
Practical ELK
Stack

Build Actionable Insights and Business
Metrics Using the Combined Power of
Elasticsearch, Logstash, and Kibana
—
Gurpreet S. Sachdeva

www.allitebooks.com

http://www.allitebooks.org

Practical ELK Stack
Build Actionable Insights and
Business Metrics Using the

Combined Power of Elasticsearch,
Logstash, and Kibana

Gurpreet S. Sachdeva

www.allitebooks.com

http://www.allitebooks.org

Practical ELK Stack: Build Actionable Insights and Business Metrics Using the Combined
Power of Elasticsearch, Logstash, and Kibana

Gurpreet S. Sachdeva
New Delhi, Delhi
India

ISBN-13 (pbk): 978-1-4842-2625-4 ISBN-13 (electronic): 978-1-4842-2626-1
DOI 10.1007/978-1-4842-2626-1

Library of Congress Control Number: 2017931690

Copyright © 2017 by Gurpreet S. Sachdeva

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Technical Reviewers: Shyam Seshadri and Amit Singh
Coordinating Editor: Sanchita Mandal
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-2625-4/. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.allitebooks.org

To my mother and father

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xvii

About the Technical Reviewers �� xix

Acknowledgments �� xxi

Introduction �� xxiii

 ■Chapter 1: Introduction to the ELK Stack �������������������������������������� 1

 ■ Chapter 2: Shipping, Filtering, and Parsing Events
with Logstash ��� 19

 ■Chapter 3: Extending Logstash ��� 45

 ■Chapter 4: Creating, Indexing, and Deleting Data ������������������������� 57

 ■Chapter 5: Searching Data �� 81

 ■Chapter 6: Mapping and Analysis ��� 101

 ■Chapter 7: Data Exploration with Aggregates ���������������������������� 117

 ■Chapter 8: Exploring Kibana ��� 151

 ■Chapter 9: Kibana - Data Visualization ��������������������������������������� 159

 ■Chapter 10: The Kibana Dashboard �� 201

 ■Chapter 11: Designing for Scale ��� 215

 ■Chapter 12: The ELK Stack in Production ����������������������������������� 245

 ■Chapter 13: Real-Life Stories �� 287

Index �� 297

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xvii

About the Technical Reviewers �� xix

Acknowledgments �� xxi

Introduction �� xxiii

 ■Chapter 1: Introduction to the ELK Stack ��������������������������������������� 1

Log Analysis in Today’s World �� 1

The ELK Stack ��� 2

Elasticsearch �� 2

Logstash ��� 4

Kibana ��� 4

ELK Data Pipeline �� 5

ELK Stack Installation �� 5

Installing Elasticsearch ��� 6

Running Elasticsearch �� 6

Elasticsearch Configuration and Settings ��� 7

Installing Logstash�� 9

Running Logstash ��� 9

Installing Kibana ��� 14

Summary ��� 17

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

viii

 ■ Chapter 2: Shipping, Filtering, and Parsing Events
with Logstash ��� 19

Sample Dataset ��� 19

Data Format �� 20

Logstash Configuration ��� 21

Comments �� 24

Configuring for Events �� 24

Filtering Events ��� 27

Shipping Events ��� 30

Reloading Configuration File��� 33

Multiline Event Configuration ��� 34

Analyzing Events ��� 35

Data Visualization ��� 37

Summary ��� 43

 ■Chapter 3: Extending Logstash ��� 45

Plugin Management �� 45

Download and Installation ��� 46

Plugin Installation ��� 46

Updating a Plugin ��� 47

Uninstallation �� 47

Plugin Structure �� 47

Prerequisite �� 48

Basic Structure ��� 48

Building a Custom Plugin �� 51

Plugin Packaging �� 54

Summary ��� 55

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

 ■Chapter 4: Creating, Indexing, and Deleting Data ������������������������� 57

Ubiquity of Data ��� 57

Elasticsearch Cluster �� 58

Anatomy of a Document �� 59

Metadata Information ��� 59

Shard �� 61

Elasticsearch API ��� 61

Cluster Health and Configuration �� 62

Index Management �� 65

Specify Id �� 65

Document Management �� 67

Document Retrieval �� 67

Partial Document Retrieval ��� 69

Document Existence ��� 69

Multiple Document Retrieval �� 70

Document Updates ��� 72

Updating Documents Partially �� 72

Partial Updates with Scripts ��� 74

Conflicting Updates �� 74

Document Creation ��� 75

Document Deletion ��� 75

Bulk Operations ��� 76

Bulk Request Size ��� 79

Conflict Management �� 79

Summary ��� 80

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

x

 ■Chapter 5: Searching Data �� 81

Search Your Way �� 81

Simple Searches ��� 82

Searching Without Parameters ��� 84

Multi-Index, Multi-Type ��� 86

Pagination ��� 87

Search Lite �� 88

The _all Field �� 88

Query Mashup �� 89

Query DSL ��� 90

Query Clause Construction ��� 90

Working with Multiple Clauses ��� 91

Filter and Query �� 92

Key Filters and Queries ��� 93

Filter-Query Combination �� 97

Query Validation �� 99

Summary ��� 100

 ■Chapter 6: Mapping and Analysis ��� 101

Data Mapping and Analysis ��� 101

Exact Values and Full Text ��� 102

Inverted Index ��� 103

Data Analysis ��� 105

Prepackaged Analyzers �� 106

When to Use Analyzers ��� 107

You Can Test Analyzers ��� 107

Assign Analyzer �� 109

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xi

Data Mapping �� 109

Simple Field Types �� 109

Observe the Mapping ��� 110

Mapping Customization �� 110

Mapping Revision ��� 112

Mapping Test �� 113

Complex Field Types ��� 114

Summary ��� 116

 ■Chapter 7: Data Exploration with Aggregates ���������������������������� 117

Aggregation Basics ��� 117
Buckets ��� 117

Metrics �� 118

The Two Together �� 118

Fun with Aggregation �� 118
Metrics to the Rescue ��� 120

Buckets Within Buckets �� 122

Multiple Metrics �� 124

Data Visualization with Bar Charts �� 126

Time Series Aggregations ��� 132
Multi-Tier Correlation�� 135

Aggregation Scoping ��� 139
Global Bucket�� 141

Aggregations with Query Filters �� 142
Query with Filter ��� 142

Filter Bucket ��� 143

Post Filter ��� 144

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xii

Multivalue Bucket Sorting ��� 146
Intrinsic Sorts ��� 146

Metric-Based Sorting�� 147

Summary ��� 150

 ■Chapter 8: Exploring Kibana ��� 151

Introducing Kibana �� 151

Kibana Features �� 152

Kibana User Interface �� 152
The Discover Page �� 153

Query and Search Data ��� 155

Summary ��� 158

 ■Chapter 9: Kibana - Data Visualization ��������������������������������������� 159

The Visualize Page �� 159
Metrics and Bucket Aggregations ��� 160

Advanced Options ��� 162

Choosing a Search Data Source ��� 164

Visualization Canvas ��� 165

Building a Visualization ��� 168
Visualization Types ��� 168

Summary ��� 200

 ■Chapter 10: The Kibana Dashboard �� 201

Introduction to the Dashboard Page �� 201

Working with the Toolbar ��� 203
New Dashboard Option ��� 203

Adding Visualizations �� 203

Search Bar �� 205

Saving a Dashboard �� 205

Loading a Saved Dashboard ��� 206

Sharing the Saved Dashboard �� 207

 ■ Contents

xiii

Working with the Dashboard Canvas �� 208
Moving a Visualization �� 208

Resizing a Visualization �� 208

Editing a Visualization ��� 208

Removing a Visualization �� 209

Embedding a Dashboard in a Web Page ��� 210

The Debug Panel ��� 211
Table ��� 212

Request��� 212

Response �� 213

Statistics ��� 214

Summary ��� 214

 ■Chapter 11: Designing for Scale ��� 215

Elasticsearch Cluster for Scale ��� 215
Adding Nodes to Cluster ��� 215

Discovering Cluster Nodes �� 218
Multicast Discovery �� 218

Unicast Discovery ��� 219

Master Node Election ��� 220

Fault Detection ��� 221

Removal of Nodes from Cluster ��� 222
Decommissioning of Nodes �� 224

Upgrading Elasticsearch Nodes �� 225
Rolling Restart �� 225

Quick Restart �� 227

Cluster Information �� 228

Scaling Options ��� 230
Over-Sharding ��� 230

Data Slicing �� 231

Maximizing Throughput �� 232

 ■ Contents

xiv

Aliases ��� 233
Working with an Alias ��� 233

Creating Aliases �� 234

Camouflaging Documents with Filters�� 236

Routing �� 237
Significance of Routing��� 237

Routing Strategies �� 237

Determining Shards �� 240

Routing Configuration ��� 242

Routing in Combination with Aliases �� 243

Summary ��� 244

 ■Chapter 12: The ELK Stack in Production ����������������������������������� 245

Deployment Considerations �� 245
Memory �� 245

Disks ��� 246

Network �� 246

Java Virtual Machine �� 246

Data Management ��� 247
Request Grouping ��� 247

Elasticsearch Tuning�� 254
Lucene Segment Optimization �� 254

Cache Management �� 257

Configuration Management ��� 262
Better than Defaults�� 262

Monitoring and Troubleshooting �� 266
Health of the Cluster ��� 266

Examining Individual Nodes ��� 269

Cluster Statistics �� 276

Index Statistics ��� 277

Pending Tasks ��� 277

 ■ Contents

xv

Logging�� 278

Slowlog ��� 278

Rolling Restarts ��� 279

Backup and Restore �� 280

Cluster Backup ��� 280

Restoring from a Snapshot ��� 283

Summary ��� 285

 ■Chapter 13: Real-Life Stories �� 287

New Age Log Analysis ��� 287

Online Programmer Community - Stack Overflow ������������������������������ 287

Healthcare at Tips - Influence Health �� 288

Building Blocks ��� 288

Benefits �� 289

Real Time News - The Guardian �� 289

Building Blocks ��� 290

Benefits �� 291

Group Communication Service - HipChat �� 291

Product Features �� 292

Storage Architecture ��� 292

Telecommunication - Verizon Wireless �� 294

The Transition to Elasticsearch ��� 294

Benefits �� 294

Mobile Messaging Service - Tango ��� 295

The Move to ELK ��� 295

Summary ��� 296

Index �� 297

xvii

About the Author

Gurpreet S. Sachdeva is a technology leader with
20 years of experience working on some of the most
challenging technologies related to communication
software, enterprise computing, and cloud computing.
Gurpreet did his B. Tech (Computer Engineering) at
NIT, Kurukshetra and M.S. (Software Systems) at BITS,
Pilani. He is currently working as Director – Technology
at Aricent, Gurgaon. He is a keen Java enthusiast and
co-founder of Delhi - NCR - Java User Group. Gurpreet
is passionate about building cloud scale software and
managing it through the ELK stack along with other
DevOps tools.

Gurpreet is an invited speaker at prestigious
conferences like Oracle – Java One, Great India
Developer Summit, and Indic Threads. Gurpreet blogs
at www.thistechnologylife.com.

http://www.thistechnologylife.com/

xix

About the Technical
Reviewers

Shyam Seshadri is currently a senior engineer at
Amazon, and before that headed the engineering
for Hopscotch, an e-commerce company targeted at
moms, and founded Fundoo Solutions Private Limited,
a Tech startup specializing in JavaScript (AngularJS
& NodeJS) and BigData. He co-authored the book
on AngularJS for O’Reilly publications, and conducts
Hands-on AngularJS workshops across the globe.
A geek at heart, even an MBA from the Indian School of
Business couldn’t keep him away from the technology
space.

Amit Singh is the Director of Engineering with the
Analytics and Information Management Practice in
Cognizant Technology Solutions. He has a Bachelor’s
of Technology Degree in Computer Science from
MIET, Meerut and a Post Graduate Diploma in IT from
IIIT-Bangalore. He is a seasoned Big Data Architect
with expertise in Fast Data and Search based analytics.
His current area of focus is IoT Analytics and is also
currently pursuing PhD in Data Sciences from
IIIT-Bangalore.

xxi

Acknowledgments

Writing this book was a challenging task but it provided me an opportunity to explore
something new. As pages were created and added, I realized how difficult it is to fit all the
details of the ELK stack within the page limit. I hope I have done the topic justice.

This book would not have been possible without the support and encouragement of
quite a few people. First of all, a big thanks to the makers of Elasticsearch, Logstash, and
Kibana. This wonderful stack has kept me hooked and provided the motivation to write
this book.

My sincere gratitude goes to Apress, my publisher, for giving me the opportunity to
author this book. Many people at Apress provided their invaluable support to make this
book possible:

•	 Celestin Suresh John, Senior Manager, Editorial Acquisition: I met
Celestin at a conference in Bangalore and casually discussed the
idea of writing a book. Celestin was open to it and asked me to
share ideas. After circulating few ideas and discussing them, we
settled on this book. Thank you, Celestin, for having the confidence
in me and for setting up the Apress team to work with me.

•	 Sanchita Mandal, Coordinating Editor: I have had support from
Sanchita in so many ways: by providing valuable feedback on
draft chapters; helping to plan the book and the structure of the
chapters; encouraging me; guiding me on upcoming steps; and
helping me overcome bumps in the road.

•	 Laura Berendson, Development Editor: Laura has done an
awesome job reviewing the complete book contents in a limited
time and catching even the smallest errors in the book. She
played a major role in shaping the organization of individual
chapters and the overall book.

•	 Technical reviewers Amit Singh and Shyam Seshadri have done
a terrific job of reviewing the contents and sharing their valuable
feedback and comments. The reviewers' detailed feedback has
helped me to improve the book throughout the writing process.

•	 I remain obligated to my organization, Aricent, and my colleagues
for providing me opportunity to explore lots of interesting
technologies and experiment with them.

Finally, I would like to thank my wife, Ina, daughter, Jasmine, and son, Ishu. This
book would not have been possible without their unconditional love, support, and
encouragement.

xxiii

Introduction

“In God we trust. All others must bring data.”

—W. Edwards Deming, statistician, professor, and author.

We are living in an increasingly connected world, with the IoT and big data raising the
bar for the amount of data that can be comprehended. There is an increasing trend
of IT infrastructure moving to public clouds like Amazon Web Services and Microsoft
Azure, making log analytics platforms more and more critical. Isolating performance
issues becomes challenging due to factors like load fluctuation, dynamic number of
users, and change in environments. These issues cannot be monitored by traditional log
management systems. Similarly, almost all kinds of computing devices, systems, and
applications emit logs to indicate the state of these systems. Elasticsearch is uniquely
positioned to perform log management for both cloud scale systems and traditional
computing environments.

The ELK stack, Elasticsearch, Logstash, and Kibana, is a powerful combination of
tools to address log management and data analytics. Elasticsearch provides deep search
and data analytics capabilities. It is a distributed, multitenant-capable, full-text search
engine with an HTTP web interface and schema-free JSON documents. Logstash enables
centralized logging, log enrichment, and parsing. It facilitates centralized data processing
of all types, normalizing varying schema and formats. Kibana provides powerful and
beautiful data visualizations. It provides visualization capabilities on top of the content
indexed on an Elasticsearch cluster. In short, the ELK stack makes searching and
analyzing data easier than ever before.

What Is This Book About?
I was first introduced to the ELK stack three years back while working on a project

to centralize logs and provide analytics on top of it. I was impressed by the capabilities
of this suite of tools and realized its potential to skim though huge quantities of logs
and provide elegant visualizations for it. Through this book I want to showcase the
amazing capabilities of Elasticsearch, Logstash, and Kibana. Just as it has helped me in
troubleshooting many challenging situations, I hope the readers will also benefit in a
similar manner.

This book will first introduce the ELK (Elasticsearch, Logstash, and Kibana) stack,
starting with showing how to set up the stack by installing the tools and the basic
configuration. Then it will demonstrate building a basic data pipeline using the ELK
stack. Next, you’ll explore the key features of Logstash and its role in the ELK stack,
including creating Logstash plugins, which will enable you to use your own customized
plugins. The importance of Elasticsearch and Kibana in the ELK stack is also covered,
along with various types of advanced data analysis, and a variety of charts, tables, and
maps. This book will cover the practical cases where the ELK stack is being used to

 ■ IntroduCtIon

xxiv

provide actionable insights. Detailed coverage is given to production-related aspects and
scaling the stack.

How Is the Book Organized?
Chapter 1 emphasizes the importance of log analysis in today’s big data-crazy

world. It analyzes the challenges with log analysis. It presents the ELK stack as a thorough
solution for log analysis. Different components of the ELK stack (Elasticsearch, Logstash,
and Kibana) are introduced with a description of their functions and installation.

Chapter 2 gets you started with using Logstash for log generation, collection, and
filtering. It begins with introducing the configuration settings of Logstash. It then goes on
to illustrate how Logstash facilitates shipping of logs, filtering, and transforming any type
of data to a common format. This can further help in arriving at actionable insights.

Chapter 3 throws light on the internal organization of Logstash and its plugins.
Logstash has a diverse collection of input, filter, codec, and output plugins. An overview
of the common plugins is provided. It then shows you how to create and use your own
custom plugin.

Chapter 4 introduces data management using Elasticsearch. This chapter shows
how to add data, index it, update it, and delete it. It goes on to show how to work with
distributed document stores.

Chapter 5 explores the elaborate mechanism for searching for data available in
Elasticsearch. It also illustrates Query DSL and filters.

Chapter 6 examines how Elasticsearch maps data. It then goes on to show how to
map data for relevant analysis.

Chapter 7 explores the subject of aggregates. It provides a top-level view of the entire
set of documents. This is unlike queries, which just focus on a particular document. It
also covers grouping of documents into buckets.

Chapter 8 introduces Kibana. It explains basic concepts and key features.
Chapter 9 shows how to work with Kibana by illustrating its interface to filter

and visualize log messages gathered by Elasticsearch. It covers the main interface
components, and demonstrates how to create searches, visualizations, and dashboards.

Chapter 10 covers the last piece in the Kibana armor: the dashboard. Various
visualizations can be combined to give a holistic view using a dashboard. This serves as a
single area for visualizing and analyzing data in real time.

Chapter 11 provides guidance on scaling the ELK cluster. This enhances the
capability to handle more data, index many more datasets, and search data faster. In
these days of cloud computing and NoSQL databases, scaling is very important because
there are situations when it is required to process millions or even billions of documents.
It’s not always possible to support this kind of load with one instance of Elasticsearch.

Chapter 12 addresses the key aspects of running the ELK stack in a production
environment. Monitoring the different components and troubleshooting any problem is
quite important. Custom configurations are required for specific scenarios.

Chapter 13 highlights some of the real life stories of how the ELK stack is being used
for a diverse set of scenarios. The ELK stack has transcended from the realm of lab trials
to live multinode clusters. These success stories should encourage you to experiment
with the ELK stack for your data storage and search needs.

Who Should Read This Book?
This book is for anybody who is dealing with data. The ELK stack can help in

solving existing problems and open the way to new features that have yet to be rolled
in. This book is for beginners and experienced users alike. While the beginners will get

http://dx.doi.org/10.1007/978-1-4842-2626-1_1
http://dx.doi.org/10.1007/978-1-4842-2626-1_2
http://dx.doi.org/10.1007/978-1-4842-2626-1_3
http://dx.doi.org/10.1007/978-1-4842-2626-1_4
http://dx.doi.org/10.1007/978-1-4842-2626-1_5
http://dx.doi.org/10.1007/978-1-4842-2626-1_6
http://dx.doi.org/10.1007/978-1-4842-2626-1_7
http://dx.doi.org/10.1007/978-1-4842-2626-1_8
http://dx.doi.org/10.1007/978-1-4842-2626-1_9
http://dx.doi.org/10.1007/978-1-4842-2626-1_10
http://dx.doi.org/10.1007/978-1-4842-2626-1_11
http://dx.doi.org/10.1007/978-1-4842-2626-1_12
http://dx.doi.org/10.1007/978-1-4842-2626-1_13

 ■ IntroduCtIon

xxv

introduced to the concepts, the more experienced reader will gain an understanding
of how these concepts have been implemented and how they interact. Whether you
are developing features or providing DevOps support, the use of the ELK stack will go a
long way in building systems that provide amazing insights and business metrics out of
different data sources.

I wish you all the best in your journey of exploring the ELK stack.

1© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_1

CHAPTER 1

Introduction to the ELK
Stack

Traditionally, logs are lines of text intended for offline human consumption. With the
advent of the cloud and big data, there has been a phenomenal shift in what can be
logged. Systems can now log any piece of structured or unstructured data, application
logs, transactions, audit logs, alarms, statistics, or even tweets. Add to this the scale of
logs. The earlier methodology of human analysis would not work in this kind of scenario.
There has to be some automated mechanism for log analysis and deciphering useful
information from them.

This chapter begins the journey of next generation log analysis by emphasizing
the importance of log analysis in today’s connected world. It introduces the troika of
Logstash, Kibana, and Elasticsearch, which is one of the most popular open source
solutions for logs management. The three products together are known as the ELK stack
and they provide an elegant solution for log management. Key features of each of them
will be described along with installation and configuration steps.

Log Analysis in Today’s World
Almost all kinds of computing devices, systems, and applications emit some kind of log
to indicate the state of the system. Put simply, a log is just a stream of messages in a time
sequence. They may be directed to files and stored on a disk or directed to a log collector.
Raw logs are just data, but when they are processed and analyzed, they provide useful
information. Log analyzers take as input the mass of data produced by our firewalls,
routers, IDS, and applications, and turn that data into actionable intelligence.

Whenever a developer or system admin faces an issue with the system, the first
instinct is to look at the logs. For a long time, we have relied on basic tools like grep,
awk, or perl to perform log analysis. However, with changing times and cloud-scale
applications, the earlier techniques no longer suffice. Imagine a system with tens,
hundreds, or thousands of hosts. There are multiple instances of different applications
running on all these hosts. To make things more interesting, these hosts may not be

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2626-1_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2170-9_1

Chapter 1 ■ IntroduCtIon to the eLK StaCK

2

located at the same location, and we may have to deal with millions of lines in logs. In
such a world, it is not possible to troubleshoot problems by using earlier-used tools or
just looking at one particular host. Add to this the fact that the logs may be generated in
different time zones, formats, and even in different languages. What is required a holistic
log generation, parsing, storage, and analysis solution.

More and more IT infrastructure is moving to public clouds such as Amazon Web
Services and Microsoft Azure, making log analytics platforms more and more critical.
Performance isolation is not trivial in cloud-based infrastructures. There are many factors
for this, like load fluctuation on virtual machines, the dynamic number of users, and
change in the environment. These issues can be monitored only by a next generation
log management platform that can scan through different sources like system logs, web
server logs, application logs, and ELB and S3 logs on AWS. Proper log analysis can help
DevOps engineers, system administrators, site reliability engineers, and developers to
make better decisions.

The ELK Stack
The ELK Stack (Elasticsearch, Logstash, and Kibana) is made up of open source projects
that take data from any source and any format and then search, analyze, and visualize
it in real time. It offers a next generation log management platform which addresses
the issues associated with heterogeneity and scale of logs. At the heart of the ELK stack
is Elasticsearch, which is a distributed, open source search and analytics engine. It is
based on Apache Lucene and is designed for horizontal scalability, reliability, and easy
management. Logstash is a data collection, enrichment, and transportation pipeline. The
ability to integrate connectors with common infrastructure gives Logstash the power to
process multiple types of log, event, and unstructured data sources for distribution into a
variety of outputs, including Elasticsearch. The ELK stack is completed by Kibana, which
is a data visualization platform that enables interaction with data through stunning,
powerful graphics. Kibana can bring data to life with dashboards leveraging a range of
visuals from histograms to geomaps.

Let’s deep dive into each of these components.

Elasticsearch
Elasticsearch is a search server based on Apache Lucene. It provides real-time,
distributed, multitenant-capable, full-text search engine capability. It provides a RESTful
API using JSON documents. It can be used for full-text search, structured search,
analytics, or a combination of all three. Elasticsearch is developed in Java and is released
as open source under the terms of the Apache 2.0 license. One of its key features is the
ability to search fast by indexing the text to be searched.

Many search engines have been available for a long time with the ability to search
on the basis of timestamp or exact values. So, what’s the big deal about Elasticsearch? It
differentiates by performing full text search, handling synonyms, and scoring documents
by relevance. Moreover, it can also generate analytics and aggregation from the same data
in real time. This is where Elasticsearch scores above other search engines. Elasticsearch
will make you fall in love with your data.

Chapter 1 ■ IntroduCtIon to the eLK StaCK

3

Elasticsearch is quite popular in many big companies. The following are some use
cases:

•	 Netflix uses Elasticsearch to deliver millions of messages to
customers on any given day across multiple channels like email,
push notifications, text, voice calls, etc.

•	 Salesforce has built a custom plugin on top of Elasticsearch that
enables the collection of Salesforce log data, facilitating insights
into organizational usage trends and user behavior.

•	 The New York Times uses Elasticsearch to put all 15 million of its
articles published over the last 160 years. This enables awesome
search capability on the archives.

•	 Microsoft is using Elasticsearch for search and analytics
capabilities across various products like MSN, Microsoft Social
Listening, and Azure Search.

•	 EBay has used Elasticsearch to build a flexible search platform
and is further leveraging it for data analytics.

If the above use cases give you an impression that Elasticsearch is only for large
corporations, then let me assure you that it is being used in many startups and small
corporations also. The beauty of Elasticsearch is that you can run it on your laptop or
scale it out to hundreds of servers and petabytes of data.

Now let’s look at some of the key features of Elasticsearch:

•	 It provides real-time search and analytics of your data.

•	 Elasticsearch is a truly distributed system and can run from a
humble laptop to thousands of nodes.

•	 It can be deployed as highly available clusters with support for
multitenancy. Upon the addition of a new node or failure of a
node, it reorganizes and rebalances data automatically.

•	 Elasticsearch provides a user-friendly RESTful interface using
JSON over HTTP. All data or information is stored as structured
JSON documents.

•	 Elasticsearch is built on top of Apache Lucene and is available as
open source software under the Apache 2 license.

 ■ Tip Multitenancy is a software architecture in which a single instance of an application
or service supports multiple customers (tenants) while ensuring privacy and security for
these customers.

Chapter 1 ■ IntroduCtIon to the eLK StaCK

4

Logstash
Instead of using the traditional ways of generating and analyzing logs, which has its own
pitfalls, it is much better to use Logstash, which is the next generation logging framework.
Logstash is essentially an integrated framework for log collection, centralization, parsing,
storage, and search. It is an open source software that can dynamically unify data from
disparate sources and normalize the data into destinations of your choice.

Logstash enables any type of event to be enriched and transformed with a broad
array of input, filter, and output plugins, with many native codecs further simplifying
the ingestion process. Logstash provides insights by harnessing a greater volume and
variety of data. Logstash can take input from various input mechanisms like files, Syslog,
TCP/UDP, stdin, and many others. There is an extensive bouquet of filters that can be
applied to the collected logs to transform the events. Logstash does not disappoint while
outputting data because it supports multiple options like TCP/UDP, files, email, HTTP,
Nagios, and many other network services.

Logstash has an extensible architecture and a developer-friendly plugin ecosystem.
Logstash is the most popular event collection framework for consumption of data
shipped from mobile devices to intelligent homes, connected vehicles, healthcare
sensors, and many other industry-specific applications. It offers near real-time insights
immediately at index or output time. Logstash offers many aggregations and mutations
along with pattern matching, geo mapping, and dynamic lookup capabilities. Forwarding
these logs from Logstash to Elasticsearch allows for performing a diverse range of
mappings, aggregations, and searching.

Kibana
Kibana is an open source analytics and visualization platform that works on top
of Elasticsearch. It can be used to search, view, and interact with any structured or
unstructured data stored in Elasticsearch. It facilitates advanced data analysis seamlessly
and enables visualization of data in a variety of histograms, charts, graphs, tables, and maps.

Understanding large volumes of data is quite intuitive with Kibana. This is enabled
by the simple browser-based interface that lets you quickly create and share dynamic
dashboards, which can display changes to Elasticsearch queries in real time.

Some of the key features of Kibana are the following:

•	 Seamless integration with Elasticsearch allows visualization of
any kind of structured or unstructured data. Data pushed into
Elasticsearch from any source can be visualized easily.

•	 Better understanding of data by representing it in various forms,
like bar charts, line and scatter plots, histograms, pie charts, and
maps.

•	 Integration with Elasticsearch's powerful analytics capabilities
helps to analyze data from different angles.

•	 It’s easy to set up and use. Kibana's flexible interface makes it
easy to create, save, share, export, and embed visualized data for
further communication.

Chapter 1 ■ IntroduCtIon to the eLK StaCK

5

ELK Data Pipeline
The ELK stack works on the concept of chaining one component with another. This
creates a data pipeline, which is illustrated in Figure 1-1.

Each application runs a logstash shipper at its end, which pushes the logs to the
central Logstash server known as the indexer. The use of a shipper at the application
ends avoids the need to have a full installation of Logstash everywhere. As you can see,
the central Logstash indexer can receive logs from multiple applications. From there,
the logs are transmitted to Elasticsearch cluster. Kibana can be utilised to query the
Elasticsearch cluster to display awesome charts and build dashboards.

ELK Stack Installation
The best way to understand the capabilities of the ELK stack is to get your hands dirty
exploring it. The first step is to install all the three components. The prerequisite for
installing the ELK stack is the latest version of the Java runtime. At a minimum, Java 7 is
required although it is better to install the latest version. It is recommended to install Java
8 update 20 or later, or Java 7 update 55 or later. Previous versions of Java 7 are known to
have compatibility issues with Elasticsearch.

The latest version of Java can be downloaded from www.java.com. Before proceeding
ahead with the installation, verify the Java version in the following manner:

author@DataNode:~$ java -version
java version "1.8.0_91"

appserver#1

Logstash
(Shipper)

Logstash
(Shipper) Elasticsearch

Kibana
(Visualization)

Logstash
(Shipper)

Logstash
(Indexer)

appserver#2

appserver#3

Indexer Storage and Index-Based Querying

Figure 1-1. Example of ELK data pipeline

http://www.java.com/

Chapter 1 ■ IntroduCtIon to the eLK StaCK

6

java(TM) SE Runtime Environment (build 1.8.0_91-b14)
java HotSpot(TM) 64-Bit Server VM (build 25.91-b14, mixed mode)

Installing Elasticsearch
At the time of writing this book, the latest version of Elasticsearch is 2.3.3 and can be
downloaded from www.elastic.co/downloads/elasticsearch.

curl -L –O https://download.elastic.co/elasticsearch/elasticsearch/
elasticsearch-2.3.3.tar.gz
tar -zxvf elasticsearch-2.3.3.tar.gz
cd elasticsearch-2.3.3

 ■ Tip You can also use debian or rpM packages provided on the download page to
install elasticsearch. alternatively, you can also use the officially supported pupper module
or Chef cookbook.

Installing Elasticsearch is that simple. Now you are ready to run it.

Running Elasticsearch
In order to start Elasticsearch, execute the following command:

bin/elasticsearch

 ■ Tip You can run it in the background as a daemon by using the -d option.

It is very simple to test whether Elasticsearch is running properly or not. Just enter
the following command in another window:

curl 'http://localhost:9200/?pretty'

You should get the following output:

{
 "status" : 200,
 "name" : "Hazard",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "2.3.3",
 "build_hash" : "218bdf10790eef486ff2c41a3df5cfa32dadcfde",
 "build_timestamp" : "2016-05-17T15:40:04Z",
 "build_snapshot" : false,
 "lucene_version" : "5.5.0"

http://www.elastic.co/downloads/elasticsearch

Chapter 1 ■ IntroduCtIon to the eLK StaCK

7

 },
 "tagline" : "You Know, for Search"
}

 ■ Tip the name (hazard, in this case) depends on the elasticsearch version and varies
across different elasticsearch versions.

Elasticsearch Configuration and Settings
The following sections cover the configurations and settings.

Environment Variables
The JAVA_OPTS passed to JVM is accessible within the Elasticsearch scripts. The most
common practice is to use -Xmx to set maximum allowed process memory and use -Xms
to set the minimum allocated memory for the process.

It is a best practice to not use JAVA_OPTS but instead to use an ES_HEAP_SIZE
environment variable to set the heap memory allocated to the process. It is recommended
to set both the minimum and maximum process memory to the same value.

 ■ Tip Make sure the heap size is not more than 32GB or half of the system’s raM.

System Configuration
Before starting to use Elasticsearch, increase the number of open File Descriptors to 32K
(even 64K is fine). If you want to see how many files the process can open, start it with
-Des.max-open-files set to true. This will print the maximum number of open files with
which your installation of Elasticsearch can work.

As part of process scheduling, almost all operating systems try to use as much
memory as possible for file system caches and promptly swap out unused application
memory. This, in some cases, may result in Elasticsearch getting swapped out. You have a
few options to ensure that Elasticsearch does not get swapped out.

•	 Disable Swap: If Elasticsearch is the only serving process on a
system, you can simply disable swap. On Linux system you can
use the following command:

sudo swapoff -a

•	 Configure Swappiness: You can reduce the kernel's tendency to
swap by setting vm.swappiness to 0.

Chapter 1 ■ IntroduCtIon to the eLK StaCK

8

•	 mLockAll: In this option, you can use mlockall on Linux/Unix
systems, or VirtualLock on Windows, to try to lock the process
address space into RAM, preventing any Elasticsearch memory
from being swapped out.

Elasticsearch comes with the following configuration files:

•	 elasticsearch.yml: This is used for configuring different
Elasticsearch modules.

•	 logging.yml: This is used for configuring the Elasticsearch
logging.

 ■ Tip Set the environment variable ES_HOME to point to the elasticsearch home folder.

Both these configuration files can be found under the ES_HOME/config folder. The
configuration format is YAML.

To specify the network address where all components will bind and publish to, use
the following settings in elasticsearch.yml:

Network.host : 10.0.0.4

The path of data and log files can be changed in the following manner:

path:
 logs: /var/log/elasticsearch
 data: /var/data/elasticsearch

It is a good practice to specify name for a cluster in production and this can be done
as follows:

cluster:
 name: <NAME OF YOUR CLUSTER>

 ■ Tip don’t reuse the same cluster names in different environments; otherwise you
might end up with nodes joining the wrong cluster. For instance, in order to avoid confusion,
you could use logging-dev, logging-stage, and logging-prod for the development, staging,
and production clusters.

In order to make troubleshooting easier, it is better to change the default node name
for each node to something like the display hostname.

node:
 name: <NAME OF YOUR NODE>

Chapter 1 ■ IntroduCtIon to the eLK StaCK

9

Installing Elasticsearch Plugins
Elasticsearch comes with a rich set of plugins that make easy the tasks of managing
indexes, clusters, and so on. Some of the more commonly used plugins are Marvel, Kopf,
Sense, Shield, and so on.

Marvel is a plugin that does management and monitoring. It has an interactive
console called Sense, which makes it seamless to communicate to Elasticsearch
directly from your browser. To download and install Marvel, run this command in the
Elasticsearch directory:

bin/plugin install license
bin/plugin install marvel-agent

In order to disable data collection, run the following command:

echo 'marvel.agent.enabled: false' >> ./config/elasticsearch.yml

Installing Logstash
Logstash is written in Ruby and it's available as a tarball. At the time of writing this book,
the latest version of Logstash is 2.3.3 and can be downloaded from www.elastic.co/
downloads/logstash.

 ■ Tip don’t install Logstash from the Elasticsearch folder.

curl -L https://download.elastic.co/logstash/logstash/logstash-2.3.3.tar.gz
tar -zxvf logstash-2.3.3.tar.gz
cd logstash-2.3.3

You are now all set to run Logstash with the basic configuration.

Running Logstash
After unpacking the tarball and changing to the resulting directory, the Logstash binary
can be launched with command line options. The following example demonstrates
Logstash working interactively:

bin/logstash -e 'input { stdin { } } output { stdout {} }'

 ■ Tip Start providing input data once you see the message “Pipeline main started”.

http://www.elastic.co/downloads/logstash
http://www.elastic.co/downloads/logstash

Chapter 1 ■ IntroduCtIon to the eLK StaCK

10

Let’s type something in the command prompt:

hello logstash

You should see the following output:

2016-07-04T12:07:47.446Z DataNode hello logstash

You can see that Logstash is being run with the stdin input and stdout output, and
this configuration prints whatever you type in a structured format as the output. The -e
flag enables quick testing of the configuration from the command line.

Now let's see the codec setting for a pretty formatted output using a configuration
file. Let's call the configuration file as sample.conf; its contents are as follows:

input {
 stdin { }
}

output {
 stdout {
 codec => rubydebug
 }
}

The configuration file contains two blocks: input and output. These are two of three
types of plugin components in Logstash that you can use. The third type is filter; you’ll
learn more about this in later chapters. Each type configures a different portion of the
Logstash agent.

•	 inputs: How events get into Logstash

•	 filters: How you can manipulate events in Logstash

•	 outputs: How you can output events from Logstash

Each component block can have an associated plugin. In the example above, the
input block has stdin plugin and the output block has stdout plugin. The stdout plugin has
a codec with a value of rubydebug, which helps in outputting each event as a JSON hash.

Now let’s run Logstash with the configuration file.

bin/logstash agent --verbose -f sample.conf

Now let’s give some input:

Hello World

The following is the output:

{
 "message" => "Hello World",

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to the eLK StaCK

11

 "@version" => "1",
 "@timestamp" => "2016-07-04T12:13:22.667Z",
 "host" => "DataNode"
}

The generated output contains the following components:

•	 “message”: Includes the complete input message or the event line

•	 “@timestamp”: Includes the timestamp of the time when the
event was indexed; or if date filter is used, this value can also use
one of the fields in the message to get a timestamp specific to the
event

•	 “host”: Represents the machine where this event was generated

Logstash with Elasticsearch Output

 ■ Tip Make sure elasticsearch is already running.

The most common deployment scenario in an ELK platform is to configure Logstash
to output all inputs to an Elasticsearch instance:

bin/logstash -e 'input { stdin { } } output { elasticsearch { host =
localhost } }'
bin/logstash -e 'input { stdin { } } output { elasticsearch {hosts =>
["localhost:9200"]} }'

You can see the indexes in Elasticsearch through http://localhost:9200/_search.
component

Configuring Logstash
Logstash configuration files are in JSON format, with separate sections for each type of
plugin that you want to add to the event processing pipeline. For example,

This is a comment. You should use comments to describe
parts of your configuration.
input {
 ...
}

filter {
 ...
}

Chapter 1 ■ IntroduCtIon to the eLK StaCK

12

output {
 ...
}

Plugins can be configured in each section. If you specify multiple filters, they are
applied in the order of their appearance in the configuration file.

Often Logstash consumes a significant amount of memory. This can put a
tremendous stress on small machines trying to send logs. It also has some requirements
like Java installation on the platform. This makes running full-blown Logstash everywhere
more of a hassle. Thankfully, Logstash installation can be split into two key components:

•	 Logstash Agent: The central component that collects data from
all the sources.

•	 Logstash Forwarder: The client component installed on all the
machines that pushes data to Logstash agent.

In order to optimise on memory requirements, you can use the Logstash forwarder
(previously known as Lumberjack). The forwarder uses Lumberjack's protocol to ship
compressed logs in a secured manner. This leads to a reduction on resource consumption
and bandwidth. It has a flexibility of directing output to multiple destinations. There are other
options also, like using rsyslong on Linux machines or using nslog on Windows machines.

Installing Logstash Forwarder
After downloading the latest Logstash forwarder release from the download page
(https://github.com/elastic/logstash-forwarder), prepare the configuration
file. It contains input plugin details and ssl certificate details to establish a secure
communication between your forwarder and indexer servers. Run the forwarder using
the following command:

Logstash forwarder -config Logstash forwarder.conf

The forwarder configuration is specified in forwarder.conf. In Logstash, you can
use the Lumberjack plugin to get data from the forwarder:

input {
 lumberjack {
 # The port to listen on
 port => 12345

 # The paths to your ssl cert and key
 ssl_certificate => "path/to/ssl.crt"
 ssl_key => "path/to/ssl.key"

 # Set the type of log.
 type => "log type"
 }

https://github.com/elastic/logstash-forwarder

Chapter 1 ■ IntroduCtIon to the eLK StaCK

13

Extending Logstash Functionality
Logstash comes with several plugins, which can extend its functionality. These plugins
come in the form of self-contained packages called gems and can be found at RubyGems.
Details of some of the major plugins can be found in the following sections.

Logstash Input Plugins

You can use input plugins to push events into Logstash. Input plugins have common
configuration options.

•	 Beats: This can be used to forward logs on servers to other
machines for further processing. Being lightweight, it consumes
minimal resources.

•	 Date: You can use this plugin to look for dates in fields. Thereafter,
you can use that date as the logstash @timestamp for the event.

•	 File: This plugin constantly monitors files for any changes and
pulls the new content as soon as it is appended. These new
changes are then streamed as events.

•	 Filter Plugins: This plugin offers an optional facility where the
original events can be modified and manipulated.

•	 GEOIP: This plugin fetches geographical location information
from IP addresses. The logs are then enhanced with the location
information.

•	 Grok: This plugin is the “heart and soul” of Logstash filters. It is
quite popular for giving the proper form to unstructured data.
You first define a search and then extract parts of the log line into
structured fields.

•	 Lumberjack: This plugin utilizes the Lumberjack protocol to
receive events. The Lumberjack protocol is not only secure, but
is also reliable, has low latency offers, and needs lower resources.
The use of the logstash-forwarder client makes it fast and lighter
as compared to logstash.

•	 Multiline: If you want to transform multiline messages from a
single source into one logstash event, then go for this plugin.

•	 TCP: This is the best way to forward events coming over a TCP
socket. Every event is treated as one line of text.

Logstash Codecs

Codecs can be used to encode or decode output or input data. Some common codecs are
the following:

Chapter 1 ■ IntroduCtIon to the eLK StaCK

14

•	 Default: Use the default “plain” codec for plain text with no
delimitation between events.

•	 json: It encodes JSON events in inputs and decodes JSON
messages in outputs.

•	 json_lines: Use this codec to receive and encode JSON events
delimited by \n or to decode outputs with JSON messages
delimited.

•	 rubydebug: This codec allows you to output Logstash events as
data Ruby objects, thereby helping in debugging.

Logstash Output Plugins

Logstash outputs are the end stage of the event pipeline. Before completing the event
pipeline, you can use output plugins to forward the output to a particular destination.
Some popular output plugins are the following:

•	 Redis: Redis is a very popular key-value in-memory data store
and can be used as a buffer layer for the data pipeline. You can
push the events to Redis by using the Redis plugin which utilizes
RPUSH.

•	 Kafka: Kafka is a fast, scalable, and fault-tolerant commit log
service. It can be used to provide the functionality of a distributed
messaging system. You can use the Kafka plugin to write events
to Kafka topic by leveraging the Kafka Producer APIs.

•	 Stdout: This is plain vanilla simple output that prints to the stdout
of the shell where logstash is running. It can be quite helpful for
debugging plugin configurations

Installing Kibana
At the time of writing this book, the latest version of Kibana is 4.5.1 and is compatible with
Elasticsearch 2.3.x. It can be downloaded from www.elastic.co/downloads/kibana.

curl -L –O https://download.elastic.co/kibana/kibana/kibana-4.5.1.tar.gz
tar -zxvf kibana-4.5.1.tar.gz
cd kibana-4.5.1

 ■ Tip Before running Kibana, make sure that elasticsearch is installed and its http
service is running on port 9200 (default).

Run Kibana to start the node and cluster using the following command:

bin/kibana

http://www.elastic.co/downloads/kibana

Chapter 1 ■ IntroduCtIon to the eLK StaCK

15

To verify that Kibana is installed and running properly, open http://
localhost:5601 in your browser (see Figure 1-2).

Kibana Configuration
Inside the Kibana installation, there is a config folder that contains the configuration file
(config/kibana.yml). Some of the important configuration settings are as follows:

•	 port controls the port to use and has the default value of 5601.

•	 host is the property to set which host to bind with; the default
value is “localhost”.

•	 elasticsearch_url points at your Elasticsearch instance, the
default being http://localhost:9200.

Kibana Interface
Kibana interface consists of four main components: Discover, Visualize, Dashboard,
and Settings.

Figure 1-2. Kibana configuration

Chapter 1 ■ IntroduCtIon to the eLK StaCK

16

Discover

Kibana provides a Discover page for exploring matching data as per selected index
pattern. On this page, you can query data, search with a filter, and view data from a
document. You can also see the count of matching results and statistics related to a field.
If you configure the timestamp field in the indexed data, it will also display, by default, a
histogram showing distribution of documents over time.

Visualize

Kibana provides Visualize page to create new visualizations. These can be on the basis
of different data sources, such as an already saved search, a new search, or a saved
visualization. You can create the following visualization with Kibana 4:

•	 Area chart: Use area charts to see the overall contribution of
several different series.

•	 Data table: If you have raw data of a composed aggregation, you
can use a data table to see it.

•	 Line chart: This makes it convenient to compare different series.

•	 Markdown widget: This can expose free-form information or
instructions about your dashboard.

•	 Metric: Great for displaying a single number on your dashboard.

•	 Pie chart: Makes it easy to visualize each source’s contribution to
a total.

•	 Tile map: Ties together the results of an aggregation with
geographic points.

•	 Vertical bar chart: A general-purpose chart.

These visualizations can be saved, used individually, or can be used in dashboards
(see Figure 1-3).

Chapter 1 ■ IntroduCtIon to the eLK StaCK

17

Dashboard

The dashboard is a collection of saved visualizations in different groups. You can arrange
these visualizations freely with a drag-and-drop kind of feature. They can be ordered as
per the importance of the data. Dashboards can be easily saved, shared, and loaded at a
later point in time.

Settings

You can use Settings page to configure Elasticsearch indices that you want to explore. You
can also specify various index patterns. This page shows various indexed fields in one
index pattern and data types of those fields. You can also create scripted fields, which are
computed on the fly from the data.

Summary
This chapter covered a basic understanding of the ELK stack. It also elaborated why we
need log analysis, and what makes the ELK stack so popular. It provides step-by-step
instructions to install, configure, and run Elasticsearch, Logstash, and Kibana.

The next chapter will show you how to use Logstash for building a data pipeline for
analysis.

Figure 1-3. Kibana visualization

19© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_2

CHAPTER 2

Shipping, Filtering, and
Parsing Events with
Logstash

In the previous chapter, you saw an overview of each component of the ELK stack
(Elasticsearch, Logstash, and Kibana). You now have all of these components installed
and configured. The importance of log analyses was stressed and the challenges
associated with log analysis were specified. The cloud and big data have led to a variety of
log formats tailored for specific applications.

In this chapter, you will learn how to ship log events, filter them, and send the
output somewhere. This will enable you to build your first basic data pipeline using the
components of the ELK stack. It will also demonstrate the power and simplicity of the
components of the ELK stack to build an end-to-end data pipeline.

Before starting with the examples of this chapter, make sure that you have already
installed Elasticsearch, Logstash, and Kibana as described in the previous chapter.

Sample Dataset
You are going to use the daily maximum temperature from January 1, 1986 to December
31, 2010, as recorded at Pasadena, CA, Station 046719. This information is provided by
The Carbon Dioxide Information Analysis Center (CDIAC). This organization serves as
the primary climate-change data and information analysis center of the U.S. Department
of Energy (DOE). This dataset will help you understand the concept of log analysis using
the ELK stack.

 ■ Tip This dataset can be downloaded from the following location:

http://cdiac.ornl.gov/ftp/us_recordtemps/sta424/tmax_serial/CA_6719tmax.txt

http://cdiac.ornl.gov/ftp/us_recordtemps/sta424/tmax_serial/CA_6719tmax.txt

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

20

The sample data has the following fields:

•	 Station Number (i.e., 046719: two-digit state code, followed by
four-digit station code)

•	 Day of Year (1-365)

•	 Year

•	 Month

•	 Day of Month

•	 Tmax (Maximum Temperature)

For the purpose of this analysis, you will use data starting from January 1, 1986. You’ll
remove the data field of Station Number because it is a constant in your dataset. You’ll
also remove records where there is no valid value for Tmax.

Data Format
The most significant fields are Timestamp and the daily Maximum Temperature. A snippet
of the data can be seen in Table 2-1.

Table 2-1. Daily Maximum Temperatures

Station Number Day of Year Year Month Day of Month Maximum
Temperature

046719 1 1986 1 1 62

046719 2 1986 1 2 63

046719 3 1986 1 3 65

046719 4 1986 1 4 66

046719 5 1986 1 5 66

046719 6 1986 1 6 73

046719 7 1986 1 7 74

046719 8 1986 1 8 72

046719 9 1986 1 9 76

046719 10 1986 1 10 82

Since the station number is redundant, you’ll remove it for the purpose of analysis.
The year, month, and day of month have been combined to provide the timestamp.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

21

This data has to be put in a format and location that is accessible to the ELK stack.
Let's see how the CSV data looks by using the UNIX head command:

$ head tmax.csv
1,1986-01-01,62
2,1986-01-02,63
3,1986-01-03,65
4,1986-01-04,66
5,1986-01-05,66
6,1986-01-06,73
7,1986-01-07,74
8,1986-01-08,72
9,1986-01-09,76

Each row corresponds to the maximum temperature of a day. Now that you are
familiar with the dataset, let's see how to set up the ELK data pipeline by processing the
data using Logstash, indexing it in Elasticsearch, and visualizing it using Kibana.

Logstash Configuration
Before proceeding with log analysis, Logstash has to be configured to accept input from
a particular source and in a particular format. In order to read, parse, and filter different
types of data, Logstash enables you to specify different types of inputs, outputs, and
filters. This is facilitated by a diverse set of plugins. In order to read data from a file, the
file plugin can be used.

Each line in the source file is treated as a separate event and streamed by the file
input plugin. In running systems, typically the log files rotate. The file input plugin has
the ability to detect file rotation and handle it accordingly. This it does by maintaining the
last read location. New data is automatically detected if the correct configuration is done.
Files are read in the following manner:

tail -0f

File input configuration typically looks like the following:

input {

 file {
 path => #String (path of the files) (required)
 start_position => #String (optional, default "end")
 tags => #array (optional)
 type => #string (optional)
 }

}

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

22

A brief description of the configuration settings is as follows:

•	 path: It is the only mandatory field in the file input plugin and is
used to specify the path of the file from where input events have to
be received and processed.

•	 start_position: Logstash can start reading from any point in
the source file and this point is specified by “start_position”. It
can take the value of “beginning” or “end”. In order to read live
streams, specify the default value of “end”. Only if you want to read
any historical data do you need to specify a value as “beginning”.

•	 tags: This field helps in filtering and processing events. Any
number of filter strings can be specified as an array for this
purpose.

•	 type: In order to mark a specific type of events, you can categorize
a specific type of events by using this field. Type is added to a
document that is indexed in Elasticsearch. It can be later viewed
in Kibana under the _type field. For example, you can assign type
as “critical” or “warning”.

 ■ Tip put tmax.csv at the path /opt/logstash/input.

Since the dataset you are going to analyze is in a source file, you are going to use the
file input plugin. The configuration will look like the following:

input {
 file {
 path =>"/opt/logstash/input/tmax.csv"
 start_position =>"beginning"
 }
}

The path of the input CSV file is specified as the path attribute. Since the dataset is
historic, the start_position is specified as “beginning”.

 ■ Tip if there is more than one input file, the corresponding sections can be specified for
file input plugin.

You can use glob expressions to specify a group of files.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

23

The configuration varies according to the plugin type. Often there are cases where a
plugin may require the value to be of a certain type such as string or array. The following
value types are supported:

•	 Array: If you want to specify multiple values, then use the array
type. Specifying the same setting multiple times appends to the
array. Let's look at the following example for illustration:

path => ["/var/log/*.log", "/var/log/postgresql/*.log"]
path => "/var/log/apache/*.log"

As you can see, this example specifies path to be an array with an
element for each of the strings.

•	 Boolean: The value of a Boolean type can be either true or false.
Take care that the true and false keywords are not within quotes.
For example,

ssl_enable => false

•	 Bytes: This field is a string field representing a valid unit of bytes.
It provides a convenient way to use specific sizes in plugin options. It
support both base-1000 SI (k M G T P E Z Y) and base-1024 Binary
(Ki Mi Gi Ti Pi Ei Zi Yi) units. Not only are these fields case-insensitive
but they also accept spaces between value and unit. If no unit is
specified, the integer string stands for the number of bytes.

my_bytes => "1345" # 1345 bytes
my_bytes => "20MiB" # 20971520 bytes
my_bytes => "200kib" # 204800 bytes
my_bytes => "290 mb" # 290000000 bytes

•	 Codec: This field represents name of the Logstash codec being used
for input or output. Input codecs facilitate decoding data before
actual processing. Output codecs facilitate encoding data before
outputting it. By using an input or output codec, you eliminate the
need for using a separate filter. See the following for an example:

codec => "plain"

•	 Hash: A collection of key value pairs in the form “field1” =>
“value1”. The comma separator is used to separate multiple key
value entries. See the following for an example:

match => {
 "key1" => "value1"
 "key2" => "value2"
 ...
}

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

24

•	 Number: It represents valid numeric values (floating point or
integer). For example,

num_descriptor => 25

•	 Password: Represents a string that will be neither logged nor
printed. For example,

admin_password => "password"

•	 Path: Used to specify a valid system path. For example,

log_path => /var/opt/log

•	 String: String values are single character sequences enclosed in
quotes (double or single). You need to use the backslash to escape
literal quotes if they are of the same kind as the string delimiter. You
need to escape both double quotes within a double-quoted string
and single quotes within a single-quoted string. For example,

name => "Good Bye"
name => 'It\'s a hot afternoon'
name => "I like \"red\" shirts"

Comments
You can put comments in the configuration file in the same way as is done in Perl, Ruby,
and Python. You can start the comment with a # character, and it can be in any position
in a line, like so:

Comment from start of the line
input { # Comment at the end of line
 # ...
}

Configuring for Events
The Logstash event pipeline consists of three stages: inputs, filters, and outputs. Events
are generated by inputs and modified by filters. Events are shipped by outputs. The event
properties are referred to as fields by Logstash. For example, an HTTP request has an
HTTP verb like GET or PUT. Event-specific configuration can be done in Logstash. Since
events are generated by inputs, the event-specific configuration applies only after the
input phase. The event-specific configuration works only within filter and output blocks.

 ■ Tip event-specific configuration does not work in the inputs block.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

25

Field References
It can be more intuitive to refer to a field by name, and this is exactly what the Logstash
field reference syntax achieves. You can access a field by [fieldname]. For top-level
fields, just omit the [] and simply use fieldname. For nested fields, specify the full path to
that field: [top-level-field][nested field]. For example, the following event has two nested
fields and one top level field:

{
 "network": {
 "ip": ["192.168.1.21"],
 "timeout": 20,
 },
 "path": "/var/log/syslog"
}

To reference the timeout field, you specify [network][timeout]. To reference a top-
level field such as path, just specify the field name.

sprintf Format

You can use field reference format in sprintf format also. This way you can refer to field
values from within other strings. For example, the statsd output can increment field
values like timeout.

output {
 statsd {
 increment => "syslog.%{[response][status]}"
 }

Conditionals
In certain scenarios, you may want to filter or output an event under certain conditions.
This is where you can use a conditional. Logstash conditionals are pretty similar to their
programming language counterpart. Logstash supports if, else, and else statements,
which can be nested also. The syntax looks like the following:

if EXPRESSION {
 ...
} else if EXPRESSION {
 ...
} else {
 ...
}

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

26

Comparison uses Boolean logic to arrive at the correct path. The following
comparison operators can be used:

•	 The equality operators are ==, !=, <, >, <=, >=.

•	 The regexp operators of =~, !~ check a pattern on the right-hand
side against a string value on the left-hand side.

•	 The inclusion operators are in and not in.

You can use the following binary operators:

•	 and, or, xor, nand

You can use the following unary operator:

•	 !

There are lots of permutations and combinations possible with expressions. They
can include other expressions or group few expressions using parenthesis (…). In the
following expression, a conditional check is used to take an action, which in this case is to
drop events that contain DEBUG or INFO level log information:

filter {
 #Rest of the processing

 if [type] == "linux-syslog" and [messagetype] in ["DEBUG", "INFO"] {
 drop {}
 }
}

Multiple expressions can be combined in a single condition.

output {
 # Send production errors to stdout
 if [loglevel] == "ERROR" and [type] == "apache-error" {
 stdout { codec => rubydebug }
 }
}

Metadata
From Logstash 1.5 onwards, you can specify metadata with events. It is a neat way to
extend and build event fields with field references and sprintf formatting. The metadata
information is specified by using @metadata field.

A common use for metadata tag is to handle logs of different applications running
on the same machine. Each application emits its own logs in a separate log file. The local
Logstash reads all the messages, processes, and forwards ahead to the central Logstash
server or Elasticsearch server. It can be challenging to ensure that the correct filters and
output run on the logs. Adding the “tags” field to the input and checking for it in filters

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

27

and output is a common practice. This requires some discipline in removing the tag in the
output. More often than not, the tag stays in the output and leads to unexpected results.
This can now be avoided by intelligently adding metadata to events. In fact, a metadata
tag can be used to form an independent Logstash pipeline for each application running
on the same system without the need of running multiple instances of Logstash.

The following example shows how to use metadata tags for RabbitMQ logs. On
reading logs from a RabbitMQ topic and processing them, each type of log is dumped into
its own RabbitMQ topic (based on the type field of the event).

separate-logs.conf
input {
 rabbitmq {
 zk_connect => 'zookeeper.foo.com:3182'
 topic_id => 'logstash_logs'
 add_field => { "[@metadata][route]" => "separate-logs" }
 }
}

filter {
 if [@metadata][route] == "separate-logs" {
If error in parsing logs, then drop it.
if "_jsonparsefailure" in [tags] {
 drop {}
 }
 }
}

output {
 if [@metadata][route] == "separate-logs" {
 kafka {
 topic_id => "%{[type]}"
 broker_list => 'rabbitmq.foo.com:9093'
 }
 }
}

As you can see, the use of metadata makes it easier to create an individual Logstash
pipeline. This facilitates easier troubleshooting and fewer bugs.

Filtering Events
Before proceeding with log analysis, Logstash has to be configured to accept input from
a particular source and in a particular format. In order to read, parse, and filter different
types of data, Logstash lets you specify different types of inputs, outputs, and filters. This
is facilitated by a diverse set of plugins. In order to read data from a file, the file plugin can
be used.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

28

After configuring the input file, the appropriate filter needs to be applied on the
input so that only useful fields are picked and analyzed. For this purpose, a filter plugin
can be used to perform intermediate processing on the input event. This filter can be
applied on selective fields based on conditions. Since your input file is in a CSV format, it
is best to use the csv filter. On receiving the input event, the csv filter parses it and stores
its individual fields. Besides the comma, it can parse data with other separators also.
Generally, the csv filter looks like following:

filter {
 csv {
 columns => #Array of column names.
 separator => #String ; default -","
 }
}

Optionally, the attribute columns can be used to specify the name of fields in an
input csv file. The default nomenclature would be column1, column2, and so on. The
separator attribute specifies the character to be used to separate the different columns in
the file.

 ■ Tip The default separator is the comma, but you can specify any other character also.

For your example, let's use the following csv filter:

filter {
 csv {
 columns => ["day_of_year","date_of_record","max_temp"]
 separator => ","
 }
}

As you can see, the column names are the same as the ones in the input CSV file. The
separator has been explicitly specified as a comma to avoid any confusion. After doing csv
filter configuration, the next step is to associate specific data types with columns. The first
step is to identify which column is going to represent the date field. This is important as
this field can then be explicitly indexed as a date type and the event can be filtered based
on date. There is a specific date filter in Logstash and it looks as following:

filter {
 date {
 match => # array (optional), default: []
 target => # string (optional), default: "@timestamp"
 timezone => # string (optional)
 }
}

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

29

The match attribute is associated with an array in the format [field, formats]. It is
followed by a set of time formats which can be applied to the field. If the input events
have multiple formats, the following code can be used:

match => ["date_field", "MMM dd YYY HH:mm:ss",
 "ISO8601", "MMddYYYY", "MMM d YYY HH:mm:ss"]

 ■ Tip logstash supports multiple date formats as per the JodaTime dateTimeFormat library:

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/

DateTimeFormat.html

Based on the input event date format, the date filter would be the following:

date{
 match => ["date_of_record", "yyyy-MM-dd"]
 target => "@timestamp"
}

The matching timestamp is mapped using the target filter. The default value is
@timestamp (the time when the event was captured). For your purpose, since you are
dealing with historical data, it would be misleading to have the event capture time (the
time when event was processed by Elasticsearch) to be in @timestamp. Rather, it should
be the date of record. The date field would be mapped to @timestamp. This is not
mandatory but it is recommended.

Once the data types of the date fields are updated, the next step is to update the data
type of fields, which are required for numeric comparison or operation. The default value
is the string data type. It will be converted to integer so that operations like aggregations
and comparisons can be performed on the data. For conversion of fields to a specific
data type, the mutate filter can be used. This filter performs general mutations such as
modification of data types, renaming, replacing fields, and removing fields. It can also
perform other advanced functions like merging two fields, performing uppercase and
lowercase conversion, split and strip fields, and so on.

Generally, a mutate filter looks like following:

filter {
 mutate {
 convert => # hash of field and data type (optional)
 join => # hash of fields to be joined (optional)
 lowercase => # array of fields to be converted (optional)
 merge => # hash of fields to be merged (optional)
 rename => # hash of original and rename field (optional)
 replace => # hash of fields to replaced with (optional)
 split => # hash of fields to be split (optional)

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

30

 strip => # array of fields (optional)
 uppercase => # array of fields (optional)
 }
}

The mutate filter in your case looks like the following:

mutate {
 convert => ["max_temp","integer"]
}

The convert functionality is being used to convert max_temp (maximum
temperature) to an integer.

Shipping Events
After transforming data into a CSV format, configuring Logstash to accept data from
a CSV file, and process it based on the specified data type, you are all set to ship the
events. In your example, Logstash will fetch the data from the CSV file and ship it
to Elasticsearch, where the different fields can be indexed. This will facilitate the
visualization of data using the Kibana interface. The output plugin of Logstash can be
used to get output in a form acceptable by Elasticsearch.

Generally, the Elasticsearch plugin configuration looks like the following:

output {
 elasticsearch {
 action => # string (optional), default: "index"
 hosts => # array
 document_id => # string (optional), default: nil
 index => # string (optional), default: "logstash-%{+YYYY.MM.dd}"

 path => # string (optional), default: "/”
 timeout => # number
 }
}

A brief description of the key components of the Elasticsearch plugin follows:

•	 action: The action to take on incoming documents. The default
action is “index” which can be changed to “delete”. For indexing a
document, use the “index” value; for deleting a document, use the
“delete” value.

•	 hosts: IP address or hostname(s) of the node(s) where
Elasticsearch is running. If multiple hosts are specified, requests
will be load balanced. For example, a single host can be
specified as “127.0.0.1” and multiple hosts can be specified as
[“127.0.0.1:9200”, “127.0.0.2:9200”].

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

31

•	 document_id: Document id of the index; useful to delete or
overwrite the existing entries.

•	 index: The index name where incoming events have to be written.
The default action is to index based on each day and name it as
“logstash-%{+YYYY.MM.dd}”. The timestamp value is based on
the filter criteria (event capture time or event raising time).

•	 path: HTTP path at which Elasticsearch is accessible.

•	 timeout: The timeout value for network requests and requests
send to Elasticsearch.

The elasticsearch output configuration for your case looks like the following:

output{
 elasticsearch {
 host => "localhost"
 }
}

 ■ Tip logstash is assumed to be installed at /opt/logstash.

Default values have been used for most of the settings including index. After looking
at the configuration of individual plugins in a piecemeal fashion, let's see what the overall
Logstash configuration looks like.

input {
 file {
 path =>"/opt/logstash/input/tmax.csv"
 start_position =>"beginning"
 }
}

filter {
 csv {
 columns => ["day_of_year","date_of_record","max_temp"]
 separator => ","
 }

 date {
 match => ["date_of_record", "YYYY-MM-DD"]
 target => "@timestamp"
 }

 mutate {
 convert => ["max_temp","integer"]
 }
}

www.allitebooks.com

http://www.allitebooks.org

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

32

output {
 elasticsearch {
 hosts => "localhost"
 }
}

 ■ Tip Before running logstash with this configuration, ensure that elasticsearch is
running as per the instructions from Chapter 1.

$ bin/logstash –f config/tmax.conf

When running with the defined configuration, Logstash will keep on indexing all
incoming events to the Elasticsearch indexes. You can see an output similar to this on the
console:

[2016-07-29 13:25:33,330][INFO][node] [Vermin]
version[2.3.3], pid[2101], build[218bdf1/2016-05-17T15:40:04Z]
[2016-07-29 13:25:33,355][INFO][node] [Vermin]
initializing ...
[2016-07-29 13:25:39,249][INFO][plugins] [Vermin] modules
[reindex, lang-expression, lang-groovy], plugins [], sites []
[2016-07-29 13:25:39,681][INFO][env] [Vermin] using
[1] data paths, mounts [[/ (/dev/sda1)]], net usable_space [352.7mb], net
total_space [6.7gb], spins? [possibly], types [ext4]
[2016-07-29 13:25:39,682][INFO][env] [Vermin] heap
size [1015.6mb], compressed ordinary object pointers [true]
[2016-07-29 13:25:39,684][WARN][env] [Vermin] max
file descriptors [65535] for elasticsearch process likely too low, consider
increasing to at least [65536]
[2016-07-29 13:26:07,730][INFO][node] [Vermin]
initialized
[2016-07-29 13:26:07,741][INFO][node] [Vermin]
starting ...
[2016-07-29 13:26:08,536][INFO][transport] [Vermin]
publish_address {127.0.0.1:9300}, bound_addresses {[::1]:9300},
{127.0.0.1:9300}
[2016-07-29 13:26:08,596][INFO][discovery] [Vermin]
elasticsearch/rKNxtWEyQGKWAD7QcGUNEg
[2016-07-29 13:26:11,890][INFO][cluster.service] [Vermin] new_
master {Vermin}{rKNxtWEyQGKWAD7QcGUNEg}{127.0.0.1}{127.0.0.1:9300}, reason:
zen-disco-join(elected_as_master, [0] joins received)

http://dx.doi.org/10.1007/978-1-4842-2626-1_1

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

33

[2016-07-29 13:26:12,040][INFO][http] [Vermin]
publish_address {127.0.0.1:9200}, bound_addresses {[::1]:9200},
{127.0.0.1:9200}
[2016-07-29 13:26:12,044][INFO][node] [Vermin] started

You can query the document indexing status at Elasticsearch by giving the following
command:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

You should get response similar to the following:

{
 "cluster_name" : "elasticsearch",
 "status" : "red",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 2188,
 "active_shards" : 2188,
 "relocating_shards" : 0,
 "initializing_shards" : 4,
 "unassigned_shards" : 5560,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 1676,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 466560,
 "active_shards_percent_as_number" : 28.224974200206397
}

Reloading Configuration File
From Logstash 2.3 onwards, it is possible for Logstash to detect and reload configuration
changes automatically. To enable this, Logstash should be started with the --auto-
reload (or -r) command line options. See the following for an example:

bin/logstash –f logstash.config --auto-reload

The default configuration is that Logstash checks for configuration changes every
3 seconds. If you want to change the monitoring interval, use the --reload-interval
<seconds> option, where seconds specifies the monitoring interval.

If Logstash is already running without auto-reload enabled and you want it to reload
config file and restart the pipeline, just send a SIGHUP (signal hangup) to the Logstash
process. See the following for an example:

kill -1 3452

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

34

where 3452 is the process id of Logstash.

 ■ Tip in an Unix environment, you can find out the process id by using the ps command.

Whenever there is a change in configuration and Logstash detects it, without
restarting the process, it stops the pipeline. It then tries to create a new pipeline with the
updated configuration. Once the syntax of the new configuration is validated, Logstash
ensures that all inputs and outputs can be initialized. If inputs and outputs are working
fine, then Logstash replaces the existing pipeline with the new pipeline. If there is a
challenge with inputs and outputs, the old pipeline keeps on running and error message
is displayed on console.

Multiline Event Configuration
Often there are cases when events span multiple lines. For Logstash to correctly handle
these multiline events, proper configuration is required. Multiline event processing is
not trivial and requires proper event ordering. The best practice is to incorporate the
processing early in the pipeline and the preferred way is to use multiline codec. This
codec merges lines from a single source of input by using simple set of rules. The key
things to keep in mind while configuring multiline codec are as follows:

•	 pattern: This option specifies a regular expression. Lines
matching specified regular expressions are assumed to be either
continuations of a previous line or the start of a new multiline
event. The Grok regular expression template is the best fit for this
option.

•	 what: This option can take two values: next or previous. The
previous value is used to specify that lines matching the pattern
option value are part of the previous line. The next value, on the
other hand, specifies that lines matching the pattern option value
are part of the following line.

•	 negate: This option applies the multiline codec to lines not
matching the regular expression specified in the pattern option.

Let's see how multiline configuration can be used to parse Java application logs. A
typical exception log for Java application looks like the following:

SEVERE: Exception:
java.lang.BufferOverflowException:
 at Foo.main(Foo.java:25)

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

35

Let’s see another example with a longer stack trace:

SEVERE: Exception:
java.io.FileNotFoundException: Bar.log (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:146)
 at java.io.FileInputStream.<init>(FileInputStream.java:101)
 at java.io.FileReader.<init>(FileReader.java:58)
 at Foo.main(Foo.java:20)

The Grok filter in combination with the multiline filter can be used to parse Java
application logs. A typical multiline filter configuration would look like following:

codec => multi-line {
 pattern => "^[a-zA-Z]{3} [0-9]{2}"
 what => "next"
 negate => true
 }

The default logging configuration for Java is to record log entries starting with a
three-letter month followed by the day. Whenever the multiline filter comes across this
pattern, it treats it as a new event. This configuration makes sure that Logstash treats
every pattern match as a new event and treats the following lines that don't match the
pattern as part of the same event.

Analyzing Events
Once the events are processed and filtered by Logstash and further shipped to
Elasticsearch, it is now time to analyze these events. Kibana is an excellent tool for
analyzing events with some amazing visualization. After you have verified that data is
indexed in Elasticsearch successfully, look at the Kibana interface to get some useful
analytics around the data.

As per the instructions given in previous chapter, start Kibana from the installation
directory using the following command:

$ bin/kibana

After startup, Kibana can be accessed from the browser. It can be accessed using the
following URL:

http://localhost:5601

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

36

The running Kibana would appear similar to the screenshot in Figure 2-1.

Since Kibana is set up to take logstash-* indexes by default, it will show the indexed
data as a histogram of counts. The associated data fields are shown in a JSON format.
The first step is to set the date filter to filter based on date range so that analyses can
be based on the same. Since the data was taken from January 1, 1986 to December 31,
2010, the date filter will be configured for the same. By clicking the Time Filter icon at the
extreme top-right corner, you can set the Absolute Time Filter based on the range, as
shown in Figure 2-2.

Figure 2-1. Kibana’s Discover page

Figure 2-2. Kibana time filter

Let's build beautiful visualizations on the collected dataset using the rich set of
features that Kibana provides. An important step before building visualization is to
confirm whether all fields are indexed properly with their associated data types so that
appropriate operations can be performed. In order to do this, click the Settings page at
the top of the screen and select the logstash-* index pattern on the left of the screen. The
page will look like Figure 2-3.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

37

As you can see, it displays all the fields that were indexed, their data types, index
status, and popularity value.

Data Visualization
Let's start by building some basic visualizations that can be later used in a dashboard.
First, click the visualization page link at the top of the Kibana home page and then click
the new visualization icon. This page shows various types of visualizations made possible
by Kibana; see Figure 2-4.

Figure 2-3. Kibana’s Settings page

Figure 2-4. Kibana’s Visualization menu

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

38

Building a Line Chart
A line chart is the first visualization to build, and it will show the daily movement of
the maximum temperature over a period of 25 years. First, select Line Chart from the
Visualization menu. Then, select Y-Axis metrics as Max and Field as Tmax. In the Buckets
section, chose Aggregation as Date Histogram based on the @timestamp field with
Interval as Daily, and click the Apply button. See Figure 2-5.

Give a name to the line chart and save it. The name will help in pulling the line chart
into a dashboard later.

Building a Bar Chart
Let's now build a vertical bar chart depicting the movement of the daily maximum
temperature over a period of 25 years. First, select Vertical Bar Chart from the
Visualization menu. Thereafter, select Y-Axis Aggregation as Sum and Field as Tmax.
In the Buckets section, chose X-Axis Aggregation as Date Histogram with Field as @
timestamp and Interval as Daily. After clicking the Apply button, you will see a vertical
bar char representing the daily maximum temperature over a period of 25 years, as shown
in Figure 2-6.

Figure 2-5. Kibana line chart

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

39

Give a name to the bar chart and save it. The name will help in pulling the bar chart
into the dashboard later.

Building a Metric
If you want to showcase one big number related to data, then metrics is the way to go.
Let's see the highest maximum temperature recorded in a day over a period of 25 years.
First, select Metric in the Visualization menu. Then, select Metric Aggregation as Max,
Field as Tmax. After clicking the Apply button, you will see the result of visualization on
the right, as shown in Figure 2-7.

Figure 2-6. Kibana bar chart

Figure 2-7. The highest maximum temperature metric shown in Kibana

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

40

Give a name to the metric and save it. The name will help in pulling the metric
into the dashboard later. Similarly, let's see the metric for the lowest temperature; see
Figure 2-8.

Building a Data Table
Data tables serve the purpose of showing detailed breakdowns in a tabular format
for results of some composed aggregations. Let's create a data table of the monthly
average maximum temperature over a period of 25 years. First, select Data table from
the Visualization menu. Then, click Split rows and select Aggregation as Average and
Fields as Tmax. In the Buckets section, chose Aggregation as Date Histogram, Fields as @
timestamp, and Interval as Monthly. Upon clicking the Apply button, you will see the data
shown in Figure 2-9.

Figure 2-8. The lowest maximum temperature metric

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

41

Give a name to the data table and save it. The name will help in pulling the data table
later into a dashboard.

Now that you have built several visualizations, let's build a dashboard that includes
all of these visualizations. First, select the Dashboard page link at top of the page. Then,
click the Add Visualization link to select visualizations from the saved visualizations and
arrange them. The final dashboard will look like Figure 2-10.

Figure 2-9. Kibana data table

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

42

You can save this dashboard using the Save button. It can be pulled later and shared
easily. Dashboards can even be embedded as an Iframe in other systems or can be
directly shared across as links. For sharing dashboard, click the Share button, as shown in
Figure 2-11.

Figure 2-11. Kibana share options

Figure 2-10. Kibana dashboard

If you have kept up with these instructions, then let me congratulate you on
successfully setting up your first ELK data pipeline.

ChapTer 2 ■ Shipping, FilTering, and parSing evenTS wiTh logSTaSh

43

Summary
In this chapter, you saw how to utilize different Logstash plugins like input, filter, and
output to gather, parse, and index data to Elasticsearch. This indexed data is later
analyzed by using the Kibana interface, which provides visualization layers over
Elasticsearch indexes. You also saw how to create visualizations. The highlight of this
chapter is that you successfully created your first ELK data pipeline.

The next chapter will provide in-depth analyses of individual components.

45© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_3

CHAPTER 3

Extending Logstash

In the previous chapter, you saw how to leverage different Logstash plugins like input,
filter, and output to parse and prepare data. This data can be indexed at Elasticsearch
and analyzed using the Kibana interface. Different types of visualizations and metrics can
be built using Kibana. This chapter covers advanced concepts for Logstash plugins. An
overview of plugin management in Logstash will be provided, and you will learn how to
download and install community-managed plugins and extend Logstash functionality by
building custom plugins.

Plugin Management
Logstash has an extensive collection of plugins (inputs, filters, outputs, codecs). These
plugins are developed by Elasticsearch but also get significant contributions from the
community. The biggest forte of Logstash is the ease of availability of plugins and the
flexibility of adding new ones to provide more features. In fact, about 200 plugins are
available for you to choose from and work with.

Plugins in Logstash are not part of the core package. Ruby is used to develop
Logstash plugins. The Ruby programming language comes with a package manager
called RubyGems. This package manger specifies a common format for distributing
programs and libraries built in Ruby. It manages the installation and distribution of
gems. RubyGems is used to make Logstash plugins available as separate self-contained
packages. RubyGems provides the support required for the release of plugin updates
independently from Logstash releases. This approach ensures that the size of the
Logstash core package does not go beyond reasonable limits.

The key advantages of moving plugins away from the Logstash core are as follows:

•	 The Logstash release can be independent of plugin updates.

•	 Developers can release new features and bug fixes for plugins
without being tied to the Logstash release plan.

•	 It offers easy-to-describe external dependencies.

•	 It means a leaner core Logstash distribution package.

Chapter 3 ■ extending Logstash

46

Logstash plugins, both core and community ones, can be downloaded from
https://rubygems.org/.

The GitHub repository is another place where you can access all of the Logstash
plugins:

https://github.com/logstash-plugins.

Download and Installation
You can visit https://rubygems.orgs and search for Logstash to explore what plugins
are available. Figure 3-1 shows some of the plugins available.

Plugin Installation
Let's say you want to install the logstash-output-mongodb plugin. You can issue the
following command from the Logstash installation folder:

 ■ Tip the Logstash installation folder in the Unix environment is /opt/logstash.

$bin/logstash-plugin install logstash-output-mongodb

This command will install the logstash-output-mongodb plugin to the Logstash
installation. If you want to install a particular version, you can specify the --version
parameter.

 ■ Tip note that the logstash-output-mongodb plugin formats output in a format that is
understood by mongodb.

Figure 3-1. Logstash plugins

https://rubygems.org/
https://github.com/logstash-plugins
https://rubygems.orgs/

Chapter 3 ■ extending Logstash

47

If you have made a plugin locally and it is not yet released and hosted on RubyGems.
org, you can use the following command to install:

$bin/logstash-plugin install path/to/<plugin-name>.gem

Updating a Plugin
Whenever a new version of a plugin is released, you may want to upgrade the existing
installation of that plugin. This can be done by using the following command:

$bin/logstash-plugin update logstash-output-mongodb

This command will update the logstash-output-mongodb plugin to its latest version.

Uninstallation
If you no longer wish to use a particular plugin, you can uninstall it in the following
manner:

$bin/logstash-plugin uninstall logstash-output-mongodb

This command will uninstall the logstash-event plugin from the Logstash installation.

Plugin Structure
Elastic provides a great way to examine plugin structure by maintaining sample plugins
for each type:

•	 inputs: https://github.com/logstash-plugins/logstash-
input-example

•	 outputs: https://github.com/logstash-plugins/logstash-
output-example

•	 filters: https://github.com/logstash-plugins/logstash-
filter-example

•	 codecs: https://github.com/logstash-plugins/logstash-
codec-example

Examining these sample plugins is the best way to learn about the structure of a
Logstash plugin and to access all of the boilerplate code. You can start by cloning the
plugin you need. Run the following commands to add the sample repository as a remote,
and pull the master from there:

mkdir logstash-input-foo
cd logstash-input-foo

https://github.com/logstash-plugins/logstash-input-example
https://github.com/logstash-plugins/logstash-input-example
https://github.com/logstash-plugins/logstash-output-example
https://github.com/logstash-plugins/logstash-output-example
https://github.com/logstash-plugins/logstash-filter-example
https://github.com/logstash-plugins/logstash-filter-example
https://github.com/logstash-plugins/logstash-codec-example
https://github.com/logstash-plugins/logstash-codec-example

Chapter 3 ■ extending Logstash

48

git init
git remote add example git@github.com:logstash-plugins/logstash-input-
example.git
git clone https://github.com/logstash-plugins/logstash-input-example.git

 ■ Tip all logstash plugins should follow the naming pattern of logstash-[type]-[name].

Prerequisite
After getting the sample code, you can start replacing the sample information with your
custom details.

mv logstash-input-example.gemspec logstash-input-foo.gemspec
mv lib/logstash/inputs/example.rb lib/logstash/inputs/foo.rb
mv spec/inputs/example_spec.rb spec/inputs/foo_spec.rb

 ■ Tip it is recommended that you use Jruby as your local ruby interpreter.

The next step is to change the plugin details in the logstash-input-foo.gemspec
file. Details regarding the project such as author, website, and dependencies are kept
in this file. Let’s start by changing the author and project details. Ensure that the bundler
knows that you are using JRuby by changing Gemfile like this:

source 'https://rubygems.org'
ruby "1.9.3", :engine => "jruby", :engine_version => "1.7.19"
gemspec

You can now install all of the plugin’s dependencies by running bundle install.

 ■ Tip Before updating dependencies, install the bundler gem on your system. it can be
installed by running gem install bundler.

Basic Structure
The structure of all Logstash plugins follows the same pattern. The following is a brief
outline:

Required dependencies
require "logstash/inputs/base"

Chapter 3 ■ extending Logstash

49

require "logstash/namespace"
require "stud/interval"
require "socket" # for Socket.gethostname

Class definition
class LogStash::Inputs::Example < LogStash::Inputs::Base
 # Readable name for the plugin
 config_name "example"

 # If undefined, Logstash will complain, even if codec is unused.
 default :codec, "plain"

 # The message string to use in the event.
 config :message, :validate => :string, :default => "Hello World!"

 # Set frequency of messages.
 # Default value of 1 sends a message every second
 config :interval, :validate => :number, :default => 1

 public
 # Setup phase
 def register
 # Perform one time long running tasks here
 end # def register

 # Actual processing phase
 def run(queue)
 # Generate events and push them to the queue
 end # def run

 # Shutdown phase
 def stop
 # Close connections, cleanup temporary files, terminate threads
 end
end # class LogStash::Inputs::Example

 ■ Tip the plugin outline varies for different types of plugins

In order to initialize instance variables and to execute actual operations, each plugin
type provides certain methods that must be implemented.

•	 Input plugin: You need to implement the register and run
methods. The register method initializes the instance variables.
The run method transforms the stream of incoming messages to
events for further processing.

https://github.com/logstash-plugins/logstash-input-example

Chapter 3 ■ extending Logstash

50

•	 Filter plugin: You need to implement the register and filter
methods. The register method initializes the instance variables.
Actual filtering of events happens in the filter method. You can
use config parameters set using ‘@’ prefix to have event properties
available as event hashmap.

•	 Output plugin : You need to implement the register and run
methods. The register method initializes the instance variables.
Events are processed in the receive method before forwarding
them to the output destination.

•	 Codec plugin: The codec plugin is used with other plugins to
decode an input event or encode an output event. You need to
implement register method and either the encode or decode
method. The register method initializes the instance variables.
The encode method transforms the event to another format. The
decode method transforms incoming data to the event.

Logstash plugin development consists of four major parts.

Configuration
First of all, the required dependencies are specified. The first requirement is to load
the logstash/namespace.rb file. It defines the modules namespace for the input,
filter, output, and codec plugins. For filter plugin, you will need the dependency
for the filter: /logstash/filters/base. If you are developing an input plugin, then
you can add /logstash/inputs/base. Similarly, for output plugin you can add /
logstash/outputs/base.

Each plugin has its own class and should include the required Base class. In the
sample configuration given above, the base class is included.

class LogStash::Inputs::Example < LogStash::Inputs::Base

At the beginning of the plugin class, there are various methods used to define the
plugin. The plugin header specifies basic meta information, configuration, and behavior
of the plugin. The next step is to use the specified configuration options to set up the
plugin. There are many configurable options available and you should try to use as many
as possible. The name of the plugin to be used in the Logstash configuration is done by
declaring config_name:

config_name "example"

 ■ Tip rather than hardcoding a value, make it as a configurable option.

https://github.com/logstash-plugins/logstash-input-example
https://github.com/logstash-plugins/logstash-input-example

Chapter 3 ■ extending Logstash

51

You can define as many configuration options as required for your plugin. You
can specify the name of the option, its data type, and the default value in the following
manner:

•	 :validate : Helps in specifying the datatype for the option. You can
chose from :string, :number, :array, :hash, and :boolean.

•	 :default : Use it to specify the default value.

•	 :required: Specify whether a particular option is mandatory or
not. Possible values are true or false.

Setup
The register method of your plugin will be called once when initializing. This is a
trigger for the plugin to initialize or start anything needed later. One-time tasks should
be performed here. Possible candidates are tasks like initializing connections, clients, or
lists. All this will happen before start of event processing by Logstash.

Execution
The run method is invoked when Logstash starts event processing. A SizedQueue is
passed as parameter to the run method and new events have to be pushed in this
SizedQueue. The information contained in Events is defined by the Logstash::Event
class. You can use the decorate method to add fields and tags before pushing them onto
the queue.

Teardown
It is always a good practice to do proper cleanup before Logstash stops running. Take
care to close connections, clean up files, and terminate threads and any other resources
that were created when the plugin was running.

Building a Custom Plugin
After going through all the details of plugin development, I am sure you must be excited
to build a custom plugin of your own. Now you will leverage the know-how of the
previous sections to create a simple filter plugin. Let’s assume that you have an incoming
sequence of numbers in a stream. These numbers reflect the money worth in Euro. You
want to convert them in USD value. The Euro value will be passed as a parameter to the
plugin. For this particular exercise, assume an exchange rate of 1.12 between USD and
Euro. You’ll set the exchange rate as a configurable value, which can be changed to reflect
a real conversion ratio.

https://github.com/logstash-plugins/logstash-output-example

Chapter 3 ■ extending Logstash

52

 ■ Tip Create your custom plugin in the local github repo. Let’s see what this simple
exchange filter plugin looks like.

Convert Euro to USD value
#

require "logstash/filters/base"
require "logstash/namespace"

Class definition
class LogStash::Filters::Exchange < LogStash::Filters::Base

 config_name "exchange"

 config :rate, :validate => :number, :default => 1.12

 public
 def register
 #do nothing
 end

 public
 def filter(event)
 if @rate
 msg = @rate * event["message"]
 event["message"] = msg
 end
 end

end

Let’s now examine how the filter plugin is organized.

 ■ Tip Make sure you add the dependency for the required classes to start with.

The dependencies are added in the following manner:

require "logstash/filters/base"
require "logstash/namespace"

The next step is to define the filter class:

class LogStash::Filters::Exchange < LogStash::Filters::Base

Chapter 3 ■ extending Logstash

53

It is essential for the filter to have a name. In this case, the filter is coined the name
exchange using config_name.

config_name "exchange"

Now comes the point when the configuration option need for this filter should be
specified. In this case, it is the exchange rate of conversion from Euro to USD and is
defined as follows:

config :rate, :validate => :number, :default => 1.12

Since there is no need for any instance variable, the register method is empty in
this case.

public
def register
#do nothing
end

Now comes the point when the business logic has to be defined in the filter
method. This method will take an event and apply the logic for currency conversion.

public
def filter(event)
 if @rate
 msg = @rate * event["message"]
 event["message"] = msg
 end
end

The filter method first checks the value of the name filter. If it is present, the value
will be assumed to be in Euro and converted into USD value. Otherwise, it will be ignored.
You can use the filter in the following manner:

filter {
 exchange{
 rate => 1.12
 }
}

If your input indicates 150 Euro, then after applying this filter, the output from the
Logstash filter plugin will look like this:

{
"@timestamp" => "2016-08-15T11:09:37.117Z",
"message" => "168",
}

Chapter 3 ■ extending Logstash

54

Plugin Packaging
After creating the plugin, save it as exchange.rb with the following folder structure:

logstash-filter-exchange
└───lib
| └───logstash
| └───filters
| └───exchange.rb
Gemfile
└───spec
| └───filters
| └───logstash-filter-exchange.gemspec

The next step is to have a gemfile and a gemspec in the logstash-filter-exchange
top folder so that a RubyGem can be created. Let’s add some specifications to your
gemspec file:

Gem::Specification.new do |s|
 s.name = 'logstash-filter-exchange'
 s.version = '0.1.0'
 s.licenses = ['Apache License (2.0)']
 s.summary = "This plugin converts Euro to USD."
 s.description = "This plugin is used to convert Euro values to USD values.
It assumes a default rate of 1.12"

 s.authors = ["Gurpreet Sachdeva"]
 s.email = 'gurpreets@yahoo.com'
 s.require_paths = ["lib"]

 # Files
s.files = Dir['lib/**/*','spec/**/*','vendor/**/*','*.gemspec','*.md','CONTR
IBUTORS','Gemfile','LICENSE','NOTICE.TXT']

 # Special flag to let us know this is actually a logstash plugin
 s.metadata = { "logstash_plugin" => "true", "logstash_group" => "filter" }

 # Gem dependencies
 s.add_runtime_dependency "logstash-core", '>= 1.4.0', '< 2.0.0'
 s.add_development_dependency 'logstash-devutils'
end

Save the logstash-filter-exchange.gemspec file under the root plugin folder as
depicted in the folder structure. You need Ruby gem builders to build gems based on
these files. It can be installed on Ruby console using

$gem install bundler

Chapter 3 ■ extending Logstash

55

You can build the gem by the following command:

$gem build logstash-filter-exchange.gemspec

You are almost done. Check the folder for the gem that was created with the name
of logstash-filter-exchange-0.1.0.gem. You can install it to the existing Logstash
installation easily:

$bin/plugin install file:/path/to/ logstash-filter-exchange-0.1.0.gem

Check the plugin in the listing:

$bin/plugin list

You can quickly test the plugin using the logstash -e flag option:

bin/logstash -e 'input { stdin{} } filter { exchange { rate => 1.12 } }
output {stdout { codec => rubydebug }}'

See that any number you write is multiplied by 1.12 to convert a Euro value to a
USD value:

150
{
 "message" => "168"
 "@version" => "1",
 "@timestamp" => "2016-08-15T11:09:37.117Z",
 "host" => "elknode"
}

You can see the incoming value of 150 being converted to 168. With this you have
successfully created your first Logstash filter plugin and tested it successfully. In a similar
fashion, you can create and deploy plugins of input, output, and codec types.

Summary
In this chapter, you were introduced to the different plugins available for Logstash and
where to access them. An overview was provided for accessing and installing plugins.
Thereafter, different types of plugins were covered. This chapter also gave details of
what goes into making a Logstash plugin. You saw the whole process of plugin creation,
deployment, and execution.

57© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_4

CHAPTER 4

Creating, Indexing, and
Deleting Data

In the previous chapter, you were introduced to the Logstash plugin ecosystem.
The entire process of developing, deploying, and running plugins was covered.
In this chapter, I will shift gears and talk about the fundamental piece in the ELK stack:
Elasticsearch. Besides covering the features of Elasticsearch, I will also look into the DNA
of Elasticsearch and show why it is an apt platform for performing search and analytics
in this era of big data and cloud computing. Before proceeding with this chapter, make
sure that you have installed Elasticsearch and configured the data pipeline as per the
instructions given in Chapter 2.

Ubiquity of Data
We are living in an increasingly connected world what with the IoT and big data raising
the bar for the amount of data that can be comprehended. There is an increasing trend of
IT infrastructure moving to public clouds like Amazon Web Services and Microsoft Azure,
making log analytics platforms more and more critical. Isolating performance issues becomes
challenging due to factors like load fluctuation, dynamic number of users, and changes in
environment. These issues cannot be monitored by traditional log management systems.
Similarly, almost every kind of computing devices, systems, and applications emit logs to
indicate the states of these systems. Elasticsearch is uniquely positioned to perform log
management for both cloud scale systems and traditional computing environments.

The most popular way of abstracting data is to encapsulate it into objects.
The object-oriented programming paradigm has been hugely popular and has been
successful to a large extent. There is no better way to represent and handle real-world
entities with complex data structures. However, when we need to store these entities,
things become challenging.

The most popular way is to store these entities in relational databases arranged in
columns and rows. The relational databases work by organizing data into a structure of tables
and rows, which are also known as relations and tuples. In this model, a tuple is a set of
name-value pairs and a relation is a set of tuples. This provides a simple and elegant solution
but not without limitations. The most crucial limitation is that the values in a relational tuple
have to be simple. They cannot be structures like nested records or lists. This leads to an
impedance mismatch between the in-memory entity representation and relational storage.

http://dx.doi.org/10.1007/978-1-4842-2626-1_2

Chapter 4 ■ Creating, indexing, and deleting data

58

During the 2000s, there was an increasing shift to web services with applications
communicating over HTTP. This enabled the use of richer data structures, which were
more often than not nested. The best way to represent these data structures is using XML,
or in recent times, JSON. This representation reduces the number of round trips involved
in the interaction. Use of web services popularized JSON and it became the de facto
standard for exchanging data. Another thought came around that lets us store objects
as objects rather than as relations. This eliminates the impedance mismatch between
the application and database. The rise of NoSQL databases was a result of moving away
from a strict schema to a schemaless storage. JSON became one of the most popular
representations to store data in NoSQL databases. In simple terms, an object serialized
into JSON can be called a JSON document.

Elasticsearch is a search and analytics platform that uses a document storage system.
Elasticsearch can be considered as a NoSQL document database. Just like all NoSQL
document databases, it provides the facility to store data in an unstructured way which
cannot be queried using SQL. Elasticsearch is feature rich with a strong focus on search
capabilities. Complex data structures can be stored as serialized JSON documents and
can be retrieved from any node in an Elasticsearch cluster.

Elasticsearch Cluster
An Elasticsearch cluster is a collection of one or mode nodes (servers) that together hold
the indexed data. Elasticsearch provides a federation of indexing and search capabilities
across all nodes. You can identify an Elasticsearch cluster by a cluster name. By default, it
is set as “elasticsearch”. You can configure it by changing the value of the cluster.name
property in the elasticsearch.yml configuration file.

Node
A single running instance of Elasticsearch is known as a node. The default behavior is for
a node to join the cluster named “elasticsearch”. The node settings can be configured in
elasticsearch.yml. Different nodes can have different settings.

The different types of roles played by nodes are as follows:

•	 Data node: The job of indexing documents and executing search
queries on indexed documents is performed by data nodes. In
order to increase performance, you can add more data nodes.

•	 Master node: Cluster management is performed by the master
node. It does not store indices or perform searches. For a smaller
Elasticsearch cluster, even one master node may suffice, but for
larger clusters, the recommendation is to have three dedicated
master nodes (one primary and two backup).

•	 Load balancer node: This node performs the job of load
balancing or routing of requests for searches or indexing the
document to appropriate nodes. It does not perform the role
of either the data node or master node. The routing node plays
a crucial part in the case of high volume searches or index
operations.

Chapter 4 ■ Creating, indexing, and deleting data

59

Anatomy of a Document
The document is the central part of the entire Elasticsearch storage ecosystem. Put
simply, a document is the serialized state of an object in the form of JSON. A JSON
document has keys and values. The name of a field or property is referred to as key and
the corresponding values can be of different types like string, number, Boolean, object, or
array of values. The following is an example of an Employee document:

{
 "name": "Tom Smith",
 "id": 33124,
 "manager": "Rob Stewart",
 "department": "sales",
 "contact details": {
 "mobile phone": "+12072553130",
 "email": "tom.smith@foo.com"
 }
}

A basic unit inside a document is referred to as field. In the preceding example,
following key-value pair can be classified as a field:

 "name": "Tom Smith"

There is a tendency to use the terms object and document interchangeably. They
are similar but there is a subtle difference. The term object refers to any JSON object that
contains information in the form of hashmap, dictionary, or associative array. It may
contain a nested object. However, the term document refers to the top-level or root object
that is serialized into JSON. Elasticsearch stores this object with a unique ID.

Metadata Information
Besides containing data, each document also has associated metadata information. The
three key metadata components are

•	 index: Area of storage of document

•	 type: Category of object represented by the document

•	 id: Unique identifier of the document

Let's look at the components of the metadata information in detail.

Index
An index is a place to store and index documents that have some common
characteristics. It is analogous to a database in a relational database.

 ■ Tip an index spans multiple shards, which are the actual places where documents are
stored.

https://github.com/logstash-plugins/logstash-input-example
https://github.com/logstash-plugins/logstash-output-example

Chapter 4 ■ Creating, indexing, and deleting data

60

An index consists of multiple types, which in turn consist of multiple documents.
Each document can contain multiple fields. An index stores multiple JSON documents.
An Elasticsearch cluster can have multiple indices. You can either let Elasticsearch use
the default index name or you can specify your own index name criteria. You can query
and search an index by using the following URL:

http://localhost:9200/[index]/[type]/[operation]

Elasticsearch maps each field of the document with its associated data type, which can
be of string, integer, float, double, and so on. A mapping for fields is created during index
creation. These mappings can be queried or updated based on any specific requirement.

Type
Elasticsearch indices are logically partitioned using type. Similar kinds of documents are
represented by the same type. This concept is borrowed from the way relational databases
store objects. In relational databases, similar objects are stored in the same table and
they all share the same schema. Each type has its own mapping, which specifies the data
structure for documents of that type. This is similar to columns in a database table.

An index can consist of more than one type, which can be defined as per context. For
example, the index for LinkedIn can have connections as one of the index types and post
as another.

Figure 4-1 illustrates the relationship among cluster, node, index, type, and document.

Cluster

Node
Index

Type 1

Document 1

Document 2

Document 3

Document 4

Type 2

Figure 4-1. Document storage in a cluster

Chapter 4 ■ Creating, indexing, and deleting data

61

Id
The index and type, combined with the id string, can uniquely identify a document. You
can specify your own id while creating a new document. Otherwise, Elasticsearch will
automatically generate the id.

Shard
The shard is the actual physical area where documents are stored. The index is just a
logical namespace that references one or more shards. Applications need not be bothered
with the details of shards and they can perform all operations using the index.

Primary and Replica Shards
In order to maintain the availability of data in an Elasticsearch cluster, all documents are
stored on one primary shard and multiple replica shards. When a document is indexed,
it is first stored in its primary shard and then on corresponding replica shards. The default
number of primary shards is 5 and it can be configured as per your needs. Replica shards
generally reside on a node different from the primary shard. Replica shards load balance
requests to take care of a high load and play a key role in case of failover.

Figure 4-2 illustrates the relationship among the primary and replica shards.

Elasticsearch API
Elasticsearch provides powerful REST-based APIs for performing various tasks like index
management, document operations, and support of various types of search queries.
Knowledge of the Elasticsearch APIs helps in performing complex operations with
elegance. All APIs have the following generic syntax:

$curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>/<OPERATION_NAME>?<QUERY_
STRING>' -d '<BODY>'

Elasticsearch Cluster

Node 1 Node 2

Shard 1 Shard 2

Shard 3Shard 4

Replica 3

Replica 1

Replica 2

Replica 4

Figure 4-2. Shards and replicas

Chapter 4 ■ Creating, indexing, and deleting data

62

A brief overview of each part is given below:

•	 VERB: The first thing is to specify the HTTP operation to be
performed. You can perform HTTP GET, POST, PUT, DELETE, or
HEAD operations.

•	 PROTOCOL: It can be either HTTP or HTTPS.

•	 HOST: Specify the hostname of Elasticsearch node. If you are
running a query on a local installation, you can specify either
“localhost” or “127.0.0.1”.

•	 PORT: Elasticsearch runs on this port, with the default being
9200.

•	 PATH: The name of the index, type, or ID to be queried is
specified here.

•	 OPERATION_NAME: Specify the operation to be performed on
Elasticsearch. For example, _search, _count, etc.

•	 QUERY_STRING: An optional parameter that can be used to
specify query options. For example, “?pretty” can be specified for
pretty printing of documents.

•	 BODY: Body text

Cluster Health and Configuration
Elasticsearch provides APIs not only for document and index operations but also for
checking its internal health and configuration. You can list all nodes in the cluster by
giving the following command:

$ curl -XGET 'localhost:9200/_cat/nodes?v'

This command will collect information about all the nodes and display it in the
following fashion:

host ip heap.percent ram.percent load node.role master name
127.0.0.1 127.0.0.1 61 97 2.66 d * Bruiser

This information is based on the documents created as part of setting up the data
pipeline in Chapter 2. Since you have a single node cluster, the above snippet shows only
one node and its related memory characteristics.

Elasticsearch has a crisp interface for checking the cluster health. Cluster health is a
combination of various factors and can change due to them. The following command can
be used to check the cluster health:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

http://dx.doi.org/10.1007/978-1-4842-2626-1_2

Chapter 4 ■ Creating, indexing, and deleting data

63

This command will display the cluster health information in the following format:

{
 "cluster_name" : "elasticsearch",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 3876,
 "active_shards" : 3876,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 3876,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 50.0
}

The combined status of this cluster is shown as yellow. The different colors in the
Elasticsearch health status have the following significance:

•	 Red: Some or all primary shards are not ready to receive the
requests.

•	 Yellow: All primary shards are allocated but some or all of the
replicas are unallocated. For single node clusters, the normal
status should be yellow because no other node is available for
replication.

•	 Green: All shards and their replicas are well allocated and the
cluster is working fine.

You can check the health of not only the entire cluster but also of a particular shard
or index. Give the following command to check the status of shards:

curl -XGET 'http://localhost:9200/_cluster/health?level=shards&pretty=true'

This will display the status of all of the shards, a snippet of which follows:

..
 "indices" : {
 "logstash-1993.01.24" : {
 "status" : "yellow",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,

Chapter 4 ■ Creating, indexing, and deleting data

64

 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5,
 "shards" : {
 "0" : {
 "status" : "yellow",
 "primary_active" : true,
 "active_shards" : 1,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 1
 },
 "1" : {
 "status" : "yellow",
 "primary_active" : true,
 "active_shards" : 1,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 1
 },
 "2" : {
 "status" : "yellow",
 "primary_active" : true,
 "active_shards" : 1,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 1
 },
..

Similarly, you can check the health of the indices. Give the following command to
check the status of the indices:

curl -XGET 'http://localhost:9200/_cluster/health?level=indices&pretty=true'

This will display the status of all of the indices, a snippet of which follows:

..

 "indices" : {
 "logstash-1993.01.24" : {
 "status" : "yellow",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,

Chapter 4 ■ Creating, indexing, and deleting data

65

 "unassigned_shards" : 5
 },
 "logstash-1993.01.23" : {
 "status" : "yellow",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
 },
 "logstash-1993.01.22" : {
 "status" : "yellow",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
 },
..

Index Management
Elasticsearch has crisp APIs for index management to index documents and make them
searchable.

Specify Id
You need to first decide where the document will reside. As mentioned, a document is
uniquely identified by its index, type, and id values. You can either specify the id value or
let Elasticsearch generate one.

Custom Id
Often the document you want to index contains a field that can serve as an identifier.
Some examples are bank account number, employee id, student id, etc. If you want to
provide your own id, use the following API:

PUT /{index}/{type}/{id}
{
"field": "value",
...
}

Chapter 4 ■ Creating, indexing, and deleting data

66

Let's take example of an employee information system in a company called Foo.
The name of the company can be the index and eis (short for Employee Information
System) can be the type. Let's choose the employee id as the document id. The request for
indexing the document will look like this:

curl -XPUT "http://localhost:9200/foo/eis/33124" -d '
{
 "name": "Tom Smith",
 "id": 33124,
 "manager": "Rob Stewart",
 "department": "sales",
 "contact details": {
 "mobile phone": "+12072553130",
 "email": "tom.smith@foo.com"
 }
}
'

The response from Elasticsearch is as follows:

{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":1,
 "_shards":{
 "total":2,
 "successful":1,
 "failed":0
 },
 "created":true
}

If you look at the response, you can see that the request has been successful and
Elasticsearch outputs the index, type, id, and version. When a document is first created,
a version number is associated with it. Thereafter, for all changes, the version number is
incremented.

Auto-Generated Id
If your data does not have a field that is a natural fit for being a unique ID, you can let
Elasticsearch take care of this by autogenerating a unique id. You must use a different
request verb. Instead of the PUT verb (“store the document at specified URL”), you have
to now use the POST verb (“store the document under specified URL”). There is no need
to specify any id. The following request contains only the index and type:

curl -XPOST "http://localhost:9200/foo/eis" -d '

Chapter 4 ■ Creating, indexing, and deleting data

67

{
 "name": "Eric Anderson",
 "id": 45796,
 "manager": " Marcus Benson",
 "department": "hr",
 "contact details": {
 "mobile phone": "+12074235478",
 "email": "eric.anderson@foo.com"
 }
}
'

Elasticsearch stores the document with an autogenerated id and gives the following
response:

{
 "_index":"foo",
 "_type":"eis",
 "_id":"AVbA4WNg7uqRWQFJiJSn",
 "_version":1,
 "_shards":{
 "total":2,
 "successful":1,
 "failed":0
 },
 "created":true
}

You can see that Elasticsearch responds in a similar manner with a notable exception
that the _id field has been autogenerated. Elasticsearch generates an id that is 22
characters long, which is URL-safe and Base-64 encoded UUID (Universally Unique
Identifiers).

Document Management
In this section, you will explore Elasticsearch APIs for performing various operations on
documents like creation, retrieval, update, etc.

Document Retrieval
You can use _index, type, and _id to fetch the document from Elasticsearch using the
HTTP GET verb:

curl -XGET "http://localhost:9200/foo/eis/33124?pretty"

Chapter 4 ■ Creating, indexing, and deleting data

68

In response, you get the metadata elements and the source field that contains the
original JSON document:

{
 "_index" : "foo",
 "_type" : "eis",
 "_id" : "33124",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "name" : "Tom Smith",
 "id" : 33124,
 "manager" : "Rob Stewart",
 "department" : "sales",
 "contact details" : {
 "mobile phone" : "+12072553130",
 "email" : "tom.smith@foo.com"
 }
 }
}

 ■ Tip in order to pretty print the JSOn response, add pretty to the query string
parameters.

Since the document was retrieved successfully; Elasticsearch sets the value of field
“found” as “true”. This is a confirmation that the document was indeed found. If you
request a document that does not exist, you get an error JSON response with the value of
“found” set as “false”. The HTTP response code is then 404 Not Found instead of 200 OK.
You can verify this by passing the argument “-i” to curl, which then displays the response
headers also:

curl -i -XGET "http://localhost:9200/foo/eis/73124?pretty"

You get the following response:

HTTP/1.1 404 Not Found
Content-Type: application/json; charset=UTF-8
Content-Length: 80

{
 "_index" : "foo",
 "_type" : "eis",
 "_id" : "73124",
 "found" : false
}

Chapter 4 ■ Creating, indexing, and deleting data

69

Partial Document Retrieval
The default behavior of a GET request is to return the whole document associated with
the _source field. There may be cases when you may be interested in only particular
fields. For example, you may be interested only in knowing the department to which an
Employee belongs to. You can utilize the _source parameter to request for specific fields.
You can also request for multiple fields by specifying them as a comma-separated list:

curl -XGET "http://localhost:9200/foo/eis/33124?_source=name,department"

You can see that the _source field now contains only fields that were requested and
has filtered out the rest of the fields.

{
 "_index" : "foo",
 "_type" : "eis",
 "_id" : "33124",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "name" : "Tom Smith",
 "department" : "sales",
 }
}

If you want to fetch just the _source field without any metadata, you can simply use
the _source endpoint:

curl -XGET "http://localhost:9200/foo/eis/33124/_source "

The response has just the _source field without any metadata:

{
 "name" : "Tom Smith",
 "id" : 33124,
 "manager" : "Rob Stewart",
 "department" : "sales",
 "contact details" : {
 "mobile phone" : "+12072553130",
 "email" : "tom.smith@foo.com"
}

Document Existence
There could be times when instead of fetching the complete document, you just want to
check whether the document exists or not. The HTTP HEAD method is very handy in
this kind of situation. HTTP HEAD requests just do a dip check on the REST end point,
but don’t return the body. See for yourself:

curl -i -XHEAD http://localhost:9200/foo/eis/33124?pretty

Chapter 4 ■ Creating, indexing, and deleting data

70

In this case, Elasticsearch returns 200 OK status code if the document exists:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8
Content-Length: 0

Now let's try to check for a document that does not exist:

curl -i -XHEAD http://localhost:9200/foo/eis/33129?pretty

Elasticsearch returns a 404 Not Found in this case:

HTTP/1.1 404 Not Found
Content-Type: text/plain; charset=UTF-8
Content-Length: 0

Multiple Document Retrieval
Elasticsearch allows you to fetch multiple documents in a faster manner rather than
fetching them one after another. You can use the multi-get or mget API to give a single
request instead of retrieving document by document. The mget API takes the docs array
as a parameter. Each element of this docs array should contain the type and id of the
document that you want to retrieve. If you want to fetch one or more specific fields, you
can use the _source parameter.

curl -XGET "http://localhost:9200/_mget" -d '{
 "docs" : [
 {
 "_index" : "foo",
 "type" : "eis",
 "_id" : "33124"
 },
 {
 "_index" : "foo",
 "type": "eis",
 "_id" : "AVbA4WNg7uqRWQFJiJSn",
 "_source" : "department"
 }
]
}'

A docs array is returned in the response body. This docs array contains a response
per document and it is in the same order as specified by the request. You can see that
each of these responses is the same that is expected from an individual get request.
Since you had specified only one particular field, such as “department” for the second
document, you can see that for the second document only this particular field is present
in the response body.

Chapter 4 ■ Creating, indexing, and deleting data

71

{
"docs":[{"_index":"foo","_type":"eis","_id":"33124","_version":1,
"found":true,"_source":
{
 "name": "Tom Smith",
 "id": 33124,
 "manager": "Rob Stewart",
 "department": "sales",
 "contact details": {
 "mobile phone": "+12072553130",
 "email": "tom.smith@foo.com" }}
},
{"_index":"foo","_type":"eis","_id":"AVbA4WNg7uqRWQFJiJSn","_version":1,
"found":true,"_source":
{
 "department": "hr",
}
}]}

If the documents you want to retrieve have the same _index value, you can just
specify the default _index in the URL:

curl -XGET "http://localhost:9200/foo/_mget" -d '{
 "docs" : [
 {
 "type" : "eis",
 "_id" : "33124"
 },
 {
 "type": "eis",
 "_id" : "AVbA4WNg7uqRWQFJiJSn",
 "_source" : "department"
 }
]
}'

Similarly, if the documents have the same _index and _type value, you can specify
the _index and _type values in the URL. You can pass an array of ids instead of complete
docs array.

curl -XGET "http://localhost:9200/foo/eis/_mget" -d '{
 "ids" : ["33124", "AVbA4WNg7uqRWQFJiJSn"]
}'

Chapter 4 ■ Creating, indexing, and deleting data

72

Document Updates
An interesting facet of Elasticsearch is that the documents are immutable; in other words, you
cannot change them. Does this mean that you can't modify them? Not exactly. If you want to
update an existing document, you must either reindex or replace it. The Index API can be
used to perform this operation. Let's try to update an earlier created Employee document.

curl -XPUT "http://localhost:9200/foo/eis/33124" -d '
{
 "name": "Tom Smith",
 "id": 33124,
 "manager": "Rob Stewart",
 "department": "sales",
 "contact details": {
 "mobile phone": "+12072553130",
 "email": "tom.smith@foo.com"
 }
}
'

The response from Elasticsearch is as follows:

{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":2,
 "_shards":{
 "total":2,
 "successful":1,
 "failed":0
 },
 "created":false
}

Note that Elasticsearch has incremented the _version number. Also, the created flag is
set to false because a document with the same index, type, and id already exists. Internally,
Elasticsearch marks the old document as deleted and adds a new document. The old
documents are not cleaned up immediately but a background job does that after some time.

Updating Documents Partially
You can make partial updates to existing documents by using the update API. Documents
in Elasticsearch, as mentioned, are immutable. They can only be replaced, not changed.
While using the update API it might appear that actually the existing document is getting
modified. However, internally the update API just retrieves the document and reindexes
it. A key difference is that all this happens within a shard, which avoids network overhead
of multiple requests. This also helps in avoiding conflicts.

Chapter 4 ■ Creating, indexing, and deleting data

73

The best way to give an update request for partial document update is to use the
doc parameter. This ensures that the objects merge together, existing scalar fields are
overwritten, and any new fields are added. Add a “role” field to the Employee document:

curl -XPOST "http://localhost:9200/foo/eis/33124" -d '
{
 "doc": {
 "role": "Analyst"
 }
}
'

On successful execution of the request, Elasticsearch gives the following response:

{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":3,
 "_shards":{
 "total":2,
 "successful":1,
 "failed":0
 },
}

If you retrieve the document, you will see that the _source field has been successfully
updated:

{
 "_index" : "foo",
 "_type" : "eis",
 "_id" : "33124",
 "_version" : 3,
 "found" : true,
 "_source" : {
 "name" : "Tom Smith",
 "id" : 33124,
 "manager" : "Rob Stewart",
 "department" : "sales",
 "contact details" : {
 "mobile phone" : "+12072553130",
 "email" : "tom.smith@foo.com"
 }
 "role" : "Analyst"
 }
}

Chapter 4 ■ Creating, indexing, and deleting data

74

Partial Updates with Scripts
You can also use scripts in the update API to modify the contents of the _source field. The
_source field is referred as ctx._source inside the script. For example, you can use script
to add a new field in the document. In this case, the new field is specified as a parameter
rather than hardcoding it in the script. This adds the flexibility of reusing the script in
future without recompilation.

Let's say you want to add a new field called “area” to the employee document. You
can do it as following:

curl -XPOST "http://localhost:9200/foo/eis/33124/_update" -d '
{
 "script" : "ctx._source.area = \"west\""
}'

 ■ Tip dynamic scripting is disabled by default.

You can also remove the field in the following manner:

curl -XPOST 'localhost:9200/test/type1/1/_update' -d '{
 "script" : "ctx._source.remove(\"area\")"
}'

 ■ Tip the default scripting language is Groovy. it is similar to JavaScript in syntax and is
a fast and expressive language.

Conflicting Updates
Elasticsearch allows parallel update requests, which can lead to conflict situations.
During an update, the document is first retrieved and then reindexed. If the window
between retrieve and reindex is small, then the probability of conflict is less. However,
there is still a chance of conflict. It is quite possible that another process gave a request
to change the document before update could reindex it. In order to avoid these kinds of
situations, the update API fetches the current _version of the document in the retrieve
step. This _version is passed to the index request during the reindex step. If another
process changes the document, the _version number will not match and this will cause
the update request to fail.

There could be some interesting scenarios when it doesn't matter if a document has
been changed. Let's take the case when two processes are both incrementing a counter.
It does not matter in which order it happens. If a conflict indeed happens, the next step
should be to reattempt the update. This task can be done automatically also by setting the
retry_on_conflict parameter to the number of times that an update should retry before
failing. The default value is 0.

Chapter 4 ■ Creating, indexing, and deleting data

75

Document Creation
Often while creating documents there are chances that you may be overwriting an
existing document with the same coordinates (index, type, and id). You might wonder
whether it is possible to be sure of the uniqueness of a document. It was mentioned
in earlier sections that the combination of index, type, and id uniquely identifies a
document. The simplest way to ensure the newness of a document is to let Elasticsearch
autogenerate the id. Elasticsearch ensures that the autogenerated ids are unique. You can
use POST to create documents:

curl -XPOST "http://localhost:9200/foo/eis" -d '
{ ... }

But what if your document already has an associate id that you want to use? In this case,
you must indicate to Elasticsearch that it should accept your index request only if a document
with the same coordinates does not exist already. There are two ways of doing this.

•	 Use of op-type: You can specify query-string parameter with
op-type.

curl -XPUT "http://localhost:9200/foo/eis/33124?op_
type=create"
{ ... }

•	 Use of _create endpoint: You can use _create endpoint in the
URL.

curl -XPUT "http://localhost:9200/foo/eis/33124/_create"
{ ... }

For a successful request, Elasticsearch will return the metadata and HTTP response
code of 201 Created. If there is already a document with the same index, type, and id,
Elasticsearch will return 409 Conflict response code. An error message like the following
will also be returned:

{
"error" : "DocumentAlreadyExistsException[[foo][4] [eis][123]:
document already exists]",
"status" : 409
}

Document Deletion
The way to delete a document is similar to how you can create or update documents.
The big difference is the use of HTTP DELETE verb.

curl -XDELETE "http://localhost:9200/foo/eis/33124"

Chapter 4 ■ Creating, indexing, and deleting data

76

If the document exists, Elasticsearch will delete it and return a HTTP response code
of 200 OK. It will also return response body like the following:

{
 "found":"true",
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":4,
}

You may have noticed that the _version number is incremented. If the document
does not exist, Elasticsearch returns a 404 Not Found response code and a body like the
following:

{
 "found":"false",
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":4,
}

In this case, although the document does not exist, the _version number is still
incremented to take care of internal bookkeeping. This ensures that changes are applied
in the same order across multiple nodes of a cluster.

Bulk Operations
Just like mget can be used to fetch multiple documents in one request, similarly the bulk
API allows performing multiple create, index, update, or delete requests in a single step.
This can be of great help when indexing a data stream such as log events, which can be
first queued and then indexed in batches of hundreds or thousands. The bulk request has
the following format:

{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
...

This format looks like it is a stream of valid single liner JSON documents joined
together by newline (\n) characters. It has the following key aspects:

•	 Each line has to end with a newline character (\n). This rule
applies even for the last line. The newline character is used as a
marker for efficient line segregation.

Chapter 4 ■ Creating, indexing, and deleting data

77

•	 It is not allowed to have unescaped newline characters because it
would create problems while parsing. This essentially means that
JSON should not be pretty printed.

The action to be taken is specified by the action/metadata line. The action can be
one of the following:

•	 Create: Document creation only if the document does not exist
already.

•	 Index: New document creation or replacement of an existing
document.

•	 Update: Partial update of a document.

•	 Delete: Delete a document.

The metadata should consist of _index, _type, and _id of the document. As an
example, a delete request can be given as following:

{ "delete": { "_index": "foo", "_type": "eis", "_id": "33124" }}

The document _source (fields and values) are present in the request body. This is
used for document creation, indexing, and updating. A notable exception is the delete
operation, which does not require any request body. Let's see an example with complete
set of bulk requests:

{ "delete": { "_index": "foo", "_type": "eis", "_id": "33124" }}
{ "create": { "_index": "foo", "_type": "eis", "_id": "33124" }}
{ "name": "Tom Smith", "id": 33124, "manager": "Rob Stewart",
"department": "sales" }
{ "index": { "_index": "foo", "_type": "eis" }}
{ "name": "Bob Dillon", "id": "54798", "manager": "James Owens",
"department": "finance" }
{ "update": { "_index": "foo", "_type": "eis", "_id": "33124",
"_retry_on_conflict": 4 }}
{ "doc": {"manager" : "Lew Grey"} }

All the requests except the delete request have a body. Elasticsearch responds with
an items array, where each array element corresponds to the result of each request, in the
order in which they were requested:

{"took":89,"errors":false,"items":[{"delete":{"_index":"foo","_type":
"eis","_id":"33124","_version":4,"_shards":{"total":2,"successful":1,"failed
":0},"status":200,"found":true}}]}
{"took":121,"errors":false,"items":[{"create":{"_index":"foo","_type":
"eis","_id":"33124","_version":1,"_shards":{"total":2,"successful":1,"failed
":0},"status":201}}]}
{"took":156,"errors":false,"items":[{"create":{"_index":"foo","_type":
"eis","_id":"AVbR2mhj7uqRWQFJiJSv","_version":1,"_shards":{"total":2,"succes
sful":1,"failed":0},"status":201}}]}

Chapter 4 ■ Creating, indexing, and deleting data

78

{"took":76,"errors":false,"items":[{"update":{"_index":"foo","_type":
"eis","_id":"33124","_version":2,"_shards":{"total":2,"successful":1,"failed
":0},"status":200}}]}

{

 "took":89,
 "errors":false,
 "items":[
 {"delete":{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":4,
 "_shards":{"total":2,"successful":1,"failed":0},
 "status":200,
 "found":true
 }},
 {"create":{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":1,
 "_shards":{"total":2,"successful":1,"failed":0},
 "status":201
 }},
 {"create":{
 "_index":"foo",
 "_type":"eis",
 "_id":"AVbR2mhj7uqRWQFJiJSv",
 "_version":1,
 "_shards":{"total":2,"successful":1,"failed":0},
 "status":201
 }},
 {"update":{
 "_index":"foo",
 "_type":"eis",
 "_id":"33124",
 "_version":2,
 "_shards":{"total":2,"successful":1,"failed":0},
 "status":200
 }}
]
}

The bulk request handles individual request failures by executing them independently.
This ensures that if one subrequest fails, the other subrequests will not be impacted.
However, in this case, the top level error flag is set to true. The error details can be found
under the relevant requests.

Chapter 4 ■ Creating, indexing, and deleting data

79

In the preceding example, you can see that it failed to create document 33124
because it already existed. However, the subsequent index request for document 33124
does succeed. This indicates that bulk requests are not atomic because each request gets
processed individually. This means that the status of one request does not impact that of
the others.

Bulk Request Size
When a node receives a bulk request, the entire request has to be loaded into memory.
This constrains the memory available for other requests. There are optimal values for
what the size of bulk request should be. If the request size is more than the optimal size,
then you will not see any advantage in performance. On the contrary, performance may
suffer and drop. To make things more interesting, optimal size is not a fixed number. It
depends on various factors like hardware, size of document and its complexity, ongoing
indexing, and search load.

Finding the optimal size is not too difficult. You can index typical documents in
batches and keep on increasing their size. The tipping point is when performance starts
to drop off. It indicates that your batch size is beginning to be over the cutoff. Start with a
small size of batches and then increase them incrementally.

Conflict Management
The process for updating documents with the index API is to read the original document,
make the changes, and in the end, reindex the whole document. Indexing is successful for
the most recent request. The document to be indexed last gets stored in Elasticsearch. If
some other parallel request was given to change the document, then it would fail.

This behavior may or may not be a problem. In your solution, there may be little
chance of two parallel requests on the same document. It might also happen that losing
some change is not crucial for the system behavior. But it might be crucial in some
situations. Say Elasticsearch is being used to store bank transactions (maybe just for
search purpose). In this case, order is important. You can take a leaf out of the database
world to deal with conflicts.

•	 Pessimistic concurrency control: This is a popular technique
used in relational databases and it works on the assumption
that conflicts are likely to happen and therefore blocks access to
resources in order to prevent conflicts. A common example is
locking of rows before reading from the row, thereby ensuring that
only the thread with the lock makes the changes to the row data.

•	 Optimistic concurrency control: This approach is used by
Elasticsearch and is based on the assumption that conflicts are
unlikely to happen. Therefore, operations are not blocked from
being attempted. If the underlying data gets modified between
reads and writes, the updates will fail. The application now has to
decide how to make sense of the data. There are multiple options
like reapplying the update, use of fresh data, or reporting the error
to the user.

Chapter 4 ■ Creating, indexing, and deleting data

80

Summary
In this chapter, you were introduced to Elasticsearch and its different features. An
overview was given on creating documents, indexing documents, partial and full updates,
the delete operation, and bulk operations. The Elasticsearch API for performing different
operations was covered. There can be conflicting situations in Elasticsearch and an
overview of different conflict resolution strategies was covered.

81© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_5

CHAPTER 5

Searching Data

In the previous chapter, you were introduced to Elasticsearch. An overview of its
different features for creating documents, indexing documents, partial and full updates,
the delete operation, and bulk operations was given. Different operations were
performed elegantly using the Elasticsearch API. The goal of this chapter is to explore
the elaborate mechanism for searching data available in Elasticsearch. I will cover both
of the search query variations: Search Lite and full-body search. Then I will illustrate
Query DSL and filters.

Search Your Way
What good is a storage engine if it doesn’t offer a comprehensive search mechanism to
explore the stored data? Just like relational databases, Elasticsearch provides elaborate
search mechanisms, from basic search APIs to querying DSL and advanced search
mechanisms. The real power of Elasticsearch is to turn a huge amount of stored data
into tangible information. The use of structured JSON documents rather than data blobs
enables Elasticsearch to index data in order to provide a powerful search mechanism. All
the fields are indexed and can act as potential keys for search. Not only that, Elasticsearch
leverages all these indices to perform searches at an astonishing speed. This is where
Elasticsearch scores ahead of relational databases.

You can not only perform basic search operations but also search using multi-index
or multi-type. You can also have pagination of your search response. Elasticsearch has an
elaborate Query DSL. You can have search responses filtered.

If you want more flexibility when querying data or more specific responses,
you need to move beyond the match query. You should have a good understanding
of your data in order to explore it better. Knowledge of each query’s contribution to
the relevance score helps in optimizing the queries. This ensures that the documents
that best fit the search criteria appear first and less relevant documents are towards
the end. Let’s start by using the basic search mechanism to perform a structured
search.

Chapter 5 ■ SearChing Data

82

Simple Searches
A straightforward search can be one of the following:

•	 Structured query: This is similar to the queries you give using
SQL to a relational database, such as querying on distinct fields
like bank account number or account type, which can be sorted
by a field like balance amount.

•	 Full text query: These types of queries find documents by
matching search keywords, and the response is sorted by
relevance.

•	 Combination of above two

For the most part, you can query by just giving some matching or search criteria.
However, in order to leverage the full power of Elasticsearch, it is helpful to understand
which components of Elasticsearch map and search data:

•	 Mapping: Interpretation of data in a field.

•	 Analysis: Processing of full text to make it search ready.

•	 Query DSL: The query language used by Elasticsearch, which
provides powerful and flexible searching.

In this chapter, I will cover the three above listed components, starting with the
search API. For the purpose of exploring the search API, you should load the sample
document containing information about some of the works of William Shakespeare and
Charles Dickens. The sample document can be loaded by using a bulk request. It has the
following content:

{ "create": { "_index": "ws", "_type": "author", "_id": "1" }}
{ "name": "William Shakespeare", "born": "1564-04-26", "died": "1616-04-23",
"country": "United Kingdom" }
{ "create": { "_index": "cd", "_type": "author", "_id": "2" }}
{ "name": "Charles Dickens", "born": "1812-02-07", "died": "1870-06-09",
"country": "United Kingdom" }
{ "create": { "_index": "ws", "_type": "play", "_id": "3" }}
{ "author": "William Shakespeare", "play": "Comedy of Errors", "published":
"1589" }
{ "create": { "_index": "cd", "_type": "play", "_id": "4" }}
{ "author": "Charles Dickens", "play": "The Pickwick Papers", "published":
"1836" }
{ "create": { "_index": "ws", "_type": "play", "_id": "5" }}
{ "author": "William Shakespeare", "play": "Henry VI", "published": "1590" }
{ "create": { "_index": "cd", "_type": "play", "_id": "6" }}
{ "author": "Charles Dickens", "play": "Oliver Twist", "published": "1837" }
{ "create": { "_index": "ws", "_type": "play", "_id": "7" }}
{ "author": "William Shakespeare", "play": "Richard III", "published": "1592" }
{ "create": { "_index": "cd", "_type": "play", "_id": "8" }}

Chapter 5 ■ SearChing Data

83

{ "author": "Charles Dickens", "play": "Nicholas Nickleby", "published":
"1838" }
{ "create": { "_index": "ws", "_type": "play", "_id": "9" }}
{ "author": "William Shakespeare", "play": "Taming of the Shrew", "published":
"1593" }
{ "create": { "_index": "cd", "_type": "play", "_id": "10" }}
{ "author": "Charles Dickens", "play": "The Old Curiosity", "published":
"1840" }
{ "create": { "_index": "ws", "_type": "play", "_id": "11" }}
{ "author": "William Shakespeare", "play": "Romeo and Juliet", "published":
"1594" }
{ "create": { "_index": "cd", "_type": "play", "_id": "12" }}
{ "author": "Charles Dickens", "play": "David Copperfield", "published":
"1849" }

 ■ Tip there should be an extra newline at the end of the bulk request content file.

Let’s call the bulk content file as plays.json. Give the following command to load
the bulk content:

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary "@plays.json"; echo
{
 "took" : 4343,
 "errors" : false,
 "items" : [{
 "create" : {
 "_index" : "ws",
 "_type" : "author",
 "_id" : "1",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "cd",
 "_type" : "author",
 "_id" : "2",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ SearChing Data

84

 "failed" : 0
 },
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "ws",
 "_type" : "play",
 "_id" : "3",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "cd",
 "_type" : "play",
 "_id" : "4",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "status" : 201
 }
 },
...............................
 }]
}

Searching Without Parameters
The simplest use of the search API is to search without any parameters. No query is
specified and it simply responds with all documents in every index of the cluster:

curl -XGET 'localhost:9200/_search?pretty'

The response looks like the following:

{
 "took" : 9,
 "timed_out" : false,

Chapter 5 ■ SearChing Data

85

 "_shards" : {
 "total" : 10,
 "successful" : 10,
 "failed" : 0
 },
 "hits" : {
 "total" : 12,
 "max_score" : 1.0,
 "hits" : [{
 }, {
 "_index" : "ws",
 "_type" : "author",
 "_id" : "1",
 "_score" : 1.0,
 "_source" : {
 "name" : "William Shakespeare",
 "born" : "1564-04-26",
 "died" : "1616-04-23",
 "country" : "United Kingdom"
 }
 }, {
 "_index" : "ws",
 "_type" : "play",
 "_id" : "3",
 "_score" : 1.0,
 "_source" : {
 "author" : "William Shakespeare",
 "play" : "Comedy of Errors",
 "published" : "1589"
 }
 }, {
................
 }]
 }
}

Hits
In case you are wondering, hits is the most significant section of the response. It
indicates the total number of documents matching your query. It also contains a hits
array, which contains the first 10 documents that matched the search criteria. Every
result in the hits array has the _index, _type, and _id of the matching document. It
also has the _source field. This is significant because the entire document is available
straightway from the search results. This is where Elasticsearch scores above other
search engines which just return the document Id, necessitating another query to fetch
the document contents.

Chapter 5 ■ SearChing Data

86

You may have noticed that each entry also has a _score field. Its value indicates the
extent of matching the document with the query. The default behavior is to return the
most relevant documents first, such as in descending order of score. In this scenario,
since no specific query was specified, all documents have same relevance and thereby
a _score of 1 for all results. The highest _score of any document matching the query is
specified in the max_score field.

Took
The took field specifies the time taken to execute the search query in milliseconds.

Shards
Multiple shards are typically involved in a search query and the _shards field indicates
the number of participating shards. It also specifies how many shards were successful
and how many of them failed. Most of the time, all of the shards are successful, but
there can be cases when one or more shards fail. In case of a major disaster, there is a
high chance that both the primary and replica copy of the same shard are lost. In such a
case, search requests for the shard would not be serviced because no copy of the shard
is available. In such scenarios, Elasticsearch reports the shard as failed but still fetches
results from the remaining available shards.

Timeout
Whether the query timed out or not is indicated by the timed_out field. The default
behavior for search requests is to not time out. If you want a response within a certain
time period, specify the timeout value. For example, in the following GET query, a time
period of 20 milliseconds is specified:

curl –XGET 'localhost:9200/_search?timeout=20ms&pretty'

Elasticsearch will return only those results that it could gather from each shard
during this time period.

 ■ Tip timeout indicates to the coordinating node to return results obtained so far and
close all connections. Use timeout to fetch results if you have a SLa to meet.

Multi-Index, Multi-Type
In the preceding example, the response for the empty search consisted of documents of
different types: authors and plays from two different indices, ws and cd. You didn’t constrain
the search to a particular index or type and therefore you searched across all documents in the
cluster. Elasticsearch sent the request in parallel to a primary or replica of every shard in the
cluster. The results were gathered to select the overall top 10, and sent in response.

Chapter 5 ■ SearChing Data

87

Most of the time you won’t want your search to be so broad. You will mostly
search within a certain index and type. You can do this by passing the index and type as
parameters in the search query, as shown in Table 5-1

Searching within a single index requires Elasticsearch to forward the search request
to the primary or replica of all shards in that index. Thereafter, results are gathered from
all of the shards. However, searching within multiple indices requires looking in exactly
the same way but with more shards being involved.

Pagination
The previous section about the empty search indicated that there are 12 documents
that match the criteria. You might have noticed that there were only 10 documents in
the hits array. This is due to the upper limit on the number of documents that the hits
array can contain. So how can you fetch other documents? Not to worry. Elasticsearch
has borrowed the pagination concept from SQL. Just like in SQL, you can use the LIMIT
keyword to return all results in a single page; similarly, Elasticsearch uses the from and
size parameters.

•	 from: Number of initial results to be skipped. Default value is 0.

•	 size: Number of results to be returned. Default value is 10.

If you want to show three documents per page, then pages 1 to 5 can be requested as
follows:

curl –XGET 'localhost:9200/_search?size=3&pretty'
curl –XGET 'localhost:9200/_search?size=3&from=3&pretty'
curl –XGET 'localhost:9200/_search?size=3&from=6&pretty'
curl –XGET 'localhost:9200/_search?size=3&from=9&pretty'
curl –XGET 'localhost:9200/_search?size=3&from=12&pretty'

Table 5-1. Search Criteria Combinations

Query Search For

/_search All types in all indices

/ws/_search All types in the ws index

/ws,cd/_search All types in both the ws and cd indices

/w*,c*/_search All types in any indices beginning with w or beginning
with c

/ws/play/_search Type play in the ws index

/ws,cd/play,published/_search Type play and published in both the ws and cd indices

/_all/play,published/_search Types play and published in all indices

Chapter 5 ■ SearChing Data

88

You should be cautious about paging too deep or fetching too many results in one
shot. One of the costliest steps while generating results is to sort the results before returning
them. More often than not, a search request spans multiple shards, leading to an increase in
cost. After a shard generates its results, they must be sorted. Once all shards generate their
results, they must be centrally sorted to make sure that the overall order is correct.

 ■ Tip in distributed systems, as you page deeper and deeper, the cost of sorting results
grows exponentially.

Search Lite
The search API comes in two forms:

•	 Search Lite: A query string that requires all the parameters to be
passed in the query string.

•	 Query DSL: A full body query with a JSON request body and use
of a rich search language known by the name of Query DSL.

The query string version has utility in performing ad hoc query searches from the
command line. For example, the following query finds all documents of type “play” that
contain the word “The”:

GET /_all/play/_search?q=play:The

You can combine different criteria together in the same query string. Let’s say you
want to search for all plays with “The” in the title and published in “1840”. The following
is the query:

+play:The +published:1840

After the percent encoding, the query string parameters are the following:

GET /_search?q=%2Bplay%3AThe+%2Bpublished%3A1840

The + prefix is used to specify the conditions that must be satisfied for the query to
match. In the same way, - prefix is used to specify the conditions that must not match.
Any condition without a + or - is optional.

The _all Field
The simplest way to look for all documents containing the word “Shakespeare” is the
following:

GET /_search?q=Shakespeare

Chapter 5 ■ SearChing Data

89

In the previous section, you looked for words in the play or published fields. This
query, however, returns documents matching "Shakespeare" in the following fields:

•	 Author with name as Shakespeare

•	 Play with author as Shakespeare

The interesting thing is that Elasticsearch found results in two different fields. The
foundation for this is laid at the time of indexing. At that time, Elasticsearch uses the
string values of all of its fields to concatenate them into one big string, which is then
indexed as the special _all field. For example, look at the following document:

{
 "author": "William Shakespeare",
 "play": "Richard III",
 "published": "1592"
}

If you deep dive into how Elasticsearch stores this document, you can see an extra
field called _all with the following value:

“William Shakespeare Richard III 1592”
If no other specific field is specified in the query string, then this _all field is used for

the search request.

Query Mashup
Let's use different combinations for searching plays, based on the following criteria:

•	 The play field contains either “The” or “or”

•	 The published year is greater than 1838

•	 The _all field contains either of the words Shakespeare or
Charles

The query string is the following:

+play:(The or) +published:>1838 +(Shakespeare Charles)

After proper encoding, this query string is as follows:

?q=%2Bplay%3A(The+or)+%2Bpublished%3A%3E1838+%2B(Shakespeare+Charles)

It might come as a surprise, but this query string is extremely powerful. The
elaborate query syntax facilitates the construction of quite complex queries. The flip
side is that its brevity can make it cryptic. It is also error prone because even a single
misplaced - or + can return an error. The query string search mechanism is quite useful
for running slow and heavy queries on any of the fields. However, in production, using the
full-featured request body search API is preferred.

Chapter 5 ■ SearChing Data

90

Query DSL
In the previous section you saw that search lite is useful for ad hoc queries, but it is not
very flexible, and if the result set is large, the whole process becomes quite slow. You
now come to another mechanism for searching data: Query DSL. It is quite flexible and
uses an expressive language to perform the most intense queries through a simple JSON
interface. If you want to search data in a production environment, then Query DSL is the
way to go. It makes queries more precise while keeping them simple and easier to debug.

Let’s see a basic use of Query DSL by passing a query in the query parameter:

curl -XGET 'localhost:9200/_search?pretty’ –d ‘
{
 "query": ACTUAL QUERY
}’

Performing an empty search {} gives the same results as the match_all query clause
and returns all documents:

curl -XGET 'localhost:9200/_search?pretty’ –d ‘
{
 "query": {
 "match_all": {}
 }
}’

Query Clause Construction
Typically, a query clause should have the following construct:

{
 QUERY_NAME: {
 ARGUMENT: VALUE,
 ARGUMENT: VALUE,...
 }
}

If you want to refer one particular field, then use the following construct:

{
 QUERY_NAME: {
 FIELD_NAME: {
 ARGUMENT: VALUE,
 ARGUMENT: VALUE,...
 }
 }
}

Chapter 5 ■ SearChing Data

91

For example, if you want to find plays that have the word “The” in their title, you can
query using the match clause in the following manner:

curl -XGET 'localhost:9200/_search?pretty' –d '
{
 "query": {
 "match": {
 "play": "The"
 }
 }
}'

Working with Multiple Clauses
Query clauses are like Lego blocks that can be combined to create complex queries. There
are two types of clauses:

•	 Leaf clauses are used to compare field(s) to a query string, similar
to the match clause.

•	 Compound clauses are used to combine other query clauses. For
example, a bool clause can be used to combine other clauses that
either must match, must_not match, or should match if possible:

 {
 "bool": {
 "must": { "match": { "author": "Dickens" }},
 "must_not": { "match": { "play": "The" }},
 "should": { "match": { "published": "1838" }}
 }
 }

You can use a compound clause to combine multiple query clauses, including other
compound clauses. They have the ability to nest within each other, which can lead to
potentially complex logic. In order to demonstrate the combination of queries, let’s load
the following data:

{ "create": { "_index": "entertainment", "_type": "motion picture" }}
{ "movie": "Hollywood", "name": "Pulp Fiction", "actor": "Bruce Willis",
"date": "1994-05-12", "genre": "action", "director": "Quentin Tarantino" }
{ "create": { "_index": "entertainment", "_type": "motion picture" }}
{ "movie": "Hollywood", "name": "Armageddon", "actor": "Bruce Willis",
"date": "1998-07-01", "genre": "science fiction", "director": "Michael Bay" }
{ "create": { "_index": "entertainment", "_type": "motion picture" }}
{ "movie": "Hollywood", "name": "The Sixth Sense", "actor": "Bruce Willis",
"date": "1999-08-02", "genre": "horror", "director": "M. Night Shyamalan" }
{ "create": { "_index": "entertainment", "_type": "motion picture" }}

Chapter 5 ■ SearChing Data

92

{ "movie": "Hollywood", "name": "The Fast and the Furious", "actor": "Vin
Diesel", "date": "2001-06-18", "genre": "action", "director": "Rob Cohen" }
{ "create": { "_index": "entertainment", "_type": "motion picture" }}
{ "movie": "Hollywood", "name": "The Pacifier", "actor": "Vin Diesel",
"date": "2005-03-04", "genre": "action", "director": "Adam Shankman" }
{ "create": { "_index": "entertainment", "_type": "motion picture" }}
{ "movie": "Hollywood", "name": "The Last Witch Hunter", "actor": "Vin Diesel",
"date": "2015-10-23", "genre": "action", "director": "Breck Eisner" }

Let’s call the bulk contents file as plays.json. Give the following command to load
the bulk contents:

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary "@movie.json"; echo

For example, the following query snippet searches for Hollywood movies in which
either “Vin Diesel” has starred or those action movies in the “action” genre but not
directed by “James Cameron”:

{
 "bool": {
 "must": { "match": { "movie": "Hollywood" }},
 "should": [
 { "match": { "actor": "Vin Diesel" }},
 { "bool": {
 "must": { "genre": "action" }},
 "must_not": { "director": "James Cameron" }}
 }}
],
 "minimum_should_match": 1
 }
}

You can see that the compound query clause combines both a lead clause and other
compound clauses to create a single query.

Filter and Query
The common perception is to think of only query DSL; however there are two types
of DSLs: query DSL and filter DSL. Both have similar clauses but somewhat different
purposes.

•	 Filter asks a yes or no question of each document and is useful for
fields that contain exact values:

•	 Is the published date in the range 1850 - 1900?

•	 Is the state field reflecting success?

•	 Is the distance covered more than 50km?

Chapter 5 ■ SearChing Data

93

•	 Query is pretty similar to filter but adds value by ascertaining how
well the document matches. A query figures out how relevant a
document is and on that basis assigns it a relevance score. This
score is later used to sort matching documents for the most
relevant result. This concept of relevance is apt for a full-text
search, where there is no correct answer. Some scenarios where
query can have added benefit are the following:

•	 Best match for the words in a full text search

•	 Containing the word play, but maybe also matches playing,
player, or sprinter.

•	 Containing the words sphinx, black, and quartz. The closer
the words are, the more relevant the document is.

Performance Concerns
More often than not, the output from a filter clause is a simple list of matching
documents, which is fast to compute and easily stored in cache. It uses only 1 bit per
document and can be reused efficiently for subsequent requests. Queries have to do
a much harder job of finding documents with an exact match and also calculate the
relevant score for each document. This makes a query more demanding as compared to a
filter. To make matters worse, results from a query cannot be cached.

Generally, a cached filter way outperforms a query consistently. This is due to the
lesser number of documents examined by the filter.

 ■ Tip the rule of thumb is to use query clauses while doing a full-text search and use a
filter clause for any other search.

Key Filters and Queries
Elasticsearch offers many filters and queries to work with; however only a handful of
them are commonly used.

Term Filter
The term filter sifts documents by exact value, whether it is of type number, date, Boolean,
or not_analyzed exact-value string field.

{ "term": { "cost": 500 }}
{ "term": { "date": "2016-09-04" }}
{ "term": { "status": true }}
{ "term": { "label": "full_text" }}

Chapter 5 ■ SearChing Data

94

Terms Filter
The terms filter is similar to the term filter but with a crucial difference in that you can
specify multiple values to match. The document is considered matching if the field
contains any of the specified values.

{ "terms": { "tag": ["foo", "bar", "null"] }}

Range Filter
The range filter is useful for searching numbers or dates within the specified range.

{
 "range": {
 "income": {
 "gte": 100000,
 "lt": 150000
 }
 }
}

Table 5-2 depicts the operators that are allowed.

Exists and Missing Filters
The exists and missing filters help in fetching documents with a specified field occurring
one or more times (exists) or not being present at all (missing). The corresponding
operations in SQL are IS_NULL (missing) and NOT IS_NULL (exists).

The following code snippet demonstrates an example of an exists filter:

{
 "exists": {
 "field": "tag"
 }
}

Table 5-2. Ranger Filter Operators

Operator Function

gt Greater than

gte Greater than or equal to

lt Less than

lte Less than or equal to

Chapter 5 ■ SearChing Data

95

The following code snippet demonstrates an example of the missing filter:

{
 "filter": {
 "missing": {
 "field": "tag"
 }
 }
}

Bool Filter
The bool filter combines multiple filter clauses by using Boolean logic. It accepts the
following three parameters:

•	 must: The clauses must match, like and.

•	 must_not: The clauses must not match, like not.

•	 should: At least one of the clauses must match, like or.

These parameters can take only one filter clause. If more than one filter clause
needs to be specified, they have to be put in an array and then passed along with these
parameters.

{
 "bool": {
 "must": { "term": { "movie": "Hollywood" }},
 "must_not": { "term": { "actor": "Bruce Willis" }},
 "should": [
 "must": { "genre": "action" }},
 "must_not": { "director": "James Cameron" }}
],
 }
}

Match_all Query
The match_all query is the default query to be used when no other query has been
specified. It essentially matches all documents.

{ "match_all": {}}

This query is commonly used in combination with filters, for example to fetch all
movies from the movie database. In this case, all documents have equal relevance so they
all get a neutral score of 1.

Chapter 5 ■ SearChing Data

96

Match Query
Whenever you want to query for full text or an exact value in almost any field, you should
go for the match query. While running a match query against a full text field, the query
string analysis is done using the appropriate analyzer for that particular field before
starting the search:

{ "match ": { "play": "Comedy of Errors" }}

While using it on a field with an exact value like number, age, or date, the query
searches for that exact value:

{ "match ": { "income": 100000 }}
{ "match ": { "date": "1812-02-07" }}
{ "match ": { "label": "full_text" }}

A match query is different from a query-string search using the String Lite
mechanism. The match query does not need a query syntax like +play:The
+published:1840. It looks for the specified words, making it safe to expose it to users from
a search field.

Multi_match Query
The multi_match query enables the same match query to be run on multiple fields.

{
 "multi_match": {
 "query": "full text search",
 "fields": ["label", "name"]
 }
}

Bool Query
Just like the bool filter, the bool query can be used to combine multiple query clauses.
There are some subtle differences, though. While filters return binary yes/no answers,
queries compute a relevance score instead. The bool query chains together the score
obtained from each must or should clause that matches. The following parameters are
acceptable:

•	 must: The clauses that must match for document inclusion.

•	 must_not : The clauses that must not match for document
inclusion.

•	 should: Matching of these clauses leads to increase in relevance
score, without having any other effect. These clauses are helpful
to refine the relevance score of each document.

Chapter 5 ■ SearChing Data

97

The following query fetches documents corresponding to Hollywood movies in
which “Bruce Willis” has not acted. If any document (movie) belongs to the action genre
and was released before January 1, 2000, it will be ranked higher than others. Documents
matching both conditions rank even higher.

{
 "bool": {
 "must": { "match": { "movie": "Hollywood" }},
 "must_not": { "match": { "actor": "Bruce Willis" }},
 "should": [
 "match": { "genre": "action" }},
 "range": { "date": { "lte": "2000-01-01" }}}
],
 }
}

Filter-Query Combination
Queries and filters are used in their respective context. If you go through the Elasticsearch
API, you will quite frequently come across parameters with query or filter in the name.
They expect only a single argument with either a single query or filter clause, respectively.
This establishes the outer context as either a query context or a filter context.

Both compound query and filter clauses can wrap other query and filter clauses,
respectively. However, it is recommended to apply a filter clause to a query clause. To aid
in this, there are specific query clauses that wrap filter clauses, and vice-versa. This allows
switching from one context to another. It is crucial to select the correct combination of
query and filter clauses for the most efficient mechanism.

Filtering a Query
Let’s assume you want to execute the following query:

{ "match": { "movie": "Hollywood" }}

Let’s combine it with the following term filter, which matches only documents
corresponding to movies where "Vin Diesel" is the actor:

{ "term": { "actor": "Vin Diesel" }}

As mentioned, the search API takes only a single query parameter, so the query and
filter need to be encapsulated in another query, which you can call as the filtered query:

{
 "filtered": {
 "query": { "match": { "movie": "Hollywood" }},
 "filter": { "actor": "Vin Diesel" }}
 }
}

Chapter 5 ■ SearChing Data

98

You can now pass this filtered query to the query parameter of the search API:

curl -XGET 'localhost:9200/_search?pretty'
{
 "query": {
 "filtered": {
 "query": { "match": { "movie": "Hollywood" }},
 "filter": { "actor": "Vin Diesel" }}
 }
 }
}

Only Filter
In the context of query, if you only want to use filter without any query (for example, all
movies where Vin Diesel is the actor), just omit the query:

curl -XGET 'localhost:9200/_search?pretty'
{
 "query": {
 "filtered": {
 "filter": { "actor": "Vin Diesel" }}
 }
 }
}

If no query is specified, the default behavior is similar to using the match_all query.
So, the above query is equivalent to the following:

curl -XGET 'localhost:9200/_search?pretty'
{
 "query": {
 "filtered": {
 "query": { "match_all": {}},
 "filter": { "actor": "Vin Diesel" }}
 }
 }
}

Filter via Query
There can be occasions when you may want to use a query while being in a filter context.
This can be done using the query filter, which just encapsulates a query. The following
example shows one method to exclude movies where Vin Diesel has acted:

Chapter 5 ■ SearChing Data

99

curl -XGET 'localhost:9200/_search?pretty'
{
 "query": {
 "filtered": {
 "filter": {
 "bool": {
 "must": { "term": { "movie": "Hollywood" }},
 "must_not": {
 "query": {
 "match": { "actor": "Vin Diesel" }
 }
 }
 }
 }
 }
 }
}

 ■ Tip You may need to use a query as a filter when you need full-text matching while in
a filter context.

Query Validation
Queries tend to be complex, especially in combination with different analyzers and field
mappings. This makes it little difficult to follow. The validate query API checks whether a
query is valid:

curl -XGET 'localhost:9200/ws/play/_validate/query?pretty'
{
 "query": {
 "play" : {
 "match" : "Pride and Prejudice"
 }
 }
}

The response to this query shows that the query is invalid:

{
 "valid" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 }
}

Chapter 5 ■ SearChing Data

100

Error Diagnostics
In order to find out more details on why the query is invalid, you can use the explain
parameter in the following manner:

curl -XGET 'localhost:9200/ws/play/_validate/query?explain&pretty'
{
 "query": {
 "play" : {
 "match" : "Pride and Prejudice"
 }
 }
}

Looks like there was a mixup between the type of query (match) and the name of the
field (play):

{
 "valid" : false,
 "_shards" : { ... },
 "explanations" : [{
 "index" : "gb",
 "valid" : false,
 "error" : "org.elasticsearch.index.query.QueryParsingException:
 [gb] No query registered for [play]"
 }]
}

Summary
In this chapter, you went through the different means to search data in Elasticsearch. You
got an overview of simple searches using structured and full text queries. You saw that a
search can be made more powerful using multi-index, multi-type queries. Large query
results can be paged. Thereafter, Search Lite was used to search data by using a query
string, which requires all of the parameters to be passed in the query string. The Query
DSL is a more powerful mechanism that involves a full body query with a JSON request
body and the use of a rich search language. The integration of filters and queries was
covered in detail. In the end, different error diagnostic measures were explained.

101© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_6

CHAPTER 6

Mapping and Analysis

The previous chapter provided an overview of the different means of searching data in
Elasticsearch; both simple searches and full text queries were covered. An overview of
Search Lite and Query DSL was given. The goal of this chapter is to give a perspective of
data mapping and analysis. You will learn about different types of mapping and analysis
techniques.

Data Mapping and Analysis
The exploration of the data in the index populated in Chapter 5 amuses for more than
one reason. It looks like something is broken. There are a total of 12 records: 2 records
corresponding to two authors and then 5 records per author corresponding to plays. Only
the author records have an exact date, 1870-06-09, but just take a look at the hits for the
following queries:

GET /_search?q=1870 # 1 result
GET /_search?q=1870-06-09 # 1 result
GET /_search?q=date:1870-06-09 # 0 result
GET /_search?q=date:1870 # 0 result

Note that querying the _all field for only the full date returns the correct entry.
However, searching for partial date (in this case, partial year) draws a blank. Why? Looks
like Elasticsearch has indexed the _all field differently from the date type fields. Let's
deep dive into how Elasticsearch understands document structure by checking out the
mapping for the cd index:

curl -XGET 'localhost:9200/cd/_mapping/author?pretty'
{
 "cd" : {
 "mappings" : {
 "author" : {
 "properties" : {
 "born" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"

http://dx.doi.org/10.1007/978-1-4842-2626-1_5

Chapter 6 ■ Mapping and analysis

102

 },
 "country" : {
 "type" : "string"
 },
 "died" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 },
 "name" : {
 "type" : "string"
 }
 }
 },
 "play" : {
 "properties" : {
 "author" : {
 "type" : "string"
 },
 "play" : {
 "type" : "string"
 },
 "published" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

Elasticsearch dynamically generates a mapping based on its estimation of the field
types. The response indicates that the “born” and “died” fields have been recognized as of
type date. You might be wondering where the _all field is. It does not get displayed because it
is a default field and has string type. Indexing for date type fields and string type fields is done
differently, allowing them to be searched differently. In fact, all the basic data types (strings,
numbers, Booleans, and dates) are indexed in a different manner. The fields that represent
exact values and fields that represent full text are indexed in a completely different manner.
This is a crucial aspect that distinguishes Elasticsearch from all other databases.

Exact Values and Full Text
Elasticsearch categorizes data into the following two types:

•	 Exact values are the specific value of a field, such as income, age,
or date. They can also include exact strings like username or an
email address. They are case sensitive. For example, the exact value
“Hello” is not the same as the exact value “hello”. Similarly, the
exact value “1870” is not the same as the exact value “1870-06-09”.

Chapter 6 ■ Mapping and analysis

103

•	 Full text is the textual data, more often than not written in some
human language, such as an email body, Facebook comments, etc.

Exact values are easier to query. This is because of the binary nature of a decision; a
value will match the query or it won't. It can be expressed easily in SQL:

WHERE name = "Eric Anderson"
 AND id = 45796
 AND date >= "2016-09-10"

Exploring full-text data requires much more finesse. Rather than asking “Does the
document match the specified query?” you need to ask “How well does the document
match the specified query?” You need to figure out how relevant the document is to the
specified query. Rarely will you go for matching the whole full-text field exactly. The
common use case is to search within text fields. Besides this, you expect Elasticsearch to
understand your intent.

•	 A search for play should also match played, playful, playing, plays.

•	 tom hanks should match Tom Hanks and mel gibson should
match Mel Gibson.

•	 A search for UK should also return documents having reference to
the United Kingdom.

During the processing of queries on full-text fields, Elasticsearch initially analyzes the
text and then uses the results to build an inverted index. Detailed treatment will be provided
on the concept of an inverted index and the analysis process in the following sections.

Inverted Index
Elasticsearch perform a fast full-text search by using an internal structure called an
inverted index. This structure is comprised of a list of all unique words appearing in any
document and correspondingly for each word in a list of documents where it appears.
Let's take an example of two documents, each having a content field containing the
following text:

•	 Pack my box with five dozen liquor jugs.

•	 Just pack my boxes with five dozen wine jugs.

Let's see how an inverted index will get created for these two documents by splitting
the content field of each document into separate words (terms or tokens). Thereafter, you
will create a sorted list with all unique terms and then a list of each document where a
term appears. The breakup is depicted in Table 6-1.

Chapter 6 ■ Mapping and analysis

104

If you want to search for pack my, you only need to find the documents in which
each of these terms appears, as shown in Table 6-2.

You can see that both the documents match, but the first document has more
matching terms. A rudimentary algorithm that just counts the occurrence of matching
terms will lead you to the conclusion that the second document is a better match. In other
words, the second document is more relevant to your query than the first document.
However, this approach is far from perfect:

•	 Pack can be changed to lowercase pack.

•	 boxes can be trimmed to its root form to become box.

•	 liquor and wine mean pretty much the same and probably one
term, liquor, can be used.

After applying these changes, the Term list looks like Table 6-3.

Table 6-1. Sorted Term List

Term Document 1 Document 2

Just X

Pack X

box X

boxes X

dozen X X

five X X

jugs X X

liquor X

my X X

pack X

wine X

with X X

Table 6-2. Matching Documents

Term Document 1 Document 2

pack X

my X X

Total 1 2

Chapter 6 ■ Mapping and analysis

105

You may be surprise to know that your search for +Just +pack is still not successful.
This is due to the fact that the exact term Just is not in the index. But if the normalization
rules similar to the content field are applied to the query string also, it will reformat as a
query for +just +pack. This will then match the first document.

 ■ Tip Only terms that are part of the index can be queried, hence necessitating
normalization of both the indexed test and the query string.

Data Analysis
The next step after defining the mapping is to analyze the data using the following steps:

•	 Tokenize a group of text into separate terms appropriate for an
inverted index.

•	 Normalize the terms into a standard form for them to be easily
searched.

These tasks are performed by analyzers, which are only a wrapper around the
following three functions:

 1. Character filters: The first step is to pass the string through
any character filters in turn. The aim is to spruce up the string
before tokenization and to do away with any markup text.

 2. Tokenizer: The next step is to break the strings into tokens
based on individual terms. A straightforward way is to use
whitespace or punctuation as delimiter for extracting tokens.

Table 6-3. Normalized Term List

Term Document 1 Document 2

box X X

dozen X X

five X X

jugs X X

just X

liquor X X

my X X

pack X X

with X X

Chapter 6 ■ Mapping and analysis

106

 3. Token filters: The last step is to route each term through a token
filter. It can modify terms (for example, lowercasing Just), delete
terms (for example, articles such as a, an, the) or supplement
terms (for example, similar terms like liquor and wine).

There are different type of character filters, tokenizers, and token filters available
with Elasticsearch by default. These filters can be chained together to create novel
analyzers serving unique purposes.

Prepackaged Analyzers
Elasticsearch comes with certain prepackaged analyzers that can be used straightway.
You can find the details of some of the key analyzers. There is a subtle difference in their
behavior. Let's see what outcome you get from each analyzer after applying them to the
following text:

If I were two-faced, would I be wearing this one(1)?

•	 Standard Analyzer: This is the default analyzer used by
Elasticsearch. It works best for most of the scenarios for text in
any language. The text is ripped on word boundaries. Most of the
punctuation is done away with and all terms are lowercased. The
output is

if, i, were, two, faced, would, be, wearing, this, one, 1

•	 Simple Analyzer: It fragments text whenever it encounters non-
letters and converts the terms to lowercase. The output is

if, i, were, two, faced, would, be, wearing, this, one

•	 Whitespace Analyzer: The test is delimited on the basis of
whitespace and is not lowercased. The output is

If, I, were, two-faced, would,, be, wearing, this, one(1)?

•	 Language Analyzer: This kind of analyzer is available for
multiple languages. It takes care of language idiosyncrasies such
as removing stop words (for example, words like a, an, and the
that don’t impact relevance). It also truncates English words as it
understands the rules of grammar. The output is

if, i, were, two, face, would, be, wear, this, one, 1

You might notice that faced and wearing have been truncated to their root form.

Chapter 6 ■ Mapping and analysis

107

When to Use Analyzers
On indexing a document, all the full-text fields are analyzed and converted to terms
that can be used to form the inverted index. But when you want to search for a full-text
field, the query string has to go through the same analysis process. This guarantees
that the search terms are of the similar form as that exists in the index. Full-text queries
comprehend the significance of each field and take the correct action:

•	 On querying a full-text field, the same analyzer would be used to
arrive at the correct list of terms that should be searched.

•	 On querying an exact-value field, rather than analyzing the query
string, the exact specified value is searched for.

You Can Test Analyzers
There can be occasions when it is not obvious what is being tokenized and used in an
index. To get a clear picture, you can leverage the analyze API to figure out how the text
has been analyzed. Just give the analyzer in the query-string some parameters and the
text to be analyzed in the body:

curl -XGET 'localhost:9200/_analyze?analyzer=simple&pretty' -d 'Be the
change that you want to see in the world'
{
 "tokens": [{
 "token": "be",
 "start_offset": 0,
 "end_offset": 2,
 "type": "word",
 "position": 0
 }, {
 "tokens": [{
 "token": "the",
 "start_offset": 3,
 "end_offset": 6,
 "type": "word",
 "position": 1
 }, {
 "tokens": [{
 "token": "change",
 "start_offset": 7,
 "end_offset": 13,
 "type": "word",
 "position": 2
 }, {
 "tokens": [{
 "token": "that",
 "start_offset": 14,

Chapter 6 ■ Mapping and analysis

108

 "end_offset": 18,
 "type": "word",
 "position": 3
 }, {
 "tokens": [{
 "token": "you",
 "start_offset": 19,
 "end_offset": 22,
 "type": "word",
 "position": 4
 }, {
 "tokens": [{
 "token": "wish",
 "start_offset": 23,
 "end_offset": 27,
 "type": "word",
 "position": 5
 }, {
 "tokens": [{
 "token": "to",
 "start_offset": 28,
 "end_offset": 30,
 "type": "word",
 "position": 6
 }, {
 "tokens": [{
 "token": "see",
 "start_offset": 31,
 "end_offset": 34,
 "type": "word",
 "position": 7
 }, {
 "tokens": [{
 "token": "in",
 "start_offset": 35,
 "end_offset": 37,
 "type": "word",
 "position": 8
 }, {
 "tokens": [{
 "token": "the",
 "start_offset": 38,
 "end_offset": 41,
 "type": "word",
 "position": 9
 }, {
 "tokens": [{
 "token": "world",

Chapter 6 ■ Mapping and analysis

109

 "start_offset": 42,
 "end_offset": 47,
 "type": "word",
 "position": 10
 }]
}

The actual entity to be stored in index is the token. The order of appearance of the term
in the original text is specified by position. Character positions occupied by the original word
in the original string are specified by start_offset and end_offset. You can see that the analyze
API is quite useful because it throws light on the internal functioning of Elasticsearch.

Assign Analyzer
On spotting a new string field in a document, Elasticsearch automatically treats it as a full-text
string and assigns the standard analyzer. Now, depending on the situation, you may or may
not want this. Maybe you want to assign some other analyzer that meets the peculiarities of
the language of your data. There can be situations when you may want a string field to be
treated just like a string field. In this case, the exact value is indexed without any analysis. To
accomplish this, you must manually configure these fields by specifying the mapping.

Data Mapping
Data mapping is essential to provide specific treatment to data fields. For example, you may
want numeric fields to be treated as numbers, date fields to be treated as dates, and string
fields as exact-value or full-text strings. A short recap from earlier chapters: each document
in an index consists of a type. Each type has its own mapping (schema definition). This
mapping defines fields within a type, the datatype for each field, and how Elasticsearch
should handle the field. Mapping also configures metadata associated with the type.

Simple Field Types
The following simple field types are supported by Elasticsearch:

•	 Boolean: boolean

•	 Date: date

•	 Floating-point: float, double

•	 String: string

•	 Whole number: byte, short, integer, long

While indexing a document, if Elasticsearch encounters a new field, it uses the
heuristic of dynamic mapping to guess the field type from the available basic data types
in JSON. These rules are specified in Table 6-4.

Chapter 6 ■ Mapping and analysis

110

 ■ Tip indexing a number in quotes ("701"), maps it to as type string and not type long.
On the other hand, if it the field already maps to type long, then the string value will be
converted into a long. an exception is thrown if the conversion to long cannot happen.

Observe the Mapping
Elasticsearch provides the facility to observe the mapping for multiple types in multiple
indices by the use of the /_mapping endpoint. Early in this chapter, the mapping for the
cd index was shown.

 ■ Tip there may be chance that your mapping is not correct. the Income field may be
mapped to type string instead of integer. this can produce confusing results so you should
go back and correct the mapping.

Mapping Customization
Elasticsearch provides good-enough basic field datatypes that are sufficient for most
cases. But there may be a situation when you want to customize mapping for certain
fields. Thankfully, Elasticsearch allows for mapping customization:

•	 Differentiate full-text string fields from exact value string fields

•	 Use of analyzers specific to different languages

•	 Field optimization for limited matching

Table 6-4. Dynamic Mapping Rules

JSON Type Field Type

Boolean: true or false boolean

Whole number: 701 long

Floating point: 70.58 double

String, valid date: 1870-06-09 date

String: foo bar string

Chapter 6 ■ Mapping and analysis

111

The type of a field is its most important attribute. For fields that are not string, you
will not generally need to map anything but type:

{
 "cache_size": {
 "type": "integer"
 }
}

The default behavior for string fields is to consider them to contain full text. This
means that the field value will be processed by an analyzer before indexing it. Similarly,
a full-text query on the field will require the query string to first pass through an analyzer.
The key mapping attributes for string fields are index and analyzer.

index
The index influences the indexing of a string with the possible values as follows:

•	 analyzed: First the string is analyzed and then it is indexed. The
string gets indexed as full text.

•	 not_analyzed: Index the field without analyzing. The value gets
indexed exactly as specified.

•	 no: If you don’t want the field to be searchable, you can specify it
not to be indexed.

The default of index attribute for a string field is analyzed. If, however, you want the
field to be mapped as an exact value, specify the index mapping as not_analyzed:

{
 "label": {
 "type": "string",
 "index": "not_analyzed",
 }
}

analyzer
The analyzer attribute can be used to specify which analyzer to use both at search
time and at index time. The default behavior is to use a standard analyzer but this
can be modified by assigning one of the in-built analyzers, such as english, simple, or
whitespace:

{
 "play": {
 "type": "string",

Chapter 6 ■ Mapping and analysis

112

 "analyzer": "english",
 }
}

Mapping Revision
You have seen that the mapping for a type can be specified when an index is created.
Thereafter, mapping can be added for a new type or mapping for an existing type can be
updated, using the /_mapping endpoint.

 ■ Tip additions to an existing mapping can be done but it can't be changed. this is to
ensure the sanctity of the already indexed data.

You can revise a mapping to add a new field but you can't modify an existing
field from analyzed to not_analyzed. To demonstrate the different ways of specifying
mappings, let's create a new index, specifying that the string type fields should use the
english analyzer:

curl -XPUT 'localhost:9200/sm' -d '
{
 "mappings": {
 "play": {
 "properties": {
 "play": {
 "type": "string",
 "analyzer": "english"
 },
 "author": {
 "type": "string",
 "analyzer": "english"
 },
 "published": {
 "type": "string",
 "analyzer": "english"
 }
 }
 }
 }
}'

The index will get created with the mappings specified in the body. Let's say at a later
point you decide to update the mapping by adding a new not_analyzed text field called
label to the play mapping, by using the _mapping endpoint:

Chapter 6 ■ Mapping and analysis

113

curl -XPUT 'localhost:9200/sm/_mapping/play' -d '
{
 "properties": {
 "label" : {
 "type": "string",
 "index": "not_analyzed"
 }
 }
}'

You don’t need to specify all the existing fields again because they can't be changed
anyway. The new field gets merged with the existing mapping.

Mapping Test
With the help of the analyze API, you can test the mapping for string fields by name. Let's
first check the mapping for the play field:

curl -XGET 'localhost:9200/sm/_analyze?field=play' -d 'The Making of a
Saint'

It gives the following output:

{
 "tokens" : [{
 "token" : "make",
 "start_offset" : 4,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "saint",
 "start_offset" : 16,
 "end_offset" : 21,
 "type" : "<ALPHANUM>",
 "position" : 4
 }]
}

Now let's check the mapping for the label field:

curl -XGET 'localhost:9200/sm/_analyze?field=label' -d 'The Making of a
Saint'

Chapter 6 ■ Mapping and analysis

114

In this case, you get the following output:

{
 "tokens" : [{
 "token" : "The Making of a Saint",
 "start_offset" : 0,
 "end_offset" : 21,
 "type" : "word",
 "position" : 0
 }]
}

The play field fragments the text into different tokens, whereas the label field takes
the complete text string as is. This demonstrates that the mapping is working as intended.

Complex Field Types
Elasticsearch provides support for not only simple (scalar) datatypes but also complex
data types like arrays, objects, and null values.

Multi-Value Fields
You may want to have more than one label in the label field. Rather than having a single
string, you could have an array of labels:

{ "label" : ["cache", "redis"] }

Arrays don’t need any specific mapping. Zero, one, or more values can be present
in a field, similar to how a full-text field is analyzed to produce multiple terms. Arrays do
have a restriction in that all the values must be of the same datatype. You can't have both
numbers and strings in the same array. When you create a new field by indexing an array,
the datatype of the first value in the array is used to determine the type of new field.

 ■ Tip elasticsearch returns arrays in the same order as when they were indexed.

Empty Fields
You can have empty arrays also. This is same as zero value. You will be surprised to know
that Elasticsearch has no way to store null values. So, fields with null values are also treated
as empty fields. All the following fields are treated as empty fields and will not be indexed:

"array_having_null_value" : [null] ,
"empty_array" : [],
"null_value" : null

Chapter 6 ■ Mapping and analysis

115

Multi-Level Objects
Another significant datatype is the object type. In other programming environments, it
is commonly referred to as an associative array, dictionary, or hash map. Inner objects
typically insert an entity or object inside another. You can reformat the structure of
documents with information about different plays (an earlier example):

{
 "author" : "William Shakespeare",
 "play" : {
 "name" : "Henry VI",
 "published": "1590"
 }
}

Elasticsearch figures out new object fields dynamically and maps them as type object
and each inner field is listed under properties

Indexing Inner Objects
Elasticsearch considers all fields as a flat list of key-value pairs. While indexing inner
objects, Elasticsearch transforms the document in the following manner:

{
 "author" : [william, shakespeare],
 "play.name" : [Henry, VI],
 "play.published": [1590]
}

You can refer to inner fields by their name. For example, you can directly refer
to name. If two fields have the same first name, then you must use the full path (for
example, play.name).

Inner Object Arrays
Inner objects can also have their own arrays. Let's say you have an employees' array with
the following details:

{
 "employees" : [,
 { "name" : "Tom Hanks", "id" : 5712, "department" : "sales" },
 { "name" : "Mel Gibson", "id" : 6043, "department" : "operations" },
 { "name" : "Brad Pitt", "id" : 8954, "department" : "administration" }
]
}

Chapter 6 ■ Mapping and analysis

116

As described earlier, the above specified document will be flattened and the result is
the following:

{
 "employees.name" : [brad, gibson, hanks, mel, pitt, tom],
 "employees.id" : [5712, 6043, 8954],
 "employees.department" : [administration, operations, sales]
}

You may have noticed that the correlation between different fields like name (“Tom
Hanks”) and id (5712) does not remain intact. Each of the multi-value fields is not an ordered
array but only a bag of values. Correlated inner objects are also known as nested objects.

Summary
This chapter provided a perspective of data mapping and analysis. It covered different
types of mapping and analyses techniques. Elasticsearch categorizes data either as an
exact value or full text. It performs fast full-text searches by using an internal structure
called an inverted index. There are various prepackaged analyzers available: standard,
simple, whitespace, and language. An overview of field type mapping was given and in
the end the concept of multi-level objects was introduced.

117© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_7

CHAPTER 7

Data Exploration with
Aggregates

The previous chapter gave a perspective on data mapping and analysis. Different types of
mapping and analyses techniques were covered. This goal of this chapter is to figure out
how to get an overview of data, rather than just doing a search or query. An aggregation
is the piece that converts raw data into actionable information. Insightful reports and
dashboards can be made from the information received.

Aggregation Basics
Aggregations enable you to get an overview of data and have a plug-and-play syntax;
in other words, separate functional blocks can be tied together to provide the desired
behavior. A very few components make the foundation of aggregates:

•	 Buckets: A group of documents meeting the criteria

•	 Metrics: Statistics computed on the documents in a bucket

It is hard to believe but this is all that is needed to work with aggregates. Each
aggregation is just an amalgamation of one or more buckets. It may or may not have
associated metrics. The following is a SQL-based analogy:

SELECT COUNT(sales)
FROM table
GROUP BY sales

In this example, COUNT(sales) is similar to a metric and GROUP BY sales is similar
to a bucket. While grouping in SQL is similar to buckets, functions like COUNT(), MAX(),
and SUM() are similar to metrics. Let's deep dive into these concepts.

Buckets
As mentioned earlier, a bucket essentially is a group of documents meeting a certain
criteria. Some sample criterion to arrive at buckets is as follows:

Chapter 7 ■ Data exploration with aggregates

118

•	 United States is in the North America continent bucket.

•	 A company can be either in a profitable or loss making bucket.

•	 A person would land either in the employed or unemployed
bucket.

When an aggregation is executed, the values inside each document are compared to
figure out whether they match the criteria of the bucket. If the document(s) matches, it is
considered part of a bucket and the aggregation moves over to evaluate other documents.
A bucket can be part of another bucket, leading to hierarchical relationships. As an
example, California can be part of the USA country bucket and the entire USA can be part
of the North America continent bucket.

To help with data exploration, Elasticsearch contains different types of buckets:
hourly, popularity, age ranges, geo-locations, and many more. The central idea in each
case is to compartmentalize documents on the basis of the specified criteria.

Metrics
While buckets facilitate compartmentalization of documents into small groups, it is of not
much help without some metrics. Bucketing is the first step that groups documents such
that useful metrics can be computed.

Generally, metrics are straightforward mathematical operations (for example, min,
max, mean, sum, etc.) that are computed using the document values. Some practical
usage of metrics are to calculate the average sales, mean salary or the 99th percentile for
query latency.

The Two Together
Aggregation is made up of buckets and metrics. It may have one or more buckets
supported by zero or more metrics. There may even be buckets inside buckets. As an
example, you can have different buckets for departments in an organization and then
compute the average salary per group (metric).

Fun with Aggregation
In this section, you will go through the concept of aggregation by examples. As part of this
exercise, you are going to build aggregations relevant to a mobile phone dealer. The data
is about phone sales: phone model, color, sale price, and date of sale.

To start with, bulk-upload the sample data in the following manner:

POST /phones/sales/_bulk
{ "index": {}}
{ "make" : "iPhone", "color" : "silver", "price" : 260, "sold" : "2016-01-16" }
{ "index": {}}
{ "make" : "iPhone", "color" : "gold", "price" : 400, "sold" : "2016-02-16" }
{ "index": {}}

Chapter 7 ■ Data exploration with aggregates

119

{ "make" : "motorola", "color" : "white", "price" : 80, "sold" : "2016-03-06" }
{ "index": {}}
{ "make" : "htc", "color" : "silver", "price" : 140, "sold" : "2016-04-03" }
{ "index": {}}
{ "make" : "htc", "color" : "white", "price" : 80, "sold" : "2016-04-16" }
{ "index": {}}
{ "make" : "motorola", "color" : "black", "price" : 80, "sold" : "2016-07-18" }
{ "index": {}}
{ "make" : "samsung", "color" : "white", "price" : 70, "sold" : "2016-08-23" }
{ "index": {}}
{ "make" : "LG", "color" : "black", "price" : 40, "sold" : "2016-09-04" }
{ "index": {}}
{ "make" : "huawei", "color" : "black", "price" : 30, "sold" : "2016-10-05" }
{ "index": {}}
{ "make" : "huawei", "color" : "white", "price" : 30, "sold" : "2016-12-19" }

After inserting the sample data, it is time to construct an aggregation. A phone dealer
may be interested in knowing which colors sell the most. This can be easily found out
using a simple aggregation. Let's do this using a terms bucket:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}'

You can see that aggregations are placed at the top level using the aggs parameter.
Thereafter, the aggregation is named colors. In the end, a single bucket of type terms is
specified. The context of execution is that of search results, implying that it is similar to a
top-level parameter in a search request.

 ■ Tip Use of search_type implies that you are not interested in search results, but want
the overall operation to be faster.

The next step is to name the aggregation and then define it. In this case, only a single
terms bucket is defined. It will ensure that a new bucket is created for every unique term.
Since this example is specifying a terms bucket to use the color field, a new bucket will be
created for each color. On executing the aggregation, you get the following results:

Chapter 7 ■ Data exploration with aggregates

120

{
....
 "hits" : {
 "total" : 10,
 "max_score" : 0.0,
 "hits" : []
 },
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "white",
 "doc_count" : 4
 }, {
 "key" : "black",
 "doc_count" : 3
 }, {
 "key" : "silver",
 "doc_count" : 2
 }, {
 "key" : "gold",
 "doc_count" : 1
 }]
 }
 }
}

Note that there are no search hits in the output since the search_type=count
parameter was used. The colors aggregation is part of the aggregations field. Unique
terms found in the color field (for example, gold, server) serve as keys for each bucket.
The number of documents is specified by the doc_count field. The number of documents
with a particular color are represented by the corresponding count of each bucket. For
example, there are two silver colored phones.

This example is executed in real time; any searchable document can be aggregated.
This implies that the aggregation results can be fed into a graphing tool to create real-time
dashboards. If you sell a gold colored phone, the graphs will get updated in real time to
show an increase in the sales of gold colored phones.

Metrics to the Rescue
The previous example demonstrated that plain vanilla aggregates are useful to tell us the
number of documents in a bucket. But that turns out to be inadequate in many situations
where more sophisticated statistics about the documents are required. For example, what is
the maximum price of an iPhone? You can get this information by indicating to Elasticsearch
which metrics are needed and on which fields. You can nest metrics inside buckets so that
mathematical statistics are computed based on the values of documents in a bucket.

Chapter 7 ■ Data exploration with aggregates

121

You can understand metrics by adding an average metric to the phones example:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 },
 "aggs" : {
 "mean_price" : {
 "avg" : {
 "field" : "price"
 }
 }
 }
 }
 }
}'

A new aggs level has been added to specify the metric with the name mean_price. It is
defined as an avg metric over the price field. The new aggregation level nests the avg metric
inside the terms bucket, resulting in an average for each color. You need to name the metric
(mean_price, in this case) so the values can be retrieved later. The metric (avg) needs to be
bound to a field for which you want the average to be computed (price). The response is

{
 ...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "white",
 "doc_count" : 4,
 "mean_price" : {
 "value" : 65.0
 }
 }, {
 "key" : "black",
 "doc_count" : 3,
 "mean_price" : {
 "value" : 50.0
 }
 }, {
 "key" : "silver",
 "doc_count" : 2,

Chapter 7 ■ Data exploration with aggregates

122

 "mean_price" : {
 "value" : 200.0
 }
 }, {
 "key" : "gold",
 "doc_count" : 1,
 "mean_price" : {
 "value" : 400.0
 }
 }]
 }
 }
...
}

The information now returned is quite substantial. You knew that there are three
black phones, but you can now see that their mean price is $50. This information can be
directly fed into graphs or dashboards.

Buckets Within Buckets
The hierarchical nature of buckets adds a lot of power to aggregations. You already saw
how to nest a metric within a bucket. Let's increase the fun element by nesting buckets
within other buckets to find out the phone make count for each color:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 },
 "aggs" : {
 "mean_price" : {
 "avg" : {
 "field" : "price"
 }
 },
 "make" : {
 "terms" : {
 "field" : "make"
 }
 }
 }
 }
 }
}'

Chapter 7 ■ Data exploration with aggregates

123

The mean_price metric can co-exist with the inner bucket. The inner bucket is an
aggregation named make. It is also a terms bucket, which will result in unique buckets
for each phone make. There could be metrics or buckets at each level of aggregation.
The mean_price metric indicates the mean price for each phone color and can exist
independently of other buckets and metrics. This is crucial to build different metrics on
the same set of documents. All of these metrics are collected by Elasticsearch in just one
pass over the data.

You can see that the make aggregation is a bucket of type term, just like the
outer colors terms bucket. This would result in a (color, make) tuple for every unique
combination of data. Let's see what the output of make bucket is:

{
...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "white",
 "doc_count" : 4,
 "make" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "htc",
 "doc_count" : 1
 }, {
 "key" : "huawei",
 "doc_count" : 1
 }, {
 "key" : "motorola",
 "doc_count" : 1
 }, {
 "key" : "samsung",
 "doc_count" : 1
 }]
 },
 "mean_price" : {
 "value" : 65.0
 }
 },
...
}

The new aggregation is nested under each color bucket with a breakdown of phone
makes for each color. The response indicates the following:

•	 There are four white colored phones.

Chapter 7 ■ Data exploration with aggregates

124

•	 The mean price of a white colored phone is $65.

•	 Each of htc, huawei, motorola, samsung has one white colored
phone.

Multiple Metrics
There can be multiple metrics associated with an aggregation. Let's add two more metrics
to compute the min and max price for each phone make:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 },
 "aggs" : {
 "mean_price" : {
 "avg" : {
 "field" : "price"
 }
 },
 "make" : {
 "terms" : {
 "field" : "make"
 },
 "aggs" : {
 "min_price" : { "min" : {"field" : "price"} },
 "max_price" : { "max" : {"field" : "price" } }
 }
 }
 }
 }
 }
}'

Another aggs level has been added for nesting. Then min and max metrics are
added. Let's see the outcome of executing this aggregate:

{
...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,

Chapter 7 ■ Data exploration with aggregates

125

 "buckets" : [{
 "key" : "white",
 "doc_count" : 4,
 "make" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "htc",
 "doc_count" : 1,
 "max_price" : {
 "value" : 80.0
 },
 "min_price" : {
 "value" : 80.0
 }
 }, {
 "key" : "huawei",
 "doc_count" : 1,
 "max_price" : {
 "value" : 30.0
 },
 "min_price" : {
 "value" : 30.0
 }
 }, {
 "key" : "motorola",
 "doc_count" : 1,
 "max_price" : {
 "value" : 80.0
 },
 "min_price" : {
 "value" : 80.0
 }
 }, {
 "key" : "samsung",
 "doc_count" : 1,
 "max_price" : {
 "value" : 70.0
 },
 "min_price" : {
 "value" : 70.0
 }
 }]
 },
 "mean_price" : {
 "value" : 65.0
 }
...
}

Chapter 7 ■ Data exploration with aggregates

126

The addition of another metric has increased the information available:

•	 There are four white colored phones.

•	 The mean price of a white colored phone is $65.

•	 Each of htc, huawei, motorola, samsung has one white colored
phone

•	 The minimum and maximum price for a white colored htc phone
is the same: $80.

Data Visualization with Bar Charts
Aggregations can be easily visualized using charts and graphs. This is one of the biggest
advantages of aggregations. The most useful bucket is a histogram, which is popularly
known as a bar chart. I am sure you are familiar with bar charts in some context. You need
to specify an interval when working with a histogram. For example, while histogramming
mobile phone prices, you may specify an interval of $50. This creates a new bucket every
$50. The relevant documents are sorted into corresponding buckets.

For your example, find out the number of phones sold in each price range. Also, figure
out the total revenue generated in each price bracket. This is computed by summing the price
of each phone in that interval. This can be done using a histogram and a nested sum metric:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "price" : {
 "histogram" : {
 "field" : "price",
 "interval" : 50
 },
 "aggs" : {
 "revenue" : {
 "sum" :{
 "field" : "price"
 }
 }
 }
 }
 }
}'

The query is built using price aggregation containing a histogram bucket. There
are two parameters required for a histogram bucket: a numeric field and an interval
to define the bucket size. The numeric parameter is the value to be used for computing
buckets. The interval helps to define the size of each bucket. An interval of 50 means that
you will have the ranges [0-49, 50-99, …].

Chapter 7 ■ Data exploration with aggregates

127

The histogram bucket contains an associated metric. In your case, this is the sum
metric which sums the price field from each document that fits in that price range. This
provides the total sales revenue for each range and can provide an insight on what kind of
phones have better sales numbers. The response can be seen below:

{
...
 "aggregations" : {
 "price" : {
 "buckets" : [{
 "key" : 0,
 "doc_count" : 3,
 "revenue" : {
 "value" : 100.0
 }
 }, {
 "key" : 50,
 "doc_count" : 4,
 "revenue" : {
 "value" : 310.0
 }
 }, {
 "key" : 100,
 "doc_count" : 1,
 "revenue" : {
 "value" : 140.0
 }
 }, {
 "key" : 150,
 "doc_count" : 0,
 "revenue" : {
 "value" : 0.0
 }
 }, {
 "key" : 200,
 "doc_count" : 0,
 "revenue" : {
 "value" : 0.0
 }
 }, {
 "key" : 250,
 "doc_count" : 1,
 "revenue" : {
 "value" : 260.0
 }
 }, {
 "key" : 300,
 "doc_count" : 0,

Chapter 7 ■ Data exploration with aggregates

128

 "revenue" : {
 "value" : 0.0
 }
 }, {
 "key" : 350,
 "doc_count" : 0,
 "revenue" : {
 "value" : 0.0
 }
 }, {
 "key" : 400,
 "doc_count" : 1,
 "revenue" : {
 "value" : 400.0
 }
 }]
 }
 }
}

The Elasticsearch response is lucid with the histogram keys corresponding to the
lower boundary of the interval. The key 0 means 0-49, the key 50 means 50-99, and so on.
This data can be represented graphically as shown in Figure 7-1.

 ■ Tip Microsoft excel was used to make the histogram based on the raw data.

Price Ranges

Re
ve

nu
e

in
 H

un
dr

ed
s

0-
49

50
-9

9
10

0-
14

9
15

0-
19

9
20

0-
24

9
25

0-
29

9
30

0-
34

9
35

0-
39

9
40

0-
44

9

0

Phones Sold

Revenue

1

2

3

4

0.5

1.5

2.5

3.5

4.5

Figure 7-1. Price range histograms

Chapter 7 ■ Data exploration with aggregates

129

Bar charts can be built with other aggregations also, as long as they can provide
categories and statistics. Let's build a bar chart for popular phones and their mean price.
You will then calculate the standard error and add error bars on the chart. You will again
use the terms bucket but this time with extended_stats metric:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d
'
{
 "aggs" : {
 "makes" : {
 "terms" : {
 "field" : "make",
 "size" : 10
 },
 "aggs" : {
 "stats" : {
 "extended_stats" : {
 "field" : "price"
 }
 }
 }
 }
 }
}'

The result is a list of phone makes (sorted in order of popularity) along with different
types of statistics:

{
...
 "aggregations" : {
 "makes" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "htc",
 "doc_count" : 2,
 "stats" : {
 "count" : 2,
 "min" : 80.0,
 "max" : 140.0,
 "avg" : 110.0,
 "sum" : 220.0,
 "sum_of_squares" : 26000.0,
 "variance" : 900.0,
 "std_deviation" : 30.0,
 "std_deviation_bounds" : {
 "upper" : 170.0,

Chapter 7 ■ Data exploration with aggregates

130

 "lower" : 50.0
 }
 }
 }, {
 "key" : "huawei",
 "doc_count" : 2,
 "stats" : {
 "count" : 2,
 "min" : 30.0,
 "max" : 30.0,
 "avg" : 30.0,
 "sum" : 60.0,
 "sum_of_squares" : 1800.0,
 "variance" : 0.0,
 "std_deviation" : 0.0,
 "std_deviation_bounds" : {
 "upper" : 30.0,
 "lower" : 30.0
 }
 }
 }, {
 "key" : "iphone",
 "doc_count" : 2,
 "stats" : {
 "count" : 2,
 "min" : 260.0,
 "max" : 400.0,
 "avg" : 330.0,
 "sum" : 660.0,
 "sum_of_squares" : 227600.0,
 "variance" : 4900.0,
 "std_deviation" : 70.0,
 "std_deviation_bounds" : {
 "upper" : 470.0,
 "lower" : 190.0
 }
 }
 }, {
 "key" : "motorola",
 "doc_count" : 2,
 "stats" : {
 "count" : 2,
 "min" : 80.0,
 "max" : 80.0,
 "avg" : 80.0,
 "sum" : 160.0,
 "sum_of_squares" : 12800.0,
 "variance" : 0.0,

Chapter 7 ■ Data exploration with aggregates

131

 "std_deviation" : 0.0,
 "std_deviation_bounds" : {
 "upper" : 80.0,
 "lower" : 80.0
 }
 }
 }, {
 "key" : "lg",
 "doc_count" : 1,
 "stats" : {
 "count" : 1,
 "min" : 40.0,
 "max" : 40.0,
 "avg" : 40.0,
 "sum" : 40.0,
 "sum_of_squares" : 1600.0,
 "variance" : 0.0,
 "std_deviation" : 0.0,
 "std_deviation_bounds" : {
 "upper" : 40.0,
 "lower" : 40.0
 }
 }
 }, {
 "key" : "samsung",
 "doc_count" : 1,
 "stats" : {
 "count" : 1,
 "min" : 70.0,
 "max" : 70.0,
 "avg" : 70.0,
 "sum" : 70.0,
 "sum_of_squares" : 4900.0,
 "variance" : 0.0,
 "std_deviation" : 0.0,
 "std_deviation_bounds" : {
 "upper" : 70.0,
 "lower" : 70.0
 }
 }
 }]
...
}

The statistics you especially want are stats.avg, stats.count, and stats.std_deviation.
This information can be used to compute the standard error by the following formula:

std_err = std_deviation / count

Chapter 7 ■ Data exploration with aggregates

132

With this information you can make the bar chart shown in Figure 7-2.

 ■ Tip Microsoft excel was used to make the histogram based on the raw data.

Time Series Aggregations
Search is the most popular activity in Elasticsearch and date histograms come next
in popularity. The use of date histograms serve many purposes. If your data has a
timestamp, it can benefit tremendously from a data histogram. It does not matter what
kind of data you have (server logs, alarms, account transactions, etc.). If you have data
that consists of a timestamp, it is natural to build metrics based on time:

•	 Number of phones sold each month in this year

•	 Number of requests processed in the last one hour by a trading
system

•	 Average latency per week for an e-commerce site.

Data histograms are represented slightly differently from regular histograms. Data
histograms are best depicted by line graphs representing a time series. One of the most
popular uses of Elasticsearch is to plot analytics data over a time period. The date_
histogram buckets is pretty similar to the regular histogram. Instead of building buckets

400

350

300

250

200

150

100

50

0
HTC Huawei iPhone Motorola

Phone Make

LG Samsung

Standard Error

Mean Price

Figure 7-2. Mean price of phone makes with standard error

Chapter 7 ■ Data exploration with aggregates

133

based on a numeric field corresponding to numeric ranges, it builds buckets on the basis
of time ranges. This necessitates each bucket to be of a certain calendar size (for example,
one week or two months).

 ■ Tip a regular histogram can also work with dates. since it is not calendar-aware, it
interprets dates as numbers, and intervals must be specified in milliseconds. on the other
hand, date_histogram is aware of nuances of a calendar system like number of days in
February, leap years, etc.

Let's illustrate the advantages of date_histogram by building a simple line chart to
represent the number of mobile phones sold per month:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "sales" : {
 "date_histogram" : {
 "field" : "sold",
 "interval" : "month",
 "format" : "yyyy-MM-dd"
 }
 }
 }
}'

You can see that the interval is specified in terms of calendar unit (month, in this
case). A date format is specified to make the bucket keys look nice. It is a relatively simple
query, having only a single aggregation that builds a bucket per month. This will provide
the number of phones sold in each month. Dates are internally represented as numeric
values only. The following is the response:

{
 ...
 "aggregations" : {
 "sales" : {
 "buckets" : [{
 "key_as_string" : "2016-01-01",
 "key" : 1451606400000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-02-01",
 "key" : 1454284800000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-03-01",

Chapter 7 ■ Data exploration with aggregates

134

 "key" : 1456790400000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-04-01",
 "key" : 1459468800000,
 "doc_count" : 2
 }, {
 "key_as_string" : "2016-05-01",
 "key" : 1462060800000,
 "doc_count" : 0
 }, {
 "key_as_string" : "2016-06-01",
 "key" : 1464739200000,
 "doc_count" : 0
 }, {
 "key_as_string" : "2016-07-01",
 "key" : 1467331200000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-08-01",
 "key" : 1470009600000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-09-01",
 "key" : 1472688000000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-10-01",
 "key" : 1475280000000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2016-11-01",
 "key" : 1477958400000,
 "doc_count" : 0
 }, {
 "key_as_string" : "2016-12-01",
 "key" : 1480550400000,
 "doc_count" : 1
 }]
...
}

You can see that the buckets are corresponding to each month and a count of docs
in each month is given. The key_as_string field represents the date in a pretty format.
Figure 7-3 shows the line graph corresponding to phone sales.

Chapter 7 ■ Data exploration with aggregates

135

Multi-Tier Correlation
As mentioned, buckets can be nested in other buckets for a more powerful experience.
In order to show off this advantage, let's create an aggregation that shows the total sum
of prices for all phone makes, listed per quarter. Also, let’s compute the sum or prices per
individual phone maker per quarter to indicate which phone is most profitable.

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "sales" : {
 "date_histogram" : {
 "field" : "sold",
 "interval" : "quarter",
 "format": "yyyy-MM-dd",
 "min_doc_count" : 0,
 "extended_bounds" : {
 "min" : "2016-01-01",
 "max" : "2016-12-31"
 }
 },
 "aggs" : {
 "per_make_total" : {
 "terms" : {
 "field" : "make"
 },
 "aggs" : {

1/
1/

20
16

2.5

2

1.5

1

0.5

0

2/
1/

20
16

3/
1/

20
16

4/
1/

20
16

5/
1/

20
16

6/
1/

20
16

7/
1/

20
16

8/
1/

20
16

9/
1/

20
16

10
/1

/2
01

6

11
/1

/2
01

6

12
/1

/2
01

6

Phones Sold

Phones Sold

Figure 7-3. Mobile phones sold over time

Chapter 7 ■ Data exploration with aggregates

136

 "total_price" : {
 "sum" : {"field" : "price" }
 }
 }
 },
 "grand_total": {
 "sum": { "field": "price" }
 }
 }
 }
 }
}'

The interval is now quarter instead of month. This aggregation will compute the sum
per phone make and then the grand total of all makes combined together. The following
is the response:

{
...
 "aggregations" : {
 "sales" : {
 "buckets" : [{
 "key_as_string" : "2016-01-01",
 "key" : 1451606400000,
 "doc_count" : 3,
 "per_make_total" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "iphone",
 "doc_count" : 2,
 "total_price" : {
 "value" : 660.0
 }
 }, {
 "key" : "motorola",
 "doc_count" : 1,
 "total_price" : {
 "value" : 80.0
 }
 }]
 },
 "grand_total" : {
 "value" : 740.0
 }
 }, {
 "key_as_string" : "2016-04-01",
 "key" : 1459468800000,

Chapter 7 ■ Data exploration with aggregates

137

 "doc_count" : 2,
 "per_make_total" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "htc",
 "doc_count" : 2,
 "total_price" : {
 "value" : 220.0
 }
 }]
 },
 "grand_total" : {
 "value" : 220.0
 }
 }, {
 "key_as_string" : "2016-07-01",
 "key" : 1467331200000,
 "doc_count" : 3,
 "per_make_total" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "lg",
 "doc_count" : 1,
 "total_price" : {
 "value" : 40.0
 }
 }, {
 "key" : "motorola",
 "doc_count" : 1,
 "total_price" : {
 "value" : 80.0
 }
 }, {
 "key" : "samsung",
 "doc_count" : 1,
 "total_price" : {
 "value" : 70.0
 }
 }]
 },
 "grand_total" : {
 "value" : 190.0
 }
 }, {
 "key_as_string" : "2016-10-01",
 "key" : 1475280000000,

Chapter 7 ■ Data exploration with aggregates

138

 "doc_count" : 2,
 "per_make_total" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "huawei",
 "doc_count" : 2,
 "total_price" : {
 "value" : 60.0
 }
 }]
 },
 "grand_total" : {
 "value" : 60.0
 }
 }]
...
}

This response can be used to create bar charts for each individual phone make
(per quarter). A line chart can be made for the total sales. Figure 7-4 visually depicts the
quarterly sales figures.

While the examples shown up to now are simple in nature, Elasticsearch
aggregations can be used to handle much more complex real-life scenarios.

Q1

800

700

600

500

400

300

200

100

0
Q2 Q3 Q4

iPhone

Motorola

HTC

LG

Samsung

Huawei

Total

Figure 7-4. Quarterly sales figures

Chapter 7 ■ Data exploration with aggregates

139

Aggregation Scoping
You may have noticed that in all the previous examples there was no explicit query. The
requests contained only aggregations. The beauty of aggregations is that they can be
run along with the search requests. However, by use of scope, you can have much more
directed aggregations. The default behavior is for aggregations to run in the same scope
as the query. In simple terms, aggregations are computed on all the documents that
match the query. Let's look at one of the initial examples one more time:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}'

You can very well see that the aggregation is specified in isolation, without any
associated query. In such a scenario, Elasticsearch assumes that when no query is
specified, it should query all documents. The query shown above is interpreted internally
by Elasticsearch as the following:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "query" : {
 "match_all" : {}
 },
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}'

It may not be immediately obvious, but in reality, aggregations always operate within
the scope of the query. This implies that an isolated aggregation operates within the
scope of a match_all query, so it searches all documents. The concept of scoping can
help in customizing aggregations to a large extent. All the previous examples computed
statistics for all the documents (data): top-selling mobile phone, mean price of all phones,
quarterly sales, etc.

Chapter 7 ■ Data exploration with aggregates

140

Using scope, you can figure out how many colors the iPhone comes in. This can be
done by simply adding a query to the earlier requests (match query):

curl -XGET 'localhost:9200/phones/sales/_search?pretty' -d '
{
 "query" : {
 "match" : {
 "make" : "iphone"
 }
 },
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}'

You may notice that search_type=count has been omitted so as to ensure that both
search results and aggregation results are visible:

{
...
 "hits" : {
 "total" : 2,
 "max_score" : 1.5108256,
 "hits" : [{
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "AVdB6RkFM4scS7EY9HVl",
 "_score" : 1.5108256,
 "_source" : {
 "make" : "iPhone",
 "color" : "silver",
 "price" : 260,
 "sold" : "2016-01-16"
 }
 }, {
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "AVdB6RkFM4scS7EY9HVm",
 "_score" : 1.5108256,
 "_source" : {
 "make" : "iPhone",
 "color" : "gold",
 "price" : 400,
 "sold" : "2016-02-16"

Chapter 7 ■ Data exploration with aggregates

141

 }
 }]
 },
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "gold",
 "doc_count" : 1
 }, {
 "key" : "silver",
 "doc_count" : 1
 }]
...
}

This seemingly simple scoping is a stepping stone to potentially more advance
dashboards. Any static dashboard can be turned into a real-time explorations service by
adding a search bar. This lets the user search for terms and get related graphs updated
dynamically.

Global Bucket
On many occasions, you may want to scope your aggregation on a subset rather than the
complete data set, such as comparing the average price of the iPhone with the average
price of all mobile phones. A regular expression scoped to the query can be used to
find out the average price of the iPhone. The average price of all mobile phones can be
computed using a global bucket.

As is apparent, the global bucket contains all the documents irrespective of the
query scope. In other words, it does not consider scope. Being an aggregation, it can have
nested (inner) buckets:

curl -XGET 'localhost:9200/phones/sales/_search?pretty' -d '
{
 "query" : {
 "match" : {
 "make" : "iphone"
 }
 },
 "aggs" : {
 "single_mean_price" : {
 "avg" : { "field" : "price" }
 },
 "all" : {
 "global" : {},
 "aggs" : {

Chapter 7 ■ Data exploration with aggregates

142

 "mean_price" : {
 "avg" : { "field" : "price" }
 }
 }
 }
 }
}'

Notice that this aggregation runs in query scope and the global bucket takes no
parameters. The mean_avg_price metric computation is based on all documents falling
under the query scope of all iPhones. This metric lies within a global bucket so it is not
affected by scoping. The mean price computed for the aggregation corresponds to the
average price of all phones.

Aggregations with Query Filters
The next logical step after aggregation scoping is filtering. As mentioned, aggregations
operate in the context of the query scope, so any query filter would be applicable to the
aggregation also.

Query with Filter
How would you find all phones with a price of more than $100 and in the process
compute the average price of such phones? Don't worry; filtered queries serve this very
purpose:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "query" : {
 "filtered" : {
 "filter" : {
 "range" : {
 "price" : {
 "gte" : 100
 }
 }
 }
 }
 },
 "aggs" : {
 "single_mean_price" : {
 "avg" : { "field" : "price" }
 }
 }
}'

Chapter 7 ■ Data exploration with aggregates

143

It gives the following response:

{
...
 "hits" : {
 "total" : 3,
 "max_score" : 0.0,
 "hits" : []
 },
 "aggregations" : {
 "single_mean_price" : {
 "value" : 266.6666666666667
 }
 }
}

The response indicates there are three phones with price greater than $100 and their
average selling price is $267. In principle, a filtered query is not different from a match
query. Applying a filter on the query makes it return only a subset of documents and then
an aggregation is applied only on those documents.

Filter Bucket
Consider a situation wherein you want to filter just the aggregation results. This might be
the case if you are building the search page for mobile phone dealership. You may want
to display search records based on what the user searches for. As a value addition, you
may want to include the average price of phones sold in the last month (the base month is
September).

Plain vanilla scoping won't help in this case because there are two different search
criterions. Although the search results should match iphone, the aggregations results
have to match iphone and sold > now - 1M. You can solve this by the use of filter, which is
actually a special bucket. Documents matching the filter criteria are added to the bucket:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "query" : {
 "match" : {
 "make" : "LG"
 }
 },
 "aggs" : {
 "recent_sales" : {
 "filter" : {
 "range" : {
 "sold" : {
 "from" : "now-1M"

Chapter 7 ■ Data exploration with aggregates

144

 }
 }
 },
 "aggs" : {
 "mean_price" : {
 "avg" : {
 "field" : "price"
 }
 }
 }
 }
 }
}'

A filter bucket is used to apply a filter in addition to the query scope. The avg metric
will ensure that you get the average for only those phones that are from LG and were sold
in the last one month. It gives the following result:

{
...
 "aggregations" : {
 "recent_sales" : {
 "doc_count" : 1,
 "mean_price" : {
 "value" : 40.0
 }
 }
 }
}

You can see that filter bucket is like any other bucket and can therefore nest any
other buckets or metrics. The filter is inherited by all nested components.

Post Filter
Until now you have used a filter to both search results and aggregations (filtered query)
and to filter individual portions of the aggregation (filter bucket). There can be situation
when you may want to filter just the search results but not the aggregations. This is made
possible by use of a post_filter. It is a top-level, search-request element and it accepts
a filter. The difference is that the filter is applied after the query execution. For this very
reason, it does not affect either the query scope or aggregations.

This property can be used to apply additional filters to the search criteria, without
affecting other aggregations or queries. Let's search for a phone and filter by color:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d '
{
 "query" : {

Chapter 7 ■ Data exploration with aggregates

145

 "match" : {
 "make" : "iphone"
 }
 },
 "post_filter" : {
 "term" : {
 "color" : "silver"
 }
 },
 "aggs" : {
 "all_colors" : {
 "terms" : { "field" : "color" }
 }
 }
}'

The post_filter element is at the top level and filters just the output of search. The
output is the following:

{
...
 "hits" : {
 "total" : 1,
 "max_score" : 0.0,
 "hits" : []
 },
 "aggregations" : {
 "all_colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "gold",
 "doc_count" : 1
 }, {
 "key" : "silver",
 "doc_count" : 1
 }]
 }
 }
}

The query looks for all iPhones. Thereafter, a list of colors is built with a terms
aggregation. Since aggregations operate in the query scope, the list of colors corresponds
to the colors in which iPhones are painted. In the end, the post_filter filters the search
result to show only the silver colored iPhones. This happens after the query is executed so
that the aggregations are not unaffected.

Chapter 7 ■ Data exploration with aggregates

146

Multivalue Bucket Sorting
Have you ever wondered how Elasticsearch decides the order of multivalue buckets like
the terms, histogram, and date_histogram? The default behavior is to sort buckets by
doc_count in descending order. This serves well for the majority of scenarios as generally
you want to find the documents that maximize some criteria: income, population, price,
etc. But there can be situations when you want to modify the sort order. Thankfully,
Elasticsearch provides multiple ways to custom sort the buckets.

Intrinsic Sorts
These sort modes are intrinsic in nature and operate on data generated by a bucket like
doc_count. The syntax differs on the basis of the bucket being used. Let's execute a terms
aggregation that is sorted by doc_count in ascending order:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order" : {
 "_count" : "asc"
 }
 }
 }
 }
}'

The _count keyword can be used to sort on the basis of doc_count in ascending order:

{
...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "gold",
 "doc_count" : 1
 }, {
 "key" : "silver",
 "doc_count" : 2
 }, {
 "key" : "black",
 "doc_count" : 3

Chapter 7 ■ Data exploration with aggregates

147

 }, {
 "key" : "white",
 "doc_count" : 4
 }]
 ...
}

The order object facilitates sorting on one of several values:

•	 _count: Sort by count of document. Best suited for terms,
histograms, and date_histogram.

•	 _term: Use the string value of a term to sort alphabetically. Best fit
for terms.

•	 _key: Use the numeric value of each bucket's key for sorting. Best
fit for histogram and date_histogram.

Metric-Based Sorting
There can be scenarios when you want to sort on the basis of a metric's computed value.
For the mobile phones sales analysis, let's try to build a bar chart of sales by phone color,
sorting the bars by the average price in ascending order. This can be done by adding a
metric to the bucket, and then referencing the metric from the order parameter.

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order" : {
 "mean_price" : "asc"
 }
 },
 "aggs" : {
 "mean_price" : {
 "avg" : {"field" : "price" }
 }
 }
 }
 }
}'

The mean price per bucket is computed. After that, the buckets are sorted by the
computed mean value in ascending order:

Chapter 7 ■ Data exploration with aggregates

148

{
...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "black",
 "doc_count" : 3,
 "mean_price" : {
 "value" : 50.0
 }
 }, {
 "key" : "white",
 "doc_count" : 4,
 "mean_price" : {
 "value" : 65.0
 }
 }, {
 "key" : "silver",
 "doc_count" : 2,
 "mean_price" : {
 "value" : 200.0
 }
 }, {
 "key" : "gold",
 "doc_count" : 1,
 "mean_price" : {
 "value" : 400.0
 }
 }]
...
}

Just by referencing the metric name, you can override the sort order with any metric.
Occasionally, metrics emit multiple values. Case in point is the extended_stats metric as
it provides half a dozen individual metrics. Sorting on a multi-value metric requires the
use of the dot-path to the metric of interest:

curl -XGET 'localhost:9200/phones/sales/_search?search_type=count&pretty' -d'
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order" : {
 "stats.variance" : "asc"

Chapter 7 ■ Data exploration with aggregates

149

 }
 },
 "aggs" : {
 "stats" : {
 "extended_stats" : {"field" : "price"}
 }
 }
 }
 }
}'

The use of the dot notation facilitates sorting on the metric of interest and emits the
following output:

{
...
 "aggregations" : {
 "colors" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "gold",
 "doc_count" : 1,
 "stats" : {
 "count" : 1,
 "min" : 400.0,
 "max" : 400.0,
 "avg" : 400.0,
 "sum" : 400.0,
 "sum_of_squares" : 160000.0,
 "variance" : 0.0,
 "std_deviation" : 0.0,
 "std_deviation_bounds" : {
 "upper" : 400.0,
 "lower" : 400.0
 }
 }
 }, {
 "key" : "white",
 "doc_count" : 4,
 "stats" : {
 "count" : 4,
 "min" : 30.0,
 "max" : 80.0,
 "avg" : 65.0,
 "sum" : 260.0,
 "sum_of_squares" : 18600.0,
 "variance" : 425.0,

Chapter 7 ■ Data exploration with aggregates

150

 "std_deviation" : 20.615528128088304,
 "std_deviation_bounds" : {
 "upper" : 106.2310562561766,
 "lower" : 23.768943743823392
 }
 }
...
}

In this case, sorting is done on the variance of each bucket, so the colors with the
least variance in price will appear earlier than those that have more variance.

Summary
This chapter covered a lot of ground by presenting a lot of interesting topics. As a feature,
aggregations are both powerful and flexible. Their ability to nest buckets and metrics, and
observe statistical anomalies in near real time provides insight into the data. This chapter
started by introducing the concept of aggregation and the use of buckets and metrics.
Elasticsearch facilitates the visualization of data by creating histograms and time series
aggregations. It allows multi-tier correlation. More power can be added by scoping and
filtering.

151© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_8

CHAPTER 8

Exploring Kibana

This previous chapter gave an overview of how to use aggregations to gather insightful
information from data. The power of aggregations lies in nesting buckets and metrics
to observe statistical insights in near real time. Scoping and filtering can be used to
pack more power to aggregations. This chapter will introduce Kibana, which is the third
component of the ELK troika. Kibana is really the front end of ELK stack and does a good
job of hiding all of the data complexities. It can be used to present beautiful visualizations
of data like charts and dashboards. Kibana visualizations are dynamic in nature as they
change with change in data in real time.

Introducing Kibana
Kibana is the front end for Elasticsearch and provides delightful visualizations for data.
Kibana is an open source analytics engine that can be used to search, view, and analyze
data. Various kinds of visualizations are available to illustrate data in the form of tables,
charts, histograms, maps, etc. There is a web-based interface to handle large volumes of
data. Creating a dashboard is quite seamless and queries data in real time. Essentially, a
dashboard is nothing but a way for analyzing JSON documents. You can save them, make
them as templates, or simply export them. The ease of setup and use will help you cut
through the complexities of stored data in minutes.

Kibana comes as an Apache-licensed product. Its flexible interface comes out as a
great combination for Elasticsearch's searching capabilities. You only need a web server
and any modern web browser to start working with Kibana. It leverages the REST APIs
of Elasticsearch. Data can be visualized in real time by using dashboards. This helps in
getting real-time insights.

 ■ Tip Kibana 4.5.1 is used as a reference for examples and snapshots in this chapter.

Chapter 8 ■ exploring Kibana

152

Kibana Features
Kibana has the following key features:

•	 Emphasis on search terms: The list of documents returned as the
response to a search contains the search terms as highlighted.

•	 Aggregations: In-depth use of Elasticsearch aggregations is done
to facilitate visualizations. As mentioned in previous chapters,
there two main types of aggregations: buckets and metrics.
Buckets return a set of documents meeting criteria like terms,
range, histogram, etc. Metrics, on the other hand, compute
statistics like min, max, sum, or average for a set of documents.

•	 Scripted fields: Scripted fields help with computations in real
time on indexed data. For example, for a certain field you want to
add 500 before showing it. This can be saved as a scripted field.
There is a caveat, though: scripted fields cannot be searched.

•	 Dynamic dashboards: Kibana dashboards are flexible and
dynamic, allowing for individual visualizations to be conveniently
arranged. Moreover, they enable automatic refreshing of data.

Kibana User Interface
The Kibana user interface consists of four main tabs:

 1. Discover: This page is used for search based on free form text,
fields, or ranges.

 2. Visualize: As the name suggests, this page provides the
facility for creating multiple visualizations like bar charts, pie
charts, line charts, etc. These charts can be saved for use in
dashboards later.

 3. Dashboard: This page is a set of collections of multiple
visualizations and searches. It allows for easy application
of filters based on click interaction, which helps in drawing
conclusions based on multiple data aggregations.

 4. Settings: The settings page is used to configure Kibana
operational parameters. Some of the examples are index
patterns, scripted fields, data types of fields, etc.

Let's explore the Discover page in more detail in this chapter. I will cover the
Visualize, Dashboard, and Settings pages in Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-2626-1_9

Chapter 8 ■ exploring Kibana

153

The Discover Page
The key function of the Discover page is to execute interactive searches in your indexed
data. You can perform ad hoc searches on the fields, filter data, and view indexed
documents. The Kibana default page is the Discover page and it looks like Figure 8-1.

In the Discover page, all the indexed fields are shown in the index pattern on the
left. The time filter is shown at the top and there is a search box to submit your search
queries. A default histogram is shown based on the @timestamp field in the documents.
The number of hits in the document corresponding to the search is also displayed. The
default value is 500 documents arranged on the basis of the timestamp, with the latest at
the top.

Time Filter
How many times have you needed to find some statistics corresponding to a time
interval? No need to worry now, because the Kibana Discover page has a time filter. It
enables you to filter data based on any specific time interval. The absolute time interval
can be selected from the calendar or you can have it relative to the current time. Some
ready-to-use filters are also available.

Quick Time Filter

A quick time filter helps filter quickly based on some already available time ranges. As
shown in Figure 8-2, a quick time filter quickly filters documents based on some existing
time ranges.

Figure 8-1. The Discover page

Chapter 8 ■ exploring Kibana

154

Relative Time Filter

If you want to filter relative to the current time, then go for the relative time filter. The default
value of the time filter is set to last 15 minutes. Figure 8-3 depicts the relative time filter.

Absolute Time Filter

If you want to filter between two dates, you can use the absolute time filter. It filters based
on a range of dates using the From and To fields. Figure 8-4 illustrates this.

Figure 8-2. Quick time filter

Figure 8-3. The relative time filter

Figure 8-4. The absolute time filter

Chapter 8 ■ exploring Kibana

155

You can also specify a time filter using click and drag on a stretch of a chart. See
Figure 8-6 for an illustration.

Figure 8-5. The auto-refresh setting

Auto-Refresh Settings

You can choose an interval for performing auto-refresh, as shown in Figure 8-5.

Figure 8-6. Time filter by area selection

Query and Search Data
The Lucene query syntax is leveraged by Kibana for searching among indices stored in
index patterns. As described in an earlier chapter, the Elasticsearch Query DSL can also
be used. This automatically refreshes the field list, indexed documents lists, and the
histograms.

 ■ Tip For string fields, both the analyzed and non-analyzed versions are saved in indices.
the non-analyzed fields are shown with .raw extension in the Discover page.

Let’s go through some examples of data search.

Free Text Search
The free text search filters documents containing the search term. It looks for the
searched term in all of the documents. For example, if you want to search for all of the
Action movies from an index pattern consisting of Hollywood movies, you just need
to specify “Action” in the search box. Kibana filters all documents containing the term
Action.

Chapter 8 ■ exploring Kibana

156

Search keywords can be combined by the use of different operators:

•	 AND: If you want to search for all documents corresponding to
Action movies starring Vin Diesel, you can specify

"Action" AND "Vin Diesel"

•	 OR: If you want to search for all documents corresponding to
either an Action movie or starring Vin Diesel, you can specify

"Action" OR "Vin Diesel"

•	 NOT: If you want to search for all documents corresponding to
Action movies not starring Vin Diesel, you can specify

"Action" NOT "Vin Diesel"

•	 Groupings: Different operators can be combined together. If
you want to search for Hollywood movies that are either of the
Comedy or Action genre, you can specify

("Action" OR " Comedy") AND "Hollywood"

•	 Wildcard searches: You can perform wildcard searches in the
following manner:

•	 Trac*: This will enable a search for documents having terms
such as Trace, Track, Tracking, Tractor, etc.

•	 Trac?: This will enable a search for documents having terms
Trace or Tract.

Field Searches
You can use field searches to look for specific values or ranges of values for fields in your
indexed document, which is displayed on the left-hand side of the Discover page. You
need to specify the field name, : separator, and the value to be searched for:

<field name> : <field value>

Some examples of field searches are as following:

Movie : "Action"
Movie : "Action" AND Actor : "Vin Diesel"

Chapter 8 ■ exploring Kibana

157

Range Searches
Range searches can be used to search for a range of values for a field. If you want to search
for a range of values for the sales field, use the following:

sales : [100000 TO 200000]

You can combine range and field searches using Boolean operators:

sales : [100000 TO 200000] AND Movie : "Action"

 ■ Tip if special characters must be searched for, they must be escaped using the
\ operator. the special characters are the following:

+ - && || ! () { } [] ^ " ~ * ? : \

New Search
To initiate a new search, just click the New Search button on the Discover toolbar.
Figure 8-7 illustrates this.

Figure 8-7. A new search

Saving a Search
You can save the search criteria using the Save Search option on the Discover toolbar.
These saved searches can be used in visualizations later. They can also be used in
dashboards for illustrating information in a traditional table format.

The Load Saved Search option on the Discover toolbar can be used to load the
previously saved searches.

Field Search Using Field List
You can click the positive or negative filter icon on certain values of the field to perform
a field search. Certain fields can be added on the right-hand side panel by using the
Add button on the field name in the field list. As shown in Figure 8-8, this facilitates a
comfortable view of fields as tables based on your searches.

Chapter 8 ■ exploring Kibana

158

This way can be used to quickly add fields and sort documents based on the fields. It
is most helpful for building tables for a quick search.

Summary
This chapter presented a bird's eye view of Kibana. You explored the Discover page and
different searching techniques. The Visualize, Dashboard, and Settings pages will be
covered in detail in Chapter 9.

Figure 8-8. Field searches

http://dx.doi.org/10.1007/978-1-4842-2626-1_9

159© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_9

CHAPTER 9

Kibana - Data Visualization

The previous chapter gave an overview of Kibana and explored the Discover page.
It covered the execution of quick searches across indexed documents from the
Discover page. This chapter will take the exploration of Kibana further by covering the
Visualization section. You’ll get an overview of the different techniques for building
amazing charts and graphs that simplify comprehending complex data sets.

The Visualize Page
The Visualize page is the most crucial page in Kibana and it helps to create visualizations
on top of data that has been analyzed using the Discover page. Different types of
visualizations can be built from the data already present in Elasticsearch. This page
plays a key role in analyses and understanding the data using the visualizations. You can
create visualizations of different types, save them, or combine them to form dashboards.
The Visualize page enables creations of new visualizations from a new search or a saved
search, as per requirements.

Visualization is the central component that makes Kibana feature rich and powerful.
There are different types of visualizations like a vertical bar chart, line chart, area chart,
pie chart, tile map, and data table. These visualizations can be shared with other users
who have access to the Kibana instance. Visualizations leverage Elasticsearch for
aggregation and visualization of data.

The Visualize page looks like Figure 9-1.

Chapter 9 ■ Kibana - Data Visualization

160

In the Visualize page, you can create a new visualization or open an existing
visualization from the saved list.

Metrics and Bucket Aggregations
Metrics and bucket aggregations are the foundation for making a Kibana visualization.
Aggregations enable us to get an overview of data and have a plug-and-play syntax;
in other words, separate functional blocks can be tied together to provide the desired
behavior. Buckets correspond to group of documents meeting the criteria and metrics are
statistics computed on the documents in a bucket. A detailed treatment of aggregations
can be found in Chapter 7. Let's briefly revisit aggregations in the context of Kibana.

Figure 9-1. The Visualize page

http://dx.doi.org/10.1007/978-1-4842-2626-1_7

Chapter 9 ■ Kibana - Data Visualization

161

Buckets
In Kibana, the X-axis corresponds to the buckets. Figure 9-2 shows the buckets available
in Kibana.

The different buckets available in Kibana are as follows:

•	 Date histogram: Use it to group documents as per the specified
field and time interval. It needs a field name of type date and
interval for the configuration.

•	 Histogram: This is quite similar to a date histogram, with a major
difference being that it needs the field of type numbers and a
numeric interval.

•	 Range: Very similar to histogram but it enables configuring
different ranges as per the requirements.

•	 Date range: It needs a date field and a custom range
corresponding to each bucket.

•	 Terms: Facilitate grouping of documents by the value of any field.

Figure 9-2. Buckets in visualizations

Chapter 9 ■ Kibana - Data Visualization

162

Metrics
Metrics are computations done on values of fields in each bucket, such as calculating the
average, count, maximum, or minimum of a field in a document. In Kibana, the Y-axis is
associated with metrics. Figure 9-3 shows the metrics available in Kibana.

Figure 9-3. Visualization metrics

The different metrics available in Kibana are as follows:

•	 Count: The Count metric is used to calculate the count of the
number of fields in each bucket in a bucket aggregation.

•	 Min, Max, Sum, and Average: Just like the Count aggregation,
Min, Max, Sum, and Average calculate the minimum, maximum,
sum and average, respectively, of all the values of a numeric field
in the aggregation.

•	 Unique Count: Pretty similar to Count but counts only the
unique values for a field.

Advanced Options
You can make use of advanced options for buckets and metrics aggregations. You can
give JSON input as scripted fields. The following snippet is an example of a script:

{ "script" : "doc['income'].value * 200" }

Chapter 9 ■ Kibana - Data Visualization

163

Figure 9-4 illustrates the Advanced Option box.

Figure 9-4. JSON input advanced options

Figure 9-5. New visualization page

The New Visualization page has the toolbar at the top, a metrics and buckets
configuration on the left, and a preview pane on the right-hand side. This is illustrated in
Figure 9-5.

Chapter 9 ■ Kibana - Data Visualization

164

For creating visualizations, you can use the following options:

•	 From a saved search: Leverages a search already saved from the
Discover page.

•	 From a new search: Creates a new visualization based on a new
search.

The different search source options are illustrated in Figure 9-7.

Figure 9-7. Visualization search option

Figure 9-6. Visualize toolbar

With the toolbar at the top, you can create new visualizations, save a visualization,
open a saved visualization, share a visualization, and refresh it. This is illustrated in
Figure 9-6.

Choosing a Search Data Source
Choosing the search source is essential to create the visualization you want. You can
either select a newly created search or an already saved search as a data source for
creating visualizations. All searches have an association with an index or a bunch of
indices. You have the following options for choosing search data source:

•	 From a saved search: Leverages a search already saved from the
Discover page.

•	 From a new search: Creates a new visualization based on a new
search.

While selecting from a new search there are multiple indices to choose from; a drop-
down menu is provided to select the particular index you want to visualize. It facilitates
the creation of visualizations based on stored data.

On the other hand, while selecting from a saved search, you can link the visualization
with the search query saved on the Discover page. Since the search is associated with a
visualization, any change in the search dynamically updates the visualization.

Chapter 9 ■ Kibana - Data Visualization

165

Visualization Canvas
You can create, edit, and configure visualizations through the visualization canvas. It has
following key elements:

 1. Toolbar

 2. Aggregation Designer

 3. Previewing Visualization

Figure 9-8 illustrates the different elements of the visualization canvas.

Figure 9-8. Visualization canvas

Toolbar
Powerful analysis of data based on search queries and filters can be done using the
toolbar. The search query can be specified on the basis of which visualization changes
and updates dynamically. The search field can be used for interactive searching of data
along with controls to create, save, or load visualizations. There is a search bar also
along with main options like as New Visualization, Save Visualization, Load Saved
Visualization, Share Visualization, and Refresh.

Chapter 9 ■ Kibana - Data Visualization

166

A New Visualization

You can create a fresh visualization using the New Visualization (Figure 9-9) option.
The current visualization is erased and a new one is created. You can click on the
New Visualization button, situated on the toolbar besides the search bar.

Figure 9-9. A new visualization

Saving a Visualization

You can save a visualization using the option to Save Visualization. The current
visualization gets saved along with the selected index information. This option is
available besides the New Visualization button on the toolbar.

Loading a Saved Visualization

You can load any previously created and saved visualizations via the Load Saved
Visualization option. It uses the specified index to load the visualization. If you try to load a
saved visualization including a different index, then after loading it, the selected index gets
updated. You can locate this option beside the Save Visualization button on the toolbar.

Sharing a Visualization

You can share a visualization by using the Share Visualization option. You can share
both a freshly created visualization and an already saved one. This can help other people
in your team to view it. There is also an option to either share the link to the visualization
or embed the visualization inside any HTML page. You can locate this option beside the
Save Visualization button in the toolbar.

Chapter 9 ■ Kibana - Data Visualization

167

Refresh

You can use the Refresh button to refresh the page.

Aggregation Designer
This is the central component for creating visualizations. It is located on the left-hand
side of the Visualize page. You can use it to configure the metric and bucket aggregations.
The Aggregation Builder consists of the following two tabs:

•	 Data: Use it to specify the metric and bucket aggregations.

•	 Options: Use it to display the various types of view options
available with each type of visualization. For each visualization,
there are specific view options to change the aspects. It adds a lot
of flexibility for creating different types of visualizations. Table 9-1
depicts some of the options associated with visualizations.

Table 9-1. Visualization Options

Visualization Type View Options

Area Chart Chart mode (stacked, overlap, percentage, wiggle, silhouette),
show tooltip, show legend

Data Table Per page, show partial lines, show metrics for every bucket/level

Line Chart Y-axis scale (linear, square root, log), smooth lines, show circles,
show tooltip, show legend

Metric Font size

Pie Chart Donut, show tooltip, show legend

Tile Map Map type (scaled circle markers, shaded circle markers,
heat map)

Vertical Bar Chart Bar mode (stacked, percentage, grouped), show tooltip, show
legend

For seeing the visualization of a preview canvas, use the green Apply Changes button
at the top right of the aggregation builder, besides the two tabs named Data and Options.

Preview Canvas
The preview canvas can be used to review a visualization created using the aggregation
designer. As soon as new changes are applied with different sets of metrics, options are
automatically displayed dynamically on the preview canvas.

Chapter 9 ■ Kibana - Data Visualization

168

Building a Visualization
To build a new visualization, you need to follow a step-by-step approach which can be
triggered by clicking on the Visualize tab, which happens to be the second tab at the top
of the page. The steps are as follows:

 1. Chose a visualization type.

 2. Chose a data source (either from a new search or an existing
saved search).

 3. Associate the aggregations (buckets and metrics) to be used
for the visualization.

Let’s look at each of these steps in detail.

Visualization Types
The different visualizations supported by Kibana are covered in the following sections.

Area Chart
You can use an area chart to create stacked timelines or distribute data. Metrics are
used as Y-axis and buckets are used as X-axis. You can also have sub-aggregations in
buckets to provide split chart functionality (multiple charts corresponding to different
aggregations) or split area (area chart splits corresponding to different aggregations).

Let’s create the chart based on hurricane data across the continental United States
from 1851 to 2015.

 ■ Tip the hurricane related data across the whole of united states can be found at

www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html

The sample data has the following fields:

•	 Year

•	 Month

•	 States Affected

•	 Category

•	 Central Pressure

•	 Maximum Wind

•	 Hurricane Name

http://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html

Chapter 9 ■ Kibana - Data Visualization

169

For the purpose of this analysis, I have added the coordinates (latitude and
longitude) of each state. A snippet of the data can be seen in Table 9-2.

Table 9-2. Hurricanes in the Continental United States

Year States
Affected

Category Central
Pressure

Max
Wind

Name Location

1851 Texas 1 974 80 NA "31.1060,-97.6475"

1851 Florida 3 955 100 Great Middle
Florida

"27.8333,-81.7170"

1851 Georgia 3 955 100 Great Middle
Florida

"32.9866,-83.6487"

1852 Alabama 3 961 100 Great Middle
Florida

"32.7990,-86.8073"

1852 Mississippi 3 961 100 Great Mobile "43.3504,-84.5603"

1852 Louisiana 3 961 100 Great Mobile "31.1801,-91.8749"

1852 Florida 3 961 100 Great Mobile "27.8333,-81.7170"

1852 Florida 1 982 70 NA "27.8333,-81.7170"

1852 Florida 2 965 90 Middle
Florida

"27.8333,-81.7170"

1852 Georgia 2 965 90 Middle
Florida

"32.9866,-83.6487"

In many cases, multiple states are affected by the same hurricane. I have kept
separate rows for each state. This data has to be put in a format and location that is
accessible to the ELK stack. Let's see what the CSV data looks like by using the UNIX head
command:

$ head hurricane.csv
1851,Texas,1,974,80,NA,"31.1060,-97.6475"
1851,Florida,3,955,100,Great Middle Florida,"27.8333,-81.7170"
1851,Georgia,3,955,100,Great Middle Florida,"32.9866,-83.6487"
1852,Alabama,3,961,100,Great Mobile,"32.7990,-86.8073"
1852,Mississippi,3,961,100,Great Mobile,"43.3504,-84.5603"
1852,Louisiana,3,961,100,Great Mobile,"31.1801,-91.8749"
1852,Florida,3,961,100,Great Mobile,"27.8333,-81.7170"
1852,Florida,1,982,70,NA,"27.8333,-81.7170"
1852,Florida,2,965,90,Middle Florida,"27.8333,-81.7170"
1852,Georgia,2,965,90,Middle Florida,"32.9866,-83.6487"

Chapter 9 ■ Kibana - Data Visualization

170

Each row corresponds to the hurricane details for a particular state. This data is
converted into JSON format that the ELK stack can understand. Let's see what the JSON
data looks like by using the UNIX head command:

$ head hurricane.json
{ "create": { "_index": "storm", "_type": "hurricane" }}
{ "Year":1851, "State":"Texas", "Category":1, "Pressure":974, "Wind
Speed":80, "Name":"NA", "Location":"31.1060,-97.6475"}
{ "create": { "_index": "storm", "_type": "hurricane" }}
{ "Year":1851, "State":"Florida", "Category":3, "Pressure":955, "Wind
Speed":100, "Name":"Great Middle Florida", "Location":"27.8333,-81.7170"}
{ "create": { "_index": "storm", "_type": "hurricane" }}
{ "Year":1851, "State":"Georgia", "Category":3, "Pressure":955, "Wind
Speed":100, "Name":"Great Middle Florida", "Location":"32.9866,-83.6487"}
{ "create": { "_index": "storm", "_type": "hurricane" }}
{ "Year":1852, "State":"Alabama", "Category":3, "Pressure":961, "Wind
Speed":100, "Name":"Great Mobile", "Location":"32.7990,-86.8073"}
{ "create": { "_index": "storm", "_type": "hurricane" }}
{ "Year":1852, "State":"Mississippi", "Category":3, "Pressure":961, "Wind
Speed":100, "Name":"Great Mobile", "Location":"43.3504,-84.5603"}

Give the following command to load the bulk contents:

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary "@hurricane.json"; echo

The area chart shows a comparison of states with highest occurrence of hurricanes
along with the category of hurricanes over a period of time. The chart is split on the basis
of states with the highest occurrence of hurricanes and the area is split on the basis of the
hurricane category. The X-axis indicates the period of time.

 1. First of all, specify the metrics on the Y-axis as count. You may
use any other metric as per your requirements.

 2. Next, add a split chart bucket type and add aggregation of terms
specifying the field “State” with the top five size. By adding this,
the chart is now split and shows the hurricanes in the top five
states with largest number of occurrence of hurricanes.

 3. Now let's add a split area sub-bucket and add sub-aggregation
of terms specifying the top five values of field “Category”. By
doing this, the area has been split to show the distribution of
hurricanes by their categories.

 4. Since area charts display data over a period of time, let's
add an X-axis sub-bucket, having the sub-aggregation as
Histogram using the “Year” field with an interval of 10 years.

 5. Finally, you get a visualization that shows the category-wise
distribution of hurricanes in the top five states with the largest
number of occurrence over a period from 1850 to 2010 with an
interval of 10 years.

Chapter 9 ■ Kibana - Data Visualization

171

 ■ Tip While using area charts, you may come across the following error message: “Area
charts require more than one data point. Try adding an X-Axis aggregation.” an X-axis
is needed as input for creating visualizations in the area chart. if the selected time filter
does not fit into the visualization, it could also lead to an error.

To display the visualization, click the green Apply Changes button to update
the visualization or click the grey Discard Changes button to discard changes to the
visualization. The output is shown in Figure 9-10.

Save this visualization as Area Chart so you can use it while creating dashboards.

 ■ Tip the default basis for split charts is rows, but it can be changed to columns by
selecting columns just underneath the split chart bucket.

Figure 9-10. Area chart

Chapter 9 ■ Kibana - Data Visualization

172

The default chart mode is set as stacked and it shows all the documents across the
buckets from the height of the stacked elements. You can change the chart mode to any
other mode by selecting the following chart modes:

•	 Overlap: In this mode, rather than stacking charts one upon
another, every area begins at the X-axis and is displayed in a
semi-transparent way. This enables all the areas to be seen
properly. It becomes easy to see the values of different buckets
but little tedious to get a sum total of values of all the buckets.
See Figure 9-11.

Figure 9-11. Overlap area chart

Chapter 9 ■ Kibana - Data Visualization

173

•	 Percentage: This chart mode (Figure 9-12) has the height always
as 100% and the count for each bucket is shown in terms of the
percentage of the whole chart.

Figure 9-12. Percentage area chart

Chapter 9 ■ Kibana - Data Visualization

174

•	 Wiggle: Use this chart mode (Figure 9-13) to display aggregation
as a stream graph. It essentially is a stacked area graph displaced
around a central axis resulting in a flowing shape.

Figure 9-13. Wiggle area chart

Chapter 9 ■ Kibana - Data Visualization

175

•	 Silhouette: In this chart mode (Figure 9-14), aggregations are
displayed as a variance from the central line from which the chart
evolves in both directions.

The string fields specified in buckets, aggregations, or sub-aggregations have options
for customization that can be edited/used by clicking the Advanced button shown
beneath Order By, and include the following options:

•	 Exclude Patterns: Pattern to exclude from the results

•	 Exclude Pattern Flags: Set of Java flags for the exclusion pattern

•	 Include Patterns: Pattern to include in the results

•	 Include Pattern Flags: Set of Java flags for the inclusion pattern

•	 JSON input: Specific JSON properties to merge with aggregation

There are quite a few view options that can alter the following behavior of area charts:

•	 Smooth Lines: Use this option to curve the top boundary from
point to point.

•	 Current Time Marker: Draw a red line on current time data.

Figure 9-14. Silhouette area chart

Chapter 9 ■ Kibana - Data Visualization

176

•	 Set Y-Axis Extents: Set specific values for the Y-axis by providing
y-max and y-min fields.

•	 Set Y-Axis to Data Bounds: Modify upper and lower bounds to
match values returned in data.

•	 Show Tooltip: Enable rendering of information while hovering
over the visualization.

•	 Show Legend: See the legend that is displayed beside the chart.

Data Table
You can use the data table to show aggregated data in a tabular format. It helps to identify
Top N kinds of aggregations. Let's create a data table that shows the top five states with
the largest number of occurrence of hurricanes with a count of hurricanes in each state
corresponding to pressure range (mb) from 961 to 1010 with an interval of 10mb.
This splits the rows on the basis of top states, and rows are further split on the basis of
hurricane pressure.

 1. First of all, specify the metrics as count. You may choose any
other metric as per the requirements.

 2. Next, add a new split rows bucket and add aggregation of
terms specifying the field “State” with the top five size. This
creates a data table showing a count of hurricanes in the top
five states by the occurrence of hurricanes.

 3. Now add a split rows sub-bucket and add a range sub-
aggregation, specifying the field “Pressure” with ranges from
961 to 970 till 1001 to 1010.

 4. In the end, click the Apply Changes button to display the
visualization. This will show the breakup of occurrences of
hurricanes for the pressure ranges for the top five states.

Chapter 9 ■ Kibana - Data Visualization

177

You can see the output of the data table in Figure 9-15.

There are certain options to alter the following behavior of the data table:

•	 Per Page: Use this for pagination of the table. The default setting
is 10 rows displayed per page. This setting can be changed as per
convenience.

•	 Show Metrics for Every Bucket: Enables the display of the
intermediate metrics result corresponding to each bucket
aggregation.

•	 Show Partial Rows: Enables the display of rows even if there is
no result.

Line Chart
Line charts depict high density time series and are of great help when comparing one
series with another. The lines can be displayed using different scales like linear, log, or
square root.

Figure 9-15. Data table

Chapter 9 ■ Kibana - Data Visualization

178

Let’s create a chart that compares the top five states with largest number of
occurrence of hurricanes with a breakup on the basis of wind speed from 1850 to 2010.
The chart is split on the basis of wind speed and the X-axis represents the period of time.

 1. First of all, specify metrics on the Y-axis as count. You may
choose any other metric as per your requirements.

 2. Next, add a new split chart bucket and add an aggregation
of terms specifying the field “State” with the top five size. By
doing this, you have effectively split the chart showing the
occurrence of hurricanes in the top five states.

 3. Now add a split lines sub-bucket and add a terms sub-
aggregation, specifying the field “Wind Speed” with the top
five size. This splits the area showing the top five categories in
the top five states with the largest occurrence of hurricanes.

 4. Since line charts are better at displaying data over a period of
time, let's add an X-axis sub-bucket, having sub-aggregation
as a histogram, using the field “Year” with 10 years as
interval.

 5. In the end, click the Apply Changes button to display the
visualization, which shows the top five categories for the top
five states with the largest occurrence of hurricanes.

Chapter 9 ■ Kibana - Data Visualization

179

You can see the output of the line chart in Figure 9-16.

Let's save this visualization as LineChart, so that it can be used to create dashboards
later in the chapter.

The default mode for a line chart is linear and it is set in the Options tab. The mode
can be changed to another scale by selecting any of the following scale options.

Figure 9-16. Line chart

Chapter 9 ■ Kibana - Data Visualization

180

Square Root

Use the square root option (Figure 9-17) to orient the Y-axis scale on the basis of the
square root of the count value.

Log

The log option orients the Y-axis scale on the basis of the logarithm of the count value. It
is helpful in displaying data exponentially.

Figure 9-17. Line chart with square root scale

Chapter 9 ■ Kibana - Data Visualization

181

Figure 9-18. Line chart with smooth lines

There are some more options to modify the behavior of line charts:

•	 Smooth Lines: Curve the top boundary from point to point
(Figure 9-18).

Chapter 9 ■ Kibana - Data Visualization

182

•	 Show Connecting Lines: Draw lines between points to points
(Figure 9-19).

Figure 9-19. Line chart connecting lines

Chapter 9 ■ Kibana - Data Visualization

183

Figure 9-20. Line chart with circles

•	 Show Circles: Draw each data point as a circle (Figure 9-20).

Chapter 9 ■ Kibana - Data Visualization

184

•	 Current Time Marker: Draw a red line on the current time data.

•	 Set Y-Axis Extents: Specify the y-max and y-min fields to set
specific values for the Y-axis (Figure 9-21).

Figure 9-21. Line chart with Y-axis extents

Chapter 9 ■ Kibana - Data Visualization

185

•	 Show Tooltip: Enable information while hovering over the
visualization.

•	 Show Legend: Display the legend that is shown besides the chart.

•	 Set Y-Axis to Data Bounds: Change upper and lower bounds to
match values returned in the data (Figure 9-22).

Figure 9-22. Line chart with Y-axis data bounds

Chapter 9 ■ Kibana - Data Visualization

186

Save this visualization as Line_Bubble.

Markdown Widget
The markdown widget displays information or instructions on the dashboard and is
useful for any requirements for text on the dashboard. It can display text, links, code,
tables, etc. which is like supplementary information and is sometimes quite useful. The
text entered is displayed on the dashboard.

Figure 9-23. Bubble chart

Bubble charts (Figure 9-23) are a variation of line charts and can be used to display
data points as bubbles. A line chart can be converted into a bubble chart via the following
steps:

 1. Create line chart visualization, or load an already created line
chart visualization.

 2. In the Data tab, under the Metrics heading, click Add Metrics
and select metrics type as Dot Size and specify Dot Size Ratio
and Aggregation as Count.

 3. In the Options tab, uncheck the Show Connecting Lines
box and submit the changes by clicking the Apply Changes
button.

Chapter 9 ■ Kibana - Data Visualization

187

Metric
Metric (Figure 9-24) condenses all the analysis for a field into one number. There is
no bucketing done; the metrics aggregations get applied to the complete dataset. This
dataset can be modified either by selecting another index or querying in the search bar.

Figure 9-24. Metric

You can start creating it by just clicking Add Metrics and selecting Metrics.
Thereafter, select the aggregation followed by the field name. Metrics can help in
calculating things like sum or average of a field.

Let’s create metric visualization related to the hurricane data corresponding to
different states from 1850 to 2010.

•	 Total number of hurricanes across United States of America from
1850 to 2010

•	 Average category for hurricanes

•	 Average hurricane pressure

•	 Average hurricane wind speed

Chapter 9 ■ Kibana - Data Visualization

188

Pie Chart
Pie charts show parts of a whole or a percentage relationship. They depict the distribution
of data over multiple slices in a pie chart. Each slice of the pie chart corresponds to a
metric aggregation like count, sum, or unique count. The type of data to be represented
in one is determined by bucket aggregation.

Let's create a pie chart that compares the top five states with largest number of
occurrence of hurricanes with a breakup on the basis of top three categories from 1850
to 2010. The chart is split on the basis of year, split slices on the basis of the top five states,
and split splices on the basis of the top three hurricane categories. While creating pie
charts, split charts are generally used before split slices.

 1. First of all, specify metrics on Slice Size as count. You may
choose any other metric as per your requirements.

 2. Next, add a new split chart bucket and add an aggregation of
a histogram specifying the field “Year” with an interval of 150
years. By doing this, you have effectively split the chart on the
basis of years.

 3. Now add a split slices sub-bucket and add terms sub-
aggregation, specifying the field “Category” with top three
size. This splits the slices in pie chart showing the top five
states in two batches of 150 years and next 60 years.

 4. To display the top hurricane categories for these states, let's
add a split slices sub-bucket with sub-aggregation as terms
specifying the field “Category” with top three size.

 5. In the end, click the Apply Changes button to display the
visualization, which shows the top three categories for the
top five states with largest occurrence of hurricanes in two
batches of 150 years and next 60 years.

Chapter 9 ■ Kibana - Data Visualization

189

Figure 9-25 shows the pie chart illustrating the distribution of hurricane occurrences
over states.

Figure 9-25. Pie chart

Save this visualization as PieChart.

Chapter 9 ■ Kibana - Data Visualization

190

Figure 9-26. Pie chart percentage

If you hover over a particular slice, it displays the percentage (Figure 9-26) of
occurrence of that event.

Chapter 9 ■ Kibana - Data Visualization

191

The behavior of pie charts can be controlled by using the options provided in the
Options tab:

•	 Donut: View a pie chart in the shape of a donut (Figure 9-27).

Figure 9-27. Pie chart donut

•	 Show Tooltip: Enable information when hovering over the
visualization.

•	 Show Legend: View the legend shown besides the chart.

Tile Map
You can use maps to locate geographic locations based on geographical coordinates.
The geohash bucket aggregation is used in tile maps and it groups multiple coordinates
into one bucket. A field with type as geo_point is required with inputs of latitude and
longitude. The visualization displays the data points captured in the form of circles. The
size is decided by the precision chosen, and color signifies the actual value computed.

 ■ Tip in order to use tile maps, you have to upgrade to Kibana version 4.5.3 or later.

Chapter 9 ■ Kibana - Data Visualization

192

Let's map the locations of states where hurricanes have occurred from 1850 to 2010.
This requires the use of geo coordinates in a bucket.

 1. First of all, specify metrics on Value Size as count. You may
choose any other metric as per requirement.

 2. Next, add a new geo coordinates bucket and add aggregation
of geohash specifying the field “Location”. On doing this, you
will see a map that has circles as data points captured by the
location field.

 3. In the end, click the Apply Changes button to display the
visualization, which shows the location on a map where
hurricanes have occurred.

You can see the map in Figure 9-28.

Figure 9-28. Tile map

The default map type is set as scaled circle markers but can be changed from the
Options tab.

Chapter 9 ■ Kibana - Data Visualization

193

Shaded Circle Markers

In this case, the size of each circle varies with the location of longitude and latitude.
Being closer to the equator makes the circle size smaller. Similarly, being further from the
equator makes the circle size larger. You can use it to display the markers (data points)
with different shades on the basis on the metric aggregations' value (Figure 9-29).

Figure 9-29. Tile map with shaded circle markers

Shaded Geohash Grid

The Shaded Geohash Grid option has markers displayed as rectangular cells of a geohash
grid instead of circles. You can use it to display the markers (data points) with different
shades based on the metric aggregations' value (Figure 9-30).

Chapter 9 ■ Kibana - Data Visualization

194

Heat Map
A heat map is a special type of tile map that is a two-dimensional graphical representation
of data with values displayed using colors instead of text, numbers, or markers (data
points). It makes it easy to comprehend complex data sets. On the basis of the total
amount of overlap, blurring of markers and shading is done.

A heat map contains following key properties:

•	 Radius: This sets the size of all heat map dots occurring on
the map. A large radius signifies bigger size of overlap of dots.
Similarly, a smaller radius signifies smaller size of overlap of dots.
The default value is 25.

•	 Blur: This sets the blurring amount for all heat map dots
occurring on the map. Higher blur leads to fewer individual heat
map dots shown on the map. Similarly, lower blur leads to more
number of individual heat map dots. The default value is 15.

•	 Maximum Zoom: This sets the zoom level of the map at which all
heat map dots will be displayed with full intensity. Higher zoom
leads to increased intensity of dots. Similarly, lower zoom leads to
reduced intensity of dots. The default value is 16.

Figure 9-30. Tile map with shaded geohash grid

Chapter 9 ■ Kibana - Data Visualization

195

•	 Minimum Opacity: This sets the opacity for all heat map dots.
The default value is 0.1.

•	 Show Tooltip: If you check this box, it enables information when
hovering over the visualization.

Desaturate Map Tiles
It desaturates the map color so that the colors appear more clearly. Figure 9-31 shows the
heat map when the Desaturate map tiles checkbox is ticked.

Figure 9-31. Heat map with the desaturate option enabled

Chapter 9 ■ Kibana - Data Visualization

196

The tile map can be explored in the following manner:

•	 Click and drag the cursor to move the map center.

•	 Change the zoom level by clicking the Zoom In/Out buttons.

•	 Use the Draw a Rectangle button to make a filter for the box
coordinates by drawing a rectangle box.

•	 Use the Fit Data Bounds button to automatically adjust the map
and display the map boundaries as per the geohash bucket that
has at least a single result.

Vertical Bar Chart
A vertical bar chart is used for multiple purposes and is suitable for both time and
non-time based fields. You can use it as a single bar, stacked, or grouped. The Y-axis
corresponds to metrics and the X-axis corresponds to buckets aggregation.

Let's create a chart to show a comparison of states with the highest occurrence of
hurricanes within a range of wind pressure. The bars will be split on the basis of states
with the highest occurrence of hurricanes and the chart will be split on the basis of

Figure 9-32. Heat map with desaturate option disabled

Figure 9-32 shows the heat map when the Desaturate map tiles checkbox is not ticked.

Chapter 9 ■ Kibana - Data Visualization

197

wind pressure in two ranges: 926 to 950 and 951 to 975. The X-axis indicates the period
of time from 1850 to 2010 with 10-year intervals.

 1. First of all, specify metrics on the Y-axis as count. You may
choose any other metric as per your requirements.

 2. Next, add a new X-axis bucket, with aggregation as histogram
using the field “Year” with an interval of 10 years. This will
result in a display of hurricane statistics on a decade basis in
terms of a histogram.

 3. Now add a split bars sub-bucket and add a terms sub-
aggregation, specifying the field “State” with top five size. This
splits the bar displaying the top five states having the largest
occurrence of hurricanes.

 4. To show hurricanes statistics on the basis of wind pressure,
let's add a split chart sub-bucket having sub-aggregation as
Range specifying the field “Pressure” with the ranges defined
as from 926 to 950 and 951 to 975.

 5. In the end, click the Apply Changes button to display the
visualization, which shows the occurrence of hurricanes on a
decade basis for the top five states with wind pressure in two
ranges: 926 to 950 and 951 to 975.

 ■ Tip While using bar charts, you may come across the following error message: “This
container is too small to render the visualization.” it indicates that the visualization
created using the buckets cannot fit into the preview visualization canvas.

Chapter 9 ■ Kibana - Data Visualization

198

Figure 9-33. Bar chart

You can see the output of the bar chart in the Figure 9-33.

Chapter 9 ■ Kibana - Data Visualization

199

The bar mode is stacked by default, which displays all the documents across the
buckets from the height of the stacked elements. Save this visualization as BarChart so
that it can be used later for creating dashboards. From the Options tab, you can change to
other bar modes.

•	 Percentage: This bar mode results in the height of the bar shown
as always 100% and the count for each bucket depicted in terms of
percentage of the whole bar (Figure 9-34).

Figure 9-34. Bar chart percentage

Chapter 9 ■ Kibana - Data Visualization

200

There are few other options that can change the behavior of bar charts:

•	 Current Time Marker: Check this box to show a red line on the
current time data.

•	 Set Y-Axis Extents: Check this box to specify the y-max and
y-min fields for setting a specific value for the Y-axis.

•	 Scale Y-Axis to Data Bounds: Check this box to modify the upper
and lower bounds to match values returned in the data.

•	 Show Tooltip: Check this box in order to enable the information
display when hovering over the visualization.

•	 Show Legend: Check this box to view legend shown next to the chart.

Summary
This chapter gave an overview of various data visualization mechanisms available in Kibana.
These visualization mechanisms not only present data in a user friendly manner, but also
make it easier to comprehend complex data sets. Real-world data was used to create different
visualizations like area charts, line charts, pie charts, data tables, tile maps, and bar graphs.

•	 Grouped: The results of each bucket are grouped and displayed
alongside each other (Figure 9-35).

Figure 9-35. Bar chart grouped

201© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_10

CHAPTER 10

The Kibana Dashboard

The previous chapter gave you an overview of the different visualizations supported
by Kibana and how it simplifies comprehending data. This chapter will cover the last
piece in the Kibana armor: the dashboard. Various visualizations can be combined
to give a holistic view using the dashboard. This serves as a single area for visualizing
and analyzing data in real time. This chapter will cover the key topics of associating
visualizations with the dashboard, saving a dashboard, customizing visualizations in
the dashboard, embedding a dashboard into a web page, and an explanation of the
debug panel.

Introduction to the Dashboard Page
The Dashboard page enables you to arrange all the saved visualizations in a single page.
Different types of visualizations created earlier can be displayed on a single page. The user
has the freedom to arrange the visualizations in any manner on the dashboard. You can
easily move, resize, edit, or remove these visualizations. The arrangement of multiple
visualizations on a single page facilitates the understanding of data in an easy manner.

Some of the advantages of the Dashboard page are as follows:

•	 A single page view for visualizations, making it easier to interpret
data.

•	 It’s easier to comprehend data visually rather than looking at raw
data.

•	 Simple-to-use visualizations on multiple dashboards without
coding.

•	 Making changes in any visualization automatically updates all the
dashboards that use that particular visualization.

•	 Dashboards and visualizations are updated in real time as more
data streams in.

•	 Filtering dashboards based on search queries changes the
visualizations in the dashboard as per the search results.

•	 You can click on any visualization to create filters.

Chapter 10 ■ the Kibana DashboarD

202

 ■ Tip in order to create a dashboard, there should be at least one saved visualization.

Upon opening the Dashboard page, you will see the empty Dashboard page, as
shown in Figure 10-1.

Figure 10-1. Dashboard page

As shown in Figure 10-1, the different areas of the Dashboard page are as following:

•	 The time filter contains data for a particular time interval.

•	 The toolbar consists of a search bar along with the options New
Dashboard, Save Dashboard, Load Saved Dashboard, and Share
and Add Visualization.

•	 The dashboard canvas displays the added visualizations. If the
dashboard is empty, it simply states “Click on the add button to
add a visualization to the dashboard.”

 ■ Tip the default value for the time filter is 15 minutes. Make sure the appropriate value
is specified for the time filter.

Let’s start exploring the Dashboard page.

Chapter 10 ■ the Kibana DashboarD

203

Working with the Toolbar
The toolbar is the central component of the Dashboard page since it provides
different options to deal with visualizations. You can use the search bar to specify
the search query or filters that can be used to analyze visualizations. When a search
query is specified, it inspects all the documents and returns the results of the search
query. The existing visualizations get updated according to the search query results
obtained. The toolbar consists of a search bar along with buttons for options like
New Dashboard, Save Dashboard, Load Saved Dashboard, and Share and Add
Visualization.

Let’s explore the usage of the different options of the toolbar.

New Dashboard Option
The New Dashboard option facilitates the addition of visualizations to an empty
dashboard. It empties everything including the visualizations created and added to
the dashboard, along with the current dashboard. You can do this by clicking the New
Dashboard button, which is located on the toolbar, next to the search bar, as illustrated
in Figure 10-2.

 ■ Tip Make sure to save visualizations after adding them. if you click on the new
Visualization button without saving first, the added visualizations will not be available.

Adding Visualizations
The Add Visualization button facilitates adding visualizations to the dashboard. Any
number of visualizations can be added. When starting with an empty dashboard, first
click the Add button from the dashboard canvas or the Add button situated at the end of
the toolbar next to the Share button.

Perform the following steps to add a visualization:

 1. Click the Add Visualization button, as shown in Figure 10-3.

Figure 10-2. The New Dashboard button

Chapter 10 ■ the Kibana DashboarD

204

 2. Select the visualization you want to add, as shown in
Figure 10-4.

 3. The selected visualization will appear on the dashboard
canvas within a container.

Let’s create a dashboard by adding the saved visualizations that were created in
Chapter 9. The following saved visualizations will be used:

•	 Hurricane

•	 hurricane-linechart

•	 storm-barchart

•	 hurricane-datatable

•	 hurricane-pie

The dashboard illustrated in Figure 10-5 is not very appealing. It may not interest
users to go through it at first glance. To make it more attractive, you need to customize it
further.

Figure 10-4. Saved visualizations

Figure 10-3. Adding a visualization

http://dx.doi.org/10.1007/978-1-4842-2626-1_9

Chapter 10 ■ the Kibana DashboarD

205

 ■ Tip Dashboards can also contain saved searches. Just click the add button and select
a saved search from the searches tab, which is located next to the Visualizations tab.

Search Bar
Once visualizations have been added, you can query the dashboard similar to the
Discover page. Based on the search query entered, all the relevant visualizations get
updated with the result of the search query. This is an important feature that makes it
easy to analyze data and monitor the trends for different aspects.

Saving a Dashboard
This option saves the dashboard along with the added visualizations. This option can be
found besides the New Dashboard button in the toolbar. Perform the following steps to
save a dashboard:

 1. Click the Save Dashboard button, located next to the New
Dashboard button, as illustrated in Figure 10-6.

Figure 10-5. Creating a dashboard

Chapter 10 ■ the Kibana DashboarD

206

 2. Give a name to the dashboard. Let’s use MyDashboard as
the name to save to your dashboard. This is illustrated in
Figure 10-7.

 3. Click the Save button to save the dashboard. Any time you
make any changes to the dashboard, make it a point to save it.

Loading a Saved Dashboard
The Load Saved Dashboard option facilitates the loading of a saved dashboard. It can be
used to load already saved dashboards that contain visualizations. This option is situated
beside the Save Dashboard button on the toolbar.

Perform the following steps to load a saved dashboard:

 1. Click the Load Saved dashboard button on the toolbar, next to
the Save Dashboard button, as illustrated in Figure 10-8.

 2. Specify the saved dashboard name to load it. All saved
dashboards can be seen below the displayed bar.

 3. Select the dashboard to be loaded, as shown in Figure 10-9.

Figure 10-6. The Save Dashboard button

Figure 10-7. Saving the dashboard

Figure 10-8. The Load Saved Dashboard button

Chapter 10 ■ the Kibana DashboarD

207

Sharing the Saved Dashboard
You can share the saved dashboards among people who may wish to view it. There is
also an option to either share the link of the saved dashboard or to embed the dashboard
within any HTML page. This option is situated beside the Load Saved Dashboard button
on the toolbar.

Perform the following steps to share a saved dashboard:

 1. Click the Share button on the toolbar, next to the Load Saved
Dashboard button, as illustrated in Figure 10-10.

 2. After clicking it, you will find the link for embedding the
dashboard and sharing it, as shown in Figure 10-11.

 3. You can click the Copy to Clipboard button to copy the link
and share it. You may also paste the iframe source in an
HTML page to display the visualizations in a web page.

Figure 10-9. Selecting a saved dashboard

Figure 10-10. The Share button

Figure 10-11. The link to share the dashboard

Chapter 10 ■ the Kibana DashboarD

208

Working with the Dashboard Canvas
The dashboard canvas can be used to display a preview of all saved visualizations added
to the dashboard. Each visualization appears on the dashboard canvas within a container
and these containers can be customized through various ways. This customization helps
in making the visualization elegant.

Moving a Visualization
The visualizations within a dashboard can be moved as per user preference. The
container holding the visualization can be moved anywhere in the dashboard. You can
perform the following steps to move the visualizations:

 1. First, click and drag the container title bar (heading) by using
the mouse.

 2. Once you decide the new location for the visualization, just
release the mouse button.

 ■ Tip bear in mind that moving the container will shift the other containers also as per
their size.

Resizing a Visualization
You can always resize the visualizations added in the dashboard. The container holding
the visualization can be resized anywhere in the dashboard. You can perform the
following steps to resize the container:

 1. Move the mouse pointer to the bottom-right corner of the
container until the pointer does not change to indicate the
resize option at the corner.

 2. Click and drag to resize the visualization.

 3. Release the button at the point when you want to confirm the
new size of the visualization.

Editing a Visualization
You can even edit visualizations already added in the dashboard. Perform the following
steps to edit the visualization:

 1. Initiate the editing process by clicking the Edit Visualization
button on the title bar of the container.

 2. The Visualization Canvas page will be displayed and you can
edit here.

Chapter 10 ■ the Kibana DashboarD

209

 3. Once you have completed editing, click the Save
Visualization button. The visualization changes get saved and
updated automatically on the dashboard.

Removing a Visualization
Existing visualizations can be removed from a dashboard. This makes it flexible to create
dashboard as per your requirements and get rid of unnecessary visualizations.

 ■ Tip removing a visualization from a dashboard just removes the link to the dashboard.
however, the underlying visualization still remains intact.

In order to remove a container, just click the Remove Container button present on
the title bar of the container.

By doing some customizations the earlier, dull-looking dashboard with default
settings can get transformed into a visually appealing dashboard. This is illustrated in
Figure 10-12.

Figure 10-12. An elegant dashboard

Chapter 10 ■ the Kibana DashboarD

210

An elegant and beautiful visualization makes it quite simple to analyze and draw
conclusions, rather than going through huge chunks of raw data. Various types of charts
can help in forecasting trends.

 ■ Tip the default place for storing all dashboards is the .kibana index. if this index gets
deleted, then all the saved searches, visualizations, and dashboards will get removed.

Embedding a Dashboard in a Web Page
Let’s use the saved dashboard and click the Copy to Clipboard button to copy the link for
embedding. You can have a simple HTML file and use this iframe source to embed a web
page.

<html>
<head>
<title> Embed Kibana Dashboard</title>
</head>
<body>
<center>Fun with Embedded Dashboards </center>
<iframe src="http://localhost:5601/#/dashboard/Kibana_Dashboard?embed&_a=(fi
lters:!(),panels:!((col:1,id:AreaChart,row:1,size_x:6,size_y:3,type:visualiz
ation),(col:7,id:BarChart,row:5,size_x:6,size_y:3,type:visuali
zation),(col:1,id:Line_Bubble,row:8,size_x:12,size_y:5,type:visualization),
(col:1,id:LineChart,row:5,size_x:6,size_y:3,type:visualization),
(col:7,id:PieChart,row:1,size_x:6,size_y:3,type:visualization)),query:
(query_string:(analyze_wildcard:!t,query:'*')),title:Kibana_Dashboard)&_g=
(refreshInterval:(display:Off,pause:!f,section:0,value:0),time:(from:'2015-
06-02T07:15:00.000Z',mode:absolute,to:'2015-06-02T08:03:00.000Z'))"
height="600" width="800"></iframe>
</body>
</html>

This HTML file contains an iframe source which contains different visualizations
added to the dashboard. You can customize properties like rows, x axis, y axis, height,
and width for every visualization. Figure 10-13 shows the HTML page just described.

Chapter 10 ■ the Kibana DashboarD

211

 ■ Tip You can embedded a visualization only if both elasticsearch and Kibana are
running.

The Debug Panel
If you wish to see the raw data of Elasticsearch behind any visualization, you can use
the Debug panel. It gives detailed information for the results of a visualization and the
request of Elasticsearch. It also showcases the response from Elasticsearch.

In order to view the Debug panel, just click the caret (^) button at the bottom of any
visualization. Let’s examine the debug panel associated with the bar chart created in the
previous chapter, which shows the top five states with the highest number of occurrences.

Figure 10-13. Dashboard HTML page

Chapter 10 ■ the Kibana DashboarD

212

Table
The data behind the visualization can be represented in the form of a table. The data is
displayed in the form of pages. This data can be sorted by clicking any of the headers of
the columns, as shown in Figure 10-14.

You can clearly see the raw data underlying the visualization. The page size can be
changed as per preference. The table data can be exported in raw form or formatted form
to a CSV file.

Request
The raw request payload sent to Elasticsearch can be viewed in JSON format from the
Request tab. The Elasticsearch request body is shown, which if required can be directly
queried from Elasticsearch for the created visualization. See Figure 10-15.

Figure 10-14. The visualization’s data table

Chapter 10 ■ the Kibana DashboarD

213

Response
The raw response payload received from Elasticsearch can be viewed in JSON format
from the Response tab. The Elasticsearch response body is shown, which is returned as a
result of the query used for creating visualization; see Figure 10-16.

Figure 10-15. The visualization request

Figure 10-16. The visualization response

Chapter 10 ■ the Kibana DashboarD

214

Statistics
The Statistics tab displays the statistics used for the query in a tabular format like Query
Duration, Request Duration, Hits (total number of records), and Index; see Figure 10-17.

Summary
This chapter highlighted the usefulness of dashboards in Kibana. Various components of
the Dashboard page were explained. Thereafter, you saw through examples how to make
beautiful dashboards from saved visualizations. Different visualizations can be combined
together and customized to fit into a single panel. Dashboards can also be embedded
within a web page.

Figure 10-17. The visualization statistics

215© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_11

CHAPTER 11

Designing for Scale

The previous chapter covered the wonders that Kibana dashboards can do to complex
data sets. Dashboards provide a holistic view for representing data in different formats
at the same time. We have come to the stage where most of the regular functions of the
ELK stack have been covered. Now with this chapter, the focus is on how to scale. This
enhances the capability to handle more data, index many more data sets, and search
data faster. In these days of cloud computing and NoSQL databases, scaling is very
important because there can be situations when it is required to process millions or even
billions of documents. It’s not possible to support this kind of load with one instance of
Elasticsearch. In this chapter, you will learn about the scaling capabilities of Elasticsearch.

Elasticsearch Cluster for Scale
As an example, say you are using Elasticsearch to analyze documents related to medical
records of a particular city. If you have to support many more cities, it will increase the
number of documents dramatically. Even if your workload does not increase, there can
be situations when you may need to add more horsepower to Elasticsearch.

You may want to search and index data faster with increased parallelization. In time,
you may run out of disk space on your machine. It might happen that the Elasticsearch
node is running out of memory while querying data. In such situations, the easiest and
fastest way is to transform the single node Elasticsearch system to a cluster by adding
more nodes. Elasticsearch can be horizontally scaled by the addition of more nodes; this
helps in sharing the indexing and searching workload.

Adding Nodes to Cluster
You can start creating an Elasticsearch cluster by adding another node (or nodes) to
the single node to make it a cluster of nodes. It is quite seamless to add a node to your
environment by just extracting the Elasticsearch distribution to a separate directory,
entering the directory, and running Elasticsearch from there. The following code snippet
demonstrates this:

mkdir elasticsearch2
cd elasticsearch2
tar -zxvf elasticsearch-2.3.3.tar.gz

Chapter 11 ■ Designing for sCale

216

cd elasticsearch-2.3.3
bin/elasticsearch

Elasticsearch automatically picks the next available port to bind to (in this case, 9201)
and joins the existing node. For those of you who are more adventurous, you need not extract
the Elasticsearch distribution to another directory; multiple instances of Elasticsearch can
also run from the same directory without interfering with one another. You can see the
change in the status of the Elasticsearch cluster by running the health command:

curl -XGET 'http://localhost:9200/_cluster/health?pretty'
{
 "cluster_name" : "elasticsearch",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 3926,
 "active_shards" : 7852,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 100.0
}

You can see that the unassigned_shards count is zero, which indicates that now
there are no unassigned shards in the cluster. The shards get assigned to the new node.
Figure 11-1 illustrates the distribution of the foo index before and after adding a node
to the cluster. The left side demonstrates that the primary shards for the foo index have
all been assigned to Node1, whereas the replica shards are still unassigned. The cluster
state remains yellow because all of the primary shards have a home, whereas the replica
shards don’t. When a second node is added, the unassigned replica shards are assigned
to the new node, Node2, which makes the cluster state as green.

Chapter 11 ■ Designing for sCale

217

When a new node is added, Elasticsearch automatically balances out the shards
among all nodes. Figure 11-2 illustrates the distribution of shards across three
Elasticsearch nodes in the same cluster. Observe that there is no restriction on having
primary and replica shards on the same node as long as the primary and replica shards
for the same shard number are not on the same node. If more nodes are added to the
cluster, Elasticsearch tries to balance the number of shards evenly across all nodes
because each node shares the burden by taking a portion of data (shards).

Node 1 Node 1

New Node

Added

Node 2

foo0 foo0 foo0

foo1 foo1 foo1

foo2 foo2 foo2

foo3 foo3 foo3

foo4 foo4 foo4

foo0

foo1

foo2

foo3

foo4

foo0

foo1

foo2

foo3

foo4

foo0

foo1

foo2

foo3

foo4

foo0

foo1

foo2

foo3

foo4

Figure 11-1. Shard allocation from one node to two nodes

Node 1 Node 2 Node 3

foo0 foo0 foo1

foo2

foo3

foo2 foo1

foo3

foo4

foo4

Rebalancing of shard across the three nodes

Figure 11-2. Shard allocation with three Elasticsearch nodes

Chapter 11 ■ Designing for sCale

218

Adding nodes to an Elasticsearch cluster has significant benefits like high availability
and increased performance. Since replicas are enabled by default, Elasticsearch
automatically promotes a replica shard to a primary in the event the primary shard
can't be located. If you lose the node hosting the primary shards for an index, you can
still access the data in your indices. The distribution of data among nodes leads to an
increase in performance as search and get requests can be handled by both primary and
secondary shards. Horizontal scalability enhances the memory of the cluster and could
hasten memory-intensive searches and aggregations.

Discovering Cluster Nodes
It might come as a surprise how smoothly the additional node discovers the first
node and automatically joins the cluster. Behind the scenes, Elasticsearch nodes can
use multiple mechanisms to discover other nodes: multicast or unicast. Both these
mechanisms can be used but the default configuration is to use only multicast because
unicast requires a list of known nodes to connect to.

Multicast Discovery
At startup, Elasticsearch sends a multicast ping to the address 224.2.2.4 on port 54328,
which gets responded to by other Elasticsearch nodes with the same cluster name.
If there is a coworker's local copy of Elasticsearch running and joining your cluster,
just change the cluster.name setting inside your elasticsearch.yml configuration
file from the default elasticsearch to some specific name. Multicast discovery has the
following configuration options, which can be modified or disabled entirely by settings in
elasticsearch.yml:

discovery.zen.ping.multicast:
 group: 224.2.2.4
 port: 54328
 ttl: 3
 address: null
 enabled: true

The multicast discovery mechanism is quite suitable for flexible clusters on the same
network having nodes with IP addresses getting changed frequently. In simple terms,
multicast discovery is akin to asking “Is there any other node out there running on the
Elasticsearch cluster?” Thereafter, you simply wait for the response. Figure 11-3 illustrates
this mechanism.

Chapter 11 ■ Designing for sCale

219

Multicast discovery is suitable for local development and quickly testing a cluster
configuration. A more stable mechanism is to have some or all of the nodes as “gossip
routers” to discover more information about the cluster. This is well suited for situations
where the IP address of the node will not change frequently. It helps in avoiding
situations where nodes may get connected accidentally to a cluster. This situation is
avoided by the unicast mechanism by not sending a message to everyone on a network
but connecting to a specific list of nodes.

Unicast Discovery
Unicast discovery utilizes a list of hosts for Elasticsearch to connect to and attempt to
find out more information about the cluster. This is well suited for situations where the IP
address of the node will not change frequently or in production systems where only specific
nodes should be communicated with instead of the entire network. In this mechanism,
the IP address is specific and optionally the port or range of ports for other nodes is also
mentioned. A sample unicast configuration is setting discovery.zen.ping.unicast.hosts:
[“10.0.0.6”, “10.0.0.7:9400”, “10.0.0.8[9500-9600]”] in elasticsearch.yml for all the
Elasticsearch nodes. It is not required that all the nodes in the cluster need to be present
in the unicast list to discover all the nodes, but a sufficient address must be configured for
each node to know about a gossip node that's available. For example, if the first node in
the unicast list knows about four out of nine nodes in a cluster, and the second node in the
unicast list knows about the other five out of nine nodes, the discover process triggered by
a node will get to know about all the nodes in the cluster. Figure 11-4 illustrates the unicast
discovery process.

Multicast to the entire
network

New
Node 1

Node

Node

Node
Response – Joining cluster

Figure 11-3. Multicast discovery mechanism

Chapter 11 ■ Designing for sCale

220

You need to explicitly disable unicast discovery. If you want to use only multicast
discovery to find other Elasticsearch nodes, keep the list empty in the configuration file.
Once all the nodes of the cluster are discovered, the Elasticsearch nodes hold a master
election.

Master Node Election
After the nodes in the cluster have discovered each other, they will negotiate to elect
the master. The master node is responsible for managing the state of the cluster, such as
the current settings and the state of the shards, indices, and nods in the cluster. After its
election, the master node sets up a system of internal pings to ensure that each node stays
alive and healthy while in the cluster. This helps in providing fault detection. All nodes
are considered equally capable of being elected as master node unless the node.master
setting is set to false. If the cluster has only a single node, that node itself becomes the
master after a timeout period when it doesn’t detect any other nodes in the cluster.

In production clusters with a larger number of nodes, it is a best practice to set the
minimum number of master nodes. Although this sounds like Elasticsearch can have
multiple master nodes, it actually determines how many nodes in a cluster are eligible
to become a master before the cluster is in a healthy state. This setting helps in ensuring
that the cluster doesn’t try to perform potentially risky operations without first having
a complete view of the state of the cluster. Either set the minimum number to the total
number of nodes in the cluster if the number of nodes is fixed or set it as per the best
practice of number of nodes in the cluster divided by 2, plus 1. If you set the minimum_

New
Node

Node

Node

Do you know about
any nodes?

Do you know about
any nodes?

I know about
these nodes.

I know about
these nodes.

Figure 11-4. Unicast discovery mechanism

Chapter 11 ■ Designing for sCale

221

master_nodes setting to a number higher than 1, it can help prevent what is known as
a split brain in the cluster. The best practice for a 3-node cluster is to set the value of
minimum_master_nodes to 2; for a 16-node cluster, you can set it to 9. This setting can be
modified by changing discovery.zen.minimum_master_nodes in elastisearch.yml to
the number that is appropriate for your cluster.

 ■ Tip split brain is the scenario when one or more elasticsearch nodes in the cluster
lose communication with the master node. they elect a new master and continue to process
requests. at this point, two elasticsearch clusters are running independently of each other.

After the nodes are up and have discovered each other, you can see which node has
been elected as master:

curl -XGET 'http://localhost:9200/_cluster/state/master_node,nodes?pretty'
{
 "cluster_name" : "elasticsearch",
 "master_node" : "4IqtTbfoQk6vS6BvwBqVug",
 "nodes" : {
 "MLOt_QcjSSqPnYpdDUN-NQ" : {
 "name" : "Alistaire Stuart",
 "transport_address" : "127.0.0.1:9301",
 "attributes" : { }
 },
 "4IqtTbfoQk6vS6BvwBqVug" : {
 "name" : "Hobgoblin II",
 "transport_address" : "127.0.0.1:9300",
 "attributes" : { }
 }
 }
}

Fault Detection
Now that the cluster has two nodes in it, as well as an elected master node, there is a need
to communicate with all nodes in the cluster to make sure everything is in order within
the cluster. This is referred to as the fault detection process. The master node does a
healthcheck ping on all other nodes in the cluster and each node pings the master to
make sure another election doesn’t need to be held, as illustrated in Figure 11-5.

Chapter 11 ■ Designing for sCale

222

You can see in the figure that each node sends a ping every discovery.zen.fd.ping_
interval (default value is 1 sec), waits for discovery.zen.fd.ping_timeout (default value
is 30 sec), and tries a maximum number of discovery.zen.fd.ping_retries (default value
is 3) before it declares a node as disconnected and routing shards or electing another
master node. If your environment has a higher latency, then change these values to reflect
the ground reality.

Removal of Nodes from Cluster
You have seen that adding nodes in the cluster can help scale easily. However, there can
be situations when a node drops out of the Elasticsearch cluster or it stops working. Let's
take an example of a three-node cluster to see how the removal of a node impacts the
cluster.

Assume that the power supply to Node1 gets disrupted. Obviously Node1 will
become unavailable. There are three shards on Node1. First of all, Elasticsearch will
automatically turn the test0 and test3 replica shards that are on Node2 into primary
shards, as illustrated in Figure 11-6. Indexing first goes to the primary shards, therefore
Elasticsearch tries to ensure that there are always primaries assigned for an index.

Master
Node

Node 2

Node 3

Anybody there?

Anybody there?

Yep, I am live
and Kicking.

No Response.
Node declared disconnected.

Figure 11-5. Cluster fault detection

Chapter 11 ■ Designing for sCale

223

 ■ Tip elasticsearch may choose any of the replicas to turn into a primary shard.

After the replicas for the missing primary shards are turned into primaries, the
cluster looks like Figure 11-6. The cluster state changes to yellow, indicating that some
replica shards aren't allocated to a node. Elasticsearch will create more replica shards
to maintain high-availability setup for the index. Since all the primaries are available,
the data from the foo0 and foo4 primary shards on Node2 are replicated into replicas on
Node3 and the data from the foo2 primary shard on Node3 are replicated onto Node2, as
illustrated in Figure 11-7.

Node 1 Node 2 Node 3

foo0 foo0 foo1

foo2

foo3

foo2 foo1

foo3

foo4

foo0 and foo4 replicas get
turned into primaries.

foo2 replica gets turned
into primaries.

foo4

Figure 11-6. Replica shards turn into primary shards after node loss

Node 2

foo1

foo3

Node 3

foo1

foo2

foo3

foo0

foo4

foo0

foo4

foo2

Figure 11-7. Recreating replica shards

Chapter 11 ■ Designing for sCale

224

After the replica shards get recreated to compensate for the node loss, the cluster
comes back to the green state with all the primary and replica shards assigned to a node.
Bear in mind that all this happens while the entire cluster is available for searching and
indexing, and no data was actually lost. If more than a single node is lost or a shard with
no replicas is lost, the cluster comes into a red state. This implies that some amount of
data has been lost permanently and you need to either reconnect the node with the data
to the cluster or reindex the data that went missing.

You need to take a calculated risk while fixing the number of replica shards. If
there is only a single replica, then even if one node disassociates from the cluster, there
would be no data loss. Similarly, if there are replicas, two nodes can get disassociated
without any loss of data. It becomes pertinent to choose the number of replicas with due
consideration. It is a best practice to make a backup of your indices.

Decommissioning of Nodes
Elasticsearch does great job in automatically creating new replicas when a node goes
down. However, in a cluster configuration, you may eventually face a situation where you
want to shut down a node with some data on it, without the cluster state turning yellow.
Some of the reasons for this could be degrading of hardware or lesser amount of request
traffic. You can simply kill the Java process corresponding to the node and Elasticsearch
will recover the data to the other nodes. But what about scenarios when you have a zero
replica for an index? In such a situation, you would lose data if you shut down the node
without moving the data first.

Fortunately, Elasticsearch has a mechanism for decommissioning a node by telling
the cluster not to allocate any shards to a node or a set of nodes. In the three-node
example, let's assume that Node1, Node2, and Node3 have the IP address 192.168.1.5,
192.168.1.6, and 192.168.1.7, respectively. If you want to shut down Node1 while keeping
the cluster in a green state, you should decommission the node first so that all the shards
move from Node1 to other nodes in the cluster. You can initiate decommissioning by
making a transient change to cluster settings:

curl -XPUT "localhost:9200/_cluster/settings" -d '{
 "transient" : {
 "cluster.routing.allocation.exclude_ip" : "192.168.1.5"
 }
}'

On running this command, Elasticsearch starts moving all the shards from the
decommissioned node to other nodes in the cluster. You can observe where the shards
are located in the cluster by first determining the ID of the nodes in the cluster with the
_nodes endpoint and then looking at the cluster state to check where each shard in the
cluster is currently allocated.

Once you are sure that there are no shards on the node being decommissioned, you
can safely stop Elasticsearch on that node without causing the cluster status to change
from the green state. This process can be safely repeated one at a time to decommission
each node you don’t want to run. You may also use a comma-separated IP address
instead of 192.168.1.5 to decommission multiple nodes at once.

Chapter 11 ■ Designing for sCale

225

 ■ Tip Before decommissioning any node, make sure that the remaining nodes in the
cluster can handle allocating the shard in terms of disk and memory use.

Upgrading Elasticsearch Nodes
As your Elasticsearch cluster becomes stable, with time there may arise a need to upgrade
to the latest version of the Elasticsearch software. Depending on the situation at your
cluster, upgrading may be simple or complex.

 ■ Tip it is highly recommended to always run the latest version of elasticsearch because
there are always new features being added and bugs being fixed.

Certain key aspects should be considered before making the decision to upgrade
Elasticsearch:

•	 After upgrading Elasticsearch, if you add any new documents,
then you can't downgrade to the previous version.

•	 Before starting the upgrade, make a backup of all of the data.

•	 Do not mix different JVM versions within the same Elasticsearch
cluster.

The best way to upgrade an Elasticsearch cluster is to shut down all nodes and
then upgrade each Elasticsearch installation with the method you originally used. For
example, extract the distribution if you used the .tar.gz distribution or install the .deb
package using dpkg if you have a Debian-based system. After upgrading each node,
simply restart the entire cluster and wait for Elasticsearch to be available with the green
status. See, it's that simple!

There can be many other tricky scenarios, such as if downtime is not at all
acceptable. For such situations, you can perform a rolling restart to upgrade the
Elasticsearch cluster while serving requests for indexing and searching data.

Rolling Restart
A rolling restart can help in restarting the cluster in order to upgrade a node or make a
non-dynamic configuration change while still being available for requests. This is quite
useful for production deployments of Elasticsearch. Rather than shutting down the whole
cluster in one step, you just shut down the nodes one at a time. This process is slightly
more tedious than full restart because it requires some additional steps.

Chapter 11 ■ Designing for sCale

226

 1. Evaluate if you want Elasticsearch to automatically rebalance
shards while each individual node is not running. In the
majority of cases, it is not preferable to have Elasticsearch
start automatic recovery in case a node leaves the cluster for
an upgrade because this would lead to rebalancing each and
every node. Actually, the data is not lost; you just need to
restart the node and rejoin the cluster.

 2. In most cases, it is not necessary to shift data around
the cluster while performing the upgrade. This can be
accomplished by setting the cluster.routing.allocation.
enable setting to node while performing the upgrade. Follow
these steps:

 a. Disable the cluster allocation.

 b. Shut down the node that is to be upgraded.

 c. Upgrade the node.

 d. Start the upgraded node.

 e. Wait for the upgraded node to join the cluster.

 f. Enable cluster allocation.

 g. Wait for the cluster state to turn green.

 ■ Tip repeat this process for every node that is to be upgraded.

You can disable cluster allocation by using the following cluster settings API:

curl -XPUT "localhost:9200/_cluster/settings" -d '{
 "transient" : {
 "cluster.routing.allocation.enable" : "none"
 }
}'

On running this command, Elasticsearch stops rebalancing the shards around the
cluster. For example, if a primary shard is lost for an index due to the corresponding node
being shut down, Elasticsearch will still transform the replica shard into a new primary,
but a new replica will not be created. In this state, you can simply shut down the single
Elasticsearch node and perform the upgrade.

Once you are done with the upgrade, ensure that you re-enable allocation for the
cluster. If you don’t re-enable allocation, Elasticsearch will not automatically replicate
your data. The allocation can be re-enabled by setting the cluster.routing.allocation.
enable setting to all instead of none. See the following command:

curl -XPUT "localhost:9200/_cluster/settings" -d '{
 "transient" : {

Chapter 11 ■ Designing for sCale

227

 "cluster.routing.allocation.enable" : "all"
 }
}'

The twin steps of disabling allocation and then re-enabling allocation need to be
performed for each and every node in the cluster that is to be upgraded. If you perform
these steps once in the beginning and once in the end, Elasticsearch will not allocate the
shards that exist on the upgraded node every time you upgrade a node and your cluster
status will continue to be red after you have upgraded multiple nodes. By following the
step-by-step process of re-enabling allocation and waiting for the cluster to come to the
green state after each node is upgraded, your data is not lost and is available when you
move to the next node that needs to be upgraded. You can repeat these steps for all of the
nodes that need to be upgraded.

The case of indices not having any replicas is a little peculiar. If you have an index
that has no replicas, you can decommission the node by following the steps covered in an
earlier section. You need to move all the data off it before shutting down to upgrade.

Quick Restart
The disable and enable allocation steps can take quite a while for the cluster to return
to a green state when upgrading a single node. This is due to the fact that Elasticsearch
replicates shard segments rather than at the document level. This implies that the
Elasticsearch node sending data for replication is actually asking the peer node if it
has data for a particular segment. If it doesn't have the corresponding file or the file is
different, then the entire segment is copied. A large volume of data may be copied in case
the documents are the same. Until Elasticsearch comes out with a way of verifying the last
document written in a segment file, it has to copy over any differing files while replicating
data between the primary shard and the replica shard.

There are two different ways to make segment files identical on the primary and
replica shards:

•	 Optimize API: Use the optimize API to create a single, large
segment for both the primary and the replica.

•	 Toggling: Toggle the number of replicas to 0 and then back
to a higher number to ensure that all replica copies have the
same segment files as the primary shard. In this case, for a
short period, there is only a single copy of the data, so you need
to be cautious while performing this approach in production
environment.

 ■ Tip to reduce recovery time, you may halt indexing data into the cluster while
upgrading the node.

Chapter 11 ■ Designing for sCale

228

Cluster Information
Elasticsearch provides a mechanism to fetch cluster information in a user friendly
manner. The regular _cluster API can dump a ton of information for a big cluster, which
is difficult to comprehend. For such scenarios, the _cat API is quite suitable. The _cat
API provides both helpful diagnostic and debugging tools that can print data in a more
human-readable manner, rather than dumping a huge JSON response. Let's first revisit
the standard _cluster APIs to fetch cluster information.

Check cluster health using the cluster health API:

curl -XGET "localhost:9200/_cluster/health?pretty"
{
 "cluster_name" : "elasticsearch",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 3926,
 "active_shards" : 7852,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 100.0
}

Check cluster health using the _cat API:

curl -XGET "localhost:9200/_cat/health?v"
epoch timestamp cluster status node.total node.data
shards pri relo init
1479650899 19:38:19 elasticsearch
yellow 2 2 5129 3921 0 2

Fetch the list of nods as well as master node details using the _cluster API:

curl -XGET "localhost:9200/_cluster/state/master_node,nodes&pretty"
{
 "cluster_name" : "elasticsearch",
 "master_node" : "4IqtTbfoQk6vS6BvwBqVug"
}

Chapter 11 ■ Designing for sCale

229

Fetch the list of nods as well as master node details using the _cat API:

curl -XGET "localhost:9200/_cat/nodes?v"
host ip heap.percent ram.percent load node.role
master name
127.0.0.1 127.0.0.1 25 96 2.56 d
m Alistaire Stuart
127.0.0.1 127.0.0.1 64 96 2.56 d
* Hobgoblin II

 ■ Tip the node with "m" in the master column is the master node.

The _cat API comes with many other features, all of which are quite helpful in
troubleshooting different scenarios. You can see the full list of options of the _cat API by
giving the following command:

curl -XGET "localhost:9200/_cat "

Some of the most popular and useful _cat APIs are the following:

•	 allocation: Informs about the number of shards allocated to each
node.

•	 count: The count of number of documents in the entire cluster or
index.

•	 health: Information regarding the health of the cluster.

•	 indices: Details about existing nodes.

•	 master: Indicates which node is currently elected master node.

•	 nodes: Different information regarding all the nodes in the
cluster.

•	 recovery: Status of in-progress shard recoveries in the cluster.

•	 shards: Indicates count, size, and names of shards in the cluster.

•	 plugins: Information about installed plugins.

It is quite interesting to see how the shards are distributed across each node using
the _cat API. This way is much simpler than using the regular commands. See the
following to fetch the count of shards across each node:

curl -XGET 'localhost:9200/_cat/allocation?v'
shards disk.indices disk.used disk.avail disk.total disk.percent
host ip node
 1447 14.1mb 7.9gb 2.4gb 10.4gb 76
127.0.0.1 127.0.0.1 Alistaire Stuart
 3921 39.6mb 7.9gb 2.4gb 10.4gb 76
127.0.0.1 127.0.0.1 Hobgoblin II

Chapter 11 ■ Designing for sCale

230

Get detailed information about primary and replica shards:

curl -XGET 'localhost:9200/_cat/shards?v'
index shard prirep state docs store ip node
phones 2 r STARTED 5 4.7kb 127.0.0.1 Alistaire Stuart
phones 2 p STARTED 5 4.7kb 127.0.0.1 Hobgoblin II
phones 3 r STARTED 2 4.1kb 127.0.0.1 Alistaire Stuart
phones 3 p STARTED 2 4.1kb 127.0.0.1 Hobgoblin II
phones 4 r STARTED 1 3.9kb 127.0.0.1 Alistaire Stuart
phones 4 p STARTED 1 3.9kb 127.0.0.1 Hobgoblin II
phones 1 r STARTED 1 3.9kb 127.0.0.1 Alistaire Stuart
phones 1 p STARTED 1 3.9kb 127.0.0.1 Hobgoblin II
phones 0 r STARTED 1 3.9kb 127.0.0.1 Alistaire Stuart
phones 0 p STARTED 1 3.9kb 127.0.0.1 Hobgoblin II

Use of the _cat/allocation and _cat/shards APIs is also helpful to determine when a
node can be safely shut down after performing the decommissioning of a node.

Scaling Options
Although adding a node to a cluster might seem to be an easy task, in reality a little
planning can go a long way to improve the performance of the cluster. Different
configurations of Elasticsearch can be suitable for different kinds of needs. You need
to decide how you will index data and how you will search it. There are three key
considerations for an Elasticsearch cluster in production environment: over-sharding,
data slicing, and maximizing throughput.

Over-Sharding
Over-sharding is the name given to the approach wherein an intentionally large number
of shards are created for an index so that there is enough room to add nodes and grow in
the future. Figure 11-8 illustrates the over-sharding process.

phones0

Node 1 Node 1 Node 2

phones0

Elasticsearch Cluster

Node 2 is empty because there
are no shards to move.

Elasticsearch Cluster

Figure 11-8. Two nodes scaling a single shard

Chapter 11 ■ Designing for sCale

231

You can see in the Figure 11-8 that the phones index has a single shard and no
replicas. If you add another node, practically any benefit from adding nodes is removed.
Adding another node won’t let you scale in this particular situation. This is because the
entire indexing and querying load is still handled by the node with the single shard on it.
Since a shard is the smallest unit that Elasticsearch can move around, it is always better to
make sure that there are at least as many primary shards in the cluster as you plan to have
nodes. For example, if a cluster currently has three nodes and eight primary shards,
there is scope to add more nodes to handle additional requests. Now if you need more
than eight nodes, there is no possibility to distribute the primary shards across nodes
because there will be more nodes than shards.

You might think that this is an easy problem to solve: you just need to create 100
primary shards. This seems like a good idea but there is a hidden cost to each shard
that Elasticsearch has to manage. Each shard is actually a complete Lucene index and
requires a number of file descriptors for each segment of the index. There is memory
overhead, too. A large number of shards for an index leads to increased memory use
that could instead have been used to increase performance. You may hit the limit of a
machine's file descriptor or RAM limits. On top of this, while compressing data, you will
end up splitting the data across 100 different things. This results in a lower compression
ratio as compared to a reasonable number of shards.

There is no best or perfect shard-to-index ratio that can fit all situations. The default
is five shards but keep in mind how you plan on growing in the future.

 ■ Tip once an index is created with certain number of shards, the number of primary
shards can never be modified for that index.

Careful consideration of the number of shards should be done because you don’t
want to re-index significant portion of data with the passage of time.

Data Slicing
Currently, there is no way to increase or decrease the number of primary shards in an
index, necessitating the spanning of data into multiple indices from the beginning. This
is a reasonable way to split data. Let's use the data from the phones index described
in Chapter 7. Just to recap that particular example, the phones index contains sales
data of different smartphones and has details like make, price, color, and date of sale.
Segmenting data in this manner is helpful when searching because the segmentation
is handled by putting the right data in the right place. If you want to search a particular
brand of phones, such as HTC or Samsung, you can search only those particular indices
rather than the entire phones index.

Use of aliases is another mechanism that can be used along with indices. An alias
is nothing but a pointer to an index or a set of indices. It has a provision for changing
the indices that it points to at any time. This is immensely helpful for segmenting data
in a semantic manner. You can create an alias called htc-group that points to only HTC
phones. This technique is quite popular in situations where data-based information is
indexed (such as log files). Data can be segmented by date on a monthly, weekly, or daily
basis. You create an alias named "recent" that always points to the data that should be

http://dx.doi.org/10.1007/978-1-4842-2626-1_7

Chapter 11 ■ Designing for sCale

232

searched without having to change the name of the index being searched every time
the segment rolls over. The biggest USP of aliases is the incredible level of flexibility and
minimal overhead.

If you are creating indices, bear in mind that since each index has its own shard,
there is an overhead of creating a shard. Be careful not to make too many shards as a
consequence of creating too many indices. Use the scarce resources for something better
like handling requests. Once you gain familiarity with your data, you can always tweak the
node configuration to get maximum performance.

Maximizing Throughput
We all want to maximize throughput from our system but more often than not, we
have vague idea about the throughput. What exactly do you want to max out on? Is it
the indexing throughput or fast searches? Elasticsearch can be fine-tuned in multiple
ways to suit different throughput considerations. Let's say you have to handle hundreds
and thousands of new documents. How can you index them as fast as possible? A
straightforward approach for a faster indexing is to temporarily reduce the number of
replica shards in the cluster. While indexing data, the default approach is that the request

phones0

Node 1

phones0

Node 2 Node 3

phones0

Node 1

phones0 phones0

Node 2 Node 3

Client
Queries can be handled
by any copy of the data,
such as Node 1 and
Node 2.

Node 3 has no copy of
phones0 shard, so does
not handle any request.

Node 3 can now
handle requests.

With more copies of data
available, more nodes can
handle requests.

Client

Figure 11-9. Request traffic distributed to additional replicas

Chapter 11 ■ Designing for sCale

233

won't get completed until the data exists on the primary shard as well as all the replicas.
So, you can try to reduce the number of replicas to one while indexing, and then increase
to more than one once all the data has been indexed.

You can tweak Elasticsearch to enable fast searches by adding more replicas since only
a primary or a replica shard can be used for searching. Figure 11-9 illustrates a three-node
cluster where the third node can't participate in searches until it has a copy of the data.

 ■ Tip having more shards has a small cost in terms of increase in file descriptors and
memory.

If the request traffic is too high for the nodes in the cluster to handle, you can consider
adding nodes with node.data and node.master both set to false. These nodes can then
participate in handling incoming requests, distribute the requests among the data nodes,
and collate the results for the response. In this manner, the nodes searching the shards
don’t have to handle connections from search clients. They only have to search in shards.

Aliases
Aliases are one of the most useful features of Elasticsearch. Aliases are like pointers or
names that can be used to correspond with one or more actual indices. This makes things
simpler by providing flexibility when scaling the cluster and managing how data is spread
across indices. You can use an alias even for a single index in an Elasticsearch cluster.

Working with an Alias
Aliases are managed by a maser node and have a small overhead associated with them.
For example, if there is an alias by the name of car that points to an index named Honda,
there is additional overhead of an extra key in the cluster map that maps the name car to
the concrete index Honda. This implies that in comparison to additional indices, aliases
tend to be much lighter. In fact, thousands of them can be maintained without having
a significant impact on the cluster. Having said that, you need to be cautious against
creating thousands or millions of aliases because at that level, even the minimal overhead
of a single entry in a map adds up to a significant value. This can cause the cluster state to
grow to a large size. This results in increased time for creating a cluster state because the
entire cluster state is sent to each node every time it changes.

Benefits of Aliases
It is highly recommended to use aliases for all Elasticsearch indices because they provide
a lot more flexibility at the time of future reindexing. Let's assume you started by creating
an index with a single primary shard and then later on decided that you need more
capacity on your index. If you already have an alias for the original index, you can simply
change the alias to point to the additionally created index without changing the name of
the index to search for.

Chapter 11 ■ Designing for sCale

234

Another significant benefit is to create windows into different indices. For example, if
you create periodic (daily, weekly, etc.) indices for your data, you can have a sliding window
of the last period's (week or day) data by creating an alias for the last few periods. On a
regular basis, you can continue adding new data to the alias while removing the old data.

Living with Aliases
You can use the aliases API to create aliases. Each action is like a map consisting of either
an add or remove action followed by the index and alias on which to apply the operation.
See the following example for clarity:

curl -XPOST 'http://localhost:9200/_aliases' -d '
{
 "actions" : [
 {
 "add" : {
 "index" : "phones",
 "alias" : "ph-alias"
 }
 },
 {
 "remove" : {
 "index" : "old-phones",
 "alias" : "old-ph-alias"
 }
 }
]
}'
{"acknowledged":true}

As this example shows, the phones index is added to an alias named ph-alias, and
the made-up index named old-phones is removed from the alias old-ph-alias. The
very act of adding an index to an alias creates it. Similarly, removal of all indices, which
an alias points to, removes the alias. Interestingly, there is no manual alias creation and
deletion. However, the alias operations will fail if the index does not exist. There is no
limit to the add or remove actions. All these actions are executed atomically. It is possible
to perform individual actions on the Alias API by using the common HTTP methods that
Elasticsearch uses. The following calls will have the same result:

curl -XPUT 'localhost:9200/phones/_alias/ph-alias'
curl -XDELETE 'localhost:9200/old-phones/_alias/old-ph-alias'

Creating Aliases
There are many options available for creating aliases. You may create aliases on a specific
index, many indices, or a pattern that matches index names:

curl -XPUT 'http://localhost:9200/{index}/_alias/{alias}'

Chapter 11 ■ Designing for sCale

235

Create bar alias on foo index:

curl -XPUT 'http://localhost:9200/foo/_alias/bar'

Create bar alias on foo index:

curl -XPUT 'http://localhost:9200/_all/_alias/bar'

Create bar alias on both the indices foo1 and foo2:

curl -XPUT 'http://localhost:9200/foo1,foo2/_alias/bar'

Create bar alias on all indices with the pattern foo*:

curl -XPUT 'http://localhost:9200/foo*/_alias/bar'

Alias deletion can be done in a similar manner:

curl -XDELETE 'http://localhost:9200/{index}/_alias/{alias}'

All the aliases of a concrete index can be fetched by issuing a GET request on an
index with _alias. You can also retrieve all indices and the associated aliases by not
specifying the index name. You can retrieve an alias for an index in the following manner:

curl 'localhost:9200/phones/_alias?pretty'
{
 "phones" : {
 "aliases" : {
 "ph-alias" : { }
 }
 }
}

There are other ways also to fetch alias information from an index. You can give a
specific index, _all, comma-delimited list of index names, pattern to match, or just leave it
blank. Similarly, you can give the alias name, comma-delimited list or a pattern.

curl -XGET 'http://localhost:9200/{index}/_alias/{alias}'

Retrieve alias bar for index foo:

curl -XGET 'http://localhost:9200/foo/_alias/bar'

Retrieve all aliases for index foo:

curl -XGET 'http://localhost:9200/foo/_alias/*'

Retrieve all indices with alias bar:

Chapter 11 ■ Designing for sCale

236

curl -XGET 'http://localhost:9200/_alias/bar'

Retrieve all indices with aliases that match the pattern bar*:

curl -XGET 'http://localhost:9200/_alias/bar*'

Camouflaging Documents with Filters
Aliases can also be used to automatically apply a filter to queries. For example, there can
be an alias that points only to the groups that contain the Elasticsearch tag. This helps in
creating an alias that does this filtering automatically, as follows:

curl -XPOST 'http://localhost:9200/_aliases' -d '
{
 "actions" : [
 {
 "add" : {
 "index" : "phones",
 "alias" : "htc-group",
 "filter" : {
 "term" : {"make" : "htc"}
 }
 }
 }
]
}'
{"acknowledged":true}

curl -XGET 'localhost:9200/phones/sales/_count' -d '
{
 "query" : {
 "match_all" : {}
 }
}'
{"count":10,"_shards":{"total":5,"successful":5,"failed":0}}

curl -XGET 'localhost:9200/htc-group/_count' -d '
{
 "query" : {
 "match_all" : {}
 }
}'
{"count":2,"_shards":{"total":5,"successful":5,"failed":0}}

As you can see, the htc-group alias contains only two groups instead of ten. This is
due to the process of automatically applying the term filter for groups that contain the
tag elasticsearch. This can be leveraged for varied needs. For example, while indexing
sensitive data, you can create a filtered alias to make sure that anyone using that
particular alias can't see data for which they don’t have access.

Chapter 11 ■ Designing for sCale

237

Routing
It is the process of routing that places documents in a particular shard. Elasticsearch
uses the hash of the document id, either specified by you or generated by Elasticsearch,
to select in which shard should the document be indexed. There is also provision for
manually specifying the routing of a document when indexing. This is typically what
happens in parent-child relationships as the child document has to be in the same shard
as the parent document.

Instead of the document id, Elasticsearch can also use a custom value for hashing.
You just need to specify the routing query parameter on the URL and the associated
value will be used for hashing instead of the id.

Significance of Routing
In the absence of any routing, Elasticsearch makes sure that all the documents are
distributed in an even manner across all of the different shards. So why do we need routing?
Customization of routing allows collection of multiple documents with a shared routing
value into a single shard. After these documents land in the same index, it allows routing
certain queries in a way that they are executed on a subset of the shards for an index.

Routing Strategies
Routing as a strategy requires the following:

•	 Pick good routing values while indexing documents.

•	 Reuse those values while performing queries.

In the phones example, first you must figure out a good way to separate each
document. In this example, select the phone make to use as the routing value. This looks
like a fair choice for a routing value as the phone makes vary widely enough that you
have quite a few values to pick from. Each phone is associated with a brand (make) so
it makes it easy to extract that from a document before indexing. Picking up something
that has only a few different values can lead to unbalanced shards for the index. If there
are only four possible routing values for all documents, all documents will end up routed
between a maximum of four shards. It is essential to pick a value that will have sufficient
cardinality to spread data among shards in an index.

After picking up the desired routing value, make sure to specify this routing value
when indexing documents. You can index a document with a routing value of Lenovo in
the following manner:

curl -XPOST 'localhost:9200/phones/sales/10?routing=Lenovo' -d '
{
 "make" : "Lenovo",
 "color" : "gold",
 "price" : 100,
 "sold" : "2016-11-03"
}'

Chapter 11 ■ Designing for sCale

238

{"_index":"phones","_type":"sales","_id":"10","_version":1,"_shards":{"total
":2,"successful":2,"failed":0},"created":true}

You can index a document with a routing value of Sony in the following manner:

curl -XPOST 'localhost:9200/phones/sales/11?routing=Sony' -d '
{
 "make" : "Sony",
 "color" : "black",
 "price" : 150,
 "sold" : "2016-12-15"
 }'
{"_index":"phones","_type":"sales","_id":"11","_version":1,"_shards":{"total
":2,"successful":2,"failed":0},"created":true}

You can index a document with a routing value of Blackberry in the following
manner:

curl -XPOST 'localhost:9200/phones/sales/12?routing=Blackberry' -d '
{
 "make" : "Blackberry",
 "color" : "black",
 "price" : 120,
 "sold" : "2016-11-21"
}'
{"_index":"phones","_type":"sales","_id":"12","_version":1,"_shards":{"total
":2,"successful":2,"failed":0},"created":true}

As you can see in the above examples, three different routing values, Lenovo, Sony,
and Blackberry, have been used for three different documents. This implies that instead
of hashing the ids 10, 11, and 12 to determine which shard to put the documents in, the
routing values are used. In the indexing process, this does not help much. The real benefit
comes by combining routing on the query side. Multiple routing values can be combined
using a comma.

You can query with a routing value of Lenovo and Blackberry in the following
manner:

curl -XPOST 'localhost:9200/phones/sales/_search?routing=Lenovo,Blackberry
' -d '
{
 "query" : {
 "match" : {
 "color" : "black"
 }
 }
}'
{
 "hits" : {

Chapter 11 ■ Designing for sCale

239

 "total" : 2,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "AVdB6RkFM4scS7EY9HVt",
 "_score" : 1.0,
 "_source" : {
 "make" : "huawei",
 "color" : "black",
 "price" : 30,
 "sold" : "2016-10-05"
 }
 },
 {
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "12",
 "_score" : 1.0,
 "_routing" : "Blackberry",
 "_source" : {
 "make" : "Blackberry",
 "color" : "black",
 "price" : 120,
 "sold" : "2016-11-21"
 }
 }
]
 }
}

It is interesting to observe that instead of returning all three documents, only two
are returned. When Elasticsearch receives such request, it hashes the value of the two
specified routing values, Lenovo and Blackberry. The query is then executed on all the
shards they are hashed to. In this case, Lenovo and Blackberry both get hashed to the
same shard, and Sony gets hashed to a different shard.

Taking this strategy further to hundreds of thousands of documents, by specifying
the routing while indexing and searching, you can limit the scope of where a search
request is executed. This can phenomenally improve the performance for an index that
might have 1,000 shards. Rather than querying on all 1,000 shards, it can be limited in
scope. This makes it run faster with less impact to the Elasticsearch cluster.

In the examples shown, Lenovo and Blackberry route to the same shard value. They
could also have been hashed to different shard values. Interestingly, there is a way to
know which shard a request will be executed on. Elasticsearch provides an API to show
the nodes and shards on which a search request will be executed.

Chapter 11 ■ Designing for sCale

240

Determining Shards
As mentioned, it is possible to determine on which shard and node a query gets executed.
You can use the search shards API to see which shards the request is going to be executed
on. You need not specify the routing value.

curl -XGET 'localhost:9200/phones/_search_shards?pretty'
{
 "nodes" : {
 "MLOt_QcjSSqPnYpdDUN-NQ" : {
 "name" : "Alistaire Stuart",
 "transport_address" : "127.0.0.1:9301",
 "attributes" : { }
 },
 "4IqtTbfoQk6vS6BvwBqVug" : {
 "name" : "Hobgoblin II",
 "transport_address" : "127.0.0.1:9300",
 "attributes" : { }
 }
 },
 "shards" : [[{
 "state" : "STARTED",
 "primary" : true,
 "node" : "4IqtTbfoQk6vS6BvwBqVug",
 "relocating_node" : null,
 "shard" : 0,
 "index" : "phones",
 "version" : 36,
 "allocation_id" : {
 "id" : "mcScD7QST2exi3_9LjZrXw"
 }
 }, {
 "state" : "STARTED",
 "primary" : false,
 "node" : "MLOt_QcjSSqPnYpdDUN-NQ",
 "relocating_node" : null,
 "shard" : 0,
 "index" : "phones",
 "version" : 36,
 "allocation_id" : {
 "id" : "M6g5vZ8hROy-0rOW4lN1aA"
 }
 }], [{
.....
 "state" : "STARTED",
 "primary" : false,
 "node" : "MLOt_QcjSSqPnYpdDUN-NQ",
 "relocating_node" : null,

Chapter 11 ■ Designing for sCale

241

 "shard" : 4,
 "index" : "phones",
 "version" : 36,
 "allocation_id" : {
 "id" : "TN7Myk0lQRWxg4WupVAMUA"
 }
 }, {
 "state" : "STARTED",
 "primary" : true,
 "node" : "4IqtTbfoQk6vS6BvwBqVug",
 "relocating_node" : null,
 "shard" : 4,
 "index" : "phones",
 "version" : 36,
 "allocation_id" : {
 "id" : "Fxm1R2UKQaqZMbywglI98A"
 }
 }]]
}

You can specify the routing value also:

curl -XGET 'localhost:9200/phones/_search_shards?pretty&routing=Lenovo'
{
 "nodes" : {
 "MLOt_QcjSSqPnYpdDUN-NQ" : {
 "name" : "Alistaire Stuart",
 "transport_address" : "127.0.0.1:9301",
 "attributes" : { }
 },
 "4IqtTbfoQk6vS6BvwBqVug" : {
 "name" : "Hobgoblin II",
 "transport_address" : "127.0.0.1:9300",
 "attributes" : { }
 }
 },
 "shards" : [[{
 "state" : "STARTED",
 "primary" : true,
 "node" : "4IqtTbfoQk6vS6BvwBqVug",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "phones",
 "version" : 40,
 "allocation_id" : {
 "id" : "LX29QZHLTayDlzEaclPJcg"
 }
 }, {

Chapter 11 ■ Designing for sCale

242

 "state" : "STARTED",
 "primary" : false,
 "node" : "MLOt_QcjSSqPnYpdDUN-NQ",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "phones",
 "version" : 40,
 "allocation_id" : {
 "id" : "bA3JOpAnRoCwzP_w4cpE4w"
 }
 }]]
}

As you can see, even though the index consists of two shards, when the routing value
is specified, only shard 1 is going to be searched. You just cut the amount of data the
search query must sift through by half. Routing is certainly useful for indices having large
number of shards, but for day-to-day regular usage, you can keep away from it.

Routing Configuration
It always helps if you specify that you intend custom routing for all documents and to stop
indexing a document without a custom routing value. This can be configured through the
mapping of a type. For example, you can create an index called routed-phones and the
corresponding routing in the following manner:

curl -XPOST 'localhost:9200/routed-phones' -d '
{
 "mappings" : {
 "sales" : {
 "_routing" : {
 "required" : "true"
 },
 "properties" : {
 "color" : {
 "type" : "string"
 },
 "make" : {
 "type" : "string"
 },
 "price" : {
 "type" : "long"
 },
 "sold" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 }
 }

Chapter 11 ■ Designing for sCale

243

 }
 }
 }
}'
{"acknowledged":true}

Now let's try to index a document without a routing value:

curl -XPOST 'localhost:9200/routed-phones/sales/13' -d '
{
 "make" : "Blackberry",
 "color" : "black",
 "price" : 140,
 "sold" : "2016-11-29"
}'
{"error":{"root_cause":[{"type":"routing_missing_
exception","reason":"routing is required for [routed-phones]/
[sales]/[13]","index":"routed-phones"}],"type":"routing_missing_
exception","reason":"routing is required for [routed-phones]/[sales]/
[13]","index":"routed-phones"},"status":400}

As you can see, Elasticsearch gives an error because the required routing value is missing.

Routing in Combination with Aliases
Until now you have seen that aliases provide a powerful and flexible abstraction on top
of indices. They can also be leveraged along with routing to automatically apply routing
values while querying or indexing. This is with an assumption that the alias points to a
single index. Try indexing into an alias that points to a group of indices, and you will get
an error. This is due to the fact that Elasticsearch doesn’t know which concrete index the
document should be indexed into.

You can go ahead and create an alias called Lenovo-group that automatically filters
out phones with “Lenovo” in the make and adds “Lenovo” to the routing when searching
and indexing to limit where queries are executed, as follows:

curl -XPOST 'localhost:9200/_aliases' -d '
{
 "actions" : [
 {
 "add" : {
 "index" : "phones",
 "alias" : "Lenovo-group",
 "filter" : {
 "term" : {"make" : "Lenovo"}
 },
 "routing" : "Lenovo"
 }

Chapter 11 ■ Designing for sCale

244

 }
]
}'
{"acknowledged":true}

curl -XPOST 'localhost:9200/Lenovo-group/_search?pretty' -d '
{
 "query" : {
 "match_all" : {}
 },
 "fields" : ["make"]
}'
{
 "took" : 462,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "hits" : {
 "total" : 0,
 "max_score" : null,
 "hits" : []
 }
}

You can use the alias while indexing also. Indexing with the Lenovo-group alias is
similar to a document being indexed with the routing=Lenovo query string parameter.
Since aliases are lightweight, you have the luxury of creating as many as required while
using custom routing for scaling.

Summary
This chapter covered how multiple nodes, each containing multiple indices, which in turn
are made up of a number of shards, come together to form an Elasticsearch cluster. The
process of node addition was covered along with maser node election. Different ways to
remove and decommission nodes have been described. Aliases provide a convenient way
to address a subset of data in an index. The chapter ended with an overview of routing and
how to use it in combination with aliases to make a flexible and scalable cluster.

245© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_12

CHAPTER 12

The ELK Stack in Production

The previous chapter covered the different scaling strategies for Elasticsearch. An
overview of node addition, decommissioning aliases, and routing was provided. When
running the ELK stack in a production environment, there can be multiple things that
you must take care of. Monitoring the different components and troubleshooting any
problems are quite important. Custom configurations are required for specific scenarios.
This chapter will address the key aspects of running the ELK stack in a production
environment.

Deployment Considerations
There is a big difference between playing with Elasticsearch on your laptop as compared
to real deployments on multi-node production environment. There are quite a few best
practices that are worth considering. They are of course not the “final word” but they are
certainly suitable for a wide range of deployments.

Memory
Memory is a resource that always seems scarce, and with Elasticsearch your chances of
running out of it are pretty high. Elasticsearch operations like sorting and aggregations
are memory hungry so it is prudent to have enough heap space for these operations.
Even if the heap size is small, extra memory can be given to the OS filesystem cache.
Since Lucene uses many disk-based data structures, Elasticsearch utilizes OS cache
significantly. Happily, memory prices have dropped these days so we should try to
allocate as much memory as possible.

 ■ Tip Although it is quite common to see machines with 32GB or 16GB of RAM size, the
ideal memory size is 64GB of RAM. There can be challenges if the RAM size is less than 8GB
or more than 64GB.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

246

Disks
Disks are quite essential for cluster configurations and more for indexing-heavy clusters.
Disks are the slowest subsystem in a server, so it is very easy for write-heavy clusters to
saturate the disks. This creates a bottleneck for the entire cluster. If your budget allows,
you should always go for SSDs. Having a SSD gives enough boost for query and indexing
performance.

 ■ Tip When using SSd, ensure that the oS i/o scheduler is configured correctly.
The default scheduler is cfq, which is more suitable for spinning media. in case of SSd,
it is better to go for the deadline or noop scheduler.

Another efficient way to increase disk speed is to use RAID 0 for both spinning disks
and SSDs. It is best to avoid Network Attached Storage (NAS) as it is generally found to
be slow, leading to large latencies.

Network
Distributed systems work best with fast and reliable networks. This holds true for
Elasticsearch clusters also. Nodes can communicate easily if latency is low. High
bandwidth facilitates seamless shard movement and recovery. The modern data center
networks (1 GbE, 10 GbE) are suitable for clusters in most scenarios.

 ■ Tip elasticsearch clusters should not span multiple data centers even if these data
centers are in close geographical proximity.

We are living in interesting times. On the one hand, it is possible to procure big
machines with hundreds of gigabytes of RAM with multi-core CPUs. On the other hand,
it is quite easy to spin up hundreds or thousands of small virtual machines in cloud
platforms such as AWS. What should one do? Well, the answer, as in most such situations,
is “It depends!” There is no prominent advantage of small machines because there would
be additional overhead of managing a cluster with thousands of nodes. Similarly, gigantic
machines are best avoided because they can lead to imbalanced resource usage and
logistical complexity when running multiple nodes per machine. As a rule of thumb, go
for medium-to-large machines.

Java Virtual Machine
As a best practice, always run the most recent version of the Java Virtual Machine (JVM),
unless otherwise mentioned on the Elasticsearch documentation. Both Elasticsearch and
Lucene are quite demanding and often expose weaknesses in JVM.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

247

 ■ Tip Java 8 is preferred over Java 7/Java 6 for eLK stack installations.

JVM comes with dozens of settings, parameters, and configurations. It gives you the
freedom to tweak every aspect of the JVM. Elasticsearch is a complex piece of software, so
unless you are very sure, do not change any of the JVM settings.

Data Management
Elasticsearch is generally believed to perform with good speed operations like indexing,
searching and aggregations. However, there are many aspects to consider while deciding
how fast you want these operations to be.

•	 Request complexity: Multiple operations like index, update,
delete, search, and get can be clubbed together in a single HTTP
call. This can give a phenomenal boost to performance.

•	 Tradeoff between indexing speed and searching speed:
Internally, Elasticsearch uses Lucene segments for data storage.
A better understanding of Lucene segments can help in making
an informed decision.

•	 Memory: Elasticsearch relies on caching for faster data access.
Large caches require significant memory.

The subsequent sections will provide more details on the above listed factors.

Request Grouping
One of the easiest things to do for faster indexing is to send multiple documents to be
indexed at once using the bulk API. This not only saves network round-trips but also
allows for more indexing throughput. You can include different types of operations in a
single bulk request. In the same bulk request, you can include operations for creating
documents or overwriting them. Not only that, you can also include update or delete
operations in a bulk request. For performing multiple get or search operations, you can
use the multiget and multisearch APIs.

Bulk Indexing, Updating, and Deleting
If you index documents one at a time, there are some overheads that must be incurred
every time.

•	 The application must wait for a response from Elasticsearch
before moving on to the next task.

•	 Elasticsearch needs to process all request data for every indexed
document.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

248

In order to boost indexing speed, it is best to use the bulk API, which can help in
indexing multiple documents at the same time. As illustrated in Figure 12-1, when you
send an HTTP request with multiple indexing operations, you get a single HTTP response
for all of the operations.

A bulk request for indexing documents can be given in the following manner.

curl -XPOST 'localhost:9200/{index}/_bulk --data-binary @$REQUESTS_FILE

Or

curl -XPOST 'localhost:9200/{index}/{type}/_bulk --data-binary
@$REQUESTS_FILE

Let’s refresh from the example regarding authors, first introduced in Chapter 5.
The request file can be specified in the following manner:

{ "create": { "_index": "ws", "_type": "author", "_id": "1" }}
{ "name": "William Shakespeare", "born": "1564-04-26", "died": "1616-04-23",
"country": "United Kingdom" }
{ "create": { "_index": "cd", "_type": "author", "_id": "2" }}
{ "name": "Charles Dickens", "born": "1812-02-07", "died": "1870-06-09",
"country": "United Kingdom" }
{ "create": { "_index": "ws", "_type": "play", "_id": "3" }}
{ "author": "William Shakespeare", "play": "Comedy of Errors", "published":
"1589" }
{ "create": { "_index": "cd", "_type": "play", "_id": "4" }}
{ "author": "Charles Dickens", "play": "The Pickwick Papers", "published":
"1836" }
{ "create": { "_index": "ws", "_type": "play", "_id": "5" }}
{ "author": "William Shakespeare", "play": "Henry VI", "published": "1590" }

Indexing documents separately Bulk Indexing

Application Application

Index
doc1

Index
doc2

doc1
indexed

doc1 indexed
doc2 indexed

doc2
indexed

Index doc1
Index doc2

Elasticsearch Elasticsearch

Figure 12-1. Bulk indexing can process multiple documents

http://dx.doi.org/10.1007/978-1-4842-2626-1_5

ChApTeR 12 ■ The eLK STACK in pRoduCTion

249

{ "create": { "_index": "cd", "_type": "play", "_id": "6" }}
{ "author": "Charles Dickens", "play": "Oliver Twist", "published": "1837" }
{ "create": { "_index": "ws", "_type": "play", "_id": "7" }}
{ "author": "William Shakespeare", "play": "Richard III", "published": "1592" }
{ "create": { "_index": "cd", "_type": "play", "_id": "8" }}
{ "author": "Charles Dickens", "play": "Nicholas Nickleby", "published":
"1838" }
{ "create": { "_index": "ws", "_type": "play", "_id": "9" }}
{ "author": "William Shakespeare", "play": "Taming of the Shrew", "published":
"1593" }
{ "create": { "_index": "cd", "_type": "play", "_id": "10" }}
{ "author": "Charles Dickens", "play": "The Old Curiosity", "published":
"1840" }
{ "create": { "_index": "ws", "_type": "play", "_id": "11" }}
{ "author": "William Shakespeare", "play": "Romeo and Juliet", "published":
"1594" }
{ "create": { "_index": "cd", "_type": "play", "_id": "12" }}
{ "author": "Charles Dickens", "play": "David Copperfield", "published":
"1849" }

The _index and _type fields indicate where to index each document. The _id field
indicates the id of the document being indexed.

 ■ Tip if the index “author” and type “play” already exists, it is suggested to deLeTe the
associated data before proceeding ahead. otherwise, you will get a “Document already
exists” error message.

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary "@plays.json"; echo

On running this command, you will get a JSON containing the time it took to index
the bulk request and the responses for each operation. An errors flag indicates if any
operation failed. The response will look like this:

{
 "took" : 4343,
 "errors" : false,
 "items" : [{
 "create" : {
 "_index" : "ws",
 "_type" : "author",
 "_id" : "1",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,

ChApTeR 12 ■ The eLK STACK in pRoduCTion

250

 "failed" : 0
 },
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "cd",
 "_type" : "author",
 "_id" : "2",
 "_version" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "status" : 201
 }
 }, {
..............................
 }]
}

If one (or more) document fails to be indexed, it does not mean the whole bulk
request has failed. Items in the same bulk request are independent of each other.

 ■ Tip The size of bulk request influences the performance.

Just like performing an indexing operation in bulk, you can perform update or delete
operations also in bulk. The update operation looks similar to the index operation with
a notable exception that the document ID has to be specified. The document content
can contain a doc or script similar to performing individual update operation. The delete
operations are specified differently because there is no document content. There is just
the metadata line with the document ID.

Multisearch and Multiget APIs
The use of multisearch and multiget provide similar benefits as bulk APIs. Grouping
multiple search or get requests saves time and avoids network latency. A typical use of
sending multiple search requests at the same time is while searching different types of
documents. The multisearch API is similar to the bulk API in the following manner:

•	 You need to hit the _msearch endpoint, and it is optional to
specify the index or type in the URL.

•	 A request contains two single-line JSON strings. The first line
contains parameters like index, type, routing value, or search
type. The second line contains the query body consisting of the
request payload.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

251

Let’s put the contents of the multisearch request in a CSV file (bulksearch.json):

{"index" : "phones", "type" : "sales"}
{"query" : {"match" : {"make" : "iPhone"}}}
{"index" : "phones", "type" : "sales"}
{"query" : {"match" : {"make" : "htc"}}}

You can invoke the multisearch request in the following manner:

curl 'localhost:9200/_msearch?pretty' --data-binary @bulksearch.json

The following snippet shows the result of the multisearch request:

{
 "responses" : [{
 "took" : 51,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 2,
 "max_score" : 1.5108256,
 "hits" : [{
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "AVdB6RkFM4scS7EY9HVl",
 "_score" : 1.5108256,
 "_source" : {
 "make" : "iPhone",
 "color" : "silver",
 "price" : 260,
 "sold" : "2016-01-16"
 }
 }, { ... }
]
 }
 }, {
 "took" : 38,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {

ChApTeR 12 ■ The eLK STACK in pRoduCTion

252

 "total" : 2,
 "max_score" : 1.9162908,
 "hits" : [{
 "_index" : "phones",
 "_type" : "sales",
 "_id" : "AVdB6RkFM4scS7EY9HVo",
 "_score" : 1.9162908,
 "_source" : {
 "make" : "htc",
 "color" : "silver",
 "price" : 140,
 "sold" : "2016-04-03"
 }
 }, { ... }
]
 }
 }]
}

Multiget is apt for situations where an external application needs to fetch a set of
documents without doing any initial search. For example, if you are storing system properties
at regular time intervals, the ID can be the timestamp. In such a scenario, if you want to fetch
specific system properties belonging to a specific duration, you don’t need to do any filtering.
You can simply call the _mget endpoint and send a docs array with the index type and id of
the documents you want to fetch. Refer to the Employee example mentioned in Chapter 4.
If you want to fetch details of multiple Employees, you can do in the following manner:

curl -XGET "http://localhost:9200/_mget" -d '{
 "docs" : [
 {
 "_index" : "foo",
 "type" : "eis",
 "_id" : "33124"
 },
 {
 "_index" : "foo",
 "type": "eis",
 "_id" : "AVbA4WNg7uqRWQFJiJSn",
 "_source" : "department"
 }
]
}'

A docs array is returned in the response body. This docs array contains a response
per document and it is in the same order as specified with the request. You can see that
each of these responses is the same that is expected from an individual get request. Since
you had specified only one particular field (in this case, “department” for the second
document), you can see that for the second document only this particular field is present
in the response body.

http://dx.doi.org/10.1007/978-1-4842-2626-1_4

ChApTeR 12 ■ The eLK STACK in pRoduCTion

253

{
"docs":[{"_index":"foo","_type":"eis","_id":"33124","_
version":1,"found":true,"_source":
{
 "name": "Tom Smith",
 "id": 33124,
 "manager": "Rob Stewart",
 "department": "sales",
 "contact details": {
 "mobile phone": "+12072553130",
 "email": "tom.smith@foo.com" }}
},
{"_index":"foo","_type":"eis","_id":"AVbA4WNg7uqRWQFJiJSn","_
version":1,"found":true,"_source":
{
 "department": "hr",
}
}]}

If the documents you want to retrieve have the same _index value, you can just
specify the default _index in the URL:

curl -XGET "http://localhost:9200/foo/_mget" -d '{
 "docs" : [
 {
 "type" : "eis",
 "_id" : "33124"
 },
 {
 "type": "eis",
 "_id" : "AVbA4WNg7uqRWQFJiJSn",
 "_source" : "department"
 }
]
}'

Similarly, if the documents have the same _index and _type value, you can specify
the _index and _type values in the URL:

curl -XGET "http://localhost:9200/foo/eis/_mget" -d '{
 "ids" : ["33124", "AVbA4WNg7uqRWQFJiJSn"]
}'

Clubbing multiple operations in the same request with multiget API may appear to
introduce additional complexity, but the requests become fast without any additional
cost. It’s the same with multisearch and bulk APIs. You can try out different request sizes
to figure out what works best for your documents and environment.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

254

Elasticsearch Tuning
Elasticsearch stores documents in a disk in a segment. But before that, it saves
documents intermittently in cache. Both the segment handling and cache management
can be tuned based on the scenario for optimal functioning of Elasticsearch.

Lucene Segment Optimization
One receiving documents, Elasticsearch indexes them in memory in inverted indices
called segments. These segments are written to disk from time to time. Bear in mind that
these segments can’t be modified, only deleted. This makes it easier for the operating
system to cache them. Besides this, bigger segments are formed from smaller segments
to consolidate the inverted indices in order to make searching faster. There are different
means to configure how Elasticsearch manages these segments. A detailed description of
these options will be given in subsequent sections.

Thresholds for Refresh and Flush
By refreshing, Elasticsearch’s views get reopened and newly indexed documents are
made available for searching. The indexed data is committed from memory to disk in
flushing. Both of these operations have a significant cost so it is important to configure
them optimally. Elasticsearch offers near-real time searching capability because its
operations are not carried on the very latest indexed data but on an earlier snapshot.
A point-in-time view of the index is kept opened so that multiple searches hit the same
files and reuse the same caches. This has a related consequence that each refresh
has a performance penalty as caches are invalidated, leading to slow down of search
operations. The reopening process also requires CPU cycles that could otherwise be used
for indexing.

The default value for the refreshing interval is 1 second. However, you can change
this value as per your requirement. The following command would set the refresh interval
to 3 seconds:

curl -XPUT 'localhost:9200/{index}/_settings' -d '{
 "index.refresh_interval" : "3s"
}'

You can verify that your changes have been applied by giving the following
command:

curl -XGET 'localhost:9200/{index}/_settings?pretty'

Increasing the value of refresh_interval leaves CPU cycles for indexing.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

255

 ■ Tip You can disable automatic refreshing by setting refresh_interval to -1.

Disabling the automatic refreshing can be suitable for situations where indices
change in batches and not frequently, such as a warehouse where goods are stocked
every night. In this case, indexing throughput is preferable to data freshness. You can
manually refresh using the following command:

curl -XGET 'localhost:9200/{index}/_refresh'

Elasticsearch periodically persists the in-memory segments to the actual Lucene
index on the disk and this process is called flushing. In order to ensure data is not lost
when a node goes down, Elasticsearch keeps track of indexing operations that are still
in the transaction log. During the process of flushing, the transaction log is also cleared.
Flushing happens in one of the following conditions:

•	 The memory buffer becomes full.

•	 A certain period of time has passed since the last flush.

•	 The transaction log hits a certain threshold.

You can control how often flushing happens by configuring the settings for the above
mentioned conditions. The memory buffer size can be controlled through the indices.
memory.index_buffer_size setting in the elasticsearch.yml configuration file. This
setting controls the entire buffer for a node and can be specified either as a percent
of overall JVM heap like 15% or an absolute value like 50MB. The transaction log has
index-specific settings that control both the size at which a flush should occur (through
index.translog.flush_threshold_size) and the time since the last flush (through index.
translog.flush_threshold_period). You can change these settings in the following
manner:

curl -XPUT 'localhost:9200/{index}/_settings' -d '
{
 "index.translog" : {
 "flush_threshold_size" : "250mb",
 "flush_threshold_period" : "20m"
 }
}'

One or more segments get created in disk after a flush is done. While servicing
a query, Elasticsearch will look in all the segments and then merge the results as an
overall result. The higher the number of segments to search through, the slower the
search. It is best to keep segments at a minimum by merging smaller segments into
bigger segments.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

256

Merge Policies
Segments are cached to make searches fast. Changing the dataset, such as addition of a
document, does not require rebuilding the index for data stored in existing segments. A
direct consequence of creating mode indices is an increase in the number of segments.
This makes indexing faster but it has an overhead. When you update a document, the
earlier version is not changed. Rather, the existing version is deleted and a new version
is indexed. Similarly, when you delete a document, it does not remove the document
from the segment. It’s only marked as deleted in a separate .del file. Documents can be
removed only during segment merging.

For these reasons, in the background smaller segments are merged to form larger
segments to keep their number manageable. The merging process also removes deleted
documents. However, the merge process is performance intensive, especially in terms
of I/O. You can tune the merge policy to control how often merges happen and how big
the segments grow. The default merge policy is tiered, whereby the segments are divided
into tiers. If there are more than the maximum numbers of segments in a tier, a merge is
triggered for that tier. There are some configuration options to control the merge policies:

•	 index.merge.policy.segments_per_tier: A high value leads
to more segments in a tier, leading to less merging and better
performance. If you don’t need to index often and want better
search performance, you should lower this value.

•	 index.merge.policy.max_merge_at_once : This configuration
setting specifies how many segments can be merged at the same
time. Having a lower value leads to lesser merging.

•	 index.merge.policy.max_merged_segment: This setting
specifies the maximum segment size. If you want less merging
and faster merging, you should lower this value because bigger
segments are difficult to merge.

•	 index.merge.scheduler.max_thread_count: This configuration
setting specifies how many threads are working in the background
for merging segments. This actually sets a limit on the number of
merges that can happen simultaneously.

The configuration options specified above are specific to the index. They can be
changed at runtime also in the following manner:

curl -XPUT 'localhost:9200/{index}/_settings' -d '
{
 "index.merge" : {
 "policy" : {
 "segments_per_tier" : 3,
 "max_merge_at_once" : 3,
 "max_merged_segment" : "1gb",
 }
 "scheduler.max_thread_count" : 1
 }
}'

ChApTeR 12 ■ The eLK STACK in pRoduCTion

257

It is possible to also trigger a merge manually. A manual merge is also known as
optimize. You should consider running a manual merge for indices that are not expected
to change later. Optimizing is I/O intensive and invalidates a lot of caches. If after
optimizing you continue to index, update, or delete documents, the advantage would
be lost. Optimizing is most suitable for static indices. You can trigger optimizing in the
following manner:

curl -XPUT 'localhost:9200/{index}/_optimize?max_num_segments=1'

The optimizing operation can take a long time for a large index. For such scenarios,
you can run it in the background by setting wait_for_merge to false.

Store Throttling
Since merges have a big impact on I/O throughput, Elasticsearch limits the amount of I/O
throughput that merges can use through store throttling. This is controlled at the node
level by the indices.store.throttle.max_bytes_per_sec having a default value of 20mb.
This limit is suitable for a wide range of scenarios but in certain situations it might need
to be tweaked.

In systems with a fast disk where more I/O throughput is required for merging, the
throttle limit can be raised. You can, in fact, remove the limit by setting the value as none.
The following command raises the throttling limit to 250MB/s:

curl -XPUT 'localhost:9200/_cluster/settings' -d '
{
 "persistent" : {
 "indices.store.throttle" : {
 "type" : "all",
 "max_bytes_per_sec" : "250mb"
 }
 }
}'

 ■ Tip You can check cluster settings to see if the configuration changes have been
applied.

Cache Management
Elasticsearch utilizes caching for serving a huge amount of request traffic on a large
number of documents, and that too on commodity hardware. Why, once indexing is
done, is the second query often quite faster than the first one? This is due to caching. This
section elaborates on the different kinds of caches used by Elasticsearch and how to keep
them in optimal running condition.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

258

Filter Caches
Lots of queries utilize filters because they provide good performance. Elasticsearch,
by default, caches frequently used filters on bigger segments. This avoids caching
too aggressively but catches frequent filters and optimizes them. The results of a
cached filter are stored in the filter cache. This cache is a node-level cache.
The default value is 10% but this can be changed by modifying the following setting
in elasticsearch.yml:

indices.cache.filter.size : 20%

You must monitor your actual usage over a period of time to decide on the desired
filter cache size. There are situations when filter cache entries have a short lifespan.
This happens typically if no more searches are happening, which can utilize the cached
filter query. The cache entry will remain for some time before it eventually gets evicted.
A full cache having many evictions has a performance challenge because every search
operation will consume CPU cycles to fit in new cache entries by evicting old ones. In
order to prevent evictions from happening at the same time when queries are run, you
can introduce a TTL (time to live) on cache entries. This can be done on a per-index basis
in the following manner:

curl -XPUT 'localhost:9200/{index}/_settings' -d '
{
 "index.cache.filter.expire" : "30m"
}'

 ■ Tip Just having room for filter caches is not enough; you need to ensure that filters
take advantage of the cached entries.

Shard Query Cache
The filter cache is segment-specific and its primary purpose is to make filters run faster.
Shard query cache, on the other hand, maintains a mapping between the whole request
and its result on the shard level. This is illustrated in Figure 12-2.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

259

Shards will try to service identical requests from the cache. Results cached at the
shard level are limited by the total number of hits, aggregations, and suggestions.
For this very reason, a shard query cache works only when the query has search_type set
to count.

 ■ Tip By setting the search_type to count in the uRi parameters, elasticsearch gets the
hint that real interest is not in the query results, but only in the number.

Search
request

In shard
query

cache?

In filter
query

cache?

Yes

Yes

No: Run filter
on segments

No: Run filter
on segments

Segment

Shard
Node

Filter tag=elasticsearch Aggregate results with
other shards

Document

Figure 12-2. Shard query cache and filter cache

ChApTeR 12 ■ The eLK STACK in pRoduCTion

260

Since the shard query cache entries differ from one request to another, they serve a
narrow set of requests. If the search is for a different term or slightly different aggregation,
then the cache would not be able to service. When a refresh happens, the shard’s contents get
modified and all the shard query cache entries get invalidated. This narrow nature of cache
entries makes shard query cache useful in situations where shards rarely change and there
are many identical requests. For example, if you have indexed logs and the indices are time-
based, you may be fine running aggregations on older indices that will remain unchanged
until they are deleted. These older indices are fit to be cached in shard query cache. You can
enable the shard query cache by default at the index level by the following command:

curl -XPUT 'localhost:9200/{index}/_settings' -d '
{
 "index.cache.query.enable" : true
}'

You can enable or disable the shard query cache on a per query basis, overriding the
index-level setting. You just need to add the query_cache parameter to the URL. Similar
to the filter cache, the shard query cache has a size configuration parameter. If there is
limited memory, then you should lower the cache size to provision for the memory used
by index and search requests.

JVM Heap and OS Cache
Just like all JVM processes, if Elasticsearch does not have enough memory for servicing
requests, it throws an out-of-memory exception. This will make the node crash and become
unavailable. As a side effect, there will be extra load on other nodes as they replicate and
relocate shards in order to get back to the original state. You should be cautious of JVM heap
because even if there is no out-of-memory exception in the logs, the node may become
unresponsive. This happens due to the garbage collector (GC) taking more CPU cycles to free
up memory, which already is scarce. Less CPU cycles are available for actual operations.

If the JVM heap is constantly under pressure, you can use one (or more) of the
following steps:

•	 Decrease the filter cache and/or shard query cache.

•	 Decrease the index buffer size.

•	 Decrease the size value of searches and aggregations

•	 Add some non-data and non-master nodes to act as clients. They
will take the load of aggregating per-shard results of searches and
aggregations.

All the JVM collectors are generational collectors, which implies that they have
a young generation area for newly allocated objects and an old generation area for
objects that have been around for quite some time. Objects in the young generation are
promoted to the old generation if they are needed for a longer duration or if lots of new
objects are to be allocated. The second case occurs typically for aggregations, which
need to iterate through large sets of documents and create lots of objects that may be
reutilized in the next aggregation.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

261

You may prefer that the potentially reusable objects get promoted to the old
generation instead of some random temporary objects. To accomplish this, Elasticsearch
implements a PageCacheRecycler where big arrays used by aggregations are prevented
from being garbage-collected. The default value of the page cache is 10% of the total
heap. In some cases, this may be unnecessarily high; for example, for a 30GB heap size,
the cache would be 3GB. You can change the size of the cache from elasticsearch.yml
by modifying the parameter cache.recycler.page.limit.heap.

There can be times when you would need to take other measures to tune the JVM
settings, such as maybe you don’t want long GC pauses. There are some options to trigger
the GC frequently so as to reduce the STW (Stop the World) pause time.

•	 Increase the survivor space (lower -XX:SurvivorRatio) or the
whole young generation (lower -XX:NewRatio) compared to the
total heap.

•	 Use the G1 GC (-XX:+UseG1GC) garbage collector. It has better
allocation and collection algorithms and works best for large heap
sizes requiring low latency.

 ■ Tip The rule of thumb is to allocate half of the node's RAM to the elasticsearch JVM
heap, but not more than 32GB.

OS level caches are dependent on the RAM of the servers. You can redesign your
indices in a way that works best with the operating system’s caching. For example, while
indexing application logs, you expect that most of the indexing and searching will require
recent data. For time-based indices, the latest index is likely to fit in the OS cache rather
than the whole dataset, making the operations faster. Searches for older data will hit
the disk, but users will not mind a little higher time for past and infrequently accessed
data. Typically, if you put “hot” data in the same set of indices or shards by using time-
series based indices, user based indices, or routing, you will leverage the OS cache in an
efficient manner.

Warmers for Caches
All of the different types of caches (filter caches, shard query caches, and OS caches)
start getting built when a query first runs. The first query is inevitably slower because
the caches have to be loaded and there is more slowness in the case of a large amount
of data or a complex query. If this slowdown is giving you a headache, then you
can warm up the caches in advance by using index warmers. A warmer facilitates
defining any kind of search request containing queries, filters, sort criteria, or
aggregations. After it is defined, Elasticsearch runs the query with every operation.
This will certainly slow down the refresh process but the user queries will always get
handled through “warm caches.”

ChApTeR 12 ■ The eLK STACK in pRoduCTion

262

Warmers are quite useful for situations when the first-time query is too slow and
you want the refresh operation to take a hit rather than the user. If there are millions of
documents and consistent search performance is essential, warmers tend to be quite
useful. You can have more warmers, but bear in mind that the more warmers you have,
the slower the refreshes will be. Generally, you can use a few popular queries as your
warmers. You can define the warmer by using the PUT request in the following manner:

curl -XPUT 'localhost:9200/phones/sales/_warmer/_search?search_
type=count&pretty' -d '
{
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order" : {
 "_count" : "asc"
 }
 }
 }
 }
}'

You can get the list of warmers on an index by doing a GET request on the _warmer type:

curl -XGET 'localhost:9200/phones/sales/_warmer/?pretty'

You can delete warmers by using the DELETE request:

curl -XDELETE 'localhost:9200/phones/sales/_warmer/?pretty'

 ■ Tip if you are using multiple indices, it is better to register warmers at index creation.

Configuration Management
In this section, you will see the different tuning options available under the hood. With
a smart use of these configuration options, you can get the maximum performance from
your Elasticsearch cluster.

Better than Defaults
Although the default configuration settings of Elasticsearch suffice for a large number of
scenarios, Elasticsearch is a highly flexible system that can be further tuned for maximum
performance. Most uses of Elasticsearch can be for just search queries; however, in the
recent past, there have been deployments that are pushing the boundaries. Elasticsearch
is being used now as a logging aggregator, source of data, and also in some cases a hybrid
storage architecture in conjunction with other databases.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

263

Index Templates
Creating new indices and associated mappings is not a difficult task. There can be some
scenarios when the future indices should also have the same settings and mappings as
the previous ones. Some such scenarios are as following:

•	 Multi-tenancy: Systems with dynamic tenants need to store
tenant-specific data in silos.

•	 Log aggregation: Frequent log indexing might be required for fast
querying and storage. In cloud-based systems, different systems
push their logs onto a central Elasticsearch server.

•	 Regulations: Blocks of data may have to be either kept or
removed after a certain period of timer as per the regulatory
compliance.

Templates are quite helpful when a mature and deterministic pattern is needed for
homogenous data storage.

Template Creation

Index templates are applied to any newly created index. Indices with a matching
predefined naming pattern get the template applied to them. The index creation
event should match the template pattern for the template to be applied. You can apply
templates either using the REST API or through a configuration file. The former requires
a running cluster.

Let’s look at a simple index template used for log aggregation so that the log
aggregation tool will have a new index created per day. The default behavior of
Logstash is to make API calls using the daily timestamp prefixed to the index name (for
example, logstash-11-10-2016). Let’s assume that you are using Elasticsearch default
settings, which allow for automatic index creation. When Logstash makes a call to the
Elasticsearch cluster with a new event, the new index will get created with the name of
logstash-12-10-2016 and the document type gets auto mapped. Let’s first use REST APIs
for template creation:

curl -XPUT 'localhost:9200/_template/logging_index' -d '
{
 "template" : "logstash-*",
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : {
 "logs" : {
 "properties" : {
 "@timestamp" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 },

ChApTeR 12 ■ The eLK STACK in pRoduCTion

264

 "@version" : {
 "type" : "string",
 "index" : "not_analyzed"
 },
 "date_of_record" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 },
 "day_of_year" : {
 "type" : "string",
 "norms" : {
 "enabled" : false
 },
 "fielddata" : {
 "format" : "disabled"
 },
 "fields" : {
 "raw" : {
 "type" : "string",
 "index" : "not_analyzed",
 "ignore_above" : 256
 }
 }
 }
 }
 }
 }, "aliases" : { "december" : {} }
}'

The PUT command tells Elasticsearch to apply this template whenever indexes
request matching the logstash-* pattern is received. The template applies an alias so that
all indices for a given month can be grouped together.

Templates Configured on the Filesystem

You can even have templates configured on the file system if you follow these rules:

•	 The JSON format should be used for template configuration. For
ease of use, use a name with a .json extension

•	 Template definitions should be placed in an Elasticsearch
configuration location under a templates directory.

•	 Template definitions should be kept in the directories of nodes
that are eligible to be elected as master.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

265

For the previous example, the template.json file will look like this:

{
 "template" : "logstash-*",
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : { },
 "aliases" : { "december" : {} }
}'

The result will be similar to that when using REST APIs.

Merging of Multiple Templates

Elasticsearch facilitates the configuration of multiple templates with different settings.
You can extend the previous example by configuring a template to handle log events by
month and another will store log events in one index, as shown below:

curl -XPUT 'localhost:9200/_template/logging_index_all' -d '
{
 "template" : "logstash-12-*",
 "order" : 1,
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : {
 "date" : { "store" : false }
 },
 "alias" : { "december" : {} }
}'

The above template will be applied to any index beginning with “logstash-12-”:

curl -XPUT 'localhost:9200/_template/logging_index' -d '
{
 "template" : "logstash-*",
 "order" : 0,
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : {
 "date" : { "store" : true }
 }
}'

ChApTeR 12 ■ The eLK STACK in pRoduCTion

266

The above template will be applied to any index beginning with “logstash-*” and
the date filed will be stored. The topmost template will take care of December-specific
logs as it matches the pattern of index names beginning with “logstash-12-”. The second
template is a superset and aggregates all log stash indices. The order attribute makes sure
that the lowest order number is applied first and then the higher order number overrides
it. Due to this, the two template settings get merged with all December log events not
having the date field stored.

Retrieving Index Templates

To fetch the list of all templates, you can give the following command:

curl -XGET 'localhost:9200/_template'

You can also fetch one or many individual templates by name:

curl -XGET 'localhost:9200/_template/log_index'
curl -XGET 'localhost:9200/_template/log_index_1,log_index_2'

You can fetch template names by pattern also:

curl -XGET 'localhost:9200/_template/log_*'

Deleting Index Templates

You can delete a template name easily in the following manner:

curl -XDELETE 'localhost:9200/_template/log_index'

Monitoring and Troubleshooting
Elasticsearch provides a mechanism to gauge the health and performance of the cluster.
An understanding of diagnostic data and regular monitoring of the overall cluster status
can provide an early warning for any performance bottlenecks. There is a wide range of
APIs that help monitoring the cluster without interacting with the actual stored data.

Health of the Cluster
As you are aware, an Elasticsearch cluster can contain one or more nodes. It can be a
modest cluster with two or three nodes or a big cluster with hundreds of nodes and few
master nodes accessing thousands of indices. Thankfully, the cluster health API scales up
quite well to provide health information for any size of the cluster. It provides a high-level
view of the cluster and can alert in case of a problem somewhere in the cluster. You can
run the cluster health API in the following manner:

curl -XGET 'http://localhost:9200/_cluster/health?pretty'

ChApTeR 12 ■ The eLK STACK in pRoduCTion

267

It will return the response in the JSON format. The response contains important
information for the cluster:

{
 "cluster_name" : "elasticsearch",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 3926,
 "active_shards" : 7852,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 100.0
}

The crucial piece of information is the status value, which can be one of three values:

•	 green: The cluster is fully operational with all the primary and
replica shards allocated.

•	 yellow: The primary shards are allocated but at least one replica
is missing. There is no data loss so there’s no impact on search
operations. Cluster high-availability can be a challenge. For a
single node deployment, the normal status is yellow.

•	 red: There is at least one missing primary shard (and its replicas).
This implies that there is a data loss, which can impact search
operations.

The cluster status gives a general assessment of the cluster. Other fields also convey
significant information:

•	 number_of_nodes and number_of_data_nodes are self-
descriptive.

•	 active_primary_shards gives the number of primary shards in
cluster. This is an aggregate across all indices.

•	 active_shards is sum total of all the shards across all indices,
including replica shards.

•	 relocating_shards gives the number of shards currently moving
from one node to another.

•	 initializing_shards indicates the shards currently being allocated.

•	 unassigned_shards are those shards that exist in the cluster state
but are not found in the cluster itself.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

268

Detecting an Index Problem
What will you do if your cluster status turns red? Let’s say you do a health check and it
shows the following status:

{
 "cluster_name" : "elasticsearch",
 "status" : "red",
 "timed_out" : false,
 "number_of_nodes" : 5,
 "number_of_data_nodes" : 5,
 "active_primary_shards" : 125,
 "active_shards" : 250,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 30,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 100.0
}

What do you infer from this kind of status? Of course the cluster is red, indicating
missing data (primary & replicas). There were seven nodes in the cluster but the status
only shows five nodes. Looks like two nodes have gone missing. Also, there are 30
unassigned shards. What else do you know about the missing shards? Is it 30 indices with
1 primary shard each or 1 index with 30 primary shards? Is it 15 indices with 1 primary
and 1 replica? Which is the missing index? Let’s try to get some more information by
checking cluster health with some more information using the level parameter:

curl -XGET 'http://localhost:9200/_cluster/health?level=indices&pretty'

The level parameter facilitates the cluster health API to provide list of indices in the
cluster and details about each of these indices:

{
 "cluster_name" : "elasticsearch",
 "status" : "red",
 "timed_out" : false,
 "number_of_nodes" : 5,
 "number_of_data_nodes" : 5,
 "active_primary_shards" : 125,
 "active_shards" : 250,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 30,
 "delayed_unassigned_shards" : 0,

ChApTeR 12 ■ The eLK STACK in pRoduCTion

269

 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 100.0,
 "indices" : {
 ...
 "phone" : {
 "status" : "red",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 0,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 30
 },
 ...
 }
}

You can see that the phone index has made the cluster red and all the 30 missing
shards are from this index. You clearly get to know which the problematic index is. Most
probably the 30 shards are from the two nodes that are missing from the cluster. The level
parameter has one more variant for shard-related information:

curl -XGET 'http://localhost:9200/_cluster/health?level=shards&pretty'

The shards option provides a verbose dump, which gives the status and location of
every shard inside every index.

Examining Individual Nodes
For cluster-level diagnostic information, you can rely on the cluster health API. Similarly,
for node-specific information, you can leverage the node-stats API. This API provides a
comprehensive set of statistics for each node in the cluster. You can use this API in the
following manner:

curl -XGET 'localhost:9200/_nodes/stats'

The following output has the cluster name and first node details at the top:

{
 "cluster_name" : "elasticsearch",
 "nodes" : {
 "QmO3WzTfR_StlFSiplCi2A" : {
 "timestamp" : 1480318094408,
 "name" : "Lorvex",

ChApTeR 12 ■ The eLK STACK in pRoduCTion

270

 "transport_address" : "127.0.0.1:9301",
 "host" : "127.0.0.1",
 "ip" : ["127.0.0.1:9301", "NONE"],

The nodes are specified in a hash with UUID of the node serving as the key. There is
information about the node’s network properties like transport address, host, etc. There is
a wealth of information that can help in diagnosing node-related issues during discovery
or normal operations.

The indices Section
The indices section provides the aggregate statistics for all the indices that are present on
this particular node:

"indices" : {
 "docs" : {
 "count" : 9782,
 "deleted" : 0
 },
 "store" : {
 "size_in_bytes" : 41592264,
 "throttle_time_in_millis" : 0
 },

The statistics can be combined into the following groups:

•	 docs: Number of documents residing on the node. Also the
number of deleted docs that haven't been purged from segments
yet.

•	 store: Physical storage consumed by the node. It gives the
number of shards currently moving from one node to another.

 "indexing" : {
 "index_total" : 1,
 "index_time_in_millis" : 122,
 "index_current" : 0,
 "index_failed" : 0,
 "delete_total" : 0,
 "delete_time_in_millis" : 0,
 "delete_current" : 0,
 "noop_update_total" : 0,
 "is_throttled" : false,
 "throttle_time_in_millis" : 0
 },
 "get" : {
 "total" : 0,

ChApTeR 12 ■ The eLK STACK in pRoduCTion

271

 "time_in_millis" : 0,
 "exists_total" : 0,
 "exists_time_in_millis" : 0,
 "missing_total" : 0,
 "missing_time_in_millis" : 0,
 "current" : 0
 },
 "search" : {
 "open_contexts" : 0,
 "query_total" : 20,
 "query_time_in_millis" : 190,
 "query_current" : 0,
 "fetch_total" : 6,
 "fetch_time_in_millis" : 51,
 "fetch_current" : 0,
 "scroll_total" : 0,
 "scroll_time_in_millis" : 0,
 "scroll_current" : 0
 },
 "merges" : {
 "current" : 0,
 "current_docs" : 0,
 "current_size_in_bytes" : 0,
 "total" : 0,
 "total_time_in_millis" : 0,
 "total_docs" : 0,
 "total_size_in_bytes" : 0,
 "total_stopped_time_in_millis" : 0,
 "total_throttled_time_in_millis" : 0,
 "total_auto_throttle_in_bytes" : 82334187520
 },

•	 indexing: Number of docs that have been indexed. It gets
incremented anytime an index operation happens, including
updates.

•	 get: Details of get-by_ID statistics, including GET and HEAD
request for a single document.

•	 search: Number of active searches (open_contexts), number of
queries total. Additionally, it also informs about the amount of time
spent on queries since the node was started. The ratio between query_
time_in_millis/query_total is a good indicator for query efficiency.
A large value indicates more time being taken by each query.

•	 merges: Details of Lucene segment merges. It gives information
like number of active merges, number of docs involved,
cumulative size of merges being merged, and the amount of time
spent on merges.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

272

•	 filter_cache: Amount of memory utilized by cached filter bitsets
and the number of times a filter is evicted. A large number hints at
looking at filters to ensure that they are caching properly.

•	 id_cache: Memory usage of parent/child mappings.

•	 field_data: Memory used by field data, which is utilized for
aggregations and sorting.

•	 segments: Number of Lucene segments the node is currently
serving. A large number can indicate problem with merging.

OS and Process Sections
This section provides resource statistics such as CPU and load:

"os" : {
 "timestamp" : 1480318109825,
 "cpu_percent" : 27,
 "load_average" : 4.69,
 "mem" : {
 "total_in_bytes" : 2097577984,
 "free_in_bytes" : 74170368,
 "used_in_bytes" : 2023407616,
 "free_percent" : 4,
 "used_percent" : 96
 },
 "swap" : {
 "total_in_bytes" : 1071640576,
 "free_in_bytes" : 668672000,
 "used_in_bytes" : 402968576
 }
},
"process" : {
 "timestamp" : 1480318109838,
 "open_file_descriptors" : 18566,
 "max_file_descriptors" : 65535,
 "cpu" : {
 "percent" : 10,
 "total_in_millis" : 9481560
 },
 "mem" : {
 "total_virtual_in_bytes" : 3204153344
 }
},

ChApTeR 12 ■ The eLK STACK in pRoduCTion

273

The OS section illustrates for the entire OS while the Process section displays
statistics related to the Elasticsearch process. These metrics are quite useful and some of
them are mentioned below:

•	 CPU

•	 Memory usage

•	 Open file descriptors

•	 System load

•	 Usage of swap

JVM Section
The JVM section contains essential information about the JVM running Elasticsearch.
Most important is the garbage collection details, which reflects on the stability of
Elasticsearch cluster:

 "jvm" : {
 "timestamp" : 1480318110038,
 "uptime_in_millis" : 142723571,
 "mem" : {
 "heap_used_in_bytes" : 775873376,
 "heap_used_percent" : 72,
 "heap_committed_in_bytes" : 1065025536,
 "heap_max_in_bytes" : 1065025536,
 "non_heap_used_in_bytes" : 79743032,
 "non_heap_committed_in_bytes" : 81043456,

•	 jvm section: This section gives general stats about heap memory
usage. You can clearly see the heap usage, allocated memory, max
heap size, etc. Typically, heap_committed_in_bytes should be
identical to heap_max_in_bytes. If the commit size happens to
be smaller, the JVM will resize the heap appropriately. Another
important metric is heap_used_percent_metric, which is
configured to trigger GC when the heap reaches 75% full. If this
value is consistently >= 75%, it indicate some serious memory
related trouble.

 "pools" : {
 "young" : {
 "used_in_bytes" : 15291432,
 "max_in_bytes" : 69795840,
 "peak_used_in_bytes" : 69795840,
 "peak_max_in_bytes" : 69795840
 },
 "survivor" : {

ChApTeR 12 ■ The eLK STACK in pRoduCTion

274

 "used_in_bytes" : 8716288,
 "max_in_bytes" : 8716288,
 "peak_used_in_bytes" : 8716288,
 "peak_max_in_bytes" : 8716288
 },
 "old" : {
 "used_in_bytes" : 751865656,
 "max_in_bytes" : 986513408,
 "peak_used_in_bytes" : 813325376,
 "peak_max_in_bytes" : 986513408
 }
 }
 },

•	 The different heap areas like young, survivor, and old sections
represent how memory is being used. Excessive usage of a
particular section indicates a problem.

 "gc" : {
 "collectors" : {
 "young" : {
 "collection_count" : 8805,
 "collection_time_in_millis" : 511285
 },
 "old" : {
 "collection_count" : 261,
 "collection_time_in_millis" : 14579
 }
 }
 },

•	 gc section: This section displays the garbage collection counts
and cumulative time for both young and old generations. You
need to keep an eye on the old generation count because it should
remain small. The time spent doing garbage collection is quite
crucial. If the JVM is doing more of GC, then less CPU cycles will
be spent in performing actual computing.

Threadpool Section
Elasticsearch has a pool of threads that collaborate to perform computing for all
operations. There are cases when a task is passed from one thread to another. The default
configuration of threadpool suffices for most situations. It is still worthwhile to explore
these statistics to see how the cluster is working. There are around a dozen threadpools
and they all share the same format:

ChApTeR 12 ■ The eLK STACK in pRoduCTion

275

"index" : {
 "threads" : 1,
 "queue" : 0,
 "active" : 0,
 "rejected" : 0,
 "largest" : 1,
 "completed" : 1
},

Each threadpool displays the number of configured threads, how many of these
threads are active, and how many tasks are waiting a queue. A queue filled up to its
limit leads to tasks being rejected. This indicates that the Elasticsearch cluster is facing a
resource constraint. The important threadpools to monitor are as following:

•	 index: Normal indexing requests

•	 get: Get-by-ID operations

•	 merging: Threadpool for Lucene merges

•	 bulk: Bulk requests

•	 search: Search and query operations

F5 and Network Sections
Towards the later part of the node-stats API, you can see a group of statistics related to
the filesystem: disk I/O stats, free space, data path, etc. You don’t have to monitor free
disk space separately because you can see its value in this section. There are two sections
related to network statistics also:

 "transport" : {
 "server_open" : 13,
 "rx_count" : 2793,
 "rx_size_in_bytes" : 3383451,
 "tx_count" : 3973,
 "tx_size_in_bytes" : 1906214
 },
 "http" : {
 "current_open" : 1,
 "total_opened" : 30
 },

•	 transport: Basic statistics related to the transport address. This
is related to inter-node communication and associated transport
client or node client connections. Elasticsearch maintains a large
number of inter-node connections so don’t get scared by a big
value.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

276

•	 http: Statistics related to the HTTP port (most of the times 9200).
In case the total_opened metric is constantly increasing, then
it is an indication that a HTTP client is not using keep-alive
connections.

Circuit Breaker
The last section is for statistics related to fielddata circuit breaker:

"breakers" : {
 "fielddata" : {
 "limit_size_in_bytes" : 639015321,
 "limit_size" : "609.4mb",
 "estimated_size_in_bytes" : 0,
 "estimated_size" : "0b",
 "overhead" : 1.03,
 "tripped" : 0
 },
 ...
}

This section throws light on the maximum circuit-breaker size. It also indicates
the number of times the circuit breaker has been tripped and the current value of the
overhead. This overhead value pads estimates as some queries are harder to estimate
than others. The key item to watch for is the tripped metric. In case the number is too
high or gradually increasing, it is a sign that your queries need to be optimized or there
should be more memory allocated.

Cluster Statistics
You can get an output similar to node-stats API using the cluster-stats API. Of course
there is a key difference that node stats displays statistics per node, whereas the
cluster-stats API displays the summation of all nodes in a single metric. There are
quite a few useful statistics. You can get to know how much heap your cluster is using
or whether filter cache is evicting properly. This API provides a quick summary that
is more elaborate than cluster-health but less comprehensive than the detailed
node-stats.

You can invoke this API in the following manner:

curl -XGET 'localhost:9200/_cluster/stats'

ChApTeR 12 ■ The eLK STACK in pRoduCTion

277

Index Statistics
Until now we have looked at only node-centric statistics. Sometimes it is helpful to look
at statistics from an index-centric perspective. This could throw light on the number of
search requests being received by an index or the amount of time spent fetching docs in a
particular index. You can select the index of your choice and get corresponding statistics
in the following manner:

curl -XGET 'localhost:9200/{index}/_stats'

You can get the statistics for multiple indices in the following manner:

curl -XGET 'localhost:9200/{index1},{index2}/_stats'

The node-centric statistics are useful for identifying hot indices inside the cluster.
They can also help in knowing why some indices are faster or slower than others.

Pending Tasks
Some tasks are performed only by the master node, such as creating a new index or
transferring shards around the cluster. As you know, a cluster can have only one master,
so only one node can perform cluster-level metadata changes. Most of the time this is
not an issue because the queue of metadata changes remains practically zero. In some
exceptional scenarios, the number of metadata changes occurs faster than the master can
process them. This can result in sizeable number of pending actions, which are queued.

The pending-tasks API displays the pending cluster-level metadata changes:

curl -XGET 'localhost:9200/_cluster/pending_tasks'

Most of the time, the response is something like the following:

{
 "tasks" : []
}

This indicates that there are no pending tasks. If there are an exceptionally high
number of fields required to be kept in the cluster state, the master has to process
if any one of them changes. This requires significant CPU overhead in addition to
the network overhead of informing other nodes about the cluster state. This kind of
cluster can have cluster-state actions pending and queued up. There are a few options
to circumvent this situation:

•	 Increase the horsepower of master node.

•	 Try to limit the dynamic nature of documents, which will help in
limiting the cluster-state size.

•	 Have another cluster if a certain threshold has been crossed.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

278

Logging
Elasticsearch dumps a lot of logs that are placed in ES_HOME/logs. The default logging
level is INFO and it provides a moderate amount of information. It is structured to be
lightweight so that logs in a production setup are not huge.

While debugging problems you may want to increase the log level to DEBUG. You
can modify the logging.yml file and restart all the nodes. This is a tedious process and
involves unnecessary downtime. There is a smarter way to update logging levels by
using the cluster-settings API. You can dynamically change the log level in the following
manner:

curl -XPUT 'localhost:9200/_cluster/settings' -d '
{
 "transient" : {
 "logger.discovery" : "DEBUG"
 }
}'

Elasticsearch will start dumping DEBUG level logs while the setting is being applied.

 ■ Tip The TRACE log level is quite verbose and it is best to be avoided in production
environment.

Slowlog
There is another log known as the slowlog. It catches queries and indexes requests that
take over a certain threshold of time. It is of great help in finding out queries that are slow.
The slowlog is disabled by default. You can enable it by defining the action (query, fetch,
or index), the level at which you want the event logged (WARN, DEBUG, etc.) and a time
threshold.

As it is an index-level setting, it is applied to individual indices:

curl -XPUT 'localhost:9200/{index}/settings' -d '
{
 "index.search.slowlog.threshold.query.warn" : "15s",
 "index.search.slowlog.threshold.fetch.debug" : "400ms",
 "index.indexing.slowlog.threshold.index.info" : "5s",
}'

The above settings instruct Elasticsearch to do the following:

•	 Dump a WARN log when queries are slower than 15 seconds.

•	 Dump a DEBUG log when fetches are slower than 400 milli-seconds.

•	 Dump an INFO log when indexing takes longer than 5 seconds.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

279

You can even define these thresholds in your elasticsearch.yml configuration file.
If no threshold is configured, these indices will inherit the static configuration. After the
thresholds are set, you can switch the logging level just like any other logger:

curl -XPUT 'localhost:9200/_cluster/settings' -d '
{
 "transient" : {
 "logger.index.search.slowlog" : "DEBUG",
 "logger.index.indexing.slowlog" : "WARN"
 }
}'

The above settings will do the following:

•	 Search slowlog is set to DEBUG level.

•	 Indexing slowlog is set to WARN level.

Rolling Restarts
There can be a situation when you are in need of performing a rolling restart of your
cluster, keeping the cluster online and operational, but nodes are taken offline one at a
time. This may be required in situations like a version upgrade of Elasticsearch or some
maintenance on the server. In all these cases, there is a specific method to perform a
rolling restart.

Elasticsearch strives to fully replicate the data and evenly balance it. If a single
node is shut down for maintenance, the cluster immediately recognizes the loss of the
node and begins rebalancing. You may want to stop the automatic rebalancing as you
may have more knowledge of external factors. This can be achieved in the following
manner:

 1. Stop indexing new data, if possible.

 2. Shard allocation should be disabled. This does not let
Elasticsearch rebalance missing shards until it is specifically
enabled again. You can disable allocation as follows:

curl -XPUT 'localhost:9200/_cluster/settings' -d '
{
 "transient" : {
 "cluster.routing.allocation.enable" : "none"
 }
}'

 3. Shut down the node by killing the Elasticsearch process.

 4. Perform the maintenance upgrade.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

280

 5. Restart the node and confirm it becomes part of the cluster.

 6. Re-enable shard allocation in the following manner:

curl -XPUT 'localhost:9200/_cluster/settings' -d '
{
 "transient" : {
 "cluster.routing.allocation.enable" : "all"
 }
}'

The rebalancing of the shard may take some time and you
should wait till the cluster has returned to status green before
continuing.

 7. Now it is safe to resume indexing. It will be better that you
wait until the time cluster is fully balanced before resuming
indexing.

Backup and Restore
Elasticsearch stores crucial pieces of data in many cases. This necessitates routine backup
of data and restoring an earlier snapshot in case of a crash. Elasticsearch replicas provide
high availability and in case of a node loss also, the service is largely available. However,
replicas can’t protect from catastrophic failure. You need to back up your cluster to
safeguard against catastrophic failures.

Cluster Backup
You can use the snapshot API to back up the cluster. The current state and data in the
cluster are saved in a shared repository. The first snapshot is a complete copy of the data,
but all subsequent snapshots are incremental backups. The delta between the existing
snapshots and new data are saved. Data gets incrementally added and deleted over time.
This makes the subsequent backups pretty fast.

In order to make a backup, you first need to create a repository to save the data.
There are several options to choose from for a repository:

•	 Shared filesystem such as NAS

•	 Azure Cloud

•	 Amazon S3

•	 Hadoop Distributed File System (HDFS)

ChApTeR 12 ■ The eLK STACK in pRoduCTion

281

Creating the Repository
Let’s use a shared filesystem repository:

curl -XPUT 'localhost:9200/foo_backup'
{
 "type" : "fs",
 "settings" : {
 "location" : "/mount/backups/foo_backup"
 }
}

A name is provided to the repository. In this case it is foo_backup. The repository
type is specified as filesystem and a mounted drive is provided as the destination.

 ■ Tip The shared filesystem path must be accessible from all nodes in the cluster.

A name is provided to the repository. In this case, it is foo_backup. The repository
type is specified as filesystem and a mounted drive is provided as destination. This
creates the repository and required metadata. You may want to configure some other
options also:

•	 max_snapshot_bytes_per_sec: This option regulates the speed
of snapshotting data into the repo. The default value is 20mb per
second.

•	 max_restore_bytes_per_sec: This option regulates the speed
of restoring data from the repo. The default value is 20mb per
second.

You can change these default settings in the following manner:

curl -XPOST 'localhost:9200/_snapshot/foo_backup' -d '
{
 "type" : "fs"
 "settings" : {
 "location" : "/mount/backups/foo_backup",
 "max_snapshot_bytes_per_sec" : "30mb",
 "max_restore_bytes_per_sec" : "30mb"
 }
}'

Note the use of POST operation instead of PUT. This will update the settings.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

282

Snapshot of All Open Indices
There can be multiple snapshots for a repository. Each snapshot has an associated set
of indices (for example, all indices, some subset, or a single index). When creating a
snapshot you need to specify which index you are interested in and give a unique name
for the snapshot. You can create a snapshot with a basic command:

curl -XPUT 'localhost/9200/_snapshot/foo_backup/snapshot_1'

This will take a backup of all open indices into a snapshot named snapshot_1 in the
foo_backup repository. The snapshot happens in the background and the call returns
immediately.

Snapshot of Particular Index
The default behavior is to make a backup of all open indices. But if there is not enough
space to back up everything, you can make a backup of selective indices:

curl -XPUT 'localhost/9200/_snapshot/foo_backup/snapshot_2' -d '
{
 "indices" : "index_1,index_2"
}

Now a backup of only index_1 and index_2 will be taken.

Listing Snapshot of Information
After a while of taking snapshots, you may not remember details related to each
other. In particular, if the snapshots are named based on time boundaries (such as
backup_2016_11_27), it can be a problem. To avoid this frustration, Elasticsearch provides
an API to obtain snapshot-related information. To fetch information for a single snapshot,
submit a GET request against the repo and snapshot name:

curl -XGET 'localhost:9200/_snapshot/foo_backup/snapshot_2'

The response will contain different pieces of information related to the snapshot. You
can fetch the entire listing of all the snapshots in the repository in the following manner:

curl -XGET 'localhost:9200/_snapshot/foo_backup/_all'

Snapshot Deletion
Elasticsearch provides an API to delete old snapshots that are no longer required. You just
need to give a DELETE HTTP request with the repository/snapshot name:

curl -XDELETE 'localhost:9200/_snapshot/foo_backup/snapshot_2'

ChApTeR 12 ■ The eLK STACK in pRoduCTion

283

Removing the snapshots through the DELETE request is the safest mechanism. Since
snapshots are incremental in nature, they may be relying on old segments. The delete API
can take care of this and will delete only that old data that is no longer in use. There is a
risk of corruption if you do manual file deletion.

Monitoring Snapshot Progress
Although the wait_for_completion flag provides a basic form of monitoring, it is not
sufficient enough. Elasticsearch provides APIs for a more detailed status of the snapshot
process in progress. First, you fetch snapshot information using the GET request by
specifying the snapshot ID:

curl -XGET 'localhost:9200/_snapshot/foo_backup/snapshot_2'

If at the time of this request the snapshot is still in progress, you will get information
like when the snapshot started, how long it has been running, and so forth. This API uses
the same threadpool as the snapshot mechanism. If you are taking a snapshot of a large
shard, there can be a significant time delay between status updates. A better way is to poll
the _status API:

curl -XGET 'localhost:9200/_snapshot/foo_backup/snapshot_2/_status'

The _status API return immediately and gives a detailed response.

Cancelling a Snapshot
If you want to cancel a snapshot, you can simply delete a snapshot in progress:

curl -XDELETE 'localhost:9200/_snapshot/foo_backup/snapshot_2'

If the snapshot is in progress, it will be first halted and then deleted.

Restoring from a Snapshot
After you have taken up a snapshot, it is quite easy to restore it. Just add _restore to the
ID of the snapshot from which you wish to restore into the cluster.

curl -XPOST 'localhost:9200/_snapshot/foo_backup/snapshot_2/_restore'

The default action is to restore all the indices present in the snapshot. If snapshot_1
contains three indices, all three will be restored into the cluster. It is possible to
specifically select which indices to restore. If the snapshot is in progress, it will be first
halted and then deleted.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

284

There is an option to rename indices. This enables matching of index names with a
pattern and then providing a new name during the restore process. This is quite handy for
restoring old data to verify its contents without replacing existing data. Let’s try to restore
a single index from the snapshot and give a replacement name:

curl -XPOST 'localhost:9200/_snapshot/foo_backup/snapshot_2/_restore' -d '
{
 "indices" : "index_1",
 "rename_pattern" : ."index_(.+)",
 "rename_replacement" : "restored_index_$1"
}'

The above operation will restore index_1 into your cluster but rename it to restored_
index_1.

Monitor Restore Operations
The restoration of data from a repository relies on the recovery mechanism of
Elasticsearch. You can monitor the process of restoring using the recovery API. You can
invoke the API by specifying the indices that are being recovered:

curl -XGET 'localhost:9200/_recovery/restored_index_2'

You can determine the recovery status of all of the indices in the following manner:

curl -XGET 'localhost:9200/_recovery'

This will dump the list of all indices currently being recovered and then list all shards
in each of those indices. Each shard will be associated with start/stop time, recover
percentage, bytes transferred, etc.

Cancelling Restore
If you want to cancel a restore, just delete the indices being restored. Since a restore
process is just shard recovery, invoking the delete-index API modifies the cluster state
and halts the recovery process. You can trigger cancellation in the following manner:

curl -XDELETE 'localhost:9200/restored_index_4'

If restored_index_4 was being restored, the delete command would suspend the
restoration and delete any data that was restored into the cluster.

ChApTeR 12 ■ The eLK STACK in pRoduCTion

285

Summary
This chapter covered key aspects of running an Elasticsearch cluster like monitoring,
configuration changes, logging, troubleshooting, backups, and restoring. Elasticsearch
has a built-in mechanism to run clusters in a self-sufficient manner but every now and
then you need to peek into the working of the cluster. Elasticsearch comes out with defect
fixes regularly and it is important to understand the process of upgrades. In order to be
fail-safe, it is important to have a disaster recovery plan, and taking regular snapshots
helps in that.

287© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1_13

CHAPTER 13

Real-Life Stories

I started this book with an introduction to the ELK stack and I covered the various
features of the three programs. There are many ways in which Elasticsearch, Logstash,
and Kibana can be configured to work for different situations. This chapter will highlight
some real-life stories of how the ELK stack is being used for a diverse set of requirements.
The ELK stack has transcended from the realm of lab trials to live multi-node clusters.
These success stories should encourage you to experiment with the ELK stack for your
data storage and search needs.

New Age Log Analysis
The adoption of cloud-based computing together with big data has changed how we deal
with logs. No longer can we use a simple log generation utility. In order to analyze logs
and troubleshoot, we need the ELK stack. It transforms mundane, repetitive-looking,
raw data into elegant visualizations that can provide real-time insight. Due to various
success stories, the ELK stack has been widely adopted. It has also disrupted the use of
commercial proprietary software. The ELK stack can be used in a wide range of situations
like business intelligence, IT operations, e-commerce site traffic, user behavior, and
customer support.

Online Programmer Community - Stack Overflow
Stack Overflow is the leading online community where programmers can interact, learn,
share their knowledge, and get solutions to their problems. Many of you have visited this
community. There are questions and answers on a diverse range of topics in computer
programming. It serves as a platform for members to ask and answer queries. Members
can earn reputation points and badges. Although at the onset it might sound just like any
other website, it handles an enormous amount of traffic on a daily basis. On any given
day, millions of HTTP requests and corresponding queries to databases and internal
cache occur. Needless to say, this amount of request processing generates huge amounts
of logs. There is a three-node Elasticsearch cluster with each node having around 300GB
of RAM and using SSD. It was found that Elasticsearch performance is much better with
SSD given that there are frequent writes/reindexes.

Chapter 13 ■ real-life StorieS

288

 ■ Tip another efficient way to increase disk speed is to use raiD 0, for both spinning
disks and SSDs. it is best to avoid Network attached Storage (NaS) as it is generally found to
be slow, leading to large latencies.

Healthcare at Tips - Influence Health
Influence Health is a digital marketing and patient engagement platform to help
patients well beyond the care setting. It provides a comprehensive healthcare consumer
experience through which a provider organization can influence consumer decision-
making and health behaviors. As of 2016, Influence Health has 250 clients using its
products in 46 states and multiple provinces in Canada. This represents 1,100 hospitals
managing more than 80 million patient records. Some time back, Influence Health was
struggling with providing customers a facility to identify subsets of their patients that may
have specific healthcare needs.

The consumer engagement platform was built with a SQL database. Whenever a
customer built a campaign list, the data services teams had to offline pull the information
through a SQL query, which took significant time to prepare and execute. Thereafter,
the pivot tables were sent to customers for their approval. This resulted in further
revisions to the query, extending the entire process into weeks. Influence Health wanted
to revamp this process to make its healthcare services more efficient and cost effective.
By facilitating customers to seamlessly identify patients with specific needs, they can get
people to preventive care more efficiently.

Influence Health explored lot of different technologies including MongoDB. They
wanted real-time aggregation but with the way MongoDB performed indexing and
sharding it was not possible. They stumbled upon Elasticsearch almost by accident. After
checking out its RESTful interface and ease of operations, a Proof of Concept was done to
compare it with MongoDB. They realized that Elasticsearch makes query execution quite
easy and is the right choice for them.

Building Blocks
Elasticsearch is essentially being used for population segmentation. It is currently hosted
on Azure, partitioned by clients so that they have access to their data only. The following
are the steps:

•	 Initially, all patient data is gathered from customers in the form
of flat files or HL7 messages. Patient data is also enriched with
third-party consumer and demographic data.

•	 The data is ingested via Apache Spark into a Cassandra
database. If a new patient record comes in, the delta changes are
compared with already existing records and incremental changes
are persisted.

Chapter 13 ■ real-life StorieS

289

•	 A scheduled sync of data from the Cassandra database to
Elasticsearch is done via ES-Hadoop. It takes roughly 15
minutes to index the data from Cassandra into Elasticsearch,
corresponding to 3 million patients with 10 million clinical
encounters.

•	 It uses aggregations to build specific patients lists for customers.

The Influence Health cluster components are described in Table 13-1.

Benefits
There have been immense benefits of introducing Elasticsearch for population
segmentation in Influence Health.

•	 No need for data services team to be involved in building custom
queries for customers. The client services team can perform these
queries on their own now. This frees up the data services team to
focus on core product development.

•	 Huge benefit in terms of turnaround time. While earlier the
entire process used to take two weeks, it can now be
accomplished in 7-8 milliseconds. This helps in putting a list
together in 10 minutes or less.

Real Time News - The Guardian
The Guardian is a national British daily newspaper, founded in 1821 as The Manchester
Guardian. Although it started out as a UK-based newspaper, today it is a global provider
of news content. The main website, www.theguardian.com, is one of the world’s most
visited website with 5 million unique visitors per day. This makes it the third largest
English-speaking news website in the world.

Table 13-1. Influence Health Cluster Components

Query Search For

Clusters 1

Nodes 10

Hosting Environment Microsoft Azure

Documents > 1 Billion

Total Data Size 5 TB

Daily Ingest Rate 250,000 documents

Number of Indices 40

Query Rate 80/s

Replicas 2

http://www.theguardian.com/

Chapter 13 ■ real-life StorieS

290

The Guardian was facing the challenge of ensuring that the web content is properly
presented and exposed to five million readers based on real-time happenings around the
world. Typically, a lot of traffic gets directed in a very short span of time. The website has
to respond at peak traffic levels and information is required immediately. People do not
want to wait for the end of day to see what’s happening around the world.

There was a need for an analytics platform to fulfil the following goals:

•	 Leverage real-time analytics

•	 Query 360 million documents seamlessly.

•	 Observe the traffic for all content as it is happening.

•	 Insights into impact of updates on site traffic.

•	 Empower organization

•	 Real-time insight into audience engagement.

•	 Enable analytics access for more than 500 users.

In nutshell, the goal was to ensure that five million readers get to see correct and
properly presented content.

Building Blocks
The pre-Elasticsearch analytics platform was a traditional analytics suite, which had a
four-hour long cycle. Needless to say, that the user experience was quite unpleasant.
By using Elasticsearch, The Guardian has developed a very powerful in-house analytics
platform that can process 40 million documents per day and deliver real-time results.
This platform is used throughout the organization with over 500 active users. A
significant portion of The Guardian’s business needs are met by Elasticsearch. There are
multiple use cases:

•	 Number of hits received by each content item

•	 Headlines and content that generate more traffic

•	 Point of referral of traffic

•	 Best social media platforms to promote the content

•	 Diagnosing website performance issues

Besides real-time improvements, The Guardian also has benefited from the overall
improvement of the site as the entire organization aspires to fine-tune the content and
headlines to meet the reader’s expectations. Journalists feel empowered to investigate
their content’s audience. The ease of using the ELK stack has encouraged not just the top
management, but all employees to look at traffic data. The ease of scalability that comes
with Elasticsearch has been more than helpful.

Chapter 13 ■ real-life StorieS

291

Benefits
The Guardian has benefited a lot by using Elasticsearch as the analytics platform:

•	 Increase in page views: Improvement in content, headlines, and
promotion in multiple ways led to increase in the number of page
views and resulted in the site’s success.

•	 Team empowerment: Access to the ELK-driven analytics
platform has empowered editors and journalists to take a more
proactive approach to improving the site and its contents.

•	 Improved site performance: Elasticsearch is leveraged to track
performance-impacting changes, diagnose issues, and keep the
site up and running at peak performance.

•	 Delightful user experience: Readers have sufficient content
to meet their demands, which makes for a delightful user
experience.

Group Communication Service - HipChat
HipChat is a web service offering private chat and instant messaging. Along with
one-on-one and group chat, it also provides cloud-based file storage, video calling,
searchable message history, and inline image viewing. Over time, HipChat crossed the
1.2 billion message storage mark and now the number of messages being sent, stored,
and indexed is being doubled every few months. This has put a lot of strain on the
existing infrastructure. Despite being under high traffic, indexing and storing messages is
a constant process. Some statistics from HipChat:

•	 1.2 billion documents stored

•	 60 messages per second

•	 4TB of EBS RAID

•	 8 node Elasticsearch cluster on AWS

•	 26 frontend proxy servers with double that number in backend
application servers

•	 5TB of search data

Table 13-2 depicts the different components of the advanced platform used to meet
these requirements.

Chapter 13 ■ real-life StorieS

292

Product Features
HipChat uses quite a comprehensive technology framework behind the hood and it has
many interesting features:

•	 Traffic comes in bursts with peak load going to hundreds of
requests per second. The majority of traffic is not made of chat
traffic but presence information (away, idle, and available),
people connecting/disconnecting, etc.

•	 HipChat is tailored to be a notification center for users.

•	 Far better searching capabilities than other competing platforms
like IRC. HipChat stores and indexes every conversation so
that they can be searched easily later. However, the storage and
searching of messages is not scalable.

•	 Use of XMPP allows any XMPP client to connect to HipChat.

•	 User friendly APIs for developing custom applications.

Storage Architecture
The HipChat data storage framework has evolved with the changing requirements.

Initial Architecture
During the growth phase, there were 1 billion messages sent on HipChat. It really pushed
the limits of the CouchDB and Lucene solution for storing and searching messages.
There was a lack of capacity planning, and unexpected growth rate added to the
challenges. The initial apprehension was that Redis would be the failure point and too
much focus was put into that. The data storage architecture was neglected due to this.
It was not possible to scale further by just moving to larger Amazon instances.

Table 13-2. HipChat Platform Components

Query Search For

Hosting AWS with 75 Ubuntu instances

Database Elasticsearch for chat history, MySQL for everything else

Caching Redis

Search Elasticsearch

Language Python, PHP

Configuration Chef

Monitoring Sensu, Monit, Pagerduty

Graphing statsD, Graphite

Chapter 13 ■ real-life StorieS

293

The Amazon cloud offers flexibility of flipping new instances. This horizontal
computing model provides true scalability. It uses a dynamic model where new instances
are brought up quickly in place of lost instances. However, Amazon Elastic Block Store
(EBS) does not permit more than 1TB of data. This limit was not known earlier and there
were some challenges with CouchDB also. HipChat’s total data was 0.5TB. In order to
do compaction, CouchDB had to copy data into a compaction file, which doubles the
space. This further stressed the already limited storage space. Amazon’s DynamoDB
was considered but not chosen. HipChat is also packaged as an on-premise solution
where the cloud services may not be available. Besides, a full SaaS solution would have
led to vendor locking. With these thoughts and challenges, it was decided to consider
Elasticsearch.

The Move to Elasticsearch
HipChat decided to use Elasticsearch for all data storage and search requirements. The
following are the key factors that led to the selection of Elasticsearch:

•	 Ability to consume massive amount of data

•	 High availability

•	 Horizontal scalability

•	 Sharding and replication facilities

Performing searches on Elasticsearch has been quite fast. All HipChat queries
were already Lucene compatible and this fits well with the Lucene background of
Elasticsearch.

Interestingly, Elasticsearch is being used as the key-value store also. The
Elasticsearch cluster has eight nodes. There have been quite a few benefits from
introducing Elasticsearch:

•	 Reduction in number of database systems simplifies the overall
solution.

•	 The typical response time is between 10 milliseconds and 100
milliseconds, which is better than CouchDB.

•	 The eight-node Elasticsearch cluster ensures that if one node goes
down, the cluster still keeps on servicing requests

•	 HipChat experienced issues with automatic failover in AWS due
to network reliability issues. Elasticsearch does not have this kind
of challenge.

•	 A monthly index is used so that every month is a separate index.
Each primary index has eight shards and two replicas, which
make sure that the Elasticsearch is available at all times to service
requests.

HipChat has hit the 2 billion message mark but it is confident that the Elasticsearch
cluster will be able to handle the increased load.

Chapter 13 ■ real-life StorieS

294

Telecommunication - Verizon Wireless
Verizon Wireless is the largest wireless provider in the United States. It is a wholly
operated subsidiary of Verizon Communications and was founded in 2000 as a joint
venture between Bell Atlantic (Verizon Communications’ predecessor) and UK-based
Vodafone. Verizon Wireless was an early mover in the log analytics space. Being a telecom
service provider, it understood the power of log analytics and the critical insights they
could provide to understand system performance. Towards this end, both a custom
in-house solution and a vendor-supplied solution were deployed for monitoring and
analyzing logs. This combination served well for many years. However, the last few years
saw the cost of handling massive data volumes increasing. Besides it was becoming
cumbersome to analyze the unstructured and time-sensitive data using RDBMS.

There was an organization-wide thrust to explore new technologies like NoSQL.
A better solution was required to handle the non-relational data.

The Transition to Elasticsearch
After a careful evaluation of different technologies, the platform team at Verizon Wireless
selected Elasticsearch because they were convinced of its capabilities and the seamless
scalability. A centralized log analytics platform was built with Logstash shippers
pumping logs to Logstash indexers. The data is cached in a Redis cluster and indexed in
an Elasticsearch cluster. Plugins like Shield and Marvel are used for added capabilities.
Kibana takes care of the visualization part.

The ELK-based analytics platform does heavy-duty data processing every day:

•	 Collecting and processing 4TB logs per day. This consists of
infrastructure, web server, and application server logs. The total
data consumption is 80TB.

•	 10 billion total log events per day with a peak traffic of 125,000
events per second.

•	 More than 200 operators across more than 50 application groups
leveraging the system in a multi-tenant manner.

Real-time access to log data is enabled for two to four weeks and thereafter the
metrics are archived to Hadoop using ES-Hadoop connector. Kibana and Shield are used
for data visualizations. There is also a custom user interface for specialized workflows.
Verizon found it quite simple to run things with a small-sized cluster. However, scaling to
a large number of nodes required further planning and design.

Benefits
There has been a huge reduction in MTTR from 20-30 minutes to 2-3 minutes on
average, which is a 10x improvement. In one instance, an incorrectly designed marketing
campaign generated 8 times the expected traffic to the front-end. This was a threat to
critical services and a quick resolution was required. With the real-time insight of the
analytics platform, the operations team was able to quickly identify the root cause of the
spurious traffic and take measures to control it within minutes.

Chapter 13 ■ real-life StorieS

295

After the early success, the Elasticsearch-based analytics platform is being used
to help the entire business achieve its most important customer satisfaction goals. An
increase in system responsiveness and the quick resolution of outage issues directly
leads to a better experience for the customers. Other types of operational data like
infrastructure metrics and network packets are also being added in this analytics
platform. Verizon Wireless intends to use the ELK stack as the single source for all real-
time dashboards for other groups like marketing and executive teams.

Mobile Messaging Service - Tango
Tango is a free mobile messaging service. It is based out of California and has 250 million
registered users in 224 countries. Tango offers social features and a unique content
platform through which users discover new ways to connect and socialize. The customer
experience is the most important operational aspect for such a service. Whenever there
is outage or performance degradation, a customer is lost. Repeat failures can trigger to
movement to competing services.

The Tango engineering team realized early on that log analysis is an efficient way for
performance management. Earlier they used command line tools to manually examine
system log. The client side logs were pushed to a huge database, but the application had
to know where to look for a particular piece of data. They were missing out on crucial
features like event correlation, alerts based on incidents, and thresholds. This led to
lengthy response times for performance issues.

The Move to ELK
The ELK stack was selected to store logs and monitor performance issues. Elasticsearch
serves as the core engine for data storage and searches, Logstash is used for the data
pipeline, and Kibana provides data visualization. Logs can be searched on the basis of
specific types, time, and region.

The logs are first shipped from server via Logstash to a Redis cluster. Thereafter,
the logs are indexed in Elasticsearch. All the backed logs and client logs are indexed in
Elasticsearch. Thereafter, log correlation is done and Kibana is used for visualization. The
use of the ELK stack has enabled Tango to measure in real time the response times for 250
million customers all around the world. It empowers them to troubleshoot issues for any
customer sitting anywhere in the world. Tango has had some tangible benefits of using
ELK stack:

•	 Increased productivity: The use of ELK has helped in achieving
100% improvement in productivity because the manual tasks
have been eliminated.

•	 Improved response times: The response time for performance
issues has significantly dropped to 5 minutes after an incident.
Earlier it could take days. ELK has strengthened the capability to
monitor uptime and performance, and analyze and solve issues
quickly.

Chapter 13 ■ real-life StorieS

296

•	 Business intelligence : Tango is leveraging the ELK stack
for Business Intelligence (BI) based on the operational and
infrastructure data coming both from the client and servers.
This helps in focusing on the features that are working fine and
also those that are not working properly. Features can then be
changed or improved upon to enhance the customer experience.
As an example, Tango uses the ELK stack to distinguish
geographical regions with low performance. This gives Tango
an opportunity to partner with local cloud providers to enhance
performance with a proxy layer in that geography.

•	 Performance management: New Relic is used for performance
management and the ELK stack augments this. New Relic-based
analysis and log analysis with ELK is done side by side so that it
can give more details of performance-related issues.

•	 Monitoring reliability: Marvel is a monitoring system for
Elasticsearch. It makes sure that the performance management
system is always up and running.

Tango has benefited immensely after the switch to ELK. It has led to an increase in
user base and enabled a delightful user experience.

Summary
This chapter presented some real-life stories where different organizations have used the
ELK stack and benefited from it. The most interesting thing is that in the actual use cases,
the configuration and deployment setup is different in each of these cases. This flexibility
is the biggest advantage of the ELK stack. There are many more success stories of the ELK
stack being used in a variety of situations. I am sure in whatever way you will use the ELK
stack, it will add to the success of your solution.

297© Gurpreet S. Sachdeva 2017
G. S. Sachdeva, Practical ELK Stack, DOI 10.1007/978-1-4842-2626-1

��������� A
Absolute time filter, 154
Aggregation scoping, 139
Aliases, 233

add/remove action, 234
benefits of, 233
creation, 234
filters, 236
routing combination, 243
working process, 233

Amazon Web Services, 2, 57
Analyzer attribute, 111
Analyzing events, 35
Apache Lucene, 2
Area chart, visualization, 168

chart modes
overlap, 172
percentage, 173
silhouette, 175
wiggle, 174

fields, 168
hurricanes, 169
output, 171
string fields options, 175
UNIX head command, 169
view options, 175
X-axis, 170

��������� B
Binary operators, 26
Boolean logic, 26
Bool filter, 95–96
Bubble chart, 186
Buckets, 161
Bulk information

indexing process, 248–250
operations, 76
request size, 79
updating and deleting, 247–250

��������� C
Carbon Dioxide Information Analysis

Center (CDIAC), 19
Cluster health and

configuration, 62
Codec plugin, 50
Complex field types, 114
Compound clauses, 91
Conflict management, 79

��������� D
Dashboard, 201

button option, 203
debug panel

request, 212
response, 213
statistics, 214
table, 212

edit visualizations, 208
elegant and beautiful

visualization, 210
HTML page, 211
load option, 206
move option, 208
remove, 209
resize, 208
save button, 206
search bar, 205
share button, 207
visualization

Index

■ INDEX

298

button, 204
creation, 204
save button, 204

web page, 210
window page, 201

Data exploration
buckets, 117, 122
colors, 119
components, 117
metrics, 118, 120
multiple metrics, 124
visualization (bar charts), 126

Data histograms, 132
Data management

bulk indexing, update and delete, 247
multisearch and multiget, 250
operations, 247
request group, 247

Data mapping
analysis, 109
types, 101

Data node, 58
Data slicing, 231
date_histogram buckets, 132
Default logging configuration, 35
Desaturate map tiles

checkbox, 195
option disabled, 196
tile map, 196

Discover page, 153
Document information

creation, 75
deletion, 75
existence, 69
retrieval, 67
storage, 60
updates, 72

Dynamic dashboards, 152
Dynamic mapping rules, 110

��������� E
Elasticsearch, 3, 102, 110

API, 61
configuration and settings, 7
health status, 63
HipChat, 293
indices, 60
installation, 6
key features, 3

plugin configuration, 9
components, 30

response, 128
running, 6
output configuration, 31
storage ecosystem, 59

Elasticsearch cluster, 215
aliases (see Aliases)
cluster information, 228
custom Id, 65
document, 59
fault detection, 221
index and type, 61
master node election, 220
multicast discovery

mechanism, 218
node, 58
object and document, 59
production environment, 266
removal nodes

decommission, 224
primary shards, 222
replica shards, 223

routing (see Routing process)
shard, 61
shard allocation, 217
source code, 215
unicast discovery, 219
upgrade nodes, 225

key aspects, 225
quick restart, 227
rolling restart, 225

Elasticsearch, Logstash, and
Kibana (ELK), 2

data pipeline, 5
stack installation,5 (see Stack

installation (ELK))
Environment variables, 7
Error diagnostics, 100
Exact-value field, 102–103, 107
Exists and missing filters, 94

��������� F
Fault detection process, 221
Field references, 25
Field searches, 156, 158
Filter

bucket, 143
events, 27
free text search, 155

Dashboard (cont.)

■ INDEX

299

query combination, 97
via query, 98

Full-text
field, 107
query, 82

��������� G
GitHub repository, 46
Global bucket, 141
Grok filter, 35

��������� H
Heat map, 194
Histogram, 126

bucket, 127
HTTP HEAD method, 69

��������� I
Impedance mismatch, 57
Indexing inner objects, 115
Index management, 65
Inner object arrays, 115
Intrinsic sorts, 146
Inverted index, 103

��������� J
JAVA_OPTS, 7
Java Virtual Machine (JVM), 246
JSON documents, 81

��������� K
key_as_string field, 134
Kibana, 4

bar chart, 39
configuration, 15
dashboard, 42
data table, 41
discover page, 36
features, 152
installation, 14
interface, 15
line chart, 38
key features, 4
metric, 39
settings page, 36–37
share options, 42

time filter, 36
user interface, 152
visualization, 16, 17, 37

��������� L
Language analyzer, 106
Leaf clauses, 91
Line charts

log option
bubble chart, 186
circles, 183
connecting lines, 182
smooth lines, 180
Y-axis data bounds, 185
Y-axis extents, 184

output, 177
square root option, 180

Load balancer node, 58
Log analysis, 1
Log management, 1
Logstash, 4

agent, 12
codecs, 13
configuration file, 11, 21
Elasticsearch, 11
event pipeline, 24
forwarder, 12
function, 13
input plugins, 13
installation, 9
logstash-output-mongodb plugin, 46
output plugins, 14
plugin development

advantages, 45
configuration, 50
download and installation, 46
execution, 51
management, 45
pattern, 48
register, 51
teardown, 51

running, 9
Lucene query syntax, 155

��������� M
Mapping

customization, 110
revision, 112
test, 113

■ INDEX

300

Master node, 58
Match

attribute, 29
match_all query, 95
query, 96
timestamp, 29

mean_price metric, 121, 123
Metadata information, 26, 59
Metrics, 162

based sorting, 147
visualization, 187

Microsoft Azure, 57
Mobile messagingservice. See Tango
Multicast discovery mechanism, 218
Multi-level objects, 115
Multiline event configuration, 34
Multi_match query, 96
Multiple document retrieval, 70
Multi-tier correlation, 135
Multivalue bucket sorting, 146
Multi-value fields, 114

��������� N
Newline character, 76
NoSQL document database, 58

��������� O
Optimistic concurrency control, 79
Over-sharding, 230

��������� P
Partial document retrieval, 69
Participating shards, 86
Pessimistic concurrency control, 79
Pie charts, 188

donut, 191
percentage, 190

Play field fragments, 114
plays.json, 83
Plugin

packaging, 54
structure, 47

Post filter, 144
Prepackage analyzers, 106
Price range histograms, 128
Primary and replica shards, 61
Production environment, 245

backups

cancel, 283
deletion, 282
index, 282
indices, 282
list option, 282
monitoring, 283
shared file system repository, 281

cluster, 266
backup, 280
statistics, 276

datamanagement (see Data
management)

disks, 246
index templates

configuration management, 262
creation, 263
delete, 266
file system, 264–265
merge option, 265
problem, 268
retrieve, 266
scenarios, 263

individual nodes
F5 and network sections, 275
fielddata circuit breaker, 276
gc section, 274
index statistics, 277
indices section, 270
JVM section, 273
OS and process sections, 272
output, 269
pending tasks, 277
threadpools, 274–275

Java virtual machine, 246
logging

debugging problems, 278
slowlog, 278

memory, 245
monitoring, 266
network, 246
restoration, 283

cancel, 284
monitor operations, 284

rolling restarts, 279
troubleshooting, 266

��������� Q
Query documents, 139

clause construction, 90
DSL, 90

■ INDEX

301

filter, 142
mashup, 89
string version, 88
validation, 99

Quick time filter, 153–154

��������� R
RabbitMQ topic, 27
Ranger filter operators, 94
Range searches, 157
Relations and tuples, 57
Relative time filter, 154
Reloading configuration file, 33
Routing process

aliases combination, 243
configuration, 242
determine shards, 240
significance, 237
strategies, 237

run method, 51

��������� S
Scalingcapabilities. See also Elasticsearch

cluster
data slicing, 231
maximizing throughput, 232
over-sharding, 230

Scripted fields, 152
Searching data

criteria combinations, 87
document Id, 85
Elasticsearch, 81
filter and query, 92
hits, 85
lite, 88
pagination, 87
performance concerns, 93
search without parameters, 84
took field, 86

search_type=count parameter, 120
Shipping events, 30
Sorted term list, 104
sprintf format, 25
Stack installation (ELK), 287

analyze logs and
troubleshoot, 287

healthcare, 288
benefits, 289
building blocks, 288

HipChat
components, 292
Elasticsearch, 293
features, 292
initial architecture, 292
statistics, 291
storage architecture, 292

stack overflow, 287
Tango, 295
telecommunication (see Verizon

wireless)
The Guardian, 289

benefits, 291
blocks, 290

Stack overflow, 287
Standard analyzer, 106, 109
Standard error, 129
Store and index documents, 59
Structured query, 82

��������� T
Tango, 295

Business Intelligence (BI), 296
ELK stack, 295
monitoring system, 296
performance management, 296
redis cluster, 295
response time, 295

The Guardian (national British daily
newspaper), 289

benefits, 291
blocks, 290
goals, 290

Throughput/fast searches, 232
Tile maps

geohash grid option, 193
map, 191
shaded circle markers, 193

timed_out field, 86
Time filter, 153
Time series aggregations, 132
Tokenizers, 105

filters, 106

��������� U
Unicast discovery, 219
Universally unique identifiers, 67
Updating documents partially, 72
U.S. Department of Energy (DOE), 19

■ INDEX

302

��������� V
Verizon wireless

benefits, 294
communications, 294
transition, 294

Vertical bar chart
bar chart, 198
bar charts, 200
grouped view, 200
percentage, 199
X-axis, 196

Visualization
advanced options

JSON input, 162–163
bucket aggregations, 160
canvas

aggregation designer, 167
key elements, 165
load option, 166
new visualization button, 166
preview, 167
refresh button, 167
save option, 166
share, 166

data table, 176
desaturate map tiles

checkbox, 195
option disabled, 196
tile map, 196

heat map, 194
line charts

log option, 180
output, 177
square root, 180

markdown widget, 186
metric, 187
metrics, 162
page creation, 159
pie charts

donut, 191
percentage, 190
split charts, 188

search data source, 164
search source options, 164
step-by-step approach, 168
tile maps

geohash grid option, 193
map, 191
shaded circle

markers, 193
toolbar page, 163
types (see Area chart,

visualization)
vertical bar chart

bar chart, 198
bar charts, 200
grouped view, 200
percentage, 199
X-axis, 196

��������� W, X, Y, Z
Whitespace analyzer, 106

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to the ELK Stack
	Log Analysis in Today’s World
	The ELK Stack
	Elasticsearch
	Logstash
	Kibana

	ELK Data Pipeline
	ELK Stack Installation
	Installing Elasticsearch
	Running Elasticsearch
	Elasticsearch Configuration and Settings
	Environment Variables
	System Configuration
	Installing Elasticsearch Plugins

	Installing Logstash
	Running Logstash
	Logstash with Elasticsearch Output
	Configuring Logstash
	Installing Logstash Forwarder
	Extending Logstash Functionality
	Logstash Input Plugins
	Logstash Codecs
	Logstash Output Plugins

	Installing Kibana
	Kibana Configuration
	Kibana Interface
	Discover
	Visualize
	Dashboard
	Settings

	Summary

	Chapter 2: Shipping, Filtering, and Parsing Events with Logstash
	Sample Dataset
	Data Format

	Logstash Configuration
	Comments
	Configuring for Events
	Field References
	sprintf Format

	Conditionals
	Metadata

	Filtering Events
	Shipping Events
	Reloading Configuration File
	Multiline Event Configuration

	Analyzing Events
	Data Visualization
	Building a Line Chart
	Building a Bar Chart
	Building a Metric
	Building a Data Table

	Summary

	Chapter 3: Extending Logstash
	Plugin Management
	Download and Installation
	Plugin Installation
	Updating a Plugin
	Uninstallation

	Plugin Structure
	Prerequisite
	Basic Structure
	Configuration
	Setup
	Execution
	Teardown

	Building a Custom Plugin
	Plugin Packaging

	Summary

	Chapter 4: Creating, Indexing, and Deleting Data
	Ubiquity of Data
	Elasticsearch Cluster
	Node

	Anatomy of a Document
	Metadata Information
	Index
	Type
	Id

	Shard
	Primary and Replica Shards

	Elasticsearch API
	Cluster Health and Configuration

	Index Management
	Specify Id
	Custom Id
	Auto-Generated Id

	Document Management
	Document Retrieval
	Partial Document Retrieval
	Document Existence
	Multiple Document Retrieval
	Document Updates
	Updating Documents Partially
	Partial Updates with Scripts
	Conflicting Updates
	Document Creation
	Document Deletion

	Bulk Operations
	Bulk Request Size

	Conflict Management
	Summary

	Chapter 5: Searching Data
	Search Your Way
	Simple Searches
	Searching Without Parameters
	Hits
	Took
	Shards
	Timeout

	Multi-Index, Multi-Type
	Pagination

	Search Lite
	The _all Field
	Query Mashup

	Query DSL
	Query Clause Construction
	Working with Multiple Clauses
	Filter and Query
	Performance Concerns

	Key Filters and Queries
	Term Filter
	Terms Filter
	Range Filter
	Exists and Missing Filters
	Bool Filter
	Match_all Query
	Match Query
	Multi_match Query
	Bool Query

	Filter-Query Combination
	Filtering a Query
	Only Filter
	Filter via Query

	Query Validation
	Error Diagnostics

	Summary

	Chapter 6: Mapping and Analysis
	Data Mapping and Analysis
	Exact Values and Full Text
	Inverted Index

	Data Analysis
	Prepackaged Analyzers
	When to Use Analyzers
	You Can Test Analyzers
	Assign Analyzer

	Data Mapping
	Simple Field Types
	Observe the Mapping
	Mapping Customization
	index
	analyzer

	Mapping Revision
	Mapping Test
	Complex Field Types
	Multi-Value Fields
	Empty Fields
	Multi-Level Objects
	Indexing Inner Objects
	Inner Object Arrays

	Summary

	Chapter 7: Data Exploration with Aggregates
	Aggregation Basics
	Buckets
	Metrics
	The Two Together

	Fun with Aggregation
	Metrics to the Rescue
	Buckets Within Buckets
	Multiple Metrics

	Data Visualization with Bar Charts
	Time Series Aggregations
	Multi-Tier Correlation

	Aggregation Scoping
	Global Bucket

	Aggregations with Query Filters
	Query with Filter
	Filter Bucket
	Post Filter

	Multivalue Bucket Sorting
	Intrinsic Sorts
	Metric-Based Sorting

	Summary

	Chapter 8: Exploring Kibana
	Introducing Kibana
	Kibana Features
	Kibana User Interface
	The Discover Page
	Time Filter
	Quick Time Filter
	Relative Time Filter
	Absolute Time Filter
	Auto-Refresh Settings

	Query and Search Data
	Free Text Search
	Field Searches
	Range Searches
	New Search
	Saving a Search
	Field Search Using Field List

	Summary

	Chapter 9: Kibana - Data Visualization
	The Visualize Page
	Metrics and Bucket Aggregations
	Buckets
	Metrics

	Advanced Options
	Choosing a Search Data Source
	Visualization Canvas
	Toolbar
	A New Visualization
	Saving a Visualization
	Loading a Saved Visualization
	Sharing a Visualization
	Refresh

	Aggregation Designer
	Preview Canvas

	Building a Visualization
	Visualization Types
	Area Chart
	Data Table
	Line Chart
	Square Root
	Log

	Markdown Widget
	Metric
	Pie Chart
	Tile Map
	Shaded Circle Markers
	Shaded Geohash Grid

	Heat Map
	Desaturate Map Tiles
	Vertical Bar Chart

	Summary

	Chapter 10: The Kibana Dashboard
	Introduction to the Dashboard Page
	Working with the Toolbar
	New Dashboard Option
	Adding Visualizations
	Search Bar
	Saving a Dashboard
	Loading a Saved Dashboard
	Sharing the Saved Dashboard

	Working with the Dashboard Canvas
	Moving a Visualization
	Resizing a Visualization
	Editing a Visualization
	Removing a Visualization
	Embedding a Dashboard in a Web Page

	The Debug Panel
	Table
	Request
	Response
	Statistics

	Summary

	Chapter 11: Designing for Scale
	Elasticsearch Cluster for Scale
	Adding Nodes to Cluster

	Discovering Cluster Nodes
	Multicast Discovery
	Unicast Discovery
	Master Node Election
	Fault Detection

	Removal of Nodes from Cluster
	Decommissioning of Nodes

	Upgrading Elasticsearch Nodes
	Rolling Restart
	Quick Restart

	Cluster Information
	Scaling Options
	Over-Sharding
	Data Slicing
	Maximizing Throughput

	Aliases
	Working with an Alias
	Benefits of Aliases
	Living with Aliases

	Creating Aliases
	Camouflaging Documents with Filters

	Routing
	Significance of Routing
	Routing Strategies
	Determining Shards
	Routing Configuration
	Routing in Combination with Aliases

	Summary

	Chapter 12: The ELK Stack in Production
	Deployment Considerations
	Memory
	Disks
	Network
	Java Virtual Machine

	Data Management
	Request Grouping
	Bulk Indexing, Updating, and Deleting
	Multisearch and Multiget APIs

	Elasticsearch Tuning
	Lucene Segment Optimization
	Thresholds for Refresh and Flush
	Merge Policies
	Store Throttling

	Cache Management
	Filter Caches
	Shard Query Cache
	JVM Heap and OS Cache
	Warmers for Caches

	Configuration Management
	Better than Defaults
	Index Templates
	Template Creation
	Templates Configured on the Filesystem
	Merging of Multiple Templates
	Retrieving Index Templates
	Deleting Index Templates

	Monitoring and Troubleshooting
	Health of the Cluster
	Detecting an Index Problem

	Examining Individual Nodes
	The indices Section
	OS and Process Sections
	JVM Section
	Threadpool Section
	F5 and Network Sections
	Circuit Breaker

	Cluster Statistics
	Index Statistics
	Pending Tasks

	Logging
	Slowlog

	Rolling Restarts
	Backup and Restore
	Cluster Backup
	Creating the Repository
	Snapshot of All Open Indices
	Snapshot of Particular Index
	Listing Snapshot of Information
	Snapshot Deletion
	Monitoring Snapshot Progress
	Cancelling a Snapshot

	Restoring from a Snapshot
	Monitor Restore Operations
	Cancelling Restore

	Summary

	Chapter 13: Real-Life Stories
	New Age Log Analysis
	Online Programmer Community - Stack Overflow
	Healthcare at Tips - Influence Health
	Building Blocks
	Benefits

	Real Time News - The Guardian
	Building Blocks
	Benefits

	Group Communication Service - HipChat
	Product Features
	Storage Architecture
	Initial Architecture
	The Move to Elasticsearch

	Telecommunication - Verizon Wireless
	The Transition to Elasticsearch
	Benefits

	Mobile Messaging Service - Tango
	The Move to ELK

	Summary

	Index

