed, and the underlying memory allocated is released. Figure 4-10 and Figure 4-11 show
the console output of both the market data producer and the consumer service.

Asynchronous Market Data Producer and Consumer
Socket supports both blocking and nonblocking operations. In blocking mode, the operation being
conducted on the socket (such as reading data, writing data, or connecting to the host) gets blocked
indefinitely until the requested operation completes successfully. For example, a read issued on a con-
nected socket that contains pending data will return immediately; however, if there is no data, then
the read operation is blocked until the arrival of new data. You noticed similar blocking behavior while
accepting the client connection; the Accept method blocks until a new connection is established.

5645ch04.qxd 3/3/06 12:11 PM Page 195

CHAPTER 4 ■ THE BROADCAST ENGINE196

To build a scalable application, it is essential to adopt a concurrent programming path. By
adopting this path, you break a coarse-grained task into individual subtasks and offload processing
of these subtasks to a separate thread. If you implemented this during the design of networked
applications, then most of the operations, such as sending data to the client or accepting a client
connection, are forked on a separate thread.

To provide such multithreaded behavior, Socket provides both a synchronous and an asynchronous
version of the common operation performed on it. This common operation includes connecting to
the remote host, accepting the connection from the client, and sending or receiving the data. We
have already demonstrated the synchronous version of the market data producer and consumer. In
Listing 4-6, we show how to implement an asynchronous version of these services and perform most
of the time-consuming operations on a separate thread.

Listing 4-6. Asynchronous Market Data Producer (Using TCP)

using System;

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

namespace AsyncTCPMDP

{

public class AsyncStateInfo

{

public Socket socket;

public byte[] dataBuffer = new byte[512];

public AsyncStateInfo(Socket sock)

{

socket=sock;

}

}

class MDP

{

[STAThread]

static void Main(string[] args)

{

ManualResetEvent shutDownSignal = new ManualResetEvent(false);

IPEndPoint localEP = new IPEndPoint(IPAddress.Loopback,20000);

Console.WriteLine("Market-Data Producer Service Started –

Using TCP (Async Model)");

Console.WriteLine("Main Thread : " +Thread.CurrentThread.GetHashCode());

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

mdpSocket.Bind(localEP);

mdpSocket.Listen(10);

//Starts listening to client connection in an asynchronous mode

mdpSocket.BeginAccept(new AsyncCallback(AcceptConnection),

new AsyncStateInfo(mdpSocket));

shutDownSignal.WaitOne();

}

//Method invoked to accept an incoming connection attempt

public static void AcceptConnection(IAsyncResult result)

{

5645ch04.qxd 3/3/06 12:11 PM Page 196

CHAPTER 4 ■ THE BROADCAST ENGINE 197

Console.WriteLine("Connection Request Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

//Accepts client connection

Socket mdcSocket = stateInfo.socket.EndAccept(result);

//Starts listening to client connection

stateInfo.socket.BeginAccept(new AsyncCallback(AcceptConnection),

new AsyncStateInfo(stateInfo.socket));

AsyncStateInfo mdcStateInfo = new AsyncStateInfo(mdcSocket);

string mktPrice = "MSFT;25,IBM;24";

stateInfo.dataBuffer = Encoding.ASCII.GetBytes(mktPrice);

//Sends data asynchronously

mdcSocket.BeginSend(mdcStateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(SendData),mdcStateInfo);

}

public static void SendData(IAsyncResult result)

{

Console.WriteLine("Data Sending Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

//Completes asynchronous send

stateInfo.socket.EndSend(result);

}

}

}

The code described in Listing 4-6 is a rehash of the TCP version of the market data producer
service but uses asynchronous methods of Socket. Asynchronous methods, as explained in Chapter 2,
are paired methods. The execution of the method starts with a call to BeginXXX and ends with a call
to the EndXXX method. The logic implemented here is similar to the synchronous version of the mar-
ket data producer with the only difference being that tasks such as accepting the client connection
and sending data to the client are separated in AcceptConnection and the SendData method.

In Listing 4-6, BeginAccept asynchronously notifies the client connection request, the notification
happens on a separate thread, and the registered callback method is invoked. The registered callback
method is represented by an instance of the AsyncCallback delegate. This delegate expects a method
argument to be passed that is later referenced inside the callback method. The argument passed in
this case is an instance of AsyncStateInfo that encapsulates the listening socket instance:

mdpSocket.BeginAccept(new AsyncCallback(AcceptConnection),

new AsyncStateInfo(mdpSocket));

}

AcceptConnection completes the connection request received from the client by invoking the
EndAccept method. EndAccept returns a new Socket that is then used to send data to the client. Notice
that you again trigger a call to the BeginAccept method to process the remaining connection request.
After accepting the connection, the data is asynchronously sent using the BeginSend method:

public static void AcceptConnection(IAsyncResult result)

{

Console.WriteLine("Connection Request Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

Socket mdcSocket = stateInfo.socket.EndAccept(result);

stateInfo.socket.BeginAccept(new AsyncCallback(AcceptConnection),

new AsyncStateInfo(stateInfo.socket));

5645ch04.qxd 3/3/06 12:11 PM Page 197

CHAPTER 4 ■ THE BROADCAST ENGINE198

AsyncStateInfo mdcStateInfo = new AsyncStateInfo(mdcSocket);

string mktPrice = "MSFT;25,IBM;24";

stateInfo.dataBuffer = Encoding.ASCII.GetBytes(mktPrice);

mdcSocket.BeginSend(mdcStateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(SendData),mdcStateInfo);

Finally, SendData completes the asynchronous send operation by invoking EndSend:

public static void SendData(IAsyncResult result)

{

Console.WriteLine("Data Sending Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

stateInfo.socket.EndSend(result);

}

The next step is to demonstrate the market data consumer end, which connects to the market
data producer and receives data in an asynchronous manner. Listing 4-7 represents the asynchronous
version of the market data consumer service.

Listing 4-7. Asynchronous Market Data Consumer (Using TCP)

using System;

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

namespace AsyncTCPMDC

{

public class AsyncStateInfo

{

public Socket socket;

public byte[] dataBuffer = new byte[512];

public AsyncStateInfo(Socket sock)

{

socket=sock;

}

}

class MDC

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Consumer Service Started -

Using TCP(Async Model)");

Console.WriteLine("Main Thread : " +Thread.CurrentThread.GetHashCode());

IPEndPoint mdpEP = new IPEndPoint(IPAddress.Loopback,20000);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

AsyncStateInfo stateInfo = new AsyncStateInfo(mdcSocket);

//Begins an asynchronous connection request

mdcSocket.BeginConnect(mdpEP,new AsyncCallback(MDCConnected),stateInfo);

Console.ReadLine();

5645ch04.qxd 3/3/06 12:11 PM Page 198

CHAPTER 4 ■ THE BROADCAST ENGINE 199

if (mdcSocket.Connected == true)

{

mdcSocket.Shutdown(SocketShutdown.Both);

mdcSocket.Close();

}

}

//Callback method invoked as a result of asynchronous data receive request

public static void ReceiveData(IAsyncResult result)

{

Console.WriteLine("Receiving Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

Socket mdcSocket = stateInfo.socket;

//Successfully accepts data

int bytesReceived = mdcSocket.EndReceive(result);

if (bytesReceived > 0)

{

string mktPrice =

Encoding.ASCII.GetString(stateInfo.dataBuffer,0,bytesReceived);

Console.WriteLine(mktPrice);

//Begins async. operation to receive more data sent by server

mdcSocket.BeginReceive(stateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(ReceiveData),stateInfo);

}

}

//Callback method invoked as a result of asynchronous connection request

public static void MDCConnected(IAsyncResult result)

{

Console.WriteLine("Connecting Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

Socket mdcSocket = stateInfo.socket;

//Successfully connects to market data server

mdcSocket.EndConnect(result);

//Begins asynchronous data receive operation

mdcSocket.BeginReceive(stateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(ReceiveData),stateInfo);

}

}

}

In Listing 4-7, the connection request to the market data producer service is spawned on a sep-
arate thread that is achieved by BeginConnect. The connection to the remote host is successfully
established with EndConnect. After connecting, the next step is to receive the data published by the
server, and this task is again processed asynchronously with BeginReceive:

public static void MDCConnected(IAsyncResult result)

{

Console.WriteLine("Connecting Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

Socket mdcSocket = stateInfo.socket;

mdcSocket.EndConnect(result);

mdcSocket.BeginReceive(stateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(ReceiveData),stateInfo);

}

5645ch04.qxd 3/3/06 12:11 PM Page 199

CHAPTER 4 ■ THE BROADCAST ENGINE200

Figure 4-12. MDP (Async-TCP) console output

Figure 4-13. MDC (Async-TCP) console output

In the following code, ReceiveData is triggered by BeginReceive, which gives the ability to
receive data on a separate thread. The actual data is received only after a call to EndReceive.
EndReceive returns the total number bytes read, and this value determines any pending data that
needs to be read.

public static void ReceiveData(IAsyncResult result)

{

Console.WriteLine("Receiving Thread : "

+Thread.CurrentThread.GetHashCode());

AsyncStateInfo stateInfo = result.AsyncState as AsyncStateInfo;

Socket mdcSocket = stateInfo.socket;

int bytesReceived = mdcSocket.EndReceive(result);

if (bytesReceived > 0)

{

string mktPrice =

Encoding.ASCII.GetString(stateInfo.dataBuffer,0,bytesReceived);

Console.WriteLine(mktPrice);

mdcSocket.BeginReceive(stateInfo.dataBuffer,0,512,SocketFlags.None,

new AsyncCallback(ReceiveData),stateInfo);

}

}

Figure 4-12 and Figure 4-13 show the console output of the market data producer and the con-
sumer service.

5645ch04.qxd 3/3/06 12:11 PM Page 200

CHAPTER 4 ■ THE BROADCAST ENGINE 201

Figure 4-14. Byte ordering

Network Byte Order
The standardization of data has always been a focal issue in achieving interoperability between
machines where the underlying hardware architecture or operating system is different from each
other. A common problem encountered in a network application is the arrangement of the bits of
multibyte numbers such as the short, integer, or long data types. The interpretation and packaging
of multibyte numbers are different for different types of CPU architecture. Intel-based machines are
known as little-endian machines where the least significant byte (LSB) is stored at a lower memory
address. This is in contrast to Motorola-based machines where the most significant byte (MSB) is
stored at a lower memory address. For instance, data triggered from Intel-based machines will be
interpreted differently when received by a Motorola machine. Figure 4-14 illustrates this problem
where the short value 99 defined by little-endian machines is interpreted wrongly by big-endian
machines.

To address this inconsistency, a common network representation format is defined that makes
no assumptions and ensures the portability of data across different CPU architectures. This format
is the same as big-endian. Therefore, both little-endian and big-endian machines, before sending
data, convert it to a network representation format. This kind of data portability is required only when
the applications communicating with each other use a different CPU architecture. But if they are built
on a similar architecture, then there is no need for any intermediate conversion step, and the data is
directly exchanged.

To convert a multibyte value from host byte order to network byte order, we will use the
NetworkToHostOrder defined in the IPAddress class in the following code. Similarly, HostToNetworkOrder
converts from network byte order to host byte order. Both HostToNetworkOrder and NetworkToHostOrder
are overloaded methods, and both take a multibyte value and convert it to an appropriate format.

using System;

using System.Net;

namespace NetworkByteOrder

{

class NBO

{

[STAThread]

static void Main(string[] args)

5645ch04.qxd 3/3/06 12:11 PM Page 201

CHAPTER 4 ■ THE BROADCAST ENGINE202

{

short quantity = 99;

short networkOrder = IPAddress.NetworkToHostOrder(quantity);

Console.WriteLine("Quantity Converted to Network Byte Order :"

+networkOrder);

short hostOrder = IPAddress.HostToNetworkOrder(networkOrder);

Console.WriteLine("Quantity Converted to Host Byte Order :" +hostOrder);

}

}

}

The output in Figure 4-15 shows a multibyte value converted from a host format to a network
format, and vice versa.

Figure 4-15. Network byte order console output

Message Framing
The earlier code example highlighted the modus operandi of UDP- and TCP-based applications. The
data transmitted on the network is first serialized into a byte array of a fixed size. The receiving appli-
cation knows this fixed size and accordingly allocates a buffer before receiving the data. However, in
a real-world application, there are different types of application data, and you cannot expect their
data lengths to be the same. Also, both UDP and TCP exhibit a different behavior when it comes to
the data transmission stage.

When data is handed over to TCP using Socket.Send, it is first copied into TCP internal data
structures, and the control is immediately returned to the caller. In reality, TCP never immediately
sends data over the wire; it first buffers the data, so it is likely that a multiple call to Socket.Send will
batch the data, and TCP will then transmit this accumulated data in a single TCP segment. The side
effect of such optimization is that the receiving application now needs to apply enough intelligence
to dissect the correct message. On the other hand, UDP is pretty straightforward, and data dispatched
using Socket.Send is considered to be a unique UDP segment and is immediately transmitted over
the wire.

As you saw earlier, Socket uses a sequence of bytes when it comes to sending or receiving data.
But in reality applications work at a higher abstraction layer and are represented in the form of strongly
typed objects. So you need to serialize the actual data that is encapsulated inside a strongly typed
object into raw bytes before sending it over a network. The reverse process is applied on the receiv-
ing end where a strongly typed object is re-created from the bytes of an array. This process is known
as the serialization and deserialization of objects, as discussed in Chapter 3.

The .NET Framework already provides a binary formatter that serializes the entire object graph
into raw byte form. The truth of the matter is sometimes the performance of network applications
occupies center stage, and during that period you need to wet your hands with various other

5645ch04.qxd 3/3/06 12:11 PM Page 202

CHAPTER 4 ■ THE BROADCAST ENGINE 203

alternative message encoding and decoding techniques and select the best that fits your requirement.
To demonstrate this alternative solution, we will show how to implement a real-world scenario where
market data is encapsulated inside a strongly typed class, as shown in the following code. The data
will then be translated into raw bytes and transmitted over a network. Here comes the real complexity;
on the receiving end, in order to translate a sequence of bytes into strongly object types, you need
to preserve the message boundary (see Listing 4-8).

Listing 4-8. Application Message Header

using System;

using System.Runtime.InteropServices;

namespace Parsing

{

public enum MessageHeaderType

{

MarketData,

OrderData,

TradeData

}

[StructLayout(LayoutKind.Sequential,Pack=1,CharSet=CharSet.Ansi)]

public class MessageHeader

{

public int MessageLength;

[MarshalAs(UnmanagedType.I4)]

public MessageHeaderType MessageType;

public MessageHeader()

{

}

}

}

In Listing 4-8, MessageHeader wraps the application-related message, and it contains padding
information (mainly the length of the message and the type of message). The intent of padding will
be revealed shortly. In the next section of code, you declare the market data class, which inherits from
MessageHeader and assigns a proper value to MessageType, as shown in Listing 4-9.

Listing 4-9. Market Data (Stock Price) Class

using System;

using System.Runtime.InteropServices;

namespace Parsing

{

[StructLayout(LayoutKind.Sequential,Pack=1,CharSet=CharSet.Ansi)]

public class MarketDataInfo : MessageHeader

{

[MarshalAs(UnmanagedType.ByValTStr,SizeConst=20)]

public string InstrumentName;

public double BidPrice;

public double AskPrice;

5645ch04.qxd 3/3/06 12:11 PM Page 203

CHAPTER 4 ■ THE BROADCAST ENGINE204

public MarketDataInfo()

{}

public MarketDataInfo(string instrumentName,double bidPrice,double askPrice)

{

this.MessageType = MessageHeaderType.MarketData;

InstrumentName = instrumentName;

BidPrice = bidPrice;

AskPrice = askPrice;

}

}

}

By looking at the code described in Listing 4-9, you must have figured out the parsing approach
we will implement. We will be using the P/Invoke service provided by the CLR. P/Invoke itself is a vast
subject, and covering every aspect of it is beyond the scope of this book. In a nutshell, P/Invoke is
a mediator between managed and unmanaged code. It takes into account the difference between
managed and unmanaged code and allows managed code to directly invoke functionality provided
by unmanaged code. It is obvious that interoperating two different environments is not an easy task,
and it is primarily the managed environment where you play by the rules defined by the CLR.

If you glance at MarketDataInfo, you will notice that the class and some of the fields are annotated
with interop attributes. These interop attributes are defined in System.Runtime.InteropServices,
and basically they provide hints to the P/Invoke service about how to marshal the managed object
in an unmanaged environment.

In a managed world, the field layout of a managed object is not fixed; instead, it is dynamically
rearranged by the runtime. By annotating StructLayout attributes, you instruct the runtime to not
rearrange the field order. Moreover, you can also change the individual field marshaling behavior by
annotating them with the MarshalAs attribute. For example, if you look at MessageHeader, described
in Listing 4-8, the MessageType field is annotated with interop attributes that instruct the runtime to
marshal them as an integer type because in an unmanaged world there is no concept of enumerated
types.

The program shown in Listing 4-10 is a generic parser that translates a strongly typed object
into an array of bytes, and vice versa. It also implements a common logic for handling the message
boundary for all types of objects.

Listing 4-10. Message Framing

using System;

using System.Runtime.InteropServices;

using System.IO;

namespace Parsing

{

public delegate void MessageParsedHandler(MessageHeader header);

public class MessageParser

{

public event MessageParsedHandler MessageParsed;

bool newMsg=true;

int remainingByte;

MemoryStream memStream = new MemoryStream();

int msgLength;

//Message parsing notification

private void OnMessageParsed(MessageHeader msgHeader)

{

5645ch04.qxd 3/3/06 12:11 PM Page 204

CHAPTER 4 ■ THE BROADCAST ENGINE 205

if (MessageParsed != null)

MessageParsed(msgHeader);

}

//Serializes message into array of bytes

public byte[] Serialize(MessageHeader obj)

{

//Calculate size of object

int objectSize = Marshal.SizeOf(obj);

obj.MessageLength = objectSize;

//Serialize message into array of bytes

IntPtr memBuffer = Marshal.AllocHGlobal(objectSize);

Marshal.StructureToPtr(obj,memBuffer,false);

byte[] byteArray = new byte[objectSize];

Marshal.Copy(memBuffer,byteArray,0,objectSize);

Marshal.FreeHGlobal(memBuffer);

return byteArray;

}

//Convert array of bytes into a managed type

private void ConvertToObject(byte[] msgBytes)

{

//Extract the message type by reading from 4th position of byte array

//i.e MessageType field of MessageHeader.

int msgType = BitConverter.ToInt32(msgBytes,4);

Type objType = null;

//Based on the message type determine the underlying type

if (msgType == (int) MessageHeaderType.MarketData)

{

objType = typeof(MarketDataInfo);

}

//Calculate the object size

int objectSize = Marshal.SizeOf(objType);

//Convert byte array into object

IntPtr memBuffer = Marshal.AllocHGlobal(objectSize);

Marshal.Copy(msgBytes,0,memBuffer,objectSize);

object obj = Marshal.PtrToStructure(memBuffer,objType);

Marshal.FreeHGlobal(memBuffer);

//Invoke the event to notify parsing of new message

//pass the concrete object instance

OnMessageParsed(obj);

}

public void DeSerialize(byte[] msgBytes)

{

AlignMessageBoundary(msgBytes,0);

}

//Code inside this method determines the correct message boundary

public void AlignMessageBoundary(byte[] recvByte,int offSet)

{

if (offSet >= recvByte.Length) return ;

//The logic has been branched for two types of scenarios

//first scenario is when framing of message is performed for a new message

//second scenario applies to messages received on a installment basis

5645ch04.qxd 3/3/06 12:11 PM Page 205

CHAPTER 4 ■ THE BROADCAST ENGINE206

if (newMsg == true)

{

//Get the length of message

msgLength = BitConverter.ToInt32(recvByte,offSet);

//Determine the message type

int msgType = BitConverter.ToInt32(recvByte,offSet + 4);

//If the length of byte array + offset is less than message length,

//then it indicates a partial message, and there are still

//remaining bytes pending to be read.

if (msgLength > (recvByte.Length - offSet) + 1)

{

newMsg=false;

remainingByte = msgLength - recvByte.Length;

memStream = new MemoryStream();

memStream.Write(recvByte,offSet,recvByte.Length);

}

else

{

//completes reading all pending bytes and converts

//it into concrete object

byte[] bytes = new byte[msgLength];

Array.Copy(recvByte,offSet,bytes,0,msgLength);

MessageHeader obj = this.ConvertToObject(bytes) as MessageHeader;

this.OnMessageParsed(obj);

//Recursive call

AlignMessageBoundary(recvByte,offSet + msgLength);

}

}

else

{

if (remainingByte > recvByte.Length)

{

memStream.Write(recvByte,0,recvByte.Length);

remainingByte = remainingByte - recvByte.Length;

}

else

{

memStream.Write(recvByte,offSet,remainingByte);

byte[] bytes = new byte[msgLength];

memStream.Seek(0,SeekOrigin.Begin);

memStream.Read(bytes,0,msgLength);

memStream.Close();

MessageHeader obj = this.ConvertToObject(bytes) as MessageHeader;

this.OnMessageParsed(obj);

newMsg=true;

AlignMessageBoundary(recvByte,offSet + remainingByte + 1);

}

}

}

}

}

The parser program, along with the serialization and deserialization functionality, also looks
after the message boundary issue. The serialization code returns an array of bytes, but the deserial-
ization code never directly returns the object to the caller; instead, it notifies the caller by raising an
event. Let’s first get started with the serialization code:

5645ch04.qxd 3/3/06 12:11 PM Page 206

CHAPTER 4 ■ THE BROADCAST ENGINE 207

public byte[] Serialize(MessageHeader obj)

{

int objectSize = Marshal.SizeOf(obj);

obj.MessageLength = objectSize;

IntPtr memBuffer = Marshal.AllocHGlobal(objectSize);

Serialize accepts an instance of MessageHeader that is then passed to Marshal.SizeOf. This
method computes the unmanaged size of a managed object. The size returned is then assigned to
MessageLength. The size also determines the memory required in unmanaged memory of the process
and is allocated by Marshal.AllocHGlobal. On successfully allocating memory, it returns a memory
pointer that is represented by IntPtr.

Next, Marshal.StructureToPtr flattens the data of the managed object into a continuous stream
of bytes and copies them into an allocated block of unmanaged memory. On successfully copying,
you invoke Marshal.Copy, which performs a reverse operation of copying data from unmanaged
memory to byte array.

Marshal.StructureToPtr(obj,memBuffer,false);

byte[] byteArray = new byte[objectSize];

Marshal.Copy(memBuffer,byteArray,0,objectSize);

Since you interacted with the unmanaged world where there is no concept of automatic garbage
collection to reclaim the memory, it is important to release all resources that were allocated using
AllocHGlobal and this is accomplished by Marshal.FreeHGlobal:

Marshal.FreeHGlobal(memBuffer);

Now comes the important part of the code where the actual message deserialization happens
inside ConvertToObject, and it works by first examining the message type:

private object ConvertToObject(byte[] msgBytes)

{

int msgType = BitConverter.ToInt32(msgBytes,4);

Type objType = null;

if (msgType == (int) MessageHeaderType.MarketData)

{

objType = typeof(MarketDataInfo);

}

You already know that when an instance of MarketDataInfo is serialized, its field layout will not
be reorganized, and the defined order will be maintained. So, you can safely assume the position of
the field in a byte array based on its underlying data type and offset. By applying this pattern, you can
retrieve the message type from the byte array because you know it is the first field in MarketDataInfo,
and being an integer data type, its storage capacity will be exactly 4 bytes. Similarly, you can also retrieve
the message length, which is the next field, and its data type is also an integer. This means the offset
of the message length in a byte array will start from the fourth position; using this technique, you can
traverse the byte array and retrieve the values of all the fields. BitConverter comes in handy in this
scenario; it facilitates the easy conversion from a byte array to the appropriate value type.

Based on the message type, you computed the actual unmanaged size of a managed object. This
size is then supplied to AllocHGlobal, which finally allocates memory in unmanaged memory of the
process. The byte array received as a method argument is then copied into the unmanaged block of
memory.

int objectSize = Marshal.SizeOf(objType);

IntPtr memBuffer = Marshal.AllocHGlobal(objectSize);

Marshal.Copy(msgBytes,0,memBuffer,objectSize);

5645ch04.qxd 3/3/06 12:11 PM Page 207

CHAPTER 4 ■ THE BROADCAST ENGINE208

The following is the important piece of code in which the byte array from the unmanaged sec-
tion of memory is marshaled and resurrected to a concrete managed object. After casting the object
to MessageHeader, it is appropriately notified to the caller by raising the event.

MessageHeader obj = Marshal.PtrToStructure(memBuffer,objType) as MessageHeader;

Marshal.FreeHGlobal(memBuffer);

if (MessageParsed != null)

MessageParsed(obj);

DeSerialize is the method exposed to outside world; this method call is then routed to
AlignMessageBoundary, which properly frames the message before invoking ConvertToObject:

public void DeSerialize(byte[] msgBytes)

{

AlignMessageBoundary(msgBytes,0);

}

The following code is the last leg of the example; it conducts different types of tests that start
with a simple message and then simulates a multiple-message scenario nested in a large byte array:

using System;

using System.Runtime.InteropServices;

namespace Parsing

{

class ParsingExample

{

[STAThread]

static void Main(string[] args)

{

//Instantiate new instance of Message parser

//and also subscribe to its message parsing event

MessageParser msgParser = new MessageParser();

msgParser.MessageParsed +=new MessageParsedHandler(msgParser_MessageParsed);

MarketDataInfo msftData = new MarketDataInfo("MSFT",21.5,22.5);

MarketDataInfo ibmData = new MarketDataInfo("IBM",23.5,24.5);

MarketDataInfo geData = new MarketDataInfo("GE",25.5,26.5);

//Single Message Scenario

Console.WriteLine("Single Message Scenario");

byte[] buffer = msgParser.Serialize(msftData);

msgParser.DeSerialize(buffer);

//Large Buffer Scenario

Console.WriteLine("Large Buffer Scenario");

int typeSize = Marshal.SizeOf(typeof(MarketDataInfo));

byte[] largeBuffer = new byte[typeSize*3];

byte[] ibmBuffer = msgParser.Serialize(ibmData);

byte[] geBuffer = msgParser.Serialize(geData);

Array.Copy(buffer,0,largeBuffer,0,typeSize);

Array.Copy(ibmBuffer,0,largeBuffer,buffer.Length,typeSize);

Array.Copy(geBuffer,0,largeBuffer,buffer.Length +

ibmBuffer.Length,typeSize);

msgParser.DeSerialize(largeBuffer);

5645ch04.qxd 3/3/06 12:11 PM Page 208

CHAPTER 4 ■ THE BROADCAST ENGINE 209

Figure 4-16. Parsing console output

//Small Buffer Scenario

Console.WriteLine("Small Buffer Scenario");

byte[] smallBuffer1= new byte[22];

byte[] smallBuffer2= new byte[22];

Array.Copy(buffer,0,smallBuffer1,0,22);

Array.Copy(buffer,22,smallBuffer2,0,22);

msgParser.DeSerialize(smallBuffer1);

msgParser.DeSerialize(smallBuffer2);

}

private static void msgParser_MessageParsed(MessageHeader header)

{

MarketDataInfo dataInfo = header as MarketDataInfo;

Console.WriteLine("{0} {1}

{2}",dataInfo.InstrumentName,dataInfo.BidPrice,dataInfo.AskPrice);

}

}

}

The code also demonstrates a small buffer case, and the parser is able to intelligently parse the
data. Figure 4-16 shows the parsing console output.

Broadcast
The examples demonstrated so far were based on a unicast communication model (see Figure 4-17).
In this model, the market data producer (the server) sent data to the individual market data consumer
(the client). In UDP, the market data server needs to constantly update its recipient list. However, in
the TCP world, the market data consumer explicitly initiates a connection with the server and gets the
required data. Regardless of which route you follow, the market data server always needs to know its
consumers (clients).

5645ch04.qxd 3/3/06 12:11 PM Page 209

CHAPTER 4 ■ THE BROADCAST ENGINE210

Such one-to-one communication scales poorly, particularly when the number of clients inter-
acting with the server is huge. Consider for a moment you were given a design specification of a market
data service that should be capable of handling at least 1,000 clients. To implement this system, no
doubt you will require the backing of state-of-the-art hardware infrastructure, but one thing you
will definitely fall short on is network bandwidth. Network bandwidth in a local area network may
not look like a major problem; it is only when communication is spawned on limited-capacity
bandwidth that serving 1,000 clients is a different beast.

The server will be sending market data information to individual clients, and if you estimate the
size of market data to be around 1KB, then a total of 1MB (1,000 clients * 1KB) of data will be floated
on the network at any given point of time. If you extrapolate this equation specifically during peak
trading hours when stocks price are highly volatile, then the underlying network bandwidth will not
be able to cope with the amount of data produced by the market data service. This problem gets reflected
on the consumer end in the form of a market data latency issue. Fortunately, you have a way to resolve
this problem, and it is to implement the network broadcast feature.

Using a broadcast, a single copy of data is floated on the network, and this data is sent to all hosts
in a network. The immediate benefit reaped here is the optimum utilization of bandwidth; regardless
of the number of hosts in a network, data is transferred only once. The underlying network provides
two types of broadcasts: unsolicited and solicited. The underlying implementation of both these
broadcasts depends upon UDP, and this is where UDP wins over TCP.

Unsolicited Broadcast
Unsolicited broadcast is also known as local broadcast because of its limitation to broadcast data
only within the subnet of a network (see Figure 4-18). This restriction is inherent to a network where
data is never forwarded to another subnet by network routers. A local broadcast is quite useful when
both the server and client are located on the same subnet and the nature of information published
is the same across all clients.

The broadcast address 255.255.255.255 is a special-purpose address, and the network packet
directed toward this IP address is delivered to every host on the specified subnet of the host. From
a coding perspective, implementing a broadcast is a trivial task because under the hood it uses UDP
to deliver the data. So, the next task is to reimplement the market data solution; unlike in the earlier
code example where the server maintained a list of every clients’ endpoint information it intended
to send data to, in this version the server directly broadcasts data on the broadcast address, and the
consumer has to simply listen to this broadcast message.

Figure 4-17. Unicast communication model

5645ch04.qxd 3/3/06 12:11 PM Page 210

CHAPTER 4 ■ THE BROADCAST ENGINE 211

Figure 4-18. Unsolicited broadcast

The server and client code shown in Listing 4-11 and Listing 4-12 requires the host to be
connected in a network, because the broadcast is a feature supported by the underlying network.

Listing 4-11. Unsolicited Broadcast of Market Data

using System;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace UnSolicitedBcastServer

{

class MDP

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Producer Service Started -

(Unsolicited Broadcast)");

string mktPrice = "MSFT;25,IBM;24";

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

//Broadcast IP address

IPEndPoint bcastEndPoint = new IPEndPoint(IPAddress.Broadcast,30001);

//Set socket in broadcast mode

mdpSocket.SetSocketOption(

SocketOptionLevel.Socket,SocketOptionName.Broadcast, 1);

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

mdpSocket.SendTo(sendBuffer,bcastEndPoint);

mdpSocket.Close();

Console.WriteLine("Market Data Broadcasted");

Console.ReadLine();

}

}

}

5645ch04.qxd 3/3/06 12:11 PM Page 211

CHAPTER 4 ■ THE BROADCAST ENGINE212

In Listing 4-11, the code introduces two important changes. The first visible change is that a list
of recipient endpoint information is missing; it is replaced by a broadcast address. This broadcast
address is readily made available by IPAddress.Broadcast, and the port number assigned is 30001.

The next important line of code is SetSocketOption. This method turns on or off some very low-
level options of network protocols that are not directly exposed in the form of a property or method.
We discuss the possible options supported by this method later in the “Protocol Tweaking” section.
Currently, using SetSocketOption, we have enabled the broadcast support that is by default disabled
on the socket. After applying this change, the rest of the code looks familiar and requires no further
explanation.

The next step is to build the market data consumer that consumes market data published on
the broadcast address. The code shown in Listing 4-12 achieves this.

Listing 4-12. Client Receiving Broadcast Message

using System;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace UnSolicitedBcastClient

{

class MDC

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Consumer Service Started -

(Unsolicited Broadcast)");

byte[] receiveBuffer = new byte[512];

IPHostEntry hostEntry = Dns.GetHostByName(Dns.GetHostName());

EndPoint bindInfo = new IPEndPoint(hostEntry.AddressList[0],30001);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

mdcSocket.Bind(bindInfo);

EndPoint endPoint = new IPEndPoint(IPAddress.Any,0);

int bytesReceived = mdcSocket.ReceiveFrom(receiveBuffer,ref endPoint);

IPEndPoint mdpEndPoint = (IPEndPoint)endPoint;

string mktPrice = Encoding.ASCII.GetString(receiveBuffer,0,bytesReceived);

Console.WriteLine("Market-Data Received : " +mktPrice);

Console.WriteLine("Market Data Producer IP Address {0} Port {1} "

,mdpEndPoint.Address.ToString(), mdpEndPoint.Port);

Console.ReadLine();

mdcSocket.Close();

}

}

}

There is hardly any difference in the code described in Listing 4-12 compared to the UDP uni-
cast version of this code (see Listing 4-3). The only point to keep in mind is that the local endpoint
on which the bind is performed belongs to the same subnet of server. Of course, the port number
needs to be the same, or the client will fail to receive the broadcast message. So now that both the
client and server are in place, let’s compile and run the client before running the server. Figure 4-19
shows the UnsolicitedBCastServer console output, and Figure 4-20 shows the UnsolicitedBCastClient
console output.

5645ch04.qxd 3/3/06 12:11 PM Page 212

CHAPTER 4 ■ THE BROADCAST ENGINE 213

Figure 4-19. UnsolicitedBCastServer console output

Figure 4-20. UnsolicitedBCastClient console output

Figure 4-21. Solicited broadcast

However, the unsolicited broadcast introduces a performance hit on every host within the
subnet. A UDP datagram, when broadcast, is received and processed by all hosts in a subnet. This
additional processing performed by an individual host terminates at the transport layer when it
notices that no application has shown interest in receiving this broadcast message. From a per-
formance viewpoint, you are wasting a few CPU cycles, so you need to find a more elegant solution
where only the interested host receives the broadcast message. This is where solicited broadcast
comes to the rescue.

Solicited Broadcast
Solicited broadcast, popularly known as multicast, allows broadcasts within a group of hosts in
a network (see Figure 4-21). Multiple multicast groups may be formed, and each group is uniquely
identified. Based on this group identification, an individual host in a network joins or leaves the
groups. This is analogous to a publisher-subscriber model where the subscriber needs to register
with the publisher if it wants to be notified of a particular action.

5645ch04.qxd 3/3/06 12:11 PM Page 213

CHAPTER 4 ■ THE BROADCAST ENGINE214

Another advantage of multicast over unsolicited broadcast is that routers recognize multicast
messages, and this allows messages to pass across different networks. On a surface level, this may
look like a major issue because it is easy for a malicious user to bombard the entire network by send-
ing a multicast message. But in reality, this is not how it works; a multicast message that originated
from a particular network is first received by a router. The router forwards this message to the desig-
nated network only if at least one host in that network has explicitly expressed an interest in receiving
this multicast message by joining the multicast group. Routers among themselves use Internet Group
Management Protocol (IGMP) to notify about a host joining or leaving a multicast group. IGMP forms
part of the IP layer and, like ICMP, is encapsulated inside an IP datagram.

Multicast groups are formed by selecting an IP address from a Class D address range. Class D
addresses are from 224.0.0.0 to 239.255.255.255 and are allocated especially for multicast-based
applications. However, a few multicast addresses, particularly the ones in the range from 224.0.0.0
to 224.0.0.255, are unusable. The multicast address acts as a unique group identifier, and any host in
a network can join a multicast group by providing the correct multicast address. This golden rule also
applies to a host located in a different network. Similarly, a host can also drop its membership at any
given time. Such dynamic group membership makes it highly favorable for building applications
where the number of subscribers is not predetermined.

The next task is to implement the same market data example (see Listing 4-13); however, remember
in this version, the market data consumer will be able to receive data only if it joins a multicast group to
which the server broadcasts data.

Listing 4-13. Solicited Broadcast of Market Data

using System;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace MCastServer

{

class MDP

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Producer Service Started -

(Using MultiCast)");

string mktPrice = "MSFT;25,IBM;24";

//IP Multicast address

IPAddress groupAddress =IPAddress.Parse("224.5.6.7");

IPEndPoint mcastEP = new IPEndPoint(groupAddress,30002);

Socket mdpSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

byte[] sendBuffer = new byte[512];

sendBuffer = Encoding.ASCII.GetBytes(mktPrice);

//Set multicast TTL

mdpSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.MulticastTimeToLive, 3);

//Send data to multicast address

mdpSocket.SendTo(sendBuffer,mcastEP);

mdpSocket.Close();

Console.WriteLine("Market Data sent to group of consumers");

Console.ReadLine();

}

}

}

5645ch04.qxd 3/3/06 12:11 PM Page 214

CHAPTER 4 ■ THE BROADCAST ENGINE 215

The first step in a multicast-based application is to define a multicast group, and in Listing 4-13
you perform this step by identifying 224.5.6.7 as the multicast address. However, in the real world,
this multicast group information must be made available to all interested hosts, and the mechanism
implemented to achieve this may vary. But usually this information is recorded in either a common
configuration file or a database. After defining the multicast address, you create a multicast endpoint
and port number, defined in this case as 30002.

The next line of code is important, especially when multicast data is suppose to span several
routers in a network; the importance of this value has been explained in the “Protocol Tweaking”
section of this chapter:

mdpSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.MulticastTimeToLive, 3);

Market data is finally sent to multicast groups, and the market data consumers that have joined
this group will receive the data. The code to send this multicast data is as follows:

mdpSocket.SendTo(sendBuffer,mcastEP);

The final step is to build market data consumers that consume market data published on
a multicast address:

using System;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace MCastClient

{

class MDC

{

[STAThread]

static void Main(string[] args)

{

Console.WriteLine("Market-Data Consumer Service Started -

(Using MultiCast)");

byte[] receiveBuffer = new byte[512];

IPHostEntry entry = Dns.GetHostByName(Dns.GetHostName());

EndPoint localEP = new IPEndPoint(entry.AddressList[0],30002);

Socket mdcSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

mdcSocket.Bind(localEP);

//Start receiving multicast data by subscribing

//to below multicast address

IPAddress groupAddress = IPAddress.Parse("224.5.6.7");

MulticastOption mcastOption = new MulticastOption(groupAddress);

mdcSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.AddMembership,mcastOption);

EndPoint endPoint = new IPEndPoint(IPAddress.Any,0);

int bytesReceived = mdcSocket.ReceiveFrom(receiveBuffer,ref endPoint);

IPEndPoint mdpEndPoint = (IPEndPoint)endPoint;

string mktPrice = Encoding.ASCII.GetString(receiveBuffer,0,bytesReceived);

Console.WriteLine("Market-Data Received : " +mktPrice);

Console.WriteLine("Market Data Producer IP Address {0} Port {1} "

,mdpEndPoint.Address.ToString(), mdpEndPoint.Port);

mdcSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.DropMembership,mcastOption);

mdcSocket.Close();

Console.ReadLine();

5645ch04.qxd 3/3/06 12:11 PM Page 215

CHAPTER 4 ■ THE BROADCAST ENGINE216

Figure 4-22. MCastServer console output

Figure 4-23. MCastClient console output

}

}

}

Building a multicast client involves slightly more code than building a multicast server. The
first step is to define the multicast group address, and this address needs to be mutually agreed upon
and known to both the server and the client. In this case, the agreed multicast address is 224.5.6.7.

The multicast address is then wrapped inside MulticastOption. This information is then passed
to SetSocketOption, which announces the host group joining membership. After successful registra-
tion, the host is eligible to receive data published on this multicast group:

MulticastOption mcastOption = new MulticastOption(groupAddress);

mdcSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.AddMembership,mcastOption);

Similarly, the host can leave a multicast group at any moment of time by invoking the
SetSocketOption method:

mdcSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.DropMembership,mcastOption);

It is now time to run the multicast server and client. Note that despite the message originating
from the multicast group, the consumer is still able to know the originator of this information; this
is true for both unsolicited and solicited broadcasts. Figure 4-22 shows the MCastServer console output,
and Figure 4-23 shows the MCastClient console output.

Protocol Tweaking
You will always encounter edge cases during application development that require a deep dive into
the low-level details of a protocol. This means understanding and tweaking some of the important
fields of the protocol’s data structure. This is especially true for applications that are sensitive in
nature. Socket allows such mechanisms through SetSocketOption and GetSocketOption. Using these
methods, you can change the behavior of almost all protocols (including IP, TCP, and UDP). This
releases you from knowing the nitty-gritty of the field offset in the protocol structure, the number of
bytes, the possible values supported by field, and so on. However, it is essential to know the implica-
tion of these changes, and that is what we will cover in the next sections where we discuss some of
the important fields and the corresponding impacts on an application’s behavior.

5645ch04.qxd 3/3/06 12:11 PM Page 216

CHAPTER 4 ■ THE BROADCAST ENGINE 217

IP: DontFragment
When the size of any IP datagram exceeds the underlying network MTU, then it undertakes a frag-
mentation process where the datagram is broken into small pieces that fit the network MTU capacity.
Applications using UDP are the victims of such problems because UDP directly forwards the data
received from the application layer to the IP layer. This means if applications pass data of a large buffer
size, then it is surely fragmented by the IP layer. However, such problems are not experienced if the
application is using TCP; remember, TCP creates a segment of a size equal to the MSS before forwarding
it to the IP layer. Using the DontFragment flag, you can instruct the IP layer whether it can fragment
a large datagram.

Here’s the code that disables IP fragmentation:

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void IPFragment(Socket sockInstance)

{

//Disable the Fragmentation

sockInstance.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.DontFragment,1);

//Get Assigned Fragmentation Value

int isFragmented = (int)

sockInstance.GetSocketOption(SocketOptionLevel.IP,

SocketOptionName.DontFragment);

Console.WriteLine(isFragmented);

}

}

IP: Time to Live (TTL) and Multicast TTL
The IP TTL determines the age of a packet in a network, and the routers on receiving these packets
decrement it by one. This prevents a dead packet from wandering in the network. On the other
hand, the multicast TTL restricts the scope of a multicast packet in a network. For instance, every
multicast-aware router in the network is configured with a TTL limit that determines the reach of
a multicast transmission. Table 4-2 shows the recommended threshold values and their scopes.

Table 4-2. Multicast TTL Scope

Scope Range Description

0 Interface

1–31 Subnet

32–63 Site

64–127 Region

127–255 Continent

So, based on Table 4-2, let’s say if a router is configured with a threshold value of 32, then when it
receives a multicast packet whose MulticastTTL value exceeds the threshold value, then this packet
will be discarded by the routers. Hence, it is important to know the scope of the multicast transmission.

Here’s the code that demonstrates how to configure both multicast and IP TTL:

5645ch04.qxd 3/3/06 12:11 PM Page 217

CHAPTER 4 ■ THE BROADCAST ENGINE218

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void MultiCastTTL(Socket sockInstance)

{

//Subnet Scope

sockInstance.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.MulticastTimeToLive,3);

}

public void IPTTL(Socket sockInstance)

{

//Set the TTL to 4

sockInstance.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.IpTimeToLive,4);

int ipTTL= (int)sockInstance.GetSocketOption(SocketOptionLevel.IP,

SocketOptionName.IpTimeToLive);

Console.WriteLine(ipTTL);

}

}

IP: MulticastLoopback
This option comes in handy when both the multicast sender and receiver applications are installed
on the same host and when the receiver wants to loop back the multicast packet sent by the sender.
By default, MulticastLoopback is turned on, and the receiver application can turn it off by executing
the following command:

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void DisableMulticastLoopBack(Socket sockInstance)

{

//disable multicast loopback

sockInstance.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.MulticastLoopback,0);

}

}

Socket: ReuseAddress
A Socket, before binding (using Socket.Bind) to a particular endpoint, checks whether it is already
being used by an existing instance of Socket. An exception of Socket already in use is thrown if a match
is found. The most fertile source of such a problem is an application going into a hung state because
of which it fails to gracefully clean up the resources. However, the ReuseAddress option allows you to
override this behavior; it permits sockets to bind to an already existing endpoint without throwing
an exception:

using System;

using System.Net;

5645ch04.qxd 3/3/06 12:11 PM Page 218

CHAPTER 4 ■ THE BROADCAST ENGINE 219

using System.Net.Sockets;

class ProtocolTweaking

{

public void ReuseSocket(Socket sockInstance)

{

sockInstance.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReuseAddress,1);

}

}

Socket: Buffers
Socket maintains two kinds of buffers: a send buffer and a receive buffer. The data before delivering
to the destination host is first stored in the send buffer; similarly, the data received from the sender
is first stored in the receive buffer before it is submitted to the receiving application. The default size
of this buffer is 8KB, but when the application is sending or receiving a large amount of data, then it
is important to increase this buffer size to achieve a better throughput.

Here’s an example that reconfigures the sending and receiving buffer sizes:

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void SetBufferSize(Socket sockInstance,int recvBuffer,int sendBuffer)

{

sockInstance.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.SendBuffer,sendBuffer);

sockInstance.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReceiveBuffer,recvBuffer);

}

}

Socket: Timeout
By default, Socket in blocking mode blocks on a read or write operation. You can override this behavior
by assigning a timeout value with each operation. The timeout value determines the blocking time,
and on timeout expiry, it raises a SocketException.

Here’s an example that assigns a timeout value to the send and receive operations:

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void SetTimeOut(Socket sockInstance,int recvBuffer,int sendBuffer)

{

sockInstance.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.SendTimeout,10);

sockInstance.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReceiveTimeout,10);

}

}

5645ch04.qxd 3/3/06 12:11 PM Page 219

CHAPTER 4 ■ THE BROADCAST ENGINE220

TCP: NoDelay
TCP implements the Nagle algorithm that throttles data before transmission over the wire. Such
low-level optimizations are extremely helpful in a low-bandwidth link where applications exchange
a TCP segment of a small size. With the help of this algorithm, data is held back for a particular time
period before transmitting on the network.

Here’s an example that disables the Nagle algorithm:

using System;

using System.Net;

using System.Net.Sockets;

class ProtocolTweaking

{

public void DisableNagle(Socket sockInstance)

{

sockInstance.SetSocketOption

(SocketOptionLevel.Tcp,SocketOptionName.NoDelay,1);

}

}

Exploring the Business-Technology Mapping
As you know, the primary role of the broadcast engine is to publish the latest price information about
a stock. It also provides ancillary services such as federal announcements, breaking news, and so on.
Such services are provided by market data vendors; they collect data from various exchanges and
provide this consolidated data to organizations. Because of this responsibility, they are often consid-
ered to be the information backbone of an organization, and this creates huge pressure on them to
meet their goal of timely delivery of data. While adhering to this goal, they often face two important
problems:

Data-quake: Data-quake erupts at a particular stage in trading hours where almost all stocks
undergo a price change. This change occurs as a result of some breaking news that directly/
indirectly impacts the economy of a country or the profitability of an organization or a particular
industry segment. But regardless of the source, the amount of data received by the market
data vendor is enormous in comparison to the data received during normal trading hours. The
equities market is in a much less controllable shape during this stage because of the number of
instruments transacted in the market; however, in the derivatives market, particularly the
option instrument, the amount of data received is sufficient to bring down the trading systems.

Network efficiency: It is expected that when the amount of data is huge, then the underlying
network link used to transfer it must be strong enough to cope with the speed at which data is
thrown over the wire. To handle such a massive load, many organizations use state-of-art network
infrastructure between the market data vendor system and the organization’s internal system.

Figure 4-24 represents a high-level overview of producers and consumers of market data infor-
mation. Let’s begin with systems that directly fall under the market data vendor domain. A market
data vendor creates a ticker plant, also known as a market data farm. It is actually from here that the
information is propagated to its premium subscribers. So, you should not be surprised when you
notice two different organizations subscribing to data from the same ticker plant.

5645ch04.qxd 3/3/06 12:11 PM Page 220

CHAPTER 4 ■ THE BROADCAST ENGINE 221

Figure 4-24. Conceptual overview of market data producers and consumers

The market data farm connects to various exchanges and gathers data published by them. This
gathered data is then packaged in a suitable format and delivered to the market data engine. The market
data engine is the actual application that sits at the organization end and receives the data published
by its master. Also, the ticker plant falls outside the organization network periphery because the
network bandwidth available between the market data engine and its corresponding plant is usually
limited in nature.

The market data vendor considers the bandwidth constraint and diverts a major chunk of effort
to fine-tuning the interaction between the worker and master both from a message processing and
a communication perspective. Once the market data engine receives a message, the message is then
made available to internal applications inside the organization. Imagine for a moment what would
happen if individual applications inside an organization started requesting market data directly from
the market data engine. This would directly result in a tight coupling between the market data ven-
dor and the applications. Furthermore, the message format and communication style adopted by
an individual market data vendor is truly proprietary in nature and incompatible with other market
data vendors. (Standards such as Market Data Definition Language [MDDL] are defined by groups
of financial institutions, but they have yet to be fully embraced by the financial community.)

However, in the real word, the story is different. No organization depends upon a single market
data vendor; instead, they spread their risk by subscribing to services of at least two market data
vendors so in case of the nonavailability of data from one vendor, they can fall back on the other.
So how do you stop applications from directly communicating with the market data engine? The
solution to this problem is to introduce another entity market data hub that abstracts away vendor-
specific differences.

The market data hub directly speaks to the vendor market data engine and collects this data,
transforms it to a uniform format, and finally makes this information available to internal applica-
tions. The upside of such an implementation is that applications are completely immune to any new
changes implemented by vendors, and this responsibility shifts to the market data hub to accommo-
date such changes. Another benefit reaped by applications is they can enjoy the data streaming from
multiple vendors with just the flip of a switch. With the market data hub acting as an information
mediator, it is also possible to build sophisticated intelligence by consolidating data from multiple
data vendors, comparing individual stock prices and their arrival times with individual vendor data,
and then publishing the latest price information. In this way, applications can ensure that the price
information received is on par with the price published in the exchange at that particular time.

Now that we have covered both the business and technology topics, it is time to introduce the
solution. Building a broadcast engine generally involves two components; these are the producer
and consumer components. The real complexity lurks at the producer end, so we will not cover the
consumer end, which is relatively easy to build once you understand the design of the producer
component. Figure 4-25 shows the implementation overview.

5645ch04.qxd 3/3/06 12:11 PM Page 221

CHAPTER 4 ■ THE BROADCAST ENGINE222

The components depicted in Figure 4-25 are as follows:

Store: The store is a repository where the actual market data messages are stored. Stores are
created for individual stocks, and the underlying nature of the store is such that it arranges
messages in a FIFO fashion. From an implementation point of view, you can materialize this
store either by using homegrown in-memory queues or by directly leveraging the Microsoft
Messaging Queue (MSMQ) service.

Dispatcher: The dispatcher first ignites the launch of the broadcast event. The dispatcher
retrieves an individual store and submits it to downstream components (the broadcast pipe)
for further processing. The strength of the dispatcher is its scheduling behavior. It schedules
the broadcast event on a defined time interval; this drastically decreases the number of messages
published on the network. The other important characteristic of the dispatcher is the strategy
implemented to dispatch the processing of the store. Processing stores in a round-robin fash-
ion is a simple strategy, but more complex strategies can be implemented, such as processing
stores based on the volatility of the underlying stock. This ensures that messages of highly
volatile stocks are first pushed on the network before all other stocks.

Broadcast pipe: The broadcast pipe is formed by chaining individual discrete components. The
first component in this chain is the rule engine. The rule engine allows subscribers to express
the subscription rule. Based on this rule, the rule engine examines an individual market data
message. If it finds a subscriber that satisfies the rules, then it forwards the message to the seri-
alizer component in the chain. The serializer converts the message to a byte array that is then
passed to the transport. The transport is the final component in the chain, and it transmits data
to its recipients.

In the following sections, we’ll cover the code that more or less illustrates these concepts. The
only component that is not covered is the rule engine.

Class Details
Figure 4-26 shows the broadcast engine class diagram, and Figure 4-27 shows the broadcast engine
project structure.

Figure 4-25. Implementation overview

5645ch04.qxd 3/3/06 12:11 PM Page 222

CHAPTER 4 ■ THE BROADCAST ENGINE 223

Figure 4-26. Broadcast engine class diagram

Figure 4-27. Broadcast engine project structure

IBCastMessage
IBCastMessage defines the common behavior implemented by application messages and is required
for broadcast purposes.

Here’s the code:

using System;

namespace BCastServer

{

5645ch04.qxd 3/3/06 12:11 PM Page 223

CHAPTER 4 ■ THE BROADCAST ENGINE224

public interface IBCastMessage

{

//Identifies broadcast message type

//for example market data broadcast, exchange bulletin broadcast

int MessageType{get;}

//Length of Message

int MessageLength{get;set;}

}

}

IMessageStore
The IMessageStore interface defines the common functionality implemented by concrete message
stores. This functionality includes inserting and removing messages, assigning store names, and
finding the run-time state of the store with the help of enumerated values.

Here’s the code:

using System;

namespace BCastServer

{

public enum StoreState

{

Idle,

Busy

}

public interface IMessageStore

{

//Enqueue broadcast message

void EnQueue(IBCastMessage bcastMessage);

//Dequeue broadcast message

IBCastMessage DeQueue();

StoreState State{get;set;}

//Total message in the store

int Count{get;}

//User friendly name of the store

string Name{get;}

}

}

InMemoryStore
InMemoryStore is an in-memory queue that uses System.Collections.Queue to store market data
messages. The store is created by accepting a unique user-friendly name that is easy to recall; addi-
tionally, it is used by the consumer of market data information during the subscriptions stage.

Here’s the code:

using System;

using System.Collections;

namespace BCastServer

{

public class InMemoryStore : IMessageStore

{

Queue msgStore = Queue.Synchronized(new Queue());

5645ch04.qxd 3/3/06 12:11 PM Page 224

CHAPTER 4 ■ THE BROADCAST ENGINE 225

StoreState storeState;

string storeName;

public InMemoryStore(string name)

{

storeName = name;

}

public string Name

{

get{return storeName;}

}

public int Count

{

get{return msgStore.Count;}

}

public void EnQueue(IBCastMessage bcastMessage)

{

msgStore.Enqueue(bcastMessage);

}

public IBCastMessage DeQueue()

{

return msgStore.Dequeue() as IBCastMessage;

}

public StoreState State

{

get{return storeState;}

set{storeState=value;}

}

}

}

StoreCollection
StoreCollection represents collections of message stores. Multiple stores exist, and the convention
followed here is to create stores based on individual stock names.

Here’s the code:

using System;

using System.Collections;

namespace BCastServer

{

public class StoreCollection : IEnumerable

{

Hashtable storeTable = Hashtable.Synchronized(new Hashtable());

public StoreCollection()

{

}

public IMessageStore this[string storeName]

5645ch04.qxd 3/3/06 12:11 PM Page 225

CHAPTER 4 ■ THE BROADCAST ENGINE226

{

get{return storeTable[storeName] as IMessageStore;}

}

public void CreateStore(string storeName)

{

storeTable[storeName] = new InMemoryStore(storeName);

}

public IEnumerator GetEnumerator()

{

return storeTable.Values.GetEnumerator();

}

}

}

Dispatcher
This is an abstract class. The most important method is Schedule, and its implementation is mainly
driven by the concrete dispatcher class:

using System;

using System.Threading;

namespace BCastServer

{

public abstract class Dispatcher

{

StoreCollection storeCollection;

public Dispatcher()

{

}

//Returns the store collection that is then iterated

//by dispatcher, dequeuing individual message from the store

//and dispatching it to its subscriber

public StoreCollection Stores

{

set{storeCollection=value;}

get{return storeCollection;}

}

//This is an abstract method that basically determines

//the strategy for dispatching broadcast data

public abstract void Schedule();

}

}

RoundRobinDispatcher
The code inside the RoundRobinDispatcher class triggers the actual broadcast of messages. The
strategy adopted by the dispatcher depends mainly upon the business scenario, but this dispatcher
schedules the broadcast of individual stores in a round-robin fashion.

Here’s the code:

5645ch04.qxd 3/3/06 12:11 PM Page 226

CHAPTER 4 ■ THE BROADCAST ENGINE 227

using System;

using System.Threading;

namespace BCastServer

{

public class RoundRobinDispatcher : Dispatcher

{

Thread scheduleThread;

int sleepPeriod=100;

public RoundRobinDispatcher()

{

//A new schedule thread is created that starts the message-

//dispatching process.

scheduleThread = new Thread(new ThreadStart(MessageDispatch));

}

private void MessageDispatch()

{

//In this section of code, the message store is fetched

//from the store collection and processing of individual

//store is then offloaded on a dedicated thread made

//available from the thread pool. So effectively messages

//from individual stores are concurrently broadcasted to recipients.

//The schedule thread sleeps for 100ms before it again reschedules

//the broadcast. Before rescheduling takes place, we make sure that

//we don't face the reentrancy problem. This problem is tackled by

//associating a state to a store.

while(true)

{

foreach(IMessageStore store in Stores)

{

if (store.State == StoreState.Idle)

{

store.State = StoreState.Busy;

ThreadPool.QueueUserWorkItem(new

WaitCallback(BCastPipe.Instance.ProcessModules),store);

}

}

Thread.Sleep(sleepPeriod);

}

}

public override void Schedule()

{

scheduleThread.Start();

}

}

}

IModule
In the “Examining the Business-Technology Mapping” section, we broadly discussed the broadcast
pipe and listed the components chained inside this pipe. Components are allowed to be chained
only when they implement the IModule interface.

5645ch04.qxd 3/3/06 12:11 PM Page 227

CHAPTER 4 ■ THE BROADCAST ENGINE228

Here’s the code:

using System;

namespace BCastServer

{

public interface IModule

{

object Process(PipeContext pipeCtx);

}

}

PipeContext
The PipeContext class provides contextual information to an individual component in the chain. It
provides store information and the actual broadcast message. The component uses the Data prop-
erty to assign component-specific information that is required by the next component in the chain
to perform further processing on it.

Here’s the code:

using System;

using System.Collections.Specialized;

namespace BCastServer

{

public class PipeContext

{

object ctxData;

IMessageStore msgStore;

IBCastMessage message;

public PipeContext(IMessageStore store)

{

msgStore=store;

}

//Returns the current store

public IMessageStore Store

{

get{return msgStore;}

}

//Returns the current message

public IBCastMessage Message

{

get{return message;}

set{message=value;}

}

//Returns the contextual data

public object Data

{

get{return ctxData;}

set{ctxData=value;}

}

}

}

5645ch04.qxd 3/3/06 12:11 PM Page 228

CHAPTER 4 ■ THE BROADCAST ENGINE 229

BCastPipe
BCastPipe does the work of chaining individual components, dequeuing the message from the
store, and handing over the message to the first component in the chain. This entire operation takes
place on a dedicated thread (from a thread pool) assigned by the dispatcher component.

Here’s the code:

using System;

using System.Collections;

namespace BCastServer

{

public class BCastPipe

{

ArrayList moduleChain = new ArrayList();

private static BCastPipe pipeInstance = new BCastPipe();

public static BCastPipe Instance

{

get{return pipeInstance;}

}

public BCastPipe()

{

//This is the chain formation code; in an ideal world

//the chain will be dynamically populated from an XML configuration file.

//Currently data serialization and data transport module are associated

//with this chain

moduleChain.Add(new DataSerializerModule());

moduleChain.Add(new TransportModule());

}

public void ProcessModules(object objState)

{

//A loop is carried out where messages are dequeued one by one

//and are submitted first to serializer component.

//Serializer component converts the message into raw bytes, and

//it is made available as part of return argument of Process.

//The returned information then becomes part of contextual information

//and is assigned to Data property, which is then passed to Transport

//component. Also after processing all messages inside the store, the state

//of store is reset to idle state.

IMessageStore store = objState as IMessageStore;

if (store.Count > 0)

Console.WriteLine("Dispatching Store : " +store.Count);

while(store.Count > 0)

{

PipeContext pipeCtx = new PipeContext(store);

pipeCtx.Message = store.DeQueue();

for(int ctr=0;ctr<moduleChain.Count;ctr++)

{

IModule module = moduleChain[ctr] as IModule;

object ctxData = module.Process(pipeCtx);

pipeCtx.Data = ctxData;

}

}

store.State = StoreState.Idle;

5645ch04.qxd 3/3/06 12:11 PM Page 229

CHAPTER 4 ■ THE BROADCAST ENGINE230

}

}

}

DataSerializerModule
The DataSerializerModule module serializes the message received into an array of bytes; the seriali-
zation technique used is the same as explained in the “Message Framing” section of this chapter.
The array of bytes is encapsulated in an instance of DataSerializerContext that is accessed by the
transport module.

Here’s the code:

using System;

using System.Runtime.InteropServices;

namespace BCastServer

{

public class DataSerializerContext

{

byte[] rawData;

public DataSerializerContext(byte[] data)

{

rawData = data;

}

public byte[] Data

{

get{return rawData;}

}

}

public class DataSerializerModule : IModule

{

public object Process(PipeContext pipeCtx)

{

//Receive the strongly typed broadcast message

IBCastMessage msg = pipeCtx.Message;

//Calculate the object size

int objectSize = Marshal.SizeOf(msg);

//Assign the length of message

msg.MessageLength= objectSize;

//convert the managed object into an array of bytes

IntPtr memBuffer = Marshal.AllocHGlobal(objectSize);

Marshal.StructureToPtr(msg,memBuffer,false);

byte[] byteArray = new byte[objectSize];

Marshal.Copy(memBuffer,byteArray,0,objectSize);

Marshal.FreeHGlobal(memBuffer);

//Return the byte array that will then be

//used by transport module to deliver to its destination

return new DataSerializerContext(byteArray);

}

}

}

5645ch04.qxd 3/3/06 12:11 PM Page 230

CHAPTER 4 ■ THE BROADCAST ENGINE 231

TransportModule
The TransportModule is the final leg in the chain that uses multicast features to deliver data to the
consumer of this information.

Here’s the code:

using System;

using System.Net.Sockets;

using System.Net;

namespace BCastServer

{

public class TransportModule : IModule

{

Socket serverSocket;

IPEndPoint mcastEP;

public TransportModule()

{

//Create a multicast IP address

IPAddress bcastAddress =IPAddress.Parse("224.5.6.7");

mcastEP = new IPEndPoint(bcastAddress ,30002);

serverSocket = new

Socket(AddressFamily.InterNetwork,SocketType.Dgram,ProtocolType.Udp);

serverSocket.SetSocketOption(SocketOptionLevel.IP,

SocketOptionName.MulticastTimeToLive, 3);

}

public object Process(PipeContext pipeCtx)

{

//data is broadcast after it is received

//from serializer module

DataSerializerContext szCtx = pipeCtx.Data as DataSerializerContext;

serverSocket.BeginSendTo(szCtx.Data,0,szCtx.Data.Length,

SocketFlags.None,mcastEP,new AsyncCallback(SendData),null);

return null;

}

private void SendData(IAsyncResult result)

{

serverSocket.EndSend(result);

}

}

}

MktDataMessage
The MktDataMessage is a concrete market data message class; we have annotated the fields with the
appropriate marshaling attributes.

Here’s the code:

using System;

using System.Runtime.InteropServices;

namespace BCastServer

{

[StructLayout(LayoutKind.Sequential,Pack=1,CharSet=CharSet.Ansi)]

public class MktDataMessage : IBCastMessage

5645ch04.qxd 3/3/06 12:11 PM Page 231

CHAPTER 4 ■ THE BROADCAST ENGINE232

{

int msgLength;

[MarshalAs(UnmanagedType.ByValTStr,SizeConst=10)]

string underlyingName;

double askPrice;

int askSize;

double bidPrice;

int bidSize;

public string Underlying

{

get{return underlyingName;}

set{underlyingName=value;}

}

public double Ask

{

get{return askPrice;}

set{askPrice=value;}

}

public double Bid

{

get{return bidPrice;}

set{bidPrice=value;}

}

public int AskSize

{

get{return askSize;}

set{askSize=value;}

}

public int BidSize

{

get{return bidSize;}

set{bidSize=value;}

}

public MktDataMessage(string underlying,double ask,int askSz,

double bid,int bidSz)

{

underlyingName=underlying;

askPrice=ask;

askSize=askSz;

bidPrice=bid;

bidSize=bidSz;

}

public int MessageType

{

get{return 1;}

}

public int MessageLength

5645ch04.qxd 3/3/06 12:11 PM Page 232

CHAPTER 4 ■ THE BROADCAST ENGINE 233

{

get{return msgLength;}

set{msgLength=value;}

}

}

}

Host
The code inside the Host class creates stores, then initializes the dispatcher component, and finally
submits messages to stores that are then delivered to the final recipients.

Here’s the code:

using System;

namespace BCastServer

{

public class Host

{

public static void Main(string[] args)

{

StoreCollection storeCollection = new StoreCollection();

//Create a dedicated store for MSFT,YHOO,GE

storeCollection.CreateStore(@"store\MSFT");

storeCollection.CreateStore(@"store\YHOO");

storeCollection.CreateStore(@"store\GE");

//Create the Message Dispatching Scheduler

RoundRobinDispatcher dispatcher = new RoundRobinDispatcher();

dispatcher.Stores = storeCollection;

dispatcher.Schedule();

//Enqueue market data message in MSFT store

MktDataMessage mktData= new MktDataMessage("MSFT",24.5,100,50,25);

IMessageStore msgStore = storeCollection[@"store\" +mktData.Underlying];

msgStore.EnQueue(mktData);

//Enqueue market data message in GE store

mktData= new MktDataMessage("GE",24.5,100,50,25);

msgStore = storeCollection[@"store\" +mktData.Underlying];

msgStore.EnQueue(mktData);

}

}

}

Figure 4-28 shows the BCastServer console output.

5645ch04.qxd 3/3/06 12:11 PM Page 233

CHAPTER 4 ■ THE BROADCAST ENGINE234

Summary
The following are the key points covered in this chapter:

• We talked about the importance of market data and how it is consumed by market profes-
sionals across the financial trading value chain to arrive at informed trading decisions.

• We provided a basic overview of the important network concepts and protocols such as the
TCP/IP core stack, IP, and ICMP.

• We covered the advantages of using DNS, which provides better name resolution functionality.

• We demonstrated how to use UDP with the help of a market data producer and consumer
example.

• We discussed the advantages of using TCP over UDP.

• We discussed the types of conventions followed by computers when interpreting and pack-
aging multibyte numbers.

• We showed how to implement a generic code to preserve a message boundary.

• We covered the different types of network broadcast techniques: solicited and unsolicited
broadcast.

• Finally, we showed how to implement a prototype of a broadcast engine that uses a network
multicast feature to publish market data.

Figure 4-28. BCastServer console output

5645ch04.qxd 3/3/06 12:11 PM Page 234

C H A P T E R 5

■ ■ ■

The Application Operation Engine

Struggles in life are like tight while loops; success comes only when you break this loop.

This chapter is devoted to the operational requirements of a trading system and is unlike other
chapters so far because it does not cover any hard-core business topics. Operational features such
as security, logging, configuration, and heartbeat checks are part of any good trading system. But they
are usually bundled with the real business component and executed within the same address space
of the business component. In this chapter, using the .NET Remoting framework, we will show how
to physically separate this operational need and construct a strong foundation to centralize the
monitoring and the management of subcomponents within trading systems.

Understanding the Trading Operational
Requirement
In bygone days, the design of a trading application was centered on the idea of a stand-alone archi-
tecture where the user interface, data store, and business logic were located on one computer. But
as business complexities started growing, the demand rose for breaking up these applications and
carving out distinct components for them. This led to a new component-oriented architecture.
Referring to the trading life cycle in Chapter 1 (Figure 1-6), you’ll see it is impossible to meet the
end-to-end business requirements if you shy away from a component-oriented architecture.

Returning to a real-life trading scenario, a system is partitioned into subcomponents, also called
the business component. A business component in this context is a unit of deployment that subsumes
a part of the business requirement and is heavily specialized to meet this business need. As a result
of this component-decomposing exercise, a system would have a number of business components,
and collaboration among these components is the primary key to successfully representing the system
as a single entity to the outside world. Hence, to facilitate this integration, a business component
needs to contain three types of channels: inbound, outbound, and operational channels. The com-
ponent listens on the inbound channel, and therefore requests from other components are directed
to this channel. Similarly, the business component uses the outbound channel to communicate with
other components. The intent of the operational channel is to allow the operational activity of a business
component (which is discussed later in this section).

Figure 5-1 provides an abstract view of a business component. From an implementation point
of view, you can implement both inbound and outbound channels using a fast enterprise messaging
bus. The most popular messaging backbones used in today’s Windows world are TIBCO-Rendezvous,
Microsoft MSMQ, and IBM MQ-Series.

235

5645ch05.qxd 3/3/06 12:15 PM Page 235

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE236

Figure 5-1. Business component

Figure 5-2. Operational service common across all business components

Clearly, modularizing trading applications in the form of components has some major benefits:

Scalability: The loose-coupling characteristic of a component makes it a perfect candidate to be
deployed on a dedicated high-end machine that would tremendously increase the performance
of the application. Moreover, this also opens the door to incorporating advanced capabilities, such
as load balancing and fault tolerance, which would further increase the application’s robustness.

Pluggability, extensibility, and reusability: A system is usually combined and built from both
homegrown and off-the-shelf components, and if an individual component based its communi-
cation strictly on the notion of inbound and outbound channels, then it could easily be replaced
with a new component without affecting the other dependent business components. Moreover,
a business component built in such a fashion will always promote heavy reusability across
organizations.

In the trading world, the most commonly found business components that religiously follow
these disciplines are the following:

• The order-matching system

• The order management system

• Market data

• Risk management

• The limit-monitoring system

• The position system

• The exchange gateway

• The settlement system

Although business components are essential, operational (infrastructure) components that look
after the operational requirements of the business components are equally important (see Figure 5-2).

These operational requirements are common among all business components and do not con-
sider any kind of business know-how in their implementation. The frequently needed operational
components encountered in day-to-day development are as follows:

5645ch05.qxd 3/3/06 12:15 PM Page 236

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 237

Logging component: The role of the logging component is to provide a logging infrastructure that
allows an application to log its activity. Application logs play an important role in troubleshooting
hard-to-find failures. Additionally, they are also one of the mandatory audit requirements of an
organization.

Configuration component: Storing application-related settings in a configuration file is considered
a good development practice. Moreover, the configuration file can drive a system’s ability to
adapt to the external environment. The configuration component is tasked with the responsibility
of centralizing and bookkeeping the system’s related settings and providing a uniform way of
accessing these settings from all business components.

Heartbeat component: With so many critical business components running in a system and with
each component hosted on a dedicated machine, it becomes crucial to carefully watch the health
of these components. The first step to lessen this problem is to modify the business component
to continuously send a heartbeat message to the heartbeat component. This heartbeat message
is configured to trigger at predefined intervals, and a failure to receive this message will be raised
in the form of a red-flag alert by the heartbeat component.

Data management: The data management service provides a golden copy of static data that is
not updated on a regular basis. The data that falls under such a category is the ISIN master,
exchange master, client master, and so on. Most of the business components utilize these types
of data, and hence it is advisable to centralize this data under a data management service and
also provide a uniform data access mechanism.

User authentication and profile component: This component monitors all login requests by
performing password and user profile checks. It ensures that individual login requests are valid
and are originating from legitimate users. Similarly, it also monitors logout requests and invokes
all defined processes (such as saving user profile settings, writing session details to log files, and
so on) when a logout request is received.

Instrumentation component: It is absolutely necessary for critical applications to collect
performance-related data in the production environment and analyze this data to close any
missing gaps that are hard to trace in the development environment. With the instrumentation
component in place, the performance-related data collected by various business components
is stored and analyzed from a central place.

Application management component: The application management component is considered
to be the remote control of a business component mainly because of its ability to manage the
startup and shutdown of business components. Moreover, this operational service is further
augmented by introducing other value-added features such as the autodeployment of a business
component, the scheduling of the business component to start at a particular time, application
recoverability, and so on.

You can take many approaches to team operational components with business components,
and this depends mainly upon the nature of the system. But as mentioned earlier, a trading-based
system is composed of multiple business components. Hence, it becomes important to deviate from
the traditional approach. The most optimal way to integrate is to centralize all operational services and
host them on a dedicated machine. In a sense, you completely offload the infrastructure-processing
requirements of the business component, thus making them further scalable. Furthermore, it is now
possible to take a complete snapshot of the system. For example, by implementing a centralized
logging component, you can easily build a logging graphical user interface (GUI) that would display
the activity in the system in real time. You can also reap the same benefit from the configuration
component because now the application configuration information is also centralized in one place,
and therefore you can easily implement any changes to the application settings. So, how do the business
components communicate with the operational components? To answer this question, let’s revisit
Figure 5-1 where we talk about an operational channel. It is with the help of this channel that indi-
vidual business components communicate with the operational components.

5645ch05.qxd 3/3/06 12:15 PM Page 237

Figure 5-3. Centralization of operational services

Figure 5-4. Requirement distillation

Although there are various ways of technically implementing the conceptual model in Figure 5-3,
with the advent of .NET Remoting it is a piece of cake. .NET Remoting has modernized the concept
of interprocess communication. Considering the breadth and depth of features currently provided
by .NET Remoting, it would be extremely disappointing if we failed to leverage it in this scenario.
The rest of the chapter is devoted to exploring .NET Remoting and explaining other important topics
in detail.

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE238

Exploring the Multiple Facets of an Object
A business requirement is the raw material for software development that is gathered, analyzed, and
refined to build a system. Therefore, a well-defined business requirement is undoubtedly the first
step in any software development. Requirements fall under the user’s domain and are described in
plain and simple text. However, from a system implementation point of view, requirements need to
be translated into a language that is complex in nature and therefore demands a strict formalism.
This process of translation is called requirement distillation where requirements from the user
domain are condensed and mapped to fine-grained objects in the system domain (see Figure 5-4).
Requirements are high-level abstractions of objects; to be more precise, the collection of distinct
objects is closely collaborated on to meet the need of a requirement. This raises the question, what
is an object? An object is a run-time representation of a class. A class encapsulates the real intention
of a business requirement in the form of state and behavior. State and behavior are evidenced inside
a class in the form of variables and members, respectively. Members are the key drivers, and with the
help of variables they orchestrate a specific aspect of the requirement.

5645ch05.qxd 3/3/06 12:15 PM Page 238

Figure 5-5. Multiple facets of object

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 239

An object is like a multifaceted actor who plays different roles based on the script and story. An
object is also bestowed with similar characteristics and sports new behavior based on its underlying
context (see Figure 5-5).

An object is incubated inside a context; a context in a broader sense provides services that are
availed by an object.

This includes the creation of the object, which costs few bytes of physical memory and allows
seamless access to other objects inside the context. Context is an abstract term, and in the comput-
ing world it materializes in the form of an application process, thread, or .NET application domain.
Based on the dynamics of the context, the object is classified into the following types:

Local object: An object earns the title of local object when both the caller and the real object
are citizens of the same context.

Remote object: An object is known as a remote object when its caller resides in a different context.
In spite of the context’s partition, the caller is able to access the object and leverage its services.
In a real world, this depicts interprocess communications where objects from one application
process invoke the services of another object hosted in a different application process. The caller
accesses the remote object using a proxy object that mimics a real object in the caller context
but in reality delegates the request to the actual object. This sort of transparent intercontext
communication is achieved by some sort of black-box component that hides the inherent
complexities involved in invoking methods on remote objects.

Mobile object: An object is known as a mobile object when it is instantiated in a context that is
different from the caller context, but subsequent method invocation on this object is served
from the caller context rather than the context in which it was created. This unique ability of
the object to package itself and resurrect in a caller context is a mobile object.

By default, objects are created as local objects. To promote them to a remote or mobile object,
you need an infrastructure that bridges the path and allows seamless communication between these
objects, regardless of the underlying context. The context could also be located in a different machine.
This means that the infrastructure should be intelligent enough to understand network quirks. Such
infrastructures are developed to link computing and communication in a revolutionary way. The
presence of such infrastructures leads to the design of distributed applications, and well-known
infrastructures such as DCOM, CORBA, DCE-RPC, and so on, have strong roots in today’s modern
distributed applications. These kinds of infrastructures have been instrumental in building highly
scalable architectures. With .NET Remoting joining this bandwagon, building distributed applications
in .NET is even simpler when compared to its predecessor, DCOM. The .NET Remoting Framework
removes all the hurdles usually faced in building distributed applications and provides a powerful
framework that is easily extensible to meet the needs of an application.

5645ch05.qxd 3/3/06 12:15 PM Page 239

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE240

Figure 5-6. High-level view of the remoting framework

Understanding .NET Remoting Infrastructure
In the preceding section, we discussed a black-box component/infrastructure that acts as the glue
to establish communication between objects, irrespective of their underlying context. This black-box
component is known as middleware. Middleware provides the scaffolding on which distributed
systems are designed and developed. In a distributed system, three components—namely, software,
hardware, and network components—are involved and closely work with each other. Massive com-
plexities are involved in interacting with hardware and network components. These complexities are
unpleasant and therefore result in restricting most software systems from adopting a distributed path.
With the advent of middleware, which by itself is a software framework, most of these complexities
are hidden, thereby providing an easy-to-use programming model with the necessary building blocks
for designing distributed systems.

The latitude of services offered by middleware is praiseworthy and can be categorized into the
following types:

Communication services: The communication service is the core and distinguishing feature that
all middleware implements. This service shields the application from knowing the underlying
raw communication protocol details such as TCP/IP, UDP, Named Pipes, and so on. Instead, it
provides applications with a cherry-picking feature—it allows the application to pick which
communication protocol to use to exchange messages with the other end of systems.

Infrastructural services: Middleware has further made inroads into the domain realm of systems.
The infrastructural service is geared toward providing domain-related features that are available
out of the box and directly consumed by applications. For example, services such as transactions,
security, and persistence are readily available in most of today’s modern middleware systems.

.NET Remoting is communication middleware designed to build .NET-based distributed systems.
Although it primarily provides communication services, it came as a bold stroke at the right time
when its predecessor, DCOM, was already in the stage of losing market share. The chronic problems
rooted in DCOM were carefully considered, and as a result, .NET Remoting was designed from scratch
to address all the issues faced in DCOM. The most important theme of .NET Remoting is its ease of
use and extensibility. It is so versatile that it allows developers to fine-tune practically every aspect
of its framework.

Figure 5-6 depicts a bird’s-eye view of the remoting framework. The framework is modeled
around the principle of layered architecture. Each layer provides a specific responsibility, which in
turn promotes loose coupling between layers. Such layer-wise separation provides complete flexi-
bility when it comes to extending each of these layers.

5645ch05.qxd 3/3/06 12:15 PM Page 240

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 241

Note that in Figure 5-6, both the remote object and the caller are hosted inside a separate .NET
executable. A .NET executable is a Win32 process partially baked with Intermediate Language (IL)
code instead of native instruction and executed under the surveillance of the CLR. The Win32 process
is an environment provided by the operating system (OS) and is equipped with all the necessary
run-time facilities such as memory and other system-related resources. Another important feature
of the Win32 process is that it acts as a fault isolation gate; in other words, failure in one process will
not affect other processes running in the system.

The CLR extends the concept of the Win32 process one step further in the form of an application
domain. An application domain, which is the brainchild of the CLR, offers a fault isolation environ-
ment to managed applications. In a nutshell, managed applications are executed inside a default
application domain created by the CLR. The most striking feature is that the CLR allows the creation
of multiple application domains inside a single Win32 process and also treats each of these application
domains as a separate unit of processing. So, if multiple instances of the managed application are
executed in multiple application domains and if one application executes error-prone code resulting
in an unexpected crash, then only the crashed application domain is affected. The other application
domains are completely untouched. Previously, the only way to achieve such fault isolation was to
spawn each application as a separate, independent Win32 process. Although the Win32 process is
definitely the nicest thing available, it comes with a cost in terms of the additional processing over-
head. On the other hand, the application domain is very lightweight and consumes less memory.
The application domain is also touted for its dynamic capability to load and unload itself during the
execution of the program. Keep in mind that the application domain is an abstraction provided by
the CLR, and therefore to the OS it appears as a big chunk of the Win32 process. Hence, when a Win32
process is terminated, all application domains will be effectively terminated.

As depicted in Figure 5-5, an object is always incubated inside a context. In the .NET world, the
context is none other than the application domain. So, every object is affiliated with an application
domain. Also, no two objects instantiated on a different application’s domain running under the same
application process will be able to access each other’s methods or properties. This is similar to two
people living in two different rooms under the same roof but who are still strangers to each other.
So, how do these .NET objects communicate with each other? The answer is .NET Remoting, which
addresses the need of both local process communication (LPC) and remote process communication
(RPC). LPC is the communication between two application domains inside the same application
process, and RPC is when the communication spans two application domains hosted on a different
application process.

Let’s examine Figure 5-6 more closely using a detailed flow-wise explanation. You are aware of
how the caller interacts with a remote object with the help of a proxy that masquerades as a real object
in the caller application domain. The proxy, after intercepting calls from the caller, forwards them
to the next layer in the remoting framework, as described here:

Formatter layer: This layer is tasked with the responsibility of marshaling the intercepted message
from the proxy into a specific format. This message, along with the method name and arguments,
contains other remoting-specific information that identifies the target remote object on which
this method is invoked. The format type of this message could be a raw binary or XML or custom
format. By default, the remoting framework provides support for both binary format and SOAP
format. The binary formatter undoubtedly is the fastest formatter but when interoperability is
at stake, then SOAP is the way to go. The formatter plays a dual role. On the receiving end (the
server side), it unmarshals the message back to the appropriate CLR type; on the sending end,
it serializes the CLR type to the appropriate wire-encoding format.

5645ch05.qxd 3/3/06 12:15 PM Page 241

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE242

Custom sink layer: Compared to its predecessor, the remoting architecture provides a mind-blowing
level of extensibility. The custom sink layer allows developers to plug their custom logic. Such
custom logic provides the means to introduce additional features, be it business features or
infrastructure-related features. One of the most commonly used features is securing the message
by applying a strong encryption technique. A mind-numbing way to implement this feature is
to change both the proxy and the remote objects and inject additional security code into every
method. A much smarter way to achieve this is with the help of a custom sink that is transpar-
ently plugged, and then every message is passed through this custom sink layer, thus providing
complete liberty to sinks to further change the characteristics of the message.

Channel layer: The channel layer is the backbone for message delivery within the remoting
framework. This layer is responsible for transporting a message to its destination, which could
be a separate application domain hosted on either the same machine or a different machine.
The merits of decoupling transport-level details into a separate layer are that it allows developers
to experiment with a wide range of protocols, and both the caller (client) and the remote object
(server) are completely unaware of how messages are received and delivered to the destination.
By default, TCP and HTTP channels are bundled as part of the remoting framework.

Pipe: The pipe is an abstract wire that builds a data conduit between two applications, and data
is pushed in or out of this conduit. A pipe could be further classified as a logical and physical pipe.
A logical pipe is built when the scope of communication is confined within the same machine
and between two separate application domains. A physical pipe is implemented with network
cables that connect machines to form a network.

Exploring the Multiple Facets of a Remoting Object
The remoting infrastructure allows the creation of both mobile and remote objects. Mobile objects
and remote objects are also popularly known as marshal-by-value (MBV) and marshal-by-reference
(MBR) objects, respectively. MBR objects in the remoting platform are broadly categorized as server-
activated objects (SAOs) and client-activated objects (CAOs). Both SAOs and CAOs vary in how the
object state, lifetime, and activation are managed. The lifetime of an SAO-based object is directly
controlled by the context in which it is hosted (the server), and the lifetime of a CAO-based object
depends on the lifetime of the caller (the client).

We will now describe the two types of remoting objects:

Stateless object: In the remoting context, a stateless remote object is devoid of any state man-
agement features. The lifetime of a stateless remote object is very short. It begins with method
invocation and ends with the execution of the method. It also means that for every method invo-
cation received from the caller, a new instance of the remote object is created and finally
destroyed. Such immediate recycling of remote objects provides no room for preserving any
state that could later be accessed on a subsequent method invocation. Remoting supports state-
less objects in the form of SingleCall objects, which are categorized under SAO. In a SingleCall
object, every new request triggered from the caller is handled by a unique instance of the remote
object. This instance is constructed upon method request and is subject to garbage collection
upon the completion of the method execution.

5645ch05.qxd 3/3/06 12:15 PM Page 242

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 243

Figure 5-7. Multiple facets of a remoting object

Stateful object: In the remoting context, a stateful remote object is provided with state manage-
ment features. It goes one step further by allowing the state of an object to be manipulated both
at the global level and at the session level. Remoting allows the construction of stateful objects
in the form of a Singleton or CAO object. Singleton objects, like SingleCall objects, are categorized
under SAO, but the similarities end there. Singleton objects are stateful objects, and this means
their state is preserved across method calls. Another important feature of Singleton objects is
that only a single instance of the remote object exists at any point of time. Figure 5-7 shows this
in action where a single instance of a remote object is served to multiple callers. A Singleton object
also allows for easy data sharing because a change in the state of a Singleton object is immediately
visible to the callers. On the other hand, CAO-based objects are the equivalent of local objects
whose lifetimes are directly controlled by the caller, but the instantiation still happens in the
context in which the CAO object is hosted, which is usually the server. CAO, unlike Singleton,
allows the creation of multiple instances, and each instance is uniquely distinguishable by the
caller.

The flexibility that remoting provides is evident in the different types of MBR objects described.
Merits and demerits are associated with the different types, but the decision to choose the correct one
is mainly an architectural decision.

5645ch05.qxd 3/3/06 12:15 PM Page 243

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE244

Figure 5-8. The service controller and heartbeat service are loaded in a different application domain;
communication between them takes place through remoting.

Introducing Local Process Communication (LPC)
In this section, we will demystify the process of how communication is established between two
application domains. To illustrate this, we will show how to build a service controller. A service controller
is the equivalent of a Windows service manager that controls the startup, shutdown, and other
maintenance-related activities of a service. The only difference between the Windows service man-
ager and the service controller is that although the former is meant to manage application process,
the latter is meant to control trading operation–related services. A real-life example of trading
operation–related services is the heartbeat service (see Figure 5-8). The heartbeat service periodically
monitors the heartbeat of the important trading components. For example, an order management
system depends upon several subcomponents such as a bookkeeping service, an exchange routing
gateway, and a market data service that are installed on a separate machine. In this type of environ-
ment, it is extremely important to keep a close watch on the health of all these services, and this is
where the heartbeat service plays an important role. The heartbeat service forms the basic requirement
of the trading operational requirements, and we will use this as the code example throughout the
chapter.

To build this example, you will need the three projects mentioned in Table 5-1.

Table 5-1. LPC assembly structure

Project Name Assembly Type Description

LPC.Common Class library The interdomain communication between two processes
or between two machines imposes a particular posture
toward the composition of the class (in other words, adopting
interface-based polymorphism). The interface defines
a contract that needs to be adhered to by the class implemen-
ting it. This contract does not provide core implementation;
rather, it defines a skeletal implementation of members
and properties. The advantage of using the interface is
that it decouples the caller from knowing the underlying class
implementation, allowing the caller to communicate to any
object instance of the class as long as it adheres to the
defined contract. This particular posture of programming
has already been well established and religiously followed
in other distributed programming environments such as
CORBA, DCOM, and so on.
This class library contains shared interfaces that are refer-
enced by both the service controller (LPC.ServiceHost) and
the service provider (LPC.Services).

5645ch05.qxd 3/3/06 12:15 PM Page 244

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 245

Project Name Assembly Type Description

LPC.ServiceHost Executable This is the service controller application that is responsible
for managing various infrastructure-related services such
as the heartbeat service, instrumentation service, roles
entitlement service, and so on. The management task
includes starting a service, suspending a service, and stopping
a service.

LPC.Services Class library This library includes all the core infrastructure services such
as the heartbeat service, the instrumentation service, and so
on. Packaging core infrastructure services into a separate
class library allows the easy maintenance of code.

We begin our remoting journey with the declaration of IService. This interface defines two
important members that are implemented by the core infrastructure services:

using System;

namespace LPC.Common

{

public interface IService

{

void Start();

void Stop();

}

}

IService defines the skeletal implementation and is inherited by a concrete infrastructure
service, and the heartbeat service is one of them. The heartbeat service is a core infrastructure service
that continuously generates a heartbeat message. In reality, a lot of steps are involved before gener-
ating a heartbeat, but for demonstration purposes we have ignored those steps. Start and Stop are
the two important methods defined in the HeartBeatService class (see Listing 5-1).

Listing 5-1. Heartbeat Service (LPC Version)

using System;

using System.Configuration;

using System.Threading;

using LPC.Common;

namespace LPC.Services

{

public class HeartBeatService : MarshalByRefObject,IService

{

bool stopFlag=true;

int hbInterval;

public HeartBeatService()

{

//Configure this service to check for heartbeat messages

//at an interval of two seconds

hbInterval=2000;

}

5645ch05.qxd 3/3/06 12:15 PM Page 245

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE246

public void Start()

{

//This method triggers the heartbeat check activity at a predefined interval

while(stopFlag)

{

Console.WriteLine("Checking HeartBeat");

Thread.Sleep(hbInterval);

}

}

public void Stop()

{

stopFlag = false;

}

}

}

The Start method contains the while loop code that displays a message on the console every
two seconds. The loop termination logic is determined by the code inside the Stop method. Both these
methods adhere to the members defined in the IService interface by supplying a concrete code
implementation. The interesting piece of code to look at is MarshalByRefObject, which is inherited
by the HeartBeatService class. By inheriting from MarshalByRefObject, HeartBeatService is promoted
to a remotable class, and with the help of the remoting infrastructure, its public members can be
invoked remotely.

After finishing with the implementation of the heartbeat service, the next step is to spin off the
execution of this service in a separate application domain. In this way, individual infrastructure
services will be running in their own application domains. To achieve this, a new LogicalProcess
class is defined that provides an execution environment to the individual infrastructure service:

using System;

using System.Reflection;

using System.Runtime.Remoting;

using System.Threading;

using LPC.Common;

namespace LPC.ServiceHost

{

public class LogicalProcess

{

AppDomain appDomain;

Thread appThread;

IService serviceProxy;

public LogicalProcess(string serviceName)

{

//Derives type to be instantiated in a new appdomain

//It is important to specify type name along with its namespace

string typeName = "LPC.Services." +serviceName;

//Create a new application domain

appDomain = AppDomain.CreateDomain(serviceName);

//The next step is to load LPC.Services assembly in this newly created

//application domain and also instantiate the appropriate type.

//Both these tasks

//are achieved with the help of CreateInstanceAndUnwrap that returns

5645ch05.qxd 3/3/06 12:15 PM Page 246

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 247

//a proxy reference that is cast back to the IService interface

IService serviceProxy =

appDomain.CreateInstanceAndUnwrap("LPC.Services",typeName) as IService;

//After instantiating the new service, the processing of service

//is offloaded to a new thread. This is similar to spawning

//a new Win32 process, which by default creates a new thread and executes

//the entry point method

appThread = new Thread(new ThreadStart(serviceProxy.Start));

}

public void Start()

{

//The newly created thread begins its execution

//i.e. invokes the Start method of the service

appThread.Start();

}

public void Stop()

{

}

}

}

The core implementation of LogicalProcess resides in the constructor method, where a new
application domain is created using the CreateDomain static method of the AppDomain class. The
AppDomain class represents the programming aspect of application domains and provides a broad
spectrum of features related to application domain management. One of the important features
AppDomain provides is the creation of a new application domain using the CreateDomain method.
This method returns a reference to the newly created AppDomain, which could then be used to load
assemblies. Assemblies, as you know, are either executables or dynamic link libraries, and AppDomain
supports loading both these assembly types.

In the constructor method of LogicalProcess, you create a new AppDomainby passing a friendly name
as the method argument. Once AppDomain is successfully created, the assembly is loaded, and an appro-
priate type is instantiated. Both these tasks are achieved with a call to the CreateInstanceAndUnwrap
method. This method accepts the assembly name as the first argument and the type’s full name as the
second argument. In this code, you pass both the infrastructure service assembly name (LPC.Services)
and the concrete service name (LPC.Services.HeartBeatService) to the CreateInstanceAndUnwrap
method, which in turn loads the assembly, instantiates the type, and finally returns a proxy reference
to the newly created service that is then cast back to the IService interface. The proxy reference then
paves the way to the real object hosted in a different AppDomain.

Finally, ServiceHost gives the finishing touch to this example. It is a console-based host appli-
cation that by default runs on an application domain created by the CLR during the initial loading
phase of the application. ServiceHost acts as a single point of management, and its primary respon-
sibilities include loading the individual infrastructure service in a separate application domain and
unloading it when not required.

using System;

using System.Reflection;

namespace LPC.ServiceHost

{

class ServiceHost

{

static void Main(string[] args)

5645ch05.qxd 3/3/06 12:15 PM Page 247

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE248

{

//The heartbeat service is launched in a new application domain

LogicalProcess serviceProcess = new LogicalProcess("HeartBeatService");

serviceProcess.Start();

Console.WriteLine("Press any key to Stop Service");

Console.ReadLine();

serviceProcess.Stop();

}

}

}

To compile and execute ServiceHost, you need to ensure the LPC.Services assembly is success-
fully copied into the service controller executable directory. With this example, you have scratched
the surface of .NET Remoting. To further expand this example, we will slightly modify the code to
demonstrate the appropriate fit for the mobile object (in other words, the MBV object). You know
that MBV objects are instantiated and serialized from one context to another context. So, to integrate
this flavor of communication, we will introduce a new class named ServiceInfo. This class captures
important attributes that provide additional information about the infrastructure service to the service
controller. Although the information inside this class will be populated in the callee’s context, being
an MBV object, the complete state of object is serialized and resurrected in the caller’s context. This
means ServiceInfo will be accessed both by the callee and by the caller, and hence it becomes a perfect
candidate to be part of the shared (LPC.Common) assembly.

using System;

using System.Collections;

namespace LPC.Common

{

[Serializable]

public class ServiceInfo

{

//User-Friendly Name of this service specifically used to

//uniquely identify this service

public string FriendlyName;

//A very detailed description of features offered by this service

public string Description;

//List of dependent services

public ArrayList DependentServices;

//Indicates the start date and time of the service useful for audit purpose

public DateTime StartDate;

}

}

Annotating the Serializable attribute indicates to the remoting infrastructure that the ServiceInfo
class needs to be marshaled by value instead of marshaled by reference. So, to access ServiceInfo,
the IService interface needs to be changed and is introduced in the form of an additional method
(see Listing 5-2).

Listing 5-2. Common Operations Supported by Infrastructure Services

using System;

namespace LPC.Common

{

public interface IService

{

void Start();

5645ch05.qxd 3/3/06 12:15 PM Page 248

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 249

void Stop();

ServiceInfo QueryServiceInfo();

}

}

In Listing 5-2, a new QueryServiceInfo method was introduced. This method will then be
implemented by the infrastructure service (in other words, HeartBeatService) to furnish additional
information:

using System;

using System.Configuration;

using System.Threading;

using LPC.Common;

namespace LPC.Services

{

public class HeartBeatService : MarshalByRefObject,IService

{

public ServiceInfo QueryServiceInfo()

{

//This method publishes meta-information about service

ServiceInfo srvInfo = new ServiceInfo();

srvInfo.FriendlyName = "Service HeartBeat Service";

srvInfo.Description =

"Checks HeartBeat of services at a regular interval of 2 seconds";

return srvInfo;

}

}

}

The necessary modifications required to access the service information have been applied to
both the IService interface and the HeartBeatService class. So, the next task is to provide this infor-
mation to the service controller. However, the service controller never directly interacts with the
infrastructure service; it adopts an indirect route to communicate with the service with the help of
LogicalProcess. The following code modification in the LogicalProcess class is necessary to allow
the service controller to query the service information:

using System;

using System.Reflection;

using System.Threading;

using LPC.Common;

namespace LPC.ServiceHost

{

public class LogicalProcess

{

public ServiceInfo ProcessInfo

{

get{return serviceProxy.QueryServiceInfo();}

}

}

}

The updated ServiceHost now uses the ProcessInfo property of the LogicalProcess class to
retrieve and display the service information:

using System;

using System.Reflection;

using LPC.Common;

5645ch05.qxd 3/3/06 12:15 PM Page 249

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE250

namespace LPC.ServiceHost

{

class ServiceHost

{

static void Main(string[] args)

{

//The heartbeat service is launched in a new application domain

LogicalProcess serviceProcess = new LogicalProcess("HeartBeatService");

serviceProcess.Start();

//The meta-information about service is retrieved

//and stored in an instance of ServiceInfo. Although this call is processed

//in a callee application domain, the result is marshaled by value

//in a caller application domain

ServiceInfo srvInfo = serviceProcess.ProcessInfo;

//The meta-information about service is displayed

Console.WriteLine("Service Info");

Console.WriteLine("------------");

Console.WriteLine("Name : " +srvInfo.FriendlyName);

Console.WriteLine("Description : " +srvInfo.Description);

Console.WriteLine("Press any key to Stop Service");

Console.ReadLine();

serviceProcess.Stop();

}

}

}

Configuring Infrastructure Services
Application configuration files contain information such as database connection strings, application
run-time information, and so on, that is vital for building highly adaptive applications. In bygone
days, this information was stored in INI files or the Windows registry database. With the advent of
.NET, this practice has changed, and application configurations are stored in XML files. Furthermore,
the framework provides a special pack of configuration helper classes to read information from these
XML-based configuration files.

By default, .NET executables are mapped to a default configuration file. This default configura-
tion file is in the same directory as the application, and the name of the configuration file is derived
from the executable name and appended with the .config extension. For example, if the executable
name is LPC.ServiceHost.exe, then the name of its corresponding configuration file would be LPC.
ServiceHost.exe.config. In addition to the custom application configuration, the .NET Framework
provides a machine.config file installed under the C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\
CONFIGdirectory. The machine.config file contains settings that are globally applied to all .NET assemblies.
The configuration framework in .NET first probes into the machine configuration file, before looking
into the application configuration file. It is considered a best practice to separate global settings from
application-specific settings and store them in the machine configuration file. However, settings
defined in the custom application configuration can still override machine.config settings.

The configuration file is composed of information that is specific to both applications and the
CLR. The application configuration details are defined in the form of key-value pairs inside the
<appSettings> element of the configuration file.

To get a feel of the .NET configuration framework, we will modify the heartbeat service code
described in Listing 5-1. Currently, the heartbeat interval of the heartbeat service is configured to
two seconds and is hard-coded inside the code. Ideally, the configuration file should drive this
interval, and this is what the code in Listing 5-3 achieves.

5645ch05.qxd 3/3/06 12:15 PM Page 250

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 251

Listing 5-3. Heartbeat Service Configuration Settings

<configuration>

<appSettings>

<add key="HeartBeatInterval" value="2000"/>

</appSettings>

</configuration>

The configuration information described in Listing 5-3 is saved in the LPC.Services.dll.config
file. It captures the heartbeat interval information in the form of a key-value pair. To access this
configuration information, you need to use the ConfigurationSettings class defined in the System.
Configuration namespace, and accordingly HeartBeatService is updated:

using System;

using System.Configuration;

using System.Threading;

using LPC.Common;

namespace LPC.Services

{

public class HeartBeatService : MarshalByRefObject,IService

{

public HeartBeatService()

{

//Heartbeat interval is read from an application configuration file

//i.e. the value is read from LPC.Services.dll.config

int hbInterval =

Convert.ToInt32(ConfigurationSettings.AppSettings["HeartBeatInterval"]);

}

}

}

ConfigurationSettings exposes the AppSettings property that is a run-time representation of
the <appSettings> element. The AppSettings property returns a NameValueCollection class populated
with a list of keys and values defined inside the <appSettings> element. The constructor method of
HeartBeatService is modified to read the heartbeat interval from the configuration file. Additionally,
you also need to update the LogicalPocess class with an additional overloaded constructor method,
as shown in Listing 5-4.

Listing 5-4. Assigning a Custom Configuration File

using System;

using System.Reflection;

using System.Threading;

using LPC.Common;

namespace LPC.ServiceHost

{

public class LogicalProcess

{

public LogicalProcess(string serviceName,string configurationFile)

{

//Binding decision of a new application domain is dictated by

//creating a new instance of AppDomainSetup

AppDomainSetup domainSetup = new AppDomainSetup();

5645ch05.qxd 3/3/06 12:15 PM Page 251

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE252

//Custom Configuration File Path

domainSetup.ConfigurationFile = configurationFile;

string typeName = "LPC.Services." +serviceName;

appDomain = AppDomain.CreateDomain(serviceName,null,domainSetup);

serviceProxy = appDomain.CreateInstanceAndUnwrap("LPC.Services",typeName)

as IService;

appThread = new Thread(new ThreadStart(serviceProxy.Start));

}

}

}

In Listing 5-4, the constructor method accepts the full path of the configuration file as an addi-
tional argument. This configuration path is then assigned to the ConfigurationFile property of the
AppDomainSetup class. The AppDomainSetup class stores information related to binding decisions in
an application domain. This binding information is then passed to the CreateDomain method.

With this example, we implemented an element of adaptiveness by separating the custom con-
figuration of an individual infrastructure service and driving its execution behavior based on values
defined in the configuration file.

Shadow Copying Infrastructure Services
Developers familiar with programming in ASP and IIS must have wrestled with the DLL locking problem.
This locking problem completely handcuffed developers from overwriting old files with new versions
because of IIS exclusively locking these files. This problem is exacerbated particularly when the IIS
service needs to be restarted in order to allow these DLLs to be overwritten. However, today’s .NET
landscape gives you new ammunition named shadow copy to battle this kind of problem.

Shadow copy is a mechanism where the libraries or executables are replicated from a launching
directory (the master directory) to a mirrored directory (the cache directory). This cache directory
then becomes the active location, and files from this location are served to the main memory. This
certainly eases the problem of deployment, and developers are now free to overwrite the files at any
point of time without bringing down the entire application. .NET supports shadow copying at the
application domain level. Assemblies loaded inside the shadow copy–enabled application domain
are copied into a cache directory and accessed from this new location. The following code introduces
this feature in the LogicalProcess class to support the shadow-copying infrastructure service assembly:

using System;

using System.Reflection;

using System.Threading;

using LPC.Common;

namespace LPC.ServiceHost

{

public class LogicalProcess

{

public LogicalProcess(string serviceName,bool shadowCopy)

{

AppDomainSetup domainSetup = new AppDomainSetup();

//Assign the list of directory from which the assemblies

//are shadow copied.

domainSetup.ShadowCopyDirectories = AppDomain.CurrentDomain.BaseDirectory;

//A boolean value that indicates whether all assemblies loaded in

//application domain are shadow copied

domainSetup.ShadowCopyFiles = shadowCopy.ToString();

5645ch05.qxd 3/3/06 12:15 PM Page 252

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 253

//Service name by default represents application name

domainSetup.ApplicationName = serviceName;

//Cache Path represents the physical location where assemblies loaded

//inside application domain are mirrored and then executed from this

//directory. However, in reality the assemblies are copied into

//the CachePath\ApplicationName directory

domainSetup.CachePath = @"C:\CacheLocation";

string typeName = "LPC.Services." +serviceName;

appDomain = AppDomain.CreateDomain(serviceName,null,domainSetup);

serviceProxy = appDomain.CreateInstanceAndUnwrap("LPC.Services",typeName)

as IService;

appThread = new Thread(new ThreadStart(serviceProxy.Start));

}

}

}

The AppDomainSetup class provides four important properties that need to be correctly assigned in
order to turn on the shadow-copy feature. The ShadowCopyFiles property accepts a Boolean value of
true or false. Even though there is no support for shadow copying individual assemblies, with the
help of the ShadowCopyDirectories property developers can specify a list of directory names separated
by a semicolon, and assemblies loaded from this directory will be shadow copied. Both the CachePath
and ApplicationName properties indicate the name of a directory from which all assemblies loaded
in a shadow copy–enabled application domain will be copied. The assemblies are copied into the
CachePath\ApplicationName directory.

Finding the AppDomain Treasure
Along with the important features discussed in the previous section, the AppDomain type also provides
a handful of properties and events that prove extremely beneficial in day-to-day development
(see Table 5-2).

Table 5-2. Methods and Events of Application Domain

Method/Event Description

FriendlyName Returns a friendly name for the application domain.

GetAssemblies() Returns the list of assemblies loaded in the application domain.

ExecuteAssemblies() Executes the assembly in the application domain. This method is
invoked to launch .NET executables.

GetData() and SetData() The application domain provides a name-value pair data bag that
allows storing application-related custom data. This data bag is freely
accessible from other application domains. Most of the system-level
configuration data such as application directory, configuration file,
cache directory, and so on, are stored in this data bag.

AssemblyLoad This event is raised when the assembly is loaded.

AssemblyResolve This event occurs when the runtime fails to locate a particular assembly.

DomainUnload This event is raised when the application domain is about to shut
down. This event notification allows handlers of these events to
perform the final cleanup activities.

TypeResolve This event occurs when the runtime fails to resolve any types in an
application domain.

UnhandledException This event is the equivalent of a global exception handler but works
only in the default application domain.

5645ch05.qxd 3/3/06 12:15 PM Page 253

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE254

Introducing Remote Process Communication (RPC)
In this section, we will build a distributed version of the service controller example that will be grafted
on top of the remoting infrastructure. Both the infrastructure service and the service controller are
hosted on a separate machine, and this example is similar to a real-life environment where in fact
infrastructure services are distributed across several machines. This also leads to a client-server
architecture where the service controller is a client and the individual infrastructure service is a server.
As a first step, we have identified the required assemblies, as shown in Table 5-3.

Table 5-3. RPC Assembly Structure

Project Name Assembly Type Description

RPC.Common Class library This class library contains shared
interfaces that are referenced by both the
client (RPC.ServiceController) and the
server (RPC.Services).

RPC.ServiceController Executable This is the service controller (client)
application that controls the management
of infrastructure services.

RPC.Services Executable This is the application (server) that hosts
infrastructure services.

Now you will begin the journey in the distributed world with the declaration of the IService
interface that forms part of the shared RPC.Common class library. This exercise is similar to one we
presented in the “Introducing Local Process Communication (LPC)” section of this chapter.

using System;

namespace RPC.Common

{

public interface IService

{

void Start();

void Stop();

}

}

IService defines members that are supported by core infrastructure services. The only difference
you will notice is that it doesn’t support the QueryServiceInfo member. This has been separated into
the new interface IServiceInfo, as follows:

using System;

namespace RPC.Common

{

public interface IServiceInfo

{

ServiceInfo QueryServiceInfo{get;}

}

}

The final class in the shared library is ServiceInfo, as shown in Listing 5-5.

5645ch05.qxd 3/3/06 12:15 PM Page 254

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 255

Listing 5-5. Meta-information About Infrastructure Service

using System;

using System.Collections;

namespace RPC.Common

{

[Serializable]

public class ServiceInfo

{

public string FriendlyName;

public string Description;

public ArrayList DependentServices;

public string Location;

}

}

In Listing 5-5, along with basic information, you will find a new Location field. We will explain
the intent of this field in a moment. With this class, we have completed the task of defining all
shared interfaces that will be used in this example. In the next step, we will define the server-side
implementation that hosts infrastructure services packaged inside the RPC.Services assembly (see
Listing 5-6).

Listing 5-6. Heartbeat Service (RPC Version)

using System;

using System.Threading;

using RPC.Common;

namespace RPC.Services

{

//By inheriting from MarshalByRefObject, we have made it a remotable class

//The heartbeart functionality defined here is more or less similar to

//its LPC version

public class HeartBeatService : MarshalByRefObject,IService

{

Thread serviceThread;

bool serviceStop;

public HeartBeatService()

{

}

public void Start()

{

Console.WriteLine("HeartBeat Service Started...");

serviceThread = new Thread(new ThreadStart(Run));

serviceStop=true;

serviceThread.Start();

}

public void Run()

{

while(serviceStop)

{

Console.WriteLine("Sending HeartBeat Message...");

Thread.Sleep(2000);

}

}

5645ch05.qxd 3/3/06 12:15 PM Page 255

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE256

public void Stop()

{

serviceStop=false;

}

public override object InitializeLifetimeService()

{

return null;

}

}

}

In Listing 5-6, HeartBeatService is inherited from MarshalByRefObject and also implements the
IService interface defined in the shared (RPC.Common) library. The code is more or less similar to the
HeartBeatService class defined in the cross-application domain example (see Listing 5-1), except
that in Listing 5-6 the service is responsible for spawning a thread and running its code in this new
thread. Also, a new overridden member, InitializeLifetimeService, relates to the object lifetime,
which is explained in detail in the “Understanding Distributed Garbage Collection” section. After
defining the heartbeat service, the next step is to define meta-information that provides the remote
location of the heartbeat service to the service controller (the client), as shown in Listing 5-7.

Listing 5-7. Heartbeat Service Meta-Information

using System;

using RPC.Common;

namespace RPC.Services

{

//This remote class provides meta-information about the heartbeart service

public class HeartBeatServiceInfo : MarshalByRefObject, IServiceInfo

{

ServiceInfo srvInfo = new ServiceInfo();

public HeartBeatServiceInfo()

{

srvInfo.FriendlyName = "Service HeartBeat Service";

srvInfo.Description =

"Checks HeartBeat of services at a regular interval of 2 seconds";

//This is an important attribute because it represents

//the remote location of the actual heartbeat service

srvInfo.Location = "tcp://localhost:15000/HeartBeatService.rem";

}

public ServiceInfo QueryServiceInfo

{

get{return srvInfo;}

}

}

}

In Listing 5-7, the HeartBeatServiceInfo class provides additional information about the heart-
beat service. This class is also inherited from MarshalByRefObject and implements the IServiceInfo
interface. The motive behind this class is to emit metadata information about the service. We could
have mixed this logic with the core service, but for demonstration purpose we factored it out as
a different class.

5645ch05.qxd 3/3/06 12:15 PM Page 256

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 257

The last and the important leg of the server-side implementation is to pepper HeartBeatService
and HeartBeatServiceInfo with remoting ingredients so that they will be accessible from the service
controller. The code shown in Listing 5-8 achieves this objective.

Listing 5-8. Hosting Infrastructure Services

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

namespace RPC.Services

{

class Host

{

static void Main(string[] args)

{

Console.WriteLine("HeartBeat Service Console..");

//Identify the wire-encoding format; in this case we have selected

//BinaryFormatter

BinaryServerFormatterSinkProvider svrFormatter =

new BinaryServerFormatterSinkProvider();

//Identify the communication protocol used to deliver the data.

//The wire-encoding details are also specified here

TcpServerChannel svrChannel =

new TcpServerChannel("ServiceChannel",15000,svrFormatter);

//Registration of communication protocol and wire-encoding format to be used

//by the remoting infrastructure

ChannelServices.RegisterChannel(svrChannel);

//Registration of Singleton remote types

RemotingConfiguration.RegisterWellKnownServiceType(typeof(HeartBeatService),

"HeartBeatService.rem",WellKnownObjectMode.Singleton);

//Registration of singlecall remote types

RemotingConfiguration.RegisterWellKnownServiceType(

typeof(HeartBeatServiceInfo),

"HeartBeatServiceInfo.rem",WellKnownObjectMode.SingleCall);

Console.WriteLine("Infrastructure service host started...");

Console.ReadLine();

}

}

}

In Listing 5-8, the Host class defines the executable entry point method, and inside this method
we configure the various aspects of the remoting infrastructure and finally listen to the client request.
To provide better clarity, we will break each of these aspects down and explain them line by line.

Remoting classes are packaged inside the System.Runtime.Remoting assembly available from
the Global Assembly Cache (GAC). You need to reference this assembly in the current project, which
will then allow access to the whole suite of remoting classes:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

5645ch05.qxd 3/3/06 12:15 PM Page 257

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE258

Communication between two application processes located on different machines is a different
beast in comparison with communications on the same machine. The most notable problem that
arises in remote communication is how to package the data and deliver it to a remote host. A devel-
oper will be completely immersed in handling the low-level details. With remoting there is no need
to worry because it is a matter of selecting the appropriate formatter (the data packaging protocol)
and channel (the data delivery protocol). Remoting provides two types of formatters, namely, binary
and SOAP formatters. Both these formatters dictate the wire-encoding format and are designed to
meet the different needs of a requirement. Amongst the two, the binary formatter is the fastest formatter
but is strictly meant for when both the client and the server are running on the same platform, such
as Windows. The SOAP formatter targets the portability requirement of the application and is effective
only when both the client and the server are running on different platforms. The formatter solves half
of the equation; to solve the other half, remoting provides two types of channels: HTTP and TCP.
Both these channels support the reliable delivery of data, but usually the TCP channel is used with
the binary formatter, and the HTTP channel is used with the SOAP formatter.

BinaryServerFormatterSinkProvider svrFormatter =

new BinaryServerFormatterSinkProvider();

TcpServerChannel svrChannel =

new TcpServerChannel("ServiceChannel",15000,svrFormatter);

The .NET Framework is bundled with two predefined channels and formatter classes. The
classes are separated based on their usage (in other words, whether they are referenced by the
server or by the client). In Listing 5-8, the BinaryServerFormatterSinkProvider and TcpServerChannel
classes will serialize the message in binary format and deliver it using TCP. TcpServerChannel is
assigned a unique channel name and is configured to listen to client requests on port 15000. If you
happen to change our minds and favor the portability requirements of the application, then the
SoapServerFormatterSinkProvider and HttpServerChannel classes are your friends. Even though
both the binary and SOAP formatters are grouped under the System.Runtime.Remoting.Channels
namespace, in the case of channels both TCP and HTTP are grouped under the System.Runtime.
Remoting.Channels.Tcp and System.Runtime.Remoting.Channels.Http namespaces, respectively.

After the selection of the appropriate channel and formatter, the next step is to register this
information with the remoting infrastructure, and this is done with the help of RegisterChannel,
which is a static method of the ChannelServices class. This method enlists the channels with the
remoting infrastructure. Using this method, you can register multiple channels as long as they share
a unique channel name:

ChannelServices.RegisterChannel(svrChannel);

After successfully configuring the communication infrastructure, you then head to the registra-
tion of the remote object, and this is done with the help of RegisterWellKnownServiceType, which is
an important static member of the RemotingConfiguration class:

RemotingConfiguration.RegisterWellKnownServiceType(typeof(HeartBeatService),

"HeartBeatService.rem",WellKnownObjectMode.Singleton);

RegisterWellKnownServiceType exposes the type to the outside world, giving it a final remotable
touch. This remotable type, whose instance will be created on the server as a result of a remote object
creation request received from the client, is supplied as a first argument to the method. The next
argument defines the object uniform resource identifier (URI) that provides unique endpoint infor-
mation about an object. The last and important argument defines the activation mode, and the only
acceptable enumerated value in this case is SingleCall or Singleton. Because the HeartBeatService
type holds the state and you want to have only a single instance of this service running, the right
approach is to make it Singleton. A Singleton type will never have more than one instance created
on the server, and this single unique instance along with its state will be shared across all clients.

The next step is to register the HeartBeatServiceInfo type, also making it remotely accessible
by clients:

5645ch05.qxd 3/3/06 12:15 PM Page 258

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 259

RemotingConfiguration.RegisterWellKnownServiceType(typeof(HeartBeatServiceInfo),

"HeartBeatServiceInfo.rem",WellKnownObjectMode.SingleCall);

HeartBeatServiceInfo provides additional information about the heartbeat service and is passed
as a first argument to RegisterWellKnownServiceType. Remember, because this type does not perform
any kind of state management features, the activation mode is defined as SingleCall. The second
argument assigns unique object endpoint information. It is with the help of this endpoint information
that the remoting infrastructure identifies and forwards the request received from clients to the correct
object instance. Another important fact is that there is a relaxed relationship between the remotable
type and channel. A single channel can support listening on multiple remotable types, or multi-
ple channels can listen on a single remotable type. In this example, both HeartBeatService and
HeartBeatServiceInfo are accepting requests on the same channel (that is, TCP port 15000).

The server application is now up and ready to service client requests:

Console.WriteLine("Infrastructure service host started...");

Console.ReadLine();

The next part of the code will demonstrate the second leg of this example (that is, the service
controller connecting to the heartbeat service), as shown in Listing 5-9.

Listing 5-9. Hosting Service Controller

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels.Http;

using RPC.Common;

namespace RPC.ServiceController

{

class Host

{

static void Main(string[] args)

{

Console.WriteLine("Service Controller Console..");

//Identify the wire-encoding format; in this case we have selected

//BinaryFormatter

BinaryClientFormatterSinkProvider cltFormatter =

new BinaryClientFormatterSinkProvider();

//Identify the communication protocol used to interact with server.

//The wire-encoding details are also specified here

TcpClientChannel cltChannel =

new TcpClientChannel("ControllerChannel",cltFormatter);

//Registration of communication protocol and wire-encoding format to be used

//by remoting infrastructure

ChannelServices.RegisterChannel(cltChannel);

//Instantiation of Remote type (Service MetaInformation)

IServiceInfo serviceInfo = Activator.GetObject(typeof(IServiceInfo),

"tcp://localhost:15000/HeartBeatServiceInfo.rem") as IServiceInfo;

//Service meta-information is retrieved to determine the actual

//location of the heartbeat service

ServiceInfo heartBeatInfo = serviceInfo.QueryServiceInfo;

Console.WriteLine("Starting Service : " +heartBeatInfo.FriendlyName);

5645ch05.qxd 3/3/06 12:15 PM Page 259

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE260

//Instantiation of heartbeat service

IService hbService = Activator.GetObject(typeof(IService),

heartBeatInfo.Location) as IService;

hbService.Start();

Console.ReadLine();

}

}

}

In Listing 5-9, the Host class represents the consumer end in the communication chain that
connects to the appropriate infrastructure service with the help of the remoting infrastructure and
invokes its members. You will notice that both the formatter and channel configurations are set up
with the help of the BinaryClientFormatter and TcpClientChannel classes:

BinaryClientFormatterSinkProvider cltFormatter =

new BinaryClientFormatterSinkProvider();

TcpClientChannel cltChannel =

new TcpClientChannel("ControllerChannel",cltFormatter);

ChannelServices.RegisterChannel(cltChannel);

To create an instance of a remote object, you need to use the Activator class, which is an
object factory that supports the creation of both local and remote objects:

IServiceInfo serviceInfo = Activator.GetObject(typeof(IServiceInfo),

"tcp://localhost:15000/HeartBeatServiceInfo.rem") as IServiceInfo;

The important method in Activator is GetObject, which is used to create a proxy for the remotable
service. This method accepts the type as the first argument for which a proxy will be created, and
the second argument indicates the URL of the remote object. The remote object URL follows a fixed
naming convention that captures three important attributes required to establish a communication
with the remote object. The important attributes are the transport protocol, the host name, and the
port number on which the remote object is listening. These values are concatenated with object
endpoint information.

As you know, the HeartBeatServiceInfo type acts as the information marker for the heartbeat
service, and the important information it encapsulates is the URL location of the heartbeat service.
This knowledge about the core service is packaged inside the ServiceInfo serializable class and is
accessible by invoking the QueryServiceInfo property. The URL location of the heartbeat service is
stored inside the Location property, and the value returned by this property is used to create a proxy
instance to the real heartbeat service.

ServiceInfo heartBeatInfo = serviceInfo.QueryServiceInfo;

Console.WriteLine("Starting Service : " +heartBeatInfo.FriendlyName);

IService hbService =

Activator.GetObject(typeof(IService),heartBeatInfo.Location) as IService;

By invoking the Start method, the heartbeat service on the remote machine starts:

hbService.Start();

Also an important fact of remoting is even though you are able to get the proxy instance on the
remotable type using the GetObject method of the Activator class, a successful instantiation of a proxy
is by no means a success indicator. In reality, the real communication handshaking between the client
and the server happens only when a method is called on the proxy. Figure 5-9 shows the console
output of the service controller and heartbeat service.

5645ch05.qxd 3/3/06 12:15 PM Page 260

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 261

Understanding Proxies
Proxy objects act as mediators between clients and remote objects (see Figure 5-10). Their primary
responsibility is to honor the method invocation received from the client and transparently forward
it again to the remote object. In the .NET arena, the remoting infrastructure creates two types of proxy
objects when it receives a remote object creation request from a client. Transparent proxies and real
proxies are the two proxy objects created by the remoting framework. Both these proxies are instances
of the System.Runtime.Remoting.Proxies.__TransparentProxy and System.Runtime.Remoting.Proxies.
RealProxy classes.

Although dealing with two types looks like additional overhead imposed by the framework, in
reality both of these proxies undertake a different task.

When a client issues a request to create a remote instance object, it is returned with an instance
of a transparent proxy.

A transparent proxy is a special class that mimics all methods and properties defined in the
remote object and provides an illusion of the remote object residing within the client’s context. It is
also the first in the call chain to receive all method calls invoked by the client. The client is completely
unaware of the existence of a real proxy and always interacts with the transparent proxy. However,
the existence of a transparent proxy sometimes causes confusion because the application developer
is not able to make a distinction between the real object reference and proxy references. To solve
this problem, the framework provides a special helper static method, IsTransparentProxy, in the
RemotingServices class. This method, which is based on the object passed as an argument, returns
a Boolean value indicating whether the object is a real object or a transparent proxy object.

using System;

using System.Runtime.Remoting;

class TProxy

{

static void Main(string[] args)

{

object newObj= new object();

Figure 5-9. Console output of service controller and heartbeat service

Figure 5-10. Remote calls triggered by the client forwarded to a remote object via transparent and real
proxies

5645ch05.qxd 3/3/06 12:15 PM Page 261

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE262

bool isProxy = RemotingServices.IsTransparentProxy(newObj);

Console.WriteLine(isProxy);

}

}

A transparent proxy examines the method and its arguments, packages them in an IMessage
object, and hands them over to the real proxy. From here onward, the real proxy takes charge and
completes the rest of the operation, eventually delivering the message to the server. The real proxy
also looks after the extensibility aspects of the remoting framework. This is in contrast to the trans-
parent proxy, which allows no room for any sort of customization. Another important fact is that the
instance of the real proxy is housed inside the transparent proxy and is easily accessible with the
help of another helper method provided by the RemotingServices class, as shown here:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Proxies;

class RProxy

{

static void Main(string[] args)

{

object mbrObj=null;

//Get a reference to mbrObj

//mbrObj = <MBR Object>

//Real Proxy instance

RealProxy rp=RemotingServices.GetRealProxy(mbrObj);

}

}

A transparent proxy is also serializable in nature. This allows a reference to the proxy to be
marshaled by value on different application domains located on different machines. This proxy-
forwarding approach proves to be nifty in a scenario where a client itself is playing the role of a server
to another client, which is explained later in the service directory code example. The secret behind
proxy serialization resides in the System.Runtime.Remoting.ObjRef class. The instance of this class
wraps bare-minimum information about the remotable type, which is sufficient for the remoting
infrastructure to create a suitable proxy. Under the hood, when a proxy is marshaled, it is the instance
of the ObjRef class that gets serialized and transferred over the wire. The CLR is intelligent enough
to understand the semantics of remoting, so during the deserialization phase, when it discovers an
instance of ObjRef, it immediately creates the transparent and real proxies. The most important
information stored inside ObjRef is as follows:

• Channel information that includes machine address and port number.

• Remote object endpoint information.

• Complete chain of type information including the assembly name, culture, version, and
public key. The type chain also includes information about base types.

The whole concept of proxy serialization falls squarely in line with the new service directory
example that sits between the service controller and the heartbeat service. In the heartbeat service
code example described in the “Introducing Remote Process Communication (RPC)” section, the
service controller could directly talk to the heartbeat service, but if you exaggerate the example a bit
by fanning out more services such as the instrumentation service, the configuration service, and so
on, then life gets tougher because now in order to connect to these services, the service controller
needs to know their physical locations, port numbers, and object endpoint information. So, by

5645ch05.qxd 3/3/06 12:15 PM Page 262

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 263

introducing a service directory, you are blending the location transparency feature that will relieve
the service controller from knowing the location details. With the help of the service directory, all
infrastructure service–related information will be tucked into a central place. This centralization
approach also allows for easy maintenance and migration of infrastructure services to another machine
without affecting the downstream components.

As illustrated in Figure 5-11, the service controller’s first request is targeted toward the service
directory, which in turn gets satisfied with the return of a proxy reference to the controller, and after
that, the controller directly starts interacting with the heartbeat service, bypassing the service direc-
tory route.

To implement the service directory functionality, we have determined a need for the new interface
ILookUp. Obviously, this interface will be included in the shared RPC.Common library and will be made
accessible to both the client and the server. The interface declaration code is as follows:

using System;

namespace RPC.Common

{

public interface ILookUp

{

IService LookUp(string serviceName);

}

}

The service directory is an independent service and is possibly hosted on the same machine
where infrastructure services are hosted or could be on a different machine. So, in this example, we
will host the service directory as an executable and, to accommodate this requirement, create the
new console project RPC.ServiceDirectory. This project is identical to the RPC.Services project and
is mainly composed of two classes: the core lookup service class and the host class that exposes the
lookup service to the outside world. The code snippet for the lookup service class is as shown in
Listing 5-10.

Listing 5-10. Infrastructure Service Lookup

using System;

using System.Collections;

using RPC.Common;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels.Http;

Figure 5-11. Service directory

5645ch05.qxd 3/3/06 12:15 PM Page 263

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE264

namespace RPC.ServiceDirectory

{

public class ServiceLookUp : MarshalByRefObject,ILookUp

{

Hashtable connectedServices = new Hashtable();

public ServiceLookUp()

{

BinaryClientFormatterSinkProvider cltFormatter =

new BinaryClientFormatterSinkProvider();

TcpClientChannel cltChannel =

new TcpClientChannel("ControllerChannel",cltFormatter);

ChannelServices.RegisterChannel(cltChannel);

//Instantiation of remote heartbeat service and its proxy reference

//is cached in a hash table, keyed by service name

IService hbService = Activator.GetObject(typeof(IService),

"tcp://localhost:15000/HeartBeatService.rem") as IService;

connectedServices.Add("HeartBeatService",hbService);

}

public override object InitializeLifetimeService()

{

return null;

}

public IService LookUp(string serviceName)

{

return connectedServices[serviceName] as IService;

}

}

}

In Listing 5-10, ServiceLookUp is derived from MarshalByRefObject, which makes it a perfect
remoting candidate; additionally, it implements the ILookUp interface by supplying a concrete method
body to the LookUp method. To gain a deeper understanding, let’s do a step-by-step walk-through of
the code described in Listing 5-10.

With the declaration of a Hashtable, you have built a cache container that stores proxy references
of infrastructure services:

Hashtable connectedServices = new Hashtable();

This container is populated only once, as demonstrated in the following constructor code:

public ServiceLookUp()

{

BinaryClientFormatterSinkProvider cltFormatter =

new BinaryClientFormatterSinkProvider();

TcpClientChannel cltChannel =

new TcpClientChannel("ControllerChannel",cltFormatter);

ChannelServices.RegisterChannel(cltChannel);

IService hbService = Activator.GetObject(typeof(IService),

"tcp://localhost:15000/HeartBeatService.rem") as IService;

connectedServices.Add("HeartBeatService",hbService);

}

5645ch05.qxd 3/3/06 12:15 PM Page 264

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 265

Inside the constructor method, you connect to all the required infrastructure services and cache
their proxy references inside a Hashtable. Proxy references are identified by a suitable name, and based
on this service name, they are fetched from the Hashtable.

After populating the proxy cache container, the next step is to make it available to the service
controller, which is done using LookUp. This method is the one that will be invoked by external clients.
It peeks into the cached hash table to locate an appropriate proxy reference that matches the service
name passed as a method argument. On finding a successful match, it returns the proxy reference
to the caller. This proxy reference is then marshaled back to the client context. Remember, it is the
ObjRef that gets serialized over the wire.

public IService LookUp(string serviceName)

{

Console.WriteLine("Lookup Request Received For : " +serviceName);

return connectedServices[serviceName] as IService;

}

The final part of service directory is to honor the service controller request on port 12000
(see Listing 5-11).

Listing 5-11. Hosting of Service Directory

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels.Http;

namespace RPC.ServiceDirectory

{

class Host

{

static void Main(string[] args)

{

ServiceLookUp serviceLookUp = new ServiceLookUp();

BinaryServerFormatterSinkProvider svrFormatter =

new BinaryServerFormatterSinkProvider();

TcpServerChannel svrChannel =

new TcpServerChannel("ServiceChannel",12000,svrFormatter);

RemotingServices.Marshal(serviceLookUp,"ServiceDirectory.rem");

Console.WriteLine("LookUp Service Started...");

Console.ReadLine();

}

}

}

In Listing 5-11, you will notice that Host has not used the RemotingConfiguration.
RegisterWellKnownServiceType method to publish the objects. Instead, you use the RemotingServices.
Marshal method that registers the precreated instance of the ServiceLookUp instance. Even though
using this approach is the equivalent of registering a Singleton object, in this case the object needs
to be created beforehand. By hand-rolling the instance of the ServiceLookUp class, you ensure that
the service cache is populated completely before making it available to the external world.

The final and last piece of the code is to update the service controller to make it interact with
the heartbeat service via the service directory (see Listing 5-12).

5645ch05.qxd 3/3/06 12:15 PM Page 265

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE266

Listing 5-12. Hosting of Infrastructure Service Controller

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Proxies;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels.Http;

using RPC.Common;

namespace RPC.ServiceController

{

class Host

{

static void Main(string[] args)

{

Console.WriteLine("Service Controller Console..");

BinaryClientFormatterSinkProvider cltFormatter =

new BinaryClientFormatterSinkProvider();

TcpClientChannel cltChannel =

new TcpClientChannel("ControllerChannel",cltFormatter);

ChannelServices.RegisterChannel(cltChannel);

//Instantiation of lookup service that is then used to locate

//the heartbeat service

ILookUp serviceLookUp= Activator.GetObject(typeof(ILookUp),

"tcp://localhost:12000/ServiceDirectory.rem") as ILookUp;

//Retrieves the proxy reference of the heartbeat service

//In this case the proxy reference is marshaled by value

IService hbService = serviceLookUp.LookUp("HeartBeatService");

//Start the heartbeat service

hbService.Start();

Console.ReadLine();

}

}

}

When the code described in Listing 5-12 is compiled and executed, it will connect to the service
directory and invoke its LookUp method. This method will return a proxy reference to the heartbeat
service, and using this marshaled proxy reference, you start the heartbeat service as shown in the
output windows in Figure 5-12.

5645ch05.qxd 3/3/06 12:15 PM Page 266

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 267

Figure 5-12. Console output of the service directory

Understanding Distributed Garbage Collection
The most touted feature of the CLR is the automatic reclamation of memory that frees developers
from memory-related wrinkles. However, when you step down to a distributed world, the fundamental
change you will notice is that both the client and server objects are no longer within the jurisdiction
of the same application process. They are separated into different application processes that are usually
running on different machines. It is quite common for complexities to increase when communication
spreads its wings, and techniques applied in a local environment may become invalidated in a dis-
tributed environment. In the case of garbage collection, the algorithm employed searches for reachable
objects, and if it finds some, it marks them as alive and discards the unreachable objects, eventually
reclaiming the memory. This logic works flawlessly because the garbage collector (GC) has complete
knowledge about its local environment; however, in the case of remoting where server objects are
hosted on different application processes or machines, the garbage collector has no way to determine
whether the server object is accessed by a client.

To circumvent this problem, .NET adopted a leasing approach that controls the destruction of
a remote object. By default, every remote object is assigned a lease. Upon expiration of this lease,
the remote object is considered to be garbage and handed over to the garbage collector. Figure 5-13
illustrates the leasing architecture.

Figure 5-13. Object lifetime with leasing

5645ch05.qxd 3/3/06 12:15 PM Page 267

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE268

On receiving an object creation request from a client, the remoting framework constructs a new
instance of the remote object. As part of this creation process, it also associates a new instance of
the Lease object defined in the System.Runtime.Remoting.Lifetime namespace. InitialLeaseTime
and RenewOnCallTime are the important properties provided by the Lease object, and the value
assigned to this property dictates the overall lifetime of a remote object. InitialLeaseTime assigns
the default initial lease time to the remote object, which is by default configured to five minutes,
and RenewOnCallTime defines the increment factor. Based on this value, the life of the remote object
is further extended. The default renewal time is two minutes. Also, a CurrentLeaseTime property is
defined in the Lease object that returns the remaining lease time of a remote object. The default
lease values provided by a Lease object can be easily customized on a per-remote-object basis. This
is possible by overriding the InitializeLifetimeService method of the MarshalRefObject class. The
InitializeLifetimeService method is automatically called by the remoting framework during the
remote object creation stage, and upon invoking this method, it returns a Lease object. Based on
these returned values, the object lifetime is determined. The code snippet shown in Listing 5-13
demonstrates how to override the default lease behavior.

Listing 5-13. Overriding Remote Object Lease Time

using System;

using System.Runtime.Remoting.Lifetime;

class MBRLease : MarshalByRefObject

{

public override object InitializeLifetimeService()

{

//Default lease associated with remote object is retrieved

ILease objLease = (ILease)base.InitializeLifetimeService();

//Initial Lease time is updated to three minutes

objLease.InitialLeaseTime=TimeSpan.FromMinutes(3);

//Renewal time is updated to one minute

objLease.RenewOnCallTime=TimeSpan.FromMinutes(1);

return objLease;

}

}

Lease is an internal class and hence not accessible to the outside world. So, the only mechanism
to control it is by casting it back to the ILease interface. It is also mandatory to invoke the base class
InitializeLifetimeService, which returns the lease object associated with the current instance of
the remote object. The instance is then cast back to the ILease interface, and both its initial lease time
and renewal time are overridden with new values. In Listing 5-13, the initial lease time is updated
from five minutes to three minutes and the renewal time from two minutes to one minute. Note that
lease renewal happens only when there is a subsequent method call received from the client and
the renewal time is added to the current lease time.

As already mentioned, each remote object is assigned a default lease time by the remoting frame-
work. These default values are easily modifiable with the help of the LifeTimeServices class grouped
under the System.Runtime.Remoting.Lifetime.LifetimeServices namespace. For example, the fol-
lowing code decreases the default initial lease time from five minutes to three minutes and increases the
renewal time from two minutes to four minutes. After executing the following code, all newly created
remote objects will inherit these values unless specifically overridden by their InitializeLifetimeService
methods.

using System;

using System.Runtime.Remoting.Lifetime;

5645ch05.qxd 3/3/06 12:15 PM Page 268

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 269

class DefaultLease

{

static void Main(string[] args)

{

//Change the default lease time

LifetimeServices.LeaseTime = TimeSpan.FromMinutes(3);

//Change the default lease renewal time

LifetimeServices.RenewOnCallTime = TimeSpan.FromMinutes(4);

}

}

It is also possible to provide an infinite lifetime to a remote object, preventing it from being
garbage collected until the application domain in which it is created is unloaded. In the following
code, by returning null inside the InitializeLifetimeService method, you grant an infinite lifetime
to remote objects:

using System;

class ImmortalMBR : MarshalByRefObject

{

public override object InitializeLifetimeService()

{

//By returning null, we have granted infinite lifetime to remote object

return null;

}

}

If you look at the code of the remoting classes discussed so far—specifically the
HeartBeatService (see Listing 5-6) and ServiceLookUp (see Listing 5-10)—both these classes override
InitializeLifetimeService and return null values. This step is inevitable in this case where both
the remote objects are configured as a Singleton object.

Every lease object is registered with the lease manager. The lease manager is created for each
application domain and can be considered as a garbage collector for remote objects; however, it is
deterministic in nature. The implementation of the lease manager is straightforward. It internally
maintains a collection of Lease objects, and after every configured interval, it iterates through this
collection to check for expired leases. On the expiry of a lease, the lease manager simply removes
the Lease object from its collection, thus marking it unreachable; in the subsequent garbage collec-
tion, memory occupied by an instance of Lease, and its underlying remote object, is reclaimed. The
default polling time used by the lease manager to check for expired leases is configured to ten sec-
onds. You can change this default polling value with the help of the LeaseManagerPollTime property
defined in the LifeTimeServices class:

using System;

using System.Runtime.Remoting.Lifetime;

class LeasePollTime

{

static void Main(string[] args)

{

LifetimeServices.LeaseManagerPollTime=TimeSpan.FromSeconds(20);

}

}

The lease manager also provides one final chance to the remote objects to renew its lease
before it gets discarded completely. This opportunity is gifted in the form of sponsorship. A sponsor
is an entity that is given the final authority to decide whether an object is in need of additional lease
time. An affirmative reply from the sponsor at this final stage can extend the lifetime of the remote
object. Each sponsor is registered with the lease, and multiple sponsors can be registered at a time.

5645ch05.qxd 3/3/06 12:15 PM Page 269

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE270

From an implementation point of view, the sponsor itself is derived from MarshalByRefObject and
implements the ISponsor interface defined in System.Runtime.Remoting.Lifetime. The ISponsor
interface supports the Renewal method, which decides the fate of the remote object. This method is
invoked by the lease manager to get the additional lease time assigned by the sponsor to the remote
object.

The concept of sponsorship blends well with the service controller example. Although we have
assigned an infinite time-to-live lease to the remote service object (that is, HeartBeatService) by
returning a null value inside the InitializeLifetimeService method, you can adopt a different
approach, assuming the resource allocated by individual infrastructure services is expensive in nature.
Taking into account the limited hardware resources available, you need to ensure an optimum
utilization of it. In the world of the front office, most of the core system services are not expected to
run 24×7. Rather, the working hours of trading applications never exceed more than seven to eight
hours. Considering this, you need to build a sponsor that examines the current system time. If the
time computed is not between the start and end of the trading time, then it can be easily concluded
that there is no need to renew the lease, and thus the remote object will be freely discarded. For example,
the following code checks the current time, and if it doesn’t fall between the trading hours, it expresses
its clear intention to not renew the lease by returning the TimeSpan.Zero value:

using System;

using System.Runtime.Remoting.Lifetime;

namespace RPC.Services

{

public class BODEODSponsor : MarshalByRefObject, ISponsor

{

public BODEODSponsor()

{

}

public TimeSpan Renewal(ILease lease)

{

//The logic here clearly determines the object lifetime based on

//trading hours

int tradingBod=9;

int tradingEod=16;

DateTime bodTime = DateTime.Now;

if (bodTime.Hour >= tradingBod && bodTime.Hour <= tradingEod)

{

DateTime eodTime =

new DateTime(bodTime.Year,bodTime.Month,bodTime.Day,tradingEod,5,0);

TimeSpan diffTime = eodTime-bodTime;

Console.WriteLine(diffTime.TotalMinutes);

return diffTime.TotalMinutes > 0 ? diffTime : TimeSpan.Zero;

}

return TimeSpan.Zero;

}

}

}

Note that because the registration of a sponsor takes place on a lease object, you need to get
a reference to the lease object. You do this with the help of the GetLifetimeService static method
defined in the RemotingServices class. The GetLifetimeService method returns the lease object
associated with the instance of MarshalByRefObject. This returned instance of Lease needs to be
cast to the ILease interface in order to access its member, specifically the Register and Unregister
methods. As the name indicates, the Register method is invoked to register a new sponsor, and the
UnRegister method is invoked to unregister an existing sponsor.

5645ch05.qxd 3/3/06 12:15 PM Page 270

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 271

Configuring Remoting
So far you have learned the various features offered by the remoting framework and also have learned
how easy it is to customize each of the aspects supported by these features. But the truth of the mat-
ter is that the example adopted a programmatic path; to change the lease manager’s default poll time,
you hard-coded the values inside the code. The same problem applies to the registration of the remote
object, where you hard-coded the port number and channel information. From a deployment per-
spective, this is an unhealthy practice because even a simple change such as changing the port
number will demand a complete recompilation and deployment of the program. However, don’t get
disappointed—the remoting framework addresses these deployment issues by allowing developers
to tweak the remoting infrastructure through a configuration file. Almost every single aspect of the
remoting object can now be regulated using a configuration file. To boot the remoting infrastructure
using a configuration file, you need to use the Configuremethod provided by the RemotingConfiguration

class. This method, based on the name of the configuration file passed as the argument, reads the
contents and appropriately configures the remoting infrastructure:

using System;

using System.Runtime.Remoting;

class RemotingConfig

{

static void Main(string[] args)

{

string configFile = null;

//Assign valid name of the configuration file

//configFile = "C:\RemotingConfig.config"

//Configure the Remoting Infrastructure

RemotingConfiguration.Configure(configFile);

}

}

There is no restriction on the location of the configuration file. However, the contents arranged
inside this configuration file need to adhere to a predefined remoting schema layout. A skeletal view
of a typical remoting configuration file is as follows:

<configuration>

<system.runtime.remoting>

<application name="AppName">

<lifetime/>

<channels/>

<service/>

<client/>

</application>

</system.runtime.remoting>

</configuration>

Information about the remoting infrastructure is branched under the <system.runtime.remoting>
element, and each of the child elements map to a specific aspect of the infrastructure. The
<lifetime> element hosts information about the remote object’s lifetime. Similarly, the <service>
element provides the remote object’s registration information. The <client> element looks after the
connectivity information required to connect and instantiate an instance of a remote type. The last and
final element is the <channel> element, which defines the low-level transport and wire-encoding details.

Considering the infrastructure hosting code described in Listing 5-8, you will now revisit the
code and tailor it to use the configuration file. The first step in customizing the code is to separate
the remote object registration and channel information from the code and store this information in

5645ch05.qxd 3/3/06 12:15 PM Page 271

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE272

the configuration file. Assume that a new configuration file, RPC.Services.exe.config, is created and
located in the same folder where the actual executable is stored:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<!-- Registration of Singleton Remote Type (HeartBeatService) -->

<wellknown mode="Singleton" objectUri="HeartBeatService.rem"

type="RPC.Services.HeartBeatService, RPC.Services" />

<!-- Registration of SingleCall Remote Type

(HeartBeat Service Meta-Info) -->

<wellknown mode="SingleCall" objectUri="HeartBeatServiceInfo.rem"

type="RPC.Services.HeartBeatServiceInfo, RPC.Services" />

</service>

<channels>

<!-- Registration of TCP channel and binary encoding format -->

<channel ref="tcp" port="15000">

<formatter ref="binary"/>

</channel>

<!-- Registration of HTTP channel and SOAP encoding format -->

<channel ref="http" port="16000">

<formatter ref="soap"/>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

The information captured in the XML fragment is the same as the actual code, but the infra-
structure service host code is much cleaner now and contains a single configuration statement, as
shown here:

using System;

using System.Runtime.Remoting;

using RPC.Common;

class HostUsingConfig

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(@"RPC.Services.exe.config");

Console.WriteLine("Infrastructure service host Started...");

Console.ReadLine();

}

}

On the service controller end (see Listing 5-9), you will implement a similar configuration porting
exercise, as shown in Listing 5-14.

Listing 5-14. Service Controller Remoting Configuration

<configuration>

<system.runtime.remoting>

<application>

<channels>

<channel ref="tcp" port="0">

<formatter ref="binary"/>

5645ch05.qxd 3/3/06 12:15 PM Page 272

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 273

</channel>

</channels>

<client>

<!-- Description of remote object information -->

<wellknown url="tcp://localhost:15000/HeartBeatService.rem"

type="RPC.Common.IService, RPC.Common" />

</client>

</application>

</system.runtime.remoting>

</configuration>

Assuming that the XML snippet described in Listing 5-14 is stored in the RPC.ServiceController.
exe.config file, you modify the client-side host code to use the information contained inside this
configuration file:

using System;

using System.Runtime.Remoting;

using RPC.Common;

class HostUsingConfig

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(@"RPC.ServiceController.exe.config");

WellKnownClientTypeEntry[] clientEntry =

RemotingConfiguration.GetRegisteredWellKnownClientTypes();

IService hbService = Activator.GetObject(typeof(IService),

clientEntry[0].ObjectUrl) as IService;

}

}

By separating out the configuration details for both the client and the server, you have drastically
eased the deployment burden. Changes to the remoting behavior can now be heartily welcomed
because the only candidate that would be affected is the configuration file. There are other areas in
remoting such as lifetime management, versioning, error handling, security, debugging, and so on,
where the recruitment of a configuration file technique will further increase the efficiency of appli-
cation deployment.

Lifetime Management
Even if all the facets of a distributed garbage collection cannot be dictated through configuration
files, the object default lifetime and lease manager poll time are allowed to reside within the config-
uration file:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<lifetime

leaseTime="1S"

renewOnCallTime="1S"

leaseManagerPollTime="1S"/>

</application>

</system.runtime.remoting>

</configuration>

5645ch05.qxd 3/3/06 12:15 PM Page 273

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE274

Versioning
Versioning of an assembly plays an important role, especially in a distributed scenario where both the
client and the server are physically separated. In the service controller example, you saw the benefit
of a shared assembly, but envisage a scenario where a client and a server hold different versions of
the shared assembly. How would remoting handle this version mismatch when it receives a call from
the client to the server, or vice versa? Two attributes, includeVersions and strictBinding, are asso-
ciated with formatters to determine the version tolerant levels:

<configuration>

<system.runtime.remoting>

<application>

<channels>

<channel ref="tcp" port="15000">

<serverProviders>

<formatter ref="binary" includeVersions="false"

strictBinding="false"/>

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

A TypeLoadException is thrown if the remoting framework fails to load the type based on the
four conditions shown in Table 5-4.

Table 5-4. Versioning Parameters

includeVersions strictBinding

(Sending Formatter) (Receiving Formatter) Behavior

true true Exact type is loaded by the remoting framework.

false true Type is loaded using the type name and assembly
name.

true false The remoting framework first attempts to load
the exact type. If it fails to load, then it makes
a second attempt to load a type using the type
name and assembly name.

false false Type is loaded using the type name and assembly
name.

Error Handling
Remoting supports the propagation of exceptions raised on the server side back to the original
caller (the client). But the amount of information transferred to the caller is controlled by the mode
attribute value defined in the customErrors element:

<configuration>

<system.runtime.remoting>

<customErrors mode="off"/>

</system.runtime.remoting>

</configuration>

Table 5-5 lists the possible values that control the propagation of remoting exceptions from
server to client.

5645ch05.qxd 3/3/06 12:15 PM Page 274

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 275

Table 5-5. Remoting Exceptions

Value Behavior

off Callers receive complete exception information including the server stack trace.

on Callers receive filtered exception information.

remoteOnly Local callers (a client running on the same machine as the server) receive
complete exception information, but remote callers receive filtered exception
information.

Security
To protect a system from unwarranted attacks, the remoting framework supports two levels of auto-
matic deserialization. These levels are defined at the formatter level, and by default they are configured
at restricted levels where only limited types required for basic remoting functionality are allowed to
serialize. To remove this restriction, the following entry must be present in the configuration file:

<configuration>

<system.runtime.remoting>

<application>

<channel ref="tcp" port="15000">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full"/>

</serverProviders>

</channel>

</application>

</system.runtime.remoting>

</configuration>

Debugging
By default, the remoting framework implements a lazy-loading technique, where the underlying
remote type on the server is brought into memory only when it receives the first call from the client.
But developers often tend to make typing errors while entering the type and assembly name. These
mistakes get manifested in the form of run-time exceptions. To avoid this and catch the exception
early during application startup time, you need to add a debug element in the configuration file, as
shown here:

<configuration>

<system.runtime.remoting>

<debug loadTypes="true"/>

</system.runtime.remoting>

</configuration>

Understanding Aspect-Oriented Programming
(AOP) in .NET
There is a popular quote that says, “Innovation is the creation of the new or the rearranging of the
old in a new way.” This statement gives you a good sense of the evolution evidenced in the field of
programming methodologies. In bygone days, procedural-oriented programming (POP) was con-
sidered to be the de facto programming methodology. Then came object-oriented programming
(OOP), which was a great boon and also forms the basis for today’s modern systems. The important
principle followed in both OOP and POP is to raise the level of abstractions and encourage developers

5645ch05.qxd 3/3/06 12:15 PM Page 275

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE276

to model applications from a particular viewpoint. In the POP world, the viewpoint is the functional
requirement itself from which the procedures are directly defined. This is in direct contrast to the OOP
world where functional requirements are decomposed into granular classes, and each individual
class then folds a specific aspect of the overall requirement by encapsulating both data and behavior.
OOP provided best-of-breed features such as encapsulation, inheritance, polymorphism, and so on,
that allowed for the efficient reuse of the code. However, currently the OOP world has some short-
comings, and this is where AOP comes to the rescue. AOP is not meant to replace OOP; instead, it is
considered to be a complementary programming technique to OOP.

Before delving into the explanation of AOP, refer to the following code (see Listing 5-15 and
Listing 5-16). This code is no different from the heartbeat service code described in Listing 5-6
except this version shields the start and stop functionality of the service with proper authorization
checks. Only users belonging to manager roles are allowed to start and stop the service. As you will
notice, this authorization code is spread in all of the infrastructure services executed under the con-
trol of the central service controller.

Listing 5-15. Heartbeat Message Targeted to Monitor NYSE Exchange Gateway

using System;

using System.Threading;

namespace AOP

{

public class NYSEHeartBeatService

{

public NYSEHeartBeatService()

{

}

public void Start()

{

if (!Thread.CurrentPrincipal.IsInRole("Manager"))

throw new ApplicationException("Access Denied");

//Exchange-Specific Operation

}

public void Stop()

{

if (!Thread.CurrentPrincipal.IsInRole("Manager"))

throw new ApplicationException("Access Denied");

//Exchange-Specific Operation

}

}

}

5645ch05.qxd 3/3/06 12:15 PM Page 276

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 277

Listing 5-16. Heartbeat Message Targeted to Monitor NASDAQ Exchange Gateway

using System;

using System.Threading;

namespace AOP

{

public class NASDAQHeartBeatService

{

public NASDAQHeartBeatService()

{

}

public void Start()

{

if (!Thread.CurrentPrincipal.IsInRole("Manager"))

throw new ApplicationException("Access Denied");

//Exchange-Specific Operation

}

public void Stop()

{

if (!Thread.CurrentPrincipal.IsInRole("Manager"))

throw new ApplicationException("Access Denied");

//Exchange-Specific Operation

}

}

}

Both the NASDAQHeartBeatService and NYSEHeartBeatService classes are composed of two types
of requirements. The first and the most important is the functional requirement itself, which is satis-
fied by sending a heartbeat message to the exchange. The second type is the operational requirement,
which is sprinkled on top of the functional requirement. The most commonly found operational
requirement in enterprise-based applications are logging, exception handling, authorization, and
thread synchronization. These requirements are scattered inside the functional requirement, and
the code needed to perform its services are the same across all functional requirements. For example,
if you look at the NYSEHeartBeatService class, there is an explicit authorization check as a first line of
code inside the Start and Stop methods. This validation is also applied in the NASDAQHeartBeatService
class, and this doesn’t stop here. If a new exchange is introduced, then it also inherits this validation.
Operational requirements always tend to crosscut the functional requirement, resulting in the tight
coupling of functional and system classes. For example, if you need to introduce a new logging fea-
ture in Listing 5-15 and Listing 5-16, then you will face a swirl of change, and each of the functional
classes needs to be changed. Figure 5-14 shows the integration of operational requirements with
functional requirements.

5645ch05.qxd 3/3/06 12:15 PM Page 277

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE278

Figure 5-14. Integration of operational requirements with functional requirements

AOP promotes the cleaner responsibility of modules in the subsystem by identifying and separat-
ing crosscutting concerns (operational requirements) and then transparently injecting them inside
functional modules. This transparent injection technique removes the static dependency required
from the functional modules to the system modules. Furthermore, it is the power of AOP tools that
allows both the functional and system modules to adopt an independent development thread with-
out knowing the existence of each other and in the end transparently combines the features provided
by both these modules. To continue the journey with AOP, you need to first download Aspect# from
http://aspectsharp.sourceforge.net/. Aspect# is an open source AOP framework for .NET-based
applications. To demonstrate the power of AOP, we will show how to rewrite the NASDAQHeartBeatService
and NYSEHeartBeatService classes using the Aspect# framework. Figure 5-15 shows the AOP architecture.

5645ch05.qxd 3/3/06 12:15 PM Page 278

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 279

Figure 5-15. AOP architecture

AOP has coined its own terminology, and understanding these terms and definitions is important
to becoming acquainted with the AOP-based programming environment:

Point-cut: The point-cut is the location in the code where the crosscutting concerns are injected.
The point-cut is technically represented in the form of a method, constructor, property, and
so on. For example, referring to the NASDAQHeartBeatService class, the point-cuts that can be
identified are the Start and Stop methods where the actual authorization check is performed.

Advice: The advice encapsulates logic that is transparently injected inside the code identified
by the point-cut. Advice is usually composed as a separate entity. For example, an authorization
advice is a different class that hosts the authorization logic.

Aspect: The aspect is the final unit of work in the AOP world. It declares the weaving rules by
combining the advice and point-cut.

Before we start, it is mandatory to reference two important assemblies of the Aspect# framework
inside the project. These two important assemblies are AspectSharp and AopAlliance. The next step
is to construct the AuthorizationAdvice class, which separates out the necessary authorization logic.
In the earlier OOP version, this logic was sprinkled all over the functional classes.

Here’s the code for AuthorizationAdvice:

using System;

using AopAlliance.Intercept;

using System.Threading;

using AOPServices.Services;

namespace AOPServices.Aspects

{

public class AuthorizationAdvice : IMethodInterceptor

{

public AuthorizationAdvice()

{

}

5645ch05.qxd 3/3/06 12:15 PM Page 279

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE280

public object Invoke(IMethodInvocation invocation)

{

//Perform Authorization Check

/*if (!Thread.CurrentPrincipal.IsInRole("Manager"))

throw new ApplicationException("Access Denied");*/

Console.WriteLine("Pre-Authorization Code");

invocation.Proceed();

Console.WriteLine("Post-Authorization Code");

return null;

}

}

}

The AuthorizationAdvice class implements the IMethodInterceptor interface declared in the
AopAlliance assembly. The nice thing about the AuthorizationAdvice class is that it captures only
the functionality it is meant to capture. If you take a deep plunge into the class, specifically the
Invoke method, you will notice no other logic except the authorization check code. This authorization
logic will then be injected in the core functional class.

Next, you can rewrite the functional class, as shown here:

using System;

namespace AOPServices.Services

{

public class NASDAQHeartBeatService

{

public NASDAQHeartBeatService()

{

}

public virtual void Start()

{

//Exchange-Specific Operation

Console.WriteLine("Exchange Started");

}

public virtual void Stop()

{

//Exchange-Specific Operation

Console.WriteLine("Exchange Stopped");

}

}

}

The only difference you will notice in NASDAQHeartBeatService is that the authorization logic
code is removed from both the Start and Stop methods. Another important fact to note is that both
the Start and Stop methods are now declared virtual. This is a mandatory declaration required by
the Aspect# framework in order to successfully conduct its injection activity.

The next and final step of this program is to define the Authorization aspect that composes the
weaving rules (see Listing 5-17).

5645ch05.qxd 3/3/06 12:15 PM Page 280

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 281

Listing 5-17. AOP-Based Heartbeat Service

using System;

using AspectSharp;

using AspectSharp.Builder;

using AOPServices.Services;

namespace AOPServices

{

class Class1

{

static void Main(string[] args)

{

String weavingRules =

" import AOPServices.Aspects " +

" " +

" aspect AuthorizationAspect for [AOPServices.Services] " +

" " +

" pointcut method(* Start())" +

" advice(AuthorizationAdvice)" +

" end" +

" " +

" pointcut method(* Stop())" +

" advice(AuthorizationAdvice)" +

" end" +

" " +

" end ";

AspectLanguageEngineBuilder builder =

new AspectLanguageEngineBuilder(weavingRules);

AspectEngine engine = builder.Build();

NASDAQHeartBeatService nasdaqService=

engine.WrapClass(typeof(NASDAQHeartBeatService)) as NASDAQHeartBeatService;

nasdaqService.Start();

Console.ReadLine();

}

}

}

Let’s do a step-by-step walk-through of the code described in Listing 5-17. The most interesting
and important piece of code is the weaving rules. The weaving rules are plain, ordinary text where the
source could be an XML file or a database. It is defined in accordance with the Aspect# framework,
and based on this rule definition, the framework initiates its code injection process.

The import section captures the required namespaces to be imported. This is required by the
framework to successfully resolve the advice and point-cut. The next section deals with the aspect
by declaring a friendly name and capturing the list of classes on which this aspect needs to be applied.
With the help of namespace features, you group the service and aspect classes. Hence, the rule defini-
tion states the intention of applying AuthorizationAspect on all classes grouped under the AOPServices.
Services namespace. The last section is a repeatable section composed of information related to the
point-cut and advice. The two methods identified as point-cut are the Start and Stop methods, and
at this point you inject the Authorization advice. This also marks the end of the rule definition step.

5645ch05.qxd 3/3/06 12:15 PM Page 281

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE282

Figure 5-16. Console output of AOP-enabled heartbeat service

String weavingRules =

" import AOPServices.Aspects " +

" " +

" aspect AuthorizationAspect for [AOPServices.Services] " +

" " +

" pointcut method(* Start())" +

" advice(AuthorizationAdvice)" +

" end" +

" " +

" pointcut method(* Stop())" +

" advice(AuthorizationAdvice)" +

" end" +

" " +

" end ";

The final phase of the code is to use AspectLanguageEngineBuilder and AspectEngine defined
in the Aspect# framework that will then dynamically inject these rules:

AspectLanguageEngineBuilder builder =

new AspectLanguageEngineBuilder(weavingRules);

AspectEngine engine = builder.Build();

Once the rules are fed to the Aspect#’s core engine, a new instance of NASDAQHeartBeatService
is created using the framework WrapClass factory method. If you compile and run this program, you
will see the output shown in Figure 5-16 displayed on the screen.

NASDAQHeartBeatService nasdaqService=

engine.WrapClass(typeof(NASDAQHeartBeatService)) as NASDAQHeartBeatService;

nasdaqService.Start();

This demonstrates the power of AOP. An important point to add to your knowledge bank is that
the advice has complete knowledge about its calling method execution context. For example, in the
AuthorizationAdvice class, you can easily examine and modify the injected method’s incoming
arguments by inspecting the appropriate properties of the IMethodInvocation interface.

AOP is not a new concept. The ideas adopted by AOP have been prevalent in the Microsoft world
for quite a while and can be tracked to the COM days when infrastructure services such as thread
safety, object pooling, transaction support, authentication, and authorization were provided by flip-
ping the appropriate switches in the component configuration UI window. AOP has recently started
gaining a lot of recognition as one of the techniques to further raise the level of abstraction in designing
an easy-to-maintain system. However, AOP is not a panacea to all problems. You must continue to
keep your foot in the OOP territory. But, with the passage of time, the adoption rate of AOP in real-life
applications will probably increase; we would not be surprised to see it prevailing in the mainstream
software development.

5645ch05.qxd 3/3/06 12:15 PM Page 282

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 283

Figure 5-17. Application operation engine

Examining the Business-Technology Mapping
Before you step into the actual design, it is important to look at the important role played by the
operations team in an organization. Within most companies, a dedicated team known as the operations
team is appointed. The important task of continuously monitoring the activity of trading applications
in the production environment and raising an alarm in the case of abnormal behavior rests on their
shoulders. The development team relies on the information gathered by the operations team when
it comes to fixing bugs or fine-tuning application behavior. The existence of an operations team relieves
the development team from intervening in the day-to-day application hitches and allows them to
actively focus on their core task of designing and building applications.

It also means the development team needs to equip the operations team with a rich set of
information that will allow them to get thorough insight into the underpinnings of the applications.
This is where a need for implementing a centralized application operation engine that will allow the
operations team to monitor and administer applications running in an organization is determined.
The application operation engine will act as the eyes and ears of the trading applications, which
allows the operations team to watch the status of the application’s health and activity and also acts
as a central information repository for trading applications. From a features perspective, this engine
will support all kinds of operational features such as centralized logging, security, configuration, and
so on.

The framework of the application operation engine is pretty straightforward. It is similar to
the master-slave architecture style where there is one primary application controller and multiple
application agents. The primary controller is installed on a dedicated machine and separate from
the core trading applications. Agents are installed on the machine where the core trading applica-
tion resides, as depicted in Figure 5-17.

In Figure 5-17 both trading and market data agents are assigned the task of managing order-
matching and market data applications, respectively. The primary controller, besides being aware
of the active agents, also provides various services that are leveraged by applications controlled by
these agents. These services take the form of server-side services and agent-side services. Server-side

5645ch05.qxd 3/3/06 12:15 PM Page 283

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE284

services are those services that are executed under the context of the primary controller. Similarly,
agent-side services execute under the context of the agent. A typical example of agent-side services
is an application management service that includes logic to load and unload trading applications,
so it is quite obvious that such logic needs to be executed on the actual machine where the applica-
tions are installed. Services hosted by the primary controller include logging, instrumentation, health
monitoring, and so on, that is executed inside the context of the server. The final piece in Figure 5-17
is the application operator GUI, which is responsible for the visual representation of information
collected from the primary controller. In other words, it is through this GUI application that the
operator or development team will be able to watch and monitor the application’s activity.

.NET Remoting is the mainstream approach for building a centralized application controller. First
you must identify the important components of remoting, which are the server application and
client application, and finally you define a list of classes that needs to be exposed remotely. The first
step is to model both the primary controller and the agent as separate distinct Singleton remotable
classes that will be extended from MarshalByRefObject. Also, both the agent and primary controller
will be physically separated so you require a host application that will register the channel and for-
matting information. Hence, we have adopted TCPChannel as the primary communication channel
between the agent and the primary controller and BinaryFormatter as the data-encoding standard.
The next part of the implementation is to understand how you make the trading application aware
of the existence of a service controller and allow it to use the features provided by the controller.

The primary controller owns complete knowledge of trading applications to be monitored along
with its designated agent. Let’s assume that the mapping information between the agent and appli-
cation is recorded in an XML configuration file. After reading this mapping information, the primary
controller will notify agents with the list of trading applications assigned to it and also instructs them
to start the application. There is an initial handshake conducted between the agent and primary
controller, and during this handshaking phase both the agent and the primary controller create
a unique instance of DomainApp at their ends. DomainApp, also called the domain application, is our own
internal implementation and encapsulates the infrastructure services discussed previously such as
logging, configuration, and so on. To be more precise, an instance of DomainApp created by the primary
controller encapsulates the server-side services, and an instance of DomainApp created by the agent
encapsulates the agent-side services. For each trading application managed by a primary controller,
a unique instance of DomainApp is created on both sides, but the underlying class of this instance itself
is derived from MarshalByRefObject. So if a reference is passed outside its default application domain,
it will be passed as marshaled by reference, and this is what happens during the handshake stage.
Both the agent and primary controller receive proxy references to each other’s instance of DomainApp,
which in turn would allow them to invoke both server-side and agent-side services.

The next part is to launch trading applications, and this functionality is considered to be an agent-
side service, so you will package this logic in the form of an application management service. The
application management service creates a new application domain and executes the application
inside this newly created application domain. Before executing, it assigns a reference of DomainApp
to this newly created application domain using the SetData method of the AppDomain class. The trad-
ing application accesses this DomainApp reference using the GetData method defined in the AppDomain
class and starts using the services provided by the application controller engine.

The only missing part that we will not cover is the GUI portion of the application operation engine.
But once you get a strong understanding of the components implemented in the operation engine,
then it is just a question of invoking the appropriate calls from the GUI. Then, the rest of the job is
performed by the primary controller and the agents.

Class Details
In this section, you will develop a scaled-down version of an application operation engine. Although
it will not support all the operational features, the motive is to prove that remoting is an ideal fit for
building these kinds of monitoring applications. However, keep in mind that because the monitoring

5645ch05.qxd 3/3/06 12:15 PM Page 284

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 285

applications depend upon the nature of the requirement, in some exceptional cases remoting may
not look like a perfect fit. Before you start with the low-level code details, you need to be acquainted with
the project hierarchy (see Table 5-6).

Table 5-6. Application Operation Engine Assembly Structure

Assembly Type Project Name References Description

Console application AppController Common AppController is the primary
controller, so it contains the code
to connect to agents, to assign
agents a list of trading applications
to monitor, and also to provide
server-side services.

Console application AppAgent Common AppAgent is the agent that executes
the actions issued by the primary
controller.

Shared library Common The shared library contains both
classes and interfaces shared among
the primary controller, agents, and
domain applications.

Console application OrderMatching Common OrderMatching represents a real-life
trading application that will be under
the surveillance of an application
agent.

In this scenario, ideally, all console applications must be ported to a Windows service so that
they can be launched from the Windows startup without any user intervention. But for demonstra-
tion purposes, the console applications will always be our friend. Figure 5-18 shows the application
operation engine class diagram, and Figure 5-19 shows the application operation engine’s project
structure.

Figure 5-18. Application operation engine class diagram

5645ch05.qxd 3/3/06 12:15 PM Page 285

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE286

IController
The IController interface is shared between both the agent and the primary controller application.
A controller from a simple definition point of view is an entity that is assigned the task of controlling
or organizing something. So, in both the primary controller and the agent application, you need an
entity that will supervise and coordinate the application’s activity. IController defines a list of mem-
bers and properties that is implemented by the concrete controller class of the primary controller
and agent.

Here’s the code for IController:

using System;

using System.Collections;

namespace Common

{

public interface IController

{

//This method is invoked on the agent by the primary controller.

//It is with the help of this method that the primary controller empowers

//the agent by assigning a list of applications that directly fall

//under the agent's control.

DomainApp CreateApplication(AppInfo appInfo, DomainApp serverApp);

Figure 5-19. Application operation engine project structure

5645ch05.qxd 3/3/06 12:15 PM Page 286

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 287

//This property determines whether the controller

//is an agent or a primary controller.

bool IsAgent{get;}

//The concept of data bag is not unique. Its existence could be

//drawn from Windows OS that provides similar features in the form

//of environment variables. With the help of environment variables,

//important configuration information are shared among OS processes.

//We are following a similar path by introducing the data bag, but the

//information is shared among services. With the help of this method, the

//primary controller passes the information to the agent that is then

//shared with agent-side services.

void InitializeDataBag(Hashtable dataBag);

}

}

AppInfo
AppInfo is a serializable class that acts as an information holder for the primary controller and its
agents. We discussed the primary controller assigning a list of trading applications to the agent, so
this task is encapsulated inside an instance of the AppInfo class and passed to the agent. It contains
information such as the assembly path, assembly name, and so on, that is finally resolved by the agent.

Here’s the code for AppInfo:

using System;

using System.Collections;

namespace Common

{

[Serializable]

public class AppInfo

{

string appName, assemblyName;

string assemblyPath;

public string AssemblyPath

{

get{return assemblyPath;}

set{assemblyPath=value;}

}

public AppInfo(string name)

{

appName = name;

}

public string Name

{

get{return appName;}

set{appName=value;}

}

public string AssemblyName

{

get{return assemblyName;}

5645ch05.qxd 3/3/06 12:15 PM Page 287

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE288

set{assemblyName=value;}

}

}

}

DomainApp
DomainApp is an important class inside the applications operation framework because the various
services such as logging, configuration, application management, and so on, are made accessible
through the instance of this class. DomainApp is derived from the MarshalByRefObject type, and hence
its instance is also remotely accessible.

Here’s the code for DomainApp:

using System;

namespace Common

{

public class DomainApp: MarshalByRefObject

{

AppInfo appInfo;

ILogger logger;

IConfiguration configuration;

Service appMgmt;

//The underlying information about the actual application

//is available with the help of the AppInfo property.

public AppInfo Info

{

get{return appInfo;}

}

public DomainApp(AppInfo info)

{

appInfo = info;

}

//This property allows accessing the functionality provided

//by the Application management service.

public Service AppManagement

{

get{return appMgmt;}

set{appMgmt=value;}

}

//The Logger property encapsulates centralized logging features.

public ILogger Logger

{

get{return logger;}

set{logger =value;}

}

}

}

5645ch05.qxd 3/3/06 12:15 PM Page 288

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 289

IConfiguration
The IConfiguration interface is implemented by the configuration management service. It contains
only one method, GetConfig, which is invoked to get configuration information about the application.

Here’s the code for IConfiguration:

using System;

using System.Xml;

namespace Common

{

public interface IConfiguration

{

XmlElement GetConfig();

}

}

ILogger
The ILogger interface defines the contract that every logging service must implement.

Here’s the code for ILogger:

using System;

namespace Common

{

public interface ILogger

{

void Log(string logMsg);

}

}

Service
Service is the common base class for all operational services and includes both agent-side and server-side
services. This class defines common behaviors that are applied to all services, and it includes
behavior to start and stop services or to suspend and resume services. The methods are marked
virtual, which would allow the concrete service class to override the default behavior to suit its custom
requirement.

Here’s the code for Service:

using System;

namespace Common

{

public abstract class Service : MarshalByRefObject

{

protected IController serviceController;

protected DomainApp domainApp;

//The overloaded constructor accepts two arguments;

//the first argument is an instance of IController, and the

//second argument is an instance of DomainApp. It is important

//to educate the service about the underlying controller (primary controller

//or agent) and domain application inside which it is hosted.

5645ch05.qxd 3/3/06 12:15 PM Page 289

//Effectively, by providing this hosting context information,

//we allow the service to directly interact with the controller or

//domain application and allow them to leverage other services

//provided by the domain application; to sum up, we are laying a strong

//foundation to achieve interservice communication.

public Service(IController controller,DomainApp app)

{

serviceController = controller;

domainApp=app;

}

public virtual void Start()

{

}

public virtual void Stop()

{

}

public virtual void Suspend()

{

}

public virtual void Resume()

{

}

}

}

PrimaryController
The first concrete implementation of the controller, PrimaryController is derived from
MarshalByRefObject and also implements the IController interface. This class contains the
most important logic of connecting to agents and loading the server-side services.

Here’s the code for PrimaryController:

using System;

using System.Runtime.Remoting;

using System.Collections;

using Common;

using AppController.Services;

namespace AppController

{

public class PrimaryController: MarshalByRefObject,IController

{

Hashtable agents = new Hashtable();

Hashtable dataBag = new Hashtable();

//The constructor method populates the data bag by

//invoking the InitializeDataBag method. The body of the method

//is empty, but ideally the data bag values will be fetched

//from the XML File or database or some other data source.

public PrimaryController()

{

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE290

5645ch05.qxd 3/3/06 12:15 PM Page 290

InitializeDataBag(dataBag);

}

public AgentInfo this[string agentName]

{

get{return agents[agentName] as AgentInfo;}

}

public void Start()

{

ConnectAgents();

}

public void InitializeDataBag(Hashtable data)

{

}

//The real handshaking among agents is performed inside this code.

//The list of agents, primarily their locations, is stored in a application

//configuration file as part of remoting section; after reading this

//location values with help of remoting helper method, we enter

//a foreach loop. It is inside this loop a remote instance

//of agent is created on remote server and its reference is stored for

//subsequent access. After successful creation of agent, the next step

//is to assign it the list of applications that are directly under its

//supervision.

public void ConnectAgents()

{

foreach(WellKnownClientTypeEntry clientEntry in

RemotingConfiguration.GetRegisteredWellKnownClientTypes())

{

Console.WriteLine("Connecting to Agent : " +clientEntry.ObjectUrl);

IController agent = Activator.GetObject(typeof(IController),

clientEntry.ObjectUrl) as IController;

agent.InitializeDataBag(dataBag);

AgentInfo agentInfo = new AgentInfo(agent);

agents[clientEntry.ObjectUrl] = agentInfo;

InitializeApplications(agentInfo);

}

}

//In this section of code both primary controller and agent

//creates an instance of domain applications and attach the

//list of services applicable on their end. Again for sake

//of simplicity, we have hardwired the application name,

//the application path, and the assembly name inside the code,

//but the best approach is to separate this information

//in a configuration file and also assign the agent controlling

//these applications. You will also notice a call to

//CreateApplication method happening on both the primary controller

//and agent; this method invocation will ensure that both agent and

//primary controller have performed the necessary required set-up.

//Another important section of code to look is the exchange of remote

//references, particularly an instance of the AppManagement class reference.

//When we invoke CreateApplication method on an instance of agent, we

//also pass a reference to server-side domain application, and on successful

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 291

5645ch05.qxd 3/3/06 12:15 PM Page 291

//execution of this method it returns a reference to agent-side domain

//application, which itself is a remote reference. We know that both

//server-side and agent-side services are derived from the common base class

//Service, so by accessing the AppManagement property of remote instance of

//domain applications, we will be returned with proxy reference.

public void InitializeApplications(AgentInfo agentInfo)

{

AppInfo appInfo = new AppInfo("Order Matching");

appInfo.AssemblyName = "OrderMatching.exe";

appInfo.AssemblyPath = @"C:\CodeExample\Chpt5\SCE\OrderMatching\bin\Debug";

DomainApp omeServer= this.CreateApplication(appInfo,null);

DomainApp omeClient= agentInfo.Agent.CreateApplication(appInfo,omeServer);

omeServer.AppManagement = omeClient.AppManagement;

agentInfo.Applications.Add(omeServer.Info.Name,omeServer);

}

//The required initialization of domain application is performed

//inside this code, what we meant by initialization is configuring

//the services and assigning its reference back to the domain application.

public DomainApp CreateApplication(AppInfo appInfo, DomainApp serverApp)

{

DomainApp newApp = new DomainApp(appInfo);

LogManagement logMgmt = new LogManagement(this,newApp);

return newApp;

}

public bool IsAgent

{

get{return false;}

}

}

}

AgentInfo
The AgentInfo class stores information related to an agent. Besides storing agent remote references,
it also stores the instances of applications that are controlled by an agent.

Here’s the code for AgentInfo:

using System;

using System.Collections;

using Common;

namespace AppController

{

public class AgentInfo

{

IController agent;

Hashtable applications = new Hashtable();

public Hashtable Applications

{

get{return applications;}

}

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE292

5645ch05.qxd 3/3/06 12:15 PM Page 292

public IController Agent

{

get{return agent;}

}

public AgentInfo(IController controller)

{

agent=controller;

}

}

}

LogManagement
The LogManagement service addresses the logging aspect of a trading application and is categorized
under server-side services. The code is pretty straightforward and, depending upon the business
requirement implementation of the Log method, can be tweaked to suit the need of application:

using System;

using Common;

namespace AppController.Services

{

public class LogManagement : Service,ILogger

{

public LogManagement(IController controller,DomainApp app)

:base(controller,app)

{

app.Logger = this;

}

//Logging of Messages

public void Log(string logMsg)

{

Console.WriteLine(logMsg);

}

}

}

Primary Controller Remoting Configuration
This is the primary controller remoting configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<channels>

<channel ref="tcp" port="20000">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

<client>

<wellknown url="tcp://localhost:20001/TradingEngineAgent.rem"

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 293

5645ch05.qxd 3/3/06 12:15 PM Page 293

type="Common.IController, Common" />

</client>

</application>

</system.runtime.remoting>

</configuration>

Primary Controller Host
The Host class launches the primary controller shell and also invokes the application management
service that is an agent-side service. The primary controller instructs this service to start the appli-
cation, which is equivalent to launching a remote application.

Here’s the code for the primary controller host:

using System;

using Common;

using System.Runtime.Remoting;

namespace AppController

{

class Host

{

static void Main(string[] args)

{

//Start Primary Controller

PrimaryController primaryController = new PrimaryController();

RemotingConfiguration.Configure(@"AppController.exe.config");

RemotingServices.Marshal(primaryController ,

"PrimaryController.ref",typeof(PrimaryController));

primaryController.Start();

Console.WriteLine("Primary Controller Started");

//Access trading agent, and invoke the application management service

Console.WriteLine("Starting App Management Service..");

AgentInfo agentInfo =

primaryController["tcp://localhost:20001/TradingEngineAgent.rem"];

DomainApp omeApp = agentInfo.Applications["Order Matching"] as DomainApp;

omeApp.AppManagement.Start();

Console.ReadLine();

}

}

}

AgentController
This class represents an agent-side controller, so the code of this class is more or less similar to the
server-side controller code. The important section in this class is the CreateApplication method;
inside its method body, a new instance of DomainApp class is created, and also agent-side services are
initialized. Remember, the CreateApplication method is invoked by the primary controller, which also
happens to pass its remote reference of DomainApp, so you assign the proxy reference of server-side
services to an instance of the agent-side DomainApp.

Here’s the code for AppController:

using System;

using System.Collections;

using Common;

using AppAgent.Services;

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE294

5645ch05.qxd 3/3/06 12:15 PM Page 294

namespace AppAgent

{

public class AgentController : MarshalByRefObject,IController

{

Hashtable appCollections = new Hashtable();

Hashtable dataBag;

public AgentController ()

{

}

public void InitializeDataBag(Hashtable data)

{

dataBag = data;

}

public DomainApp CreateApplication(AppInfo appInfo, DomainApp serverApp)

{

Console.WriteLine("Creating Application : " +appInfo.Name);

DomainApp newApp = new DomainApp(appInfo);

AppManagement appMgmt = new AppManagement(this,newApp);

newApp.Logger = serverApp.Logger;

appCollections[appInfo.Name] = newApp;

return newApp;

}

public bool IsAgent

{

get{return true;}

}

}

}

AppManagement
AppManagement is an agent-side service that is responsible for launching and stopping the trading
application. It creates a new application domain and a new thread and executes the trading appli-
cation inside this newly created domain. Another interesting thing to note is that a reference to the
agent-side instance of DomainApp is passed using the SetData method of the AppDomain class.

Here’s the code for AppManagement:

using System;

using System.Threading;

using Common;

namespace AppAgent.Services

{

public class AppManagement : Service

{

AppDomain newDomain;

Thread newThread;

public AppManagement(IController controller, DomainApp app)

:base(controller,app)

{

app.AppManagement = this;

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 295

5645ch05.qxd 3/3/06 12:15 PM Page 295

newThread = new Thread(new ThreadStart(LaunchApp));

}

public void LaunchApp()

{

newDomain = AppDomain.CreateDomain(domainApp.Info.Name);

string appFullPath= domainApp.Info.AssemblyPath +"\\"

+domainApp.Info.AssemblyName;

newDomain.SetData("SERVICE_DOMAINAPP",domainApp);

newDomain.ExecuteAssembly(appFullPath);

}

public override void Start()

{

newThread.Start();

}

public override void Stop()

{

}

public override void Resume()

{

}

public override void Suspend()

{

}

}

}

Agent Remoting Configuration
This is the agent remoting configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="Singleton" objectUri="TradingEngineAgent.rem"

type="AppAgent.AgentController, AppAgent" />

</service>

<channels>

<channel ref="tcp" port="20001">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE296

5645ch05.qxd 3/3/06 12:15 PM Page 296

Agent Host
This is the agent host:

using System;

using System.Runtime.Remoting;

namespace AppAgent

{

class Host

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(@"AppAgent.exe.config");

Console.WriteLine("Service Controller Agent Started...");

Console.ReadLine();

}

}

}

Order-Matching Application
If you peek at the primary controller code, you will see a reference to the order-matching application.
On further digging inside the host code of the primary controller, you will also discover a startup call
to the application management service, and you are already aware of the functionality provided by
this service. The code inside the order-matching application retrieves a reference to an instance of
DomainApp assigned by the application management service, and by using this instance, it invokes
logging service. The actual logging is performed on the server and not on the client as depicted in
the following program output:

using System;

using System.Threading;

using Common;

namespace OrderMatching

{

class Class1

{

static void Main(string[] args)

{

DomainApp serviceApp =

AppDomain.CurrentDomain.GetData("SERVICE_DOMAINAPP") as DomainApp;

serviceApp.Logger.Log("Order Matching Started");

}

}

}

Figure 5-20 shows the console output of the application operation engine.

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE 297

5645ch05.qxd 3/3/06 12:15 PM Page 297

Summary
In this chapter, we explained and implemented the following:

• We achieved fault isolation in managed applications using application domains. We demon-
strated this concept by implementing a central service controller that is responsible for managing
trading operation–related services such as the heartbeat service.

• We explored the remoting communication framework by implementing a distributed version
of the central service controller example.

• We demystified the secrets behind the remoting proxy with the help of a service directory
lookup example.

• We covered the mechanics of distributed garbage collection and demonstrated how the leasing
and sponsorship feature is used in designing remote objects that are subject to garbage
collection only after trading hours.

• We explained the aspect-oriented programming concept that allows the separation of cross-
cutting concerns from the functional modules.

• Finally, we designed and developed a small prototype of an application operation engine
that enables the instrumentation and management of various subcomponents of a system.

CHAPTER 5 ■ THE APPLICATION OPERATION ENGINE298

Figure 5-20. Console output of the application operation engine

5645ch05.qxd 3/3/06 12:15 PM Page 298

C H A P T E R 6

■ ■ ■

STP Security

Money holds strong reference with the rich and weak reference with the poor.

We introduced the concept of STP in Chapter 1 and described it as moving trades right from the
order-entry stage to settlement without manual intervention. The explanation provided in Chapter 1
highlighted both the internal and external aspects of STP. In this chapter, we will cover the external
STP aspect in more detail and also explain what type of security aspects are required for the process.
Security in external STP becomes important because multiple entities are involved in moving every
trade from origination to settlement. This chapter kicks off its discussion with a detailed business
explanation and then slowly changes its rhythm to the technical side, which includes basic coverage
of the cryptography- and security-related programming features supported by the .NET Framework.

Exploring the Business Context
Participants in any trade are many, and all are geographically spread out. They all need to settle
trades in a time-bound manner. Hence, security in exchanging data becomes a key consideration.
There is normally no time for trade rectification, and the cost of repair in the later stage of trade set-
tlement is high. Chapter 1 covered the trading and settlement fundamentals. In this chapter, you will
see the steps involved in STP in more detail. This will complete your understanding of settlement in
the equities market. We will introduce two more entities here: custodian service providers and STP
service providers. They both play important roles in the overall settlement and STP process.

Custodian Service Provider
Investors trust fund managers with their money. But that does not give fund managers ownership
over an investor’s assets. They are just money managers. From a governance perspective, it is required
that a third-party entity holds securities in its name on behalf of the ultimate investors. This third-
party entity is called the custodian of the securities. A custodian is responsible for delivering and
receiving securities and cash on the instruction of the fund manager whenever a purchase or sale
transaction takes place. A fund that invests securities in multiple markets and asset classes needs
a custodian who can provide support in multiple locations and across asset classes. Custodians
normally have presence across major locations, and wherever they don’t, they enter into agreements
with other custodians to provide such services. The second-level custodians that serve the bigger
custodians are called subcustodians.

299

5645ch06.qxd 3/3/06 12:24 PM Page 299

CHAPTER 6 ■ STP SECURITY300

STP Service Provider
STP service providers have the responsibility of carrying and delivering STP-related instructions
and messages. They provide connectivity to market entities such as brokers, custodians, and fund
managers and bring them together in a common network. Once the entities enter the common net-
work, they communicate with each other using standard messaging protocols such as Swift 15022.
STP service providers invest in high-end fault-tolerant hardware and invest in creating a network
that becomes the backbone in such message-based communication. For an STP service to succeed,
it is important that it has a critical mass of institutions along with it. More institutions would mean
higher volumes, which in turn mean higher margins (assuming a fixed cost regardless of the num-
ber of institutions signing in). In most countries, more than one STP service provider exists. This is
to encourage competition so that users have a choice, which in turn yields better service for institu-
tions. This raises another challenge of interoperability.

In markets where more than one STP service provider exists, institutions have a choice. They
can sign up with one service provider after considering the cost structure, reliability, image, and reach
of the service provider. In such cases, a possibility is that the fund manager, custodian, and broker
involved in a particular transaction are on separate networks because they have subscribed to the
services of different service providers. To settle transactions in such cases, messages need to be
passed from one service provider (network) to another service provider (network). To achieve this,
connectivity needs to exist between the three competing networks, and they also need to either be
on the same protocol or understand the same protocols. This ability to seamlessly communicate
with each other across service provider networks and settle transactions is called interoperability.
Noncompliance to interoperability is an area of key concern for market participants, especially if
they have a large customer base. This will alienate institutions that are not with the same service
provider. Compliance to interoperability is normally monitored by the country’s regulators or industry
associations.

Driving Factors Behind STP
STP was initiated as part of the T+1 initiative by the equities market. Transactions are currently being
settled on a T+3 basis. Industry participants are keen to push efficiencies across their own organization
as well as in the overall markets. STP was the central theme around which the T+1 initiative rested.
The T+1 initiative would have resulted in less risk, better capital deployment, and an overall strength-
ening of the financial markets. In fact, an association called Global Straight-Through Processing
Association (GSTPA) was formed to drive the T+1 initiative. However, the initiative was abandoned
in November 2002 because it was met with an unenthusiastic response from industry participants.
Although the industry participants believe that STP is necessary, they were not convinced of T+1.

STP is driven by a couple of factors. We’ll cover some of them in the following sections.

Standardization
Institutions work on a variety of applications, which are themselves on different hardware and soft-
ware platforms. Different institutions work on different applications and used to communicate via
phone calls, faxes, e-mails, and file transfers. Apart from reading these communications and acting on
them, the recipient of these messages really did not have many other choices. There was no automa-
tion of processes. STP helps standardize the interinstitution communication in order to streamline
operations.

Reduction in Costs
Security trading has become a commodity business. This means customers don’t really perceive much
difference between getting their trades executed through broker X versus broker Y unless the quan-
tity of shares transacted (or their related value) is very large. This is much like buying an airline

5645ch06.qxd 3/3/06 12:24 PM Page 300

ticket today. For a 2-hour flight, passengers really don’t care whether they are flying carrier A or
carrier B as long as the services of both are reasonably comparable. This commoditization of services
has happened even in the securities industry, and when service levels are comparable, customers
really don’t care whether they route transactions through broker X or broker Y. With the differentiation
in service levels eroding, any differentiation with respect to cost leads to a comparative advantage
for the broker. Brokers are hence taking proactive steps to reduce overall transaction costs and pass
on the benefits in the form of a lower brokerage to customers. Moving toward STP has demonstrated
significant cost savings.

Reduction in Settlement Time
To improve capital allocation and to contain settlement risk, reducing the settlement time from T+5
to T+2 and any initiative toward T+1 will compress the window available for managing settlement-
related activities even further. This makes automation at all levels mandatory.

Reduction in Head Count
Traditional processes in settlements were such that institutions were forced to add staff with increas-
ing volumes. A fixed number of staff could not take on additional volumes when market activity
started to rise. With STP in place, an existing staff can manage even high volumes because the bulk
of transactions pass through and settle through an automated process.

Addressing Exceptions
The settlement process is changing. It is now increasingly being seen as a cost center. The earlier
approach was that every transaction was manually attended to for completing settlements, but now
it is only the problematic transactions to which settlement managers pay attention. All transactions
that don’t have any issues are just allowed to go through.

Single-Point Transaction Fulfillment
While institutions are constantly upgrading their operations, they realized that handling multiple
points of data entry, especially if they relate to the same transaction, is cumbersome and prone to
errors. STP ensures that all trade data enters the STP network only once, and then the same transac-
tion moves on. This results in a savings of effort and an error-free environment. Extensive manual
work was also being done in post-trade activities such as calculating average rates, taxes, and other
levies, and the level of accuracy that customers demanded was not possible in a manual environment.

A Perspective of STP
To appreciate the benefits of STP, you first need to understand the perspective under which STP
happens. Historically, the process of settlements was fairly manual and involved a lot of phone con-
versations, faxing, and e-mailing. The settlement departments of brokers and custodians had to ensure
that they met whatever their obligations were and met them on time. Despite this, trades used to
fail in settlement because of manual involvement, and worse is that all failures used to come to light
only after the process for settling all trades for that settlement were complete. The entire process of
settlements was time-consuming and fraught with a lot of problems and risk involving time delays,
failed settlements, and too much manual work.

To move toward STP, the two main challenges are getting all entities on a common platform so
that they can communicate with each other and having a common protocol to understand seamlessly
what others in the process are discussing. The STP service providers largely overcame this hurdle. It
is also important that a critical mass of institutions be on the STP network. Currently, most institutions

CHAPTER 6 ■ STP SECURITY 301

5645ch06.qxd 3/3/06 12:24 PM Page 301

CHAPTER 6 ■ STP SECURITY302

Figure 6-1. Block diagram of participants in STP

have adopted STP technology, and those who have not are running the risk of being alienated by
other institutions because everyone is looking to do business with tech-savvy institutions that don’t
pose a risk when becoming a counterpart.

STP in an equities trade involves the following entities (see Figure 6-1):

• Investing institutions (fund managers)

• Custodians

• Brokers

• STP service providers

The STP service provider sells its STP services to fund managers, brokers, and custodians and
expects them to join their service. Once they join, they are given a terminal through which they can
connect to the common network and communicate through a common and standard protocol such
as Swift 15022. Having a common protocol for communication is important. This ensures that from
day one each participant can understand what the others are saying and ensures that no one organi-
zation has an edge over the other in this entire framework. The entire network is also independent
of which systems or front/back office products the organizations are using. The network is platform
neutral. Once these organizations are on a common network and have the ability of processing trade-
related information electronically using the communication protocol, technically they are STP enabled.

Along with entities mentioned, the following also play a crucial role in enabling the STP process
in the market:

• Stock exchanges

• Clearing corporations

• Depositories

• Banks

These other entities also play an important role in enabling the STP process and will continue
to play a vital role, especially if the market again creates an initiative to move from T+3 to T+1. STP
also will not be achieved until both institutional and retail trades are brought into the STP framework.
In a T+3 to a T+1 environment, there is as much risk from retail trades as there is from institutional
trades. Though the value of retail trades is a lot less than institutional trades, a lot of discipline is
required on the retail side, especially when it comes to meeting commitments on time. Retail investors

5645ch06.qxd 3/3/06 12:24 PM Page 302

CHAPTER 6 ■ STP SECURITY 303

are normally required to deliver the shares in a sale transaction and provide money to brokers to meet
their purchase commitments. This money ultimately has to move to the clearing corporation’s account
by T+3 (or T+1 as the case might be). Moving money normally happens through multiple accounts.
A retail investor will first write a check in favor of his broker. The broker in turn will write a check in
favor of the clearing corporation. Moving money may take time, especially when it is not the only
thing investors are doing. Banks must be geared up in terms of systems to meet these challenges
and move money fast.

Brokers and financial institutions have spent a lot of time, effort, and money on centralizing and
consolidating their IT operations. To achieve true STP, this IT structure, especially the part related to
decision making, will again have to be decentralized. This also means that just as fund managers,
brokers, and custodians use a mix of their systems and the STP service providers’ services, other
entities such as a broker’s franchises (if the broker operates on a franchise model), exchanges, and
depositories must also devise their operations and processes in such a way that they are able to
communicate and work effectively so that the market as a whole can come to the T+1 model. For
example, for retail transactions, instead of expecting delivery of shares from the broker, if the deposi-
tory also builds in the facility of accepting shares directly from the retail investor’s accounts, then
those investors who maintain their securities with a broker (other than the one who has executed
the transaction) can deliver the securities directly by the pay-in date. This transaction could be tagged
by the broker’s code so that the clearing corporation also knows the name of the broker against whose
obligations these securities could be deemed delivered. This will reduce the leg of investors first
transferring shares in the broker’s account and brokers in turn transferring them to the clearing cor-
poration’s account at the time of pay-in. Similarly, at the time of pay-out, the clearing corporation
could directly transfer the shares.

In fact, true STP can be achieved only when all these entities come forward and participate in
the STP process and only when interoperability issues have been addressed.

How Is STP Achieved?
We will attempt to explain STP with an example. Our emphasis in this example is on institutional
transactions rather than retail. This is because STP is more relevant for institutional transactions
because the number of entities and complexity involved in settling an institutional transaction is
greater than when settling a retail transaction. Let’s assume a buy transaction.

Fund managers run investment management services for individuals, governments, pension
trusts, corporations, and virtually everyone who has money and wants to deploy in the market in
search of returns. The complexity of the fund management process differs depending upon the
customer for which the fund is being managed, the type and objectives of the fund, the number
and category of securities the fund invests in, and the geographical diversification and investment
of the fund.

Fund managers buy or sell depending upon their perception of the market and underlying
securities. They buy when they are convinced the underlying securities will appreciate in value and
sell when they believe the underlying securities will decline in value. They benchmark their returns
with a broad-based index and also with other funds having a similar objective.

Fund managers route their orders through brokers. Fund managers try their best to keep the
composition of the fund’s portfolio aligned to the fund’s objectives. This alignment, realignment,
and fund manager’s changing perception of a stock’s value causes the purchase and sale of shares.
The sales desk staff of brokering companies looking for business also engages fund managers and
discusses the market trends and direction. They also discuss investment as well as divestment opportu-
nities. Normally such discussions result in the fund managers giving orders to buy or sell one or more
securities.

5645ch06.qxd 3/3/06 12:24 PM Page 303

Figure 6-2. The fund manager submits the order, and the broker sends a notice of execution.

When an order is given to the trading desk, the fund manager may consolidate orders from
multiple funds into one and forward it. This may happen frequently if the fund manager manages
assets for multiple portfolios and funds. When the order reaches the trading desk, the dealer may
aggregate those orders with orders from other clients/funds but put the same execution conditions
into a single block and then send the block for execution.

A lot of clients and fund managers use their own order management systems (OMSs) to connect
to the broker. They connect directly to the exchange where their orders are routed after passing risk
management checks laid down by the brokers, or these orders get delivered to the broker who in
turn enters the orders in the exchange trading system available. Establishing connectivity with bro-
kers is a key challenge in itself. Some countries have regulations on the amount of business that can
be passed to a single broker. Assuming regulators allow a maximum of 5 percent of transactions to be
given to one broker, it logically follows that each fund must at least maintain relations with a minimum
of 20 brokers. Establishing connectivity with each separately is impractical. Even if connectivity is
assumed, establishing connectivity alone is not enough to deliver orders. Orders must also be deliv-
ered in a format that brokers can understand. This format also has to be fairly standardized so that
all brokers understand it. The Financial Information Exchange (FIX) protocol has evolved as one of
the most popular protocols for the electronic exchange of securities information, especially on the
order delivery (front-office) side.

Returning to the example, execution on the exchange may or may not happen in the same
block of quantity. In fact, the order will most likely result in multiple fills and will hence result in
multiple trades. (Please refer to Chapter 2 to get more insight into this.)

The broker is required to regroup the executions and realign them according to the order. This
will most times require averaging out the trades and arriving at a common average price. Once the
average price is established, the broker will send out a “notice of execution” to the fund manager.

The notice of execution is sent through the STP service provider (see Figure 6-2). This notice of
execution is usually generated automatically by the broker’s system and passed to the STP service
provider’s system for further delivery.

CHAPTER 6 ■ STP SECURITY304

It could be possible that by looking at good prospects or a buoyant market, the fund manager
could have given a blanket buy order for multiple funds without disclosing the identity of individual
funds to the broker. Once the broker communicates that all execution is done, the fund manager can
then decide which part of execution will go into which fund. This information is returned to the bro-
ker through the STP service provider network. This process is called allocation. The broker uses the
allocation details to calculate the fees and taxes applicable and prepares the contract in the name of

5645ch06.qxd 3/3/06 12:24 PM Page 304

Figure 6-3. The fund manager provides allocation, and the broker sends the contract note.

CHAPTER 6 ■ STP SECURITY 305

the individual fund for which the transactions were originally meant. Once these details are ready, the
broker forwards the contract to the fund manager through the STP service network (see Figure 6-3).
In absence of such a mechanism, the broker would have to generate the contract notes, take hard-
copy printouts, and fax them to fund managers and custodians. The fund managers and custodians
would have to then pick up this fax and manually enter all the information in their system. Imagine
the number of faxes that would have been required to send if the fund manger worked with 20 bro-
kers and the broker catered to 20 fund managers. With digital signatures in place, the delivery of such
digitally signed contracts is legally treated on par with the physical delivery that used to happen.

Once the confirmation is received by the fund managers, the fund’s respective custodians need
to be informed about the executions so they can be ready for settling the transaction.

The custodian receives transaction details from the fund manager and execution details from
the broker. The custodian matches the two and accepts the transaction from the broker if all the details
match. Once a custodian accepts a transaction, settling this transaction becomes the responsibility
of the custodian. Custodians are normally clearing members in the clearing corporations that clear
the trades for exchanges on which brokers transact on behalf of fund managers. In case the contract
parameters do not conform to what was expected to be executed by the fund manager, the custodian
rejects the contract, and the profit or loss arising from transactions forming the contract becomes the
liability of the broker. Normally the broker squares up such transactions on the same day by entering
a reverse transaction in the stock exchange. In case the rejection has happened because of something
minor like an erroneous calculation of commission or taxes, then the broker has the facility to correct
the contents of the contract note and resubmit it to the custodian for acceptance.

One big benefit that brokers derive from being on the same network as the custodians is that
they know their obligations in real time. This is because the moment custodians reject any contract,
a message is sent to the broker as well. The broker can immediately take steps to square up the
transactions or regenerate the contract note as the case may be. In addition to real-time clarity over
the fate of contracts, everyone is aware and in complete control of what’s happening and when. Such
clarity and control is not present in a fax-based scenario. In the fax era, brokers knew that a fax had
been received by the fund manager/custodian but didn’t know whether they had acted on it also.

All communication between fund manager, custodian, and broker also happens through the
STP service provider network (see Figure 6-4).

5645ch06.qxd 3/3/06 12:24 PM Page 305

CHAPTER 6 ■ STP SECURITY306

Once the custodian accepts the transaction, they submit an instruction for receipt (remember, it
was a buy transaction) of securities. Similarly, the counterparty of this transaction (who sold the shares)
would have submitted an instruction for the delivery of securities. The submission of instruction is
a confirmation that an institution is standing by the transaction and wants to receive/deliver securities
in order to complete the settlement. Such instructions enter a database called a Standing Instructions
Database (SID). Once both sides of instructions get matched, the depository will move securities from
the seller’s account to the buyer’s account through the clearing corporation. Figure 6-5 shows the
complete STP framework (post-trade).

The settlement of funds happens through the usual banking channels.

Figure 6-4. The broker sends the contract details to the custodian; the custodian matches the details
with transaction information submitted by the fund manager.

Figure 6-5. Complete STP framework (post-trade)

5645ch06.qxd 3/3/06 12:24 PM Page 306

CHAPTER 6 ■ STP SECURITY 307

Figure 6-6. The STP space

Implementing Security in the STP Space
In this entire STP process, the exchange of information is key. Multiple actors are involved in the
STP space, and an individual actor plays an important role in making a transaction successful (see
Figure 6-6). When so many institutions are trying to get onto the same network and exchange mes-
sages with each other, the security and the reliability of the service provider’s network become the
main concerns.

A quick flashback to bygone days will reveal that the primary communication mediums used to
exchange information were telephone or fax. This type of communication involved quite a large amount
of paperwork to be produced and exchanged on a regular basis. However, in today’s modern age
with the availability of advanced communication infrastructure, information exchange has become
blazingly fast. Zero paperwork is involved; instead, the majority of information is made available in
electronic form. This is certainly a boon, but unfortunately the electronic medium has the following
problems:

Confidentiality: Confidentiality is related to the privacy of data; for example, when the broker
sends a contract note to a fund manager, the information provided in the contract note (such
as the number of trades executed and the price of individual trade) is very sensitive in nature. If
this information is compromised during transit by a malicious user (a fund manager competitor),
then it is sufficient to create havoc in the trading community. By gaining access to such infor-
mation, the competitor can easily infer the trading strategy, which is the bread and butter of
a fund manager.

Integrity: Data integrity is an important aspect of a transaction. Consider an order initiated by
a fund manager to a broker to purchase 100 stocks of Microsoft Corporation. Before it is received
by the broker, this order is altered by an unauthorized user, and the number of stocks is changed
to 1,000. On receiving this order, the broker immediately transacts and sends a confirmation to
purchase 1,000 stocks to the fund manager. No doubt it will come as a big blow to the fund
manager, and the financial impact of such a transaction will be irrecoverable.

Authentication: In bygone days, trading usually happened over phones; fund managers used to
directly place a call to a broker and submit the order. The advantage of such an approach is that
both parties know each other’s identity, but in a faceless world when a broker receives an order
in an electronic form, it is important to know the sender information. It is equally important to
the fund manager to know the source of data when the broker sends an order confirmation.

Nonrepudiation: Financial transactions are highly vulnerable to legal problems; the most notable
is the sender denying performing an invalid operation. Consider the data integrity example where
the quantity attribute of an order is changed from 100 to 1,000. It is expected that the fund man-
ager will deny performing any such action, but without any strong evidence the broker has no
way to prove this in a court of law.

The success of STP is solely dependent upon the mechanism implemented to protect the infor-
mation: the security of the information. A weak security implementation will lose the credibility and
acceptance of the STP. Therefore, to prevent loss of trust and to provide a strong sense of safety and

5645ch06.qxd 3/3/06 12:24 PM Page 307

CHAPTER 6 ■ STP SECURITY308

privacy to an individual actor, a secure platform is required where information is safely exchanged.
This is where the field of cryptography comes into action. Cryptography is a set of mathematical
techniques implemented to protect information. It includes mechanisms that effectively solve
the majority of problems encountered during the electronic exchange of information. By applying
cryptography in the STP space, all kinds of data-sharing barriers are eliminated, and a secure envi-
ronment is erected to conduct business.

Confidentiality
Cryptography addresses the confidentiality aspect of information by concealing it. The act of conceal-
ment includes disguising the existence of the actual information by converting it into a gibberish
message that is hard to understand and doesn’t convey any meaningful sense to the human eye. This
process is called the encryption of a message; similarly, a reverse process is conducted where the
encrypted message is transformed to its original message, and this process is known as the decryption
of the message.

The secret of encryption/decryption lies in the algorithm that is devised based on the tenets of
mathematics. This algorithm in cryptographic terminology is known as a cipher. A cipher contains
a set of established rules that knows how to encrypt and decrypt a message. The rules depend upon
a cipher key that is selected from a possible set of key spaces and that dictates the encryption/
decryption process.

An important fact of cryptography is that ciphers should be publicly known, but cipher keys,
which contain the actual information that needs to be protected, should be private. The safety of
the data is ultimately dependent upon the safety of the key and not the cipher. If the safety of the
data depended upon the cipher, then imagine the consequences if the cipher was broken. By carving
out safety based on the cipher key, decrypting the message becomes complex and time-consuming
because the attacker now has to play with all possible cipher keys in order to deduce the original
message. This whole concept is explained clearly with the help of a simple substitution cipher (see
Figure 6-7).

The strength of the substitution cipher resides in replacing every character with a mapped charac-
ter. This mapping information represents the key that is fed to the substitution algorithm that swaps
the original character with another one. By swapping characters, you produce a new encrypted
message that is also popularly known as the cipher text. It is hard to weed out the original message
from the cipher text, and the only way to recover it is to know the mapping rules (that is, the key). By
feeding the correct key and cipher text back to the substitution cipher, you can generate the original
message.

Figure 6-7. Substitution cipher

5645ch06.qxd 3/3/06 12:24 PM Page 308

CHAPTER 6 ■ STP SECURITY 309

Figure 6-9. Cipher mode

This example clearly demonstrates that the strength of encryption and decryption depends
upon the key. Even though the inner workings of a cipher are straightforward, without a legitimate
key the fund manager will fail to decode the encrypted message sent by the broker. Furthermore,
the number of possible keys that could be envisaged is directly related to the possible number of
ways that both alphabets and numbers can be arranged. Thus, an attacker has to build an exhaus-
tive list of all possible combinations in order to recover the original message. This kind of attack is
called a brute-force attack.

Besides the substitution cipher, a transposition cipher re-orders the arrangement of a message.
For example, in Figure 6-8, when plain text is passed to the transposition cipher, it rearranges the
message in a matrix fashion where an individual row represents n characters of the message. This n
forms the key, and in this example we have arranged the message in a row of ten characters. If
a message size is not a multiple of ten, then it is padded with a hyphen character. After splitting the
message, another round of shuffling is conducted where the individual character is read from top to
bottom in a columnar fashion to form the cipher text.

In both the transposition and substitution cipher examples, the whole encryption and decryp-
tion scheme is applied over the entire message, but in reality ciphers operate in two modes: block
mode and stream mode (see Figure 6-9). Block ciphers divide a message in blocks of an appropriate
size, and then an individual block is encrypted or decrypted. Similarly, stream ciphers are suitable to
encrypt or decrypt a message of a smaller size where the encryption/decryption scheme is applied
at an individual byte or bit level.

Figure 6-8. Transposition cipher

5645ch06.qxd 3/3/06 12:24 PM Page 309

CHAPTER 6 ■ STP SECURITY310

Today’s modern ciphers implement both a transposition technique and a substitution technique,
which makes it harder for attackers to break the message. But it doesn’t means it is an impossible task.
With the help of an advanced processor, an attacker can easily crack messages that are founded upon
a weak cipher or key. Therefore, the only approach to thwart an attacker attempt is to have a watertight
cipher and a key of a large size. By increasing the length of the key, the number of possible combi-
nations increases, which makes the attacker’s job much tougher. It also means the security of data and
a strong cipher are mainly dependent upon the key, and hence it is absolutely necessary to safeguard
the key from prying eyes.

Symmetric Key
Symmetric keys are also called shared keys because they are known to both the sender and the receiver,
and both the encryption and decryption tasks are achieved using this single key (see Figure 6-10).
Security based on a symmetric key is considered to be a secret/private communication between the
sender and the receiver. For example, if a broker is conducting business with multiple fund managers,
then it involves generating multiple shared keys, and each key is unique and exclusive to a particular
fund manager. By assigning a dedicated key to an individual fund manager, the broker is able to meet
both the authentication and the confidentiality aspects of the data. Furthermore, the symmetric
key–based ciphers are very fast and support the encryption/decryption of a large block of data with-
out any hit on performance.

The most popular symmetric algorithms are Data Encryption Standard (DES), Triple-DES, RC2,
and Rijndael. These algorithms are extensively used in both the commercial and academic fields and
are a success story in the field of security. However, the strength of these algorithms is determined
by their key size, which is different for each individual algorithm. As a matter of fact, DES is almost
on the verge of losing its market share because it implements a 56-bit key size, which is relatively
small in comparison with Rijndael and RC2. Rijndael supports key sizes of 128, 196, and 256 bits;
similarly, RC2 supports variable key sizes ranging from 1 byte to 128 bytes. Another important fact
about symmetric algorithms is that different types of modes are available to encrypt or decrypt
a message. This mode determines the granularity of the message that is considered for the encryption/
decryption.

Electronic Code Book (ECB)

Electronic Code Book (ECB) is the simplest mode of all available modes (see Figure 6-11). Given plain
text, it divides the message into a fixed block of n size. Then each individual block is encrypted or
decrypted, and finally the output produced by an individual block is combined to form cipher text
or plain text.

Figure 6-10. Symmetric key

5645ch06.qxd 3/3/06 12:24 PM Page 310

CHAPTER 6 ■ STP SECURITY 311

Cipher Block Chaining (CBC)

In Cipher Block Chaining (CBC) mode, the plain text is divided into a fixed block of n size, but each
block of plain text before being encrypted is XORed with the previous encrypted block, and encryp-
tion is performed on the output produced from this bitwise XOR operation (see Figure 6-12). There
is an exception that is applied only to the first block where the XORing operation is performed with
an initialization vector (IV). IV is random information generated to act as input to the first block of
plain text.

Cipher Feedback Mode (CFM)

Cipher Feedback Mode (CFM) is used to encrypt/decrypt data with a length smaller than block size
(see Figure 6-13). The characteristics of CFM make it look like a stream cipher and are highly suited
to encrypt a single byte or bit.

Figure 6-11. ECB mode

Figure 6-12. CBC mode

Figure 6-13. CFM

5645ch06.qxd 3/3/06 12:24 PM Page 311

CHAPTER 6 ■ STP SECURITY312

Figure 6-13 demonstrates the encryption of a single byte using CFM. The important element
that pumps this mode is the feedback register that is initially filled with the IV. The length of this
register is exactly equal to the underlying cipher block size; in this scenario, we have considered the
length of the block cipher to be 64 bits. Encryption is first performed on the feedback register, and
output produced from this operation is then XORed with the plain text. However, the number of bits
considered for the XORing operation depends upon the length of the input bits; for instance, if the
length of the plain text is 1 byte, then the leftmost 8 bits of output bit is XORed with 8 bit of input bits.
The output after the XORing operation is fed back to the feedback register; it involves shifting the
leftmost 8 bits. This entire operation is again repeated for the next stream of characters. A slight variant
of CFM is Output Feedback Mode (OFB). In this mode, the feedback register is populated with bits
that are produced after applying an encryption scheme, which is in contrast with CFM where the
feedback register is populated with bits produced after the XOR operation.

As you can see, the behavior of different cipher modes is fine-tuned for a specific scenario. For
example, if you come across an interactive-based application where every keystroke needs to be imme-
diately transmitted to its recipient, then CFM and OFB are much more secure than CBC.

Symmetric Classes
The programmatic implementation of symmetric algorithms is defined inside the System.Security.
Cryptography namespace. This namespace basically contains cryptographic classes related to sym-
metric algorithms, hashing, and asymmetric algorithms (discussed later in this chapter). Looking
more closely at the cryptography implementation in .NET mainly at the class level, you will find two
levels of inheritance followed. The first level is the abstract class that defines common operations.
This class is then derived by an algorithm-specific class, which is abstract, and a final-level concrete
class is defined that is used by the client to perform cryptographic operation.

Returning to the symmetric algorithms, the base class in which all common operations are
defined is SymmetricAlgorithm. This class is further subclassed by an algorithm-specific class that is
abstract and is further extended by the concrete class. The implementation of this final concrete class
is either managed or unmanaged and is easy to determine by its suffix. Class names that contain the
suffix CryptoServiceProvider are unmanaged implementations; similarly, class names that contain
the suffix Managed are pure managed implementations. Figure 6-14 shows a class diagram of symmetric
algorithms.

The individual symmetric algorithm is encapsulated in a separate class, and being inherited from
a common base class, it is relatively simple to change the algorithm implementation with the flip of
a switch. However, some exception cases exist where a particular feature is available in one algorithm
and not in others. The key differentiator among these algorithms is the key size supported and how
fast a message is encrypted or decrypted. Table 6-1 provides this information.

Figure 6-14. Symmetric algorithm class hierarchy

5645ch06.qxd 3/3/06 12:24 PM Page 312

CHAPTER 6 ■ STP SECURITY 313

Table 6-1. Key Sizes of Various Symmetric Ciphers

Algorithm Key Size

DES 56 bits

TripleDES Three different keys of 56-bit key size to encrypt and decrypt a message

Rijndael Variable key size (1 to 2,048 bits)

RC2 Supports 128-, 192-, and 256-bit key size only

The next step is to delve into the code-level implementation where a plain message is encrypted
and decrypted using the Rijndael algorithm. Let’s consider the interaction between the broker and
fund manager where the contract note defined using XML is encrypted into an unreadable content
and sent to the fund manager. The fund manager on receiving this encrypted information will be able
to decipher the message only if he knows the symmetric key. The code shown in Listing 6-1 demonstrates
both these scenarios. The code is broken down into two sections; the first section provides informa-
tion about underlying cipher strength, and the last section covers the encryption and decryption task.

Listing 6-1. Contract Note Information Encrypted by the Broker and Decrypted by the Fund Manager
Using the Symmetric Key

using System;

using System.Text;

using System.IO;

using System.Security.Cryptography;

namespace SymmetricAlgo

{

class SymmetricExample

{

static void Main(string[] args)

{

//perform symmetric encryption using RijndaelManaged algorithm

SymmetricAlgorithm algoProvider = RijndaelManaged.Create();

Console.WriteLine("Crypto Provider Information");

Console.WriteLine("--------------------");

Console.WriteLine("Cipher Mode : " + algoProvider.Mode);

Console.WriteLine("Padding Mode : " +algoProvider.Padding);

Console.WriteLine("Block Size : " +algoProvider.BlockSize);

Console.WriteLine("Key Size : " +algoProvider.KeySize);

Console.WriteLine("Contract Note Encryption Stage - Broker end");

Console.WriteLine("---");

//Generate Symmetric Key

algoProvider.GenerateKey();

//Generate IV

algoProvider.GenerateIV();

//create file that stores encrypted content of contract note

FileStream fileStream = new

FileStream(@"C:\ContractNote.enc",FileMode.Create);

5645ch06.qxd 3/3/06 12:24 PM Page 313

CHAPTER 6 ■ STP SECURITY314

//create symmetric encryptor object

ICryptoTransform cryptoTransform = algoProvider.CreateEncryptor();

//create cryptostream

CryptoStream cryptoStream = new

CryptoStream(fileStream,cryptoTransform,CryptoStreamMode.Write);

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

//write encrypted data

cryptoStream.Write(contentBuffer,0,contentBuffer.Length);

cryptoStream.Close();

fileStream.Close();

Console.WriteLine("Contract Note Decryption Stage - Fund Manager end");

Console.WriteLine("---");

//open encrypted content of contract note

fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Open);

//create symmetric decryptor object

cryptoTransform = algoProvider.CreateDecryptor();

cryptoStream = new

CryptoStream(fileStream,cryptoTransform,CryptoStreamMode.Read);

byte[] readBuffer = new byte[fileStream.Length];

//decrypt data

cryptoStream.Read(readBuffer,0,readBuffer.Length);

string decryptedText =

Encoding.ASCII.GetString(readBuffer,0,readBuffer.Length);

Console.WriteLine(decryptedText);

}

}

}

In Listing 6-1, a new instance of Rijndael is created that represents the Rijndael symmetric
algorithm. This newly returned instance is then assigned to a variable of the SymmetricAlgorithm
type. This cast operation is successfully executed without any errors because Rijndael is derived
from SymmetricAlgorithm. A more elegant approach is to create a factory class with a factory method
that returns the correct instance based on an argument passed to it. This way, the provider-level
class details are completely hidden in the factory class, and any new symmetric algorithms can be
easily introduced by modifying the factory class.

SymmetricAlgorithm algoProvider = RijndaelManaged.Create();

After constructing an instance of Rijndael, the next step is to list the features supported by the
algorithm, which includes the cipher mode, key size, block size, and padding mode. The default
cipher mode is CBC, and with the help of the Mode property, it can be changed; however, remember
that it is also important to verify that the underlying algorithm supports the other mode. An excep-
tion will be thrown if a particular cipher mode is not supported by the provider.

5645ch06.qxd 3/3/06 12:24 PM Page 314

CHAPTER 6 ■ STP SECURITY 315

Console.WriteLine("Crypto Provider Information");

Console.WriteLine("--------------------");

Console.WriteLine("Cipher Mode : " + algoProvider.Mode);

Console.WriteLine("Padding Mode : " +algoProvider.Padding);

Another important property that goes hand in hand with the cipher mode is Padding. Often,
when a message is broken down into a block of particular size, the last block is left behind with empty
bytes, and it needs to be padded. To address this problem, padding is performed, and three possible
values exist:

None: No padding is performed.

PKCS7: This padding scheme fills up the empty bytes with a value equal to the number of padding
bytes required.

Zeros: The value zero is padded.

The key and block size are determined with the help of the KeySize and BlockSize properties:

Console.WriteLine("Block Size : " +algoProvider.BlockSize);

Console.WriteLine("Key Size : " +algoProvider.KeySize);

You can change these values provided that they fall in a valid range, which is available in the form
of the LegalKeySizes and LegalBlockSizes properties. Both these properties return only the values
that are supported by the underlying algorithm provider. The default key size supported by Rijndael
is 256 bits, and the block size is 128 bits.

Next, you initiate the encryption phase; the first step in this phase is to generate a key and IV
that is used to encrypt the message:

Console.WriteLine("Contract Note Encryption Stage - Broker end");

Console.WriteLine("---");

algoProvider.GenerateKey();

algoProvider.GenerateIV();

You can generate a key and IV in two ways. The first approach is let the user define the key and
IV, and this is possible by assigning a value to the Key and IV properties of the SymmetricAlgorithm
class. The major drawback of such an approach is it is very susceptible to brute-force attacks, and
we as human beings are weak when it comes to coining a message that is truly unique and random
in nature. The other approach is to rely on the underlying algorithm provider to produce a key auto-
matically. This way, a strong key is generated that is hard to guess.

In Listing 6-1, with the help of the GenerateKey and GenerateIV methods, both the key and IV
are autogenerated. This newly generated value is also assigned to the Key and IV properties. It is
important to preserve both these values on some persistent storage medium because the fund
manager on the other end will be able to decrypt the message only when the correct key and IV are
fed to the algorithm.

Next, a new file is created that is forwarded to the fund manager, and the content of this file
represents contract note information in encrypted form:

FileStream fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Create);

Once you have successfully created the file, the next task is to encrypt the contract note
information. The encryption and decryption task is achieved using the CreateEncryptor and
CreateDecryptor methods. Both these methods return an instance of a transform class that imple-
ments the ICryptoTransform interface. This newly returned instance contains logic to encrypt/
decrypt the message.

ICryptoTransform cryptoTransform = algoProvider.CreateEncryptor();

5645ch06.qxd 3/3/06 12:24 PM Page 315

CHAPTER 6 ■ STP SECURITY316

Next, we create an instance of CryptoStream that is used in conjunction with any data stream to
perform cryptographic transformation (encryption or decryption):

CryptoStream cryptoStream =

new CryptoStream(fileStream,cryptoTransform,CryptoStreamMode.Write);

CryptoStream is in line with a file or socket stream that supports reading or writing data in
a byte-oriented fashion. The same functionality is provided by CryptoStream; but instead of directly
reading or writing a chunk of bytes, it is first submitted to the transformer that performs the crypto-
graphic transformation (encryption/decryption), and then the output produced is chained with
another stream-based object. In Listing 6-1, you chain the cryptographic stream with a file stream and
configure it in a write mode, so any byte written through the cryptostream will get first encrypted,
and this encrypted message is then directly written to the file.

The actual contract note message, before passing to CryptoStream, is converted into an array of
bytes. Then the content is encrypted and finally redirected to a FileStream:

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

cryptoStream.Write(contentBuffer,0,contentBuffer.Length);

cryptoStream.Close();

fileStream.Close();

Finally, we cover the last leg of this code, which in the real world mimics the fund manager who
receives the encrypted content of the contract note and then uses the correct symmetric key to decrypt
it and read the original message:

Console.WriteLine("Contract Note Decryption Stage - Fund Manager end");

Console.WriteLine("---");

fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Open);

cryptoTransform = algoProvider.CreateDecryptor();

cryptoStream = new CryptoStream(fileStream,cryptoTransform,CryptoStreamMode.Read);

byte[] readBuffer = new byte[fileStream.Length];

cryptoStream.Read(readBuffer,0,readBuffer.Length);

string decryptedText = Encoding.ASCII.GetString(readBuffer,0,readBuffer.Length);

Console.WriteLine(decryptedText);

The decryption code (the fund manager end) is the same as the encryption code with the only
difference being that the data is read from CryptoStream. Another important point to note is that we
have reused the same instance of SymmetricAlgorithm in which both the key and IV are already
populated, but in the real world the fund manager will initialize these values. Of course, the fund
manager must know both the key and IV beforehand, and the broker must have communicated this
information through some secure communication channel or storage medium.

Figure 6-15 shows the console output of Listing 6-1; it also displays the content of the contract
note, which is in encrypted form.

5645ch06.qxd 3/3/06 12:24 PM Page 316

CHAPTER 6 ■ STP SECURITY 317

Asymmetric Key
An asymmetric key solves most of the problems in cryptography (see Figure 6-16). The most important
one it addresses is the key exchange issue; the way this algorithm works is that a key pair containing
a public key and private key is first generated. The public key, as the name indicates, is meant to be
distributed to the masses, and the private key is confidential information and is kept secret. Both
public and private keys generated are related to each other, and a message encrypted using a public
key can be decrypted only by its corresponding private key. This logic also holds true for a reverse
case where a message encrypted using a private key can be decrypted only with its corresponding
public key.

Using asymmetric algorithms, the fund manager generates a single key pair and distributes the
public key to the broker. The fund manager can also publish the public key on a Web site, allowing it
to be freely available for download. Now, when the broker sends a contract note to the fund manager,
the plain-text message is encrypted with a public key, and the fund manager upon receiving it decrypts
it with the private key. The decryption is performed successfully because only the fund manager is
in possession of the private key.

Figure 6-15. Console output of the program using the symmetric key

Figure 6- 16. Asymmetric key

5645ch06.qxd 3/3/06 12:24 PM Page 317

CHAPTER 6 ■ STP SECURITY318

Several asymmetric algorithms exist, but the most popular ones are RSA and DSA. (RSA stands
for Rivest Shamir Adleman, and DSA stands for Digital Signature Standard.) Both algorithms are
bundled inside the .NET Framework and have their own class hierarchy, as shown in Figure 6-17.

The depth of class hierarchy is similar to the symmetric algorithm’s class hierarchy consisting
of two levels of inheritance. AsymmetricAlgorithm is a base abstract class that is further extended by
an algorithm-specific abstract class. The common functionality (such as encryption and decryp-
tion, key import, and export) is all bundled in one pack and exposed in the form of members by
AsymmetricAlgorithm. You will look at this functionality with the help of the code shown in Listing 6-2,
which uses an asymmetric key to exchange contract note information between the fund manager
and the broker.

Listing 6-2. Contract Note Information Encrypted by the Broker and Decrypted by the Fund Manager
Using the Asymmetric Key

using System;

using System.Text;

using System.IO;

using System.Security.Cryptography;

namespace AsymmetricAlgo

{

class Class1

{

static void Main(string[] args)

{

//Generate public and private key

GenerateKeyPair();

//encrypt contract note using fund manager's public key

ContractNoteBroker();

//decrypt contract note encrypted by the broker

//using the fund manager's private key

ContractNoteFM();

}

public static void GenerateKeyPair()

{

//perform asymmetric encryption and decryption using the RSA algorithm

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider();

//extract public key

string publicKey = cryptoProv.ToXmlString(false);

//extract private key

Figure 6- 17. Asymmetric algorithm class hierarchy

5645ch06.qxd 3/3/06 12:24 PM Page 318

CHAPTER 6 ■ STP SECURITY 319

string privateKey = cryptoProv.ToXmlString(true);

//persist private key

StreamWriter writer = new StreamWriter(@"C:\PrivateKey.xml");

writer.Write(privateKey);

writer.Close();

//persist public key

writer = new StreamWriter(@"C:\PublicKey.xml");

writer.Write(publicKey);

writer.Close();

}

public static void ContractNoteBroker()

{

Console.WriteLine("Contract Note Encryption Stage - Broker end");

//parameters passed to cryptographic service provider

CspParameters param = new CspParameters();

param.Flags = CspProviderFlags.UseMachineKeyStore;

//read public key, and initialize RSA with the fund manager's public key

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider(param);

StreamReader reader = new StreamReader(@"C:\PublicKey.xml");

cryptoProv.FromXmlString(reader.ReadToEnd());

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

//encrypt contract note using public key, and write it to a file

FileStream fileStream = new

FileStream(@"C:\ContractNote.enc",FileMode.Create);

byte[] encContent = cryptoProv.Encrypt(contentBuffer ,false);

fileStream.Write(encContent,0,encContent.Length);

fileStream.Close();

}

public static void ContractNoteFM()

{

Console.WriteLine("Contract Note Decryption Stage - Fund Manager end");

//parameters passed to cryptographic service provider

CspParameters param = new CspParameters();

param.Flags = CspProviderFlags.UseMachineKeyStore;

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider(param);

//initialize RSA with private key

StreamReader reader = new StreamReader(@"C:\PrivateKey.xml");

cryptoProv.FromXmlString(reader.ReadToEnd());

reader.Close();

5645ch06.qxd 3/3/06 12:24 PM Page 319

CHAPTER 6 ■ STP SECURITY320

//decrypt the encrypted contract note using private key

FileStream fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Open);

byte[] readBuffer = new byte[fileStream.Length];

fileStream.Read(readBuffer,0,readBuffer.Length);

byte[] decContent = cryptoProv.Decrypt(readBuffer,false);

string contractNote = Encoding.ASCII.GetString(decContent);

Console.WriteLine(contractNote);

}

}

}

In Listing 6-2, we have redefined the interaction between the fund manager and the broker
using an asymmetric key. The approach used here is that the individual fund manager generates
both the public and private keys and communicates only the public key to the broker. The broker
maintains a central database where public key information of an individual fund manager is stored.
Now whenever the broker wants to send a contract note to the fund manager, the first step is to retrieve
the correct public key belonging to that particular fund manager and then encrypt the message using
this key. Since you know both the public key and the private key are interrelated and a message
encrypted using the public key can be deciphered only by its private key, this means only the fund
manager will be able to decrypt the message.

The code described in Listing 6-2 has been divided into three phases, starting with generation
of key, and then the encryption phase, and finally the decryption phase. Here is the code that generates
a key pair that in the real world is executed on the fund manager end:

public static void GenerateKeyPair()

{

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider();

string publicKey = cryptoProv.ToXmlString(false);

string privateKey = cryptoProv.ToXmlString(true);

By creating a new instance of RSACryptoServiceProvider, you started your journey into the
asymmetric algorithm world. A parameterless constructor-based instantiation will automatically
generate both the public and private keys. Both these keys’ information is accessible with the help
of the ToXmlString and ExportParameters methods. Even though both methods provide the same
information, their purpose is different. ExportParameters is platform specific, and its usage is lim-
ited to the application level; when information needs to be exchanged across applications that are
hosted on different platforms, then the only platform-neutral format that comes to the rescue is
XML, and ToXmlString achieves it.

Both ExportParameters and ToXmlString expect a Boolean value that controls the amount of
information to be returned. By passing the value true, both public and private keys are exported;
the value false will return only the public key. In Listing 6-2, we have extracted this information
and stored it in a separate variable.

The key information retrieved is finally persisted on disk. PrivateKey.xml contains the public
key as well as the private key, and hence this file needs to be carefully guarded and protected against
falling into the hands of a malicious person. Similarly, PublicKey.xml contains public key informa-
tion and is meant to be distributed to brokers.

StreamWriter writer = new StreamWriter(@"C:\PrivateKey.xml");

writer.Write(privateKey);

writer.Close();

writer = new StreamWriter(@"C:\PublicKey.xml");

writer.Write(publicKey);

writer.Close();

5645ch06.qxd 3/3/06 12:24 PM Page 320

CHAPTER 6 ■ STP SECURITY 321

You have completed the key generation phase; next is the encryption stage where the broker
encrypts the message using the fund manager public key:

public static void ContractNoteBroker()

{

Console.WriteLine("Contract Note Encryption Stage - Broker end");

CspParameters param = new CspParameters();

param.Flags = CspProviderFlags.UseMachineKeyStore;

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider(param);

The big difference in the previous line of code is the way an instance of RSACryptoServiceProvider
is created. You already know that during the construction phase, key pairs are automatically generated,
but in the previous code we have overridden this behavior by passing an instance of CspParameters,
which contains cryptographic-specific information.

After successfully creating an instance of RSACryptoServiceProvider, we then initialized with
the public key that is uploaded from a file:

StreamReader reader = new StreamReader(@"C:\PublicKey.xml");

cryptoProv.FromXmlString(reader.ReadToEnd());

Next, the contract note information is converted into a byte array using Encoding:

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

Here comes the important part of code in which the information that is in byte array form is
encrypted using Encrypt. The encryption is performed using the public key, and the final encrypted
content is returned in the form of a byte array. Encrypt, along with the data that needs to be encrypted,
also accepts additional padding information. The default padding available is PKCS padding and is
used by passing the value false to this method. A value of true indicates a different padding scheme,
which in this case is OAEP padding and is available only on computers running Microsoft Windows
XP or later.

FileStream fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Create);

byte[] encContent = cryptoProv.Encrypt(contentBuffer ,false);

fileStream.Write(encContent,0,encContent.Length);

fileStream.Close();

Now you step into the last part of this example in which the fund manager decrypts the message
using the private key. This code is now familiar to you; a new instance of RSACryptoServiceProvider
is created, and both public and private keys are initialized:

public static void ContractNoteFM()

{

Console.WriteLine("Contract Note Decryption Stage - Fund Manager end");

CspParameters param = new CspParameters();

param.Flags = CspProviderFlags.UseMachineKeyStore;

RSACryptoServiceProvider cryptoProv = new RSACryptoServiceProvider(param);

StreamReader reader = new StreamReader(@"C:\PrivateKey.xml");

cryptoProv.FromXmlString(reader.ReadToEnd());

reader.Close();

5645ch06.qxd 3/3/06 12:24 PM Page 321

CHAPTER 6 ■ STP SECURITY322

Figure 6-18. Console output of a program using the asymmetric key

Let’s assume the broker sends contract note information through some communication medium.
After receiving it, the encrypted information is read and decrypted using the fund manager’s private
key. This is made possible by Decrypt, which accepts two arguments: data that needs to be decrypted
and the padding mode.

FileStream fileStream = new FileStream(@"C:\ContractNote.enc",FileMode.Open);

byte[] readBuffer = new byte[fileStream.Length];

fileStream.Read(readBuffer,0,readBuffer.Length);

byte[] decContent = cryptoProv.Decrypt(readBuffer,false);

string contractNote = Encoding.ASCII.GetString(decContent);

Console.WriteLine(contractNote);

After the successful decryption, the original message is displayed on the console, as depicted in
Figure 6-18.

The example used asymmetric keys to encrypt and decrypt the message. But in reality asymmetric
encryption when performed over large blocks of text is 1,000 times slower than symmetric encryption,
and therefore it is highly unsuitable for encrypting/decrypting a message of a large size. So, the most
well-known technique is to use the best of both asymmetric and symmetric algorithms. For example,
you can slightly tweak the example to generate a symmetric key that is also known as the session key
and use this key to encrypt the contract note information. The advantage gained is faster performance.
After encrypting the message, the next step is to use the asymmetric key to encrypt the session key
and send both the message and encrypted session key to the fund manager. To successfully decrypt
the message, the fund manager must first decrypt the session key using the private key and then
decrypt the encrypted message using the original session key.

Integrity
Data integrity refers to the consistency of data and that its content has not been compromised or
unknowingly altered by an unauthorized user. For example, imagine the consequences if critical
information such as quantity or price is tweaked, and the fund manager, based upon this manipu-
lated information, undertakes some aggressive action that leaves a devastating effect on an entire
business. The most effective way to deal with this problem is to calculate a cryptographic hash of
the information that is also known as a message digest. The way this is calculated depends upon the
underlying hashing algorithm, but in general a variable-length data is passed to a hash algorithm
that then produces a relatively small fixed-size hash value (see Figure 6-19). The value produced is
irreversible in nature and is considered a one-way function because it is impossible to reverse engi-
neer the original message based on just the hash value. Furthermore, two identical inputs will always
produce an identical hash value, but even a difference in bits is sufficient to create a distinct hash
value.

5645ch06.qxd 3/3/06 12:24 PM Page 322

CHAPTER 6 ■ STP SECURITY 323

Figure 6-19. Data hashing

Figure 6-20. HashAlgorithm class hierarchy

So, the way the broker achieves data integrity is by calculating a cryptographic hash and send-
ing it along with the original message. The fund manager on receiving it recalculates the hash value
based on the original message received and compares it to the hash value calculated on the broker
end. If there is a discrepancy found, then it confirms the message has been tampered with in transit.
Of course, you can further strengthen this by using a keyed hash algorithm that uses a symmetric
key to encrypt the hash value. The keyed hash algorithm provides both message authenticity and
integrity.

The popular hash algorithms that are provided by the .NET Framework are Message Digest (MD5)
and Secure Hash Algorithm (SHA). The MD5 algorithm produces a 128-bit hash value, whereas SHA
supports 160-, 256-, 384-, and 512-bit hash values. SHA provides the hash size of a different length,
and the greater the length of a hash size, the more difficult it is to break. Figure 6-20 shows the class
layout of hash algorithm classes. HashAlgorithm is the abstract base class that is then derived by
concrete classes.

Listing 6-3 shows the code that is used by the broker to generate a hash value, which is then
verified by the fund manager to ensure that the message has not been tampered with.

Listing 6-3. Hash Value Computed for Contract Note Data

using System;

using System.Text;

using System.Security.Cryptography;

5645ch06.qxd 3/3/06 12:24 PM Page 323

CHAPTER 6 ■ STP SECURITY324

Figure 6-21. Console output of hash algorithm program

namespace HashAlgo

{

class Class1

{

static void Main(string[] args)

{

//compute hash using SHA-1

HashAlgorithm hashAlgo = new SHA1Managed();

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

//compute contract note hash value

byte[] hashedData = hashAlgo.ComputeHash(contentBuffer);

Console.WriteLine("Data Length : " +contentBuffer.Length);

Console.WriteLine("Hashed Data Length : " +hashedData.Length);

}

}

}

As you can see, the code described in Listing 6-3 is pretty straightforward; the only missing
part is that you are not encrypting the hash value, which is ideally done in a realistic scenario. For
demonstration purposes, we have ignored those steps, so it is pretty simple to implement.

In Listing 6-3, a new instance of SHA1Managed is created, and then ComputeHash is invoked to
calculate the hash value. ComputeHash is an overloaded method that accepts either a byte array or
a Stream object and returns a fixed-size byte array. Since this code uses a 160-bit SHA algorithm, it is
obvious that the length of the hash value generated is 20 bytes. All this information is displayed in the
console output window, as shown in Figure 6-21.

Digital Signatures
You looked at how you can use hashing algorithms to achieve integrity; however, when combined
with asymmetric algorithms, you can also use it to create digital signatures of information. Digital
signatures are important aspects of a secure transaction and address authentication, integrity, and
nonrepudiation issues (see Figure 6-22). Both authentication and nonrepudiation are achieved by
asymmetric algorithms, and the integrity of data is achieved with the help of hashing algorithms.
Digital signatures are widely accepted in the commercial world and are one of the formal require-
ments for conducting any type of legal transaction. Additionally, it is also considered to be important
evidence and well respected in a court of law.

5645ch06.qxd 3/3/06 12:24 PM Page 324

CHAPTER 6 ■ STP SECURITY 325

Figure 6-22. Digital signature

The first step in digitally signing information is to compute a message digest or hash value of
the original message. The message digest is then encrypted with a private key to create a digital sig-
nature of the information. Remember, digital signatures can be created only by the individual who
is also the sole owner of the private key. Unless the private key is leaked somehow, there is no other
way to construct the digital signature. Both the original message and digital signature are then sent
to recipients. Upon receiving this information, the receiver performs similar steps by first calculating
the hash value of the original message. It is important that both the sender and receiver agree on
common hashing algorithms that are used during the signing and verification stages. The digital
signature is then decrypted by the corresponding public key; if decryption happens successfully,
then it confirms that the message indeed originated from the authentic sender. Next, the decrypted
hash value is then verified with the newly computed hash value; if both hash results differ, then it is
concluded that the information has been tampered with.

The beauty of digital signing is that only the individual who is in possession of the private key
will be able to create signed messages, so attackers can forge it only if they have access to a private
key. An attacker cannot even alter the message because it would need a recomputation of the hash
value. Similarly, a signature, once computed, can be verified by anyone who is in possession of only
the public key, which is made publicly available. Another important fact about digital signatures is
that only the hash value is encrypted, but the information is still retained in its original format. So,
when information secrecy takes higher precedence, it is important to encrypt the message using
symmetric algorithms.

Now let’s look at the requirement where the broker, instead of encrypting the contract note
information, agrees to digitally sign it before sending it to the fund manager. On receiving this infor-
mation, the fund manager verifies it by decrypting the hash value with the broker’s public key and
comparing it with the newly computed hash value. The code implementation is pretty simple and
uses both asymmetric and hash algorithm classes (see Listing 6-4).

Listing 6-4. Signing and Verification of Contract Note Data

using System;

using System.Text;

using System.Security.Cryptography;

namespace DigitalSignature

{

class DigSign

{

static void Main(string[] args)

{

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

//perform digital signature using RSA

5645ch06.qxd 3/3/06 12:24 PM Page 325

CHAPTER 6 ■ STP SECURITY326

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

//export of private key

RSAParameters privateRSA = rsCrypto.ExportParameters(true);

//export of public key

RSAParameters publicRSA = rsCrypto.ExportParameters(false);

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

//compute digital signature of contract note using the broker's private key

byte[] signedData = SignDataBroker(contentBuffer,privateRSA);

//verify digital signature

bool hashResult = VerifySignFM(contentBuffer,signedData,publicRSA) ;

Console.WriteLine ("Hash Result : " + hashResult);

}

public static byte[] SignDataBroker(byte[] data,RSAParameters privateRSA)

{

//create RSA provider, and initialize it with the broker's private key

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

rsCrypto.ImportParameters(privateRSA);

//compute hash value of contract note

HashAlgorithm hashAlgo = new SHA1Managed();

byte[] hashedData = hashAlgo.ComputeHash(data);

//sign hash value using private key

string shaOID = CryptoConfig.MapNameToOID("SHA1");

return rsCrypto.SignHash(hashedData,shaOID);

}

public static bool VerifySignFM(byte[] data,

byte[] signedData,RSAParameters publicRSA)

{

//create RSA provider, and initialize it with the broker's public key

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

rsCrypto.ImportParameters(publicRSA);

//recompute hash value of contract note

HashAlgorithm hashAlgo = new SHA1Managed();

byte[] hashedData = hashAlgo.ComputeHash(data);

string shaOID = CryptoConfig.MapNameToOID("SHA1");

//verify the computed hash value with the digital signature

return rsCrypto.VerifyHash(hashedData,shaOID,signedData);

}

}

}

In Listing 6-4, the code has two facets, with the first part covering the digital signing aspect of
a transaction. The final phase is the verification process in which the signature is verified. Both these
functionalities are encapsulated in the SignDataBroker and VerifySignFM methods.

Before invoking SignDataBroker and VerifySignFM, a new instance of RSACryptoServiceProvider
is created that also creates the public and private keys. The key information is then stored in an
instance of RSAParameters. In a real-world scenario, the broker will be in possession of both the
public and private keys, but the fund manager will be aware of only the public key. Therefore, the key
information is exported once with the private key and again without the private key.

In the next step, you invoke SignDataBroker, which mimics the broker end:

5645ch06.qxd 3/3/06 12:24 PM Page 326

CHAPTER 6 ■ STP SECURITY 327

public static byte[] SignDataBroker(byte[] data,RSAParameters privateRSA)

{

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

rsCrypto.ImportParameters(privateRSA);

HashAlgorithm hashAlgo = new SHA1Managed();

byte[] hashedData = hashAlgo.ComputeHash(data);

string shaOID = CryptoConfig.MapNameToOID("SHA1");

return rsCrypto.SignHash(hashedData,shaOID);

}

The actual message is first flattened into bytes, and then its hash value is computed. The hash
value is then passed to SignHash, which encrypts it with a private key, and the final result, which is the
digital signature of the contract note itself, is returned in a byte array. SignHash accepts additional
mandatory arguments that represent hashing algorithm information. This information cannot be
passed directly; instead, its corresponding object identifier (OID) is supplied, which is located with
the help of the MapNameToOID static method of the CryptoConfig class.

After signing the message, both the contract note information and the digital signature are deliv-
ered to recipients. In this case, the recipient is the fund manager and is mimicked by VerifySignFM:

public static bool VerifySignFM(byte[] data,byte[] signedData,

RSAParameters publicRSA)

{

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

rsCrypto.ImportParameters(publicRSA);

HashAlgorithm hashAlgo = new SHA1Managed();

byte[] hashedData = hashAlgo.ComputeHash(data);

string shaOID = CryptoConfig.MapNameToOID("SHA1");

return rsCrypto.VerifyHash(hashedData,shaOID,signedData);

}

The fund manager, upon receiving this message, immediately recomputes the hash value. The
hash value is then verified with the digital signature by calling VerifyHash. During the verification
process, the public key is used to decrypt the digital signature to obtain the original hash value. The
original hash value is then compared with the newly computed hash value, and if both these hashes
match, then it proves that the message indeed came from a legitimate source and that the integrity
of information has not been compromised.

Digital Certificates
The first prerequisite before exchanging digital signature information is communicating the public
key information. This exchange of a public key may happen through multiple sources, such as send-
ing it through e-mail or downloading it from a public Web site. Multiple channels are available, but
each of them gives rise to the problem of how a person is assured that the public key published
belongs to the authentic party. A real-life example that addresses this concern is a passport issued
to a citizen of a country. This passport forms the basis for individuals to prove their identities. Before
issuing the passport to a person, a background check is conducted that includes the investigation
of a criminal record. Such types of procedures are sufficient to create a level of trust. Because every
country in the world honors passports, this provides a means to verify the identity of an individual.

In the digital world, a similar document is required that acts like a digital passport, and this is
where digital certificates are used. Digital certificates prove the identity of an individual or organi-
zation, and they form a strong basis of authentication. The primary purpose of a digital certificate is
to encapsulate the public key information that is then used to verify the digital signature. But how is
it different from transmitting public key information through e-mails or a Web download? The first
difference is that digital certificates are issued by a certificate authority (CA). A CA is an entity that
establishes trust between two parties in a communication chain. The CA fills the needs for a trusted

5645ch06.qxd 3/3/06 12:24 PM Page 327

CHAPTER 6 ■ STP SECURITY328

third party in an e-commerce world by verifying the identity of an individual or organization. Even
though the digital certificate issued by a CA is sufficient to assure the authenticity, the important thing
is that the CA must be reliable and well-known in the industry. CAs such as VeriSign and Thawte are
quite popular in the e-commerce world and are the main issuers of digital certificates.

Digital certificates adhere to X.509 format and contain the following important information:

• Name

• Organization

• Serial number

• Validity date

• Public key

• CA name

• CA digital signature

There are no limits on the amount of information that can be embedded into a certificate, but
the most important attribute is a CA digital signature that assures that the owner of the certificate is
in fact who say they are and has been verified by the CA. This signature is the electronic counterpart
to a signature signed by a legal authority on a legal paper. Remember, only the CA can generate the digital
signature because only the CA knows the private key, and for an attacker to impersonate a CA, they
need to have access to the private key. Furthermore, the CA public key is easily accessible, so anyone
can verify the integrity of the certificate before initiating a transaction with the owner of the certificate.

Now it is time to use a digital certificate in the STP world; to keep the example simple and
straightforward, we will rewrite the code described in Listing 6-4. The concept is the same; the only
difference is that the broker’s public key is published using a digital certificate. The information inside
the digital certificate, mainly the public key, is then read by the fund manager to verify the digital
signature of the contract note information received from the broker. Unfortunately, the .NET Frame-
work provides very lean support for dealing with digital certificates. Even though information stored
inside a certificate is readable with the help of the X509Certificate class defined in the System.Security.
Cryptography.X509Certificates namespace, there is no direct way to derive an appropriate crypto-
graphic class that can then verify the digital signature. Considering this drawback, we will introduce
the Web Services Enhancement (WSE) framework that forms an add-on to the .NET Framework. WSE
provides advanced features related to cryptography areas, and one of the important features directly
supported is reading both the certificate and the key information.

The first step is to generate a digital certificate, and in the real world this involves a lot of steps;
for testing purposes, there is a ready-to-use makecert utility, which is a certificate creation tool
available as part of the .NET Framework tools. This utility allows you to create a self-signed certificate
that is used by applications in development environments for testing purposes.

By executing the following command, a test certificate is created and persisted in
C:\BrokerCertificate.cer:

makecert –sk STPKeyStore –a sha1 –r C:\BrokerCertificate.cer

–ss STPCertificateStore –n "CN=Broker A"

The makecert utility includes various options, and discussing each of them is outside the scope
of this chapter. However, the essential information required for certification creation is as follows:

Key container name: The tool by default creates public and private keys and stores them in an
STPKeyStore container. This information is provided with the help of the –sk switch.

Hashing algorithm: The underlying hashing algorithm of a digital signature is specified using
the –a switch.

5645ch06.qxd 3/3/06 12:24 PM Page 328

CHAPTER 6 ■ STP SECURITY 329

Figure 6-23. Digital certificate

Certificate store: Certificates are usually managed through a central certificate store. Stores allow
the easy management of certificates and provide functionality to store and retrieve certificates.
This information is provided using the –ss switch.

Certificate subject: The information defined must conform to the X.500 standard.

Figure 6-23 is a graphical representation of a certificate launched by clicking
BrokerCertificate.cer.

The next step is to delve into the actual code that uses the digital certificate depicted in Figure 6-23
to verify the digital signature. Before compiling the code shown in Listing 6-5, ensure that the Microsoft.
Web.Services2 assembly is referenced properly.

Listing 6-5. Signing and Verification of Contract Note Data Using Digital Certificates

using System;

using System.Text;

using System.Security.Cryptography;

using Microsoft.Web.Services2.Security.X509;

namespace DigitalCertificate

{

class DigCert

{

static void Main(string[] args)

{

string contractNote = "<CONTRACTNOTE>"

+"<SYMBOL>MSFT</SYMBOL>"

+"<QUANTITY>100</QUANTITY>"

+"<PRICE>24</PRICE>"

+"</CONTRACTNOTE>";

5645ch06.qxd 3/3/06 12:24 PM Page 329

CHAPTER 6 ■ STP SECURITY330

byte[] contentBuffer = Encoding.ASCII.GetBytes(contractNote);

//compute digital signature using the broker's private key

byte[] signedData = SignDataBroker(contentBuffer);

//verify digital signature using the broker's public key

bool hashResult = VerifySignFM(contentBuffer,signedData) ;

Console.WriteLine("Verification Result : " +hashResult);

}

public static byte[] SignDataBroker(byte[] data)

{

//parameters passed to cryptographic service provider

CspParameters param = new CspParameters();

//assign the key store name generated by the makecert tool

param.KeyContainerName = "STPKeyStore";

//use the signature key pair

param.KeyNumber = 2;

//initialize RSA to use private key stored in STPKeyStore

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider(param);

//compute digital signature

return rsCrypto.SignData(data, new SHA1Managed());

}

public static bool VerifySignFM(byte[] data,byte[] signedData)

{

//Open STP certificate store

X509CertificateStore store =

X509CertificateStore.CurrentUserStore("STPCertificateStore");

store.OpenRead();

//retrieve broker certificate

X509Certificate brokerCertificate = store.Certificates[0];

Console.WriteLine("Certificate Subject :" +

brokerCertificate.FriendlyDisplayName);

Console.WriteLine("Valid From :" +

brokerCertificate.GetEffectiveDateString());

Console.WriteLine("Valid To :" +

brokerCertificate.GetExpirationDateString());

Console.WriteLine("Serial No:" + brokerCertificate.GetSerialNumberString());

//initialize RSA to use public key stored in broker certificate

RSAParameters publicParam = brokerCertificate.Key.ExportParameters(false);

RSACryptoServiceProvider rsCrypto = new RSACryptoServiceProvider();

rsCrypto.ImportParameters(publicParam);

//verify digital signature

return rsCrypto.VerifyData(data,new SHA1Managed(),signedData);

}

}

}

The code described in Listing 6-5 is more or less similar to Listing 6-4. Both the signing and
verification tasks are encapsulated inside SignDataBroker and VerifySignFM. Additionally, public
and private keys are already generated using the makecert utility, and therefore you need to ensure
that the appropriate keys are used during the signing and verification phases.

Let’s take a look at the SignDataBroker method. Since asymmetric keys are already generated
and stored in the STPKeyStore container, you directly assign it to the KeyContainerName property of
CspParameters. Then you assign the value 2 to the KeyNumber property, which retrieves the signature
key from the container.

5645ch06.qxd 3/3/06 12:24 PM Page 330

CHAPTER 6 ■ STP SECURITY 331

Figure 6-24. Console output describing various field information embedded inside digital certificates

This looks confusing, but the way the underlying cryptographic provider works is that two pairs
of keys are generated. The first pair is known as the exchange key, and the second pair is known as
the signature key. By default, the exchange key is used for encryption unless explicitly specified to
use the signature key. The problem comes during the digital signature verification phase when the
public key is directly read from the digital certificate. The public key embedded inside the digital
certificate belongs to the signature key pair, and if the digital signature is constructed using the exchange
key pair, then the verification of the signature will definitely fail.

Once you have populated CspParameters, you then create a new instance of
RSACryptoServiceProvider. Then the signature of the data is produced using SignData. SignData is
a dual-purpose method that computes the hash value of data and then signs it with the private key
to produce a digital signature.

Now let’s look at the verification process performed on the fund manager end. First, the digital
certificate published by the broker is installed in a certificate store; in this case you have already
installed it in STPCertificateStore, which is the custom certificate store. Then, the certificate store
is accessed using the static CurrentUserStore method of X509CertificateStore, which returns an
instance of X509CertificateStore that allows iterating through all stored certificates.

Then, the broker digital certificate is fetched from the store and is returned in the form of
X509Certificate, which contains essential information about the certificate. The important one is
the public key that is retrieved using the Key property of X509Certificate. This property returns
a ready-to-use instance of RSA that is already populated with the public key published with the cer-
tificate. Remember, all this functionality is available out of the box because of the WSE framework.

It is time to recall the ExportParameters and ImportParameters functionality supported by RSA.
With the help of these methods, you create a new instance of RSACryptoServiceProvider and initialize
it with the public key read from the digital certificate. Then, the digital signature is verified by invoking
VerifyData, which compares the signature by comparing it to the signature computed for the specified
data. Figure 6-24 depicts the output of this example.

Exploring the Business-Technology Mapping
It is clear from the earlier business sections that STP is not an individual effort; instead, to make this
initiative successful, it requires a collective effort from various entities. It is also a major paradigm
shift for the entire securities industry in which entities such as banks, clearing corporations, deposi-
tories, exchanges, brokers, and institutions converge toward one business goal. The goal is to reduce
transaction turn-around time by eliminating tasks that demand manual paperwork or human interven-
tion encountered during trade settlement and processing. STP, if properly planned and implemented,
will revolutionize the securities industry, and the key driving force behind this is a robust and reliable
infrastructure. This infrastructure is provided by the STP service provider that electronically connects
different entities, and information is exchanged using a common, agreed-upon protocol.

5645ch06.qxd 3/3/06 12:24 PM Page 331

CHAPTER 6 ■ STP SECURITY332

Figure 6-25. Conceptual design

The biggest challenge faced by a service provider is to safeguard the integrity of information
exchanged between entities. Furthermore, an organization will participate under this STP umbrella
only when various services offered by the service provider are secure and watertight. Therefore, most
providers strongly advocate the use of smart cards and digital certificates that handle both the
authentication and information-signing aspects of a transaction. A smart card is similar to a credit
card and has its own microprocessor and storage disk. The disk capacity of a smart card is limited
but sufficient enough to store private and confidential information. This storage characteristic of
a smart card offers a convenient and secured solution of storing private key information that is read
with the help of a smart card reader attached to a computer.

Although service providers are equipped with a strong infrastructure that tackles all the major
concerns faced in conducting electronic transactions, this addresses external STP and not internal
STP. To achieve internal STP, an organization needs to automate its internal business processes, and
this requires a fair amount of integration-level plumbing among applications, including both home-
grown and vendor-based applications. However, the truth of the matter is that regardless of which
part of STP is automated, there is still a need for a data security framework that must meet the
requirements of both internal and external STP.

The objective of this framework is to have a common security platform that is reused across a vari-
ety of applications inside an organization. Sometimes, the STP service provider bundles this framework
as part of their service offering and allows an organization to integrate it with their internal applica-
tions. Additionally, this framework looks after only the data security aspect of an application; other
features such as user authentication and role-based management that come under the purview of
application security are not implemented. So let’s start with the conceptual design, as depicted in
Figure 6-25, before drilling into the code-level implementation details.

Some of the salient features of this framework are as follows:

• This provides the ability to create a security profile that captures cryptographic-level details
and allows associating this profile with the data that needs to be secured.

• The ability to hide the algorithm level details inside a security profile provides total flexibility
when it comes to changing the implementation.

• Binding between security profiles and data is implemented using a declarative programming
approach.

• This provides a unified API.

5645ch06.qxd 3/3/06 12:24 PM Page 332

CHAPTER 6 ■ STP SECURITY 333

Figure 6-26. Security framework class hierarchy

The term data in this context reflects the custom business object, and the field encapsulated
inside it reflects the actual information. It is true that this information eventually needs to be converted
into a suitable format that will be easily transmitted over the wire. But before data transmission takes
place, the serialized data needs to be baked with security ingredients, and this is where you integrate
the data security framework.

As depicted in Figure 6-25, the important part of information that acts as fuel to this framework
is the security profile. There are multiple profiles created based on different types of requirements;
for example, if a fund manager is doing business with broker A and they both agree to use the DES
symmetric algorithm to encrypt/decrypt data, then this information forms a unique profile. If you
extrapolate this scenario where the fund manager is conducting business with ten other brokers and
each of them has distinct requirements, then this will result in the creation of ten additional types of
security profile. Once the profile is set up, the next step is to bind them to the custom business object
using a declarative programming technique. This binding is performed by annotating the class with
security profile attributes.

After the profile binding, the next thing to do is identify the type of data security required. This
means whether data needs to be encrypted (confidential), data needs to be digitally signed (nonre-
pudiation), or data needs to be verified for data integrity. To apply this option, special attributes are
annotated with the class. These special attributes dictate the type of data security required and are
directly related to information embedded inside the profiles. For example, if a class is decorated with
a confidential attribute, then the symmetric algorithm details are determined from the security pro-
file associated with it. This way, an individual will easily infer the security knowledge applied over this
data by looking at the list of attributes annotated with the class. However, attributes are just informa-
tion markers, and they still need to come with the proper implementation. This is where providers
are defined. Providers contain the code that, based on profile information and attributes, performs
the actual cryptographic task. The output produced by this task is a secure envelope that contains
data that is secure and can be safely exchanged with other parties in the communication chain.

Class Details
Figure 6-26 shows the class hierarchy, and Figure 6-27 shows the security framework project structure.

We describe the design approach in terms of the classes introduced in Figure 6-26.

5645ch06.qxd 3/3/06 12:24 PM Page 333

CHAPTER 6 ■ STP SECURITY334

Figure 6-27. Security framework project structure

ConfidentialAttribute
Here’s the code for ConfidentialAttribute:

using System;

namespace STP.Security

{

//This attribute is annotated at the class level

//to indicate that data needs to be encrypted

[AttributeUsage(AttributeTargets.Class)]

public class ConfidentialAttribute : Attribute

{

public ConfidentialAttribute()

{

}

}

}

This attribute indicates that data needs to be encrypted using appropriate symmetric algorithms
as described in the data security profile. It is annotated at the class level. Similarly, the integrity of
data and nonrepudiation are achieved using IntegrityAttribute and NonRepudiationAttribute.

IntegrityAttribute
Here’s the code for IntegrityAttribute:

using System;

namespace STP.Security

{

//This attribute is annotated at the class level

5645ch06.qxd 3/3/06 12:24 PM Page 334

CHAPTER 6 ■ STP SECURITY 335

//to indicate data needs to be protected by

//computing a strong hash value

[AttributeUsage(AttributeTargets.Class)]

public class IntegrityAttribute : Attribute

{

public IntegrityAttribute()

{

}

}

}

NonRepudiationAttribute
Here’s the code for NonRepudiationAttribute:

using System;

namespace STP.Security

{

//This attribute is annotated at the class level

//to indicate data needs to be protected by

//applying a digital signature algorithm

[AttributeUsage(AttributeTargets.Class)]

public class NonRepudiationAttribute: Attribute

{

public NonRepudiationAttribute()

{

}

}

}

SecurityProfileAttribute
Here’s the code for SecurityProfileAttribute:

using System;

namespace STP.Security

{

//The information about cryptography implementation

//used to achieve data integrity, nonrepudiation, and confidential

//is stored in a XML file or database and is identified

//by profile name

[AttributeUsage(AttributeTargets.Class)]

public class SecurityProfileAttribute : Attribute

{

private string profileName;

public SecurityProfileAttribute(string name)

{

profileName=name;

}

public string Profile

{

get{return profileName;}

}

}

}

5645ch06.qxd 3/3/06 12:24 PM Page 335

CHAPTER 6 ■ STP SECURITY336

This is the most important attribute that is annotated on the class to capture the data security
profile information. It is a mandatory attribute because as you are aware the profile information not
only contains implementation-level algorithm information but also the source information of vari-
ous cryptographic keys.

ContractNoteInfo
Here’s the code for ContractNoteInfo:

using System;

namespace STP.Security

{

//A perfect example of applying cryptography infrastructure

//to contract note data. The important information required

//is profile name and type of protection we wanted to apply

//to this data. In this case we have expressed data needs

//to be digitally signed by annotating the NonRepudiation attribute.

[SecurityProfile("BrokerA")]

[NonRepudiation]

[Serializable]

public class ContractNoteInfo

{

public string Symbol;

public int Quantity;

public double Price;

public ContractNoteInfo(string symbol,int quantity,double price)

{

Symbol = symbol;

Quantity = quantity;

Price = price;

}

}

}

This is an object-oriented representation of a contract note, and as you can see, it is annotated
with NonRepudiation so the digital signature is computed based on the information encapsulated
inside this class. Additionally, with the help of SecurityProfile, it also mentions the data security
profile information to be used.

ProfileInfo
Here’s the code for ProfileInfo:

using System;

namespace STP.Security

{

public enum IntegrityAlgo

{

SHA1,

MD5

}

public enum ConfidentialAlgo

{

DES,

5645ch06.qxd 3/3/06 12:24 PM Page 336

CHAPTER 6 ■ STP SECURITY 337

Rijndael

}

//This class represents object-oriented representation

//of security profile information stored in XML configuration

//or database

public class ProfileInfo

{

IntegrityAlgo integrityAlgo;

ConfidentialAlgo confidentialAlgo;

string nonRepKeyPath;

string profileName;

public IntegrityAlgo Integrity

{

get{return integrityAlgo;}

}

public ConfidentialAlgo Confidential

{

get{return confidentialAlgo;}

}

public string ProfileName

{

get{return profileName;}

}

public string NonRepudiationKeyPath

{

get{return nonRepKeyPath;}

}

public ProfileInfo(ConfidentialAlgo confalgo,

IntegrityAlgo intalgo,string nonrepKey)

{

confidentialAlgo=confalgo;

integrityAlgo=intalgo;

nonRepKeyPath= nonrepKey;

}

}

}

This class provides information about various algorithms to be used that includes the hashing
algorithm (integrity), the symmetric algorithm (confidential), and the digital signature algorithm
(nonrepudiation). The information is populated from an XML-based configuration file or relational
database system. However, in a real-life scenario there is more information to be captured, such as
the cryptographic keys container name, certificate information, and so on; to keep the example simple,
we have ignored all those aspects.

SecureEnvelope
Here’s the code for SecureEnvelope:

using System;

using System.Collections;

5645ch06.qxd 3/3/06 12:24 PM Page 337

CHAPTER 6 ■ STP SECURITY338

namespace STP.Security

{

[Serializable]

//This class holds data produced by

//applying cryptographic transformation on original data

public class SecureEnvelope

{

string profileName;

Hashtable sectionList = new Hashtable();

public Hashtable Sections

{

get{return sectionList;}

}

public string Profile

{

get{return profileName;}

}

public SecureEnvelope(string profile)

{

profileName=profile;

}

}

}

SecureEnvelope is the object-oriented form of the envelope mentioned in Figure 6-25. The
body of this envelope is built by combining sections, and each individual section represents
information that is produced as a result of a provider-level transformation. For example, when
ConfidentialAttribute and NonRepudiationAttribute are applied over ContractNoteInfo, then two
types of information are generated. The first one is the encrypted content, and the second one is the
digital signature. Both types of information are distinct and are constructed by different underlying
providers; it is only during the consolidation phase that they are packaged inside a single envelope
but internally separated in the form of a section.

SectionData
Here’s the code for SectionData:

using System;

namespace STP.Security

{

//Secure envelope is composed of multiple sections,

//and each section is represented by this class.

//For example, if a data supports both encryption and

//a digital signature, then it will produce different output,

//and both these outputs will be stored in a distinct

//section of an envelope.

[Serializable]

public class SectionData

{

public byte[] secData;

5645ch06.qxd 3/3/06 12:24 PM Page 338

CHAPTER 6 ■ STP SECURITY 339

public byte[] Data

{

get{return secData;}

}

public SectionData(byte[] data)

{

secData=data;

}

}

}

SectionData represents a section of the secure envelope body.

NonRepudiationSection
Here’s the code for NonRepudiationSection:

using System;

namespace STP.Security

{

public class NonRepudiationSection : SectionData

{

byte[] signature;

public NonRepudiationSection(byte[] data,byte[] hashedData)

:base(data)

{

signature = hashedData;

}

public byte[] Signature

{

get{return signature;}

}

}

}

NonRepudiationSection is subclassed from SectionData to capture additional provider-specific
information. This provider-specific information is none other than the digital signature.

Provider
Here’s the code for Provider:

using System;

namespace STP.Security

{

//This class represents an abstract implementation

//of various cryptographic features the framework

//is going to support.

public abstract class Provider

{

ProfileInfo profileInfo;

5645ch06.qxd 3/3/06 12:24 PM Page 339

CHAPTER 6 ■ STP SECURITY340

public Provider(ProfileInfo profile)

{

profileInfo = profile;

}

//crytographic transformaton of outgoing data

public abstract void Create(byte[] originalData,SecureEnvelope envelope);

//crytographic transformaton of incoming data

public abstract bool Verify(SecureEnvelope envelope);

}

}

As you can see, Provider is declared as an abstract base class that is then inherited by concrete
providers that provide a correct implementation for security attributes defined at the class level. In the
same way, this abstract class is also given complete access to the underlying security profile information.
The two most important methods are Create and Verify. Create is invoked to construct a new cryp-
tographic message that is derived from the original message; similarly, Verify is invoked to verify or
unpack the message.

It is apparent that the number of concrete providers will be equal to the number of security
attributes supported. But for demonstration purposes, we have supplied concrete providers only for
NonRepudiationAttribute, which is explained in a moment.

NonRepudiationProvider
Here’s the code for NonRepudiationProvider:

using System;

using System.IO;

using System.Security.Cryptography;

namespace STP.Security

{

//Digital signature implementation

public class NonRepudiationProvider : Provider

{

RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider();

public NonRepudiationProvider(ProfileInfo profile)

:base(profile)

{

//Read digital certificate information

StreamReader reader = new StreamReader(profile.NonRepudiationKeyPath);

string xmlContent = reader.ReadToEnd();

rsaProvider.FromXmlString(xmlContent);

reader.Close();

}

public override void Create(byte[] originalData,SecureEnvelope envelope)

{

//create signature

byte[] signedData = rsaProvider.SignData(originalData,new SHA1Managed());

//insert digital signature in secure envelope

envelope.Sections.Add(typeof(NonRepudiationAttribute).ToString(),

new NonRepudiationSection(originalData,signedData));

}

5645ch06.qxd 3/3/06 12:24 PM Page 340

CHAPTER 6 ■ STP SECURITY 341

public override bool Verify(SecureEnvelope envelope)

{

//extract digital signature from secure envelope

NonRepudiationSection nonrepSection =

envelope.Sections[typeof(NonRepudiationAttribute).ToString()] as

NonRepudiationSection;

//verify digital signature

return rsaProvider.VerifyData(nonrepSection.Signature,

new SHA1Managed(),nonrepSection.Data);

}

}

}

The name itself indicates the functionality of this class, and it addresses the nonrepudiation
aspect by creating and verifying the digital signature. Both these requirements are encapsulated in
the Create and Verify methods. The most important line of code is the way the digital signature is
created and then encapsulated inside an instance of NonRepudiationSection and then finally appended
to SecureEnvelope. Similarly, in Verify the digital signature is verified by fetching the correct section
from SecureEnvelope. The result of this verification is then returned to the caller.

DataSecurityManager
Here’s the code for DataSecurityManager:

using System;

using System.Collections;

namespace STP.Security

{

//Class responsible for loading security profiles

//from XML configuration file or database

public class DataSecurityManager

{

Hashtable profileCollection = new Hashtable();

public DataSecurityManager()

{

profileCollection["BrokerA"] = new ProfileInfo(ConfidentialAlgo.Rijndael,

IntegrityAlgo.SHA1,@"C:\PubPrivKey.txt");

}

public Hashtable Profiles

{

get{return profileCollection;}

}

public DataSecurity Secure(Type objType)

{

return new DataSecurity(this,objType);

}

}

}

5645ch06.qxd 3/3/06 12:24 PM Page 341

CHAPTER 6 ■ STP SECURITY342

This class is exposed to the external world, and it is a gateway through which the initialization of
the security framework is performed. The first step is to initialize security profile information, and
in this case we have hard-coded it; however, remember in the real world it is usually populated from
an XML configuration file or database. Next, the most important method is Secure, which accepts the
type as a method argument and returns a new instance of DataSecurity.

DataSecurity
Here’s the code for DataSecurity:

using System;

namespace STP.Security

{

//Orchestrates the cryptography process

public class DataSecurity

{

Type objType;

DataSecurityManager securityMgr;

Provider nonrepProvider;

bool isConfidential;

bool isNonRepudiation;

bool isIntegrity;

ProfileInfo profInfo;

public DataSecurity(DataSecurityManager mgr, Type type)

{

objType = type;

securityMgr=mgr;

ExtractAttributes();

}

private void ExtractAttributes()

{

//Retrieve the security profile attribute

//to retrieve the name of the profile

object[] attributes =

objType.GetCustomAttributes(typeof(SecurityProfileAttribute),true);

SecurityProfileAttribute profAttr = attributes[0] as

SecurityProfileAttribute;

profInfo= securityMgr.Profiles[profAttr.Profile] as ProfileInfo;

//Check for confidential attribute

attributes =

objType.GetCustomAttributes(typeof(ConfidentialAttribute),true);

isConfidential = (attributes.Length == 0 ? false : true);

//Check for nonrepudiation attribute

attributes =

objType.GetCustomAttributes(typeof(NonRepudiationAttribute),true);

isNonRepudiation = (attributes.Length == 0 ? false : true);

//Check for integrity attribute

attributes = objType.GetCustomAttributes(typeof(IntegrityAttribute),true);

isIntegrity = (attributes.Length == 0 ? false : true);

5645ch06.qxd 3/3/06 12:24 PM Page 342

CHAPTER 6 ■ STP SECURITY 343

//Instantiate the nonrepudiation provider

//and pass on the profile information

nonrepProvider = new NonRepudiationProvider(profInfo);

}

public SecureEnvelope Create(byte[] data)

{

//Create a new secure envelope

SecureEnvelope envelope = new SecureEnvelope(profInfo.ProfileName);

//Based on attribute declared, we instantiate

//appropriate provider

if (isNonRepudiation == true)

nonrepProvider.Create(data,envelope);

return envelope;

}

public bool Verify(SecureEnvelope envelope)

{

//invoke the appropriate provider to verify data

return nonrepProvider.Verify(envelope);

}

}

}

This class implements the core logic, which includes extracting security-related attributes from
a type, instantiating the appropriate provider, and finally providing a way to construct or verify
cryptographic messages.

Code Example
The following code demonstrates the usage of a security framework:

using System;

using System.Security.Cryptography;

using System.IO;

using System.Text;

using System.Runtime.Serialization.Formatters.Binary;

namespace STP.Security

{

class CodeExample

{

static void Main(string[] args)

{

//An instance of ContractNoteInfo is created.

ContractNoteInfo noteInfo = new ContractNoteInfo("MSFT",100,24);

//ContractNoteInfo is decorated with the Serializable attribute,

//so the entire object graph with help of BinaryFormatter is

//flattened into raw bytes, and this task is achieved by

//with the help of the SerializeContractNote method

byte[] data = SerializeContractNote(noteInfo);

5645ch06.qxd 3/3/06 12:24 PM Page 343

//Generate public and private key for demonstration purpose

GenerateKey();

//Security Framework is initialized, a new instance of DataSecurity

//is created, and this instance returned by DataSecurityManager

//is exclusively meant for instances of ContractNoteInfo. This

//behavior is similar to XmlSerializer where there exists strong

//coupling between an object instance and the type associated with it.

DataSecurityManager secMgr = new DataSecurityManager();

DataSecurity dataSec = secMgr.Secure(typeof(ContractNoteInfo));

//The serialized byte array of ContractNoteInfo is then passed to

//Create method of DataSecurity that is then handed internally to

//NonRepudiationProvider, which creates a digital signature and

//associates it with SecureEnvelope. Also, the secure envelope itself

//is marked serializable so its entire object graph itself can now

//be serialized and transmitted over the wire.

SecureEnvelope secureEnvelope = dataSec.Create(data);

}

public static void GenerateKey()

{

RSACryptoServiceProvider rsaCrypto = new RSACryptoServiceProvider();

string pubprivKey = rsaCrypto.ToXmlString(true);

StreamWriter writer = new StreamWriter(@"C:\PubPrivKey.txt");

writer.WriteLine(pubprivKey);

writer.Close();

}

public static byte[] SerializeContractNote(ContractNoteInfo noteInfo)

{

MemoryStream memStream = new MemoryStream();

BinaryFormatter binaryFormatter = new BinaryFormatter();

binaryFormatter.Serialize(memStream,noteInfo);

int dataLength = (int)memStream.Length;

byte[] data = new byte[dataLength];

memStream.Position = 0;

memStream.Read(data,0,dataLength);

memStream.Close();

return data;

}

}

}

Summary
The following are the salient features covered in this chapter:

• We explained the various business entities involved in STP and how essential it is to secure
information exchanged between them in order to gain credibility and acceptance of STP.

• We highlighted the role played by the STP service provider in bringing all business entities to
a common platform.

• We briefly discussed the fundamental concepts of cryptography and also covered cryptography
terminology.

CHAPTER 6 ■ STP SECURITY344

5645ch06.qxd 3/3/06 12:24 PM Page 344

CHAPTER 6 ■ STP SECURITY 345

• We explained both symmetric and asymmetric algorithms and how they can be used to protect
the confidential aspect of data.

• We demonstrated how integrity of data is achieved by calculating a cryptographic hash value
that is irreversible in nature.

• We introduced the concept of digital signatures that address nonrepudiation issues encoun-
tered in a high-risk transaction.

• We explained that the support of digital certificates in the STP world will act as a digital passport
to verify an individual business identity.

• We covered how the prototype of a security framework is implemented and is based on
a declarative programming approach to secure information.

5645ch06.qxd 3/3/06 12:24 PM Page 345

5645ch06.qxd 3/3/06 12:24 PM Page 346

C H A P T E R 7

■ ■ ■

STP Interoperability

Activities undertaken in life are like a one-way transaction that has only a commit phase.

In the previous chapter, we discussed the role of an STP service provider. Each entity (such as the
broker, custodian, and fund manager) subscribes to the STP provider’s services, which use a prede-
fined format for communicating trade details. The entire trade takes place on the STP service provider’s
network. Several STP service providers exist in the settlement marketplace, and they compete with
each other for business. The challenging issue for the financial industry is to enable seamless inter-
operability between the various STP providers. To achieve this, you need a technology platform that
connects individual market participants and STP providers, understands their internal and external
business processes, and, most important, integrates their technologies. In this chapter, we will cover
how you can use Web services to enable STP, and we will briefly cover the various features of Web
services and how each of these components fits together to achieve interoperability in the STP world.

What Is Interoperability?
With the advent of multiple service providers, it becomes imperative that they communicate with
each other in an unbiased way so that trades originating in one network can be settled on a different
network if the entities involved in settling the trades are on different networks. The communication
between two or more service providers or components in an STP environment is called interoperability.
Regulators and industry associations ensure that seamless interoperability is in place in the interest
of brokers, custodians, and fund managers. In the absence of interoperability, only those networks
that had subscriptions from the largest and most influential institutions would attract more customers
and traffic. This would in turn create a vicious cycle, prevent competition from growing, and result
in a monopolistic situation. You can appreciate the need for interoperability by drawing an analogy
between STP service providers and mobile phone service providers in the telecom business. You
probably know that a single service provider in the mobile phone industry would not be a desirable
situation. Specifically, you wouldn’t have much choice over the services you get, the quality of services,
or even the rate at which you pay for services. It would be a take-it-or-leave-it kind of situation. Peo-
ple don’t like to be forced to subscribe to one service or continue to be associated with one service
provider. Therefore, having multiple service providers in the mobile phone industry is healthy for
subscribers. Now assume there was a constraint that subscribers from one network could not call
subscribers in other networks. This kind of restriction would be difficult to digest. In such situations,
though, multiple service providers would exist, but you would rarely get any choice. Whenever you
wanted a mobile telephone connection, you would have to see what service most of your contacts
used, and you would have to simply subscribe to that network. In this case, it is immediately obvious
that these networks should be in a position to talk to one another. Unless they talk to each other, you
would not be able to talk to all your contacts. And these conversations must be supported regardless
of which network the call originates from, which network the call utilizes as a mere carrier, and which
network the call finally terminates on. In this entire communication process, you would also expect

347

5645ch07.qxd 3/3/06 12:28 PM Page 347

CHAPTER 7 ■ STP INTEROPERABIL ITY348

Figure 7-1. Communication happens easily when all entities are on one network.

the call clarity to be intact, and as long as the conversation takes place effectively, you really wouldn’t
care which networks the call utilizes.

Similarly, in the STP marketplace, you expect the following:

Choice of service provider: As individuals we like to have control over who provides us with ser-
vice. We like to choose who provides us with a telephone connection and who provides us with
banking services. These choices are driven by parameters such as who is providing better services,
who guarantees deliveries, and which service provider is cost competitive. Institutions choose
their STP service providers in the same way. Some choose multiple service providers to have
a failover plan—just in case the services of one STP service provider is disrupted, the institution
can quickly switch to the other service provider without much loss in business. If interoperability
were not implemented, brokers/custodians would have to sign up with each service provider
and route the messages to the appropriate service provider where their final recipient resides.

Immediate delivery of trades: The timely delivery of trades is extremely crucial. Trades originating
from one network have to be delivered to the ultimate recipient such as the custodian/fund
manager immediately. The STP service provider has to ensure that congestions are forecasted
and managed efficiently.

Seamless communication: STP service providers have to talk to each other and exchange data
in a seamless way through predefined protocols. The user institution must not be saddled with
the responsibility of coding data in different formats and building additional logic for separate
networks. No additional service provider–specific hardware/software should be required.

Correct content delivery: Trades initiated from one network must be delivered to other networks
with correct content. Financial information is critical, and a small error can lead to a lot of losses
for the institutions involved.

In the examples discussed in the previous chapter about STP, we assumed only one service
provider. In such cases, it is simple to exchange messages between brokers, custodians, and fund
managers, because only one communication protocol is involved. The market entities’ back offices
are required to be configured to talk to only one STP service provider (see Figure 7-1).

We will now present another example that shows how STP interoperability works with several
service providers in place. Assume there are three STP service providers: A, B, and C. And assume
three market entities exist (see Table 7-1).

Table 7-1. Market Entities and Their STP Providers

Market Entity Classification Signed with Service Provider

X Fund Manager A

Y Broker B

Z Custodian C

5645ch07.qxd 3/3/06 12:28 PM Page 348

CHAPTER 7 ■ STP INTEROPERABIL ITY 349

Figure 7-2. Communication flows freely with a communication protocol in place.

Also assume fund manager X gives orders for execution on the exchange to broker Y. Broker Y
will execute the order and will try to communicate the details to fund manager X. In this case, the
fund manager is with service provider A, and broker Y is with service provider B. If both service
providers don’t talk to each other, the message initiated by broker Y will not get delivered to fund
manager X.

Such an arrangement cannot work if there is no acceptable message format in which data will
be exchanged. In such cases, regulators and industry associations normally come forward to formu-
late messaging protocols that are followed by each entity in the market, including the STP service
providers. Once the messaging protocols get finalized, the market participants (brokers, fund man-
agers, and custodians) modify their back offices and make them capable for communication with
these protocols. Since all the entities understand these protocols, communication can take place
easily amongst various STP service providers (see Figure 7-2).

ISO 15022 is an acceptable communication protocol for achieving STP interoperability in several
countries.

Why Is Interoperability Required?
As discussed in Chapter 1, STP is an approach to settlement that will reduce the time taken for settling
transactions. Currently, settlements in U.S. equities markets happen on a T+3 basis. An ongoing effort
is taking place through STP to bring it down to T+1. This means if you trade today, your transactions
will get settled tomorrow. The task is enormous by any standard. STP will demand that a lot of the
manual processes be automated. Since the same trade needs to flow between the fund manager,
broker, and custodian and maybe even to the clearing corporation and depository, it is important
that all such entities connect to a common network.

A common network in turn raises a lot of issues. Who will own this network, who will set it up,
and who will manage it? Agencies such as exchanges or clearing corporations could be willing to set
it up, but they might not provide enough features to suit individual institutions. Just as in other
industries, having competition could be the answer. When multiple vendors exist, they will attempt
to provide superior services to attract customers. The STP network also needs to communicate with
the back offices of institutions; hence, it may also be desirable that one vendor provides a back office
as well as STP services.

This is the case for having multiple vendors providing STP services. But we actually argue for
having them on one network. Every vendor, however, has their own network. To achieve interoper-
ability, a protocol needs to exist that enables each STP network to communicate with other STP
networks.

Interoperability offers institutions the choice of having a preferred STP service provider. They
can also sign up with multiple vendors to have redundancy.

5645ch07.qxd 3/3/06 12:28 PM Page 349

CHAPTER 7 ■ STP INTEROPERABIL ITY350

Challenges in Achieving Interoperability
Although interoperability is highly desired, in many markets experience has shown that regulators
and industry associations have to make a large amount of effort to implement interoperability.
A variety of reasons exist for why interoperability does not take off on its own, especially in nonma-
ture markets:

High cost of enhancements/interface development: This problem arises in the early stages when
interoperability is implemented. Both STP service providers and their end customers have to make
a large amount of investments to achieve a common messaging protocol and handshaking. This is
more relevant for the first and early movers. A significant amount of investment is required for early
movers to establish policies and processes and put an infrastructure in place. Late adopters simply
learn from earlier adopters and hence have to invest less money. The entire industry thus adopts
a wait-and-watch policy for many initiatives, causing the initiative itself to not take off.

Lack of messaging protocol: Each STP service provider may have its own technology framework,
and there may not be any common protocol in which messaging takes place. Industry associa-
tions normally take the initiative in these cases, and they form committees to decide which
messaging protocol is best for that market. STP service providers in those markets then adopt
the decided messaging protocol as standard and implement interoperability using that standard.

Lack of common digital signature authentication process: When an STP service provider accepts
transactions to be delivered to someone in its network, it needs to be sure the transaction content
is digitally signed. Each STP service provider may sign up with a different certifying agency, giving
rise to a need for a common body that verifies these signatures and certifies that the messages are
genuine and can be accepted.

Other technology issues: Sometimes markets have agreed to a messaging protocol, but the back-
office solutions of brokers/custodians and fund managers are not compliant to the agreed
messaging formats. This gives rise to the need for the manual entry of data in such systems and
causes a break in the chain for STP, leading to errors and delays.

Poor service-level agreements and legal infrastructure: Every STP service provider enters into
a legal agreement with its customers for the delivery of messages. None of these service providers,
however, guarantees the delivery of messages terminating on other networks. Since a failure of
delivery means monetary loss that can at times be high, clients don’t accept the risk and con-
tinue to sign up with multiple service providers rather than signing up with one and risking the
delivery failure of a message and having no legal recourse.

High interconnectivity charges: Interconnectivity charges are charges that are levied to institutions
for messages they send that terminate on a network different from the network of origination.
Existing STP service providers levy high interconnect charges, especially to service providers that
are new to this business. This deters institutions from joining the new service provider. However,
strong regulatory guidelines exist for what interconnect charges can be levied and whether there
can be differential pricing in interconnectivity.

Vested interests: Large players in the STP space don’t want smaller vendors to come in and take
away their business.

Central to all of these problems is integration and interoperability between STP providers. To
resolve this, you need a computing platform that allows using industry standards but still takes advan-
tage of investments made in the existing system. Additionally, it must allow architecting systems in
a provider-neutral fashion where the external interface to the outside world is exposed using open
standard and protocols regardless of the operating system or programming environment used to
implement the core business logic. Such architectural style is important to survive in a highly dynamic
environment and also to expand the reach of the business, particularly when the activities inside
a business process demand a strong collaboration from its business partners. So, to meet this goal,
STP service providers must embrace service-oriented architecture (SOA) principles.

5645ch07.qxd 3/3/06 12:28 PM Page 350

CHAPTER 7 ■ STP INTEROPERABIL ITY 351

Figure 7-3. OMS components represented using service-oriented design

Introducing Service-Oriented Architecture
SOA represents an architectural style of identifying and packaging applications in the form of a service.
A service is an atomic processing unit that deals with a specific aspect of a business requirement.
Collectively, a service forms a service suite (services) that facilitates building an end-to-end business
solution. For example, Figure 7-3 identifies different pieces of an order management system and real-
izes them in the form of a service that is self-governed in nature. This idea of separating the business
concerns is not a new concept and already exists in the component programming world, but what
distinguishes the modern service-oriented approach (using Web services) is its ability to abstract
away the knowledge about the implementation platform, data format, or transport protocol used
by the service to communicate with its requestor. This is in contrast to the traditional distributed
architecture world where it is absolutely necessary to understand the platform-specific details in
order to leverage the functionality encapsulated inside a component. For example, if risk manage-
ment functionality is exposed as DCOM components, then it would be difficult for the Java world to
interoperate with it.

The modern SOA departs from the traditional architecture style and has characteristics that promote
the strong reuse of the existing application by wrapping it in the form of services. It also allows inter-
operability between services that are spread across different computing platforms. The following are
the important characteristics of SOA that make it so significant in today’s computing world:

Loose coupling: Loose coupling is one of the important characteristics of SOA; it means both
the service and its requestor are independent of each other’s implementation. The details of the
service are described through well-defined service metadata that outlines the business function-
ality, the structure of the message service’s send or receive, and the transport protocol used to
deliver messages. Furthermore, the content of the service description is laid out in a simple,
machine-readable format. Significantly, this means the service metadata is the glue that estab-
lishes the link between the service provider and its requestor and allows them to discover and
invoke functionality.

5645ch07.qxd 3/3/06 12:28 PM Page 351

CHAPTER 7 ■ STP INTEROPERABIL ITY352

Autonomous: SOA requires that an individual service be an autonomous application. It must
have complete control over its underlying processing logic. A service encapsulates logic that is
either a business task or some kind of computational-related task, but its requestor is always
shielded from its internal implementation. This proves to be highly flexible because it provides
room to evolve and grow the business logic without impacting its consumers. This concept of
autonomy is further applied to the message sent or received by the service. The service com-
municates using messages that are self-governed units and are platform agnostic. One valuable
aspect of message-level autonomy is it allows you to transparently introduce value-added fea-
tures such as message encryption, authentication, and so on.

Reusability: SOA promotes strong reusability both within the organization and outside the
organization. It is natural in the service-oriented world because of the individual service that is
designed to tackle a specific aspect of the business problem. Additionally, when an organization
starts bundling its existing system in the form of the services, this automatically results in wide-
spread reuse. So, by embracing SOA principles, an organization can easily integrate its modern
systems with existing legacy systems regardless of the underlying platform or implementation
language. This benefit of reuse will save organizations both time and money that otherwise
would have been mobilized in migrating this legacy system to a new platform.

Abstraction: A service describes its functionality using service metadata. Even though a service
internally must be using various business components that run on different platforms and
demand a strict formalism, all this complexity is totally hidden to the consumer of the service.
A service manages to abstract away the nitty-gritty details involved to achieve a specific busi-
ness goal and act as a facade to the outside world. This degree of abstraction establishes a new
service layer where the service acts as an entry point and coordinates among various internal
business processing components.

The characteristics highlighted previously are equally applicable to other distributed application
architectures; therefore, it is reasonable to wonder what makes SOA so different from the others.
The difference is that SOA (using Web services) is the first architecture to promote interoperability
from the inception stage. Moreover, SOA encourages organizations to leverage existing legacy systems,
which drastically reduces cost and yields higher productivity. The tenets of SOA are an abstract
architectural concept, and a technology implementation is needed that adheres to this principle
and allows organizations to design and build service-oriented systems. Web services are one such
implementation that lives up to the SOA expectation and provides a platform to build loosely cou-
pled business solutions.

Web Services
Web services represent a new paradigm for building distributed applications that use industry-
established open standards and protocols. They enable software components to be exposed as
services over standard communication protocols and use a standard data representation format to
exchange messages with consumers. They adopt XML as the key data exchange format and HTTP
as the data delivery protocol. Because of this ubiquitous infrastructure, Web services have attracted
the majority of organizations to follow the SOA path. With Web services, an organization can easily
achieve its EAI and business-to-business integration goals that were in the past always seen as major
hurdles. A much closer look at Web services will reveal that they provide the best of both the Web
and component-oriented worlds. They facilitate the seamless integration between applications that
are written in different languages and that run on different platforms. To fully understand Web services,
it is essential to first know its pillars, as depicted in Figure 7-4.

5645ch07.qxd 3/3/06 12:28 PM Page 352

CHAPTER 7 ■ STP INTEROPERABIL ITY 353

Figure 7-4. The pillars of Web services

The important characteristics of Web services are as follows:

Web services use XML as the data representation format: The simplicity of XML technologies not
only brought revolution in the Internet world but was also successful in establishing its place in
the service-oriented world. Its innate ability to capture both data and metadata in an ordinary
text format simplified the issues related to interoperability. It is through the use of XML that
Web services interact and exchange messages with consumers. This unique strength of XML
was soon realized by the industry, and it took the popularity of XML to a new height. Through
the use of XML, vendors authored several standard specifications that form a part of today’s
basic architecture of a Web service.

The Web service messaging framework is founded upon SOAP: SOA preaches a message-oriented
approach where the communication between a Web service and its consumer takes place by
sending messages to each other. A request message initiated by a Web service requestor includes
an action to be performed on the Web service along with the required data needed to support
this action. Similarly, a response message triggered by a Web service includes the result of the
action. To represent this interaction, a platform-agnostic messaging framework is required. As
a result, Simple Object Access Protocol (SOAP) was designed; it uses XML to structure and format
information. It is a highly extensible XML-based messaging framework designed to interoperate
with any computing platform.

Web services use WSDL to define service metadata: Web Services Description Language (WSDL)
is an XML document that defines the functionality offered by a Web service along with a list of
messages it sends and receives. WSDL is the heart of a Web service because it is the only source
of information provided to requestors in order to communicate with the service. Furthermore,
the information provided contains sufficient knowledge that enables the requester to know the
list of operations supported by the Web service, its physical location, the list of messages, and
its underlying data types.

Web services use HTTP as their primary transport protocol: With the advent of the Internet, we
were blessed with a new data delivery protocol that connected millions of systems across the
globe. HTTP is an Internet protocol that is simple and has been widely used. Web services use
HTTP to deliver SOAP messages. This combination of a ubiquitous Web protocol and language-
agnostic messaging framework provides a strong platform to build an interoperable solution.
Another important point is that the transport-level details are completely hidden from the Web
service; therefore, organizations are not restricted to HTTP. Instead, they can use any commu-
nication protocol that suits their business requirement. But the only reason proponents of Web
services advocate the use of HTTP is the inherent interoperability available off the shelf.

5645ch07.qxd 3/3/06 12:28 PM Page 353

CHAPTER 7 ■ STP INTEROPERABIL ITY354

WSDL
WSDL is the foundation of a Web service. It describes crucial information about the Web service
using XML vocabulary. The WSDL document contains the structure of messages, the data type of an
individual message, the order in which the messages are arranged and exchanged with consumers,
and the physical location of the Web service. Additionally, it contains details about the transport pro-
tocol used to deliver the message and the way messages are encoded over the wire. This aspect of WSDL
makes it possible for any consumer to establish communication with a Web service without even
knowing its internal implementation details. On the other hand, it achieves loose coupling and
interoperability between Web services and their consumers. From a consumer point of view, the
only critical information required is WSDL, which itself is described in a machine-readable format.
Furthermore, a deep dive into WSDL will disclose the important fact that it contains information
that is logically grouped into two parts: an abstract part and a concrete part.

The purpose of the abstract part is to define message-level characteristics that are independent
of any platform or language. Similarly, the concrete part binds the implementation-level details to the
abstract part; it describes the wire format of the message and the transport protocol used to deliver
it. This ability to describe the data used by the Web service without any reference to technology and
then dynamically bind it proves to be highly extensible. It provides multiple ways to interact with
a service. For instance, the same service can be exposed over the multiple communication channels
that are needed to achieve cross-platform interoperability.

■Note This section does not cover WSDL in detail, but the explanation is good enough for you to understand the
concept. Readers who want to further understand the nuts and bolts of individual elements can refer to the WSDL
specification at http://www.w3.org/TR/wsdl.

WSDL borrows from XML Schema, which makes it possible to define/validate it using any good
XML editor/parser. To give you a firsthand taste of WSDL, we have defined a WSDL document (see
Listing 7-1) that represents a slimmed-down feature of the order management system and exposes
the order submission functionality in the form of a Web service. This would enable a broker’s trad-
ing partners to connect their internal systems directly to the broker’s trading system.

Listing 7-1. WSDL Document for Order Management Web Service

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:s0="http://brokerxyz.com"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://brokerxyz.com" xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema elementFormDefault="qualified"

targetNamespace="http://brokerxyz.com">

<s:element name="SubmitOrder">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="orderInfo"

type="s0:OrderInfo" />

</s:sequence>

</s:complexType>

</s:element>

5645ch07.qxd 3/3/06 12:28 PM Page 354

CHAPTER 7 ■ STP INTEROPERABIL ITY 355

<s:complexType name="OrderInfo">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Instrument"

type="s:string" />

<s:element minOccurs="1" maxOccurs="1" name="BuySell"

type="s0:BuySellEnum" />

<s:element minOccurs="1" maxOccurs="1" name="Price" type="s:double" />

<s:element minOccurs="1" maxOccurs="1" name="Quantity" type="s:int" />

</s:sequence>

</s:complexType>

<s:simpleType name="BuySellEnum">

<s:restriction base="s:string">

<s:enumeration value="Buy" />

<s:enumeration value="Sell" />

</s:restriction>

</s:simpleType>

<s:element name="SubmitOrderResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="SubmitOrderResult"

type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</types>

<message name="SubmitOrderSoapIn">

<part name="parameters" element="s0:SubmitOrder" />

</message>

<message name="SubmitOrderSoapOut">

<part name="parameters" element="s0:SubmitOrderResponse" />

</message>

<portType name="OrderManagementServiceSoap">

<operation name="SubmitOrder">

<input message="s0:SubmitOrderSoapIn" />

<output message="s0:SubmitOrderSoapOut" />

</operation>

</portType>

<binding name="OrderManagementServiceSoap" type="s0:OrderManagementServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="SubmitOrder">

<soap:operation soapAction="http://brokerxyz.com/SubmitOrder"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<service name="OrderManagementService">

<port name="OrderManagementServiceSoap"

binding="s0:OrderManagementServiceSoap">

<soap:address

location="http://localhost/webservice3/OrderManagementService.asmx" />

5645ch07.qxd 3/3/06 12:28 PM Page 355

CHAPTER 7 ■ STP INTEROPERABIL ITY356

</port>

</service>

</definitions>

In Listing 7-1, the abstract part of WSDL is represented by the <types>, <message>, and <porttype>
elements, and the concrete portion is defined by the <binding>, <port>, and <service> elements.
The WSDL document describes the complete information about the Web service; in this case, it pro-
vides a business feature where any consumer (a broker’s trading partner) can directly submit an order
and in response get a unique order number that is later used to find out the status of the order. To
build this functionality, the first step is to define the structural characteristics of the message that
forms the abstract part of the service and is encapsulated inside the <types> element.

The <types> element defines the data type of the message sent or received by the Web service.
It relies on the grammar of the XML schema to define structural characteristics of the message, which
can range from a simple type element to a complex type element. This is a remarkable quality of
WSDL because instead of inventing its own type system, it directly adopted the industry-standard
XML Schema as its official type system language. The following XML fragment defines the structural
characteristics of the messages exchanged between a broker and his trading partners:

<types>

<s:schema elementFormDefault="qualified"

targetNamespace="http://brokerxyz.com">

<s:element name="SubmitOrder">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="orderInfo"

type="s0:OrderInfo" />

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name="OrderInfo">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Instrument"

type="s:string" />

<s:element minOccurs="1" maxOccurs="1" name="BuySell"

type="s0:BuySellEnum" />

<s:element minOccurs="1" maxOccurs="1" name="Price" type="s:double" />

<s:element minOccurs="1" maxOccurs="1" name="Quantity" type="s:int" />

</s:sequence>

</s:complexType>

<s:simpleType name="BuySellEnum">

<s:restriction base="s:string">

<s:enumeration value="Buy" />

<s:enumeration value="Sell" />

</s:restriction>

</s:simpleType>

<s:element name="SubmitOrderResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="SubmitOrderResult"

type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</types>

5645ch07.qxd 3/3/06 12:28 PM Page 356

CHAPTER 7 ■ STP INTEROPERABIL ITY 357

With the support of the XSD type system, we constructed the content of the request-response
message that will be accepted by the Web service. The request message maps to the structure of the
order, and its definition is enclosed inside the <SubmitOrder> element. Similarly, the response message
in this scenario represents a unique order number that is enclosed inside the <SubmitOrderResponse>
element. The elements declared inside <types> are then referenced by the <message> element, which
defines the actual composition of messages exchanged between a Web service and its consumer.
Here is what the <message> element looks like for the order management Web service:

<message name="SubmitOrderSoapIn">

<part name="parameters" element="s0:SubmitOrder" />

</message>

<message name="SubmitOrderSoapOut">

<part name="parameters" element="s0:SubmitOrderResponse" />

</message>

Messages represent abstract definitions of data and are composed of multiple parts. Individual
parts are described by one or more <part> child elements. Each <part> is tagged with a meaningful
name along with its underlying data type that references a simple or complex type defined under the
<types> element.

The next step is to group messages with the help of the <operation> element. This is analogous to
a method declaration in the object-oriented world. Each operation contains input and output messages
that are declared by the <input> and <output> constructs. The sequence in which the <input> and
<output> elements are laid out determines the message exchange pattern. For example, the SubmitOrder
operation described next represents a typical request-response message exchange pattern. An operation
that contains only <input> messages represents a one-way message exchange pattern.

With the help of the <operation> element, messages are grouped; the <operation> elements are
further grouped to form a <portType> element, which is the final leg of the abstract service definition.
The <portType> element, as follows, basically lists all the operations supported by the Web service:

<portType name="OrderManagementServiceSoap">

<operation name="SubmitOrder">

<input message="s0:SubmitOrderSoapIn" />

<output message="s0:SubmitOrderSoapOut" />

</operation>

</portType>

So far we have covered the abstract part of WSDL that represents Web service metadata in
a platform-agnostic fashion. But it is important to mention the implementation-level details about
how messages are formatted over the wire and the underlying transport protocol used to deliver the
message. This information is described inside a <binding> element. Here is what the <binding>
element looks like that uses SOAP to format messages and HTTP to deliver these messages:

<binding name="OrderManagementServiceSoap" type="s0:OrderManagementServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="SubmitOrder">

<soap:operation soapAction="http://brokerxyz.com/SubmitOrder"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

5645ch07.qxd 3/3/06 12:28 PM Page 357

CHAPTER 7 ■ STP INTEROPERABIL ITY358

Figure 7-5. SOAP envelope

The final leg of a WSDL document is the declaration of the <service> element, which contains
<port> elements that supply the physical location of the Web service along with the appropriate
binding information:

<service name="OrderManagementService">

<port name="OrderManagementServiceSoap"

binding="s0:OrderManagementServiceSoap">

<soap:address

location="http://localhost/webservice3/OrderManagementService.asmx" />

</port>

</service>

This concludes the brief overview of various elements that collectively form a WSDL document.
It is interesting to see how WSDL is used to capture the structural aspect of the Web service purely in
terms of message interaction without disclosing any implementation-specific details; going further,
you will learn how tools are used by Web service consumers to read the service description and gen-
erate the appropriate implementation code to interact with the Web service.

SOAP
SOAP is the messaging communication framework used by Web services to send or receive messages.
The purpose of SOAP is to provide a standard wire format that allows binding on a variety of transport
protocols and is not tied to any particular language or platform. To meet this requirement, SOAP uses
XML technologies to construct messages. The key aspect of using SOAP is the simplicity it provides that
facilitates loose coupling between the Web service and its requestor. It achieves message-level autonomy
and provides a foundation to build higher-level application protocols. This results in the development of
other advanced features that are evidenced in various distributed systems such as encryption, authenti-
cation, and routing.

A SOAP message represents an interaction between a Web service and its requestor; both the
request and response messages use same SOAP structure. The structure of SOAP consists of a SOAP
envelope that contains three important elements: header, body, and fault (see Figure 7-5). Each message
contains a header element that is the primary driver behind SOAP extensibility. It records control infor-
mation about data; for instance, if the actual data is encrypted, then information about the encryption
algorithm such as its key size is recorded in the header. It is through the header element that Web ser-
vices are able to separate the infrastructure aspect from the functional part and modularize each in the
form of feature extensions that can then be composed by any Web service. The next element after the
header element is the body element. It is an XML container that stores the actual message payload. It is
a mandatory element, unlike the header element, that is optional. The last element is the fault element,
which provides a generic structure used by the Web service to notify the error information to the sender.

5645ch07.qxd 3/3/06 12:28 PM Page 358

CHAPTER 7 ■ STP INTEROPERABIL ITY 359

Although SOAP is able to codify messages with the help of header, body, and fault elements, two
important styles are prevalent in the SOAP messaging world. These styles dictate how to structure the
content enclosed inside these elements. The first style represents the traditional RPC style where
request-response messages are mapped in the form of a method name followed by method param-
eters. The second style represents modern document-style messages where the request-response
messages contain the actual XML document and whose format is defined by the sender and receiver.
The goal of the RPC style is to replace the proprietary protocol used by existing distributed applica-
tions and introduce a standard message format. But this initiative was not so widely welcomed and
also was complex to understand. Therefore, Web services adopted a document-centric approach
as its default style to exchange a message with its consumer.

Platform Infrastructure for Web Services
The concepts discussed so far regarding Web services such as SOAP and WSDL are specifications
and not technology platforms. A specification is a document that is jointly prepared by vendors in
order to achieve a common goal. The goal is to promote vendor-neutral communication and develop
systems using open protocols and standards. The benefits are that no single vendor has complete
control and that any significant changes in the specification require total consensus among vendors.
However, you need an infrastructure that understands this specification and provides both the
development and hosting platforms that would then allow you to build real-life business solutions
that are based on the tenets of SOA. The infrastructure must also provide a development tool to
build Web services using a suitable programming language. It must also have the ability to wrap the
existing business components and expose them in the form of Web services.

The Microsoft .NET Framework has been designed to support this kind of infrastructure and
offers strong development tools along with a reliable hosting platform. The framework provides
support for building Web services in any .NET-aware programming language such as Visual Basic,
C#, and so on. Furthermore, the CLR supplies so many goodies that it makes a developer’s life sim-
pler. The richness of the framework combined with the robustness provided by the CLR results in
a perfect platform to build Web services.

Figure 7-6 illustrates a high-level architecture view of the Web service platform implemented in
.NET. However, in reality there is no restriction on the selection of a platform; in other words, devel-
opers are free to choose any Web service platform.

Figure 7-6. High-level components of the Web service platform

5645ch07.qxd 3/3/06 12:28 PM Page 359

CHAPTER 7 ■ STP INTEROPERABIL ITY360

Regardless of which platform you select, you will always find the following basic software
components:

Transport unit: This component is responsible for all kinds of communication aspects associated
with Web services. It is bundled with various communication protocols that ensure the delivery
of messages from one endpoint to another. In the .NET world, this role is played by the IIS
server, and the communication between the Web service and its requestor is conducted using
HTTP.

Message-processing unit: This component is known as the message-handling engine because at
its core it is responsible for transforming and processing SOAP messages. It validates inbound
and outbound SOAP messages and ensures they adhere to SOAP standards. It is equally respon-
sible for dictating the wire-encoding format of the SOAP messages. In the .NET world, the Web
service framework provides this feature. Obviously, the framework does more than message
processing; one of the nice features it provides is an object-oriented abstraction over XML
messages. Developers never deal with the tedious task of framing SOAP messages; instead, with
the help of a declarative programming model, classes are decorated with the appropriate SOAP
serialization attributes. The goal of this framework is to hide most of the complexities involved
in creating a SOAP message. Additionally, the framework provides an extensibility hook that
further offers opportunities to construct various value-added services.

Business processing unit: This component houses the actual business logic that is executed on
receiving the request from the Web service consumer. There is no restriction on the use of the
technology, and the business logic implemented may be truly proprietary in nature.

By introducing the previous three units, we have explained the basic architectural foundation
of any Web service platform. Note that a vendor implementing such a platform may introduce addi-
tional layers, but the overall design characteristics will still revolve around the previously explained
software pieces. In the next section, we will show how to leverage the Microsoft Web service platform,
and you will see how easy it is to build your first Web service using Visual Studio .NET as the official
Web service development tool.

STP and Web Services
Web services will be the greatest catalyst for enabling STP in the financial industry. Today, most
financial firms depend upon both internal and external systems. Internal systems look after the
internal needs of the organization, and external systems look after the business-to-business inte-
gration aspects. Additionally, the implementations of systems are spread across various platforms.
So, in this scenario, the industry needs a platform that virtualizes all systems running inside and
outside an organization as one single coherent system. Web services address this need by providing
various industry standards that allow for the seamless integration between various systems. Using
Web services, organizations can easily integrate their existing and new systems with minimal devel-
opment effort; this will be the key incentive, and it will definitely entice a financial firm to participate
in STP. Essentially, STP will be realized only on a platform that connects individual organizations in
the financial industry, understands its internal and external business process, and integrates its
technology.

5645ch07.qxd 3/3/06 12:28 PM Page 360

CHAPTER 7 ■ STP INTEROPERABIL ITY 361

Figure 7-7. STP-Provider B invoking the STP-Provider A Web service

Now it is time to wet your hands with your first Web service code using Visual Studio .NET. Let’s
say you were assigned the responsibility of automating STP; mainly your goal is to establish a framework
to enable seamless, cross–STP provider integration. We already discussed the various problems
faced by STP providers in the absence of a common, standard communication protocol. From here
onward, we will show you step by step the implementation-level details, and at each step we will
discuss the features available in Web services and give you background information about how Web
services solve this problem.

The case study we will be explaining is based on Table 7-1 where the fund manager is registered
with STP-Provider A and the broker with STP-Provider B. In this scenario, both the fund manager
and the broker are registered with different STP providers. In order to enable seamless information
flow between the broker and the fund manager, both STP-Provider A and STP-Provider B need to
establish some form of communication medium. This will then allow the fund manager to submit
an order for execution on the exchange to the broker and similarly will allow the broker to commu-
nicate the execution details to the fund manager. The only way this flow will be successful is when
STP-Provider A (the fund manager’s STP provider) routes the order to STP-Provider B (the broker’s
STP provider), and this requires agreement between both these providers. So, we will demonstrate
how STP-Provider A and STP-Provider B use Web service technology to achieve this interoperability.

In Figure 7-7, you will notice post-execution interaction where the broker informs the fund man-
ager about the trade details in the form of a contract note. Although the market entities are omitted
in Figure 7-7, it is obvious that STP-Provider B, who is representing the broker, must somehow com-
municate the trade details to the fund manager via STP-Provider A. To support this interaction,
STP-Provider A will expose a Web service that allows sending contract note information to all mar-
ket entities falling under the STP-Provider A network in an interoperable fashion. This Web service
will then be invoked by STP-Provider B to submit contract note information destined for the fund
manager. STP-Provider A in Web service context is known as the service provider, and STP-Provider B
is known as the service consumer or service requestor.

To create a Web service, the first prerequisite is to install and start IIS from the Service Control
Panel. Keep in mind the steps we are discussing represent the activity performed by STP-Provider
A in order to expose the Web service. The next step is to launch Visual Studio .NET, and select File ➤
New ➤ Project. This opens the New Project dialog box. Then, select ASP.NET Web Service in
the Templates area, as shown in Figure 7-8. Next, enter a suitable name for this project, such as
STPProvider. Click OK to create the project.

5645ch07.qxd 3/3/06 12:28 PM Page 361

CHAPTER 7 ■ STP INTEROPERABIL ITY362

By default Visual Studio .NET creates various files that make up the Web service; the most
important one to look at is the Web service file with the extension asmx (see Figure 7-9).

By double-clicking Service1.asmx, you will be provided with a code editor view, as depicted in
Figure 7-10.

Figure 7-9. STPProvider project structure

Figure 7-8. Web service project created using Visual Studio .NET

5645ch07.qxd 3/3/06 12:28 PM Page 362

CHAPTER 7 ■ STP INTEROPERABIL ITY 363

You will now modify both the class name and filename so that they reflect the actual business
functionality they intend to offer to the consumer (see Figure 7-11).

Figure 7-10. Code editor view showing autogenerated Web service code

5645ch07.qxd 3/3/06 12:28 PM Page 363

CHAPTER 7 ■ STP INTEROPERABIL ITY364

Creating a Web service using Visual Studio .NET is easy; all you need to do is reference the
System.Web assembly and import the System.Web.Services namespace. Then, create a new class and
inherit it from System.Web.Services.WebService, which then automatically promotes it to a Web
service. After completing this step, the next procedure is to describe the functionality provided by
the service; you do this with the help of the WebMethod attribute decorated over the public method of the
class. Listing 7-2 shows the revised code of PostTradeService that enables the contract note
functionality.

Listing 7-2. Web Service Exposed by STP-Provider A

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace STPProvider

{

public class ContractNoteInfo

{

public string Symbol;

public string Quantity;

Figure 7-11. Changing the Web service class name and filename

5645ch07.qxd 3/3/06 12:28 PM Page 364

CHAPTER 7 ■ STP INTEROPERABIL ITY 365

public string Price;

public BuySellEnum BuySell;

}

public enum BuySellEnum

{

Buy,

Sell

}

public class PostTradeService : System.Web.Services.WebService

{

public PostTradeService()

{

}

[WebMethod]

public int SubmitContractNote(ContractNoteInfo contractNote)

{

//Process the submitted information

return 0;

}

}

}

Notice that in Listing 7-2 a new operation, SubmitContractNote, is published by the Web service.
This method accepts the contract note information as an input message and returns an acknowl-
edgment number as an output message. ContractNoteInfo represents the contract note information.
You already know Web services communicate through XML messages, but Visual Studio .NET pro-
vides an object-centric approach to building Web services. To take advantage of this strong-typing
feature, Visual Studio .NET undertakes a lot of the complex steps and hides them from developers.
In simpler terms, with just a few lines of the previous code, you defined the WSDL document and
SOAP message structure. To construct this information, you need to compile the project by selecting
Build ➤ Build Solution. The next step after compilation is to open Internet Explorer and retrieve the
WSDL document simply by visiting http://localhost/STPProvider/PostTradeService.asmx?wsdl.
This will fetch the complete information about the Web service, as shown in Listing 7-3.

Listing 7-3. WSDL for Web Service Exposed by STP-Provider A

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:s0="http://tempuri.org/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://tempuri.org/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">

<s:element name="SubmitContractNote">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="contractNote"

type="s0:ContractNoteInfo" />

</s:sequence>

</s:complexType>

5645ch07.qxd 3/3/06 12:28 PM Page 365

CHAPTER 7 ■ STP INTEROPERABIL ITY366

</s:element>

<s:complexType name="ContractNoteInfo">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Symbol" type="s:string" />

<s:element minOccurs="1" maxOccurs="1" name="Quantity" type="s:int" />

<s:element minOccurs="1" maxOccurs="1" name="Price" type="s:double" />

<s:element minOccurs="1" maxOccurs="1" name="BuySell"

type="s0:BuySellEnum" />

</s:sequence>

</s:complexType>

<s:simpleType name="BuySellEnum">

<s:restriction base="s:string">

<s:enumeration value="Buy" />

<s:enumeration value="Sell" />

</s:restriction>

</s:simpleType>

<s:element name="SubmitContractNoteResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="SubmitContractNoteResult"

type="s:int" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</types>

<message name="SubmitContractNoteSoapIn">

<part name="parameters" element="s0:SubmitContractNote" />

</message>

<message name="SubmitContractNoteSoapOut">

<part name="parameters" element="s0:SubmitContractNoteResponse" />

</message>

<portType name="PostTradeServiceSoap">

<operation name="SubmitContractNote">

<input message="s0:SubmitContractNoteSoapIn" />

<output message="s0:SubmitContractNoteSoapOut" />

</operation>

</portType>

<binding name="PostTradeServiceSoap" type="s0:PostTradeServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="SubmitContractNote">

<soap:operation soapAction="http://tempuri.org/SubmitContractNote"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

5645ch07.qxd 3/3/06 12:28 PM Page 366

CHAPTER 7 ■ STP INTEROPERABIL ITY 367

<service name="PostTradeService">

<port name="PostTradeServiceSoap" binding="s0:PostTradeServiceSoap">

<soap:address location="http://localhost/STPProvider/PostTradeService.asmx" />

</port>

</service>

</definitions>

In Listing 7-3, notice how ContractNoteInfo type is represented in XSD form; similarly, employing
the WebMethod attribute over the SubmitContractNote method translates in the form of the <operation>
element, and arguments of this method are enclosed inside the <message> element. Certainly, you
can build the previous WSDL document by hand, but it would be lot of work and the chances of
human mistake are very high.

With the WSDL document in place, it can now be shared with the other STP providers
(STP-Provider B is one of them) who can then start building an appropriate interface to interact
with the Web service.

This completes the discussion of the STP-Provider A end; the next step is to build a service
consumer implementation that in this case is represented by STP-Provider B who will use the Web
service interface of STP-Provider A to submit contract note information received from the broker to
the fund manager.

In this example, we will assume both the Web service and its consumer are using the .NET
platform, and therefore STP-Provider B can use the wsdl command-line tool to generate what we
call a service proxy that emits a class based on a WSDL document. The proxy contains information
about the method and the type that is represented in the form of <operation> and <types> inside
WSDL. The intent of the proxy is to act as a mediator between the Web service and consumer and
hide the low-level details involved in composing the request or response message using SOAP.

To build a service consumer (STP-Provider B), you will create a new console project using
Visual Studio .NET, as illustrated in Figure 7-12.

After the project is successfully created, the next step is to add a Web service reference; you can
accomplish this task using the wsdl command-line tool. Alternatively, Visual Studio .NET provides
an easy-to-use wizard that automatically generates the proxy class that no doubt under the hood

Figure 7-12. Service consumer project created using Visual Studio .NET’s New Project dialog box

5645ch07.qxd 3/3/06 12:28 PM Page 367

CHAPTER 7 ■ STP INTEROPERABIL ITY368

uses the wsdl command-line tool. Additionally, the wizard also makes the necessary adjustments in
the existing project to add the newly created proxy class. Now to bring up the wizard, right-click the
project node, and select Add Web Reference. This opens the Search dialog box. In the Search dialog
box’s URL field, enter the physical location of the Web service, and click Go to continue. This will
display the list of operations supported by Web service, as depicted in Figure 7-13.

In Figure 7-13, after assigning a new Web reference name, you finally hook up this Web service
reference to your project. You must have figured it by now how simple it is to add Web service refer-
ences; it’s similar to adding a reference to a local assembly. But under the hood a new proxy class is
generated and included in the project. By default, the proxy class is hidden, but this doesn’t restrict
developers from looking at it. To view the code emitted by the proxy class, click the Show All Files
icon in Solution Explorer. This will expand the entire project hierarchy including the Web References
node, and you should see the proxy class beneath the individual Web references, as depicted in
Figure 7-14.

Figure 7-13. Add Web Reference dialog box

5645ch07.qxd 3/3/06 12:28 PM Page 368

CHAPTER 7 ■ STP INTEROPERABIL ITY 369

As you peek into the code of the proxy class, you will notice that it inherits from System.Web.
Services.Protocols.SoapHttpClientProtocol, which provides an object model to interact with the
Web service and also extend this model to programmatically manipulate SOAP request-response
messages. After the proxy is generated, the next step is to write the code to invoke the contract note
functionality exposed by the STP-Provider A Web service, as shown in Listing 7-4.

Listing 7-4. STP-Provider B Invoking STP-Provider A Web Service

using System;

namespace STPServiceConsumer

{

class ServiceConsumer

{

[STAThread]

static void Main(string[] args)

{

//instantiate Web service proxy

STPProvider.PostTradeService postTradeSvc = new

STPProvider.PostTradeService();

//prepare contract note information

STPProvider.ContractNoteInfo contractNote = new

STPProvider.ContractNoteInfo();

contractNote.Symbol = "MSFT";

contractNote.Price = 25;

contractNote.Quantity=100;

contractNote.BuySell = STPProvider.BuySellEnum.Buy;

//submit contract note information through Web service

int ackId =postTradeSvc.SubmitContractNote(contractNote);

//display the ack no. received from Web service

Console.WriteLine("Acknowledgement Id: " + ackId);

}

}

}

Figure 7-14. Solution Explorer showing the autogenerated proxy class created when adding a new
Web reference

5645ch07.qxd 3/3/06 12:28 PM Page 369

CHAPTER 7 ■ STP INTEROPERABIL ITY370

To test your first Web service, compile the code described in Listing 7-4 and then run the program.
You will see the output in Figure 7-15.

The program executed without any errors; STP-Provider B was able to submit a contract note
request to STP-Provider A and in response get an acknowledgment number. Clearly, with minimal
effort, you were able to build and test the Web service. The primary reason for this is the strong sup-
port provided by the .NET Framework and Visual Studio .NET. Without their support, it would have
been a difficult and time-consuming task.

STP Provider Consortium: Using UDDI
We demonstrated how STP-Provider A and STP-Provider B were able to shape and standardize both
the message and transport protocol details. Because of this, any consumer who understands WSDL
and SOAP can now directly communicate with STP-Provider A regardless of how proprietary the
STP-Provider A implementation platform is. So, for communication to take place, the first thing the
consumer must know is the exact location of the WSDL document. The example we illustrated
involved only two STP providers, but in reality there would be multiple STP providers offering the
same set of services in the STP space; it would be extremely difficult for the consumer to keep track
of the individual STP provider service descriptions and their Web service locations. To circumvent
this problem, you need a single well-known repository where information about the STP provider
and the services offered are published. It will support basic and advance search capability that will
be of tremendous value to consumers who can easily find a specific service that matches their busi-
ness requirement. Furthermore, you can think of the registry as an STP provider consortium where
the STP provider advertises itself along with its various service offerings.

To realize the STP provider consortium mission in the service-oriented world, what you need is
a registry that is based on service-oriented concepts. Universal Description, Discovery, and Integration
(UDDI) exactly fits this requirement (see Figure 7-16). It is a specification that describes a standard
way to publish, discover, and integrate Web services. It plays an important role in providing a reposi-
tory that not only contains technical information about Web services but also provides nontechnical
details. The nontechnical details consist of business addresses along with contact information,
geographic locations, and industry sectors. The role of the UDDI registry is just like a telephone
directory where information about businesses is registered, categorized, and finally made available
to the general public.

Figure 7-15. Console application demonstrating successful invocation of STP-Provider A Web service

5645ch07.qxd 3/3/06 12:28 PM Page 370

CHAPTER 7 ■ STP INTEROPERABIL ITY 371

At a high level, UDDI captures the following information during the Web service registration
process:

Business entity: Represents Web service provider information that contains names, addresses,
and contact details

Business service: Represents services provided by the business entity

Binding template: Provides implementation-level information about how to initiate a commu-
nication with the Web service

One of the main benefits of using UDDI is that it facilitates the consumer to bind to Web ser-
vices at runtime simply by querying on any of the previous attributes, and on a successful match the
consumer will receive the Web service network endpoint. This behavior is possible because a cen-
tral repository exists, and one can use the UDDI API to find information by issuing an appropriate
query. The UDDI API is exposed in the form of a Web service, so it is clear that XML is the language
used to interact with the registry. Data structures are defined using XSD, and operations such as
service discovery and publishing are defined in terms of the SOAP message. Many APIs are available
in UDDI that are broadly classified under the discovery and publishing category. The discovery API is
intended to retrieve service information based on specific search criteria, and the publishing API
is intended to integrate service information with the registry. To invoke these APIs, you need to
understand and frame correct SOAP messages, but considering the scope of this section, it is not
possible to cover the individual message structure and operation of UDDI Web services. For readers
who want to gain further insight, visit www.uddi.org.

In a typical STP world, you will require a repository based on UDDI standards. Currently, you
have two options for building a UDDI repository. The first option is to host a private UDDI reposi-
tory, and in the Microsoft world only Windows 2003 servers natively support it. The second option is
to reserve a space in the public UDDI repository hosted by Microsoft (http://uddi.microsoft.com)
and IBM (http://www.ibm.com/services/uddi). There are no entry barriers, and any organization
can participate and register its Web services. Moreover, both IBM and Microsoft have provided a test
repository database that allows organizations to experiment before touching the real repository;
you can find these at http:/test.uddi.microsoft.com and https://uddi.ibm.com/testregistry/
registry.html. Figure 7-17 shows the Microsoft test site.

Figure 7-16. Illustrates how the UDDI repository is used by STP-Provider B to find the STP-Provider A Web
service

5645ch07.qxd 3/3/06 12:28 PM Page 371

CHAPTER 7 ■ STP INTEROPERABIL ITY372

With basic knowledge of UDDI, you are now ready to build the STP provider consortium, and
to achieve this, you will use the Microsoft test registry database. So, the first step is to publish the
Web service; to do this, you need to authenticate your identity using a Microsoft Passport account.
To ease this authentication process, we have created the following Passport credential especially for
this exercise:

• Passport account: stpinteroperability@hotmail.com

• Password: chapter7

To publish the Web service, click the Publish link; this will open the instruction page with a sign-in
icon; by clicking this icon, you will be redirected to the Passport login page. Enter the previous cre-
dential to get successfully authenticated. After you have been authenticated, you will be presented
with a page that enables you to register business- and service-related information, as shown in
Figure 7-18.

Figure 7-17. UDDI test Web site

5645ch07.qxd 3/3/06 12:28 PM Page 372

CHAPTER 7 ■ STP INTEROPERABIL ITY 373

The Providers tab is the starting point where individual STP providers are registered and are
asked to enter business and service details. Since you are using the test registry, you are allowed to
enter a maximum of only one provider, and it is created by default. Therefore, the only possible
option is to update the default provider details. To edit provider information, simply click View. You
will be presented with a new page, as shown in Figure 7-19.

Figure 7-18. Providers tab where new STP providers are registered

5645ch07.qxd 3/3/06 12:28 PM Page 373

CHAPTER 7 ■ STP INTEROPERABIL ITY374

Figure 7-20 reflects updated information about the provider.

Figure 7-19. Provider registration page with various other options represented in the form of tabs

5645ch07.qxd 3/3/06 12:28 PM Page 374

CHAPTER 7 ■ STP INTEROPERABIL ITY 375

The important section of the provider information is the Services tab that exposes the service-
level details. It enables the STP providers to register Web service information along with the physical
location of the WSDL document. Also, there are no restrictions on the number of Web services that
are allowed to register. Figure 7-21 shows the details with a new service registered.

Figure 7-20. Provider registration page with updated details about STP-Provider A

5645ch07.qxd 3/3/06 12:28 PM Page 375

CHAPTER 7 ■ STP INTEROPERABIL ITY376

The Bindings tab records network endpoint details of the Web service and also a technical
description of the service including the WSDL document. For demonstration purposes, we entered
the URL of the PostTradeService Web service, as shown in Figure 7-22.

Figure 7-21. A new service registered

5645ch07.qxd 3/3/06 12:28 PM Page 376

CHAPTER 7 ■ STP INTEROPERABIL ITY 377

After entering binding information, you complete the service registration process and also
make this Web service endpoint information available to the outside world. Now, any consumer
who wants to know the Web service endpoint must first construct a proper query request and sub-
mit it to the registry. Even though the UDDI Web site provided by Microsoft and IBM already offers
a strong search capability that allows you to search for services based on business name, contact
details, and so on, it requires manual user intervention. What you need is a programmatic way of
integrating this search feature so that the application can dynamically select the implementation
of a service at runtime. To build this feature, it is simply a matter of understanding the UDDI request
and response XML structures and then using SOAP to submit them to the UDDI registry. There is
nothing wrong with this approach except it demands a precise understanding of the UDDI specifi-
cation. To simplify this task, Microsoft provides a managed .NET wrapper that ships with the UDDI
SDK; you can download it from http://msdn.microsoft.com.

The UDDI .NET SDK enables .NET applications to interact with the UDDI registry at runtime;
it also provides other goodies such as code samples and API documentation. The original motivation
of the UDDI SDK was to provide an object-oriented abstraction over UDDI messages, similar to the
one provided by Visual Studio .NET and the .NET Framework to create Web services. Using the UDDI
SDK, developers can perform both discover and publish Web services.

Now we will demonstrate an example of how to use the UDDI .NET assembly that will further
strengthen your understanding. In Listing 7-4, the location of the STP-Provider A Web service was
hard-coded inside the proxy file. Nowhere did you make a provision to read the Web service location
from an external source such as an application configuration file, which is the right way to do things.
But with the STP provider consortium in place, STP-Provider B knows a central repository exists that

Figure 7-22. Service registration page with updated information about PostTradeService

5645ch07.qxd 3/3/06 12:28 PM Page 377

CHAPTER 7 ■ STP INTEROPERABIL ITY378

provides all the necessary details required to handshake with the STP-Provider A Web service. Therefore,
the STP-Provider B program will directly use the UDDI SDK to retrieve this information, mainly the
network endpoint details of the Web service. Listing 7-5 illustrates how to handle this scenario.

Listing 7-5. STP-Provider B Using the UDDI API to Programmatically Determine STP-Provider A Web
Service Location

using System;

using Microsoft.Uddi;

using Microsoft.Uddi.Api;

using Microsoft.Uddi.Business;

using Microsoft.Uddi.Service;

using Microsoft.Uddi.Binding;

namespace STPConsortium

{

class ServiceConsumer

{

[STAThread]

static void Main(string[] args)

{

//instantiate Web service proxy

STPProvider.PostTradeService postTradeSvc = new

STPProvider.PostTradeService();

//prepare contract note information

STPProvider.ContractNoteInfo contractNote = new

STPProvider.ContractNoteInfo();

contractNote.Symbol = "MSFT";

contractNote.Price = 25;

contractNote.Quantity=100;

contractNote.BuySell = STPProvider.BuySellEnum.Buy;

//Fetch service endpoint information using UDDI

postTradeSvc.Url = GetServiceLocation();

//submit contract note through Web service

int contractNo =postTradeSvc.SubmitContractNote(contractNote);

//display contract no received from Web service

Console.WriteLine("Contract Note : " +contractNo);

}

public static string GetServiceLocation()

{

Console.WriteLine("Querying UDDI Registry...");

//Assign the network endpoint of UDDI Web services

Inquire.Url = "http://test.uddi.microsoft.com/inquire";

//Find the provider

FindBusiness findProvider = new FindBusiness();

findProvider.Names.Add("STP-Provider A");

BusinessList providerList = findProvider.Send();

BusinessInfo provider = providerList.BusinessInfos[0];

ServiceInfo providerService = provider.ServiceInfos[0];

5645ch07.qxd 3/3/06 12:28 PM Page 378

CHAPTER 7 ■ STP INTEROPERABIL ITY 379

//Find the service details

GetServiceDetail findService = new GetServiceDetail();

findService.ServiceKeys.Add(providerService.ServiceKey);

ServiceDetail sd = findService.Send();

BusinessService service = sd.BusinessServices[0];

BindingTemplate template = service.BindingTemplates[0];

//Retrieve the service URL

Console.WriteLine("Provider Endpoint : " +template.AccessPoint.Text);

return template.AccessPoint.Text;

}

}

}

To compile the program described in Listing 7-5, the UDDI .NET assembly needs to be referenced
from the GAC. Figure 7-23 displays the console output where the service endpoint information is
dynamically determined at runtime by querying the UDDI registry.

WS-Specification (WS-*)
You have learned how specifications such as WSDL, XML, XSD, SOAP, and UDDI offer a simple way
to build distributed applications and bring a sense of order and smoothness to envisioning an STP
platform where STP providers collaborate to offer various services in an interoperable fashion. Although
these basic Web service standards prove useful in addressing a simple business requirement, they
fail to handle a complex business scenario. For instance, the first concern raised by market partici-
pants who intend to transact in the Web service world is related to message security. Currently, you
can think of leveraging transport protocol security such as SSL or IPSec. This kind of transport-level
dependency will introduce a strong coupling between the Web service and its underlying transport,
but the truth of the matter is that the Web service technology is not affinitized to any particular trans-
port protocol. So, you require message-layer security that promises to bake security ingredients within
the actual message instead of wrapping them up, which is what SSL or IPSec does.

Currently, the basic Web Service stack depicted in Figure 7-24 faces several technology limita-
tions that restrict many financial organizations from embracing the Web service technology to its
fullest extent. Clearly, message security is one of them, but you will also notice lack of support for
problems that are linked to reliability and the transactional aspect of services. For the Web service
technology to make it into today’s STP mainstream, it is important that it addresses the QOS

Figure 7-23. Console application showing how STP-Provider A Web service endpoint information is
retrieved by querying the UDDI registry

5645ch07.qxd 3/3/06 12:28 PM Page 379

CHAPTER 7 ■ STP INTEROPERABIL ITY380

requirements needed to implement large-scale distributed systems. Furthermore, the goal must be
to define quality service requirements in a technology-neutral manner and enable organizations to
leverage them regardless of the underlying technology implementation. To address these requirements,
a team consisting of Microsoft, IBM, BEA Systems, and VeriSign was formed. The ultimate mission
of this team is to produce a set of specifications to incorporate various qualities of features required
to enable the widespread acceptance and implementation of Web services. WS-* was the output of
this collaboration effort.

WS-* is a collection of specifications that sit on top of the standard Web service specification.
WS-* is based on XML, SOAP, and WSDL and provides a first-class foundation to build such specifica-
tions in an interoperable and loosely coupled manner. WS-* is popularly known as second-generation
Web services because it extends the capabilities of basic Web service functionality to a new level
where it stands shoulder to shoulder with other popular distributed systems such as CORBA and
COM in terms of its feature set. The features offered by WS-* are already available in legacy distrib-
uted technology, but replicating this feature in the Web service world is a revolutionary step. WS-* is
composed of individual specifications, and each of these specifications is discrete and independent
of one another. For example, the WS-Security specification provides the building block for building
secure Web services. Similarly, the WS-Policy specification defines the rules and constraints of a Web
service. Each specification outlines a modular solution to a particular requirement of the business.

Web Services Enhancement (WSE) 2.0
Web Services Enhancement (WSE) is an add-on framework to the existing ASP.NET Web service platform
(see Figure 7-25). It is a development toolkit provided by Microsoft to integrate WS-* for building second-
generation Web services. It is similar to the ASP.NET Web service infrastructure that addresses the basic
requirement of Web services, but WSE is one step ahead and provides a programming model to use vari-
ous quality of service (QOS) features offered by WS-*. It is designed to be used with Visual Studio .NET,
which promises to bring higher productivity to a developer’s desk. Without the WSE toolkit, it would be
extremely time-consuming for developers to build WS-* features into an application; the developer
would first have to understand the minute details of each individual specification and then accordingly
build an implementation platform. WSE relieves developers from this effort by providing a developer-
friendly API and abstracts away the internal message-level complexities related to each specification.

Figure 7-24. Web service stack

5645ch07.qxd 3/3/06 12:28 PM Page 380

CHAPTER 7 ■ STP INTEROPERABIL ITY 381

From an architectural perspective, WSE is a message-processing engine that can be used both
by the Web service and by its consumers. At the heart of the engine is the pipeline infrastructure that
orchestrates the processing of SOAP messages. The pipeline is constructed by chaining together
individual WSE filters. The idea behind filters is that they encapsulate the functionality of a particu-
lar specification of WS-*, which is then plugged into the pipeline. For example, WS-Security and
WS-Addressing will be realized in two separate filters. The work done by the filter mainly depends on
the direction of the message. For instance, if the nature of the message is inbound, then the respon-
sibility of processing is assigned to an inbound filter; similarly, if it is an outbound message, then it is
assigned to an outbound filter. The message processing and handling logic in both cases is completely
different. Inbound filters are dedicated to parsing incoming SOAP messages and then applying
specification-level processing. On other hand, outbound filters are dedicated to augmenting SOAP
messages with specification-level details. This also proves that each filter has complete control over
the message, and it can modify any part of a SOAP envelope. Often, a filter’s favorite shelter place is
the SOAP header where it records specification control information.

By modularizing specifications in the form of filters, WSE promotes higher extensibility because
filters can be easily added or removed from the pipeline. It also means as WS-* evolves there will be
new specifications rolled out, and to integrate them into the WSE platform, you need to develop an
appropriate filter and then integrate it with the pipeline. The overall goal of WSE is to provide develop-
ers with a lot of power to deal with individual specifications by using a set of classes instead of directly
interfacing with low-level message details that are cumbersome and prone to human error. However,
WSE currently doesn’t yet support the entire gamut of WS-*. One of the reasons is that most of the
specifications are still evolving, and there is a high possibility that WSE may undergo several rounds
of changes before it appears in the commercial world. Therefore, Microsoft bundled WSE with the
most popular specifications such as WS-Security, WS-Policy, WS-Addressing, WS-Attachments,
WS-Referral, WS-SecureConversation, and WS-Trust.

To start using WSE, you need to install the WSE 2.0 development kit, which is freely downloadable
from the MSDN Web Services Developer Center. During the installation phase, you will be provided
with various set-up types; you should choose the Visual Studio Developer option, which installs WSE
runtime files and documentation and integrates with the Visual Studio .NET IDE (see Figure 7-26).

Figure 7-25. WSE architecture

5645ch07.qxd 3/3/06 12:28 PM Page 381

CHAPTER 7 ■ STP INTEROPERABIL ITY382

Assuming installation went through successfully, then you can begin to set up the WSE develop-
ment environment. By choosing the Visual Studio Developer option during the installation stage, you
install an additional GUI tool exclusively meant to specify WSE settings. This tool is available inside
Visual Studio .NET and is activated by right-clicking the project in Solution Explorer and selecting
WSE Settings 2.0, as illustrated in Figure 7-27.

Figure 7-28 shows the WSE settings dialog box with the various configuration information
organized in tabs. Each tab relates to information specific to a particular Web service specification
supported by WSE. The most important one is the General tab, which is used to enable WSE support

Figure 7-26. WSE set-up options

Figure 7-27. Menu to invoke the WSE Configuration dialog box

5645ch07.qxd 3/3/06 12:28 PM Page 382

CHAPTER 7 ■ STP INTEROPERABIL ITY 383

in the project. To trigger this support, check the Enable This Project for Web Services Enhancements
box. After checking this box, the tool automatically reconfigures the project settings to reference the
Microsoft.Web.Services2 assembly from the GAC. Another immediate impact is a change in the
application configuration file: a new section, <microsoft.web.services2>, is added especially to
record WSE-related configuration settings.

We demonstrated how to enable WSE support in Visual Studio .NET, but you still need to do
a bit more tweaking. You need to marry the basic Web service infrastructure with the advanced
infrastructure provided by WSE. So, obviously, you would expect both the Web service and its con-
sumer to be affected by this change. Assuming the Web service is built on the ASP.NET infrastructure,
which is very true in this case, then it is mandatory to check the Enable Microsoft Web Services
Enhancement Soap Extensions box. This step integrates the WSE pipeline processing model with the
ASP.NET infrastructure, which allows WSE filters to intercept the inbound/outbound message and
perform the necessary actions on it. On the other hand, if WSE is enabled on the service consumer
end that interacts with the Web service using a proxy class, then you need to update the base class
of the proxy. As you are aware, the proxy class is generated whenever a new Web reference is added
to the project, so the proxy base class change discussed is not required in the case of a new Web refer-
ence because Visual Studio .NET automatically creates WSE-aware proxy classes. It is required only
when the existing proxy class needs to be changed. To implement this, you need to modify the base

Figure 7-28. WSE settings dialog box

5645ch07.qxd 3/3/06 12:28 PM Page 383

CHAPTER 7 ■ STP INTEROPERABIL ITY384

class, System.Web.Services.Protocols.SoapHttpClientProtocol, from which the proxy class inherits
to Microsoft.Web.Services2.WebServicesClientProtocol. After applying this modification, the service
consumer is fully compliant with WSE.

After making the changes recommended in this section, you are now ready to embrace the WSE
class library in your code. In fact, you will notice how easy it is to configure the project to use the
WSE framework both from the Web service and from its consumer. Going forward, you will also
observe how WSE has simplified many of the coding-related tasks with the help of wizards. There is
absolutely no doubt that WSE comes as a boon to organizations that intend to enter the Web service
world. Without WSE support, organizations would have shown a lukewarm response because in the
past couple of years there has been a huge surge in the number of Web service specifications proposed
by vendors. This raised fear among many organizations because there has not been a single imple-
mentation platform that supports this specification; but then Microsoft stepped in and showed its
commitment by periodically releasing new versions of WSE. In the upcoming section, we will dig in
further to the programming level and cover some of the popular specifications supported by WSE.
Although it is impossible to cover all aspects of individual specifications in detail, our goal is to give
you a basic understanding of the important specifications.

WS-Security
The biggest concern raised by financial organizations is how to protect the sanctity of information
exchanged with business partners. In broader terms, organizations want a guarantee that transactions
conducted over a public network are safe and protected from eavesdroppers’ eyes. Organizations
encounter many aspects of security such as integrity, confidentiality, and nonrepudiation when they
work across public networks. We have already covered this topic in Chapter 6; the domain problem
we are addressing here is different. What you need is an interoperable approach for integrating
security features. We already demonstrated the use of basic Web service technology to interconnect
various STP providers in the STP world, but the environment in which these STP providers live is com-
plex and hostile in nature. They need additional sophisticated QOS, and message security is one of
these attributes. You could propose or employ a transport-level security such as SSL or IPSec to
protect Web services, but this assumption breaks the fundamental rule of transport neutrality.
Although SSL and IPSec might provide in-transit integrity, they do not have the capability to provide
end-to-end message security. Additionally, for Web services to get maximum mileage, it is essential
that they support security as part of their basic technology infrastructure. As a result, Microsoft and
IBM collaborated and came up with the new WS-Security specification.

WS-Security provides a foundation to enable security in Web services. This specification aims
to integrate important attributes of security such as encryption, authentication, and digital signing
in an interoperable and technology-neutral manner. It provides a standard mechanism to package
and transport security-related information using SOAP and XML. Its goal is not to replace the existing
security infrastructure; instead, it provides a unified framework to leverage various security models
such as Kerberos and Public Key Infrastructure (PKI). The specification clearly outlines the list of
changes required for adding security to SOAP messages. Without going into too much detail, read-
ers interested to know more about WS-Security can refer to http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0.pdf.

Returning to the WS-Security specification, you will notice three important XML elements that
form part of a WS-Security–enabled SOAP header. The first is the security token that represents
authentication information also known as a claim. The second is the signature element that contains
the digital signature of the message enclosed inside the body element of the SOAP envelope. The
final element is the encryption element that contains an encrypted version of the original message.
Together these three elements form the foundation of the WS-Security message structure (see
Figure 7-29).

5645ch07.qxd 3/3/06 12:28 PM Page 384

CHAPTER 7 ■ STP INTEROPERABIL ITY 385

The next step is to focus on how to implement WS-Security features using WSE. To date, WSE is
the first toolset to provide comprehensive support for implementing the WS-Security specification.
To drive WS-Security in the STP world, you have to leverage its digital signature and encryption capa-
bility. Assuming STP providers have adopted a common medium of information exchange using the
Web service platform, then the need for implementing digital certificates to meet authentication and
message integrity purposes becomes apparent. Therefore, the next example beginning with a digital
signature will show you how to implement this QOS in an interoperable manner using WSE 2.0.

The first prerequisite needed for the success of this scenario is a digital certificate. Digital
certificates, as explained in Chapter 6, are the most reliable way to prove one’s identity. Therefore, it
makes sense to make it part of regulatory rule that individual market participants and STP providers
in the STP world own a digital certificate that not only proves their identities but also is used to securely
protect the integrity of a message. Getting a certificate is a formal process that requires the approval
of a CA such as VeriSign. But for demonstration purposes, we will use the makecert tool to generate
a self-signed certificate:

makecert -n "CN=STP-Provider A" -ss My -sr currentuser

-sp "Microsoft Enhanced Cryptographic Provider v1.0" -sky exchange

-sk "STP-Provider A Key Container"

makecert -n "CN=STP-Provider B" -ss My -sr currentuser

-sp "Microsoft Enhanced Cryptographic Provider v1.0" -sky exchange

-sk "STP-Provider B Key Container"

Execute the previous command under the Visual Studio .NET command prompt. This will gen-
erate two certificates and store them in a central location known as a certificate store. The certificate
store is a physical repository that looks after the management of certificates. Each individual user or
Windows service or machine can have its own certificate store. Additionally, each store is logically
divided into a store category; there is always a Personal category, also known as a My category, used
to store personal certificates. The two certificates recently generated are stored under the current
user certificate store and available in the Personal category of that store. To view these certificates,
launch the MMC, and add the Certificates snap-in that displays certificates according to their storage
characteristics; in this case, it is the currently logged-in user. It also displays the category information
about the store. Figure 7-30 depicts the certificates snap-in, which is a GUI tool to store, enumerate,
delete, and verify certificates.

Figure 7-29. Using WS-Security to secure SOAP message

5645ch07.qxd 3/3/06 12:28 PM Page 385

CHAPTER 7 ■ STP INTEROPERABIL ITY386

This completes the certificate installation process. Both STP-Provider A and STP-Provider B
certificates are installed under the Personal category of the current user store. To reiterate, the STP-
Provider A is the actual service provider, and STP-Provider B, which is a service provider, in this context
plays the role of a service consumer that forwards the contract note information to STP-Provider A.
The next step is to write the code implemented on the service consumer end: STP-Provider B. The
overall goal of this code example is to secure the contract note information submitted by STP-Provider B
to STP-Provider A using a digital signature. To start, you need to perform the following steps:

1. Create a new console application called SecureSTPConsumer using Visual Studio .NET.

2. Enable WSE 2.0 support for this project using the WSE GUI tool. This will automatically add
a reference to the Microsoft.Web.Services2 assembly.

3. Add a Web reference to the STP-Provider A Web service at http://localhost/STPProvider/
PostTradeService.asmx. A WSE-aware proxy class will be automatically generated and
added to the project. The final project structure must look like Figure 7-31.

Figure 7-30. Certificate store

5645ch07.qxd 3/3/06 12:28 PM Page 386

CHAPTER 7 ■ STP INTEROPERABIL ITY 387

4. Update the application configuration file; the <x509> element specifies how WSE verifies the
certificate. Without this setting, WSE will raise an exception because a test root signs the test
certificates. To instruct WSE to honor the certificates signed by the test root, the following
changes are required:

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<microsoft.web.services2>

<security>

<x509 allowTestRoot="true"/>

</security>

<diagnostics />

</microsoft.web.services2>

</configuration>

Now that you have completed the necessary configuration-related changes required on the
consumer (STP-Provider B) end, the final step is to write code that digitally signs the contract note,
as shown in Listing 7-6.

Listing 7-6. STP-Provider B Digitally Signing Contract Note Information, Before Forwarding to
STP-Provider A

using System;

using System.Net;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

Figure 7-31. Solution Explorer view of the consumer application

5645ch07.qxd 3/3/06 12:28 PM Page 387

namespace SecureSTPConsumer

{

class ServiceConsumer

{

[STAThread]

static void Main(string[] args)

{

STPProvider.PostTradeServiceWse postTradeSvc= new

STPProvider.PostTradeServiceWse();

STPProvider.ContractNoteInfo contractNote = new

STPProvider.ContractNoteInfo();

//Digitally Sign the Contract Note

SignContractNote(postTradeSvc);

//Create new contract info, and submit it to the STP-Provider A Web service

contractNote.Symbol = "MSFT";

contractNote.Price = 25;

contractNote.Quantity=100;

contractNote.BuySell = STPProvider.BuySellEnum.Buy;

int ackId =postTradeSvc.SubmitContractNote(contractNote);

//Verify the response received from STP-Provider A

VerifyAckResponse(postTradeSvc);

Console.WriteLine("Acknowledgement ID : " +ackId);

}

public static bool VerifyAckResponse(STPProvider.PostTradeServiceWse

postTradeSvc)

{

SoapContext respCtx = postTradeSvc.ResponseSoapContext;

//Iterate through all Security elements

foreach(ISecurityElement secElement in respCtx.Security.Elements)

{

//Check whether message is digitally signed

if (secElement is MessageSignature)

{

MessageSignature signature = (MessageSignature)secElement;

X509SecurityToken signingToken = signature.SigningToken

as X509SecurityToken;

//Authenticate the Sender using any one of the attributes of Certificate

//More secure way is to verify using the STP-Provider A public key

if (signingToken != null &&

signingToken.Certificate.FriendlyDisplayName == "STP-Provider A")

{

return true;

}

}

}

return false;

}

CHAPTER 7 ■ STP INTEROPERABIL ITY388

5645ch07.qxd 3/3/06 12:28 PM Page 388

public static void SignContractNote(STPProvider.PostTradeServiceWse

postTradeSvc)

{

//Open the current user certificate store, and look for Personal category

X509CertificateStore localStore =

X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

localStore.OpenRead();

//Find STP-Provider B Certificate

X509CertificateCollection certCollection =

localStore.FindCertificateBySubjectString("STP-Provider B");

X509Certificate provCert = certCollection[0];

//Create a new security token that is of X509 type

//Token represent claim (authentication information)

X509SecurityToken token = new X509SecurityToken(provCert);

postTradeSvc.RequestSoapContext.Security.Tokens.Add(token);

//Instruct WSE inbound filter to sign the message before it is transmitted

//over the wire

//The signature is computed based on a security token

postTradeSvc.RequestSoapContext.Security.Elements.Add(

new MessageSignature(token));

}

}

}

In Listing 7-6, you will notice how easy it is to integrate the digital signature functionality. The
important thing in Listing 7-6 is the namespaces that are imported in this project.

WSE outlines a straightforward approach by naming individual namespaces based upon the
specification supported by them. For instance, classes that correspond to WS-Security are grouped
under Microsoft.Web.Services2.Security. Stepping into the heart of the WSE class framework, you
will find SoapContext, which represents an object-oriented representation of the SOAP message. It
allows you to inspect the header and body of incoming SOAP messages. For outgoing SOAP messages,
it provides the capability to record specification-level information both at the header level and at
the body level.

Now that you have STP-Provider B that uses WS-Security to digitally sign the contract note
information, the next step is to reconfigure the STP-Provider A Web service to recognize this digital
signature and accordingly authenticate the sender of the message in addition to verifying the integrity
of the message. To incorporate these changes, you need to slightly modify the STP-Provider A ASP.NET
Web service project as follows:

1. Open the existing ASP.NET Web service project STPProvider (the STP-Provider A Web service)
using Visual Studio .NET.

2. Enable WSE 2.0 support for this project using the WSE GUI tool. Remember, this is an ASP.NET
Web service project, so you need to also enable Microsoft WSE SOAP extensions.

3. Update the web.config file; the <x509> element is added that specifies how WSE verifies the
certificate. Also, a few additional settings are specific to the authentication mechanism of
the ASP.NET application. By default, the ASP.NET application is executed under the security
context of the ASPNET user account, which has limited privileges. To get around this prob-
lem, you can tweak the configuration file to impersonate the currently logged-in user:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<configSections>

CHAPTER 7 ■ STP INTEROPERABIL ITY 389

5645ch07.qxd 3/3/06 12:28 PM Page 389

CHAPTER 7 ■ STP INTEROPERABIL ITY390

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<system.web>

<identity userName=<Logged in user id> password=<Logged in user Password>

impersonate="true" >

</identity>

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

<microsoft.web.services2>

<security>

<x509 allowTestRoot="true"/>

</security>

</microsoft.web.services2>

</configuration>

After the previous configuration changes have been updated successfully, then you are ready to
update the Web service that will verify the digital signature received from STP-Provider B. The code
will also include a modification to digitally sign the response message using the STP-Provider A cer-
tificate, which is then returned to STP-Provider B. Listing 7-7 shows how to achieve this functionality.

Listing 7-7. STP-Provider A Digitally Verifying the Contract Note Information Submitted by STP-
Provider B and Digitally Signing the Response Message Sent to STP-Provider B

using System;

using System.IO;

using System.Threading;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

namespace STPProvider

{

public class ContractNoteInfo

{

public string Symbol;

public int Quantity;

public double Price;

public BuySellEnum BuySell;

}

public enum BuySellEnum

{

5645ch07.qxd 3/3/06 12:28 PM Page 390

CHAPTER 7 ■ STP INTEROPERABIL ITY 391

Buy,

Sell

}

public class PostTradeService : System.Web.Services.WebService

{

public PostTradeService()

{

}

[WebMethod]

public int SubmitContractNote(ContractNoteInfo contractNote)

{

//Verify the Sender Information (STP-Provider B)

VerifySignatureOrigin();

//Send the digitally signed response to STP-Provider B using STP-Provider A

//Certficate.

SignAckResponse();

return 1;

}

public void SignAckResponse()

{

//Open the current user certificate store, and look for Personal category

X509CertificateStore localStore =

X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

localStore.OpenRead();

//Find STP-Provider A Certificate

X509CertificateCollection certCollection =

localStore.FindCertificateBySubjectString("STP-Provider A");

X509Certificate provCert = certCollection[0];

//Create a new security token that is of X509 type

//Token represent claim (authentication information)

X509SecurityToken token = new X509SecurityToken(provCert);

ResponseSoapContext.Current.Security.Tokens.Add(token);

//Instruct WSE outbound filter to sign the message before it is transmitted

//over the wire

//The signature is computed based on a security token

ResponseSoapContext.Current.Security.Elements.Add(new

MessageSignature(token));

}

public bool VerifySignatureOrigin()

{

SoapContext reqCtx = RequestSoapContext.Current;

//Iterate through all Security elements

foreach(ISecurityElement secElement in reqCtx.Security.Elements)

{

//Check if message is digitally signed

if (secElement is MessageSignature)

{

5645ch07.qxd 3/3/06 12:28 PM Page 391

MessageSignature signature = (MessageSignature)secElement;

X509SecurityToken signingToken = signature.SigningToken

as X509SecurityToken;

//Authenticate the Sender using any one of the attributes of Certificate

//More secure way is to verify using STP-Provider B public key

if (signingToken != null &&

signingToken.Certificate.FriendlyDisplayName == "STP-Provider B")

{

return true;

}

}

}

return false;

}

}

}

In Listing 7-7 not even a single line of code does the verification of the digital signature. This
verification process is automatically built into the WSE framework. As you might you have guessed,
the Web service doesn’t have to write any code to verify the signature, but it is definitely interested
in knowing the outcome of the verification process. First, if the signature is tampered with, it will
ultimately fail the verification process, and then WSE raises a SOAP exception and communicates to
the sender of the message. Otherwise, WSE populates the instance of SoapContext with the sender
certificate information and invokes the Web service method.

Clearly, WSE abstracts away most of the coding complexities usually encountered during the
message signing and verification process. In the absence of WSE, developers will be forced to
accomplish this task manually, which is certainly prone to human errors. Building on WS-Security,
WSE makes it easy to implement security. Digital signature capability is one aspect of WSE; it also
supports encryption technology. Using encryption technology, SOAP messages are protected from
prying eyes; this is a big leap from transport-level security to message-level security. Fortunately,
WSE supports asymmetric encryption, and you will see how easy it is to include it in the existing
code example.

For asymmetric encryption to work, STP-Provider B has to use the STP-Provider A public key to
encrypt the message. This will ensure that only STP-Provider A, who is in possession of the private
key, will be able to decrypt the message. On the Web service end, STP-Provider A, after the success-
ful decryption of the message, encrypts the response message using the STP-Provider B public key.
Again, only STP-Provider B, who owns the private key, will be able to interpret this message correctly.
The following code describes how STP-Provider B encrypts the contract note information using the
STP-Provider A public key:

using System;

using System.Net;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

namespace SecureSTPConsumer

{

class ServiceConsumer

{

[STAThread]

static void Main(string[] args)

{

CHAPTER 7 ■ STP INTEROPERABIL ITY392

5645ch07.qxd 3/3/06 12:28 PM Page 392

STPProvider.PostTradeServiceWse postTradeSvc= new

STPProvider.PostTradeServiceWse();

STPProvider.ContractNoteInfo contractNote = new

STPProvider.ContractNoteInfo();

//Encrypt the Contract Note Information

EncryptContractNote(postTradeSvc);

//Create new contract info. and submit it to STP-Provider A Web service

contractNote.Symbol = "MSFT";

contractNote.Price = 25;

contractNote.Quantity=100;

contractNote.BuySell = STPProvider.BuySellEnum.Buy;

int ackId =postTradeSvc.SubmitContractNote(contractNote);

Console.WriteLine("Acknowledgement ID :" + ackId);

}

public static void EncryptContractNote(STPProvider.PostTradeServiceWse

postTradeSvc)

{

//Open the current user certificate store, and look for Personal category

X509CertificateStore localStore =

X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

localStore.OpenRead();

//Find STP-Provider A Certificate

X509CertificateCollection certCollection =

localStore.FindCertificateBySubjectString("STP-Provider A");

X509Certificate provCert = certCollection[0];

//Create a new security token that is of X509 type

//Token represent claim (authentication information)

X509SecurityToken token = new X509SecurityToken(provCert);

postTradeSvc.RequestSoapContext.Security.Tokens.Add(token);

//Instruct WSE inbound filter to encrypt the message before it is

//transmitted over the wire

postTradeSvc.RequestSoapContext.Security.Elements.Add(new

EncryptedData(token));

}

}

}

On the STP-Provider A end, when the Web service examines the SOAP header and determines
that the actual message is encrypted, it retrieves the correct private key associated with the certifi-
cate used by STP-Provider B to encrypt the message and finally decrypts the message. If decryption
happens successfully, then the Web service method is invoked. Otherwise, a SOAP fault is raised
and communicated to the sender. Assuming decryption went through without any problems, then
STP-Provider A constructs the acknowledgment confirmation message, encrypts it using the STP-
Provider B public key, and forwards it to STP-Provider B. The following are the code modifications
required on the STP-Provider A end:

using System;

using System.IO;

CHAPTER 7 ■ STP INTEROPERABIL ITY 393

5645ch07.qxd 3/3/06 12:28 PM Page 393

CHAPTER 7 ■ STP INTEROPERABIL ITY394

using System.Threading;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

namespace STPProvider

{

public class ContractNoteInfo

{

public string Symbol;

public int Quantity;

public double Price;

public BuySellEnum BuySell;

}

public enum BuySellEnum

{

Buy,

Sell

}

public class PostTradeService : System.Web.Services.WebService

{

public PostTradeService()

{

}

[WebMethod]

public int SubmitContractNote(ContractNoteInfo contractNote)

{

//Encrypt the Response

EncryptAckResponse();

return 1;

}

public void EncryptAckResponse()

{

//Open the current user certificate store, and look for Personal category

X509CertificateStore localStore =

X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

localStore.OpenRead();

//Find STP-Provider B Certificate

X509CertificateCollection certCollection =

localStore.FindCertificateBySubjectString("STP-Provider B");

X509Certificate provCert = certCollection[0];

5645ch07.qxd 3/3/06 12:28 PM Page 394

CHAPTER 7 ■ STP INTEROPERABIL ITY 395

//Create a new security token that is of X509 type

//Token represent claim (authentication information)

X509SecurityToken token = new X509SecurityToken(provCert);

ResponseSoapContext.Current.Security.Tokens.Add(token);

//Instruct WSE inbound filter to encrypt the message before it is

//transmitted over the wire

ResponseSoapContext.Current.Security.Elements.Add(new EncryptedData(token));

}

}

}

The code for encrypting/decrypting a SOAP message is no different from the digital signing/
verification code. Both share many similarities, mainly from a programmatic perspective; however,
when it comes to actual execution, they emit completely different behavior. The important thing to
take away from this brief tour of WS-Security is that it establishes a standard mechanism to protect
a SOAP message, and it is a big step forward in promoting Web services in the STP world.

WS-Policy
The interaction between a service provider and a service requestor is deemed successful only when
information provided by the requestor is complete and meets the provider expectation. The level of
expectation depends directly upon the level of information shared by the service provider to its
requestor. In a service-oriented environment, you already have WSDL that fleshes out the details of
the functional description of the Web service published by the service provider to its requestor. How-
ever, WSDL falls short when it comes to outlining the nonfunctional characteristics of a Web service. For
example, based on the STP-Provider A WSDL, you have no way to find out the quality of services,
such as message signing or encryption. Additionally, STP-Provider A will enforce its own domain-level
rules and constraints when accepting messages from other STP providers. This kind of information
can be communicated only through documentation or some other communication channel. To close
this gap, the specification WS-Policy was released (see Figure 7-32).

Figure 7-32. Using WS-Policy to enforce constraints and rules

5645ch07.qxd 3/3/06 12:28 PM Page 395

WS-Policy allows you to associate rules and constraints to a Web service in an interoperable
manner. It complements WSDL by separating out the nonfunctional aspects of a Web service. It is
a general-purpose framework to formalize various kinds of policies within a Web service. Each of
these specific policies encodes a discipline that needs to be enforced during the message-processing
stage. For example, STP-Provider A may enforce digital signature technology, and any information
that is not digitally signed will be blatantly rejected. This kind of assertion check is documented in
the form of a policy. From a development perspective, WS-Policy is viewed as a declarative approach
in listing the preferences and limitations of a Web service. This greatly increases development pro-
ductivity because developers don’t need to worry about writing any kind of validation code. Much
of the grunt work is encapsulated inside a policy document, which is expressed using XML grammar.

WS-Policy represents a family of specifications that consists of WS-Policy, WS-PolicyAssertion,
and WS-PolicyAttachment:

WS-Policy: This provides a generic XML-based framework to author the Web service policy.

WS-PolicyAsssertion: This represents rules or constraints imposed on the Web service in the
form of individual policy assertions. These collections of policy assertions are implemented
inside a policy expression document that itself is an XML document.

WS-PolicyAttachment: This refers to the association of a policy expression with a policy subject.
Policy subject refers to any particular portion of a Web service; it can be the whole service,
a particular operation, or a particular message.

The purpose of the WS-Policy specification is to provide a standard policy framework based on
which specialized policies are defined. For example, the WS-SecurityPolicy specification extends
WS-Policy to define WS-Security–specific policy assertions. WSE 2.0 enables support for WS-Policy
by configuring and implementing various policy assertions in a configuration file. Furthermore,
WSE has built-in support for the WS-Security policy and provides a wizard interface to activate indi-
vidual policy assertions. WSE 2.0 also provides support for incorporating custom business validation
rules in the form of policy assertions, and to implement it, developers have to undertake quite an
amount of manual work. We clearly cannot explain the syntax-level functionality of WS-Policy within
this short section, but you can refer to the WSE online documentation for more details. The primary
focus of WS-Policy is to further enrich the metadata information of a Web service by documenting
the required QOS properties and make it available to the service requestor.

WSE 2.0 already provides a set of predefined policy assertions falling under WS-SecurityPolicy
and is integrated with VS .NET. To activate this policy, right-click the project node in VS .NET, and
select WSE Settings, which opens a multitab configuration dialog box. The Policy tab allows you to
configure security-related policy assertions such as that the body of SOAP messages must be digi-
tally signed or encrypted (see Figure 7-33). It is also important to note that these policy assertions
can be applied to both incoming and outgoing SOAP messages.

CHAPTER 7 ■ STP INTEROPERABIL ITY396

5645ch07.qxd 3/3/06 12:28 PM Page 396

WS-Addressing
In a classic request-reply message exchange pattern implemented between STP-Provider A and
STP-Provider B, there is strong dependency on HTTP as a default transport protocol. Because of
HTTP’s ubiquitous nature, it is highly favored over any other transport protocols. While this assump-
tion works fine as long as the service requestor and provider are using the same transport protocols,
in reality the message exchange may happen on protocols different from HTTP. For a message to
be routed in a multitransport environment, you need a uniform addressing mechanism. Currently,
the addressing information about the Web service is encoded inside the HTTP header, and the
actual SOAP message forms part of the HTTP payload. This transport-level dependency needs to be
removed in order to achieve transport standardization. Additionally, HTTP is a stateless protocol
and is not suitable for interactions that are long running and stateful in nature.

The WS-Addressing specification promotes transport standardization by defining a common
addressing mechanism and encapsulating it inside SOAP headers (see Figure 7-34). The attachment
of addressing information further strengthens the mobility of a message and can be carried over mul-
tiple transport protocols. It is extremely useful in handling a multihop scenario where the message
travels across multiple intermediaries before it reaches its final destination. The intent of this speci-
fication is to keep the original sender, destination, and reply address information intact. This
specification serves as a building block to incorporate asynchronous behavior between Web services.

CHAPTER 7 ■ STP INTEROPERABIL ITY 397

Figure 7-33. WSE configuration showing how to configure Web service policies

5645ch07.qxd 3/3/06 12:28 PM Page 397

CHAPTER 7 ■ STP INTEROPERABIL ITY398

For example, it is possible for STP-Provider B to send a one-way request to STP-Provider A using
HTTP. STP-Provider A, after processing the request, notifies STP-Provider B about the outcome
using TCP. As you can see, both STP-Provider A and STP-Provider B were completely decoupled
from each other, and the only piece of information STP-Provider A had is the original sender reply
address, which itself is sufficient for notification purposes. There is no doubt that many other speci-
fications such as WS-ReliableMessaging have been extended upon WS-Addressing. By associating
additional sets of addressing headers, a message completely turns out to be self-sufficient and transport
independent. Furthermore, it opens the door to implementing an asynchronous communication
pattern between the requestor and provider.

WS-MetadataExchange
Metadata is the key to enabling interaction between a service provider and requestor. Currently, the
service provider supplies three types of metadata. The first is WSDL, which describes the functional
characteristics of a Web service along with wire-level details. Next is the XSD Schema that describes
the structural aspect of the XML message. The final metadata information that further complements
WSDL is WS-Policy, which describes the nonfunctional characteristics of a Web service. Together this
metadata information plays an important role in enabling the loose-coupling behavior between the
service requestor and provider. The service requestor based on this metadata information begins
exchanging messages with the service provider. However, the key point here is before the real
interaction kicks off, the service requestor must have complete access to metadata, and there is no
standardized way to retrieve this information. Even though the provider may publish metadata
information using some other communication medium, again it becomes native to that provider.
What you really need is a standard way of accessing metadata-related information, and this is where
WS-MetadataExchange comes to the rescue.

The WS-MetadataExchange specification allows the requestor to query metadata information
directly from the service provider (see Figure 7-35). In other words, a bootstrap phase kicks off before
the real interaction takes place between the provider and requestor. During this phase, the requestor
can query the service metadata such as WSDL or WS-Policy directly from the service endpoint. This
allows the requestor to get hold of a fresh copy of information and then incorporate any required
modification. The dynamic retrieval of metadata also introduces run-time capabilities. For instance,
by default during the handshaking phase, the service requestor can reconcile and verify the planned
metadata with fresh metadata published by the service provider. Additionally, it also brings flexi-
bility on the service provider end because it now allows for the easy modification of metadata.
With WS-MetadataExchange it is possible for STP-Provider B to query the WS-Policy enforced by
STP-Provider A for their interaction and apply that same set of policies on the message sent by STP-
Provider B. Using this approach, exceptions can be easily caught on the requestor end instead of
leaking on the provider end.

Figure 7-34. Using WS-Addressing to achieve transport standardization

5645ch07.qxd 3/3/06 12:28 PM Page 398

CHAPTER 7 ■ STP INTEROPERABIL ITY 399

WS-Referral
The major advantage of a SOAP message is it is complete and self-governed from all dimensions. By
looking at the message, you can know its travel path and also the QOS applied on it. Furthermore,
the loose-coupling nature between the sender and receiver of the SOAP message allows further
message enrichment without any side effects on the sender or receiver. Keeping in mind this advan-
tage, a new specification called WS-Referral is geared toward dictating the travel path of the message
(see Figure 7-36). The WS-Referral specification transparently brings dynamic message-routing
capabilities to the Web service world. This opens the door to implementing advanced features such
as load balancing and content-based routing. Load balancing has been widely recognized and
implemented in today’s network topology; its important goal is to bring horizontal scalability by
offloading the work-processing load on multiple machines. Similarly, content-based routing shares
a similar spirit as load balancing, but its intention is different. The intent of content-based routing
is to redirect messages received from the original sender to a different destination based on certain
markups defined in message. This idea of content-based routing brings some elegant architectural
style to the STP world.

With WS-Referral in place, you can bring an additional important player known as an STP
provider hub to the STP world. Imagine this hub as a virtual face representing all STP providers.
STP providers will never directly communicate with each other; instead, all interaction will happen
through this hub. STP providers will send the message to the STP provider hub that will then be
routed automatically to the destined provider. This will definitely bring a major shift in the STP

Figure 7-35. Using WS-MetadataExchange to allow the consumer to query metadata information
directly from the Web service

Figure 7-36. Illustrates use of WS-Referral in implementing STP provider hub

5645ch07.qxd 3/3/06 12:28 PM Page 399

provider mind-set because it is obvious that the role of a hub will be played by a regulatory board
that wants to oversee each transaction happening in the STP world and wants to maintain a healthy
market practice. The STP provider hub will be equipped with the necessary intelligence of maintaining
an audit of messages exchanged between different STP providers. Additionally, the hub can also act
as a first line of defense for a provider that has built-in support to verify a digital message received
from the sender. With a central hub in place, it brings an enormous amount of confidence to both
the STP provider and the individual market participants. Both are assured that the regulations are
fully followed and the regulatory board is in control of transactions occurring in the STP world.

Web Service Performance in the Financial Market
The performance of Web services is the most common concern in a capital market. However, there is
no doubt Web services are the ideal technology platform for enabling business-to-business integra-
tion. But when discussed in terms of speed and performance, some issues hinder their adoption in
real-time trading systems. In this chapter, we explained the benefit of Web services in the post-trade
phase of the trading life cycle. However, in the pre-trade and trade phases, where the timely delivery
of the data and the response is critical, it is essential to evaluate the suitability of Web services.

The primary issue with Web services is the large amount of XML data sent and received. XML
has its own advantages, but it also contributes to an increase in network utilization and processing
overhead, which is usually unacceptable in the pre-trade and trade phases of the trading life cycle.
Real-time trading systems are engineered from a high-throughput and low-latency perspective, and
the profit/loss of the trading desk to a large extent depends upon these systems.

Various strategies can address the performance problems of Web services, and they require
a good amount of planning and evaluation:

Use of network accelerators: The processing demands of XML can be addressed by using special-
ized hardware accelerators that provide the end-to-end processing of XML and include XML
schema validation, encryption, serialization, and so on.

XML compression: The higher network transmission cost associated with XML payload can be
reduced to a large extent by applying a compression/decompression scheme.

Binary XML: Binary XML is a new approach to compact XML-based data and is already being
used by the mobile industry. The WAP binary XML format is the standard officially recognized
by the W3C to transfer content to mobile devices.

Use of faster transport protocol: Because of the request-response nature of HTTP, it is extremely
difficult to introduce asynchronous communication. Therefore, it is always advisable to explore
other transport protocols in search of better performance.

Avoid RPC style of invocation: Always design Web services with a message-based programming
model in mind. This will result in fewer method calls and also reduce network round-trips.

Exploring the Business-Technology Mapping
Figure 7-37 represents the end-to-end interaction between market participants and the STP provider
in the new Web-STP world. It demonstrates how the various components of Web services discussed
so far fit together to streamline the overall process. The first and foremost requirement of Web-STP
is the presence of an STP directory. The directory should be UDDI compliant and will publish infor-
mation about the STP provider and market participants. With an STP directory in place, any market
participant using UDDI can access information about the various STP providers and their offerings.
Other prerequisites needed to complete this setup are an individual market participant and that the
STP provider must have a valid digital certificate.

CHAPTER 7 ■ STP INTEROPERABIL ITY400

5645ch07.qxd 3/3/06 12:28 PM Page 400

The communication with the STP provider is first initiated by market participants. The interac-
tion involves a message sent by market participants to their registered STP providers through a Web
service. This message is triggered by systems on the market participant end that may not necessarily
be a Web service but that surely understands the protocols of Web services. The message is digitally
signed using WS-Security and sent to the STP provider. On receiving this message, the STP provider
verifies the signature and forwards it to the STP provider hub if the recipient of the message is regis-
tered with another STP provider. For instance, when the broker registered with STP-Provider B sends
a message to the fund manager who is registered with STP-Provider A, then the message is routed to
its final destination through the STP provider hub.

STP providers forward all messages meant for delivery with a different STP provider via the
central hub, which in turn forwards the message to the terminating STP provider. The STP provider
hub is a Web service that implements WS-Referral to incorporate smart routing logic. The role of hub
can be played by any public or private agency, but generally it is preferable to assign this responsibility
to a public agency. Additionally, the hub can act as a checkpoint where messages received from the STP
provider are verified and are again digitally signed using the STP provider hub digital certificate.
This step further strengthens the overall interaction because the recipient STP provider on receiving
the message could verify whether the message is legitimate and approved by the STP provider hub.

By wiring the individual STP provider and market participant using Web service technology and
other advanced WS-* specifications, we have illustrated the next-generation technology platform
for automating end-to-end transaction processing in the financial trading world. Although the nec-
essary infrastructure is in place, getting market participants and STP providers to come to this new
Web-STP world will take some time. However, it is possible to start leveraging this infrastructure in
a piece-by-piece manner. It is possible to start with WSDL, SOAP, and HTTPS and then slowly start
augmenting this basic functionality with the advanced features provided by WS-*. It is clear that
whatever strategy or vision the industry outlines, without reference to the Web service platform it
would be incomplete.

CHAPTER 7 ■ STP INTEROPERABIL ITY 401

Figure 7-37. Web-STP

5645ch07.qxd 3/3/06 12:28 PM Page 401

CHAPTER 7 ■ STP INTEROPERABIL ITY402

Summary
In this chapter, we discussed following points:

• We talked about the need for interoperability between STP providers and how it will benefit
business entities such as brokers, fund managers, and custodians in different ways.

• We discussed different types of challenges encountered in achieving interoperability.

• We covered the architecture of Web services and how the underlying principles ensure wide
reach and enable interoperability between STP providers.

• We gave a brief overview of the building blocks of Web services such as SOAP and WSDL.

• We implemented a simple Web service that supports sending contract note information
between STP providers in an interoperable fashion.

• We illustrated the advantage of a UDDI repository in establishing an STP provider consortium.

• We showed how WS-* extends the capabilities of basic Web service functionality by providing
advanced features such as security, routing, and policy enforcement.

• We depicted a blueprint of Web-STP that demonstrates various components of Web services
and how they connect an individual STP provider and market participants to represent the
next-generation platform for automating STP.

5645ch07.qxd 3/3/06 12:28 PM Page 402

C H A P T E R 8

■ ■ ■

Equity Arbitrage

Dreams are the user interfaces of our goals.

In this chapter, we will explain the economics behind the arbitrage business. Arbitrage is a trading
tactic exploited to make profits based on the price differences of stock quotes at two or more
exchanges. The business-related sections of this chapter explain that price differences of stocks in
multiple exchanges are not sufficient to determine profitability; instead, additional procedures are
performed to arrive at a final decision. This chapter covers those additional steps. In the technical
sections, we explain code-generation concepts and then provide comprehensive coverage of the
CodeDOM framework. We also provide an outlook on .NET reflection features. This chapter is dif-
ferent from other chapters covered so far where we implemented a small prototype of the business
framework; here we will skip the implementation part because it requires a considerable amount
of effort that is simply outside the scope of this book. But our primary goal is to arm you with code-
generation tactics that will help you automate most of the redundant tasks and also establish a strong
foundation in building sophisticated arbitrage rule engines.

Introducing Arbitrage
Arbitrage is technically defined as profiting by buying something that is selling cheaper in one
market and selling it simultaneously in another market where it is selling higher. A person who does
arbitrage is called an arbitrageur.

Thus, every arbitrage has a buy leg and a sell leg, and in almost all cases they are executed simul-
taneously. The attempt is to lock and make profit on the price differential that the stock quotes at in
two or more exchanges. Arbitrages can range from simple to complex. For the purposes of this chapter,
we will discuss only the simple arbitrage strategy that involves equities traded on stock exchanges.

Assume an arbitrageur specializes in arbitrage in Advanced Micro Devices (AMD) shares. AMD
shares would normally be quoting at the same price; assume it’s trading at $40 in all exchanges where
it trades. For some reason—say because of excessive demand in one of the exchanges—the price hits
$40.25 while it continues to trade at $40 on all other exchanges. The arbitrageur tracking AMD will
immediately buy AMD shares from exchanges where it is still quoting at $40 and sell an equal quantity
of shares in the exchange where it is quoting at $40.25. By executing these two transactions simulta-
neously, the arbitrageur will make a neat profit of 25 cents per share.

However, even a price differential of $0.25 as cited in this example is rare, especially for highly
liquid stocks. When price differentials arise in markets because of skewed demand or supply in one
of the markets, arbitrageurs start selling where demand is more and start buying where demand is
less, which in the process causes the prices to stabilize and makes them equal at both places.

403

5645ch08.qxd 3/3/06 12:32 PM Page 403

CHAPTER 8 ■ EQUITY ARBITRAGE404

Arbitrage is just another way of making money for market participants just as they make money
using trades and investments. In fact, certain professionals specialize in making money only through
arbitrage. Arbitrage opportunities in financial markets are rare; hence, specialized skills and special-
ized computer software are required to exploit them. Technically, regular retail investors can do
arbitrage, but because of limited skill sets and limited capital, they are not exactly the right people
to get into arbitrage. Arbitrageurs normally score over retail investors on arbitrage because of the
following reasons:

They possess far more trading skill: They understand the markets well and understand the
economics behind the price differentials. Sometimes price differentials are because of some
genuine reason, and they will never converge. Lay traders would be lulled into believing that
an arbitrage opportunity exists where actually there isn’t any. Skilled arbitrageurs understand
the precise risks associated and have access to vast pools of money and securities.

They have access to real-time information on multiple markets: The arbitrage business is all about
cashing in on market opportunities fast. Difference in prices really don’t exist for a long time,
and they get bridged very fast—in fact, in a matter of subseconds. If real-time access to market
data is not available, it is impossible to make decisions relating to arbitrage. Often, retail investors
don’t get ready access to real-time market data. Those retail investors who have regular jobs
don’t have the inclination to monitor the market on a subsecond basis. The arbitrage business
has thus remained confined to arbitrage specialists.

They have complex trading software: Since price differentials are rare and the numbers of scrips
listed on exchanges are high, arbitrageurs depend upon special arbitrage software that scours
market data from each exchange of the arbitrageur’s interests and keeps posting arbitrage
opportunities. Either arbitrageurs act on these opportunities directly or they make the arbitrage
systems interface with program trading systems that generate buy and sale orders automatically
whenever arbitrage opportunities arise.

Costs Involved in Arbitrage Transactions
All transactions involve costs. If a transaction takes place through a broker, it involves brokerage.
Otherwise, depending on the regulations, transactions include turnover taxes, transaction taxes,
and clearing and settlement fees just as they are levied on any normal transaction. These are direct
costs while doing any transaction. Then there are some indirect costs associated with such transac-
tions. In the context of arbitrage, the biggest indirect cost involved is the interest cost involved in
taking such arbitrage positions. One leg of arbitrage is a buy transaction. To execute such buy trans-
actions, traders are required to pay margins and in some cases the full value of the transaction. If
they pay the full value, a cost is associated with paying such money to the clearing corporation in
the form of interest the money would have otherwise earned if it were simply kept in a bank fixed
deposit. This interest is one component of the cost in arbitrage.

Similarly, the sale leg of the transaction has two scenarios. Either the arbitrageurs may have the
securities with them for delivery or they may not. If they have the deliveries, they can deliver them
at the time of pay-in. But if the arbitrage transaction is not completed and the arbitragers don’t even
have shares, they will have to borrow shares either privately or through established stock-lending
facilities. Stock lending is a facility where shares can be borrowed just like money by paying interest.
Institutions and individuals who have surplus shares try to generate interest income by lending their
shares to the general public and trading fraternities that are in need of these shares to meet their deliv-
ery obligations. Arbitrageurs whose positions result in delivery to clearing corporations may utilize
this facility by paying interest to the lender and using the securities for meeting delivery obligations.
The interest they pay adds to their total arbitrage costs.

The cost involved in any arbitrage will thus be as follows:

Arbitrage costs = Direct transaction costs + Interest costs on buy leg + Interest costs on sale leg

5645ch08.qxd 3/3/06 12:32 PM Page 404

CHAPTER 8 ■ EQUITY ARBITRAGE 405

It follows that arbitrages will be profitable only if the profit from the difference in the prices of
the security at two places exceeds the cost of arbitrage. Otherwise, the arbitrage will be unviable. In
this chapter, we will refer to these costs as arbitrage cost and interest cost.

In the earlier AMD example, $0.25 is the profit per share that the arbitrageur is making. However,
this is the theoretical profit. In reality, several costs are associated with arbitrage. The arbitrageur will
have to bear the transaction costs and will have to deliver shares in one exchange and receive shares
from another exchange. There is a high chance that these will not be the same set of shares. Hence,
to meet the payment commitment on one exchange and the delivery commitment on another, the
arbitrageur will have to deploy cash on the exchange where the buy transaction was routed and give
shares where they were sold (at the time of pay-in), and he will have to receive shares from the exchange
where they were purchased and receive cash from where the shares were sold (at the time of pay-out).
Hence, this implies that the arbitrageur will have to maintain an inventory of cash as well as AMD
shares to complete this kind of transaction. Holding both cash and shares will involve interest cost.
Cash is normally available to such operators usually in unlimited supply (limited by interest payment
ability). Shares are in short supply because they are limited in numbers. Such arbitrage strategy will
hence become dangerous if shares are in limited supply. Usually, a good stock-lending mechanism
needs to be in place if these strategies have to be resolved.

Arbitrage and related operations have been criticized severely in the past, and many market
crashes have been attributed to the orders that have been generated automatically by their systems.
However, arbitrageurs benefit the market overall by bringing about liquidity where there is less liq-
uidity and by helping to stabilize prices.

Other Forms of Arbitrage
In the previous examples, the arbitrage discussed is for the same security. However, arbitrage may
happen on securities or assets that are either directly or inversely correlated with each other. Because
of the scope of this book, we will limit this discussion only to equities shares. For example, assume
there are two classes of shares issued by a company. Their prices must ideally move in tandem.
Berkshire Hathaway, for example, has two classes of stocks: Class A and Class B (listed as BRKA and
BRKB on the NYSE). A share of Class B common stock has 1/30th the right of a Class A stock. Holders
of Class A shares have the option of converting the stock to Class B shares at their discretion. Hold-
ers of Class B shares cannot get their shares converted to Class A. The ratio of rights implies that
Class B shares can never trade above a tiny fraction of 1/30th the price of a Class A share. Whenever
the price differential exceeds 1/30th, arbitrageurs get active selling Class B stock and buying Class A
stock, and this in turn pushes the prices of Class B stock back to 1/30th of the price of the Class A stock.
Another interesting issue applies here. Since Class B shares don’t hold the right to get their shares
converted into Class A shares, this implies that holders of Class B shares are at a disadvantage com-
pared to holders of Class A shares. This phenomenon may at times cause Class B shares to quote at
a discount to the usual 1/30th of the price of Class A shares. However, if the discount becomes too
large, once again the arbitrageurs will get active and bring the price differential close to 1/30th of
the price of Class A shares.

Table 8-1 shows the prices of Class A stock and Class B stock of Berkshire Hathaway.

Table 8-1. Prices of Class A and Class B Stocks of Berkshire Hathaway

Name Symbol Closing Price

Berkshire Hathaway BRKA $84,375

Berkshire Hathaway BRKB $2,807

5645ch08.qxd 3/3/06 12:32 PM Page 405

CHAPTER 8 ■ EQUITY ARBITRAGE406

Here’s the price ratio:

Price ratio = 843,75 / 2,807 = $30.05

Thus, you can see that the price of Class B stock is almost equal to 1/30th of the price of Class A
stock.

This discussion showed a case of near-perfect price correlation between the two stocks. Arbitrage
can also take place on stocks that are not perfectly correlated with each other. Correlation in prices
means the prices of both move in tandem; a perfect positive correlation would mean that if one
stock rises x percent, then the other stock will also rise by the same x percent. A negative correlation
means the prices of both stocks are inversely related to each other. A perfect negative correlation
would mean that if the price of one stock rises by x percent, then the price of other stock will fall by
x percent. Stocks of different companies operating in the same economic environment could have
prices heavily correlated to each other. An example is a company that mines and produces gold and
a company that produces and sells gold jewelry. A large component of the value of stocks of these
two companies (and hence the price) would be coming from the inventory of gold that both com-
panies would be holding. The direction of the trend of the prices would be weighed heavily in favor
of the direction of gold prices. In other words, the prices of both stocks would rise when gold prices
rise, and the prices of both stocks would fall when prices of gold fall. A good demand of jewelry in
the market would mean fortune for both companies. Arbitrageurs following both these stocks would
be aware of the degree of correlation between the prices of stocks of both companies. When the prices
of these two companies deviate from each other beyond the usual degree of correlation and arbi-
trageurs are convinced that this price variation cannot be attributed to other economic factors
affecting the companies in isolation, they would get into it through arbitrage. This arbitrage will
push the prices of both stocks toward the usual correlation between them.

Some arbitrage takes place because of takeovers and the fixing of swap ratios. Say, for example,
company A is of interest to company B. Company A is quoting at $50. Company B thinks this price is
not a reflection of its fair value, and it wants to acquire company A, maybe because of strategic reasons.
Company B now makes an open offer to shareholders of company A to purchase shares of company
A for $60 per share. In this case, the market prices will rise, but it may not touch $60 (because of the
implicit fear that the takeover might fail). Assume it rises to $55. There is still a differential of $5. Any
trader can now buy company A shares from the market at $55, wait for some time, and sell them to
company B at $60 a share. However, traders encounter two risks here. One, which we have noted, is
the risk that the takeover may not succeed. Such takeovers are subject to shareholder and regulator
approval, and the risk that the takeover will not succeed is very high. Second, a longer-than-expected
waiting period could take place. These bids go through a lot of pricing, repricing, and negotiations,
which may take time.

Pure and Speculative Arbitrage
Arbitrage can be loosely divided into pure arbitrage and speculative arbitrage.

Pure arbitrage is where the arbitrageurs take a position, expecting prices to return to their fair
values. The fair value is the inherent value of the stock around which the market price must be quoted.
When a security trades at more than the fair value for some time, chances are high it will return to
its fair value. Similarly, when it has been trading at less than the fair value for a long time, chances
are its prices will rise. Arbitrageurs bet on this fact, and such arbitrage is pure arbitrage. An example
of fair-value arbitrage is in the arbitrage of Class A and Class B securities of Berkshire Hathaway.
Assume the price today of a Class A share is $84,375 and the price of a Class B share is $2,815. The
ratio discussed earlier of 1:30 indicates that the price of a Class A share should not be lower than
$2,815 × 30 = $84,450. This means that either Class A shares are undervalued or Class B shares are
overvalued. Traders investing in either of the stocks would be concerned to know whether a stock is
genuinely underpriced, overpriced, or correctly priced. An arbitrageur, on the other hand, works
only on the price differential. Hence, this issue will not bother the arbitrageurs much. They will

5645ch08.qxd 3/3/06 12:32 PM Page 406

CHAPTER 8 ■ EQUITY ARBITRAGE 407

simply buy a Class A stock at $84,375 and sell 30 shares of Class B stocks at $2,815 each. The two
positions completely hedge each other so there is not much of a price risk in this arbitrage. They
will wait for some time for the price ratio to hit 1:30 exactly. This phenomenon of prices returning to
their expected ratios is called a convergence of prices. Once such a price is reached, the arbitrageur
will quickly sell one Class A share and buy 30 Class B shares. This will close out their original arbitrage
position (this action is called winding up the arbitrage) and generate profits for them. This type of
arbitrage involving the simultaneous buy and sale of stocks that are highly correlated is covered (the
effect of the price rise/decline in one is offsetting the other) and is therefore not very risky in the long
term.

Speculative arbitrage is an arbitrage where the value of the hedge portfolio is not stationary.
This essentially means there is no fair value where the value of the portfolio is expected to converge.
The fair value estimate itself changes with time and in the environment under which the security
trades. Speculative arbitrage is considered risky in the long run because there is no fair value around
which the conversion will take place. Examples of speculative arbitrage include spreads, pair trading,
and risk arbitrage. Discussing these types of arbitrage is beyond the scope of this book.

Risks Associated in Arbitrage
Making money through arbitrage looks simple. However, it is one of the most risk-prone ways of
making profits. Arbitrageurs face several risks in implementing their arbitrage strategies. Some
of these are basis risk, model risk, and arbitrage cost risk.

Basis is the net difference in prices of the two stocks when the arbitrage is done. If a stock is
trading at $40 on one exchange and $40.10 on another exchange, the difference between the two
($0.10) is the basis. When an arbitrageur sells at $40.10 and buys simultaneously at $40, she assumes
that the price difference will converge, and she will reverse the deals to pocket the difference. If the
arbitrageur does not have much ability to carry forward the transaction, she will look forward to
reversing the transaction as early as possible. It could, however, be that instead of prices converging,
they diverge further and become $40 and $40.20. If the arbitrageur does not have the ability to carry for-
ward the positions to the next day, she will have to close the transaction by selling at $40 and buying
at $40.20. She will lose $0.10 in this entire arbitrage. The risk that the arbitrage position will move against
the arbitrageur and prices will not converge as expected is called basis risk. In the Berkshire Hathaway
example, the arbitrageur bought a Class A stock at $84,375 and sold 30 shares of Class B stocks at
$2,815 each. He is expecting the prices to converge to a 1:30 ratio. There is a remote chance that this
conversion might never take place. The prices could even diverge more. The conversion may finally
happen sometime but may not be before the settlement comes. Both the transactions will then have
to be settled individually by paying cash to take delivery on one exchange and deliver shares and
receive cash on the other exchange. In such cases, the arbitrageur faces basis risk because the basis
has gone against him.

Sometimes arbitrageurs have not understood the relative values and correlations of the instru-
ments used for arbitrage. At times, the best of arbitrageurs make mistakes in arbitrage when they
don’t understand all the risks associated or when they think there is arbitrage opportunity where
there is none. Such a risk is called model risk.

Arbitrage cost risk is risk that the cost of settling the arbitrage and the carrying costs associated
with it exceed the profit expected from that arbitrage. Some unexpected costs could come up all of
a sudden, or there could be a sudden increase in the margin that exposes the arbitrageur to more
than the expected costs and makes the arbitrageur suffer losses, especially when the margin in arbi-
trage is low.

Building an Equity Arbitrage Engine: Arbitrage in Equity Shares
Let’s build a case around five popular stocks traded in the United States. We will first try to fit in
logic for the arbitrage engine and then try to extend it to regular program trading to show how

5645ch08.qxd 3/3/06 12:32 PM Page 407

CHAPTER 8 ■ EQUITY ARBITRAGE408

orders are generated to bring profit to the arbitrageur. An arbitrage system scours the market data of
multiple exchanges and markets and discovers arbitrage opportunities. A program trading system is
a system that accepts criteria for generating and executing orders from its users and keeps track of
the market. The moment the defined criteria are met, it automatically triggers orders in a relevant
exchange without any human intervention. In a typical dealing room setup, the arbitrage engine
would be set up to track data from multiple exchanges to look for arbitrage opportunities. Any
opportunity would then be passed to the program trading engine for the generation of orders. Deal-
ers themselves normally monitor these orders. However, in such cases, complexity of analysis and
speed is of the essence. With thousands of analysts and traders tracking the prices of every stock every
second, market opportunities due to price distortions are rare, and program trading engines coupled
with arbitrage engines are programmed to exploit such opportunities. Some program trading engines
are also programmed to look for arbitrage opportunities. In such cases the program trading engine itself
doubles as the arbitrage engine.

Arbitrageurs usually have arbitrage interest in multiple exchanges. Assume you are building
an arbitrage engine around such a case. The arbitrage engine will need to analyze data from these
exchanges. It would be extremely difficult for one human being to track several shares across exchanges
and keep a watch on prevailing prices on every exchange and differential in order to track arbitrage
opportunities. Good arbitrage opportunities are rare and happen mostly on not-so-popular securi-
ties. Hence, arbitrageurs need a sophisticated program that will help them track arbitrage opportunities.

These computer programs simultaneously read broadcasts across different exchanges and go
through an arbitrageur’s requirements to seek out arbitrage opportunities. On any normal day,
manually tracking five stocks may seem simple. But both these exchanges would have thousands
of listed stocks, and there would be good arbitrage opportunities in only a few of them. To arrive at
arbitrage opportunities across these five, the arbitrage engine would follow these steps:

1. Create a short list of securities of interest, and define the arbitrage costs and margin and the
minimum expected returns from arbitrage.

2. Scan the prices prevailing of securities the arbitrageur is interested in by reading continuously
available market data.

3. Arrive at price differentials between those stocks across various exchanges. These differentials
will determine the returns to the arbitrageur.

4. Compute the percentage returns.

5. Calculate the annualized percentage returns; as discussed earlier, the absolute returns will
not only determine whether the arbitrage opportunity is good or bad. They have to be
annualized in terms of percentage for a comparison to be possible.

6. Compare the annualized percentage returns with the prevailing arbitrage cost and expected
returns from the arbitrage; since a comparison has to be made, in most cases the arbitrage
cost is also expressed as a percentage and is annualized for the comparison to be more
meaningful.

7. Determine on which exchange to buy and on which exchange to sell. This depends upon
the relative prices in each exchange. Arbitrageurs need to buy on the exchange where the
stock is trading at a lower price and sell where it is trading at a higher price.

8. Present the opportunities to the arbitrageur in a meaningful form for them to take action.

5645ch08.qxd 3/3/06 12:32 PM Page 408

CHAPTER 8 ■ EQUITY ARBITRAGE 409

When the arbitrage engine is interacting with a program trading engine, it will pass the details
of these arbitrage opportunities to the program trading engine, and the program trading engine will
generate orders to exploit these opportunities. We will run through the steps in the previous exam-
ple to give you more clarity on this.

For this example, assume an arbitrage opportunity is feasible only if it generates a return of
2 percent per annum over and above the arbitrage cost of 6 percent. We will call this figure of 2 percent
the arbitrage margin. The margin reflects a layer of safety over and above the arbitrage set-up costs.
The costs will barely cover our arbitrageur on the essentials that they will have to directly or indirectly
pay out for setting up the arbitrage. This arbitrage may have many other risks, as discussed earlier.
They need to be adequately covered and compensated for these risks. They will therefore not be
willing to look at an arbitrage opportunity where only the basic cost is met. Returns have to be a spe-
cific percentage over and above these costs. It is normal in such scenarios for the arbitrageur to say,
“I am interested in having a look at the opportunity only if the returns are 2 percent over and above
my costs.” Even if something goes wrong in the arbitrage, the cushion of margin is still there to prevent
the trader from going out of pocket.

The arbitrage cost of 6 percent assumed for this example is all inclusive of transaction costs,
costs associated on the buy leg, and costs associated on the sale leg. The 2 percent (arbitrage mar-
gin) and 6 percent (arbitrage cost) return also means that the arbitrageur is interested in doing an
arbitrage only if the return on it is 8 percent or higher.

These returns are normally quoted in two terms: for one particular arbitrage setup or on an
annualized basis. The arbitrage-level return being quoted in percentage is understandable. Arbitrageurs
would like to know how much return a particular arbitrage is giving them. Every arbitrage has a life
span after which it is wound up consciously or the market conditions force arbitrageurs to close the
arbitrage. Additionally, this life span is different for different arbitrage situations. Some may be closed
intraday, some may continue for two to three days, and some may even span weeks. If an arbitrageur’s
talk of returns on an arbitrage take place where there is no standardization on the number of days it
takes to generate the returns, comparison would be very difficult. Therefore, for a more standardized
comparison, these arbitrage-specific return figures are converted into an annualized return figure for
the purpose of comparison. When annualized figures are discussed, returns from every arbitrage can
be compared to each other meaningfully.

Returning to the example, for the sake of brevity assume our arbitrageurs are interested in only
two exchanges: the NYSE and Philadelphia Stock Exchange (PSE).

In any arbitrage, the choice of whether the arbitrage opportunity on a security will be acceptable
to the arbitrageur changes from security to security. Securities that enjoy very high liquidity are more
likely to be acceptable for arbitrage. Arbitrage on them normally comes at a low risk and a low cost.
These securities are widely available, and in the eventuality of the delivery requirement, they can be
sourced easily and delivered. The financials behind the companies are public domain information,
and most events in such companies and their stocks are predicted in advance; therefore, surprises
are rare. Although this level of transparency is welcome to the arbitrageur, this comfort usually comes
at a price. The more the market knows about a stock and the company behind it, the better the price
discovery process is in that particular stock across markets. Better price discovery and predictability
of events attracts more trading interest from market participants. This keeps prices in sync across
markets and makes arbitrage opportunities rare. To curtail the risk arbitrageurs face, they will nor-
mally create a short list of securities on which they will accept arbitrage opportunities and exploit
them.

Assume that the arbitrageurs have a clear and unlimited supply of the shares listed in Table 8-2
lying in their demat account and ready for delivery, and these are the only stocks on which they want
to accept arbitrage opportunities.

5645ch08.qxd 3/3/06 12:32 PM Page 409

CHAPTER 8 ■ EQUITY ARBITRAGE410

Table 8-2. Short List of Securities of Interest for Arbitrage (Step 1)

Symbol Assumed Minimum Expected
Stock on NYSE Arbitrage Cost Arbitrage Margin* Return from Arbitrage**

The Coca-Cola KO 6% 2% 8%
Company

General Electric GE 6% 2% 8%
Company

Advanced AMD 6% 2% 8%
Micro Devices

The Walt Disney DIS 6% 2% 8%
Company

Wal-Mart Stores WMT 6% 2% 8%

*Over and Above Costs
**Assumed Arbitrage Cost + Arbitrage Margin

This kind of short list that the arbitrageurs have created to classify securities of their interest is
a good way to start because the arbitrage engine will now focus on market data available for only
these securities and will ignore market data for thousands of other securities. This will improve the
performance of the arbitrage engine tremendously.

We will now run through the steps listed earlier to show how the arbitrage engine works.
Step 1 has already been executed in Table 8-2; five securities are available, and a minimum

expectation of 8 percent has been set from the arbitrage. It is important to set the minimum expecta-
tion from the arbitrage because otherwise the arbitrageur will be flooded by arbitrage opportunities.
Notice that in arbitrage you are working on price differentials. Even though arbitrage opportunities
are rare, price differentials are bound to exist. However, it is not all differentials that interest arbi-
trageurs. It is only those differentials that are big enough to be translated into effective profits that
interest them.

Step 2 gets the latest prices on a real-time basis. Note that since the arbitrage opportunities will
finally translate into orders to be executed on a stock exchange, it is important that the arbitrage engine
works on absolute real-time prices. Stale prices will run a high risk of orders not getting through—or
worse, only one of the two sides (buy/sale) getting transacted.

Assume Table 8-3 shows the prices prevailing for these five shares on the NYSE and PSE.

Table 8-3. Current Market Prices in Exchanges of Interest (Step 2)

Stock NYSE PSE

The Coca-Cola Company $40 $40.05

General Electric Company $39.60 $39.80

Advanced Micro Devices $40 $41

The Walt Disney Company $28.20 $28

Wal-Mart Stores $46 $46

5645ch08.qxd 3/3/06 12:32 PM Page 410

CHAPTER 8 ■ EQUITY ARBITRAGE 411

Step 3 involves computing price differentials. Here exchange pairs are created; one exchange is
taken as a base, and price differentials are computed with respect to that exchange (see Table 8-4).

Table 8-4. Price Differentials with Respect to NYSE (Step 3)

Stock Symbol NYSE PSE Price Differential

The Coca-Cola Company KO $40 $40.05 $0.05

General Electric Company GE $39.60 $39.80 $0.20

Advanced Micro Devices AMD $40 $41 $1

The Walt Disney Company DIS $28.20 $28 ($0.20)

Wal-Mart Stores WMT $46 $46 $0

In Table 8-4, the price differentials are computed with respect to the NYSE. Since prices on the
PSE are higher for the Coca-Cola Company, General Electric Company, and Advanced Micro Devices,
the price differentials are positive. However, in the case of the Walt Disney Company, the price dif-
ferential is negative because the price for the Walt Disney Company is higher on the NYSE than on
the PSE.

In step 4, the arbitrage engine would generate returns against these differentials. Percentage
returns are computed by dividing the price differential with prices prevailing on the base exchange
(the NYSE) and expressing them as percentages (see Table 8-5).

Table 8-5. Calculating Percentage Returns (Step 4)

Price Percentage Returns =
Stock NYSE PSE Differential (Price Differential / NYSE Prices) × 100

The Coca-Cola Company $40 $40.05 $0.05 0.125

General Electric Company $39.60 $39.80 $0.20 0.51

Advanced Micro Devices $40 $41 $1 2.50

The Walt Disney Company $28.2 $28 ($0.20) -0.71

Wal-Mart Stores $46 $46 $0 0

In step 5, returns will be computed on an annualized basis. Assume that the settlement for the
transactions in Table 8-5 is on a T+3 basis. No arbitrageur would want the arbitrage position to close
by going through settlements. They all aspire to close the arbitrage before settlements by reversing
the buy and sale positions in order to avoid the hassles and cost associated with settlements. In a T+3
environment, from setting up the arbitrage through winding up would take a maximum of three days.
For practical purposes, assume the channelization of funds and securities takes another four days
for every arbitrage. This would mean a total of about seven days is involved to generate the returns
in step 4. To annualize this, assuming 365 days a year, you need to multiply the returns by 365 / 7.
This will give the annualized returns shown in Table 8-6.

5645ch08.qxd 3/3/06 12:32 PM Page 411

CHAPTER 8 ■ EQUITY ARBITRAGE412

Table 8-6. Calculating Annualized Percentage Returns (Step 5)

Price Percentage
Stock NYSE PSE Differential Returns Annualized Returns*

The Coca-Cola $40 $40.05 $0.05 0.12% 6.51%
Company

General Electric $39.60 $39.80 $0.20 0.51% 26.33%
Company

Advanced $40 $41 $1 2.50% 130.36%
Micro Devices

The Walt Disney $28.20 $28 ($0.20) -0.71% (36.98%)
Company

Wal-Mart Stores $46 $46 $0 0% 0%

*= Percentage Returns * 365 / Number of Days Arbitrage Position Is Kept Live

This tells you the relative returns on doing arbitrage on these securities; however, to find out
whether these deals will be profitable, they have to be validated against the cost of doing the arbi-
trage. More important, the interest level of the arbitrageur will be determined by the returns they
generate over and above the expected arbitrage returns.

The arbitrage engine in step 6 performs this comparison (see Table 8-7).

Table 8-7. Selecting Profitable Arbitrage (Step 6)

Returns from
Expectation Arbitrage Over

Price Percentage Annualized Arbitrage Arbitrage from and Above
Stock NYSE PSE Differential Returns Returns Cost Profitable? Arbitrage Expectations*

The Coca-Cola $40 $40.05 $0.05 0.12% 6.52% 6% Yes 8% -1.48%
Company

General Electric $39.60 $39.80 $0.20 0.51% 26.33% 6% Yes 8% 18.33%
Company

Advanced $40 $41 $1 2.50% 130.36% 6% Yes 8% 122.36%
Micro Devices

The Walt Disney $28.20 $28 ($0.20) -0.71% -36.98% 6% Yes 8% -44.98%
Company

Wal-Mart Stores $46 $46 $0 0% 0% 6% No 8% -8%

*Annualized Returns – Expectation from Arbitrage

As discussed earlier, arbitrage is profitable only if the returns from it exceed the costs. However,
even that does not ensure that such positions will be taken. Positions are most likely to be taken only
if annualized returns are over and above the expectation of arbitrage (the last column in Table 8-7
indicates positive returns). The figures show that three cases will generate negative returns. Let’s
examine them closely. Arbitrage on the Coca-Cola Company will be profitable but only marginally.
When compared with expected returns from the arbitrage, it does not generate positive returns. This
will thus be most likely dropped as a case for arbitrage or may be put in a watch list for the prices to
be watched more carefully just in case the price differentials widen and better the arbitrage oppor-
tunity available in this scrip. The Walt Disney Company is also showing huge negative returns, but
remember that this figure is negative because it is being measured with respect to the NYSE and the

5645ch08.qxd 3/3/06 12:32 PM Page 412

CHAPTER 8 ■ EQUITY ARBITRAGE 413

Returns from
Expectation Arbitrage Over

Percentage Annualized Arbitrage Arbitrage from and Above Case for
Stock NYSE PSE Returns Returns Cost Profitable? Arbitrage Expectations* Arbitrage

The Coca-Cola $40 $40.05 0.12% 6.52% 6% Yes 8% -1.48% No
Company

General Electric $39.60 $39.80 0.51% 26.33% 6% Yes 8% 18.33% Yes
Company

Advanced $40 $41 2.50% 130.36% 6% Yes 8% 122.36% Yes
Micro Devices

The Walt Disney $28.20 $28 -0.71% -36.98% 6% Yes 8% -44.98% Yes
Company

Wal-Mart Stores $46 $46 0% 0% 6% No 8% -8% No

differential was negative because prices on the PSE were lower than prices on the NYSE. This has to
be treated as a special case. This essentially means the arbitrage opportunity is very much there. Only
the order type (buy/sale) has to be reversed while hitting the exchanges. Finally, Wal-Mart Stores is
generating -8 percent over and above expectation, indicating that there is no arbitrage opportunity
here. This is not surprising given that there was no price differential in its prices to start.

The two cases yielding positive results—General Electric Company and Advanced Micro Devices—
are clear-cut cases for arbitrage and are likely to be taken up for execution.

Table 8-8 summarizes the cases.

Table 8-8. Arbitrage Opportunity (Step 7)

*Annualized Returns – Expectation from Arbitrage

However, to make these cases actionable, specific buy and sell recommendations have to be
generated as indicated in step 7.

For this, the arbitrage engine will have to refer to the prevailing prices and see in which exchange
the prices are high and in which exchange they are low. Following the principles of arbitrage, it will
recommend buying on the exchange where the prices are low and selling on the exchange where the
prices are high.

Table 8-9 shows the recommendations.

Table 8-9. Determine on Which Exchange to Buy and on Which Exchange to Sell (Step 8)

Price Case for
Stock NYSE PSE Differential Arbitrage Recommendations

The Coca-Cola $40 $40.05 $0.05 No No action to be taken.
Company

General Electric $39.60 $39.80 $0.20 Yes Buy on the NYSE, and sell on
Company the PSE.

Advanced $40 $41 $1 Yes Buy on the NYSE, and sell on
Micro Devices the PSE.

The Walt Disney $28.20 $28 ($0.20) Yes Buy on the PSE, and sell on the
Company NYSE.

Wal-Mart Stores $46 $46 $0 No No action to be taken.

5645ch08.qxd 3/3/06 12:32 PM Page 413

CHAPTER 8 ■ EQUITY ARBITRAGE414

This is the usual information that any arbitrageur would want to see. Now let’s move on to pro-
gram trading and see how you can make the program trading engine use information generated by
the arbitrage engine to generate orders automatically.

Assume the arbitrageur is willing to commit money in lots of $10,000 per deal. The arbitrage
engine will have to refer to the market lot and prevailing prices to see how many shares can be bought
in one order. Assume that all these shares can be bought and sold in lots of one share each. The pro-
gram trading engine will arrive at the quantity of shares each order will contain. This will be equal to
$10,000 per current prevailing price. Table 8-10 shows the numbers.

Table 8-10. Orders Generated by Program Trading Engine

Price Number of Shares
Stock NYSE PSE Differential (Rounded Off) Recommendations

The Coca-Cola $40 $40.05 $0.05 No action to be taken.
Company

General Electric $39.60 $39.80 $0.20 252 Buy on the NYSE, and
Company sell on the PSE.

Advanced $40 $41 $1 250 Buy NYSE, and sell on
Micro Devices the PSE.

The Walt Disney $28.20 $28 ($0.20) 354 Buy on the PSE, and
Company sell on the NYSE

Wal-Mart Stores $46 $46 $0 No action to be taken.

The final orders that will be generated are as follows:

• Buy 252 of the General Electric Company on the NYSE.

• Sell 252 of the General Electric Company on the PSE.

• Buy 250 of Advanced Micro Devices on the NYSE.

• Sell 250 of Advanced Micro Devices on the PSE.

• Buy 354 of the Walt Disney Company on the PSE.

• Sell 354 of the Walt Disney Company on the NYSE.

These orders, once executed, will result in successful arbitrage positions. The arbitrageur will
later get the opportunity to unwind the arbitrage if the prices converge or proceed for settlements
in cases where the prices don’t converge until settlement. In both cases, the arbitrageur will make
a profit because the cost incurred in settlements was already factored in while calculating the costs
of settling the arbitrage.

Thus, you can see that arbitrage is an art of exploiting price differentials in multiple markets to
one’s advantage. Apart from making profits for the individual arbitrageur, it helps in the price discovery
process and brings prices in multiple markets closer to each other. This is an important economic
function that arbitrageurs fulfill.

This completes the business journey of arbitrage. The design of an arbitrage engine is mainly
centered on the functionality you want to provide to traders. The most sophisticated arbitrage engine
uses a rule engine to capture arbitrage rules defined by the traders. The rules are defined through
a trader-friendly language that is then processed by the rule engine, which translates the rules into
an appropriate language-level implementation. Automated code-generation tactics prove extremely
useful in this kind of scenario; in the rest of the chapter, we will discuss the code-generation topic in
detail.

5645ch08.qxd 3/3/06 12:32 PM Page 414

CHAPTER 8 ■ EQUITY ARBITRAGE 415

Introducing Code Generation
Building good software involves a tremendous amount of planning, rock-solid architectural design,
efficient code, and a rigorous quality testing environment. Undoubtedly, each stage is time-consuming,
but the most important one—especially in large-scale projects—is the build phase in which code
is continuously churned out. The build phase accounts for the majority of the project time and
budget because the real work is performed in this stage; this includes writing real code, test cases,
database stored procedures, build scripts, and so on. However, this may not be true in other fields
of engineering; for instance, an automobile engineering’s development cycle is more or less aligned
with the software development life cycle, but the build time is shorter compared to the planning and
design time. The primary reason for such differences is because for a particular type of automobile
there is already a well-defined template that captures the detail specification of every component
of the automobile, which is then fed to sophisticated machines that understand and generate
components in accordance with the template. This kind of end-to-end automation is difficult to
implement in the software development world, particularly during the build phase, because the
nature of the business requirements is different for different customers. However, with the recent
advancement in software engineering, most of the repetitive tasks encountered during the software
construction stage are now automated, and this has deeply aided in speeding up the development
life cycle. Code generation is an advanced area that has evolved over a period of time, and in today’s
world it represents a novel way of building any type of application.

Code generation is the technique of producing language-specific code during either design
time or runtime based on some input information. This input information could be high-level code
or an abstract model defined using domain-oriented languages. Regardless of the type of input pro-
vided, the output produced is always program source code. This power to automatically generate source
code has greatly benefited developers and absolved them from writing repetitive and monotonous
code.

For example, consider back-office applications that are Online Transaction Processing (OLTP)
systems and contain hundreds of database tables. In such applications, a strong audit is required
that tracks changes applied to the underlying tables. To implement such requirements, developers
will first immerse themselves in creating triggers, and the number of triggers created in this case
will be exactly equal to the number of tables. Furthermore, the trigger logic formulated will be sim-
ple; it will contain a single-line SQL statement that copies rows from the original table to the audit
table. This same logic will get repeated and replicated across all tables. Now, such repetitive and menial
tasks when assigned to developers become a chore and can also be a source of frustration. To rescue
developers from such mundane tasks and to mobilize their efforts in building more productive parts
of the system, the development team must embrace automatic code-generation techniques. At
a surface level, such automation may not sound like an easy-to-achieve task, but we will show that
all that is required is a list of the table names and their underlying fields. This information is already
available and forms part of the database metadata that is separately stored in tables also known as
system tables. By writing the appropriate query, this information can then be retrieved and, with the
help of additional processing logic trigger code, can be automatically emitted. Such automation tasks
require a one-time investment in terms of development effort, but after that it forms part of the reusable
components and can be applied to other systems. There is no doubt that such automation when
implemented in the large scale will always lead to shipping great applications on schedule and on
budget.

Code generation is not a new concept and has been prevalent from the genesis of computing
days. It is rooted in high-level programming languages where code written in a user-friendly language
is compiled into low-level assembly instructions. This compilation process is a classic example of
automatic code generation that has consistently evolved from one generation to another, abstracting
away the complexities and layering another abstraction level that brings a higher degree of automa-
tion and consistency to day-to-day application development.

5645ch08.qxd 3/3/06 12:32 PM Page 415

CHAPTER 8 ■ EQUITY ARBITRAGE416

Figure 8-1. Code generator components

The following are the three components required as the fuel to ignite the code-generation
process (see Figure 8-1):

Metadata: Metadata is a repository of information that describes application data. For example,
information about database tables and their field-level information forms part of metadata. This
information is stored in system tables and can be easily retrieved by framing and executing an
appropriate query.

Code generators: Code generators are key components that know the structure of the metadata,
understand the template, and weave this information together to produce program source code.

Code templates: Code templates represent the layout of the code and are composed of both
static and dynamic information. For example, in Figure 8-1, the trigger syntax forms part of the
static information, but the table name and list of fields form part of the dynamic information
that is populated by code generators during the code-generation phase.

Types of Code Generators
Automated code generation forms one of the powerful weapons in a developer’s arsenal. Its immediate
impact is a change in developer thinking when solving a complex problem, particularly during cases
where problems are repetitive in nature. Such a drastic shift in developer attitude has institutionalized
the concept of code generation in every phase of the software development life cycle, spanning from
the design to the deployment of systems. This has resulted in various forms of code generation that
are distinguished based on their applicability and which specific aspect of software development
they are trying to automate. The following are the most commonly used generators in day-to-day
application development:

Code wizards: Code generation using wizards is popular and also an important selling point of
any good IDE tools. Wizard-based techniques are commonly used to generate boilerplate code,
but they are also used to generate end-to-end full-blown code.

User interface: A user interface is certainly one of the most important parts of an application; it
is an external visual representation of the system to the outside world. The UI code generator
provides the developer with a novel way of designing UI-based applications. It allows develop-
ers to visually design the UI applications instead of understanding and writing the low-level
code details.

5645ch08.qxd 3/3/06 12:32 PM Page 416

CHAPTER 8 ■ EQUITY ARBITRAGE 417

Specialized class: This type of generator is used to generate a highly specialized class that forms
the building blocks of the system. The specialized class generated is never compiled indepen-
dently; rather, it forms an important part of a larger set of classes and is included before building
the final executables.

Code inflator: A code inflator produces inline code based on a placeholder defined inside the
code. This kind of feature is mainly seen during the code-editing phase where the developer is
busy writing code and desperately looking for a shortcut to achieve a specific programming
goal such as writing safe multithreaded code, automatic resource cleanup, and so on.

Model-driven generator: Modeling plays an important role in the development of good software.
It captures and communicates the requirements and interaction between systems. With the help
of a model, individual components in the systems are visualized and represented in a domain-
specific language. Unified Modeling Language (UML) is a perfect example that is widely adopted
and is a graphical language for designing any kind of system. This visual model is fed to the
model-driven generator, which takes the responsibility of interpreting and producing language-
specific code.

Code documentation: Code documentation is not the most pleasant task encountered in
a day-to-day routine, but there is no way to escape it. It is a mandatory task because it captures
the design essence behind the code that is later used for reference. Therefore, both comments and
the actual code reside side by side, and with the help of the specialized code documentation
generator, the comments are extracted and polished into finished documentation represented
in .html, .doc, or .pdf format.

Just-in-time code cutting: Just-in-time code cutting is a modern way of generating code and
compiling it on the fly, and all this activity is executed during runtime, which is in contrast with
other types of code generators discussed so far that are meant to work during design time.

Code generation brings efficiency, agility, higher productivity, and consistency to software
development. Obviously, all this contributes to a lower maintenance cost. It is an extremely valuable
asset, and when properly leveraged, it provides a totally a new gear that boosts the application devel-
opment. That is why most of the components inside the .NET Framework and VS .NET leverage
code-generation techniques. We will discuss important areas where it is used in the subsequent section.

Code Generation and Reflection
In the .NET world, the assembly is a unit of deployment, and besides encapsulating IL code, it stores
complete metadata information about types and its members. This metadata information is emitted
by CLR-aware compilers during the compilation phase and seen as a major improvement over tra-
ditional compilers that used to capture limited information about the underlying types and their
dependencies. Such self-describing characteristics of an assembly provide complete information
about the program without needing the program source code, and retrieving this information at
runtime is made possible with reflection.

Reflection allows self-introspection of an assembly. Using reflection, you can examine classes
encapsulated inside assemblies and further drill down to the programming elements of a class, includ-
ing the properties, members, fields, and so on. Reflection works only with compiled code and is not
concerned with the programming language used to write the code. This ability has opened up a plethora
of opportunities and is utilized effectively by various tools such as visual designers, assembly inspec-
tors, class browsers, IntelliSense tools, and so on. Another interesting fact about reflection is that it
is not limited to examining type information and its underlying programming element; it is also capa-
ble of modifying the object state during runtime such as invoking a method, accessing a property
value, or directly modifying a field value. This type of dynamic behavior, when introduced, properly
saves tons of lines of code and motivates developers to design highly dynamic and extensible
applications.

5645ch08.qxd 3/3/06 12:32 PM Page 417

CHAPTER 8 ■ EQUITY ARBITRAGE418

Reflection also enables building an assembly on the fly and allows loading it in memory; all this
is possible at runtime. This is a new development path available to developers that leads toward
code-generation techniques. Both code-generation and reflection share a bloodline relationship, and
nowadays it is certainly impossible to talk about code generation in isolation without discussing
reflection. Code generation is all about generating code, whereas reflection is about providing enough
information to produce this code, load it in memory, and then provide instant access to the function-
ality exposed by this code.

Certainly such a combination is considered an advanced programming technique mainly
practiced to implement programs whose behavior is dynamic in nature and hard to predict or cap-
ture its intent during design time. For example, highly complex trading algorithms are difficult to
specify and impossible both for traders and developers to document and implement inside code.
The various parameters used for algorithms tend to change frequently based on market conditions.
Often the most elegant solution to this problem is to capture the business input during runtime and
then dynamically emit code that is specific to a particular algorithm specification. This is definitely
a win-win deal to both traders and developers because developers now can mobilize their efforts in
producing a program that can not only understand business inputs fed by traders but also can reor-
ganize and retune the behavior of the program at runtime to suit this specific need.

User Interface
A user interface is one of the most visible parts of an application and directly gives a feel of how the
system works to users. A badly designed user interface can be a fertile source of frustration, and users
may even dislike the application despite its other components such as the database logic and middle
tier performing way beyond user expectations. It also means no matter how much effort is invested
in developing and fine-tuning the hidden part of the system, it is always the usability aspect that
determines the fate of the application. Therefore, it is important to provide a consistent and easy-to-
access user interface that is fairly intuitive and increases user efficiency in performing any complex task.

To keep up with this goal, developers always strive to provide a consistent look and feel across
the application. The whole point of a user interface is to capture the data from the users. To do this,
developers need to present the correct visual cues. From a UI development perspective, this task
involves identifying UI elements (UI widgets) and then rendering them on a UI canvas (UI form).
The final task is to apply finishing touches, which again require good aesthetic taste. All these tasks
demand a rigorous amount of coding, and handcrafting it manually can be a primary reason for
developers to avoid this task. But the Windows Form Designer built into the VS .NET IDE makes it
a breeze to do.

The Windows Form Designer internally uses code-generation techniques, but it provides a draw-
ing surface at design time and allows developers to place UI widgets directly onto it. Developers can
then control the aesthetic aspect of widgets by tweaking their properties through the Properties window.
Figure 8-2 depicts a Form Designer view with the left panel displaying the widget Toolbox window, the
center view displaying the drawing surface with various types of widgets rendered on it, and the
right panel representing the widget Properties window.

As you can see, developers do not have to write a single line of code in order to lay out and
configure widgets. Developers just have to drag and drop widgets onto the form and then use the
Properties window to tweak them. However, in reality, the Form Designer is churning out lots of
code in the background that is completely transparent to developers. In a broader sense, the Form
Designer is an additional resource provided for free that is 100 percent dedicated to UI development–
related tasks.

Fortunately, autogenerated code is not kept secret in some sort of opaque files; rather, it forms
part of the source code and is neatly grouped under the Windows Form Designer generated code
region. By expanding this code region, developers get an opportunity to take a closer look at the
code generated by the Windows Form Designer. Figure 8-3 represents the editor view of the auto-
generated source code.

5645ch08.qxd 3/3/06 12:32 PM Page 418

CHAPTER 8 ■ EQUITY ARBITRAGE 419

Figure 8-2. Windows Form Designer

Figure 8-3. Windows Form Designer editor view

5645ch08.qxd 3/3/06 12:32 PM Page 419

CHAPTER 8 ■ EQUITY ARBITRAGE420

Figure 8-4. Data Form Wizard

Code Wizards
Wizard-based development simplifies a complex task by breaking it down into a series of subtasks
that are simple and intuitive enough for the user to understand. At each step, enough information is
gathered that is then finally chained together to generate the final output. Similarly, a code wizard is
a special form of code-generation technique implemented to ease the coding task by breaking it
into a sequence of steps, and at each step developers are presented with a dialog box that collects
information required to produce the final code. Developers first seek the assistance of wizards in
establishing the foundation of complex code. This assistance leads to the formation of boilerplate
code, and developers then are absolutely free to modify the code to suit their specific needs. How-
ever, this form of code generation is different from UI designer–based code generation, because
once the boilerplate code is generated, the wizard is completely out of the picture, and there is no
relationship between code and wizards. Therefore, code wizards are sometimes known as jump-
starters because of their ability kick off any complex task.

Various wizards are available in the VS .NET IDE, but the most important one that is directly
related to the code-generation topic is the Data Form Wizard (see Figure 8-4). The Data Form Wizard
automates the task of creating a data-bound form. It runs through the entire procedure of loading
data from a database, displaying it on a grid, and updating the data back to the database. The wiz-
ard creates several files such as a typed dataset, a Windows form, and so on. It also constructs the
appropriate UI widgets, makes them data bound aware, and finally backs them with the appropriate
code logic.

Code Documentation
The purpose of getting code documentation from the developer is to mirror their ideas hatched
during the development stage on paper. It is only through documentation that developers demon-
strate the nuts and bolts of the system to the outside world. This initial effort proves to be extremely
handy and pays off during the maintenance stage when developers struggle to recollect a particular

5645ch08.qxd 3/3/06 12:32 PM Page 420

CHAPTER 8 ■ EQUITY ARBITRAGE 421

code trace or try to diagnose a peculiar system problem. Additionally, it helps newcomers quickly
get on board. Also, it helps other stakeholders of the system, such as quality assurance people and
technical writers, to get a better grip on the system. But it has always been hard to produce a single
and consistent copy of documentation that could then be shared with all interested parties. Much
of this can be attributed to the lack of strong tools that are not only difficult to use but also hard to
integrate with the existing development environment.

Even though developers happen to document their code using the language-specific code
inline documentation feature, this will not make other people in the team happy. To satisfy their
appetites, developers now need to undertake the same documentation task and present it in a nicer
format such as .html, .doc, .pdf, and so on. However, this solves the problem temporarily but leads
to another big problem—document synchronization. Developers now need to ensure that any change
in a comment at one place also is updated in another location. Keeping both copies synchronized is
sufficient to drive anyone crazy, and this is where documentation generators solve many of the prob-
lems faced during code documentation.

Documentation generators never produce code; instead, they parse the source code and extract
the comments embedded inside it to produce a finished, readable document. For example, the C#
language allows in-place code commenting using XML comments. Predefined tags supported by
XML comments are classified based on their usage and applicability. Tags are mainly applied over code
constructs such as types and type members. Table 8-11 describes a few important tags.

Table 8-11. XML Tags for Documentation Comments

Tag Description

<summary> This tag describes a type or type member.

<param> This tag describes a method parameter.

<return> This tag describes the return value of a method or property.

<exception> This tag is applied to a method, and it lists the exceptions a method can throw.

The following is an example of using these tags:

/// <summary>

/// Submits a limit price order to exchange

/// </summary>

/// <param name="instrument">Name of the underlying</param>

/// <param name="quantity">Total Quantity of the order</param>

/// <param name="price">Price at which this order is traded in the market</param>

public void SubmitOrder(string instrument,long quantity,double price)

{

}

As you can see, comments are nested inside XML tags, but an individual comment line begins
with three slashes. The documentation generator recognizes this as an XML comment identifier and
directly extracts the line into a separate file. This feature is already built into the C# compiler (csc.exe),
and with the help of the /doc switch, comments are extracted in an XML file. In this way, comments
are exported in a well-formed XML format, and now developers can easily produce any presenta-
tion format using XSLT. Using an XSLT template is the most common technique to read XML and
produce HTML pages. Open source tools such as NDoc (http://ndoc.sourceforge.net/) understand
these XML documentation tags and generate MSDN-style help documentation.

The advantage of a code documentation generator is that it allows both the code and the actual
documentation to reside in one central place and thus avoids the scattering of developer knowledge.
Furthermore, it provides the developer with a complete liberty to design a custom generator to suit
a particular need; for instance, quality assurance will demand documentation in test-plan format.

5645ch08.qxd 3/3/06 12:32 PM Page 421

CHAPTER 8 ■ EQUITY ARBITRAGE422

Similarly, a technical manual writer will demand it in an API documentation format. Both of these
expectations can easily be met by creating two different types of XSLT while the actual documenta-
tion still resides inside the code.

Code Inflator
A code inflator is an inline expansion of code performed during the code compilation or editing
phase. The generator that does this code expansion basically reads a source file and looks for spe-
cial markup inside the code, and upon locating this markup, replaces it with the actual intended
code. This markup is called code tags. For developers, code tags are a way to boost productivity by
having their common programming task linked with keywords. This means a task that requires 20
lines of code can be represented by defining a code tag and then inserting it inside the code. The
beauty of a code tag is that it brings all the platinum quality that good code must possess such as
code clarity, readability, and simplicity. A good example is the use of the lock keyword used in the
C# programming language to ensure mutually exclusive access to a shared resource in a multi-
threaded environment. The lock statement takes the following form:

object lockObj = new object();

lock(lockObj)

{

//Thread-Safe Code

}

This is inflated by the compiler during the compilation phase into the following:

object lockObj = new object();

Monitor.Enter(lockObj);

try

{

//Thread-Safe Code

}

finally

{

Monitor.Exit(lockObj);

}

As you can see from the previous code, the lock keyword is a much cleaner and convenient
approach for writing thread-safe code compared to its expanded version. Another example of a code
inflator is the inherent refactoring support provided by VS .NET 2005 during the code-editing phase.
Refactoring is a technique adopted to modify the existing code structure, thus improving code read-
ability and maintainability. VS .NET 2005 supports many refactoring features, but the most useful
one is field-level refactoring. As part of good OO practices, we always adhere to its encapsulation
tenet where publicly accessible fields are not exposed directly to the external world; instead, they
are made available through a getter property and a setter property. Developers face this kind of
requirement in their day-to-day development routines, and they have to manually implement it.
But VS .NET 2005 automates this process with just a few mouse clicks, and the code for the get/set
method is automatically generated during design time.

Model-Driven Generator
Model-driven generators build code based on an abstract model. The abstract model represents
system requirements at a much higher abstraction layer. UML is a good example of a model-driven
generator in which the system is modeled using a graphical language. It enables the developer to
visualize and construct models in a manner that is easy to express and understand. The model rep-
resents the functional requirements of the system at a high level that is independent of the language
implementation. This kind of language-neutral model is precise enough to generate code. Furthermore,

5645ch08.qxd 3/3/06 12:32 PM Page 422

CHAPTER 8 ■ EQUITY ARBITRAGE 423

code can be generated for any kind of programming language because UML decouples the imple-
mentation aspect from the model. Several UML-related commercial tools are available that allow
custom plug-ins of various types of code generators. Microsoft offers the Visio technology that facil-
itates end-to-end software modeling. Additionally, it is tightly integrated with VS .NET and provides
tight support for both forward and reverse engineering. Forward engineering refers to generating code
based on an abstract model; reverse engineering implies the construction of a model based on
source code.

Specialized Class
In this type of generator, code is generated based on metadata information that is defined in an
XML file. The metadata contains information that is mainly related to the type of application code
the generator is supposed to produce. For instance, if you need to autogenerate database triggers,
then all that is required is the name of the tables and type of trigger (insert, update, and delete) to
create. All this information then forms part of the metadata and is included in the XML file. Another
good example of this kind of generator is the ADO.NET strongly type DataSet. The ADO.NET DataSet
is a general-purpose in-memory container with a relational programming model flavor. The inter-
nal structure of a DataSet is organized in the form of rows and columns. It is mainly used to cache
rows populated from a database.

A typed DataSet is a sophisticated version of a dataset that provides strongly typed methods,
events, and properties. It means tables and columns are accessed by name instead of following
ordinal-based methods, thereby improving code readability. It is completely possible to construct
the entire relational database model inside a dataset, which includes tasks such as defining the primary
key, relations between tables using foreign keys, unique constraints, and so on. So, the foundation
for creating a typed dataset is the metadata information defined inside an XSD file. The structure of
this information is in accordance to the XSD standard, and it is then fed to an XSD tool (xsd.exe) that
generates a strongly typed dataset. The code inside this tool has sufficient knowledge to understand
and interpret the metadata and accordingly produce output.

Just-in-Time Code Cutting
Just-in-time code cutting (JIT-CC) is an ability to dynamically generate and compile code on the fly
at runtime. This behavior is different from other types of code generators discussed so far that gen-
erate code during design time and that are compiled later with another production set of classes.
Obviously, generating code on the fly at runtime requires support from the underlying execution
run-time system, and the CLR is well equipped to blend with such techniques. A perfect example
of it is the way XmlSerializer is designed.

As discussed in Chapter 3, XmlSerializer enables you to serialize and deserialize objects into
and from XML documents, but a deep dive into its internal implementation will reveal some cool
programming techniques. It allows you to work with strongly typed classes where an individual field
or property is mapped with elements or attributes of the XML document, and this mapping infor-
mation is controlled through a special set of XmlSerializer attributes. At the core implementation
level, every time a new instance of XmlSerializer is constructed, a new assembly and a new class
are dynamically created. This newly created class strictly contains type-specialized code to transfer
data between objects and XML and is determined at runtime. That is the reason why you notice
a slowness in execution whenever a new instance of XmlSerializer is created. The instantiation
process includes the dynamic generation and compilation of code, which chews a fair amount of
CPU cycles; therefore, it is always a good programming practice to cache the instance of XmlSeralizer
instead of re-creating it again and again.

With this example, we have completed the discussion of the various forms of code generators.
Now we will cover the real implementation technique that includes a code generator framework
available in the .NET Framework. The rest of the chapter will cover this topic in detail and lay
a strong foundation for building code generator–based solutions.

5645ch08.qxd 3/3/06 12:32 PM Page 423

CHAPTER 8 ■ EQUITY ARBITRAGE424

Figure 8-5. Conceptual flow of how abstract code is processed using the CodeDOM framework

Introducing the CodeDOM
Code generators that possess the ability to generate code in a language-independent manner will
always earn the highest respect from the developers, and this is true with the Code Document Object
Model (CodeDOM) that is bundled with the .NET Framework. Using the CodeDOM, source code is
written in a language-neutral manner. This is possible because of its internal object model where there
is a one-to-one relationship between a language construct and its corresponding object-oriented
representation. This type of abstraction allows representing source code in an object-oriented fash-
ion, which results in a CodeDOM graph. The CodeDOM graph is analogous to a tree where multiple
nodes are linked with each other and also hierarchically arranged. Similarly, the CodeDOM graph is
a collection of objects arranged in a tree structure, and an individual object describes a language
structure in abstract terms. This abstract graph is then traversed and processed to generate source code
that is specific to a particular language implementation such as C#, VB .NET, JScript.NET, and so on.

Certainly, the CodeDOM is a promising framework available to a developer, and Microsoft has
shown its commitment to it by developing several of its tools based on it. However, developers will
face certain pitfalls when it comes to implementing a language construct that is specific to a particular
language. For instance, a conditional statement is a generic programming construct and is supported
by almost all modern programming languages. Hence, it makes sense to define an abstract repre-
sentation of this statement, but now let’s consider a fixed statement provided by C# used to prevent
the relocation of a variable by the garbage collector. This statement is not available in any other lan-
guage and hence would be difficult to generalize and consider it under a general-purpose code object
model. However, this shouldn’t be the bottleneck; if you look at the brighter side, the CodeDOM
provides a rich object model that is truly appealing and compels developers to integrate it in their
day-to-day tasks. Let’s walk through Figure 8-5 to see how.

Figure 8-5 represents a conceptual flow of generating and compiling source code using the
CodeDOM framework. At a high level, there are three stages, and each stage plays an important role
in the overall code-generation process. The first stage is to create the CodeDOM graph that is popu-
lated with objects defined in the System.CodeDOM namespace. This namespace contains classes used
to model the structure and elements of the source code. After successfully populating the object graph,
it is then fed to CodeDOM providers. CodeDOM providers are code generators that understand the
CodeDOM object graph and generate source code in a particular programming language. In this way,
the code-generation logic is encapsulated in its own component, and such flexibility allows repre-
senting code in any new language without undertaking any code rewriting. Additionally, it is possible
to directly compile the object graph into an executable form. Both the code generation and compi-
lation tasks are defined inside the System.CodeDom.Compiler namespace, and shortly we will discuss
this topic in detail.

To illustrate the implementation aspect of the CodeDOM, we will present the C# code in Listing 8-1,
which represents a custom class of a stock price. It contains attributes such as the name of the stock,
ask price, bid price, and so on. To keep the code simple, we have omitted most of the essential attri-
butes that usually form part of the stock information.

5645ch08.qxd 3/3/06 12:32 PM Page 424

CHAPTER 8 ■ EQUITY ARBITRAGE 425

Listing 8-1. Sorting of Stock Data

using System;

using System.Collections;

//Stock Domain Model

public class StockData

{

public string Symbol;

public double AskPrice;

public double BidPrice;

}

//Custom Comparer to sort stock data

public class StockSorter : IComparer

{

string fldName;

public StockSorter(string fld)

{

//since we want to provide sorting on individual field

//of stock class, the name of the field on

//which the sort is performed is accepted as the constructor

//argument

fldName=fld;

}

public int Compare(object x, object y)

{

StockData leftObj= x as StockData;

StockData rightObj=y as StockData;

//If sorting is to be done on symbol field

if (fldName == "Symbol")

{

return leftObj.Symbol.CompareTo(rightObj.Symbol);

}

//If sorting is to be done on ask price field

if (fldName == "AskPrice")

{

return leftObj.AskPrice.CompareTo(rightObj.AskPrice);

}

return 1;

}

}

class SortNormal

{

[STAThread]

static void Main(string[] args)

{

//create stock list

ArrayList stockList = new ArrayList();

//create msft stock

StockData stkData1 = new StockData();

stkData1.Symbol = "MSFT";

5645ch08.qxd 3/3/06 12:32 PM Page 425

CHAPTER 8 ■ EQUITY ARBITRAGE426

Figure 8-6. New assembly structure

//create ibm stock

StockData stkData2= new StockData();

stkData2.Symbol = "IBM";

//add both msft and ibm stock

stockList.Add(stkData1);

stockList.Add(stkData2);

while(true)

{

//prompt name of the field to sort

Console.WriteLine("Enter name of the field to sort on : ");

string fldName = Console.ReadLine();

//instantiate the custom comparer, passing the field name

StockSorter stockSorter = new StockSorter(fldName);

//sort the list

stockList.Sort(stockSorter);

//display the sorted stock item

Console.WriteLine(fldName +" -----------------------");

foreach(StockData stkData in stockList)

{

Console.WriteLine("Symbol {0} AskPrice {1} BidPrice {2}

",stkData.Symbol,stkData.AskPrice,stkData.BidPrice);

}

Console.WriteLine("-------------------------------");

}

}

}

In Listing 8-1, particularly in the application entry point method, we have declared the StockData
class that represents stock information, and an individual instance of it is stored in an array. The
important section to explore is the loop code that prompts for a field name, based on which the ele-
ments stored in the array are sorted using quick-sort functionality, which was already discussed in
depth in Chapter 2. The trick in this code example is to provide sorting on any valid field; to accom-
plish this, we identified and defined all possible field lists in the Compare method of StockSorter.
However, the disadvantage of this approach is that the field list is defined during design time, and if
a new field is introduced in the class, then it will trigger a fair amount of modification in the imple-
mentation of the comparer class and also a recompilation of the program. To escape this problem,
we will demonstrate the practical use of both the CodeDOM and reflection. Before we proceed, we
need to slightly modify the code structure to suit this new example, as shown in Figure 8-6.

5645ch08.qxd 3/3/06 12:32 PM Page 426

CHAPTER 8 ■ EQUITY ARBITRAGE 427

From Figure 8-6 it should be clear the kind of code refactoring we are envisaging. The compari-
son logic that was enclosed inside the main assembly (that is, StockSorter) will now be dynamically
generated using the CodeDOM. Similarly, the stock information is separated in a new shared assembly
and will be referenced by both the main and dynamically generated assemblies. The first installment
of this exercise is to define StockData in a shared assembly:

using System;

namespace SharedAssembly

{

public class StockData

{

public string Symbol;

public double AskPrice;

public double BidPrice;

}

}

The next installment is the revised code of the main assembly that triggers the code-generation
process:

using System;

using System.Collections;

using SharedAssembly;

class SortCodeDOM

{

static void Main(string[] args)

{

//create empty arraylist

ArrayList stockList = new ArrayList();

//create msft stock

StockData stkData1 = new StockData();

stkData1.Symbol = "MSFT";

stkData1.AskPrice = 10;

stkData1.BidPrice = 12;

//create ibm stock

StockData stkData2= new StockData();

stkData2.Symbol = "IBM";

stkData2.AskPrice = 12;

stkData2.BidPrice = 9;

//create GE stock

StockData stkData3 = new StockData();

stkData3.Symbol = "GE";

stkData3.AskPrice = 13;

stkData3.BidPrice = 10;

//add stock

stockList.Add(stkData1);

stockList.Add(stkData2);

stockList.Add(stkData3);

while(true)

{

//prompt name of the field to sort

Console.WriteLine("Enter name of the field to sort on : ");

5645ch08.qxd 3/3/06 12:32 PM Page 427

CHAPTER 8 ■ EQUITY ARBITRAGE428

string fldName = Console.ReadLine();

//generate custom comparer code using CodeDOM

SortByCodeDOM sort = new SortByCodeDOM(fldName);

//sort the list

stockList.Sort(sort.GetComparer());

//display the sorted stock item

Console.WriteLine(fldName +" -----------------------");

foreach(StockData stkData in stockList)

{

Console.WriteLine("Symbol {0} AskPrice {1} BidPrice {2}

",stkData.Symbol,stkData.AskPrice,stkData.BidPrice);

}

Console.WriteLine("-------------------------------");

}

}

}

There is nothing extraordinary in the previous code except that a new class, SortByCodeDOM, is
instantiated, and its GetComparer method is invoked, which returns an instance of IComparer, as
shown in Listing 8-2.

Listing 8-2. Sorting of Stock Data (Using the CodeDOM)

using System;

using System.Collections;

public class SortByCodeDOM

{

string fldName;

public SortByCodeDOM(string fld)

{

fldName=fld;

}

public IComparer GetComparer()

{

//Dynamic Generation of Code using CodeDOM

return null;

}

}

The real food will be cooked inside GetComparer, whose method body is currently empty. But
you are now going to populate this method with suitable logic to generate the correct sorting imple-
mentation that is based on a particular field of StockData. Listing 8-3 shows the code that will get
dynamically generated. This code will not get compiled; it is still in unfinished form, and we have
purposely described it to further strengthen your understanding.

Listing 8-3. Customizing the Sort Order of the Stock Data

using System;

using System.Collections;

using SharedAssembly;

namespace SorterAssembly

{

public class SortCode : IComparer

{

5645ch08.qxd 3/3/06 12:32 PM Page 428

CHAPTER 8 ■ EQUITY ARBITRAGE 429

public int Compare(object x, object y)

{

StockData leftObj;

StockData rightObj;

leftObj= x as StockData;

rightObj=y as StockData;

return leftObj.<Field Name>.CompareTo(rightObj.<Field Name>);

}

}

}

If you were told to translate the code described in Listing 8-3 in a pseudo-code format, then it
is simply a matter of breaking up the code into fine-grained steps, as follows:

1. Reference SharedAssembly, which will allow you to access StockData.

2. Declare the new namespace SorterAssembly.

3. Import the System, System.Collections, and SharedAssembly namespaces.

4. Create a new class under the SorterAssembly namespace. Name this class SortCode. This
class will also implement the IComparer interface.

5. Create the new method Compare. The method return type is int, and it accepts two method
arguments of type Object.

6. Populate the method body. The first two lines of the body are to cast both input arguments
to StockData. The last line of the code is to invoke the CompareTo method on one of the input
parameters.

Now let’s look at how to leverage the CodeDOM classes with a step-by-step translation of the
previous pseudo-code into an abstract hierarchy of code elements.

The first and foremost requirement of the CodeDOM is to construct an instance of CodeCompileUnit,
which provides a container for the CodeDOM object graph and is a representation of an assem-
bly. The two most important attributes provided by this class are ReferencedAssemblies and
AssemblyCustomAttributes. ReferencedAssemblies is a string collection that contains the filenames of
the referenced assemblies. Similarly, the AssemblyCustomAttributes property represents custom
attributes of the assembly and is defined with the help of CodeAttributeDeclarationCollection.
For example:

CodeCompileUnit compileUnit = new CodeCompileUnit();

The next step after declaring the container is to define a new namespace, so accordingly you
use CodeNameSpace to represent a namespace:

//Step2 - create a new namespace

CodeNamespace newNameSpace = new CodeNamespace("SorterAssembly");

Next, you declare the list of namespaces referenced by the program, which is equivalent to the
using namespace directive in C#. The Imports property of CodeNameSpace represents namespaces
referenced by assembly. This property returns CodeNamespaceImportCollection, which represents
a collection of CodeNamespaceImport objects. After populating this namespace collection, the newly
created instance of CodeNameSpace is then added to CodeCompileUnit, like so:

//Step3 - Import namespaces

newNameSpace.Imports.Add(new CodeNamespaceImport("System"));

newNameSpace.Imports.Add(new CodeNamespaceImport("System.Collections"));

newNameSpace.Imports.Add(new CodeNamespaceImport("SharedAssembly"));

compileUnit.Namespaces.Add(newNameSpace);

5645ch08.qxd 3/3/06 12:32 PM Page 429

CHAPTER 8 ■ EQUITY ARBITRAGE430

The next step is to define the SortCode class using CodeTypeDeclaration, which is also used to
represent the structure, interface, or enumeration. The IsClass, IsStruct, IsEnum, and IsInterface
methods of CodeTypeDeclaration indicate the underlying type. Additionally, you also derive the
SortCode class from IComparer by populating the BaseTypes property of CodeTypeDeclaration, and
finally you group it under the newly created namespace:

//Step4 - Defines new Type

CodeTypeDeclaration newType = new CodeTypeDeclaration("SortCode");

newType.BaseTypes.Add(typeof(IComparer));

newNameSpace.Types.Add(newType);

Next, you declare the Compare method using CodeMemberMethod. This class represents a declara-
tion for a method, and both the name of the method and its accessibility are assigned, respectively,
by setting the Name and Attributes properties. This newly created member is then added to the
SortCode class by populating the Members property of CodeTypeDeclaration:

//Step5 - Declare Method

CodeMemberMethod compareMethod = new CodeMemberMethod();

compareMethod.ReturnType = new CodeTypeReference(typeof(int));

compareMethod.Name = "Compare";

compareMethod.Attributes = MemberAttributes.Public | MemberAttributes.Final;

newType.Members.Add(compareMethod);

CodeMemberMethod is also extended by other classes:

• CodeConstructor: Represents a constructor member declaration

• CodeEntryPointMethod: Defines an executable entry point

• CodeTypeConstructor: Represents a static constructor member declaration

If you look at the code described in Listing 8-3, the Compare method accepts two input arguments,
and accordingly you define both these arguments with CodeParameterDeclarationExpression. This
class represents code that declares arguments for a method, property, or constructor. As you can guess,
the individual instance of CodeParameterDeclarationExpression is then added to the Parameters
collection of the CodeMemberMethod (the Compare method), which also completes the method decla-
ration step:

CodeParameterDeclarationExpression param1 = new

CodeParameterDeclarationExpression(typeof(object),"x");

CodeParameterDeclarationExpression param2 = new

CodeParameterDeclarationExpression(typeof(object),"y");

compareMethod.Parameters.Add(param1);

compareMethod.Parameters.Add(param2);

CodeParameterDeclarationExpression is derived from CodeExpression, which forms a base class
for declaring any type of code expression. The following are the derived classes that represent the
various types of code expression:

• CodeArgumentReferenceExpression: Represents a reference to the value of an argument
passed to a method

• CodeArrayCreateExpression: Represents an array creation expression

• CodeArrayIndexerExpression: Represents a reference to an index of an array

• CodeBaseReferenceExpression: Represents a reference to the base class

• CodeBinaryOperatorExpression: Represents a binary operation between two expressions

• CodeCastExpression: Represents a cast expression

• CodeDelegateCreateExpression: Represents an expression to create a delegate

5645ch08.qxd 3/3/06 12:32 PM Page 430

CHAPTER 8 ■ EQUITY ARBITRAGE 431

• CodeDelegateInvokeExpression: Represents an expression that raises an event

• CodeEventReferenceExpression: Represents a reference to an event

• CodeFieldReferenceExpression: Represents a reference to a field

• CodeMethodInvokeExpression: Represents an expression that invokes a method

• CodeObjectCreateExpression: Represents an expression that creates a new instance of a type

• CodeParameterDeclarationExpression: Represents a parameter declaration for a method,
property, or constructor

• CodePropertyReferenceExpression: Represents a reference to the value of a property

• CodePropertySetValueReferenceExpression: Represents the value argument of a property set
method call within a property set method

• CodeThisReferenceExpression: Represents a reference to the current local class instance

• CodeTypeOfExpression: Represents a typeof expression

• CodeTypeReferenceExpression: Represents a reference to a data type

• CodeVariableReferenceExpression: Represents a reference to a local variable

• CodeSnippetExpression: Represents a literal expression

After adding the parameter declaration for the Compare method, the next step is to populate
the body of the method; you do this using the Statements property of CodeMemberMethod. This prop-
erty returns CodeStatementsCollections, which represents a collection of CodeStatement objects.
CodeStatement represents individual code constructs that appear within method bodies, properties,
and so on. For instance, local variable declaration is one type of code statement, so to accommodate
different types of code statements, CodeStatement is further extended. In the following code, you
declare two local variables of type StockData using CodeVariableDeclarationStatement, which basi-
cally represents the first and second lines of code in the Compare method described in Listing 8-3:

//Step6 - Populate Method Body

//Declare the Variable

CodeVariableDeclarationStatement leftObj = new

CodeVariableDeclarationStatement("StockData","leftObj");

CodeVariableDeclarationStatement rightObj = new

CodeVariableDeclarationStatement("StockData","rightObj");

compareMethod.Statements.Add(leftObj);

compareMethod.Statements.Add(rightObj);

The following are the classes that directly derive from CodeStatement:

• CodeAssignStatement: Represents an assignment statement.

• CodeAttachEventStatement: Represents the attachment of an event handler.

• CodeCommentStatement: Represents a single-line comment statement.

• CodeConditionStatement: Represents a conditional branch statement.

• CodeExpressionStatement: Represents a statement that consists of a single expression.

• CodeGotoStatement: Represents a goto statement.

• CodeIterationStatement: Represents a loop statement.

• CodeMethodReturnStatement: Represents a return value statement.

• CodeRemoveEventStatement: Represents the removal of an event handler.

• CodeSnippetStatement: CodeSnippetStatement can represent a statement using a literal code
fragment that will be included directly in the source without modification.

5645ch08.qxd 3/3/06 12:32 PM Page 431

CHAPTER 8 ■ EQUITY ARBITRAGE432

• CodeThrowExceptionStatement: Represents a statement that throws an exception.

• CodeTryCatchFinallyStatement: Represents a try-catch-finally statement.

• CodeVariableDeclarationStatement: Represents a variable declaration.

Next, a cast operation is performed on both input arguments, and the result of it is assigned to a local
variable. Another important thing is even though method bodies are populated using CodeStatement,
usually CodeStatement is composed from CodeExpression. This step represents the third and fourth
lines of code in the Compare method described in Listing 8-3:

//Cast x argument

CodeCastExpression leftcastExp = new

CodeCastExpression("StockData",new CodeVariableReferenceExpression("x"));

CodeAssignStatement leftcastStmt = new

CodeAssignStatement(new CodeVariableReferenceExpression("leftObj"),leftcastExp);

compareMethod.Statements.Add(leftcastStmt);

//Cast y argument

CodeCastExpression rightcastExp = new

CodeCastExpression("StockData",new CodeVariableReferenceExpression("y"));

CodeAssignStatement rightcastStmt = new

CodeAssignStatement(new

CodeVariableReferenceExpression("rightObj"),rightcastExp);

compareMethod.Statements.Add(rightcastStmt);

Finally, a closer look at the following code will reveal that the code generated is specialized to
access a particular field; to be precise, the field name mentioned refers to the argument supplied to
the SortByCodeDOM constructor:

//Compare both field value and return the result

CodePropertyReferenceExpression leftExp= new

CodePropertyReferenceExpression(new

CodeVariableReferenceExpression("leftObj"),fldName);

CodePropertyReferenceExpression rightExp = new

CodePropertyReferenceExpression(new

CodeVariableReferenceExpression("rightObj"),fldName);

CodeMethodInvokeExpression methodExp = new

CodeMethodInvokeExpression(leftExp,"CompareTo",rightExp);

CodeMethodReturnStatement retStmt = new

CodeMethodReturnStatement(methodExp);

compareMethod.Statements.Add(retStmt);

This brings an end to the population of the CodeDOM object graph. At this stage, the CodeDOM
object graph is populated in a language-neutral manner, and this tree is now ready for parsing in order
to produce language-specific code. The parsing functionality happens via CodeDOM providers.
CodeDOM providers are responsible for translating the CodeDOM tree into a language-specific
implementation. Since the multiple languages would result into multiple implementations of code
providers, each provider needs to inherit from CodeDOMProvider. CodeDOMProvider is the abstract
base class and provides interfaces for code generation and code compilation. The code-generation
feature is retrieved with a call to CreateGenerator, which returns an object that implements
the ICodeGenerator interface. Similarly, the code compilation feature is retrieved with a call to
CreateCompiler, which returns an object that implements ICodeCompiler. Microsoft.CSharp.
CSharpCodeProvider and Microsoft.VisualBasic.VBCodeProvider are the default CodeDOM providers
available in the .NET Framework.

So, the next step is to construct a language-specific code provider, which in this case is the C#
code provider itself, and transform the abstract code graph into C# source code. The following code
demonstrates this:

5645ch08.qxd 3/3/06 12:32 PM Page 432

CHAPTER 8 ■ EQUITY ARBITRAGE 433

Console.WriteLine("Translating CodeDOM object graph into text...");

//create C# code provider

CodeDomProvider csharpProv = new CSharpCodeProvider();

ICodeGenerator csharpCodeGen = csharpProv.CreateGenerator();

StringBuilder builder = new StringBuilder();

StringWriter writer = new StringWriter(builder);

//code-generation option

CodeGeneratorOptions opt = new CodeGeneratorOptions();

//convert CodeDOM graph into source code

csharpCodeGen.GenerateCodeFromCompileUnit(compileUnit,writer,opt);

After getting an instance of ICodeGenerator, you then convert the object graph to text using
GenerateCodeFromCompileUnit. This method takes three arguments; the first argument is an instance
of CodeCompileUnit, the second argument refers to StringWriter into which the output is redirected,
and the third argument is an instance of CodeGeneratorOptions that allows modifying the output
format of the generated code.

The final phase is to translate the CodeDOM object graph into a compiled form, and you do
this with the help of CompileAssemblyFromDom defined in ICodeCompiler. CompileAssemblyFromDom is
supplied with an instance of CompilerParameters that provides various tweaking features required
during the compilation process. One of the features it provides is compiling the CodeDOM object
graph either into a class library or into an executable form. It also provides options to persist the
assembly either in memory or to disk. In the following code, the CodeDOM object graph is com-
piled in memory, and the result of the compilation is collected with the help of CompilerResults:

Console.WriteLine("Translating CodeDOM object graph into assembly...");

//create c-sharp compiler

ICodeCompiler csharpCompiler = csharpProv.CreateCompiler();

CompilerParameters param = new CompilerParameters(new

string[]{"System.dll","SharedAssembly.dll"});

param.GenerateExecutable=false;

param.GenerateInMemory=true;

//compile the source code

CompilerResults results =

csharpCompiler.CompileAssemblyFromDom(param,compileUnit);

foreach(CompilerError error in results.Errors)

{

Console.WriteLine(error.ErrorText);

}

//check for any errors

if (results.Errors.Count > 0) return null;

The advantage of in-memory generation of an assembly is that a reference to the generated
assembly can be obtained from the CompiledAssembly property of CompilerResults. Similarly, if the
assembly is written to disk, then the path to the newly generated assembly is obtained from the
PathToAssembly property of CompilerResults. In both cases, the assembly is loaded into the current
application domain, and with the help of reflection you instantiate the new class that implements
the IComparer interface and contains comparison logic specific to a particular field of StockData:

IComparer comparer=

results.CompiledAssembly.CreateInstance("SorterAssembly.SortCode") as IComparer;

return comparer;

This completes the GetComparer implementation of SortByCodeDOM. Now let’s compile and run
the SortCodeDOM assembly. Figure 8-7 shows the console output of SortCodeDOM.

5645ch08.qxd 3/3/06 12:32 PM Page 433

CHAPTER 8 ■ EQUITY ARBITRAGE434

Figure 8-7. Console output of sort-by-CodeDOM program

Introducing Reflection
As you are aware, reflection is about examining and querying type information at runtime. It provides
rich metadata that is available only during runtime, and based on this information, developers can
implement more advanced programming techniques. Developers often resort to writing tons of
code when implementing a complex feature, but in this section we will discuss the reflection class
library and also highlight the fact that you can develop some cool features using reflection.

The Reflection API is defined inside the System.Reflection namespace. It contains classes and
interfaces that provide an object-oriented representation of loaded assemblies, modules, types, and
methods. If you look at Figure 8-8, the individual types are organized in a hierarchy fashion, and
they depict a traversing path in which metadata is accessed. At the top of the hierarchy is AppDomain,
which provides information about the loaded assemblies in the form of Assembly. Assembly is com-
posed of multiple modules. A module is represented by Module, and it contains types and interfaces.
The most important element of reflection is a class and is represented by Type. With access to Type,
the entire information about a class including the list of fields, methods, properties, interfaces, nested
types, custom attributes, and so on, can be retrieved.

5645ch08.qxd 3/3/06 12:32 PM Page 434

CHAPTER 8 ■ EQUITY ARBITRAGE 435

The following is a class search example that uses reflection to locate a class based on user
input. On a successful search, the program lists the class methods, fields, and properties.

using System;

using System.Reflection;

class Reflector

{

static void Main(string[] args)

{

Console.WriteLine("Enter name of the type to search for : ");

//Prompt for type name

string typeName = Console.ReadLine();

//Initiate the search

SearchType(typeName);

}

public static void SearchType(string typeName)

{

//iterate thru assembly

foreach(Assembly curAssem in AppDomain.CurrentDomain.GetAssemblies())

{

//iterate through module

foreach(Module curModule in curAssem.GetModules())

{

//iterate through type

foreach(Type curType in curModule.GetTypes())

{

if (curType.Name == typeName)

{

Console.WriteLine("Found inside Assembly : " +curAssem.FullName);

//on successful search, display the type information

RetrieveTypeInfo(curType);

break;

}

}

}

}

}

Figure 8-8. Traversing path using reflection

5645ch08.qxd 3/3/06 12:32 PM Page 435

CHAPTER 8 ■ EQUITY ARBITRAGE436

Figure 8-9. Console output of class search program

public static void RetrieveTypeInfo(Type type)

{

//display all methods defined in this type

Console.WriteLine("Type Full Name : " +type.FullName);

Console.WriteLine("List of Methods");

Console.WriteLine("----------------");

foreach(MethodInfo curMethod in type.GetMethods())

{

Console.WriteLine(curMethod.Name);

}

//display properties defined in this type

Console.WriteLine("List of Properties");

Console.WriteLine("------------------");

foreach(PropertyInfo propInfo in type.GetProperties())

{

Console.WriteLine(propInfo.Name);

}

//display fields defined in this type

Console.WriteLine("List of Fields");

Console.WriteLine("--------------");

foreach(FieldInfo fldInfo in type.GetFields())

{

Console.WriteLine(fldInfo.Name);

}

}

}

Figure 8-9 shows the console output of the class search program.

Another mechanism provided by reflection is late binding. Late binding is a technique in which
an instance of a class or a method invocation takes place at runtime instead of compile time. The
only downside to using late binding is that you lose the type safety–related checks done by compil-
ers. However, the upside is that this ability of reflection allows you to build a highly extensible and

5645ch08.qxd 3/3/06 12:32 PM Page 436

CHAPTER 8 ■ EQUITY ARBITRAGE 437

pluggable application. For instance, you can locate a specific method in a type, determine the number
of arguments required and their underlying types, and finally invoke this method. You can achieve
this entire task dynamically.

To give you an idea of what we are talking about, let’s rewrite the stock sort example using
reflection, as shown in Listing 8-4.

Listing 8-4. Sorting of Stock Data (Using Reflection)

using System;

using System.Reflection;

using SharedAssembly;

using System.Collections;

class ReflectionComparer : IComparer

{

string fldName;

public ReflectionComparer(string fld)

{

fldName = fld;

}

public int Compare(object x, object y)

{

StockData leftObj = x as StockData;

StockData rightObj = y as StockData;

//Retrieve field meta data

FieldInfo leftField= leftObj.GetType().GetField(fldName);

FieldInfo rightField= rightObj.GetType().GetField(fldName);

//Retrieve field value

object leftValue = leftField.GetValue(leftObj);

object rightValue = rightField.GetValue(rightObj);

//Retrieve method metadata

MethodInfo leftMethod = leftField.FieldType.GetMethod("CompareTo",new

Type[]{leftValue.GetType()});

//invoke the method

object retValue = leftMethod.Invoke(leftValue,new object[]{rightValue});

return (int)retValue;

}

}

public class SortByReflection

{

string fldName;

public SortByReflection(string fld)

{

fldName=fld;

}

public IComparer GetComparer()

{

return new ReflectionComparer(fldName);

}

}

5645ch08.qxd 3/3/06 12:32 PM Page 437

CHAPTER 8 ■ EQUITY ARBITRAGE438

The corresponding impact in the main assembly now sorts the list using reflection:

using System;

using System.Collections;

using SharedAssembly;

class SortReflection

{

static void Main(string[] args)

{

ArrayList stockList = new ArrayList();

StockData stkData1 = new StockData();

stkData1.Symbol = "MSFT";

stkData1.AskPrice = 10;

stkData1.BidPrice = 12;

StockData stkData2= new StockData();

stkData2.Symbol = "IBM";

stkData2.AskPrice = 12;

stkData2.BidPrice = 9;

StockData stkData3 = new StockData();

stkData3.Symbol = "GE";

stkData3.AskPrice = 13;

stkData3.BidPrice = 10;

stockList.Add(stkData1);

stockList.Add(stkData2);

stockList.Add(stkData3);

while(true)

{

Console.WriteLine("Enter name of the field to sort on : ");

string fldName = Console.ReadLine();

SortByReflection sort = new SortByReflection(fldName);

stockList.Sort(sort.GetComparer());

Console.WriteLine(fldName +" -----------------------");

foreach(StockData stkData in stockList)

{

Console.WriteLine("Symbol {0} AskPrice {1} BidPrice {2}

",stkData.Symbol,stkData.AskPrice,stkData.BidPrice);

}

Console.WriteLine("-------------------------------");

}

}

}

You have seen in Listing 8-4 how reflection is used to dynamically determine the field, query
the field, and then invoke the CompareTo method. Certainly, you can achieve this kind of flexibility
only using reflection, but it comes with a cost. The cost is impact both in performance and mainte-
nance. First, it is hard to debug code that uses reflection, and any errors produced as a result of dynamic
invocation are often not so friendly to diagnose. Second, this impacts performance; it is obvious that
early-binding method calls will always be faster than late-binding ones. But sometimes it is impos-
sible to escape using reflection. Reflection is a privilege offered by the .NET Framework, and a balanced
use of it will lead to the design of highly extensible applications.

5645ch08.qxd 3/3/06 12:32 PM Page 438

CHAPTER 8 ■ EQUITY ARBITRAGE 439

Code Generation Using Reflection.Emit
Another approach to dynamically generating code is using Reflection.Emit, which is an extremely
powerful code-generation weapon that directly emits raw MSIL code. This is in contrast to the
CodeDOM, which has the ability to generate code in multiple languages such as C#, VB .NET, and so
on, which is then translated by compilers into low-level MSIL code. Using Reflection.Emit, you
avoid the intermediate compilation step because the code emitted is already in its lowest common
denominator form. This certainly boosts the code-generation time. But, the biggest problem is that
developers need to be proficient with MSIL instructions, and this restricts its usage to the hands of
a few developers. It also begs the question as to why anyone would want to dirty their hands with
Reflection.Emit. The primary reason is it provides tighter control to structure the IL code, which is
nearly impossible to achieve from high-level languages. This is similar to system programmers shy-
ing away from the C language and using low-level assembly code to achieve machine-specific
optimizations.

You will now see how classes defined in the System.Reflection.Emit namespace are used to
emit MSIL. We are assuming you are familiar with MSIL syntax. Based on this assumption, we will
now show how to rewrite the sort implementation. Before we delve into the code-level details,
though, the following are the important classes:

• AssemblyBuilder: Defines an assembly.

• ModuleBuilder: Defines a module.

• TypeBuilder: Defines a class.

• ConstructorBuilder: Defines a constructor for a class.

• FieldBuilder: Defines a field for a class.

• EventBuilder: Defines events for a class.

• MethodBuilder: Defines methods for a class.

• PropertyBuilder: Defines properties for a class.

• ILGenerator: Defines MSIL instructions. This class is referenced by both ConstructorBuilder
and MethodBuilder to implement the body of the method.

• OpCodes: Provides field representations of the MSIL instructions used by the ILGenerator
class members.

We will now show how to rewrite the sort example using Reflection.Emit. Listing 8-5 provides
you with the first taste of how to emit raw IL code at runtime.

Listing 8-5. Sorting of Stock Data (Using Reflection.Emit)

using System;

using System.Collections;

using System.Reflection;

using System.Reflection.Emit;

using SharedAssembly;

public class SortByReflectionEmit

{

string fldName;

public SortByReflectionEmit(string fld)

{

fldName = fld;

}

5645ch08.qxd 3/3/06 12:32 PM Page 439

CHAPTER 8 ■ EQUITY ARBITRAGE440

public IComparer GetComparer()

{

AssemblyName asmName = new AssemblyName();

asmName.Name = "SorterAssembly";

//Define a new in-memory assembly

AssemblyBuilder asmBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly

(asmName,AssemblyBuilderAccess.Run);

//Define a new module

ModuleBuilder modBuilder = asmBuilder.DefineDynamicModule("SorterModule");

//Create a new Type, and implement IComparer interface

TypeBuilder typeBuilder = modBuilder.DefineType

("SortCode",TypeAttributes.Public);

typeBuilder.AddInterfaceImplementation(typeof(IComparer));

//Create Compare Method with 2 input arguments and also declare return type

//as int

MethodBuilder methodBuilder = typeBuilder.DefineMethod

("Compare",MethodAttributes.Public | MethodAttributes.Virtual,typeof(int),

new Type[] {typeof(object),typeof(object)});

//Implements IComparer Compare Method

MethodInfo compareMethod = typeof(IComparer).GetMethod("Compare");

typeBuilder.DefineMethodOverride(methodBuilder,compareMethod);

//Generate IL code for the above declared method

ILGenerator ilGenerator = methodBuilder.GetILGenerator();

//Declare two local variables i.e. leftObj and rightObj

ilGenerator.DeclareLocal(typeof(StockData));

ilGenerator.DeclareLocal(typeof(StockData));

//Declare local variable to hold result returned by CompareTo method

ilGenerator.DeclareLocal(typeof(int));

//Cast x object to StockData type, and store it inside local variable

ilGenerator.Emit(OpCodes.Ldarg_1);

ilGenerator.Emit(OpCodes.Isinst,typeof(StockData));

ilGenerator.Emit(OpCodes.Stloc_0);

//Cast y object to StockData type, and store it inside local variable

ilGenerator.Emit(OpCodes.Ldarg_2);

ilGenerator.Emit(OpCodes.Isinst,typeof(StockData));

ilGenerator.Emit(OpCodes.Stloc_1);

//Access field of x object using reflection

FieldInfo xField = typeof(StockData).GetField(fldName);

//Access the field of x object

ilGenerator.Emit(OpCodes.Ldloc_0);

if (xField.FieldType.IsValueType == true)

ilGenerator.Emit(OpCodes.Ldflda,xField);

else

ilGenerator.Emit(OpCodes.Ldfld,xField);

5645ch08.qxd 3/3/06 12:32 PM Page 440

CHAPTER 8 ■ EQUITY ARBITRAGE 441

//Access field of y object using reflection

FieldInfo yField = typeof(StockData).GetField(fldName);

//Access the field of y object

ilGenerator.Emit(OpCodes.Ldloc_1);

ilGenerator.Emit(OpCodes.Ldfld,yField);

//Boxing Operation in case field value returns a value type

if (yField.FieldType.IsValueType == true)

{

ilGenerator.Emit(OpCodes.Box,yField.FieldType);

}

//Invoke Compare Method, and return the comparison result

MethodInfo invokeCompare = yField.FieldType.GetMethod("CompareTo",

new Type[]{typeof(object)});

ilGenerator.Emit(OpCodes.Call,invokeCompare);

ilGenerator.Emit(OpCodes.Stloc_2);

Label codeBranch = ilGenerator.DefineLabel();

ilGenerator.Emit(OpCodes.Br_S,codeBranch);

ilGenerator.MarkLabel(codeBranch);

ilGenerator.Emit(OpCodes.Ldloc_2);

ilGenerator.Emit(OpCodes.Ret);

//Create the Type

typeBuilder.CreateType();

//Instantiate the dynamic type

IComparer comparer= asmBuilder.CreateInstance("SortCode",true)

as IComparer;

return comparer;

}

}

The corresponding impact in the main assembly now sorts the list using Reflection.Emit:

using System;

using System.Collections;

using SharedAssembly;

class SortReflectionEmit

{

static void Main(string[] args)

{

ArrayList stockList = new ArrayList();

StockData stkData1 = new StockData();

stkData1.Symbol = "MSFT";

stkData1.AskPrice = 10;

stkData1.BidPrice = 12;

StockData stkData2= new StockData();

stkData2.Symbol = "IBM";

stkData2.AskPrice = 12;

stkData2.BidPrice = 9;

5645ch08.qxd 3/3/06 12:32 PM Page 441

CHAPTER 8 ■ EQUITY ARBITRAGE442

Figure 8-10. Simple arbitrage engine

StockData stkData3 = new StockData();

stkData3.Symbol = "GE";

stkData3.AskPrice = 13;

stkData3.BidPrice = 10;

stockList.Add(stkData1);

stockList.Add(stkData2);

stockList.Add(stkData3);

while(true)

{

Console.WriteLine("Enter name of the field to sort on : ");

string fldName = Console.ReadLine();

SortByReflectionEmit sort = new SortByReflectionEmit(fldName);

stockList.Sort(sort.GetComparer());

Console.WriteLine(fldName +" -----------------------");

foreach(StockData stkData in stockList)

{

Console.WriteLine("Symbol {0} AskPrice {1} BidPrice {2}

",stkData.Symbol,stkData.AskPrice,stkData.BidPrice);

}

Console.WriteLine("-------------------------------");

}

}

}

Examining the Business-Technology Mapping
The most important element in designing an arbitrage engine is the type of strategy with which the
market participant wants to experiment. The strategy can range from a simple one that has less risk
to a complex one. In either case, the goal is to make money and get the maximum mileage from this
short window of opportunity provided to the participant. Another interesting fact is only a few ven-
dors offer off-the-shelf products that address the arbitrage requirements of an organization. Such
limited support from commercial vendors is because each individual organization has its own require-
ments that are difficult to generalize. Therefore, organizations most of the times tend to settle on
building such engines in-house (see Figure 8-10).

As you know, arbitrage trading is another tactic to make money, but it can be exploited only by
automation. This may start with a simple arbitrage engine that tracks opportunities based on stock
price differences. The first prerequisite in this case is to subscribe to market data from various
exchanges; also, it is important that data is made available in a timely manner. The whole concept of

5645ch08.qxd 3/3/06 12:32 PM Page 442

CHAPTER 8 ■ EQUITY ARBITRAGE 443

arbitrage is based on that there are imbalances in stock prices that will last for short period of times.
Therefore, even a fraction of a delay in receiving market data is sufficient to lose such opportunities.

Another way of building an arbitrage engine is by using various arbitrage models (see Figure 8-11).
An arbitrage model contains core logic that seeks out arbitrage opportunities. This logic is usually
complex in nature and is defined using mathematical models and analyzing historical data. The
engine provides a plug-and-play approach where traders have complete freedom to come out with
their own model and then associate it with the engine. Such flexibility often results in the creation
of various models specialized for a particular stock or event. These models are often coded in a pro-
gramming language that traders are comfortable with; most of the time it is C++, but this trend is
changing. Nowadays they are written in C#. Microsoft Excel is the favorite candidate and is an ideal
choice for building calculation-intensive applications.

Figure 8-11. Arbitrage engine architected based on different type of arbitrage models

Considering the popularity of the Office suite, Microsoft released Office Primary Interop Assemblies
(PIA), which allows the seamless integration of .NET applications with Microsoft Office. With the help
of Office PIA, it is possible to define arbitrage models using Excel macro programming features and
then integrate them with engines that are .NET applications. Such mix-and-match capability proves
to be extremely beneficial both to traders and to developers. Developers do not need to worry about
business logic and can concentrate on the infrastructure aspect of the engine such as the faster pro-
cessing of market data, multithreading, and so on. Similarly, traders are not dependent upon developers
and are in complete charge of the underlying business logic. No doubt such separation of responsi-
bility provides much tighter control to traders, but a word of caution is that the performance of the
application needs to be closely examined. As you know, an arbitrage opportunity exists for a very
short interval, so the system must not only capture this opportunity but must also undertake several
computation steps to determine whether this opportunity is favorable and healthy for the business.
This decision-making process needs to be highly optimized; therefore, the code written by traders
needs to be thoroughly reviewed before it is integrated with the system.

Another sophisticated version of an arbitrage engine is to provide a rule-driven interface to
traders (see Figure 8-12). This allows traders to capture all types of arbitrage strategies in the form
of rules. The rules defined are then interpreted by the rule engine, which serves as the execution
engine for the arbitrage strategy. They allow flexibility by externalizing the business logic from the
system logic and representing the logic with rules that are then easy to modify. Rules are defined from
business vocabulary definitions.

5645ch08.qxd 3/3/06 12:32 PM Page 443

CHAPTER 8 ■ EQUITY ARBITRAGE444

The rule engine consists of design and run-time components. Design-time components provide
the appropriate interface that allows the rules to be defined. These rules are then parsed and validated
to detect both syntax and semantic errors. On the other hand, run-time components look after the
execution aspect of rules, which is achieved by identifying the stock information that the rules are
processed against to produce the desired output. The motivation behind the rule engine is it avoids
the need of translating the business requirements in a procedural instructions language, which is
usually done by developers. With the help of the engine, the task is directly assigned to traders, and
they can directly define the rules in their own business language. Furthermore, to simplify such tasks,
traders are presented with an easy-to-use GUI-based rule management tool.

From an implementation perspective, the rule engine can leverage an automated code-generation
approach where the rules after interpretation are directly translated into a binary executable form.
This obviously results in the faster execution of rules and provides the best of both worlds. Developers
will concentrate on fine-tuning the code-generation aspect, and traders will mobilize their efforts in
defining business logic without knowing its language implementation details.

Automated code generation is a perfect implementation technique in designing and implement-
ing any type of business rule engine. Another area in the financial world where code-generation
techniques come in handy is when building a finite state machine compiler. A finite state machine
is composed of state, transition, and actions. A state represents information, a transition refers to
a change in state, and an action defines the activity that is executed because of a change in state.
Such information when graphically depicted results in a state diagram, and systems are then mod-
eled on this concept. State machine compilers provide GUI-based state modeling tools that allow
you to chart the system states, and then the compiler generates boilerplate code.

Code-generation techniques bring higher productivity to developers, but there is initial invest-
ment in terms of time and resources that need to be deployed. In most projects, it is hard to justify
their usage. Certainly this is true in small-scale projects where using code generation doesn’t seem
to be a viable solution because of the nature of the tasks. For instance, there is no need to consider
a code-generation technique when building a simple arbitrage engine. But when it comes to build-
ing a highly complex arbitrage engine, then the whole concept of code generation falls squarely in
line with a rule engine. Also, when the nature of the task is repetitive and exists in large numbers,
then code generation becomes an extremely useful tool.

Figure 8-12. Rule-based arbitrage engine

5645ch08.qxd 3/3/06 12:32 PM Page 444

CHAPTER 8 ■ EQUITY ARBITRAGE 445

Summary
In this chapter, we described the following topics:

• We explained the economics behind the equities arbitrage business and how an arbitrageur
attempts to lock and make profit by exploiting price differentials in multiple markets.

• We discussed the various forms of the arbitrage business and showed the basic mathematics
calculation applied to find out a profitable arbitrage.

• Next, we started the journey into various code-generation techniques and how they are
leveraged to automate day-to-day tasks.

• We explained the strengths offered by the CodeDOM framework in writing language-
independent code.

• We illustrated the advantage provided by Reflection.Emit over the .NET CodeDOM.

• We provided a brief overview of using reflection, which enables you to self-introspect .NET
assembly.

5645ch08.qxd 3/3/06 12:32 PM Page 445

5645ch08.qxd 3/3/06 12:32 PM Page 446

C H A P T E R 9

■ ■ ■

.NET 2.0

Writing is a hard thing, but it is only through writing we come to know how far we can stretch our
imagination.

This chapter is unlike the other chapters where the main theme was mixing business case studies
with technical implementations. The main focus of this chapter is to highlight the new wealth of
technical features introduced in .NET 2.0. Although you can find enhancements in every nook and
cranny of the framework, in this chapter we will address only the major enhancements.

Language Improvements
In .NET 2.0, you will discover language-level improvements such as generics, anonymous methods, and
partial classes that provide ways to increase development productivity. These enhancements can be
generally classified into two levels: compiler-driven features and run-time features. Compiler-driven
features are those that are solely implemented by compilers. A classic example of a compiler-driven fea-
ture is the lock keyword used in C# to achieve thread synchronization; the real magic is performed
by the compiler, which interprets the keyword and accordingly emits Monitor.Enter and Monitor.Exit
statements. Similarly, in .NET 2.0, anonymous methods, partial classes, and iterators are compiler-
driven features aimed at providing greater functionality with less code. On the other hand, generics
are run-time features that have a deep impact on both the IL instruction set and the CLR system. They
are aimed at improving application performance, which is absolutely true in the case of generics.

Generics
With generics in place, the CLR provides the powerful concept of parametric polymorphism, which
has been popular in the object-oriented community. Parametric polymorphism provides a mecha-
nism to parameterize the data types declared inside classes, interfaces, and structures. For example,
using parametric polymorphism, an array can be declared to hold any type of object without know-
ing its actual type; it can store an array of integers, an array of strings, and so on. This provides an
opportunity to write code in a generic and reusable manner without binding it to any specific data
type. As you might have guessed, the name generic was coined because of its capability to write code
without committing to an actual data type and, more important, not compromising the type-safety
feature provided by the CLR. To further illustrate generics, Listing 9-1 demonstrates some serious
problems that have plagued software developers without the support of generics.

447

5645ch09.qxd 3/3/06 12:33 PM Page 447

CHAPTER 9 ■ .NET 2.0448

Listing 9-1. Order Container

using System;

using System.Collections;

class NonGenericOrderContainer

{

//reference type order

public class OrderObj

{

public string Instrument;

public double Quantity;

}

//value type order

public struct OrderStruct

{

public string Instrument;

public double Quantity;

}

static void Main(string[] args)

{

//create order container to store reference type orders

OrderContainer orderObjContainer = new OrderContainer(10);

//Adding orders of reference type

orderObjContainer.AddOrder(new OrderObj());

//Cast Operation

OrderObj orderObj = orderObjContainer.GetOrder(0) as OrderObj;

//create order container to store value type orders

OrderContainer orderStructContainer = new OrderContainer(10);

//Adding orders of value type

//Boxing Cost

orderStructContainer.AddOrder(new OrderStruct());

//Unboxing Cost

OrderStruct orderStruct = orderStructContainer.GetOrder(0)

as OrderStruct;

}

}

public class OrderContainer

{

object[] dataContainers;

int ctr = 0;

//allocate array elements with specified capacity

public OrderContainer(int orderCapacity)

{

dataContainers = new object[orderCapacity];

}

//Add a new Order

public void AddOrder(object order)

{

dataContainers[ctr] = order;

ctr++;

}

5645ch09.qxd 3/3/06 12:33 PM Page 448

//Retrieve a specific order

public object GetOrder(int index)

{

return dataContainers[index];

}

}

As you recall from Chapter 2, we discussed how you can use various types of collections to
implement an order container. The container adds an extra layer of abstraction over the internal
data structure used to store orders, thereby providing freedom to tweak the storage implementation
when needed. To examine how this is done, take another look at Listing 9-1, which shows the partial
implementation of an order container. This container is capable of storing any order type. The code
is pretty straightforward and begins with a declaration of a System.Object array. The reason we chose
System.Object was because it is the base class from which both reference and value type classes are
derived.

From a functionality perspective, the code achieves its goal of providing a common order
container for storing all types of orders; however, when looked at from a performance viewpoint,
you will find some serious problems. The first problem is the performance penalty incurred as a result
of the boxing and unboxing operations. For example, OrderStruct is a value type, and when an instance
of it is passed to the Add method of OrderContainer, it first needs to be boxed in order to be stored in
an array of the System.Object type. Similarly, to retrieve an instance of OrderStruct from the order
container, it needs to be unboxed. Both boxing and unboxing are expensive operations that involve
memory allocation resulting in frequent garbage collections. Certainly, to avoid the performance tax
associated with value types, you can use reference types. But with reference types, you lose compile-
time type-safety features; therefore, type mismatch errors that are detected early during the compilation
phase can be traced only at runtime. Second, a performance penalty is incurred as a result of the cast
operation that occurs when System.Object is assigned to an actual reference type. Unfortunately,
you do not have an easy way to create a type-specific data structure that provides compile-time
type safety without jeopardizing performance.

However, with the advent of generics in .NET 2.0, developers do not need to worry about type
safety and performance issues and can achieve the long-dreamed-of task of creating type-specific
data structures. Generics are first-class citizens of the CLR, and they allow developers to parameter-
ize classes based on the type of data they store. The parameterization is dictated by the consumer
code, and to show how to incorporate this new language feature, we will build a generic version of
the order container example, as shown in Listing 9-2.

Listing 9-2. Order Container (Using Generics)

public class OrderContainer<T>

{

T[] dataContainers;

int ctr = 0;

//allocate array elements with specified capacity

public OrderContainer(int orderCapacity)

{

dataContainers = new T[orderCapacity];

}

//Add a new Order

public void AddOrder(T order)

{

dataContainers[ctr] = order;

ctr++;

}

CHAPTER 9 ■ .NET 2.0 449

5645ch09.qxd 3/3/06 12:33 PM Page 449

//Retrieve a specific order

public T GetOrder(int index)

{

return dataContainers[index];

}

}

At first glance, the code for OrderContainer looks similar to its predecessor, but the important
element that is missing is that the details of the data type used to hold orders; instead, the data type
is represented by T. The character T in generics is known as a type parameter and is enclosed in angle
brackets. The type parameter acts as a placeholder for the data type that is filled later by the consumer
code. The presence of angle brackets immediately after the class name makes it easy to recognize
a generic type versus its nongeneric counterpart. Additionally, angle brackets enclose multiple type
parameters whose details are unspecified and are referenced all over the code. For instance, you will
notice that in the generic version of OrderContainer, the role played by System.Object is taken over
by type parameter T. Another important note about naming conventions of type parameters is that
they can be any valid C# identifier.

OrderContainer<T> is known as a generic type because it contains code about the functionality
it is going to provide, but what is not known is the kind of data on which it intends to execute its
logic. This missing information is filled by the consumer of the generics and is demonstrated in the
next code example:

class GenericOrderContainer

{

//reference type order

public class OrderObj

{

public string Instrument;

public double Quantity;

}

//value type order

public struct OrderStruct

{

public string Instrument;

public double Quantity;

}

static void Main(string[] args)

{

//Generic type instantiation using reference type

OrderContainer<OrderObj> orderObjContainer = new

OrderContainer<OrderObj>(10);

//Add and retrieve reference type order

orderObjContainer.AddOrder(new OrderObj());

OrderObj orderObj = orderObjContainer.GetOrder(0);

//Generic type instantiation using value type

OrderContainer<OrderStruct> orderStructContainer =

new OrderContainer<OrderStruct>(10);

//Add and retrieve value type order

orderStructContainer.AddOrder(new OrderStruct());

OrderStruct orderStruct = orderStructContainer.GetOrder(0);

}

}

}

CHAPTER 9 ■ .NET 2.0450

5645ch09.qxd 3/3/06 12:33 PM Page 450

To create an instance of a generic type, the consumer must supply the list of concrete data
types that need to be substituted for the type parameters defined. For example, by instantiating
OrderContainer<OrderObj>, which is also called the closed constructed type, every occurrence of type
parameter T is replaced with OrderObj, which is a concrete type. This action immediately gives new
life to the order container, because it knows the concrete data type it intends to store and operate.
Similarly, the instantiation of OrderContainer<OrderStruct> allows the storage of only value types.

You can easily see the power behind generics from the generic version of the order container
code where both reference and value types are instantiated without incurring any kind of perfor-
mance penalty. Both the compiler and runtime provide a necessary type-safety guarantee to an instance
of a generic type. In this way, any attempt to add orders to OrderContainer<OrderStruct> other than
OrderStruct will not be allowed. Additionally, generics bring higher productivity to both the producer
and consumer of the generic type because, along with code clarity, generics provide the opportunity
to design types in a completely generic fashion by offloading most of the internal data type details
to the consumer.

Inheritance on Generic Types
Generics in .NET are not restricted to just pure types; they can be applied to interfaces and abstract
types and also participate in forming a generic-based inheritance chain. By default, the base class
of a generic type is System.Object, but the truth of the matter is a generic type can also be derived
from a base generic type or closed constructed type. In either of these cases, the type parameters
declared in the derived class can be propagated to its base class. For example, if you look at the follow-
ing code, we declared Order<T>, which forms the base type for DayOrder<T> and LimitOrder<T>. The
only difference is that LimitOrder<T> is extended from a concrete type, unlike DayOrder<T>, which
propagates the subclass type parameter to its generic base class.

public class Order<T>

{

public T OrderID;

}

public class DayOrder<T> : Order<T>

{}

public class LimitOrder<T> : Order<string>

{}

When a subclass is a generic type and is derived from a generic interface or generic abstract
classes, then an abstract or virtual method declared in a base type can be overridden in the derived
class. In these cases, the signature of the overridden method must match its base type or interface.
For example, let’s assume you have been given a new requirement to implement comparison func-
tionality between two orders; the most ideal way is to subclass the order generic type from the
IComparable interface:

public interface IComparable<T>

{

int CompareTo(T other);

}

Currently, there are two version of the IComparable interface. The original version is a nongeneric
type, but the new version is meant to handle the generic requirement:

public class OrderObj : IComparable<OrderObj>

{

public string Instrument;

public double Quantity;

CHAPTER 9 ■ .NET 2.0 451

5645ch09.qxd 3/3/06 12:33 PM Page 451

int IComparable<OrderObj>.CompareTo(OrderObj x)

{

return x.Quantity.CompareTo(this.Quantity);

}

}

public struct OrderStruct : IComparable<OrderStruct>

{

public string Instrument;

public double Quantity;

int IComparable<OrderStruct>.CompareTo(OrderStruct x)

{

return x.Quantity.CompareTo(this.Quantity);

}

}

Constraints on Generic Types
Generic constraints permit you to associate rules with the generic type parameter. The rules help
you further narrow down the list of possible types an individual generic type parameter can use. By
default, a generic type parameter with no constraints is known as an unbounded type, and it restricts
generic code to use only methods and properties defined in System.Object. As a result, any attempt
to invoke methods or properties not supported by System.Object will result in compile-time errors.
This behavior is completely acceptable because if you look at it from a compiler point of view, it has
no additional information to ensure compile-time type safety:

//Compile-time error

public class OrderContainer<T>

{

public void AddOrder(T order)

{

//Quantity cannot be negative

if (order.Quantity < 0)

throw new ApplicationException("Quantity cannot be negative");

}

}

Constraints are additional inputs to compilers, and based on this information, they expand the
reach of generic code to invoke methods or properties of different types. Without constraints, the only
possible way to incorporate this feature is to perform a run-time cast, but that leads to performance
overhead. Additionally, if a cast operation is unsuccessful, then it throws a run-time exception. To
address these problems, constraints were incorporated into generics; to use them, you need to first
understand various types of constraints.

Class/Interface Constraint
The code syntax of constraints are specified using the where keyword, which is followed by a generic
type parameter and colon. Given this declaration, a constraint can be classified as a class type or
interface type. Class type constraints define a list of types that a type parameter can support. Simi-
larly, interface type constraints define a list of interfaces that a type parameter can implement. For
example, in following code by constraining OrderContainer<T>, you are allowed to access members
of OrderObj inside generic code:

//Compiles successfully

public class OrderContainer<T> where T:OrderObj

CHAPTER 9 ■ .NET 2.0452

5645ch09.qxd 3/3/06 12:33 PM Page 452

{

public void AddOrder(T order)

{

//Quantity cannot be negative

if (order.Quantity < 0)

throw new ApplicationException("Quantity cannot be negative"); successfully

}

}

Similarly, by applying interface type constraints, you can enforce a rule that any item added in
OrderContainer<T> must implement the IComparable<T> interface:

public class OrderContainer<T> where T : IComparable<T>

{

//....

}

Furthermore, it is also possible to associate multiple constraints on a generic type parameter;
for example, OrderContainer<T> is tagged with both class and interface type constraints:

public class OrderContainer<T> where T : OrderObj,IComparable<T>

{

//....

}

Reference/Value Type Constraint
Using this type of constraint, it is possible to specify that a generic type parameter must be of
a reference type (such as class, delegate, or interface) or value type (such as int, double, or enum):

//Allow only reference type

public class OrderContainer<T> where T : class

{

//....

}

//Allow only value type

public class OrderContainer<T> where T : struct

{

//....

}

Parameterless Constructor Constraint
This constraint enforces a rule that a generic type parameter must have a public parameterless con-
structor. As a result, code inside a generic class can instantiate a new generic object of a generic
parameter type:

public class OrderContainer<T> where T: OrderObj,new()

{

public T CreateNewOrder()

{

//This line compiles because OrderObj has a default public constructor

T newOrder = new T();

//Assign Default Value

newOrder.Quantity = 10;

return newOrder;

}

}

CHAPTER 9 ■ .NET 2.0 453

5645ch09.qxd 3/3/06 12:33 PM Page 453

Inheritance Constraint
This is not a new constraint but must be considered as a mandatory step that needs to be followed
in establishing a constraint-enabled, generics-based inheritance chain. When a generic type is
derived from a base generic type, then generic constraints declared at a base type must be repeated
at a subclass level. Failing to honor this rule will result in compile-time errors:

public class Order<T> where T:IComparable<T>

{

//unique order identifier

public T OrderID;

}

//Constraints needs to be repeated

public class DayOrder<T> : Order<T> where T:IComparable<T>

{

}

//Constraints are not repeated because it is derived from the closed constructed

//type

//but the compiler will ensure that the concrete type specified in the closed

//constructed type

//implements the IComparable interface

public class LimitOrder<T> : Order<string>

{

}

//This will result into compilation error, because we are trying to

//use the byte array as the underlying data type to identify unique order,

//and the byte array doesn't implement the IComparable interface

public class IOCOrder<T> : Order<byte[]>

{

}

Generic Methods and Delegates
A generic method is a method that parameterizes both input and output arguments. It is syntactically
similar to a generic class with the only difference being that access to the type parameter defined at
the generic method level is limited to its execution scope. Using a generic method, it is possible to
sprinkle generic ingredients inside a nongeneric class. Additionally, it enjoys the same benefit of
a generic class.

To demonstrate how powerful a generic method is, we will incorporate sort functionality inside
the generic version of the order container. Instead of hard-coding this functionality, it is delegated
to consumer code that then dictates the sorting behavior using the generic method, as shown in
Listing 9-3.

Listing 9-3. Generic Method

using System;

using System.Collections.Generic;

using System.Text;

public class Order

{

public string OrderID;

public string Instrument;

}

CHAPTER 9 ■ .NET 2.0454

5645ch09.qxd 3/3/06 12:33 PM Page 454

public class SortByOrderID<T> : IComparer<T> where T: Order

{

int IComparer<T>.Compare(T x,T y)

{ return x.OrderID.CompareTo(y.OrderID);}

}

public class SortByInstrument<T> : IComparer<T> where T : Order

{

int IComparer<T>.Compare(T x, T y)

{ return x.Instrument.CompareTo(y.Instrument);}

}

public class OrderContainer<T>

{

//Customize the Sorting behavior using the generic method

public void SortOrder<U>(U orderComparer) where U:IComparer<Order>

{

//....

}

}

In Listing 9-3, we presented multiple ways to sort a list of orders, either by instrument name or
by order ID. SortByOrderID<T> and SortByInstrument<T> provide this functionality. To integrate this
sort feature with OrderContainer<T>, we defined a generic method, SortOrder<U>, that is declared
with type parameters and constrained to be compatible with the IComparer<Order> type. This generic
method is then used to sort orders, as described in the following code example:

class GenericSortMethod

{

static void Main(string[] args)

{

OrderContainer<Order> container = new OrderContainer<Order>();

//Sort By Instrument

SortByInstrument<Order> sortInst = new SortByInstrument<Order>();

container.SortOrder<SortByInstrument<Order>>(sortInst);

//Sort By Order ID

SortByOrderID<Order> sortID = new SortByOrderID<Order>();

container.SortOrder<SortByOrderID<Order>>(sortID);

}

}

The discussion on generics would be incomplete without talking about generic delegates.
You know delegates are managed function pointers and are used extensively in implementing event
notification features. A generic delegate shares the same spirit of a conventional delegate but proves
extremely useful in building generic event handling. For example, using a generic delegate, you can
build a generic event notification feature in the order container code that is capable of providing
a strongly typed item to its subscriber:

using System;

using System.Collections.Generic;

using System.Text;

public class Order

{}

CHAPTER 9 ■ .NET 2.0 455

5645ch09.qxd 3/3/06 12:33 PM Page 455

public class DayOrder

{}

public class OrderContainer<T>

{

//Generic Delegate Declaration

public delegate void InsertOrderDelegate<U>(U orderComparer);

public event InsertOrderDelegate<T> OrderInsert;

public void Add(T order)

{

//Notify Consumer of this event

if (OrderInsert != null)

{

OrderInsert(order);

}

}

}

class GenericDelegate

{

static void Main(string[] args)

{

OrderContainer<Order> orderCont= new OrderContainer<Order>();

orderCont.OrderInsert += new

OrderContainer<Order>.InsertOrderDelegate<Order>

(orderCont_OrderInsert);

OrderContainer<DayOrder> dayorderCont = new

OrderContainer<DayOrder>();

dayorderCont.OrderInsert += new

OrderContainer<DayOrder>.InsertOrderDelegate<DayOrder>

(dayorderCont_OrderInsert);

}

//Event notification for day orders

static void dayorderCont_OrderInsert(DayOrder orderComparer)

{

}

//Event notification for regular orders

static void orderCont_OrderInsert(Order orderComparer)

{

}

}

Generic Collections
Collections in .NET are the most commonly used types to store in-memory items. As highlighted in
Chapter 2, you know that there are various flavors of collections, and their characteristics are deter-
mined based on how individual items are stored and searched. Considering that data structures are
the most basic necessity, Microsoft released a new generic version of collection classes. This generic
version resides side by side with its nongeneric counterpart but is grouped in a different namespace.
The generic collection classes are defined in the System.Collections.Generic namespace. This includes

CHAPTER 9 ■ .NET 2.0456

5645ch09.qxd 3/3/06 12:33 PM Page 456

most of the familiar data structures such as implementing queues, stacks, dictionaries, and lists.
The primary benefit of using generic collections is it brings strong typing, which was badly required
in the pregeneric days:

using System;

using System.Collections.Generic;

using System.Text;

public class Order

{}

class GenericCollections

{

static void Main(string[] args)

{

//Generic Queue

Queue<Order> orderQueue = new Queue<Order>();

//Generic Stack

Stack<Order> orderStack = new Stack<Order>();

//Generic List

List<Order> orderList = new List<Order>();

//Generic Hashtable

Dictionary<string, Order> orderHashTable = new

Dictionary<string, Order>();

//Generic SortedList

SortedDictionary<string, Order> orderSortDict = new

SortedDictionary<string, Order>();

//Generic LinkedList

LinkedList<Order> linkList = new LinkedList<Order>();

}

}

Anonymous Methods
Anonymous methods aim to reduce the amount of code developers have to write to implement
event handlers or callbacks that are invoked through a delegate. This is a kind of code-inflator trick
employed by compilers to bring higher productivity to a developer’s desk. Anonymous methods
allow for the inline recruitment of code associated with a delegate, which is in direct contrast to the
conventional approach where a new instance of a delegate and a separate method handler are required.
For example, the following code is a conventional approach for offloading processing tasks using
a CLR thread-pool implementation:

using System;

using System.Text;

using System.Threading;

public class Order

{

public string OrderId;

}

CHAPTER 9 ■ .NET 2.0 457

5645ch09.qxd 3/3/06 12:33 PM Page 457

class NonAnonymousMethods

{

static void Main(string[] args)

{

//Create a new Order

Order newOrder = new Order();

newOrder.OrderId = "1";

ThreadPool.QueueUserWorkItem(new

WaitCallback(ProcessOrders),newOrder);

Console.ReadLine();

}

public static void ProcessOrders(object state)

{

Order curOrder = state as Order;

Console.WriteLine("Processing Order : " + curOrder.OrderId);

}

}

Using anonymous methods, Listing 9-4 appears in its condensed form, which is succinct when
compared to its conventional approach.

Listing 9-4. Anonymous Methods

using System;

using System.Text;

using System.Threading;

public class Order

{

public string OrderId;

}

class AnonymousMethods

{

static void Main(string[] args)

{

//Create a new Order

Order newOrder = new Order();

newOrder.OrderId = "1";

//Process this newly created order using ThreadPool

ThreadPool.QueueUserWorkItem

(delegate(object state)

{

Order curOrder = state as Order;

Console.WriteLine("Processing Order : " +curOrder.OrderId);

},newOrder

);

Console.ReadLine();

}

}

The code declaration of an anonymous method begins with the delegate keyword and an optional
parameter list. As you will notice, the actual method body is enclosed inside { and } delimiters, which

CHAPTER 9 ■ .NET 2.0458

5645ch09.qxd 3/3/06 12:33 PM Page 458

are also known as an anonymous method block. Code inside this block can declare variables similar
to local variables defined in the conventional method; the only twist is that the lifetime of such vari-
ables is limited to the execution of the anonymous method. Additionally, the code block can also
reference outer variables that are defined at the class level.

In Listing 9-4, we demonstrated how to create an anonymous method, and it can be used
wherever a delegate is expected. Even though it enjoys most of the benefits of the conventional
method, certain things are not permitted inside anonymous method blocks. One of a developer’s
favorite features is .NET attributes, and sadly it is not possible to annotate attributes over an anony-
mous method. Furthermore, an anonymous method cannot reference ref or out parameters except
those specified in an anonymous method signature. It is also not possible for an anonymous method
block to contain an unsafe/goto/break/continue statement. Despite such restrictions, you will find
the anonymous method to be useful in your day-to-day development.

Iterators
Iterators in C# provide a uniform way to iterate over various types of data structures using the
foreach keyword. They achieve this kind of standardization using the IEnumerable and IEnumerator
interfaces. These interfaces need to be implemented by a class in order to support the foreach itera-
tion. Although the implementation looks straightforward, to support a simple iteration, quite a large
amount of code needs to be written. Moreover, the development effort keeps on mounting with the
addition of iteration flavors such as top-to-bottom traversal and bottom-to-top traversal. To simplify
this task, C# 2.0 introduced iterators in which most of the work is lifted by compilers. Using this new
construct, there is no need to provide implementation for the entire IEnumerable interface; instead,
what is required is an iterator statement block, as shown in Listing 9-5.

Listing 9-5. Iterators

using System;

using System.Collections.Generic;

using System.Text;

public class Order {}

public class OrderContainer<T>

{

List<T> orderList = new List<T>();

//Default foreach Implementation

public IEnumerator<T> GetEnumerator()

{

for (int ctr = 0; ctr < orderList.Count; ctr++)

{

yield return orderList[ctr];

}

}

//Best Five Orders

public IEnumerable<T> BestFive()

{

for (int ctr= 0; ctr < orderList.Count; ctr++)

{

if (ctr > 4)

//Stop Iteration Phase

yield break;

CHAPTER 9 ■ .NET 2.0 459

5645ch09.qxd 3/3/06 12:33 PM Page 459

yield return orderList[ctr];

}

}

//Iteration of only limit orders

public IEnumerable<T> LimitOrders()

{

for (int ctr = 0; ctr < orderList.Count; ctr++)

{

//Check for limit order, and return

yield return orderList[ctr];

}

}

}

class Iterators

{

static void Main(string[] args)

{

OrderContainer<Order> orderContainer = new OrderContainer<Order>();

//Iterate all orders

foreach (Order curOrder in orderContainer)

{}

//Iterate Best Five

foreach (Order curOrder in orderContainer.BestFive())

{}

//Iterate limit order

foreach (Order curOrder in orderContainer.LimitOrders())

{}

}

}

In Listing 9-5, the iterator statement block is identified by the presence of yield statements
enclosed inside a method, and its return type is either IEnumerator<T> or IEnumerable<T>. It is com-
posed of two types of statement: yield return and yield break. The yield return indicates the
beginning of the iteration phase and dictates the iteration behavior by producing the next value in
the iteration. Similarly, yield break indicates the completion of the iteration phase. Based on this
keyword, the C# compiler under the hood generates classes (also known as compiler-generated
classes and hidden from developers) that maintain navigation information about the individual
iterator. As a result, you can have multiple iterators defined inside a class, and each of these individ-
ual iterators can slice and dice data from a different perspective.

Partial Types
Partial types enable the spanning of source code into multiple files. To be precise, they allow the
definition of a class, a structure, or an interface to split across multiple files that are later combined
as one large chunk of source code by the compilers. At a surface level, you may fail to recognize
the advantage of a code split, but if you flash back to Chapter 8 where we mentioned the different
types of code generators and their implementation tactics, then partial types prove to be a perfect
fit. For example, we discussed how the VS .NET Windows Form Designer automates the task of UI
development by autogenerating most of the code. The code generated by the designer resides side
by side with the user code and is differentiated by logically grouping it inside the Windows Form Designer

CHAPTER 9 ■ .NET 2.0460

5645ch09.qxd 3/3/06 12:33 PM Page 460

generated code region. However, using partial types, both the designer code and the user code are
now separated into two files. The advantage of such separation brings a tremendous amount of flex-
ibility to augment both the designer and user code.

A partial type is identified by the presence of the partial keyword, which appears immediately
before the class, struct, or interface keywords. For example, the following code illustrates a strategy
class that is separated into two parts. The first part represents code generated by a trading strategy tool,
and the second part represents code defined by traders:

//In the real world this class is generated by tool

public partial class TradingStrategy

{

public void InitializeStrategy()

{}

}

//In the real world this class is defined by traders

public partial class TradingStrategy

{

public void CalculateRisk()

{}

}

class PartialTypes

{

static void Main(string[] args)

{

TradingStrategy tradStrat = new TradingStrategy();

}

}

The benefit of using a partial type is twofold. First, it proves to be extremely useful in the auto-
matic code generation world where the majority of the code is generated by tools, and it provides an
intelligent approach of keeping system-generated code separate from user code and finally merging
them during the compilation stage. Second, it helps to further strengthen day-to-day version-control
activities. A large class can be easily shared with a group of developers by branching it into multiple
files; this allows them to work on it independently.

Nullable Types
In the computer programming world, the value null has always played a special role in defining
a state that is either unacceptable or unknown. For example, instances of reference types in .NET
are by default initialized to the null value to indicate that the instance is in an undefined state and
that attempting to perform any kind of operation on it will result in an exception. Similarly, you will
also find support for nullability in the relational database world, which denotes a column value and
is used to convey data that is either unknown or undefined. Over the years, null values have stretched
their wings in many other computing disciplines, but when it comes to the .NET value type, it seri-
ously lacks support for it. It is not possible to assign null values to value types; this leads to a serious
problem, particularly when data fetched from a database is mapped to the appropriate .NET value
type. This limitation of the value type was carefully given thought, and as a result nullable types were
introduced.

Nullable types provide the ability to store null values to value types. Additionally, this feature is
standardized and integrated as part of the language framework. A nullable type is a generic structure
and is represented by Nullable<T>. The internal implementation of Nullable<T> is composed of a value
type that is passed as a generic type argument and, more important, a flag variable that is a null

indicator. While it is true that to define a nullable value type you need to instantiate a new instance

CHAPTER 9 ■ .NET 2.0 461

5645ch09.qxd 3/3/06 12:33 PM Page 461

of Nullable<T>, different code syntax is available to achieve the same task. The new syntax allows
constructing nullable types simply by appending a question mark after the name of a value type.
For example, int? is the nullable representation of the int data type. In the following code, we
demonstrate how to use the nullable type by assigning the null value to the Quantity and Price
fields of the Order class:

using System;

public class Order

{

public string Instrument;

//Nullable Value type, null is assigned as default value

public int? Quantity = null;

public double? Price = null;

}

class NullableTypes

{

static void Main(string[] args)

{

Order newOrder = new Order();

//This will return true because quantity value is null

Console.WriteLine("Is Quantity Null : " + (newOrder.Quantity == null));

//Null coalescing operator

//If quantity value is null, then by default assign value 10

newOrder.Quantity = newOrder.Quantity ?? 10;

Console.WriteLine("Quantity : " +newOrder.Quantity);

//Addition operator

newOrder.Quantity = newOrder.Quantity + 5;

Console.WriteLine("Quantity : " + newOrder.Quantity);

}

}

Counting Semaphore
The counting semaphore is a new addition to the existing list of managed synchronization objects
and is represented by System.Threading.Semaphore. It defines a threshold value on the number of
times a shared resource can be accessed. This resource-counting mechanism proves extremely
useful in multithreaded applications where a limit can be set on the number of threads allowed to
access a particular resource. Threads use the semaphore to create a pool of tokens that is issued
each time a thread enters the semaphore and is recycled back to the pool when the thread leaves
the semaphore. In the case of the unavailability of tokens, the thread requesting it is blocked until
other threads release the token back to the pool. Even though semaphores are similar to mutexes
and monitors, when it comes to ensuring the synchronization of shared resources, semaphores are
one step ahead; they enable the metering of shared resources. Additionally, mutexes and monitors
are meant to grant exclusive access on shared resources to only one thread at a time, which is in
contrast to semaphores, which grant access to multiple threads on shared resources. Listing 9-6
shows an example:

CHAPTER 9 ■ .NET 2.0462

5645ch09.qxd 3/3/06 12:33 PM Page 462

Listing 9-6. Semaphore

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

class Order

{}

class SemaphoreLock

{

static Semaphore orderSemaphore;

static void Main(string[] args)

{

ManualResetEvent waitEvent = new ManualResetEvent(false);

int initialTokens = 3;

int maxTokens = 3;

//Assume some sort of order container that stores the order

List<Order> orderContainer = new List<Order>();

//Create a new semaphore, which at any time allows

//only three concurrent threads to access the order container

//and process an individual order

//The first parameter represents initial tokens available in the pool

//and the last parameter represents the maximum available tokens

orderSemaphore = new Semaphore(initialTokens, maxTokens);

for (int ctr = 0; ctr <= 10; ctr++)

{

ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessOrders),ctr);

}

//Prevent program from exiting

waitEvent.WaitOne();

}

public static void ProcessOrders(object state)

{

//Acquire the Semaphore lock

//If lock is successfully acquired then semaphore count is decremented

orderSemaphore.WaitOne();

//insert order into order book

Console.WriteLine("Order Processed : " +state);

Console.WriteLine("Press any key to Continue");

Console.ReadLine();

//Release the lock, which will increment the semaphore count

orderSemaphore.Release();

}

}

In Listing 9-6, notice how you can limit the number of threads that can access the order book con-
currently. You created a semaphore that can handle up to three concurrent requests, with an initial
count of three so it is immediately available on the pool. To process individual orders, you use worker
threads from the thread pool. A thread enters the semaphore by calling the WaitOne method and, after
inserting the order into the order book, releases the semaphore by calling the Release method.

CHAPTER 9 ■ .NET 2.0 463

5645ch09.qxd 3/3/06 12:33 PM Page 463

Memory Gate
The memory gate functions as a checkpoint in managed code and is used to ensure the availability
of sufficient memory before initiating any kind of memory-intensive operation. Although the
CLR is responsible for managing memory, sometimes it fails to satisfy memory requests issued by
an application. On such occasions, the failure result is notified to the application in the form of
OutOfMemoryException. This exception signifies that a disaster has already taken place, and most
of the times the application lands in an inconsistent state that is hard to recover from. Using the
memory gate, it is possible to minimize such incidents by doing upfront estimation of the memory
required, and if the specified amount of memory is not available, then it is notified in the form of
InsufficientMemoryException. Here’s an example:

using System;

using System.Runtime;

namespace MemoryGate

{

class Program

{

static void Main(string[] args)

{

//Check whether application can allocate 20MB of

//memory to perform file copy operation

using (new MemoryFailPoint(20))

{

//Perform File Copy Operation

}

}

}

}

Garbage Collector
The .NET Framework provides an end-to-end platform to build both client-side and server-side
applications. Client-side applications are generally GUI driven and intended to run on the desktop.
Server-side applications are computational intensive and usually require high-end servers. The per-
formance need of the client and server applications are different, so the CLR ships with two flavors
of the garbage collector: Workstation GC and Server GC. Workstation GC is the default collector
used by managed code. It is highly optimized for GUI-based applications to provide greater user
responsiveness. On the other hand, Server GC is optimized for multiprocessor machines and highly
suitable for server-side applications that need high throughput.

Both these GCs undertake a different strategy when it comes to the garbage collection process.
Workstation GC creates a single managed heap and a dedicated thread to perform garbage collec-
tion regardless of the number of processors available in the machine. This is in contrast to Server
GC where the number of managed heaps and threads created is equal to the number of processors
installed in the machine. This setup definitely boosts the performance because garbage collection
takes place in parallel on all available CPUs. Server GC is highly recommended for mission-critical
applications, and with the advent of .NET 2.0, it can be easily enabled by adding a new <gcServer>
element in an application configuration file:

<configuration>

<runtime>

<!-- Server GC Enabled -->

<gcServer enabled="true"/>

CHAPTER 9 ■ .NET 2.0464

5645ch09.qxd 3/3/06 12:33 PM Page 464

</runtime>

</configuration>

A new helper class, GCSettings, introduced in the .NET 2.0 specifies the garbage collection
settings. With the help of this class, you can find out the type of garbage collection used by the
currently running process:

using System;

using System.Runtime;

namespace GCConfig

{

class Program

{

static void Main(string[] args)

{

if (GCSettings.IsServerGC == true)

Console.WriteLine("Server GC enabled");

else

Console.WriteLine("Workstation GC enabled");

}

}

}

SGen
To boost the start-up performance of XMLSerializer, .NET 2.0 toolkits are packaged with a new tool
known as SGen. You learned in Chapter 3 about the capability of XMLSerializer to serialize and
deserialize objects into and from XML documents. In addition, you also understand its implemen-
tation technique that under the hood applies the code-generation technique to emit serialization
and deserialization code. The code generated is then compiled into an assembly and loaded into
the currently running process. That is the reason you always notice a delay when a new instance of
XMLSerializer is created. The magnitude of this delay depends upon the depth of the object graph.

To cut down on this start-up delay, SGen creates XML serialization and deserialization code in
advance. It generates an XML serialization assembly that is then referenced by applications. The
immediate advantage of statically linking serialization logic at compile time is that there is no code-
generation activity involved at runtime; this drastically reduces the application start-up cost. But it
doesn’t mean this approach is free of any side effects. You lose the flexibility offered by dynamic code
generation, particularly any kind of modification; for example, adding or removing the property/
field at the class level now requires a recompilation to keep the serialization assembly synchronized
with the XML serializable type. However, this additional step is amortized over the cost of generating
serialization code for a large number classes at runtime that is bit expensive.

SGen is a command-line tool that accepts the name of the assembly for which the serialization
and deserialization code is generated. By default, it generates the serialization code for all the classes
defined in the assembly, but using the /type switch, it is possible to generate serialization code for
only a particular class.

Assume the following code is compiled in the form of an executable assembly and is named
PreGenXMLSerializer.exe:

using System;

using System.Collections.Generic;

using System.Text;

CHAPTER 9 ■ .NET 2.0 465

5645ch09.qxd 3/3/06 12:33 PM Page 465

namespace PreGenXMLSerializer

{

public class Order

{

public string OrderID;

public int Quantity;

public double Price;

}

class Program

{

static void Main(string[] args)

{

}

}

}

To generate an XML serialization assembly, the following is the command to be executed in the
VS .NET 2005 command prompt window:

sgen /assembly:pregenxmlserializer.exe /type:Order

The output of the tool is a set of classes persisted in the PreGenXMLSerializer.XmlSerializers.
dll assembly that can be referenced from code that needs to serialize or deserialize the Order type.
The following code bypasses the conventional XML serialization path and uses the pregenerated
assembly to serialize and deserialize an instance of the Order type:

using System;

using System.Collections.Generic;

using System.Text;

using System.Xml;

using System.IO;

//Include namespace from the PreGenXMLSerializer.XMLSerializers assembly

using Microsoft.Xml.Serialization.GeneratedAssembly;

namespace PreGenXMLSerializer

{

public class Order

{

public string OrderID;

public int Quantity;

public double Price;

}

class Program

{

static void Main(string[] args)

{

Order dayOrder = new Order();

dayOrder.OrderID = "1";

dayOrder.Quantity = 50;

dayOrder.Price = 25;

//Serialize Order using pregenerated serializers

OrderSerializer orderSzer = new OrderSerializer();

XmlTextWriter txtWriter = new XmlTextWriter(

new StreamWriter(@"C:\Order.xml"));

CHAPTER 9 ■ .NET 2.0466

5645ch09.qxd 3/3/06 12:33 PM Page 466

orderSzer.Serialize(txtWriter, dayOrder);

txtWriter.Close();

//Deserialize Order using pregenerated deserializers

XmlTextReader txtReader = new XmlTextReader(

new StreamReader(@"C:\Order.xml"));

Order newOrder = orderSzer.Deserialize(txtReader) as Order;

Console.WriteLine(newOrder.OrderID);

}

}

}

Data Compression
In building networked applications, an important goal followed by developers is to ensure the efficient
utilization of network bandwidth. The success of a networked application depends upon various
factors; one of them is to apply a data compression technique to save network bandwidth, resulting
in the much faster transmission of data. Additionally, you can also apply a compression technique
to condense log files generated by the application. Nowadays, it is mandatory for an organization to
maintain an archive of application log files that is subject to a periodic internal audit check. In such
scenarios it is sensible to preserve the files in their compressed formats instead of their original for-
mats, which translates into a huge savings of disk space.

.NET 2.0 introduces a new System.IO.Compression namespace that provides exactly what you
need to do so. It provides basic compression and decompression services out of the box. The two
most important classes defined in this namespace are DeflateStream and GZipStream. DeflateStream
represents the industry-standard Deflate algorithm. GZipStream is a wrapper around the DeflateStream
class and defines additional meta-information around compressed data.

Here’s the code that demonstrates the compression and decompression of in-memory data:

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.IO.Compression;

namespace IOCompression

{

class Program

{

static void Main(string[] args)

{

MemoryStream memStream = new MemoryStream();

string orderXml =

"<Order><OrderID>1</OrderID><Quantity>50</Quantity>"

+"<Price>25</Price></Order>";

byte[] data = Encoding.UTF8.GetBytes(orderXml);

//Data Compression

DeflateStream compressedStream =

new DeflateStream(memStream , CompressionMode.Compress,true);

compressedStream.Write(data, 0, data.Length);

compressedStream.Close();

//Reset seek pointer that is mandatory in order to decompress data

memStream.Position = 0;

CHAPTER 9 ■ .NET 2.0 467

5645ch09.qxd 3/3/06 12:33 PM Page 467

//Data Decompression

DeflateStream decompressedStream =

new DeflateStream(memStream, CompressionMode.Decompress);

byte[] decompBuffer = new byte[memStream.Length];

decompressedStream.Read(decompBuffer, 0, decompBuffer.Length);

string orgData = Encoding.UTF8.GetString(decompBuffer);

Console.WriteLine("Decompressed Data : " + orgData);

}

}

}

Network Information
.NET 1.1 had no easy way to gather information about the network traffic status at runtime. Developers
often would resort to P/Invoke or use the Windows Management Instrumentation (WMI) API to
incorporate this feature, resulting in an increase in the developer’s learning curve. But with .NET 2.0,
this has changed. A new namespace, System.Net.NetworkInformation, is dedicated solely to pro-
viding network-related information. It contains classes that enable querying information on almost
all layers of the TCP/IP core stack. In addition to gathering information about network traffic status,
it also provides the ability to query information about the underlying network adapter and allows
you to conduct standard tests for network connectivity. This offers a great advantage in the .NET
world, and taking into account the breadth and depth of individual classes defined in this namespace,
it is possible to develop a managed version of a commonly used network utility such as ping.exe,
ipconfig.exe, or netstat.exe. Furthermore, developers can tune their applications to sense network
behavior and accordingly react to it. For example, in distributed applications, there is often a need
to detect a disconnected network cable and accordingly preserve any further changes performed by
a user into the local database. Such kind of intelligence makes an application more reliable and
increases user confidence.

We will now explore some of the important classes available in the System.Net.NetworkInformation
namespace. We begin with some first trivial code that more or less covers the features of the netstat.
exe utility. You can use this utility to find out the following information:

• Active TCP connections, which includes the IP address and port number of the local and
foreign host

• A list of TCP and UDP connections configured in listening mode

• Statistical information about TCP, UDP, and IP

Here’s an example:

using System;

using System.Net;

using System.Net.NetworkInformation;

namespace NetStat

{

class Program

{

static void Main(string[] args)

{

IPGlobalProperties properties = IPGlobalProperties.GetIPGlobalProperties();

Console.WriteLine("Domain Name : " + properties.DomainName);

Console.WriteLine("Host Name : " + properties.HostName);

CHAPTER 9 ■ .NET 2.0468

5645ch09.qxd 3/3/06 12:33 PM Page 468

//Get Active TCP Connections

TcpConnectionInformation[] connections =

properties.GetActiveTcpConnections();

//Get Active TCP Listener

IPEndPoint[] endPointsTCP= properties.GetActiveTcpListeners();

//Get Active UDP Listener

IPEndPoint[] endPointsUDP = properties.GetActiveUdpListeners();

//Get IP statistics information

IPGlobalStatistics ipstat = properties.GetIPv4GlobalStatistics();

//Get TCP statistical information

TcpStatistics tcpstat = properties.GetTcpIPv4Statistics();

//Get UDP statistical information

UdpStatistics udpStat = properties.GetUdpIPv4Statistics();

}

}

}

The next step in the network data collection phase is to interact with the underlying network
adapter and retrieve interface-level information such as the physical address, the operational status
of the individual interface, the data transfer speed supported by the interface, and the logical IP address:

using System;

using System.Collections.Generic;

using System.Text;

using System.Net.NetworkInformation;

namespace NetAdapterStat

{

class Program

{

static void Main(string[] args)

{

NetworkInterface[] nics = NetworkInterface.GetAllNetworkInterfaces();

foreach (NetworkInterface adapter in nics)

{

Console.WriteLine("Adapter Name : " +adapter.Name);

Console.WriteLine("Physical Address : "

+ adapter.GetPhysicalAddress().ToString());

Console.WriteLine("Data Transfer Speed :"

+ adapter.Speed +" bits per second ") ;

Console.WriteLine("Operational Status :"

+ adapter.OperationalStatus);

Console.WriteLine("");

}

}

}

}

CHAPTER 9 ■ .NET 2.0 469

5645ch09.qxd 3/3/06 12:33 PM Page 469

Up until now we have demonstrated features that focused on gathering statistical data infor-
mation about a network and its underlying transport. But the next topic we will discuss will prove
extremely useful in detecting network-related changes. In other words, a managed application can
incorporate a network detector that will sense the underlying network and raise notification when
the IP address or network adapter changes:

using System;

using System.Collections.Generic;

using System.Text;

using System.Net.NetworkInformation;

namespace NetDetector

{

class Program

{

static void Main(string[] args)

{

//This event is raised when IP address of network is changed

NetworkChange.NetworkAddressChanged += NetworkChange_NetworkAddressChanged;

//This event is raised when network availability is changed

//For example, the application will be able to get notification about the

//network

//cable disconnect by subscribing to this event

NetworkChange.NetworkAvailabilityChanged +=

NetworkChange_NetworkAvailabilityChanged;

Console.ReadLine();

}

static void NetworkChange_NetworkAvailabilityChanged(object sender,

NetworkAvailabilityEventArgs e)

{

Console.WriteLine("Network Disconnected");

}

static void NetworkChange_NetworkAddressChanged(object sender, EventArgs e)

{

Console.WriteLine("IP Address Changed");

}

}

}

Another important class that brings tremendous value to the developer’s desk is Ping. This
class is a programmatic representation of the ping.exe command-line tool. ping.exe is one of the
most well-known network troubleshooting tools and is primarily used to conduct machine reacha-
bility tests. Additionally, it also enables you to perform various kinds of network diagnostic checks,
such as tracking the number of intermediate hops between the source and destination hosts and
measuring the total round-trip time. The benefit offered by ping.exe is tremendous, and there is
definitely a need for it in the managed programming world. The Ping class brings the same benefit
and features; applications can directly integrate it in their code to perform various kinds of network
diagnostic checks.

Using Ping, applications can implement a heartbeat between machines. It is also possible for
applications to determine the network round-trip time or the underlying network speed and accord-
ingly tune their communication strategies. For example, a distributed application, before establishing
communication with the server, can initiate a ping request to collect the round-trip time and
underlying network capacity. If the results of the round-trip time or network bandwidth are poor,
then the application can apply a data compression scheme to reduce the size of the data. For example:

CHAPTER 9 ■ .NET 2.0470

5645ch09.qxd 3/3/06 12:33 PM Page 470

using System;

using System.Collections.Generic;

using System.Text;

using System.Net.NetworkInformation;

namespace NetPing

{

class Program

{

static void Main(string[] args)

{

Ping pingSender = new Ping();

//Ping Apress Web site with timeout of 1 seconds (1,000 milliseconds)

//The result of ping is stored in instance of PingReply

PingReply reply = pingSender.Send("www.apress.com",1000);

//Analyze the result

if (reply.Status == IPStatus.Success)

{

Console.WriteLine("Roundtrip Time : " + reply.RoundtripTime);

}

}

}

}

The outcome of the ping request is checked with the help of the Status property defined in
Ping. Also keep in mind that because of security risks, most organizations configure their firewalls
or proxy servers to reject ICMP requests. In such situations, the ping request will definitely fail, so it
is always advisable to check the network environment before utilizing this class.

Remoting
The remoting framework in .NET 2.0 bundles a new communication channel, IpcChannel, which is
specifically targeted for remoting between application domains on the same computer. This new
channel is defined under the System.Runtime.Remoting.Channels.Ipc namespace. The primary
motive behind the design of this channel is to increase interprocess communication performance
on the same machine. Before IpcChannel, the highly recommended way is to follow the TCP channel
route. The problem with the TCP channel is regardless of where the data is destined, it will always
be processed by an individual layer of the TCP/IP core stack. So even though both the sending and
receiving applications are hosted on the same machines, the individual messages exchanged by them
will always incur additional TCP/IP overhead. The IPC channel addresses this problem by providing
a communication pipe that is free from any kind of network overhead, and it internally uses the
IPC system of the Windows operating system to enable the faster exchange of messages.

It is now possible for back-office applications to use the IPC channel to implement a market
information cache server. Usually, back-office GUI applications involve quite a large amount of data-
entry activity; to speed up the task, users are provided with a selection list such as combo boxes, grids,
or list boxes populated with information retrieved from the database or middle-tier components.
The information populated is huge in number, and usually they are cached during the application
start-up phase. But as soon as the user exits from the GUI application, the cached information is lost,
and it needs to be repopulated again, which increases the application loading time. By implementing
the information cache server that is running as a separate process, the overall performance of the

CHAPTER 9 ■ .NET 2.0 471

5645ch09.qxd 3/3/06 12:33 PM Page 471

GUI application increases tremendously because the information is locally cached by the server
and the GUI application retrieves it using the IPC channel.

We will now demonstrate the full-fledged remoting code that is based on the market information
example and that uses the IPC channel.

Shared Assembly
The following is the shared assembly referenced by the market information cache server and back-
office applications:

using System;

using System.Data;

using System.Collections.Generic;

using System.Text;

namespace Common

{

public interface ICacheInfo

{

DataSet RetrieveCache();

}

}

Implementation of Market Info Cache Server
The following is the code implementation of the market information cache server:

using System;

using System.Data;

using System.Collections.Generic;

using System.Text;

using Common;

namespace MktInfoCacheServer

{

public class MktInfoCacheImpl : MarshalByRefObject, ICacheInfo

{

public DataSet RetrieveCache()

{

Console.WriteLine("Request Received...");

return null;

}

}

}

Remoting Configuration of Market Info Cache Server
The following is the remoting configuration of the market information cache server:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall"

CHAPTER 9 ■ .NET 2.0472

5645ch09.qxd 3/3/06 12:33 PM Page 472

type="MktInfoCacheServer.MktInfoCacheImpl, MktInfoCacheServer"

objectUri="MktInfoCacheImpl.rem" />

</service>

<channels>

<channel ref="ipc" portName="InfoCacheServer" />

</channels>

</application>

</system.runtime.remoting>

</configuration>

Market Info Cache Server Host
The following code is the host market information cache server:

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Ipc;

namespace MktInfoCacheServer

{

class Program

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(@"MktInfoCacheServer.exe.config");

Console.WriteLine("Market Information Cache Server started.. ");

Console.WriteLine("Press enter to exit.");

Console.ReadLine();

}

}

}

Market Info Cache Client (Back-Office Applications)
The following code connects to the market information cache server and retrieves the cached
information:

using System;

using System.Data;

using System.Collections.Generic;

using System.Text;

using Common;

namespace InfoCacheClient

{

class Program

{

static void Main(string[] args)

{

//Retrieve Cached object from the market information cache server

//which is locally hosted

ICacheInfo remoteCache = (ICacheInfo)Activator.GetObject(typeof(ICacheInfo),

"ipc://InfoCacheServer/MktInfoCacheImpl.rem");

CHAPTER 9 ■ .NET 2.0 473

5645ch09.qxd 3/3/06 12:33 PM Page 473

DataSet cacheObj = remoteCache.RetrieveCache();

Console.WriteLine("Information Successfully Retrieved...");

Console.ReadLine();

}

}

}

Remoting and Generics
The remoting framework respects and recognizes generics and provides the necessary infrastructure
to allow developers to define generic-aware remote classes. The only prerequisite of generic-aware
remote classes is that the generic type parameters declared inside either must be a serializable type
or must be derived from MarshalByRefObject. To learn how generics can be applied in remoting
applications, consider a remote order container that allows you to store and retrieve the order of any
data type. This example is similar to one discussed in the “Generics” section of this chapter, but in
this case the order container is instantiated and updated on a remote machine.

Shared Assembly
The following is the shared assembly:

using System;

using System.Collections.Generic;

using System.Text;

namespace GenericsShared

{

[Serializable]

public class Order

{}

[Serializable]

public struct LimitOrder

{}

public interface IRemoteContainer<T>

{

void Add(T item);

T this[string id] { get;}

}

}

Generic-Aware Remote Order Container
The following is the generic-aware remote order container:

using System;

using System.Collections.Generic;

using System.Text;

using GenericsShared;

namespace RemoteServer

{

public class RemoteOrderContainer<T> : MarshalByRefObject,IRemoteContainer<T>

{

//Add a new item

CHAPTER 9 ■ .NET 2.0474

5645ch09.qxd 3/3/06 12:33 PM Page 474

public void Add(T newOrder)

{

Console.WriteLine("Order of Type " +newOrder.ToString() +" Added");

}

//Retrieve a specific item

public T this[string orderId]

{

get { return default(T); }

}

}

}

Remoting Configuration of Remote Order Container
The following is the remote configuration of the remote order container:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall" type="RemoteServer.RemoteOrderContainer`1

[[GenericsShared.Order,GenericsShared]], RemoteServer"

objectUri="OrderContainer.rem" />

<wellknown mode="SingleCall" type="RemoteServer.RemoteOrderContainer`1

[[GenericsShared.LimitOrder,GenericsShared]], RemoteServer"

objectUri="LimitOrderContainer.rem" />

</service>

<channels>

<channel ref="tcp" port="17000">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Low" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

Client Instantiating Remote Generic Type
The following is the client that is instantiating the remote generic type:

using System;

using System.Collections.Generic;

using System.Text;

using GenericsShared;

namespace RemoteClient

{

class Program

{

static void Main(string[] args)

{

//Instantiating remote container that allows only regular order

IRemoteContainer<Order> ordCont =

CHAPTER 9 ■ .NET 2.0 475

5645ch09.qxd 3/3/06 12:33 PM Page 475

Activator.GetObject(typeof(IRemoteContainer<Order>),

"tcp://localhost:17000/OrderContainer.rem") as IRemoteContainer<Order>;

Order newOrder = new Order();

ordCont.Add(newOrder);

//Instantiating remote container that allows only limit order

IRemoteContainer<LimitOrder> limitOrdCont =

Activator.GetObject(typeof(IRemoteContainer<LimitOrder>),

"tcp://localhost:17000/LimitOrderContainer.rem") as

IRemoteContainer<LimitOrder>;

LimitOrder newLimit= new LimitOrder();

limitOrdCont.Add(newLimit);

Console.ReadLine();

}

}

}

Summary
In this chapter, we provided an overview of some important features introduced by .NET 2.0. But
you will find a treasure of other exciting new features added in ADO.NET, Windows Forms, and
ASP.NET that we didn’t discussed. .NET 2.0 makes the development task much simpler and promises
some major improvements in the overall performance of managed applications. There is no doubt
that .NET 2.0 is going to be the future, and Microsoft has given you an easy migration path by pro-
viding backward compatibility with applications designed on the .NET 1.x Framework.

CHAPTER 9 ■ .NET 2.0476

5645ch09.qxd 3/3/06 12:33 PM Page 476

A P P E N D I X A

■ ■ ■

.NET Tools

The following are .NET tools you may find useful.

Reflect Assemblies Using .NET Reflector http://www.aisto.com/roeder/dotnet/

.NET Reflector is an extremely valuable tool that allows you to examine various classes and
methods defined in .NET assemblies. The real strength of this tool resides in the automatic decom-
pilation of IL code into C# or VB .NET code.

Export Reverse-Engineered Source Code to a File Using Reflector.FileDisassembler
http://www.denisbauer.com/NETTools/FileDisassembler.aspx

Reflector.FileDisassembler is an add-on extension to .NET Reflector and is used to export the
content of a .NET assembly (binary form) into C# or VB .NET files.

Perform Code Obfuscation Using Dotfuscator http://www.gotdotnet.com/team/dotfuscator/

Code obfuscation is a technique applied to MSIL binaries to make the reverse-engineering task
extremely difficult. .NET assemblies are rich in metadata and contain information that can be easily
deciphered using various kinds of reflection tools, such as ILDASM. .NET Reflector is one of them.
Using these kinds of tools, anyone can reverse engineer the original source code, and to foil this
attempt, a code obfuscation technique is used.

Unit Test Source Code Using NUnit http://sourceforge.net/projects/nunit and http://sourceforge.
net/projects/nunitaddin

NUnit is an open source unit-testing framework that brings Test Driven Development (TDD)
practices to .NET.

Perform .NET Programming Compliance Checks Using FxCop http://www.gotdotnet.com/team/fxcop/

FxCop is a peer review tool for code that analyzes assemblies and checks them for compliance
using a number of rules. By default, it comes with predefined rules that check code for conformance
to the .NET Framework design guidelines.

Automate the Build Process Using NAnt http://sourceforge.net/projects/nant

NAnt is an open source framework tasked with the responsibility of automating the build
process of .NET projects using NAnt scripts defined in XML.

477

5645chAppA.qxd 3/3/06 12:34 PM Page 477

APPENDIX A ■ .NET TOOLS478

Produce Documentation of Source Code Automatically Using NDoc http://ndoc.sourceforge.net/

NDoc is an open source framework that generates code documentation from .NET assemblies
in MSDN-style Help format (.chm) or VS .NET Help format (HTML Help 2).

Build and Test Regular Expressions Using Regulator http://regex.osherove.com/

The Regulator tool makes creating and testing extremely complex regular expressions a breeze.

Build Networked Applications with Indy.Sockets http://www.indyproject.org/Sockets/index.en.iwp

Indy.Sockets is an open source .NET library that provides an exhaustive collection of various
communication protocols such as TCP, UDP, NNTP, HTTP, POP3, and SMTP.

Use the Centralized Connection Strings Database http://www.connectionstrings.com/

This site provides an excellent resource of database connection strings for all the available
database drivers.

Develop MMC Snap-ins Using MMC.NET Library http://sourceforge.net/projects/mmclibrary/

The MMC.NET Library provides a managed library that enables MMC snap-in–style development.

Understand P/Invoke Signatures Through P/Invoke .NET Wiki http://pinvoke.net

This site provides a repository that contains predefined P/Invoke signatures that can be used in
managed code in a copy-and-paste manner.

Explore Advanced Data Structures Using Power Collections for .NET http://www.wintellect.com/

powercollections/

Power Collections provides high-quality advanced data structures that use .NET 2.0 generic
features and is entirely developed in C#.

Measure the Quality of .NET Assemblies Using NDepend http://smacchia.chez-alice.fr/NDepend.html

The NDepend tool analyzes .NET assemblies and generates design-quality metric reports.

Build Grid Computing in .NET Using Alchemi http://www.alchemi.net/

Alchemi is an open source .NET-based grid computing framework that offers an infrastructure
to collaborate multiple computers on networks in order to execute large-scale computational tasks.

Provide Code Coverage Using CoverageEye.NET http://www.gotdotnet.com/Community/UserSamples/

Details.aspx?SampleGuid=881a36c6-6f45-4485-a94e-060130687151

CoverageEye.NET analyzes an assembly and generates reports about IL instructions that have
been executed. This tool will help discover the code coverage percentage of any .NET assembly.

Solve Complex Scientific Problems Using Math.NET http://www.cdrnet.net/projects/nmath/

default.asp

Math.NET is an open source library used to perform some highly advanced numerical
computations.

Harness the Power of log4Net http://logging.apache.org/log4net/

log4Net is a highly advanced logging and tracing framework that enables you to log/trace state-
ments to a variety of output targets.

5645chAppA.qxd 3/3/06 12:34 PM Page 478

Profile Applications Using CLR Profiler http://www.microsoft.com/downloads/

details.aspx?FamilyId=86CE6052-D7F4-4AEB-9B7A-94635BEEBDDA&displaylang=en

CLR Profiler is one of the most well-known profiling tools for managed code available from
Microsoft. It includes a number of useful views of the allocation profile, including a histogram of
allocated types, allocation and call graphs, a timeline showing garbage collectors of various genera-
tions and the final state of the managed heap after those collections, and a call tree showing per-method
allocations and assembly loads.

Analyze Network Using Ethereal http://www.ethereal.com/

Ethereal is an open source network troubleshooting and protocol analyzer tool. It provides
a detailed analysis of low-level network protocols and several other features that are not available in
any other product.

Perform TCP Tunneling Using TCPTrace http://www.pocketsoap.com/tcptrace/

The TCPTrace tool is useful to debug socket/.NET remoting applications.

Source Code Metrics Using SourceMonitor http://www.campwoodsw.com/index.html

This tool measures source code metrics in terms of the number of classes, methods, and total
lines of code.

Explore the Enterprise Library for .NET Framework 1.1 http://msdn.microsoft.com/practices/

default.aspx?pull=/library/en-us/dnpag2/html/entlib.asp

The Enterprise Library contains application blocks such as a caching block, a configuration
block, a data access block, an exception management block, a cryptography block, and a security
block that are designed to solve basic development problems.

Use Windows System Utilities http://www.sysinternals.com

This site provides advanced low-level Windows utilities that are extremely helpful in diagnosing
performance-sensitive applications.

Build a Business Rule Engine http://sourceforge.net/projects/nxbre/

This is an open source framework for the .NET platform to build an XML-driven rule engine.

Use Advance .NET Assembly Instrumentation with the Runtime Assembly Instrumentation Library (RAIL)
http://rail.dei.uc.pt/

This framework provides a low-level hook that allows .NET assemblies to be manipulated and
instrumented before they are loaded and executed.

Use Spring.NET http://www.springframework.net

Spring.NET provides a framework to incorporate a dependency injection pattern in managed
applications.

Perform Advanced Debugging with Windows Debugger (WinDbg) http://www.microsoft.com/whdc/

devtools/debugging/installx86.mspx

WinDbg is the official Windows debugging tool that supports both user-mode and kernel-mode
debugging. It is a must-have tool for developers architecting server-side applications in order to
analyze low-level performance and hard-to-produce problems.

APPENDIX A ■ .NET TOOLS 479

5645chAppA.qxd 3/3/06 12:34 PM Page 479

Debug CLR Internals Using Son of Strike (SOS) http://www.microsoft.com/whdc/devtools/debugging/

default.mspx

Bundled with the Windows Debugger Package, SOS is a WinDbg extension that provides low-level
information about the CLR internal data structures and is extremely handy to detect problems related
to memory and thread deadlock issues. This tool is a must-have for managed developers designing
mission-critical applications.

Use .NET on Linux: Mono http://www.mono-project.com

Mono is an open source initiative that provides a complete end-to-end framework to run .NET
applications on the Linux and Solaris platforms.

APPENDIX A ■ .NET TOOLS480

5645chAppA.qxd 3/3/06 12:34 PM Page 480

A P P E N D I X B

■ ■ ■

References

The following are some useful references:

• MSDN (http://msdn.microsoft.com)

• MSDN Magazine (http://msdn.microsoft.com/msdnmag)

• MSDN Web Services and Other Distributed Technologies Developer Center
(http://msdn.microsoft.com/webservices)

• Microsoft Patterns & Practices (http://msdn.microsoft.com/practices)

• O’Reilly Network (http://www.oreillynet.com)

• Applied Microsoft .NET Framework Programming by Jeffrey Richter (0735614229; Microsoft
Press, 2002)

• Microsoft Windows Internals, Fourth Edition by Mark E. Russinovich and David A. Solomon
(0735619174; Microsoft Press, 2004)

• Professional XML by Mark Birbeck, Michael Kay, Steven Livingstone, Stephen F. Mohr,
Jonathan Pinnock, Brian Loesgen, Steven Livingston, Didier Martin, Nikola Ozu, Mark
Seabourne, and David Baliles (1861003110; Wrox, 2000)

• .NET and XML by Niel M. Bornstein (0596003978; O’Reilly, 2003)

• Pro .NET 1.1 Network Programming by Christian Nagel, Ajit Mungale, Vinod Kumar,
Nauman Laghari, Andrew Krowczyk, Tim Parker, Srinivasa Sivakumar, and Alexandru Serban
(1590593456; Apress, 2004)

• TCP/IP by Sidnie Feit (0070220697; McGraw-Hill, 1998)

• Pattern-Oriented Software Architecture by Douglas Schmidt, Michael Stal, Hans Rohnert,
and Frank Buschmann (0471606952; John Wiley & Sons, 2000)

• C++ Network Programming, Volume 1 by Douglas C. Schmidt and Stephen D. Huston
(0201604647; Addison-Wesley, 2010)

• TCP/IP Sockets in C# by David Makofske, Michael J. Donahoo, and Kenneth L. Calvert
(0124660517; Morgan Kaufmann, 2004)

• Advanced .NET Remoting by Ingo Rammer (1590590252; Apress, 2002)

• AspectJ in Action by Ramnivas Laddad (1930110936; Manning, 2003)

481

5645chAppB.qxd 3/3/06 12:36 PM Page 481

APPENDIX B ■ REFERENCES482

• .NET Security and Cryptography by Peter Thorsteinson and G. Gnana Arun Ganesh
(013100851X; Prentice Hall, 2003)

• .NET Security by Jason Bock, Tom Fischer, Nathan Smith, and Pete Stromquist (1590590538;
Apress, 2002)

• Expert Service-Oriented Architecture in C# by Jeffrey Hasan (1590593901; Apress, 2004)

• Service-Oriented Architecture by Thomas Erl (0131858580; Prentice Hall, 2005)

• Code Generation in Action by Jack Herrington (1930110979; Manning, 2003)

• Code Generation in Microsoft .NET by Kathleen Dollard (1590591372; Apress, 2004)

• Essential .NET, Volume 1 by Don Box (0201734117; Addison Wesley, 2002)

• Distributed Systems by George Coulouris, Jean Dollimore, and Tim Kindberg (0321263545;
Addison Wesley, 2005)

• Security Engineering by Ross J. Anderson (0471389226; Wiley, 2001)

• Web Service Platform Architecture by Sanjiva Weerawarana, Francisco Curbera,
Frank Leymann, Tony Storey, and Donald F. Ferguson (0131488740; Prentice Hall, 2005)

5645chAppB.qxd 3/3/06 12:36 PM Page 482

■Numbers
255.255.255.255 broadcast address,

significance of, 210
32-bit IP address, explanation of, 180

■Symbols
80-20 rule

applying to clean reference data, 114
applying to market capitalization, 13
abstract model, basing code on, 422

■A
abstract part of WSDL

explanation of, 354
representing, 356
abstraction, availability in SOA, 352
Accept, calling for market data producer

with TCP, 193
account activity statement, explanation

of, 22
accounts, availability from depositories, 16
activation mode, defining in RPC, 258
Activator class, creating instance of remote

object with, 260
active (pre-insert) order, explanation of, 88
Add method

overriding for collections and
multithreading, 78

using with Hashtable class, 57
addresses in IP header, explanations of, 182
addressing specification. See WS-Addressing

specification
ADO.NET DataSet, significance of, 423
Advanced Micro Devices

buying for arbitrage, 414
price differential for, 411

advice in AOP, explanation of, 279
affirmation and confirmation of trades,

processes of, 23–24
agent host code sample for trading

application, 297
agent remoting configuration code sample

for trading application, 296
agent-side services, relationship to

application operation engine, 284

AgentController class, using with application
operation engine, 294

AgentInfo class, implementing for
application operation engine,
292–293

Alchemi framework, description of, 478
algorithm efficiency, measuring via Big-O

novation, 48
algorithms

applying to collections of data elements,
48

determining efficiency of, 48
of thread pools, 59
relationship to data storage, 85
relationship to data structures, 48

allocation details, explanation of, 23
allocation process, relationship to STP, 304
AMD (Advanced Micro Devices) arbitrage

example, 403
AMD example, 405
AMEX (American Stock Exchange),

significance of, 8
analysis, role of market data in, 173
annualized percentage returns, calculating

for arbitrage, 412
anonymous methods, reducing amounts of

code with, 457, 459
AOP (aspect-oriented programming),

overview of, 275–276, 282
AopAlliance assembly, referencing, 279
APIs, invoking in UDDI, 371
AppDomain class, using with heartbeat

service, 247
AppDomain type, properties and events of,

253
AppDomainSetup class

storing binding information in, 252
using with shadow copying, 253

AppInfo class, using in application operation
engine, 287

AppInfo interface, using in application
operation engine, 288

application configuration details, defining,
250

application design, factors involved in, 36

Index

483

5645IDX.qxd 3/3/06 4:22 PM Page 483

application layer of TCP/IP, explanation of,
179

application management operational
component, description of, 237

application operation engine. See also
trading applications

assembly structure for, 285
class details for, 284, 290
class diagram for, 285
framework of, 283
implementing AgentInfo class for, 292–293
implementing LogManagement service

for, 293
implementing PrimaryController for, 290,

292
project structure of, 285
using AgentController class with, 294

application operator GUI, role in application
operation engine, 284

application processes, communication
between, 258

application-monitoring engine, significance
of, 39

ApplicationName property, using with
shadow copying, 253

applications
efficiency of, 35
measuring responsiveness of, 35
programmatic perspective of, 36

AppManagement agent-side service,
stopping and starting trading
application with, 295

AppSettings property, exposing with
ConfigurationSettings class, 251

arbitrage. See also equity arbitrage engine
definition of, 403
explanation of, 5
forms of, 405–406
overview of, 403–404
profitability of, 405, 412
pure arbitrage, 406
risks associated in, 407
speculative arbitrage, 407

arbitrage cost risk in arbitraged, explanation
of, 407

arbitrage margin, explanation of, 409
arbitrage model, building arbitrage engine

with, 443
arbitrage opportunities, examples of, 413
arbitrage system versus program trading

system, 408
arbitrage transactions, costs involved in,

404–405
arbitrageurs, reasons for success of, 404
architects, types of, 34
array of bytes, converting contract note

message into, 316

array lists
overcoming fixed-size problems with, 50
role in .NET collections, 49, 51

array size, problem associated with, 49
Array.BinarySearch static method, calling, 52
ArrayList

driving sort and search behaviors in, 87
properties of, 78–79

arrays
locating items in, 52
redimensioning, 49–50
role in .NET collections, 48–49
type coupleness behavior associated with,

50
using parametric polymorphism with, 447
using quick sort algorithm with, 51
using with market data producer, 187

ascending order, sorting orders in, 53–54
.asmx extension, using with Web services,

362
aspect in AOP, explanation of, 279
Aspect# assemblies

downloading, 278
referencing, 279

AspectEngine, injecting rules dynamically
with, 282

AspectLanguageEngineBuilder, injecting
rules dynamically with, 282

AspectSharp assembly, referencing, 279
assemblies. See also shared assembly for

remoting and generics code sample
definition of, 417
in-memory generation of, 433

assembly structure for sample RPC, 254
AssemblyCustomAttributes attribute, using

with CodeDOM, 429
asymmetric encryption

ridexamples of, 318
implementing for STP and Web services,

392–393
versus symmetric encryption, 322

asymmetric keys, using in STP-space
security, 317, 322

AsymmetricAlgorithm base abstract class,
explanation of, 318

AsyncCallback delegate, using in
asynchronous callback notification,
63

asynchronous delegate infrastructure,
relationship to multithreading,
60, 63

asynchronous market data producers and
consumers, overview of, 196, 200

AsyncWaitHandle property of IAsyncResult,
using with delegates, 62

atomic operation, relationship to
multithreading, 73

■INDEX484

5645IDX.qxd 3/3/06 4:22 PM Page 484

attributes
descriptions of, 134
support for, 132

authentication information, representing in
WS-Security, 384

authentication of data, explanation of, 307
Authorization advice, injecting in AOP, 281
Authorization aspect, defining in AOP,

280–281
AuthorizationAdvice class, constructing in

AOP, 279
automatic code generation, using partial

types for, 461
automatic deserialization, remoting support

for, 275
AutoResetEvent class, role in interthread

notification, 70

■B
back office

relationship to STP, 28
role of market data in, 175
routing trades to, 109

back-office applications, using IPC channel
with, 471

back-office systems
characteristics of, 30
design of, 30

Band class, using in data conversion
framework, 153–154

BandParser class, using in data conversion
framework, 158–159

bands in data conversion framework,
explanation of, 146

banks
versus depositories, 15
two roles of, 15

base types, forming for generic types, 451
basis risk in arbitrage, explanation of, 407
BCastPipe class, using with broadcast

engine, 229–230
BCL (base class library), significance of, 38
bearish trader, definition of, 4
BeginAccept, calling for market data

producer with TCP, 197
BeginInvoke method, using with delegates,

60–61
BeginInvoke thread-safe member, exposing

in Windows control collection, 82
BeginSend method, sending data

asynchronously with, 197–198
beneficiary accounts, availability from

depositories, 16
Berkshire Hathaway arbitrage example,

405
Berkshire Hathaway example, 407
bid price, relationship to two-way quote, 4

Big-O notation, representing algorithm
efficiency in, 48

binary formatter
description of, 258
serializing object graphs with, 202

binary search algorithm
availability of, 87
locating array items with, 52, 54

binary serializer, explanation of, 132
BinaryClientFormatter class, using in hosting

service controller, 260
BinaryFormatter, using as data-encoding

standard, 284
BinaryReader and BinaryWriter specialized

Stream classes, overview of, 120–121
BinaryServerFormatterSinkProvider class,

description of, 258
Bind method

using with market data consumer, 189
using with market data producer and TCP,

193
binding information, storing in

AppDomainSetup class, 252
<binding> element, using with WSDL

documents, 357
bits, role in networking, 179
BizDomain class of order-matching engine,

overview of, 100–101
block cipher, definition of, 309
BlockSize property, using with symmetric

classes, 315
bonds, definition of, 1
bookkeeping, performing with order

processor, 86
Boolean value, returning for

IsTransparentProxy static method,
261

BooleanCursor class, using in data
conversion framework, 156–157

boxing and unboxing operations,
considering for containers, 449

boxing process, relationship to array lists, 50
broadcast

relationship to networking, 209–210
unsolicited broadcast, 210, 213

broadcast engine
primary role of, 220
significance of, 39

broadcast engine class details
BCastPipe, 229–230
DataSerializerModule, 230–231
Dispatcher, 226
Host, 233
IBCastMessage, 222–224
IMessageStore, 224
IModule, 228
InMemoryStore, 224–225

■INDEX 485

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 485

MktDataMessage, 231, 233
PipeContext, 228–229
RoundRobinDispatcher, 226–227
StoreCollection, 225–226
TransportModule, 231

broadcast engines, building, 221–222
broadcast event, launching with dispatcher,

222
broadcast message, receiving, 212
broadcast pipe component of broadcast

engine, description of, 222
broadcasts

relationship to market data, 172
solicited broadcasts, 213, 216

BrokerCertificate.cer, launching digital
certificate with, 329

brokers. See also stock-exchange members
definition of, 7
floor brokers, 8, 10
interactions with fund managers, 320
interactions with custodians, 305
role in order matching, 42–43
specialists, 10–11

brute-force attack, explanation of, 309
buckets, assigning for orders, 43
BufferedStream subclass of Stream class,

description of, 118
buffers, using with Socket, 219
bulk order upload forms, implementing

parallelism in, 81
BulkOrderUpload, executing, 82
bullish trader, definition of, 4
business components

abstract view of, 235
examples of, 236
versus operational components,

236–237
relationship to trading operational

requirement, 235
business concerns, separating with SOA, 351
business domain, explanation of, 85
business infoset

overview of, 106–107
reference data elements in, 107

business logic layer, uniformity of data at,
144

business requirements, significance of, 238
business rule engine, resource for building

of, 479
business-processing unit, role in Web-service

platforms, 360
business-technology mapping

BizDomain snippet for, 100
class details for, 284, 290
class details of, 88
Container snippet for, 92–93
ContainerCollection snippet for, 93–94

EquityMatchingLogic snippet for, 101–102
EquityOrder snippet for, 91
examining, 143, 148
for STP security, 331, 333
for Web services, 400
LeafContainer snippet for, 94, 96
of equity arbitrage, 442, 444
OMEHost snippet for, 102–103
Order snippet for, 89, 91
OrderBook snippet for, 96, 98
OrderEventArgs snippet for, 98
OrderProcessor snippet for, 99–100
overview of, 84, 88, 220, 222, 283–284
PriceTimePriority snippet for, 91–92

Buy and Sell, specifying nodes for, 87
buy or sell attribute of orders, explanation of,

89
buy orders

processing, 21
sorting in order matching, 42

bytes, extracting for market data consumer,
190

bytes array, converting contract note
information into, 321

■C
C/C++

bright and dark side of, 31
using with front-office systems, 30

CachePath property, using with shadow
copying, 253

callback method, execution of, 84
callback notification approach, using with

asynchronous operations, 62
CAOs (client-activated objects)

versus local objects, 243
role in .NET Remoting, 242

capital markets
definition of, 1
I’s (Intelligence) of performance in, 35, 38
proprietary class libraries provided for, 70

CAs (certificate authorities), issuing digital
certificates with, 327–328

CBC (Cipher Block Chaining) mode, using
with symmetric keys, 311

CellsAttribute abstract class, using in data
conversion framework, 152–153

central order book, example of, 86
centralized application controllers, building,

284
certificate store

installing certificate published by broker
in, 331

relationship to WS-Security, 385
certificates. See digital certificates
CFM (Cipher Feedback Mode), using with

symmetric keys, 311–312

■INDEX486

5645IDX.qxd 3/3/06 4:22 PM Page 486

channel configuration, setting up in hosting
service controller, 260

channel information, separating remote
object registration from, 271

channel layer, relationship to proxy in .NET
Remoting, 242

<channel> element of remoting
configuration, explanation of, 271

channels in RPC, listening supported by, 259
cipher modes

behaviors of, 312
and Padding, 315

cipher text, producing, 308
ciphers, types of, 308–309
Class A stock and Class B stock of Berkshire

Hathaway, prices of, 405
Class A-C network addresses, explanations

of, 181
class details for application operation engine

AppInfo, 287–288
DomainApp, 288–289
IConfiguration, 289
IController, 286–287
ILogger, 289
overview of, 285
Service, 289–290

class details for STP security
ConfidentialAttribute class, 334
ContractNoteInfo class, 336
DataSecurity class, 342–343
DataSecurityManager class, 341–342
IntegrityAttribute class, 334
NonRepudiationAttribute class, 335
NonRepudiationProvider class, 340–341
NonRepudiationSection class, 339
ProfileInfo class, 336–337
Provider class, 339–340
SecrityProfileAttribute class, 336
SectionData class, 338–339
SecureEnvelope class, 337–338

class diagrams, of application operation
engine, 285

class generic type constraint, overview of,
452

class names, changing for Web services, 363
class search example using reflection,

435–436
classes, relationship to objects, 238
cleansing stage of information based on

external data sources, overview of,
143

clearing accounts, opening, 15
clearing and settlement, processes of, 24, 28
clearing banks, explanation of, 15, 26
clearing corporations, overview of, 14–15
CLI (Common Language Infrastructure),

significance of, 32

client configuration details, separating from
server in remoting, 273

<client> element of remoting configuration,
explanation of, 271

CLR (common language runtime)
explanation of, 32
role in remoting framework, 241

CLR Profiler tool, features of, 479
CLR thread-pool implementation, offloading

processing tasks with, 457–458
CLR types and an XML documents, using

XmlSerializer class with, 133
clubbing orders, explanation of, 7
Coca-Cola Company

arbitrage on, 412
price differential for, 411

COD (context-oriented data), relationship to
XML, 116

code, basing on abstract model, 422
code access security, significance of, code

documentation generators, features
of, 417, 420–422

code editor view, using with STP and Web
services, 362

code expressions, declaring in CodeDOM,
430–431

code generation
overview of, 415–416
with Reflection.Emit, 439, 442

code generation and reflection, overview of,
417–418

code generators, types of, 416–417
code inflator generators, features of, 417, 422
code splits, advantages of, 460
code synchronization, relationship to

manual thread management, 63, 65
code tags, boosting productivity with, 422
code templates, role in code generation, 416
code wizard generators, features of, 416, 420
code-generation process, triggering in

CodeDOM, 427–428
code-reentrancy problem, occurrence with

callback methods, 84
CodeCompileUnit instance, constructing

with CodeDOM of, 429
CodeDOM

declaring code expressions in, 430–431
overview of, 424, 433

CodeDOM classes, leveraging, 429
CodeDOM object graph

converting to text, 433
translating into compiled form, 433

CodeDOM providers, purpose of, 432
CodeMemberMethod, declaring Compare

method with, 430
CodeNameSpace, defining with CodeDOM,

429

■INDEX 487

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 487

CodeStatement, classes derived from,
431–432

CodeStatementsCollections, returning in
CodeDOM, 431

CodeTypeDeclaration, defining SortCode
class with, 430

collections. See generic collections; .NET
collections

Column class, using in data conversion
framework, 155

ColumnParser class, using in data conversion
framework, 160–161

columns in data conversion framework,
explanation of, 147

COM (Component Object Model)
technology, introduction of, 31

communication handshaking, occurrence of,
260

communication services, providing with
middleware, 240

Compare method
adding parameter declaration for, 430
declaring with CodeMemberMethod, 430

CompileAssemblyFromDom, compiling
CodeDOM object graph with, 433

compiler-driven feature example of, 447
CompilerResults, using with CodeDOM

object graph, 433
complex type, example of, 141
complex type elements, nesting under

xs:schema element, 138
compressing in-memory data, 467–468
computed data element of business infoset,

overview of, 108
ComputeHash, invoking, 324
concrete part of WSDL, representing, 356
concurrency. See multithreading
ConfidentialAttribute class, using in STP

security, 334
confidentiality

of data, 307
in STP space, 308, 322

configuration file
composition of, 250
location of, 250

configuration framework, overview of,
250–251

configuration operational component,
description of, 237

configuration path, assigning to
ConfigurationFile property of
AppDomainSetup class, 252

ConfigurationFile property of
AppDomainSetup class, assigning
configuration path to, 252

ConfigurationSettings class, exposing
AppSettings property with, 251

Configure method of RemotingConfiguration
class, booting remoting
infrastructure with, 271

confirmation and affirmation of trades,
processes of, 23–24

constraints, using with generic code, 452
constraints and rules, associating with Web

services, 396
constructor method

updating LogicalProcess class with, 251
using with infrastructure services, 265

consumers, binding to Web services at
runtime, 371

Container class of order-matching engine,
overview of, 92

ContainerCollection class of order-matching
engine, overview of, 93

containers, tweaking storage
implementation for, 449

context switching, relationship to thread
scheduling, 74

contexts, relationship to objects, 239
contract note, explanation of, 22
contract note data

hash value computed for, 323–324
signing and verification of, 325–326
signing and verification with digital

certificates, 329–330
contract note functionality, enabling with

PostTradeService, 364
contract note information

converting into bytes array, 321
encrypting, 315
encrypting with STP-Provider A public

key, 392–393
exchanging with asymmetric algorithm,

318
securing, 386, 389

contract note message, converting into array
of bytes, 316

contract notes
digital signing of, 387, 389
encrypting and decrypting, 313–314
sending, 305

ContractNoteInfo class, using in STP security,
336

ContractNoteInfo type, representing in XSD
form, 367

conversion rule, producing XML output with,
167–168

conversion stage of information based on
external data sources, overview of,
143

Convert method, using in data conversion
example, 166

converter, role in data conversion
framework, 147

■INDEX488

5645IDX.qxd 3/3/06 4:22 PM Page 488

core lookup service class, using with service
directory, 263–264

corporate stocks versus indexes, 12
correlation in prices, relationship to

arbitrage, 406
cost savings, realizing with STP, 301
costs of arbitrage transactions, 404–405
Count property, using with stacks, 56
counting semaphores, using with shared

resources, 462–463
CoverageEye.NET tool, features of, 478
Create method

using with NonRepudiationProvider class,
341

using with Provider class, 340
CreateApplication method, using with

AgentController class, 294
CreateDecryptor method, decrypting

contract notes with, 315
CreateEncryptor method, encrypting

contract notes with, 315
CreateInstanceAndUnwrap method, using

with heartbeat service, 247
credit checks, performance by clearing

corporations, 14
critical section, relationship to code

synchronization, 64
cryptography, definition of, 308
CryptoServiceProvider suffix, significance of,

312
CryptoStream, creating instance of, 316
CryptoStream subclass of Stream class,

description of, 118
CspParameters, contents of, 321
CSV conversion rule, using with data

conversion framework, 148, 151
CSV versus XML, 116
current time, checking for sponsors, 270
custodian, role in trading, 23–24
custodian service provider, relationship to

STP, 299
custodians

characteristics of, 305
interactions with brokers, 305
submissions of instruction initiated by,

306
custom sink layer, relationship to proxy in

.NET Remoting, 242

■D
data

authentication of, 307
confidentiality of, 307
defining security type for, 333
integrity of, 307, 322, 324
nonrepudiation of, 307
plotting in matrix, 145

reading and writing, 117, 119
receiving on separate thread, 200

data arrangement uniformity, relationship to
XML, 116

data cleansing, explanation of, 112
data compression, overview of, 467–468
data containers, design of, 84–85
data conversion

definition of, 105
definitions of, 111
example of, 166–167

data conversion example, XML output for,
167

data conversion framework
architecting, 143
Band class in, 153–154
BandParser class in, 158–159
bands in, 145–146
BooleanCursor class in, 156–157
CellsAttribute abstract class in, 152–153
Column class in, 155
ColumnParser class in, 160–161
columns in, 147
CSV conversion rule in, 148, 152
DataConverter class in, 162, 166
goals of, 144
IWriter class in, 161
Matrix class in, 155–156
Parser class in, 157–158
relationship to reference data, 111, 114
Row class in, 154
RowParser class in, 159
rows in, 146
rule schema in, 149
XmlDataWriter class in, 161–162

data elements, costs associated with location
of, 51

data elements of business infoset
computed data, 108
derived data, 107
reference data, 107–108, 115
relationship to order attributes, 106–107
static data, 108
variable data, 107

data in silos, issues related to, 112
data length in IP, significance of, 182
data management, overview of, 105–106
data management operational component,

description of, 237
data security, importance of, 39
data security versus code access security, 32
data store, explanation of, 117
data structures

relationship to algorithms, 48
relationship to order matching, 85

data type, defining for Web-service messages,
356

■INDEX 489

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 489

data uniformity at business logic layer,
significance of, 144

data-quake, definition of, 37
data-quakes, relationship to broadcast

engines, 220
database connection string resource, 478
DataConverter class, using in data

conversion framework, 162, 166
datagrams, role in networking, 179
DataSecurity class, using in STP security,

342–343
DataSecurityManager class, using in STP

security, 341–342
DataSerializerModule class, using with

broadcast engine, 230–231
DataSet, internal structure of, 423
DataSet writer, role in data conversion

framework, 148
dates, pay-in and pay-out dates, 26
dce element, representing with Matrix class,

155
DCOM, relationship to .NET Remoting, 240
deadlock prevention, relationship to

multithreading, 65, 68
dealers versus investors and traders, 3
debit instructions, providing for depositories,

17
debugging, managing in remoting, 275
decompressing in-memory data, 467–468
Decrypt, using with asymmetric keys, 322
decryption of contract notes, 315
decryption process, explanation of, 308
DeflateStream class in

System.IO.Compression namespace,
definition of, 467

delegate execution, arranging on UI threads,
82

delegate keyword, using with anonymous
methods, 458

delegates, relationship to multithreading,
60

delegates, overview of, 456
delimited file format, example and

description of, 144
demutualization of exchanges, explanation

of, 8
depositories

overview of, 15, 17
risks eliminated by, 17

Dequeue methods, using with queues, 55
derived data element of business infoset,

overview of, 107
DES (Data Encryption Standard) symmetric

algorithm
key size of, 313
significance of, 310

descending order, sorting orders in, 53–54

deserialization
definition of, 131
example of, 135–136
in message framing, 207
process of, 202
remoting support for, 275

destination address in IP header, significance
of, 182

destination unreachable ICMP message,
description of, 183

development team, relationship to
operations team, 283

diagrams. See figures
digital certificates

generating, 328
inclusion in WS-Security, 385
role in STP-space security, 327, 331
verifying with WSE, 387

digital signatures
inclusion in WS-Security, 384
role in STP-space security, 324, 327
verifying, 326
verifying hash values with, 327

Dispatcher class, using with broadcast
engine, 226

dispatcher component of broadcast engine,
description of, 222

distributed garbage collection, overview of,
267, 270

distributed systems, relationship to
networking, 177

dividend, definition of, 2
DJIA (Dow Jones Industrial Average) index,

description of, 12
DLL locking problem, occurrence of, 252
DNS (Domain Name System), relationship to

TCP/IP, 183
document root elements, nesting under

xs:chema element, 139
documentation generators, features of, 421
domain intelligence, overview of, 37
domain knowledge, relationship to XML, 116
DomainApp class

description of, 284
using in application operation engine, 288

DomainApp interface, using in application
operation engine, 289

Dotfuscator tool, features of, 477
DTC (depository trust corporation),

significance of, 15

■E
EAI (enterprise application integration),

relationship to XML, 115
EASDAQ (European Association of Securities

Dealers Automated Quotation),
significance of, 8

■INDEX490

5645IDX.qxd 3/3/06 4:22 PM Page 490

ECB (Electronic Code Book) mode, using
with symmetric keys, 310

echo reply and request ICMP messages,
descriptions of, 183

Encoding
converting contract note information

with, 321
in System.Text namespace for market data

producer, 188
Encrypt, using with information in byte

array, 321
encryption

implementing asymmetric encryption for
STP and Web services, 392–393

of contract notes, 315
of keys, 321

encryption element, inclusion in WS-
Security, 384

encryption phase, initiating for symmetric
classes, 315

encryption process, explanation of, 308
EndInvoke method, using with delegates, 60,

62
EndPoint

defining for market data producer with
TCP, 193

resolving in market data producer, 188
EndSend, invoking to complete

asynchronous send operation,
198

Enqueue method, using with queues, 55
enrichment stage of information based on

external data sources, overview of,
144

Enterprise Library, description of, 479
entities for STP in equities trade, 302
enumeration of orders, problem associated

with, 79
envelope, object-oriented form of, 338
equilibrium position and price, explanations

of, 11
equities market, .NET in, 30, 34
equities market entities

banks, 15
clearing corporations, 14–15
depositories, 15, 17
indexes, 12–13
stock exchanges, 6, 8

equities trade, STP in, 302
equity and equity shares, overview of, 2
equity arbitrage, business-technology

mapping of, 442, 444
equity arbitrage engine, building, 407–408,

414. See also arbitrage
EquityMatchingLogic class of order-

matching engine, overview of,
101–102

EquityOrder class of order-matching engine,
overview of, 91

error handling, managing in remoting,
274–275

Ethereal tool, features of, 479
event, definition of, 83
<exception> XML tag for documentation

comments, description of, 421
exceptions, support in remoting, 274–275
Exchange element, XML Schema of, 140
Exchange information, generating, 130
exchange interactions, synchronizing with

Mutex, 71–72
exchange keys, using with digital certificate,

331
exchanges. See stock exchanges
ExchangesModel complex type, example of,

140
ExportParameters method

using with keys, 320
external STP
using with digital certificates, 331

■F
factory classes, using with symmetric classes,

314
fast-forward parsers, overview of, 122–123
fault isolation, achieving with CLR and

Win32 process, 241
field layout, rearranging with runtime, 204
field marshaling behavior, changing, 204
FIFO (first-in, first-out) data structures,

queues as, 54
FIFO manner, processing orders in, 55
Figures

Add Web Reference dialog box, 368
affirmation and confirmation process, 23
allocation and contract note, 305
AOP architecture, 279
application design versus time, 35
application operation engine, 283
arbitrage engine, 442
arbitrage engine based on arbitrage

models, 443
array lists used in linear arrangement of

heterogeneous order, 49
arrays used in linear arrangement of

homogeneous order, 48
asymmetric algorithm class hierarchy, 318
asymmetric key, 317
BCastServer console output, 234
bridging networks with routers, 180
broadcast engine class diagram, 223
broadcast engine implementation

overview, 222
broadcast engine project structure, 223
brokers help investors, 9

■INDEX 491

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 491

bulk order upload form, 82
business component, 236
buy orders of retail clients, 21
byte ordering, 201
CBC (Cipher Block Chaining) mode, 311
central order book, 87
centralization of operational services, 238
certificate store, 386
CFM (Cipher Feedback Mode), 311
changing Web service class name and

filename, 364
cipher mode, 309
class search program using reflection, 436
cleansing reference data, 113
clearing process, 25
code editor view showing autogenerated

Web service code, 363
code generator components, 416
CodeDOM, 434
CodeDOM processes abstract code, 424
COM days, 31
communication with entities on one

network, 348
communication protocol, 349
console application demonstrates

invocation of STP-Provider A Web
service, 370

console output describing field
information embedded in digital
certificates, 331

console output of AOP-enabled heartbeat
service, 282

console output of hash algorithm
program, 324

console output of program using
asymmetric key, 322

console output of program using
symmetric key, 317

console output of service controller and
heartbeat service, 260–261

console output of service directory, 267
conversion framework, 147
data conversion framework class diagram,

151
data conversion framework project

structure, 151
Data Form Wizard, 420
data hashing, 323
digital certificate, 329
digital signature, 325
front, middle, and back offices, 29
HashAlgorithm class hierarchy, 323
information originating from multiple

sources in different formats, 106
instrument mapping in front office, 110
integrating operational and functional

requirements, 278

intelligence levels, 36
life cycle of a trade, 18
market data, 173
market data producers and consumers,

221
MCastClient console output, 216
MCastServer console output, 216
MDC (Async-TCP) console output, 200
MDC (UDP) console output, 190
MDP (Async-TCP) console output, 200
MDP (market data producer) and MDC

(market data consumer), 186
MDP (TCP) console output, 195
MDP (UDP) console output, 190
.NET days, 31
.NET Framework and solutions for

financial world, 38
network byte order console output, 202
object facets, 239
order management system components in

service-oriented design, 351
order processed in FIFO manner, 54
order processed in LIFO manner, 56
order submission and notice of execution,

304
order-matching engine, 86
order-matching engine class diagram, 88
order-matching engine VS.NET project

structure, 89
parsing console output for message

framing, 209
PING output, 183
pre-.NET days, 31
Provider registration page, 374
Providers tab for registering STP providers,

373
record represented as matrix, 145
reference data is central to all functions,

108
reflection used in path traversal, 435
remote proxies receiving remote calls, 261
remoting framework, 240
remoting object facets, 243
requirement distillation, 238
rule-based arbitrage engine, 444
securities clearing account, 27
security framework and class hierarchy,

333
security framework project structure, 334
sell orders are validated, 21
service consumer project created with

Visual Studio .NET, 367
service controller and heartbeat service,

244
service directory, 263
Service registration page with information

about PostTradeService, 377

■INDEX492

5645IDX.qxd 3/3/06 4:22 PM Page 492

settlement comprises pay-in and pay-out, 28
SOAP envelope, 358
solicited broadcast, 213
Solution Explorer shows autogenerated

proxy class, 369
Solution Explorer view of consumer

application, 387
specialists provide quotes on request, 10
STP (straight through processing), 29
STP framework (post-trade), 306
STP participants, 302
STP Provider project structure, 362
STP security conceptual design, 332
STP space, 307
STP-Provider A Web service endpoint

information is retrieved, 379
STP-Provider B invokes STP-Provider

A Web service, 361
substitution cipher, 308
symmetric algorithm class hierarchy, 312
symmetric key, 310
TCP/IP layers, 179
thread scheduling, 74
trade confirmation, 111
trade with and without novation, 47
trades happen due to differences in

opinion, 4
transparent and real proxies, 261
transposition cipher, 309
two-way quote comprising bid price and

offer price, 4
UDDI repository finds STP-Provider A Web

service, 371
UDDI test Web site offered by Microsoft,

372
UI thread, 81
unicast communication model, 210
unsolicited broadcast, 211
UnsolicitedBCastClient console output,

213
UnsolicitedBCastServer console output,

213
Web service registration, 376
Web service stack, 380
Web services, 353
Web-service platform high-level

components, 359
Web-service project created with Visual

Studio .NET, 362
Web-STP, 401
while loop code, 126
Windows Form Designer, 419
WS-Addressing achieves transport

standardization, 398
WS-MetadataExchange, 399
WS-Policy enforces constraints and rules,

395

WS-Referral implements STP provider
hub, 399

WS-Security secures SOAP message, 385
WSE architecture, 381
WSE configuration configures Web service

policies, 397
WSE Configuration dialog box, 382
WSE set-up options, 382
WSE settings dialog box, 383

file formats, examples of, 144
filenames, changing for Web services, 364
FileStream subclass of Stream class,

description of, 117
fills, relationship to orders, 7
financial marketplace, primary objectives in,

41
financial markets, anonymity in, 42
finite state machine, components of, 444
firm quote, definition of, 10
FIX (Financial Information Exchange)

protocol
popularity of, 304
significance of, 19

flags, relationship to fragmentation and IP,
182

floor brokers, overview of, 8, 10
foreach keyword, using with iterators, 459
formatter configuration, setting up in

hosting service controller, 260
formatter layer, relationship to proxy in .NET

Remoting, 241
formatters. See remoting formatters
forward engineering, explanation of, 423
forward lookup, relationship to DNS, 184
forward-only parsers, types of, 122–123
fragment offset, relationship to IP, 182
fragmentation

disabling in IP, 217
relationship to IP (Internet protocol),

182
frames, role in networking, 179
front office

instrument mapping in, 109
origination of orders in, 109
relationship to STP, 28

front running, explanation of, 10
front-office systems

characteristics of, 30
using C/C++ with, 30

full-covered concept, relationship to risk
management, 20

full-duplex TCP connection, explanation of,
194

full-type fidelity mode of serialization
engine, explanation of, 132

functional requirements, integrating
operational requirements with, 277

■INDEX 493

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 493

fund managers
activities of, 303
interactions with brokers, 320

funds settlement, overview of, 26–27
FxCop tool, features of, 477

■G
garbage collection, automation in .NET, 32
GCs (garbage collectors), types of, 464
<gcServer> element, adding to configuration

file, 464
GCSettings helper class, example of, 465
General Electric Company

buying for arbitrage, 414
price differential for, 411

GenerateCodeFromCompileUnit, converting
object graph to text with, 433

generic classes versus generic methods, 454
generic collections, overview of, 456–457

See also .NET collections
generic delegates, overview of, 456
generic methods, overview of, 454, 456
generic type constraints

class constraint, 452–453
inheritance constraint, 454
interface constraint, 453
overview of, 452
parameterless constructor constraint,

453–454
reference constraint, 453
value type constraint, 453

generic type parameters
associating multiple constraints on,

453
associating rules with, 452

generic types
base class of, 451
creating instances of, 451
inheritance on, 451

generic-aware remote classes, prerequisite
for, 474

generic-aware remote order container code
sample, 474

generics
role in .NET 2.0, 447, 451
using with order container, 449–450

GetLifetimeService method, returning lease
objects with, 270

GetObject of Activator class, using with
instances of remote objects, 260

GetString method of Encoding.ASCII class,
extracting bytes with, 190

GTC (good till cancelled) order, explanation
of, 43

GTD (good till date) order, explanation of, 44
GZipStream class in System.IO.Compression

namespace, definition of, 467

■H
handshaking

occurrence of, 261
relationship to transport layer, 191

hardware components, role in networking,
178

hash algorithms
examples of, 323
passing data to, 322

hash tables, using, 57
hash values

generating, 323–324
verifying with digital signature, 327

Hashtable
creating proxy references in, 265
declaring for service directory, 264

head count, reducing with STP, 301
header checksum field, relationship to IP, 182
heartbeat, implementing between machines

with Ping, 470
heartbeat interval information, capturing in

key-value pair, 251
heartbeat messages

exchange of, 83
sending with server timer, 83
targeting to monitor NASDAQ exchange

gateway, 277
targeting to monitor NYSE exchange

gateway code sample, 276
heartbeat operational component,

description of, 237
heartbeat service

accessing core knowledge about, 260
connecting service controller to,

259–260
creating proxy instance for, 260
defining LogicalProcess class for, 246
enabling in AOP, 282
explanation of, 244–245
in AOP, 281
interaction with service controller, 265
modifying to demonstrate configuration

framework, 250
returning proxy reference to, 266
RPC version of, 255–256
URL location of, 260

HeartBeatService class, code for, 245–246
HeartBeatServiceInfo class, emitting

metadata information with, 256
HeartBeatServiceInfo type

description of, 260
registering in RPC, 258–259

hitting the bid, explanation of, 5
Host class

in hosting service controller, 260
using with broadcast engine, 233
using with infrastructure services, 257

■INDEX494

5645IDX.qxd 3/3/06 4:22 PM Page 494

using with primary controller, 294
using with service directory, 263–264

host ID, relationship to IP addresses, 181
host name, resolving to IP address, 184
hosts in networks

identifying, 185
multihomed hosts, explanation of, 189

house accounts, explanation of, 9
HTTP, use by Web services, 353
HTTP channel, description of, 258
HttpServerChannel class, description of, 258
human intelligence, overview of, 37
HybridDictionary specialized collection,

overview of, 58

■I
I’s (Intelligence) of performance in capital

markets
domain intelligence, 37
human intelligence, 37
machine intelligence, 36
overview of, 35

IAsyncResult, using with delegates, 61
IBCastMessage class, using with broadcast

engine, 223–224
IBM UDDI repository website, 371
ICMP (Internet Control Message Protocol),

relationship to IP layer, 182
ICodeCompiler, implementing in CodeDOM,

432
ICodeGenerator interface, implementing in

CodeDOM, 432
IComparable interface, using generic types

with, 451
IComparer instance, returning with

CodeDOM, 428
IComparer interface, sorting with, 53
IConfiguration interface, using in application

operation engine, 289
IController interface

implementing with PrimaryController,
290, 292

using in application operation engine,
286–287

ICryptoTransform interface, implementing,
315

identification field, relationship to
fragmentation and IP, 182

identifier attribute
explanation of, 146
using in CSV conversion rule, 148

IGMP (Internet Group Management
Protocol), relationship to routers, 214

IIS, DLL locking problem associated with,
252

ILease interface, controlling Lease class with,
268

ILogger interface, using in application
operation engine, 289

ILookUp interface
implementing for service directory, 264
using with service directory, 263

IMessageStore class, using with broadcast
engine, 224

IMethodInterceptor interface, implementing
with AuthorizationAdvice class in
AOP, 280

IModule class, using with broadcast engine,
228

impact cost, relationship to stock exchanges,
6

ImportParameters functionality, using with
digital certificates, 331

in- versus out-memory matching, 85
in-memory data, compressing and

decompressing, 467–468
in-memory generation of assemblies,

advantage of, 433
in-memory matching

explanation of, 85
options available for, 85
rationale for, 85

inactive (removed) order, explanation of, 88
indexes

computing, 12
overview of, 12–13

Indy.Sockets .NET library, features of, 478
information, relationship to transactions, 3
infrastructural services, providing with

middleware, 240
infrastructure components versus business

components, 237
infrastructure service controller, hosting, 266
infrastructure services

configuring, 250, 252
hosting, 257
operations supported by, 248
server-side implementation for, 255–256
shadow copying of, 252–253
storing proxy references of, 264

inheritance, performing on generic types,
451

inheritance generic constraint, overview of,
454

inheritance levels in cryptography,
explanations of, 312

InitializeLifetimeService class, invoking for
lease objects, 268

InitializeLifetimeService member, using with
RPC version of heartbeat service, 256

InMemoryStore class, using with broadcast
engine, 224

<input> construct, using with WSDL
documents, 357

■INDEX 495

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 495

insider, definition of, 11
institutional investor, explanation of, 19
institutional transactions, using STP in, 303
institutions versus retail customers, 20
instrument attribute of orders, explanation

of, 89
instrument master, using in trading chain,

109
instrumentation operational component,

description of, 237
instruments, mapping trees to, 87
instruments. See stocks
InsufficientMemoryException, generating,

464
integrity of data

explanation of, 307
overview of, 322, 324

IntegrityAttribute class, using in STP security,
334

interdepository transfers, management by
depositories, 16

interface generic type constraints, overview
of, 452–453

Interlocked class, relationship to atomic
operation, 73

internal STP, explanation of, 29
Internet layer of TCP/IP, explanation of, 179
interop attributes, using with message

framing, 204
interoperability. See also STP interoperability

overview of, 347, 349
of service providers, explanation of, 300

interprocess communication performance,
creating on same machine, 471

interthread notification, relationship to
multithreading, 68, 70

investors versus traders and dealers, 3
Invoke method, calling for bulk order form,

82–83
Invoke thread-safe member, exposing in

Windows control collection, 82
IOC (immediate or cancel) order,

explanation of, 44
IP (Internet protocol)

addressing in, 182
data length field in, 182
fragmentation and reassembling process

related to, 182
maintaining message integrity in, 182, 185
overview of, 179, 181
tweaking, 217

IP addresses
resolving host name to, 184
significance of, 180
subnet IDs in, 181

IP fragmentation, disabling, 217
IP MulticastLoopback, tweaking, 218

IP TTL and multicast TTL, tweaking, 217–218
IpcChannel, relationship to remoting, 471
IPEndPoint instance, using with market data

consumer, 189
IPHostEntry class, relationship to DNS, 185
IPO (initial public offering), explanation of, 2
IService

declaring for RPC, 254
declaring in .NET Remoting, 245

IServiceInfo interface, using with RPC, 254
ISIN codes

exchange code mapped to, 111
significance of, 109

ISIN element, XML Schema of, 139–140
ISIN master

example of, 148, 152
reading XML version of, 124–125
using XML with, 115–116
XML Schema of, 137–138

ISIN master XML document
assumptions made in, 136
validating with XmlValidatingReader class,

141–142
writing, 128, 130

ISINInfo type, annotating Serializable
attribute on, 133

ISINMaster root element, contents of, 141
ISO file format, example and description of,

145
ISponsor interface, implementing, 270
issuers, participation in market data

industry, 172
IsTransparentProxy helper static method,

using with transparent proxies, 261
IT structure, decentralizing for STP, 303
iterators, using with data structures,

459–460
IVs (initialization vectors)

generating, 315
relationship to CBC, 311

IWriter class, using in data conversion
framework, 161

■J
JIT-CC (just-in-time code cutting), features

of, 417, 423
JUSTRIGHT

■K
key information, storing in instance of

RSAParameters, 326
key pairs, generating and executing, 320
Key property of X509Certificate, retrieving

public key with, 331
key sizes

determining, 315
of symmetric ciphers, 313

■INDEX496

5645IDX.qxd 3/3/06 4:22 PM Page 496

support by symmetric algorithms, 310
supported by Rijndael, 315

key-value pair, capturing heartbeat interval
information in, 251

keys
encrypting, 321
generating, 315, 320–321
role in encryption and decryption, 309

■L
language-specific code provider,

constructing with CodeDOM,
432–433

late binding, providing with reflection, 436
latency, definition of, 35
layers of TCP/IP, relationship to networking, 179
lazy-loading technique, implementation in

remoting framework, 275
lead manager, definition of, 2
LeafContainer class of order-matching

engine, overview of, 94, 96
lease behavior, overriding default for, 268
Lease class, controlling with ILease interface,

268
lease manager, registering lease objects with,

269
Lease objects

associating new instance of, 268
getting reference to, 270
invoking InitializeLifetimeService class

for, 268
returning with GetLifetimeService

method, 270
leases

preventing renewal of, 270
renewing for remote objects, 269

leasing architecture of remote object
destruction, illustration of, 267

legacy systems, populating data from, 112
LegalBlockSizes property, using with

symmetric classes, 315
LegalKeySizes property, using with

symmetric classes, 315
lifetime management, performing in

remoting, 273
<lifetime> element of remoting

configuration, explanation of, 271
LIFO (last-in, first-out) data structures, stacks

as, 55–56
limit price order, explanation of, 44
liquidity

definition of, 4
measurement of, 41
relationship to transactions, 3

liquidity providers, specialists as, 10
list data structure, relationship to collections

and multithreading, 78

ListDictionary specialized collection,
overview of, 58

Listen method, using with market data
producer and TCP, 193

listing securities, effect of, 2
Listings

anonymous methods, 458–459
AOP-based heartbeat service, 281
asynchronous market data consumer

using TCP, 198–199
asynchronous market data producer with

TCP, 196–197
attributes, 132
client receiving broadcast message, 212
configuration file, 251
contract note information encrypted and

decrypted, 313–314
contract note information digitally

verified, 390, 392
contract note information encrypted and

decrypted, 318, 320
digitally signing contract note

information, 387, 389
Exchange element, 140
generic method, 454
generics used with order container, 449–450
hash value computed for contract note

data, 323–324
heartbeat message targeted to monitor

NYSE exchange gateway, 276–277
heartbeat message targeted to monitor

NASDAQ exchange gateway, 277
heartbeat service (RPC version), 255–256
heartbeat service configuration settings, 251
heartbeat service meta-information, 256
Heratbeat service (LPC version), 245
host translator, 184
hosting infrastructure service controller, 266
hosting infrastructure services, 257
hosting of service directory, 265
hosting service controller, 259–260
infrastructure service lookup, 263–264
ISIN master, 115
ISIN master CSV conversion rule file, 149
iterators, 459–460
market data (stock price) class, 203–204
market data consumer, 188–189
market data producer using TCP, 192–193
market data producer using UDP, 186–187
message framing, 204, 206
message header, 203
meta-information about infrastructure

service, 255
operations supported by infrastructure

services, 248
order container example related to

generics, 448–449

■INDEX 497

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 497

overriding remote object lease time, 268
reading XML version of ISIN master, 124
semaphore, 463–464
service controller remoting configuration,

272
signing and verification of contract note

data, 325–326
signing and verification of contract note

data using digital certificates,
325–330

solicited broadcast of market data,
214

sorting stock data, 425–426
stock data sort order customization,

428
stock data sorted using reflection,

437–438
stock data sorted with Reflection.Emit,

439, 442
STP-Provider B invokes STP-Provider

A Web service, 369
UDDI API programmatically determines

STP-Provider A Web service location,
378–379

unsolicited broadcast of market data,
211–212

Web service exposed by STP-Provider A,
364

writing ISIN master XML document, 128,
130

WSDL document for order management
Web service, 354, 356

WSDL for Web service exposed by STP-
Provider A, 365, 367

XML Schema of Exchange element,
140

XML Schema of ISIN element, 139–140
XML Schema of ISIN master, 137–138
XML Schema of root element, 141

lists, locking to ensure thread-safety of, 79
little-endian machine, explanation of,

201
local broadcasts

overview of, 210, 213
versus solicited broadcasts, 213

local objects
versus CAO objects, 243
definition of, 239

Location field, including in infrastructure
service, 255

location transparency, relationship to proxy
serialization, 263

lock keyword, as compiler-drive feature,
447

lock statement
form of, 422
using in code synchronization, 65

locks
acquiring in multithreading, 66
acquiring with Mutex, 70
heavyweight and lightweight locks, 70

log4Net framework, description of, 478
logging operational component, description

of, 237
logging service, invoking with order-

matching application, 297
LogicalProcess class

defining for heartbeat service, 246–247
introducing shadow copying in, 252–253
updating with overloaded constructor

method, 251
using service controller with, 249

LogManagement service, implementing for
application operation engine, 293

LookUp method
invoking in infrastructure service

controller, 266
using with proxy cache container, 265

loop attribute, using in CSV conversion rule,
148

loop attribute of bands, explanation of, 146
loopback address, example of, 181
loose coupling, availability in SOA, 351
LPC (local process communication)

overview of, 244, 249
relationship to .NET Remoting, 241

LPC Assembly Structure, overview of,
244–245

LPC projects, descriptions of, 244
LSB (least significant byte), relationship to

Intel-based machines, 201

■M
machine intelligence, overview of, 36
machine.config file, location of, 250
makecert utility

generating self-signed certificate with, 385
using with digital certificates, 328

managed objects
computing unmanaged size of, 207
field layout of, 204

Managed suffix, using with class names,
312

manual thread management, relationship to
code synchronization, 63–65. See also
multithreading; threads

ManualResetEvent class
role in interthread notification, 70
using with OrderProcessor, 98

margin trading, explanation of, 9
margining, implementing risk management

by means of, 22
market capitalization, relationship to

indexes, 13

■INDEX498

5645IDX.qxd 3/3/06 4:22 PM Page 498

market data
availability of, 177
example of, 173
overview of, 171–172
role in financial trading value chain, 173,

175
sending to multicast groups, 215
serializing into raw bytes, 194
timeliness of, 175, 177

market data consumers
asynchronous type of, 200
building for unsolicited broadcast, 212
for market data on multicast addresses,

215–216
overview of, 188, 190
using multicast groups with, 214–215
using TCP with, 194–195

market data engine, explanation of, 221
market data farm, explanation of, 220
market data industry, participants in,

172–173
market data producers

asynchronous type of, 195, 200
using TCP with, 192–193

market data service code sample, 72
market data service providers

differentiators in, 175
participation in market data industry,

172
market data vendors, significance of, 221
market entities and STP providers, examples

of, 348
market info cache client code sample,

473–474
market info cache server host code sample,

473
market information cache server

code implementation of, 472
implementing with IPC channel, 471
remoting configuration of, 472

market makers, overview of, 10–11
market price order, explanation of, 44
market transfers, management by

depositories, 16
market width and depth, relationship to

liquidity, 4
MarshalByRefObject, inheritance by

HeartBeatService class, 246
marshaling byte array from unmanaged

section of memory, 208
master detail file format, example and

description of, 145
matching process. See order-matching

engines
Math.NET open source library, description

of, 478
matrix, plotting data in, 145

Matrix class, using in data conversion
framework, 155–156

MBR (marshal-by-reference) objects. See
remote objects

MBV (marshal-by-value) objects. See mobile
objects

MD5 algorithm, hash values produced by,
323

MDP (market data producer) and MDC
(market data consumer) example,
186, 190

members. See brokers; stock-exchange
members

memory gate, overview of, 464
MemoryStream subclass of Stream class,

description of, 117
merchant banker, definition of, 2
message digest

computing for digital signature, 325
relationship to data integrity, 322

message framing, relationship to networking,
202, 209

message integrity, maintaining in IP, 182, 185
<message> element looks like for the order

management Web service, 357
message-processing unit, role in Web-service

platforms, 360
message-routing capabilities, availability in

Web services, 399–400
messages

grouping with <operation> element,
357

in SOAP, 358–359
managing for STP and Web services, 401
representing in WSDL documents, 357
triggering in networks, 179

messaging backbones, examples of, 235
meta-information

about infrastructure service, 255
defining for RPC version of heartbeat

service, 256
metadata, role in code generation, 416
metadata specification, overview of, 398
Microsoft Corporation, arbitrage on, 413
Microsoft test registry database, using with

Web services, 372, 378
Microsoft UDDI repository website, 371
middle office

reference data held by, 109
relationship to STP, 29

middle-office systems, implementation of, 30
middleware

role in .NET Remoting, 240
services offered by, 240

MktDataMessage class, using with broadcast
engine, 231, 233

MMC.NET Library website, 478

■INDEX 499

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 499

mobile objects
definition of, 239
using in .NET Remoting, 248

mode attribute value in custom Errors
element, managing remoting error
handling with, 274

model risk in arbitrage, explanation of, 407
model-driven code generators, features of,

417, 422
Monitor class

ensuring thread-safe access to shared
resources with, 64

implementing order book with, 64–65
versus Mutex synchronization

mechanism, 70
solving deadlock problems with, 67

monitors and mutexes versus semaphores,
462

Mono implementation of CLR standard, web
resource for, 32

Mono initiative, description of, 480
MSB (most significant byte), relationship to

Intel-based machines, 201
MSFT order book processing, thread priority

of, 43, 75–76
MSIL, emitting with classes in

System.Reflection.Emit namespace,
439

MSS (maximum segment size), relationship
to TCP, 191

MTU (maximum transmission unit),
relationship to IP, 182

multibyte value, converting from host byte
order to network byte order, 201–202

multicast address, example of, 216
multicast groups

defining, 215
formation of, 214
receiving data published on, 216
sending market data to, 215
using with market data consumers,

214–215
multicast server and client, running, 216
multicast TTL scope, description of, 217
multicasts, overview of, 213, 216
multihomed host, explanation of, 189
multithreaded behavior, providing with

Socket, 196
multithreaded problems, guarding timer

code from, 84
multithreading. See also manual thread

management; threads
and asynchronous delegate infrastructure,

60, 63
and atomic operation, 73
and collections, 77–78, 80–81
and deadlock prevention, 65, 68

and interthread notification, 68
and manual thread management, 63, 84
and Mutex synchronization mechanism,

70, 72
and server timer, 83–84
and thread pools, 59–60
and thread scheduling, 74, 77–78
and UI widgets, 81, 83
overview of, 59

Mutex synchronization mechanism,
overview of, 70, 72

mutexes and monitors versus semaphores,
462

mutual fund managers, building of positions
in indexes by, 12

■N
Nagle algorithm, relationship to TCP, 220
namespaces

representing in CodeDOM, 429
System.Collection namespace, 85
System.Threading namespace, 83

NAnt tool, features of, 477
NASDAQ (National Association of Securities

Dealers Automated Quotation),
significance of, 8

NASDAQ exchange gateway, heartbeat
message targeted to monitoring of,
277

NASDAQHeartBeatService class
authorization logic in, 280
requirements for, 277

navigation methods, using with XML,
127–128

NDepend tool, features of, 478
NDoc tool, features of, 478
negative correlation in price, relationship to

arbitrage, 406
.NET

features of, 32, 34
in equities market, 30, 34

.NET 2.0
and generics, 447, 451

.NET collections. See also generic collections
and arrays, 48–49
and hash tables, 57
and multithreading, 78, 81
and queues, 54
and stacks, 55–56
overview of, 48

.NET Compact Framework, explanation of,
33

.NET executable, role in remoting
framework, 241

.NET Framework BCL (base class library),
significance of, 38

.NET objects. See objects

■INDEX500

5645IDX.qxd 3/3/06 4:22 PM Page 500

.NET Reflector tool, features of, 477

.NET Remoting infrastructure, overview of,
240–242. See also remoting
framework

.NET specialized collections
HybridDictionary, 58
ListDictionary, 58

netstat.exe utility, features of, 468
network adapters, interacting with, 469
network address classes, list of, 181
network address type, defining for market

data producer, 188
network byte order, overview of, 201–202
network endpoint details, recording for Web

services, 185, 376
network hosts, identifying, 185
network information, gathering, 468, 471
network interface layer of TCP/IP,

explanation of, 179
network-related changes, detecting, 470
network-related problems, diagnosing with

PING, 183
networking

and broadcast, 209–210
and Internet protocol, 179–180, 185
and message framing, 202, 209
and transport layer, 185, 191, 195
overview of, 177, 179

networks, components of, 178
NetworkStream subclass of Stream class,

description of, 118
nodes

relationship to networks, 178
specifying for Buy and Sell, 87

NodeType property, using with XML, 126
nonrepudiation of data, explanation of, 307
NonRepudiationAttribute class, using in STP

security, 335
NonRepudiationProvider class, using in STP

security, 340–341
nonsignal state, relationship to interthread

notification, 70
notice of execution, issuing, 304
novation, relationship to order matching, 47
NSCC (National Securities Clearing

Corporation), relationship to NYUSE,
15

null values, returning for remoting classes,
269

nullable types, overview of, 461–462
NUnit tool, features of, 477
NYSE (New York Stock Exchange),

significance of, 8
NYSE arbitrage example, 409, 414
NYSE Composite Index, description of, 12
NYSE exchange gateway, heartbeat message

targeted to monitoring of, 276

NYSEHeartBeatService class, requirements
for, 277

■O
OAEP padding, using with asymmetric keys,

321
object endpoint information, assigning in

RPC, 259
object lifetime with leasing, 267
objects. See also remoting objects

characteristics of, 241
multiple facets of, 238–239
relationship to classes, 238
types of, 239

ObjRef class, relationship to proxy
serialization, 262

OBook.orderSync, requesting locks on, 67
off-market transfers, management by

depositories, 16
offer price, relationship to two-way quotes, 4
Office PIA (Primary Interop Assemblies),

defining arbitrage models with, 443
OMEHost class of order-matching engine,

overview of, 102–103
online trading, enablement by banks, 15
<operation> element, grouping messages

with, 357
operational components versus business

components, 237
operational requirements, integrating with

functional requirements, 277
operations team, importance of, 283
oral auction

explanation of, 42
order precedence rules for, 44

order, definition of, 42
order attributes, examples of, 107
order books

conceptualizing, 86
example of, 43
implementing with Monitor, 64–65
for matching, 46
versus position books, 66
pre-match version of, 45
segregating into tree structure, 87

Order class of order-matching engine,
overview of, 89–90

order containers
instantiating and updating on remote

machine, 474
providing, 449
using generics with, 449–450

order dispatcher, monitoring operations
performed by, 86

order ID
explanation of, 89
generating and assigning, 73

■INDEX 501

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 501

order initiation and delivery, process of,
19–20

order management Web service
mimicking functionality of, 71
WSDL document for, 354, 356

order matching
and containment of credit risk, 47
and conversion into trades, processes of,

22
and novation, 47
example of, 46
exchanges and brokers in, 42–43
in-memory matching, 85
logic of, 42–43
need for efficiency in, 41–42
order precedence rules related to,

44, 47
out-memory matching, 85
price priority rule in, 44
types of orders in, 43–44

order precedence ranking, example of, 45
order price, sorting, 53–55
order processors

foundation of, 86
performing bookkeeping with, 86
realizing queue of, 86

order routing and risk management,
processes of, 20, 22

order type attribute of orders, explanation of,
89

Order type instance, serializing and
deserializing, 466–467

data structures related to, 85
order-matching applications reference to

instance of DomainApp in, 297
order-matching engine classes

BizDomain class, 100–101
Container class, 92–93
ContainerCollection class, 93–94
EquityMatchingLogic class,

101–102
EquityOrder class, 91
LeafContainer class, 94, 96
OMEHost class, 102–103
Order class, 89–90
OrderBook class, 96, 98
PriceTimePriority class, 91–92

order-matching engines
designing for efficiency, 84
high-level implementation of, 86
Order class, 88
overview of, 38
VS .NET project structure of, 89

OrderBook class of order-matching engine,
overview of, 96, 98

OrderContainer<OrderObj>, instantiating,
451

OrderContainer<T> generic type,
significance of, 450

OrderEventArgs class of order-matching
engine, overview of, 98

OrderObj members, accessing inside generic
code, 452

OrderProcessor class of order-matching
engine, overview of, 98, 100

orders
adding, retrieving, and removing,

50–51
attributes of, 89
designing data containers for, 84
enumeration of, 79
generating with program trading engine,

414
matching component of, 88
originating in front office, 109
placing, 7
processing concurrently with thread

pools, 59
processing in FIFO manner, 55
ranking in order matching, 46
ranking with PriceTimePriority class,

91–92
sorting with generic method, 454
states of, 88
storing, 87
storing in hash tables, 57

orderSync, acquiring lock on, 66
out- versus in-memory matching, 85
out-memory matching, explanation of, 85
OutOfMemoryException, generating, 464
<output> construct, using with WSDL

documents, 357

■P
P/Invoke service, using with message

framing, 204
P/Invoke signatures website, 478
packets, determining ages of, 217
Padding, relationship to cipher mode, 315
padding information, including in

MessageHeader, 203
paired method, relationship to

XmlTextWriter object, 130
<param> XML tag for documentation

comments, description of, 421
parameterless constructor generic

constraint, overview of, 454
parametric polymorphism, relationship to

generics in .NET 2.0, 447
Parser class, using in data conversion

framework, 157–158
parsers. See XML parsers
parsing approach, implementing for

message framing, 204

■INDEX502

5645IDX.qxd 3/3/06 4:22 PM Page 502

partial types, spanning source code into
multiple files with, 460

partial-type fidelity mode of serialization
engine, explanation of, 132

passive (insert) order, explanation of, 88
Passport credential, using to publish Web

services, 372
pay-in and pay-out, in settlement, 28
pay-in and pay-out dates, explanations of, 26
PBook.posSync, requesting lock on, 67
percentage returns, calculating for arbitrage,

411
performance of applications, importance of,

35, 38
PING (Packet Internet Groper) Utility,

features of, 183
ping request, checking outcome of, 471
ping.exe command-line tool, features of, 470
pipe, relationship to proxy in .NET Remoting,

242
PipeContext class, using with broadcast

engine, 228–229
PKCS padding, using with asymmetric keys,

321
pledges, management by depositories, 16
point-cut in AOP, explanation of, 279
point-cut methods, identifying in AOP, 281
policies, overview of, 395–396
polling value, changing for lease manager,

269
Pop methods, using with stacks, 56
port 12000, honoring service controller

request on, 265
<port> elements, using with WSDL

documents, 358
<portType> element, using with WSDL

documents, 357
position books versus order books, 66
positional file format, example and

description of, 145
positive correlation in price, relationship to

arbitrage, 406
posSync, acquiring lock on, 67
post-trade activity, explanation of, 19
PostTradeService, enabling contract note

functionality with, 364
Power Collections tool, features of, 478
power of attorney, requirement by brokers,

17
pre-opening session, explanation of, 8
pre-trade, explanation of, 19
PreGenXMLSerializer.exe code sample,

465–466
price and time, basing order-matching logic

on, 42
price attribute of orders, explanation of, 89
price conditions order, explanation of, 44

price differentials
computing in arbitrage, 410
exploiting with arbitrage, 414

price priority order precedence rule,
explanation of, 44

prices, touchline prices, 7, 43
PriceTimePriority class of order-matching

engine, overview of, 91–93
primary controller

code sample, 294
explanation of, 284
remoting configuration for, 293–294
role in application operation engine, 283

PrimaryController, implementing for
application operation engine, 290,
292

principal transactions, explanation of, 9
private keys

decrypting messages with, 321–322
versus public keys, 317

PrivateKey.xml, contents of, 320
ProcessInfo property of LogicalProcess class,

using ServiceHost with, 249–250
processing tasks, offloading with CLR thread-

pool implementation, 457–458
processor balance, establishing between

multiple threads, 76
ProcessOrder static method, using with

thread pools, 60
producer components of broadcast engines,

descriptions of, 221–222
profile binding, performing in STP security,

333
ProfileInfo class, using in STP security,

336–337
profitable arbitrage, selecting, 412
program execution, consistency of, 63
program trading, explanation of, 19
program trading engine versus arbitrage

engine, 414
program trading system versus arbitrage

system, 408
protocol tweaking

IP DontFragment, 217
IP MulticastLoopback, 218
IP TTL and multicast TTL, 217–218
overview of, 216
Socket buffers, 219
Socket ReuseAddress, 218
Socket timeout, 219
TCP NoDelay, 220

protocols
FIX (Financial Information Exchange), 304
importance of, 302
relationship to networks, 178

Provider class, using in STP security,
339–340

■INDEX 503

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 503

proxies. See also real proxies; transparent
proxies

creating for remotable services, 260
overview of, 261, 266
real proxies, 261–262
role in caller interaction with remote

objects, 241–242
successful instantiation of, 260
transparent proxies, 261–262

proxy cache container, populating and
making available to service
controller, 265

proxy classes
using with WSE, 383
viewing code emitted by, 368

proxy instance, creating for heartbeat
service, 260

proxy objects, types of, 261
proxy references

returning to heartbeat service, 247, 266
returning to service controller, 263
storing for infrastructure services, 264

proxy serialization
secret behind, 262
significance of, 262

PSE (Philadelphia Stock Exchange) arbitrage
example, 409, 414

public key information, communicating, 327
public keys

initializing, 321
versus private keys, 317
retrieving with Key property of

X509Certificate, 331
public offering, definition of, 2
PublicKey.xml, contents of, 320
Pull forward-only parsers, description of, 123
pure arbitrage, explanation of, 406
Push forward-only parsers, description of, 122
Push method, using with stacks, 56

■Q
quantity attribute of orders, explanation of, 89
quantity precedence, role in order matching,

45
QueryServiceInfo method, using in .NET

Remoting, 249
queues, storing and retrieving data with,

54–55
QueueUserWorkItem static method, calling

for tasks in thread pools, 60
quick sort algorithm

availability of, 87
using with arrays, 51

quotes
receiving firm and soft quotes from

specialists, 10–11
receiving from specialists, 10

quotes for stock, two-way quotes, 4
quotes for stocks, referring to, 4

■R
race condition, explanation of, 64
RAIL (Runtime Assembly Instrumentation

Library) framework, description of,
479

RC2 symmetric algorithm, key sizes
supported by, 310, 313

Read method, using with XML, 125
reading comma-delimited version of ISIN

master, 119
real proxies, explanation of, 261–262. See also

proxies; transparent proxies
ReceiveFrom, invoking for market data

consumer, 189
recipients, participation in market data

industry, 173
refactoring, improving code readability and

maintainability with, 422
reference data

and framework for data conversion, 111,
115

cleaning, 112
overview of, 107–108, 115
role in order flow chain, 110

reference generic constraints, overview of,
453

reference types, using with containers, 449
ReferencedAssemblies attribute, using with

CodeDOM, 429
reflection

overview of, 434, 438
relationship to code generation, 417–418

Reflection API, definition of, 434
Reflection.Emit, code generation with, 439,

442
Reflector.FileDisassembler tool, features of, 477
Register method, using with sponsors, 270
RegisterChannel of ChannelServices class,

using in remoting infrastructure, 258
RegisterWellKnownServiceType static

member, using in RPC, 258
registry for STP provider consortium, using

UDDI as, 370
Regulator tool, features of, 478
remotable services, creating proxies for, 260
remotable type and channel, relationship

between, 259
remote generic type, client instantiation of,

475–476
remote object registration, separating from

channel information, 271
remote objects

controlling destruction of, 267
creating instance of, 260

■INDEX504

5645IDX.qxd 3/3/06 4:22 PM Page 504

default lease times assigned to, 268
definition of, 239
extending life of, 268
providing infinite lifetimes to, 269
registering, 258
renewing leases for, 269

remote order container, remoting
configuration of, 475

remoting
and debugging, 275
and error handling, 274–275
and lifetime management, 273
and security, 275
and versioning, 274
configuring, 271, 275
separating client and server configuration

details in, 273
remoting applications, applying generics in,

474
remoting architecture, extensibility of, 242
remoting channels, examples of, 258
remoting classes, packaging of, 257
remoting code

for configuration of market info cache
server, 472–473

for implementation of market info cache
server, 472

for market info cache client, 473
for market info cache server host, 473
shared assembly component of, 472

remoting components, identifying, 284
remoting configuration

code sample with service controller, 272
example of, 271
for primary controller, 293

remoting formatters, types of, 258
remoting framework, overview of, 471. See

also .NET Remoting infrastructure
remoting infrastructure, booting with

Configure method of
RemotingConfiguration class, 271

remoting objects, types of, 242–243. See also
objects

Remove method
overriding for collections and

multithreading, 79
using with Hashtable class, 57

Renewal method, using with ISponsor
interface, 270

repository for STP provider consortium,
using UDDI as, 370

requirement distillation, explanation of, 238
requirements. See business requirements
Resolve operation, using with DNS, 184
resources, relationship to networking, 178
responsiveness of applications,

measurement of, 35

retail customers
explanation of, 19
versus institutions, 20

retail transaction, process of, 20, 22
<return> XML tag for documentation

comments, description of, 421
returns on arbitrage, factors involved in,

409
reusability, availability in SOA, 352
reverse engineering, explanation of, 423
reverse lookup, relationship to DNS, 184
Rijndael symmetric algorithm

key sizes supported by, 310, 313, 315
listed features supported by, 314
using, 313–314

risk management
and order routing, processes of,

20, 22
role of market data in, 174–175

risks, for physical securities, 17
root element of XML Schema, example of,

141
round-turn transaction, relationship to

spread, 5
RoundRobinDispatcher class, using with

broadcast engine, 226–227
routers

relationship to multicast messages,
214

role in networks, 180
Row class, using in data conversion

framework, 154
RowParser class, using in data conversion

framework, 159
rows in data conversion framework,

explanation of, 146
RPC (remote process communication)

overview of, 254, 260
relationship to .NET Remoting, 241

RPC style, using with SOAP messages,
359

RPC.ServiceDirectory console project,
creating for service directory, 263

RPC.Services.exe.config configuration file,
creating, 272

RSACryptoServiceProvider
creating instance of, 321
creating new instance for digital

certificates, 331
creating new instance of, 320–321, 326

RSAParameters, storing key information in,
326

RTT (round-trip time (RTT), inclusion in
PING output, 183

rule file, role in data conversion framework,
147

rule schema, example of, 149, 151

■INDEX 505

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 505

rules
associating with generic type parameters, 452
capturing arbitrage strategies in form of,

443–444
rules and constraints, associating with Web

services, 396

■S
SAOs (server-activated objects), role in .NET

Remoting, 242
scalability, definition of, 35
scheduler, maintaining thread priority level

with, 75
Schemas property, using with

XmlValidatingReader class, 142
screen-based trading, explanation of, 7
search cost, reducing, 6
search costs, avoiding, 42
SectionData class, using in STP security,

338–339
SecureEnvelope class, using in STP security,

337–338
SecureSTPConsumer console application,

creating, 386
securities. See also stocks

considering in arbitrage, 410
examples of, 6

securities clearing account, logical
breakdown of, 27

securities obligation, overview of, 27–28
security. See also WS-Security specification

considering in remoting, 275
STP security, 39
types of, 32

security code mapping, examples of, 110
security framework code sample, 343–344
security in STP space. See STP-space security
security profile, role in STP security, 333
security type, defining for data, 333
SecurityProfileAttribute class, using in STP

security, 336
SEDOL (Stock Exchange Daily Official List)

codes, using, 109
SEDOL code mapping, example of, 110
segments, role in networking, 179
self-describing document, XML as, 116
Sell, specifying node for, 87
sell orders

processing, 21
sorting in order matching, 42

semaphores, counting semaphores,
462–463

SendData, completing asynchronous send
with, 198

Serializable attribute
annotating in .NET Remoting, 248
example of, 133

serialization
definition of, 131
example of, 135–136

serialization code for message framing, 206
serialization engines

modes of, 132
types of, 132

serialization logic, static linking of, 465
serialization process, explanation of, 202
server configuration details, separating from

client in remoting, 273
Server GC, description of, 464
server timers

enabling, 84
relationship to multithreading, 83–84
sending heartbeat messages with, 83

server-side implementation, defining for
infrastructure services, 255–256

server-side services, relationship to
application operation engine, 284

Service base class, using in application
operation engine, 289–290

service consumers, building with Visual
Studio .NET, 367

service controller and heartbeat service,
console output for, 260

service controller remoting configuration
code sample, 272

service controller request, honoring on port
12000, 265

service controllers
building, 244, 249
connecting to heartbeat service in RPC,

259–260
making proxy cache container available

to, 265
returning proxy reference to, 263
versus sponsorship, 270
updating to interact with heartbeat

service, 265
using LogicalProcess class with, 249

service directory
console output of, 267
hosting, 265
hosting as executable, 263
implementing functionality for, 263
interaction with heartbeat service, 265
relationship to proxy serialization, 263

service providers
custodian service provider, 299
STP service provider, 300

service proxies, using with STP and Web
services, 367

<service> element
explanation of, 271
using with WSDL documents, 358

ServiceHost, using with heartbeat service, 247

■INDEX506

5645IDX.qxd 3/3/06 4:22 PM Page 506

ServiceInfo class
using in .NET Remoting, 248
using in RPC, 254–255

ServiceLookUp class, creating instance of,
265

session key, explanation of, 322
SetSocketOption, using in unsolicited

broadcast, 212
settled transaction, explanation of, 28
settlement

between clearing members and clearing
corporations, 15

process of, 15
role of market data in, 175

settlement and clearing, processes of, 24, 28
settlement cycle, acceleration by

depositories, 17
settlement time

reducing with STP, 301
reduction by STP, 30

SGen tool, boosting start up performance of
XMLSerializer with, 465, 467

SHA algorithm, hash values produced by, 323
SHA1Managed, creating new instance of, 324
shadow copy mechanism, relationship to

infrastructure services, 252
share quantity, hiding, 44
shared assembly for remoting and generics

code sample, 474. See also
assemblies

shared keys. See symmetric keys
shared resources, using counting

semaphores with, 462–463
shareholders, definition of, 2
Shutdown, implementing with TCP half-

close feature, 194
signal state, relationship to interthread

notification, 70
signature keys, using with digital certificates,

331
SignData method, producing signature of

data with, 331
SignDataBroker method

invoking, 326
using with digital certificates, 330
verifying digital signatures with, 326

SignHash, passing hash value to, 327
simple type elements, nesting under

xs:schema element, 139
SingleCall objects, relationship to .NET

Remoting, 242
Singleton objects, role in .NET Remoting,

243–244
Singleton remotable classes, modeling

primary controller and agent as, 284
Singleton type, using in RPC, 258
size precedence, role in order matching, 45

SL (stop loss) order, explanation of, 44
smart card, explanation of, 332
SOA (service-oriented architecture)

and SOAP, 358–359
and Web services, 352–353
and WSDL, 354, 358
relationship to STP interoperability,

351–352
SOAP (Simple Object Access Protocol)

relationship to SOA, 358–359
relationship to Web services, 353

SOAP formatter, description of, 258
SOAP messages

processing by WSE, 381
securing with WS-Security, 385

SOAP serializer, explanation of, 132
SoapServerFormatterSinkProvider class,

description of, 258
Socket buffers, tweaking, 219
socket exception handler, including in

market data consumer, 189
Socket instance, creating for market data

producer, 187
Socket ReuseAddress, tweaking, 218
Socket timeout, tweaking, 219
Socket.Send, using with TCP, 202
Sockets

advisory about closing of, 188
creating for market data producer with

TCP, 193–194
providing multithreaded behavior with,

196
role in networking, 186
support for blocking and nonblocking

operations, 195
using asynchronous methods of, 197

soft quotes, receiving from specialists, 10
software components, role in networking,

178
solicited broadcasts, overview of, 213, 216
Sony Corporation, arbitrage on, 412
sort functionality, incorporating inside

generic order container, 454
SortCode class, defining in CodeDOM, 430
sorting

applying on user-defined attributes of
data elements, 52

data elements, 87
SOS (Son of Strike) WinDbg extension,

features of, 480
source address in IP header, significance of, 182
SourceMonitor tool, features of, 479
space, role in measuring algorithm efficiency,

48
specialists, overview of, 10–11
specialized class code generators, features of,

417, 423

■INDEX 507

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 507

specialized Stream classes. See also streams
BinaryReader and BinaryWriter, 120–121
TextReader and TextWriter, 120
XmlReader and XmlWriter, 122

specification, definition of, 359
speculative arbitrage, explanation of, 407
sponsors

building relative to current system time,
270

relationship to remote objects and leases,
269

using Register and Unregister methods
with, 270

spread
relationship to bid and offer prices, 5
relationship to stock exchanges, 6

Spring.NET framework, description of, 479
stacks, using, 55–56
Standard & Poor’s 500 index, description of,

12
standing instructions, providing for

depositories, 17
Start method

declaring virtual for
NASDAQHeartBeatService, 280

invoking for heartbeat service, 260
using with HeartBeatService class, 246

state-change event, explanation of, 83
stateful objects, description of, 243
stateless objects, description of, 242
static data element of business infoset,

overview of, 108
stock data

sorting, 424, 426
sorting with Reflection.Emit, 439, 442

stock exchanges
buying and selling on related to arbitrage,

413
examples of, 8
forms of trading supported by, 42
overview of, 6, 8
participation in market data industry, 172
role in order matching, 42–43
transitions in, 6

stock ownership, benefits of, 2
stock price custom class example of

CodeDOM, 424, 426
stock sort example using reflection,

37–438
stock-exchange members. See also brokers

becoming, 11–12
floor brokers, 8, 10
relationship to classes, 238
specialists, 10–11
trades between, 25

StockData, defining in shared assembly,
427

stocks. See also securities
versus bonds, 1
risks associated with, 17

Stop method, declaring virtual for
NASDAQHeartBeatService, 280

storage mechanism, considering for data
containers, 85

store component of broadcast engine,
description of, 222

StoreCollection class, using with broadcast
engine, 225–226

STP (straight through processing)
achieving, 303, 306
achieving internal STP, 332
and custodian service providers, 299
and single-point transaction fulfillment,

301
and Web services, 360, 370
cost savings associated with, 300
development of, 300
goal of, 331
implementing WS-Security in, 385
overview of, 28, 30
perspective of, 301, 303
reducing head count with, 301
reduction in settlement time associated

with, 301
standardizing interinstitution

communication with, 300
success of, 307

STP framework, illustration of, 306
STP interoperability. See also interoperability

challenges in achievement of, 350
overview of, 347
requirement of, 349
with several service providers, 348–349

STP marketplace, expectations related to, 348
STP process, enabling, 302–303
STP provider consortium

building, 372, 378
relationship to UDDI, 370, 379

STP provider hub, making available with WS-
Referral specification, 399

STP providers
activities of, 302
initiating communication with, 401
overview of, 300
registering, 373

STP security
conceptual design of, 332
importance of, 39

STP service provider network,
communication in, 305

STP settlements, significance of, 15
STP space

confidentiality in, 308, 322
illustration of, 307

■INDEX508

5645IDX.qxd 3/3/06 4:22 PM Page 508

STP-Provider A ASP.NET Web service project,
modifying to recognize digital
signature, 389–390

STP-space security
asymmetric keys in, 317, 322
confidentiality in, 308, 310
digital certificates in, 327, 331
digital signatures in, 324, 327
integrity in, 322, 324
overview of, 307–308
symmetric classes in, 312, 316
symmetric keys in, 310, 312

STPCertificateStore, installing certificate
published by broker in, 331

stream cipher, definition of, 309
Stream class, properties and methods

provided by, 118
streams, relationship to data stores, 117. See

also specialized Stream classes
subclasses as generic types, derivation of,

451
submission of instruction, initiation by

custodian, 306
SubmitContractNote operation, publishing

by Web service, 365
subnet ID in IP address, significance of, 181
substitution ciphers, strength of, 308
<summary> XML tag for documentation

comments, description of, 421
symmetric algorithms

examples of, 310
programmatic implementation of, 312

symmetric ciphers, key sizes of, 312
symmetric classes, relationship to STP-space

security, 312, 316
symmetric encryption versus asymmetric

encryption, 322
symmetric keys

in STP-space security, overview of, 310
using CBC (Cipher Block Chaining) mode

with, 311
using CFM (Cipher Feedback Mode) mode

with, 311–312
using ECB (Electronic Code Book) mode

with, 310
SymmetricAlgorithm class, subclassing and

extending, 312
SyncArrayList, deriving from ArrayList, 78
Synchronized static method defined in the

ArrayList class, using with thread-
safe lists, 78

SyncRoot property of ArrayList, relationship
to collections and multithreading, 79

System.Collections namespace data
structures

array lists, 49, 51
arrays, 48–49

hash tables, 56–57
and relationship to in-memory matching,

85
queues, 54–55
quick sort and binary search,

51, 54
stacks, 55–56

System.Collections.ArrayList, storing orders
in, 87

System.Collections.Generic namespace,
contents of, 456

System.IO.Compression namespace,
compressing data with, 467–468

System.Net.NetworkInformation namespace,
classes available in, 468

providing network-related information
with, 468

System.Object array, declaring for container,
449

System.Runtime.Remoting assembly,
remoting classes in, 257

System.Runtime.Remoting.ObjRef class,
relationship to proxy serialization,
262

System.Security.Cryptography namespace,
programmatic implementation of
symmetric algorithms in, 312

System.Threading namespace, Timer class
in, 83

System.Threading.ThreadPool class
functionality of, 74
representing thread pools in, 59

■T
T type parameter, replacing with OrderObj,

451
T+1 and T+2 settlements, prerequisite for,

17
T+1 initiative, significance of, 300
T+1 settlements

move toward, 29
significance of, 15

T+2 and T+3 environments, explanations of,
25

T+3 versus T+1, 349
T+3 to T+1 environment, relationship to STP,

302
taking the offer, explanation of, 5
TCP (Transmission Control Protocol)

using Socket.Send with, 202
using with asynchronous market data

consumer, 198–199
using with asynchronous market data

producers, 196–197
using with market data consumer,

194–195
using with market data producer, 192, 194

■INDEX 509

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 509

TCP buffer, role as sender window size and
receive window size, 192

TCP channel
description of, 258
remoting-related problem with, 471

TCP half-close, implementing with
Shutdown, 194

TCP NoDelay, tweaking, 220
TCP/IP, relationship to DNS, 183–184
TCPChannel, using as primary

communication channel, 284
TcpClientChannel class, using in hosting

service controller, 260
TcpServerChannel class, description of, 258
TCPTrace tool, features of, 479
techno-domain architects, overview of, 34
TextReader and TextWriter specialized

Stream classes, overview of, 120
thread affinity, support for, 76
Thread class, instantiating instance of, 70
thread pools, overview of, 59
thread priority levels, examples of, 75
thread safety, ensuring, 79, 81
thread scheduling, overview of, 74, 78
thread-safe list, example of, 78
threads. See also manual thread

management; multithreading
execution of, 74
limiting access by, 463
use of counting semaphores by, 462

throughput, definition of, 35
ticker plant, market data farm as, 220
time, role in measuring algorithm efficiency,

48
time and price, basing order-matching logic

on, 42
time stamp attribute of orders, explanation

of, 89
time to live field, relationship to IP, 182
timer architecture, importance of, 83
Timer class defined in the System.Threading

namespace, using, 83–84
timer code, guarding from multithreaded

problems, 84
timer event, explanation of, 83
TimeSpan.Zero value, returning for leases,

270
top-five functionality orders, enumerating, 79
touchline price, explanation of, 7, 43
ToXmlString method, using with keys, 320
trade book, example of, 46
trade confirmation, process of, 111
trade guarantee funds, relationship to

clearing corporations, 14
trade life-cycle steps

affirmation and confirmation, 23
clearing and settlement, 24, 28

order initiation and delivery, 19–20
order matching and conversion into trade,

22
order matching and conversion into trade

step of, 22
overview of, 18–19
risk management and order routing, 20

trade reconciliation process, initiation of, 24
traders versus investors and dealers, 3
trades

back-office functions of, 18
between members, 25
front-office functions of, 18
notifying with callback mechanism, 62–63
pre- and post-trades, 19

trading, justifications for, 3, 5
trading applications. See also application

operation engine
launching, 284
modularizing, 236
stopping and starting, 295–296

trading chain, using instrument master in,
109

trading operation-related services, example
of, 244

trading operational requirement, overview
of, 235, 238

trading session, definition of, 8
trading terminals, using, 19
trading value chain, division of, 109
transactions

addressing exceptions related to, 301
factors related to, 3
management by depositories, 16
settlement of, 28
settling with depositories, 15
splitting via novation, 47
using STP in institutional transactions,

303
Transmission Control Protocol/Internet

Protocol (TCP/IP), relationship to
networks, 178

transmission media, role in networking,
178

transparent proxies. See also proxies; real
proxies

explanation of, 261–262
serializable nature of, 262

transport layer of TCP/IP, overview of, 179,
185–186, 190–191, 195

transport unit, role in Web-service platforms,
360

TransportModule class, using with broadcast
engine, 231

transposition cipher, explanation of, 309
tree structure, segregating order books into,

87

■INDEX510

5645IDX.qxd 3/3/06 4:22 PM Page 510

tree-based parsers
overview of, 122
support for, 123

trees, implementing, 87
TripleDES, key size of, 313
TryEnter, using with Monitor class and

deadlocks, 67
two-way quotes

explanation of, 4
receiving from specialists, 10

Type class, relationship to reflection, 434
type parameter in generics, explanation of,

450
type safety

providing to instances of generic types,
451

resolving with generics, 449
typed DataSet, explanation of, 423
TypeLoadException, throwing in remoting

framework, 274
types

nullable types, 461–462
using partial types, 461

<types> element, using with WSDL
documents, 356

■U
UDDI (Universal Description, Discovery, and

Integration), using with STP provider
consortium, 370, 379

UDDI .NET assembly, using, 377, 379
UDDI .NET SDK, description of, 377
UDDI repository, building, 371
UDP (User Datagram Protocol)

drawbacks of, 190–191
relationship to transport layer, 186
versus TCP, 191
using with market data consumer, 188,

190
using with market data producer, 187
using with market data producer, 186

UI actions, examples of, 81
UI messages, generating, 81
UI threads

explanation of, 81
receipt of messages by, 82

UI widgets
creating in Windows Form Designer,

418
relationship to multithreading, 81, 83

UML model-driven generator, description of,
422

unbound type, relationship to generic type
parameters, 452

unboxing process, relationship to array lists, 50
unicast communication model, example of,

209

UnRegister method, using with sponsors, 270
unsolicited broadcasts

overview of, 210, 213
versus solicited broadcasts, 213

upload activity, making interactive, 81
Upload button, clicking for bulk order

upload form, 82
URI (uniform resource identifier), defining in

RPC, 258
URL location of heartbeat service, storage of,

260
Use the Centralized Connection Strings

Database website, 478
user authentication and profile operational

component, description of, 237
user event, explanation of, 83
user interface code generators, features of,

416, 418
user requirements, relationship to

application design, 36

■V
value type generic constraints, overview of,

453
value types

allowing storage of, 451
using with containers, 449

variable data element of business infoset,
overview of, 107

variables, relationship to classes, 238
Verify method

using with NonRepudiationProvider class,
341

using with provider class, 340
VerifyData, invoking for digital certificates,

331
VerifySignFM

mimicking fund manager with, 327
using with digital certificates, 330
verifying digital signatures with, 326

versioning, relationship to remoting, 274
virtual methods, using with Service base

class, 289
Visual Studio .NET

creating service consumer with, 367
creating Web services with, 364
creating Web-service project with, 361
enabling WSE support in, 381

■W
WaitCallBack delegates, using with thread

pools, 60
Wal-Mart Stores, arbitrage on, 413
Walt Disney Company

arbitrage on, 413
buying for arbitrage, 414
price differential for, 411

■INDEX 511

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 511

weaving rules, composing in AOP-based
heartbeat service, 280–281

Web References node, expanding, 368
Web service references, adding with wsdl

command-line tool, 367
Web service registration process, UDDI

information captured during, 371
Web services

addressing performance associated with,
400

and STP, 360, 370
associating rules and constraints to, 396
business-technology mapping for, 400
changing class names and filenames for,

363
creating with Visual Studio .NET, 364
expanding project hierarchy for, 368
fetching complete information about, 365
performance in financial market, 400
platform infrastructure for, 359–360
prerequisites for creation of, 361
publishing, 372
recording network endpoint details of, 376
relationship to SOA, 352–353
testing, 370
updating to verify digital signatures, 390,

392
Web-STP, requirements of, 400
websites

Alchemi framework, 478
Aspect#, 278
CLR Profiler tool, 479
CoverageEye.NET tool, 478
database connection strings, 478
Dotfuscator tool, 477
Enterprise Library, 479
Ethereal tool, 479
FxCop tool, 477
Indy.Sockets .NET library, 478
log4Net framework, 478
Math.NET open source library, 478
MMC.NET Library, 478
Mono CLR standard, 32
Mono initiative, 480
NAnt tool, 477
NDepend tool, 478
NDoc tool, 478
.NET Reflector, 477
NUnit tool, 477
P/Invoke signatures, 478
Power Collections tool, 478
RAIL (Runtime Assembly Instrumentation

Library), 479
Reflector.FileDisassembler, 477
Regulator tool, 478
SOS (Son of Strike)WinDbg extension, 480

SourceMonitor tool, 479
Spring.NET framework, 479
TCPTrace tool, 479
UDDI repositories, 371
Use the Centralized Connection Strings

Database, 478
WinDbg tool, 479
Windows System Utilities, 479
WS-Security, 384
WSDL specification, 354

well-formed document, example of, 116
“what” portion of the clearing problem,

answering, 25–26
“when” portion of the clearing problem,

answering, 25
where keyword, specifying code syntax of

generic constraints with, 452
“where” portion of the clearing problem,

answering, 25
while loop

using with Start method of
HeartBeatService class, 246

using with XML, 125
whitespace, managing in XML documents,

126
“whom” portion of the clearing problem,

answering, 25
Win32 process, role in remoting framework,

241
WinDbg tool, features of, 479
window size, relationship to TCP, 192
Windows Form Designer, code-generation

techniques in, 418
Windows scheduler, maintaining thread

priority level with, 75
Windows service manager versus service

controller, 244
Windows System Utilities website, 479
WinForm applications, bulkorder upload

form, 82
wizards, availability in VS .NET IDE, 420
worker threads

modifying UI widget properties from, 82
sending messages from, 82

Workstation GC, description of, 464
WrapClass factory method, using new

instance of
NASDAQHeartbeatService with, 282

writers in data conversion framework,
examples of, 148

WS-* specifications, overview of, 379–380
WS-Addressing specification, overview of,

397–398
WS-MetadataExchange specification,

overview of, 398
WS-Policy specification, overview of, 395–396

■INDEX512

5645IDX.qxd 3/3/06 4:22 PM Page 512

WS-Referral specification, overview of,
399–400

WS-Security specification, overview of, 384,
392–393, 395. See also security

WS-SecurityPolicy, activating, 396
WSDL (Web Services Description Language)

explanation of, 353
relationship to SOA, 354, 358

wsdl command-line tool, adding Web service
references with, 367

WSDL document, retrieving for use with Web
services, 365

WSE (Web Services Enhancement)
framework

implementing WS-Security features with,
385

overview of, 380, 384
using with digital certificates, 328
verifying digital certificates, 387

■X
<x509> element, explanation of, 387
X509CertificateStore, returning instance of,

331
XML (eXtensible Markup Language)

and COD (context-oriented data),
116–117

versus CSV, 116
and data arrangement uniformity, 116
and domain knowledge, 116
extensibility of, 117
overview of, 115–116
reading, 123, 128
use in Web services, 353
writing, 128, 131

XML data cleansing stages
cleansing, 113
enrichment, 114
import and conversion, 113

XML data writer, role in data conversion
framework, 148

XML documents
requirements for, 141
validating, 141

XML documents and CLR types, using
XmlSerializer class with, 133

XML fragment of messages between broker
and trading partners, 357

XML output
for data conversion example, 167
for refined conversion rule, 167–168

XML parsers
fast-forward parsers, 122–123
features of, 123
forward-only parsers, 122–123
overview of, 122

tree-based parsers, 122
using with bands, rows, and columns,

148
XML Schema

information captured by, 137
relationship to WSDL, 354

XML serialization, overview of, 131, 136
XML serializer, explanation of, 132
XML tags for documentation comments,

examples of, 421
XmlAnyAttribute attribute, description of,

134
XmlAnyElement attribute, description of, 134
XmlArray attribute, description of, 134
XmlArrayItem attribute, description of, 134
XmlAttribute attribute, description of, 134
XmlDataWriter class, using in data

conversion framework, 161–162
XmlElement attribute, description of, 134
XmlEnum attribute, description of, 134
XmlIgnore attribute, description of, 134
XmlNodeReader inherited class, using with

XmlReader, 123
XmlReader and XmlWriter specialized

Stream classes, overview of, 121
XmlReader class

explanation of, 123
inherited classes of, 123

XmlRoot attribute, description of, 134
XmlSerializer class

boosting start up performance of, 465, 467
relationship to JIT-CC, 423
using attributes with, 133–134

XmlTextReader class
properties and methods of, 126–127
role in data conversion framework, 147

XmlTextReader inherited class
using with XmlReader, 123
writing XML-aware code with, 123, 125

XmlTextWriter class
description of, 128
members and properties of, 130–131

XmlTextWriter object, instantiating, 130
XmlValidatingReader class

role in data conversion framework, 147
validating ISIN master of XML document

with, 141–142
XmlValidatingReader inherited class, using

with XmlReader, 123
XOR operations, using with CFM (Cipher

Feedback Mode), 312
XSD (XML schema definition)

overview of, 136, 143
using with conversion rule file, 149, 151

XSD document, role in data conversion
framework, 147

■INDEX 513

Find it faster at http://superindex.apress.com
/

5645IDX.qxd 3/3/06 4:22 PM Page 513

XSD form, representing ContractNoteInfo
type in, 367

XSD type system, using with WSDL
documents, 357

xs:schema element, elements nested under,
138–139

■Y
yield return and yield break statements, with

iterators, 460

■INDEX514

5645IDX.qxd 3/3/06 4:22 PM Page 514

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

5645IDX.qxd 3/3/06 4:22 PM Page 515

	Practical .NET for Financial Markets
	Contents
	CHAPTER 1 Introducing the Equities Market
	CHAPTER 2 The Order-Matching Engine
	CHAPTER 3 The Data Conversion Engine
	CHAPTER 4 The Broadcast Engine
	CHAPTER 5 The Application Operation Engine
	CHAPTER 6 STP Security
	CHAPTER 7 STP Interoperability
	CHAPTER 8 Equity Arbitrage
	CHAPTER 9 .NET 2.0
	APPENDIX A .NET Tools
	APPENDIX B References
	INDEX

