




Practical	Machine	Learning	
with	H2O

Powerful,	Scalable	Techniques
for	Deep	Learning	and	AI

Darren	Cook



Practical	Machine	Learning	with	H2O

by	Darren	Cook

Copyright	©	2017	Darren	Cook.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online
editions	are	also	available	for	most	titles	(http://oreilly.com/safari).	For	more	information,
contact	our	corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editor:	Nicole	Tache

Production	Editor:	Colleen	Lobner

Copyeditor:	Kim	Cofer

Proofreader:	Charles	Roumeliotis

Indexer:	WordCo	Indexing	Services,	Inc.

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

December	2016:	First	Edition

http://oreilly.com/safari


Revision	History	for	the	First	Edition

2016-12-01:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491964606	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Practical	Machine
Learning	with	H2O,	the	cover	image	of	a	crayfish,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information
and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all
responsibility	for	errors	or	omissions,	including	without	limitation	responsibility	for
damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and
instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or	the
intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-96460-6

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491964606


Preface

It	feels	like	machine	learning	has	finally	come	of	age.	It	has	been	a	long	childhood,	stretching
back	to	the	1950s	and	the	first	program	to	learn	from	experience	(playing	checkers),	as	well
as	the	first	neural	networks.	We’ve	been	told	so	many	times	by	AI	researchers	that	the
breakthrough	is	“just	around	the	corner”	that	we	long	ago	stopped	listening.	But	maybe	they
were	on	the	right	track	all	along,	maybe	an	idea	just	needs	one	more	order	of	magnitude	of
processing	power,	or	a	slight	algorithmic	tweak,	to	go	from	being	pathetic	and	pointless	to
productive	and	profitable.

In	the	early	’90s,	neural	nets	were	being	hailed	as	the	new	AI	breakthrough.	I	did	some
experiments	applying	them	to	computer	go,	but	they	were	truly	awful	when	compared	to	the
(still	quite	mediocre)	results	I	could	get	using	a	mix	of	domain-specific	knowledge
engineering,	and	heavily	pruned	tree	searches.	And	the	ability	to	scale	looked	poor,	too.
When,	20	years	later,	I	heard	talk	of	this	new	and	shiny	deep	learning	thing	that	was	giving
impressive	results	in	computer	go,	I	was	confused	how	this	was	different	from	the	neural	nets
I’d	rejected	all	those	years	earlier.	“Not	that	much”	was	the	answer;	sometimes	you	just	need
more	processing	power	(five	or	six	orders	of	magnitude	in	this	case)	for	an	algorithm	to	bear
fruit.

H2O	is	software	for	machine	learning	and	data	analysis.	Wanting	to	see	what	other	magic
deep	learning	could	perform	was	what	personally	led	me	to	H2O	(though	it	does	more	than
that:	trees,	linear	models,	unsupervised	learning,	etc.),	and	I	was	immediately	impressed.	It
ticks	all	the	boxes:

Open	source	(the	liberal	Apache	license)

Easy	to	use

Scalable	to	big	data

Well-documented	and	commercially	supported

On	its	third	version	(i.e.,	a	mature	architecture)

Wide	range	of	OS/language	support

With	the	high-quality	team	that	H2O.ai	(the	company	behind	H2O)	has	put	together,	it	is	only
going	to	get	better.	There	is	the	attitude	of	not	just	“How	do	we	get	this	to	work?”	but	“How
do	we	get	this	to	work	efficiently	at	big	data	scale?”	permeating	the	whole	development.

If	machine	learning	has	come	of	age,	H2O	looks	to	be	not	just	an	economical	family	car	for
it,	but	simultaneously	the	large	load	delivery	truck	for	it.	Stretching	my	vehicle	analogy	a	bit



further,	this	book	will	show	you	not	just	what	the	dashboard	controls	do,	but	also	the	best	way
to	use	them	to	get	from	A	to	B.	It	will	be	as	practical	as	possible,	with	only	the	bare	minimum
explanation	of	the	maths	or	theory	behind	the	learning	algorithms.

Of	course	H2O	is	not	perfect;	here	are	a	few	issues	I’ve	noticed	people	mutter	about.	There	is
no	GPU	support	(which	could	make	deep	learning,	in	particular,	quicker). 	The	cluster
support	is	all	’bout	that	bass	(big	data),	no	treble	(complex	but	relatively	small	data),	so	for
the	latter	you	may	be	limited	to	needing	a	single,	fast,	machine	with	lots	of	cores.	Also	no
high	availability	(HA)	for	clusters.	H2O	compiles	to	Java;	it	is	well-optimized	and	the	H2O
algorithms	are	known	for	their	speed	but,	theoretically	at	least,	carefully	optimized	C++	could
be	quicker.	There	is	no	SVM	algorithm.	Finally,	it	tries	to	support	numerous	platforms,	so
each	has	some	rough	edges,	and	development	is	sometimes	slowed	by	trying	to	keep	them	all
in	sync.

In	other	words,	and	wringing	the	last	bit	of	life	out	of	my	car	analogy:	a	Formula	1	car	might
beat	it	on	the	straights,	and	it	isn’t	yet	available	in	yellow.
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Who	Uses	It	and	Why?
A	number	of	well-known	companies	are	using	H2O	for	their	big	data	processing,	and	the
website	claims	that	over	5000	organizations	currently	use	it.	The	company	behind	it,	H2O.ai,
has	over	80	staff,	more	than	half	of	which	are	developers.

But	those	are	stats	to	impress	your	boss,	not	a	no-nonsense	developer.	For	R	and	Python
developers,	who	already	feel	they	have	all	the	machine	learning	libraries	they	need,	the
primary	things	H2O	brings	are	ease	of	use	and	efficient	scalability	to	data	sets	too	large	to	fit
in	the	memory	of	your	largest	machine.	For	SparkML	users,	who	feel	they	already	have	that,
H2O	algorithms	are	fewer	in	number	but	apparently	significantly	quicker.	As	a	bonus,	the
intelligent	defaults	mean	your	code	is	very	compact	and	clear	to	read:	you	can	literally	get	a
well-tuned,	state-of-the-art,	deep	learning	model	as	a	one-liner.	One	of	the	goals	of	this	book
was	to	show	you	how	to	tune	the	models,	but	as	we	will	see,	sometimes	I’ve	just	had	to	give
up	and	say	I	can’t	beat	the	defaults.

http://www.h2o.ai/customers/


About	You
To	bring	this	book	in	at	under	a	thousand	pages,	I’ve	taken	some	liberties.	I	am	assuming	you
know	either	R	or	Python.	Advanced	language	features	are	not	used,	so	competence	in	any
programming	language	should	be	enough	to	follow	along,	but	the	examples	throughout	the
book	are	only	in	one	of	those	two	languages.	Python	users	would	benefit	from	being	familiar
with	pandas,	not	least	because	it	will	make	all	your	data	science	easier.

I’m	also	assuming	a	bit	of	mental	flexibility:	to	save	repeating	every	example	twice,	I’m
hoping	R	users	can	grasp	what	is	going	on	in	a	Python	example,	and	Python	users	can	grasp
an	R	example.	These	slides	on	Python	for	R	users	are	a	good	start	(for	R	users	too).

Some	experience	with	manipulating	data	is	assumed,	even	if	just	using	spreadsheet	software
or	SQL	tables.	And	I	assume	you	have	a	fair	idea	of	what	machine	learning	and	AI	are,	and
how	they	are	being	used	more	and	more	in	the	infrastructure	that	runs	our	society.	Maybe	you
are	reading	this	book	because	you	want	to	be	part	of	that	and	fmake	sure	the	transformations
to	come	are	done	ethically	and	for	the	good	of	everyone,	whatever	their	race,	sex,	nationality,
or	beliefs.	If	so,	I	salute	you.

I	am	also	assuming	you	know	a	bit	of	statistics.	Nothing	too	scary—this	book	takes	the
“Practical”	in	the	title	seriously,	and	the	theory	behind	the	machine-learning	algorithms	is
kept	to	the	minimum	needed	to	know	how	to	tune	them	(as	opposed	to	being	able	to
implement	them	from	scratch).	Use	Wikipedia	or	a	search	engine	for	when	you	crave	more.
But	you	should	know	your	mean	from	your	median	from	your	mode,	and	know	what	a
standard	deviation	and	the	normal	distribution	are.

But	more	than	that,	I	am	hoping	you	know	that	statistics	can	mislead,	and	machine	learning
can	overfit.	That	you	appreciate	that	when	someone	says	an	experiment	is	significant	to	p	=
0.05	it	means	that	out	of	every	20	such	experiments	you	read	about,	probably	one	of	them	is
wrong.	A	good	moment	to	enjoy	Significant,	on	xkcd.

This	might	also	be	a	good	time	to	mention	“my	machine,”	which	I	sometimes	reference	for
timings.	It	is	a	mid-level	notebook,	a	couple	of	years	old,	8GB	of	memory,	four	real	cores,
eight	hyper-threads.	This	is	capable	of	running	everything	in	the	book;	in	fact	4GB	of	system
memory	should	be	enough.	However,	for	some	of	the	grid	searches	(described	in	Chapter	5)	I
“cheated”	and	started	up	a	cluster	in	the	cloud	(covered,	albeit	briefly,	in	“Clusters”	in
Chapter	10).	I	did	this	just	out	of	practicality:	not	wanting	to	wait	24	hours	for	an	experiment
to	finish	before	I	can	write	about	it.

http://bit.ly/2gl4GRx
https://en.wikipedia.org/wiki/Overfitting
https://xkcd.com/882/


Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements	such
as	variable	or	function	names,	databases,	data	types,	environment	variables,	statements,
and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by
context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/DarrenCook/h2o/	(the	“bk”	branch).

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered	with
this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to	contact	us
for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,
writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not	require
permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does
require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example	code	does
not	require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,	author,
publisher,	and	ISBN.	For	example:	“Practical	Machine	Learning	with	H2O	by	Darren	Cook
(O’Reilly).	Copyright	2017	Darren	Cook,	978-1-491-96460-6.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/DarrenCook/h2o/
mailto:permissions@oreilly.com
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/practical-machine-learning-with-h2o.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/practical-machine-learning-with-h2o
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
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Chapter	1.	Installation	and	Quick-Start

You	will	be	happy	to	know	that	H2O	is	very	easy	to	install.	First	I	will	show	how	to	install	it
with	R,	using	CRAN,	and	then	how	to	install	it	with	Python,	using	pip.

After	that	we	will	dive	into	our	first	machine	learning	project:	load	some	data,	make	a	model,
make	some	predictions,	and	evaluate	success.	By	that	point	you	will	be	able	to	boast	to	family,
friends,	and	the	stranger	lucky	enough	to	sit	next	to	you	on	the	bus	that	you’re	a	bit	of	an
expert	when	it	comes	to	deep	learning	and	all	that	jazz.

After	a	detour	to	look	at	how	random	elements	can	lead	us	astray,	the	chapter	will	close	with	a
look	at	the	web	interface,	Flow,	that	comes	with	H2O.
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Preparing	to	Install
The	examples	in	this	book	are	going	to	be	in	R	and	Python.	So	you	need	one	of	those	already
installed.	And	you	will	need	Java.	If	you	have	the	choice,	I	recommend	you	use	64-bit
versions	of	everything,	including	the	OS.	(In	download	pages,	64-bit	versions	are	often
labeled	with	“x64,”	while	32-bit	versions	might	say	“x86.”)

You	may	wonder	if	the	choice	of	R	or	Python	matters?	No,	and	why	will	be	explained	shortly.
There	is	also	no	performance	advantage	to	using	scripts	versus	more	friendly	GUI	tools	such
as	Jupyter	or	RStudio.



Installing	R
On	Linux	your	distro’s	package	manager	should	make	this	trivial:	sudo	apt-get	install	r-base
on	Debian/Ubuntu/Mint/etc.,	and	sudo	yum	install	R	on	RedHat/Fedora/Centos/etc.

Mac	users	should	head	to	https://cran.r-project.org/bin/macosx/	and	follow	the	instructions.

On	Windows	go	to	http://cran.rstudio.com/bin/windows/	and	download	and	run	the	exe,	then
follow	the	prompts.	On	the	Select	Components	page	it	wants	to	install	both	the	32-bit	and	64-
bit	versions;	I	chose	to	only	install	64-bit,	but	there	is	no	harm	in	installing	both.

The	optional	second	step	of	an	R	install	is	to	install	RStudio;	you	can	do	everything	from	the
command	line	that	you	need	to	run	H2O,	but	RStudio	makes	everything	easier	to	use
(especially	on	Windows,	where	the	command	line	is	still	stuck	in	1995).	Go	to
https://www.rstudio.com/products/rstudio/download/,	download,	and	install	it.

https://cran.r-project.org/bin/macosx/
http://cran.rstudio.com/bin/windows/
https://www.rstudio.com/products/rstudio/download/


Installing	Python
H2O	works	equally	well	with	Python	2.7	or	Python	3.5,	as	should	all	the	examples	in	this
book.	If	you	are	using	an	earlier	version	of	Python	you	may	need	to	upgrade.	You	will	also
need	pip,	Python’s	package	manager.

On	Linux,	sudo	apt-get	python-pip	on	Debian/Ubuntu/Mint/etc.;	or	for	Python	3,	it	is	sudo	apt-
get	python3-pip.	(Python	is	a	dependency	of	pip,	so	by	installing	pip	we	get	Python	too.)	For
RedHat/Fedora/Centos/etc.,	the	best	command	varies	by	exactly	which	version	you	are	using,
so	see	the	latest	Linux	Python	instructions.

On	a	Mac,	see	Using	Python	on	a	Macintosh.

On	Windows,	see	Using	Python	on	Windows.	Remember	to	choose	a	64-bit	install	(unless	you
are	stuck	with	a	32-bit	version	of	Windows,	of	course).

TIP
You	might	also	want	to	take	a	look	at	Anaconda.	It	is	a	Python	distribution	containing	almost	all	the	data	science
packages	you	are	likely	to	want.	As	a	bonus,	it	can	be	installed	as	a	normal	user,	which	is	helpful	for	when	you
do	not	have	root	access.	Linux,	Mac,	and	Windows	versions	are	available.

https://packaging.python.org/en/latest/install_requirements_linux/
http://bit.ly/2gn4HFs
http://bit.ly/1RCJ7VR
https://www.continuum.io/downloads


Privacy
H2O	has	some	code 	to	call	Google	Analytics	every	time	it	starts.	This	appears	to	be	fairly
anonymous,	and	is	just	for	tracking	which	versions	are	being	used,	but	if	it	bothers	you,	or
would	break	company	policy,	creating	an	empty	file	called	.h2o_no_collect	in	your	home
directory	("C:\Users\YourName\"	on	Windows)	stops	it.	You’ll	know	that	works	if	you	see
“Opted	out	of	sending	usage	metrics.”	in	the	info	log.	Another	way	to	opt	out	it	is	given	in
“Running	from	the	Command	Line”	in	Chapter	10.
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Installing	Java
You	need	Java	installed,	which	you	can	get	at	the	Java	download	page.	Choose	the	JDK. 	If
you	think	you	have	the	Java	JDK	already,	but	are	not	sure,	you	could	just	go	ahead	and	install
H2O,	and	come	back	and	(re-)install	Java	if	you	are	told	there	is	a	problem.

For	instance,	when	testing	an	install	on	64-bit	Windows,	with	64-bit	R,	it	was	when	I	first	tried
library(h2o)	that	I	was	told	I	had	a	32-bit	version	of	the	JDK	installed.	After	a	few	seconds
glaring	at	the	screen,	I	shrugged,	and	downloaded	the	latest	version	of	the	JDK.	I	installed	it,
tried	again,	and	this	time	everything	was	fine.

3
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Install	H2O	with	R	(CRAN)
(If	you	are	not	using	R,	you	might	want	to	jump	ahead	to	“Install	H2O	with	Python	(pip)”.)

Start	R,	and	type	install.packages("h2o").	Golly	gosh,	when	I	said	it	was	easy	to	install,	I	meant
it!	That	command	takes	care	of	any	dependencies,	too.

If	this	is	your	first	time	using	CRAN 	it	will	ask	for	a	mirror	to	use.	Choose	one	close	to	you.
Alternatively,	choose	one	in	a	place	you’d	like	to	visit,	put	your	shades	on,	and	take	a	selfie.

If	you	want	H2O	installed	site-wide	(i.e.,	usable	by	all	users	on	that	machine),	run	R	as	root,
sudo	R,	then	type	install.packages("h2o").

Let’s	check	that	it	worked	by	typing	library(h2o).	If	nothing	complains,	try	the	next	step:
h2o.init().	If	the	gods	are	smiling	on	you	then	you’ll	see	lots	of	output	about	how	it	is	starting
up	H2O	on	your	behalf,	and	then	it	should	tell	you	all	about	your	cluster,	something	like	in
Figure	1-1.	If	not,	the	error	message	should	be	telling	you	what	dependency	is	missing,	or
what	the	problem	is.
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Figure	1-1.	Running	h2o.init()	(in	R)

Let’s	just	review	what	happened	here.	It	worked.	Therefore 	the	gods	are	smiling	on	you.	The
gods	love	you!	I	think	that	deserves	another	selfie:	in	fact,	make	it	a	video	of	you	having	a
little	boogey-woogey	dance	at	your	desk,	then	post	it	on	social	media,	and	mention	you	are
reading	this	book.	And	how	good	it	is.

The	version	of	H2O	on	CRAN	might	be	up	to	a	month	or	two	behind	the	latest	and	greatest.
Unless	you	are	affected	by	a	bug	that	you	know	has	been	fixed,	don’t	worry	about	it.

h2o.init()	will	only	use	two	cores	on	your	machine	and	maybe	a	quarter	of	your	system
memory, 	by	default.	Use	h2o.shutdown()	to,	well,	see	if	you	can	guess	what	it	does.	Then	to
start	it	again,	but	using	all	your	cores:	h2o.init(nthreads	=	-1).	And	to	give	it,	say,	4GB	and	all
your	cores:	h2o.init(nthreads	=	-1,	max_mem_size	=	"4g").

5
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Install	H2O	with	Python	(pip)
(If	you	are	not	interested	in	using	Python,	skip	ahead	to	“Our	First	Learning”.)

From	the	command	line,	type	pip	install	-U	h2o.	That’s	it.	Easy-peasy,	lemon-squeezy.

The	-U	just	says	to	also	upgrade	any	dependencies.	On	Linux	you	probably	needed	to	be	root,
so	instead	type	sudo	pip	install	-U	h2o.	Or	install	as	a	local	user	with	pip	install	-U	--user	h2o.

To	test	it,	start	Python,	type	import	h2o,	and	if	that	does	not	complain,	follow	it	with	h2o.init().
Some	information	will	scroll	past,	ending	with	a	nice	table	showing,	amongst	other	things,
the	number	of	nodes,	total	memory,	and	total	cores	available,	something	like	in	Figure	1-2.
(If	you	ever	need	to	report	a	bug,	make	sure	to	include	all	the	information	from	that	table.)

Figure	1-2.	Running	h2o.init()	(in	Python)

If	you	do	indeed	see	that	table,	stand	up	and	let	out	a	large	whoop.	Don’t	worry	about	what
your	coworkers	think.	They	love	you	and	your	eccentricities.	Trust	me.

By	default,	your	H2O	instance	will	be	allowed	to	use	all	your	cores,	and	(typically)	25%	of
your	system	memory.	That	is	often	fine	but,	for	the	sake	of	argument,	what	if	you	wanted	to
give	it	exactly	4GB	of	your	memory,	but	only	two	of	your	eight	cores?	First	shut	down	H2O
with	h2o.shutdown(),	then	type	h2o.init(nthreads=2,	max_mem_size=4).	The	following
excerpt	from	the	information	table	confirms	that	it	worked:

...
H2O	cluster	total	free	memory:		3.56	GB
H2O	cluster	total	cores:								8
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H2O	cluster	allowed	cores:						2
...

NOTE
Using	virtualenv	does	not	work	with	H2O. 	To	be	precise,	it	installs	but	cannot	start	H2O	for	you.	If	you	really
want	to	install	it	this	way,	follow	the	instructions	on	starting	H2O	from	the	command	line	in	Chapter	10.	The
h2o.init(),	and	everything	else,	will	then	work.
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Our	First	Learning
Now	that	we	have	everything	installed,	let’s	get	down	to	business.	The	Python	and	R	APIs	are
so	similar	that	we	will	look	at	them	side-by-side	for	this	example.	If	you	are	using	Python
look	at	Example	1-1,	and	if	you	are	using	R	take	a	look	at	Example	1-2.	They	repeat	the
import/library	and	h2o.init	code	we	ran	earlier;	don’t	worry,	this	does	no	harm.

I’m	going	to	spend	a	few	pages	going	through	this	in	detail,	but	I	want	to	just	emphasize	that
this	is	the	complete	script:	it	downloads	data,	prepares	it,	creates	a	multi-layer	neural	net
model	(i.e.,	deep	learning)	that	is	competitive	with	the	state	of	the	art	on	this	data	set,	and	runs
predictions	on	it.

THE	IRIS	DATA	SET

If	you	haven’t	heard	of	the	Iris	data	set	before,	this	must	be	your	first	machine	learning
book!	It	is	a	set	of	150	observations	of	iris	plants,	with	four	measurements	(length	and
width	of	each	of	sepal	and	petal)	and	the	species	it	belongs	to.	There	are	three	species
represented,	with	50	observations	each.

It	is	a	very	popular	data	set	for	machine	learning	experiments	as	it	is	small	enough	to	be
quick	to	learn	from,	and	also	small	enough	to	be	usefully	viewed	in	a	chart,	but	big
enough	to	be	interesting,	and	it	is	nontrivial:	none	of	the	four	measurements	neatly	divide
the	data	up.

Example	1-1.	Deep	learning	on	the	Iris	data	set,	in	Python
import	h2o
h2o.init()

data	sets	=	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	=	h2o.import_file(data	sets	+	"iris_wheader.csv")		
y	=	"class"		
x	=	data.names
x.remove(y)
train,	test	=	data.split_frame([0.8])		

m	=	h2o.estimators.deeplearning.H2ODeepLearningEstimator()		
m.train(x,	y,	train)
p	=	m.predict(test)		

Example	1-2.	Deep	learning	on	the	Iris	data	set,	in	R
library(h2o)
h2o.init(nthreads	=	-1)

data	sets	<-	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	<-	h2o.importFile(paste0(data	sets",iris_wheader.csv"))		
y	<-	"class"		
x	<-	setdiff(names(data),	y)
parts	<-	h2o.splitFrame(data,	0.8)		



train	<-	parts[[1]]
test	<-	parts[[2]]

m	<-	h2o.deeplearning(x,	y,	train)		
p	<-	h2o.predict(m,	test)		

,	 ,	 	are	preparing	the	data,	 	is	training	the	model,	and	 	is	using	that	model.

	illustrates	the	first	major	concept	we	need	to	understand	when	using	H2O:	all	the	data	is	on
the	cluster	(the	server),	not	on	our	client.	Even	when	client	and	cluster	are	the	same	machine.

Therefore,	whenever	we	want	to	train	a	model,	or	make	a	prediction,	we	have	to	get	the	data
into	the	H2O	cluster;	we	will	look	at	that	topic	in	more	depth	in	Chapter	2.	For	now,	just
appreciate	that	this	line	has	created	a	frame	on	the	cluster	called	“iris_wheader.hex.”	It
recognized	the	first	line	of	the	csv	file	was	a	header	row,	so	it	has	automatically	named	the
columns.	It	has	also	realized	(from	analyzing	the	data)	that	the	“class”	column	was
categorical,	which	means	we	will	be	doing	a	multinomial	categorization,	not	a	regression
(see	“Jargon	and	Conventions”).

	defines	a	couple	of	helper	variables:	y	to	be	the	name	of	the	field	we	want	to	learn,	and	x	to
be	the	names	of	the	fields	we	want	to	learn	from;	in	this	case	that	means	all	the	other	fields.	In
other	words,	we	will	attempt	to	use	the	four	measurements,	sepal_len,	sepal_wid,	petal_len,
and	petal_wid,	to	predict	which	species	a	flower	belongs	to.

JARGON	AND	CONVENTIONS

Your	data	is	divided	into	rows	(also	called	observations	or	instances)	and	columns.	It	is
kept	in	a	table,	but	I	will	use	the	word	frame	or	data	frame	because	that	is	what	H2O	calls
them.	If	you	are	familiar	with	spreadsheets,	or	SQL	tables,	then	H2O	frames	are	basically
the	same	thing.	In	R	they	are	like	a	data.frame.	In	Python	they	are	like	a	DataFrame	in
pandas	(or	a	dict	of	equal-length	list).

H2O	has	these	column	types:

real

Floating-point	numbers;	i.e.,	numeric	in	R,	float	in	Python,	and	double	in	many	other
languages.

int

Integers.

enum

A	set	of	categories	or	classes.	Called	factor	in	R,	or	a	categorical	in	pandas.

time



A	64-bit	int,	milliseconds	since	Unix	epoch	(January	1,	1970).	Can	be	parsed	from
various	timestamp	formats.

string

Text.	Just	about	all	you	can	do	with	them,	within	H2O,	is	convert	them	to	enum;	they
cannot	be	directly	used	to	build	models	from.

The	decision	between	using	int	and	real	is	made	by	H2O	after	analyzing	the	data	in	that
column;	you	are	only	able	to	specify	numeric	versus	enum.

In	supervised	machine	learning	one	of	these	columns	will	be	what	we	want	to	predict.	It
goes	by	a	few	names:	response,	dependent	variable,	output,	correct	answer,	and	others.	In
this	book,	I	will	put	the	name	of	this	column	in	a	variable	called	y. 	(In	unsupervised
learning	y	will	not	be	set.)

Some	or	all	of	the	other	columns	in	your	data	are	what	we	learn	from.	They	go	by	many
names:	independent	variables,	features,	attributes,	inputs,	predictor	variables.	Our
convention	will	be	to	put	the	list	of	columns	to	learn	from	in	a	variable	called	x.

More	conventions:	our	complete	data	will	be	in	a	variable	called	data,	the	subset	that	is	the
training	frame	will	be	in	a	variable	called	train,	the	subset	used	for	validation	will	be
valid,	and	the	subset	used	for	testing	will	be	test. 	And	remember,	each	of	those	are
handles	(pointers)	to	the	actual	data	stored	on	your	cluster.	(In	Python	it	is	a	class	wrapper
around	the	handle,	also	storing	some	summary	statistics;	in	R	it	is	the	same	idea,
implemented	as	an	environment.)

I’ve	kept	the	names	short:	this	is	a	book,	and	word-wrap	in	listings	is	ugly;	some	people
might	even	be	reading	it	on	their	phone.	In	your	own	code	I	recommend	meaningful
names,	e.g.,	premierLeagueScores2005_2015_train	instead	of	train.	When	your	script	is	a
thousand	lines	long,	and	you	are	dealing	with	a	dozen	data	sets,	this	will	save	your	sanity.

	(splitting	into	training	and	test	data)	is	another	big	concept,	which	boils	down	to	trying	not
to	overfit.	Briefly,	what	we	are	doing	is	(randomly)	choosing	80%	of	our	data	to	train	on,	and
then	we	will	try	using	our	model	on	the	remaining	20%,	to	see	how	well	it	did.	In	a
production	system,	this	20%	represents	the	gardeners	coming	in	with	new	flowers	and	asking
us	what	species	they	are.

A	reminder	that	the	Python	code	to	split	the	data	looked	like	the	following.	split_frame()	is
one	of	the	member	functions	of	class	H2OFrame.	The	[0.8]	tells	it	to	put	80%	in	the	first	split,
the	rest	in	the	second	split:

train,	test	=	data.split_frame([0.8])

In	R,	h2o.splitFrame()	takes	an	H2O	frame	and	returns	a	list	of	the	splits,	which	are	assigned
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to	train	and	test,	for	readability:

parts	<-	h2o.splitFrame(data,	0.8)
train	<-	parts[[1]]
test	<-	parts[[2]]

The	split,	being	decided	randomly	for	each	row,	is	roughly	120/30	rows,	but	you	may	get	a
few	more	training	rows,	or	a	few	more	test	rows.

Let’s	quickly	recap	what	we	have.	As	shown	in	Figure	1-3,	the	client	just	has	handles
(pointers)	to	the	actual	data	on	the	H2O	cluster.

Figure	1-3.	Recap	of	what	data	is	where

Of	course,	our	“cluster”	is	on	localhost,	on	the	same	machine	as	our	client,	so	it	is	all	the
same	system	memory.	But	you	should	be	thinking	as	if	they	are	on	opposite	sides	of	the	globe.
Also	think	about	how	it	might	be	a	billion	rows,	too	many	to	fit	in	our	client’s	memory.	By
adding	machines	to	a	cluster,	as	long	as	the	total	memory	of	the	cluster	is	big	enough,	it	can
be	loaded,	and	you	can	analyze	those	billion	rows	from	a	client	running	on	some	low-end
notebook.
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Training	and	Predictions,	with	Python
At	last	we	get	to	 ,	the	machine	learning.	In	Python	it	is	a	two-step	process:

1.	 Create	an	object	for	your	machine-learning	algorithm,	and	optionally	specify	parameters
for	it:

m	=	h2o.estimators.deeplearning.H2ODeepLearningEstimator()

2.	 Tell	it	to	train	and	which	data	sets	to	use:

m.train(x,	y,	train)

If	you	prefer	scikit-learn	style,	you	can	instead	write:

from	h2o.estimators.deeplearning 	import	H2ODeepLearningEstimator
m	=	H2ODeepLearningEstimator()
m.train(x,	y,	train)

No	parameters	to	the	constructor	means	the	model	is	built	with	all	defaults,	which	means
(amongst	other	things):	two	hidden	layers,	each	with	200	neurons,	and	10	epochs	of	training.
(Chapter	8	will	define	“neurons”	and	“epochs"―but	don’t	go	there	yet.	The	important	point	is
that	default	settings	are	usually	quite	quick	to	train,	just	a	few	seconds	on	this	iris	data.)

As	with	the	data	sets,	m	is	a	class	wrapper	around	a	handle,	pointing	to	the	actual	model	stored
on	the	H2O	cluster.	If	you	print	m	you	get	a	lot	of	details	of	how	the	training	went,	or	you	can
use	member	functions	to	pull	out	just	the	parts	you	are	interested	in—e.g.,	m.mse()	tells	me
the	MSE	(mean	squared	error)	is	0.01097.	(There	is	a	random	element,	so	you	are	likely	to
see	slightly	different	numbers. )

m.confusion_matrix(train)	gives	the	confusion	matrix,	which	not	only	shows	how	many	in
each	category	it	got	right,	but	which	category	is	being	chosen	when	it	got	them	wrong.	The
results	shown	here	are	on	the	120	training	samples:

Iris-setosa Iris-versicolor Iris-virginica Error Rate

42 0 0 0 0	/	42

0 37 1 0.0263158 1	/	38

0 1 39 0.025 1	/	40

42 38 40 0.0166667 2	/	120

In	this	case	I	see	it	matched	all	42	setosa	perfectly,	but	it	thought	one	versicolor	was	a
virginica,	and	one	virginica	was	a	versicolor.
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The	final	line	of	the	listing,	 ,	was	p	=	m.predict(test),	and	it	makes	predictions	using	this
model,	and	puts	them	in	p.	Here	are	a	few	of	the	predictions.	The	leftmost	column	shows
which	category	it	chose.	The	other	columns	show	the	probability	it	has	assigned	for	each
category	for	each	test	sample.	You	can	see	it	is	over	99.5%	certain	about	all	its	answers	here:

predict Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 0.999016 0.000983921 1.90283E-019

Iris-setosa 0.998988 0.00101178 1.40209E-020

Iris-versicolor 5.22035E-005 0.997722 0.00222536

Iris-versicolor 0.000275126 0.995354 0.00437055

Just	as	before,	this	is	a	frame	on	the	H2O	cluster,	so	when	you	see	it,	you	only	you	see	a
preview,	the	first	10	rows.	To	see	all	30	predictions	you	need	to	download,	which	is	done	with
p.as_data_frame().	If	you	don’t	have	pandas	installed,	you	get	a	nested	list,	something	like
this:

[['predict',	'Iris-setosa',	'Iris-versicolor',	'Iris-virginica'],
		['Iris-setosa',	'0.9990160791818314',	'9.83920818168421E-4',
		'1.9028267028039464E-19'],	['Iris-setosa',	'0.9989882189908829',	...
...,	['Iris-virginica',	'1.72617432126E-11',	'1.0197263306598747E-4',
		'0.9998980273496721']]

You	could	do	analysis	with	that.	However,	H2O’s	Python	API	integrates	with	pandas,	and	if
you	are	using	Python	for	data	work,	chances	are	you	already	know	and	use	it.	(If	not,	install
pip	pandas	should	be	all	you	need	to	install	it.)	As	long	as	you	have	installed	pandas,
p.as_data_frame()	will	instead	give:

												predict			Iris-setosa		Iris-versicolor		Iris-virginica
0							Iris-setosa		9.990161e-01									0.000984				1.902827e-19
1							Iris-setosa		9.989882e-01									0.001012				1.402089e-20
...

What	else	can	we	do?	Chapter	2	will	delve	into	this	topic	further,	but	how	about	(p["predict"]
==	test["class"]).mean()	to	tell	us	the	percentage	of	correct	answers?	Or
p["predict"].cbind(test["class"]).as_data_frame()	to	give	a	two-column	output	of	each
prediction	against	the	correct	answer:

												predict												class
0							Iris-setosa						Iris-setosa
1							Iris-setosa						Iris-setosa
...
11		Iris-versicolor		Iris-versicolor
12			Iris-virginica		Iris-versicolor

http://pandas.pydata.org


13		Iris-versicolor		Iris-versicolor
14			Iris-virginica		Iris-versicolor
15		Iris-versicolor		Iris-versicolor
...
28			Iris-virginica			Iris-virginica
29			Iris-virginica			Iris-virginica



Training	and	Predictions,	with	R
In	R,	 ,	the	machine	learning	is	a	single	function	call,	with	parameters	and	training	data	being
given	at	the	same	time.	As	a	reminder,	the	command	was:	m	<-	h2o.deeplearning(x,	y,	train).
(In	fact,	I	used	m	<-	h2o.deeplearning(x,	y,	train,	seed	=	99,	reproducible	=	TRUE)	to	get
repeatable	results,	but	you	generally	don’t	want	to	do	that	as	it	will	only	use	one	core	and	take
longer.)

Just	like	with	the	data,	the	model	is	stored	on	the	H2O	cluster,	and	m	is	just	a	handle	to	it.
h2o.mse(m)	tells	me	the	mean	squared	error	(MSE)	was	0.01097.	h2o.confusionMatrix(m)
gives	the	following	confusion	matrix	(on	the	training	data,	by	default):

Confusion	Matrix:	vertical:	actual;	across:	predicted
											setosa	versicolor	virginica		Error						Rate
setosa									42										0									0	0.0000	=		0	/	42
versicolor						0									37									1	0.0263	=		1	/	38
virginica							0										1								39	0.0250	=		1	/	40
Totals									42									38								40	0.0167	=	2	/	120

So,	a	perfect	score	on	the	setosa,	but	one	versicolor	wrong—it	thought	it	was	a	virginica—
and	one	virginica	it	thought	was	a	versicolor.	The	bottom	right	tells	us	it	therefore	had	an
error	rate	of	1.67%.	(Remember	this	was	on	the	data	it	had	seen.)

The	final	line	of	the	listing,	 	,	was	p	<-	h2o.predict(m,	test)	and	it	makes	predictions	using
the	model	m.	Again,	p	is	a	handle	to	a	frame	on	the	H2O	server.	If	I	output	p	I	only	see	the
first	six	predictions.	To	see	all	of	them	I	need	to	download	the	data.	When	working	with
remote	clusters,	or	big	data…	sorry,	Big	Data™,	be	careful	here:	you	will	first	want	to
consider	how	much	of	your	data	you	actually	need	locally,	how	long	it	will	take	to	download,
and	if	it	will	even	fit	on	your	machine.

By	typing	as.data.frame(p)	I	see	all	30	predictions	(just	a	few	shown	here):

predict									Iris-setosa		Iris-versicolor		Iris-virginica
-----------					-----------		---------------		--------------
Iris-setosa					0.999016					0.0009839								1.90283e-19
Iris-setosa					0.998988					0.0010118								1.40209e-20
Iris-setosa					0.999254					0.0007460								9.22466e-19
...
Iris-virginica		1.5678e-08			0.3198963								0.680104
Iris-versicolor	2.3895e-08			0.9863869								0.013613
...
Iris-virginica		3.9084e-14			2.192105e-06					0.999998

The	predict	column	in	the	first	row	is	the	class	it	is	predicting	for	the	first	row	in	the	test	data.
The	other	three	columns	show	its	confidence.	You	can	see	it	is	really	sure	that	it	was	a	setosa.
If	you	explore	the	predictions	you	will	see	it	is	less	sure	of	some	of	the	others.

The	next	question	you	are	likely	to	have	is	which	ones,	if	any,	did	H2O’s	model	get	wrong?



The	correct	species	is	in	test$class,	while	deep	learning’s	guess	is	in	p$predict.	There	are	two
approaches	so,	based	on	what	you	know	so	far,	have	a	think	about	the	difference	between	this:

as.data.frame(	h2o.cbind(p$predict,	test$class)	)

and:

cbind(	as.data.frame(p$predict),	as.data.frame(test$class)	)

In	the	first	approach,	p$predict	and	test$class	are	combined	in	the	cluster	to	make	a	new	data
frame	in	the	cluster.	Then	this	new	two-column	data	frame	is	downloaded.	In	the	second
approach,	one	column	from	p	is	downloaded	to	R,	then	one	column	from	test	is	downloaded,
and	then	they	are	combined	in	R’s	memory,	to	make	a	two-column	data	frame.	As	a	rule	of
thumb,	prefer	the	first	way.

In	my	case	(your	results	might	differ	slightly)	this	gives	(I’ve	put	an	asterisk	by	the	two	cases
it	got	wrong):

							predict				class
1						setosa					setosa
2						setosa					setosa
3						setosa					setosa
4						setosa					setosa
5						setosa					setosa
6						setosa					setosa
7						setosa					setosa
8						setosa					setosa
9		versicolor	versicolor
10	versicolor	versicolor
11	versicolor	versicolor
12	versicolor	versicolor
13		virginica	versicolor		*
14	versicolor	versicolor
15		virginica	versicolor		*
16	versicolor	versicolor
17	versicolor	versicolor
18	versicolor	versicolor
19	versicolor	versicolor
20	versicolor	versicolor
21		virginica		virginica
22		virginica		virginica
23		virginica		virginica
24		virginica		virginica
25		virginica		virginica
26		virginica		virginica
27		virginica		virginica
28		virginica		virginica
29		virginica		virginica
30		virginica		virginica



Another	way	we	could	analyze	our	results	is	by	asking	what	percentage	the	H2O	model	got
right.	In	R	that	can	be	done	with	mean(p$predict	==	test$class),	which	tells	me	0.933.	In	other
words,	the	model	guessed	93.3%	of	our	unseen	30	test	samples	correctly,	and	got	6.7%
wrong.	As	we	will	see	in	“On	Being	Unlucky”,	you	almost	certainly	got	0.900	(3	wrong),
0.933	(2	wrong),	0.967	(1	wrong),	or	1.000	(perfect	score).



Performance	Versus	Predictions
There	is	another	way	we	could	have	found	out	what	percentage	it	got	right.	It	is	to	not	use
predict()	at	all	but	instead	use	h2o.performance(m,	test)	in	R,	or	m.model_performance(test)
in	Python.	This	doesn’t	tell	us	what	the	individual	predictions	were,	but	instead	gives	us	lots	of
statistics:

ModelMetricsMultinomial:	deeplearning
**	Reported	on	test	data.	**

MSE:	0.0390774346788
R^2:	0.934384904457
LogLoss:	0.122561507096

Confusion	Matrix:	vertical:	actual;	across:	predicted

Iris-setosa				Iris-versicolor				Iris-virginica				Error						Rate
-------------		-----------------		----------------		---------		------
8														0																		0																	0										0	/	8
0														10																	2																	0.166667			2	/	12
0														0																		10																0										0	/	10
8														10																	12																0.0666667		2	/	30

Top-3	Hit	Ratios:
k				hit_ratio
---		-----------
1				0.933333
2				1
3				1

The	hit	ratio	section	at	the	end	tells	us	the	same	0.933	number.	(The	1	in	the	second	row	means
it	was	100%	accurate	if	allowed	two	guesses.)	Above	that,	the	confusion	matrix	tells	us	that	it
incorrectly	guessed	two	virginica	samples	as	being	versicolor.

WARNING
If	we	study	the	confidence	of	our	predictions	we	see	the	correct	answers	are	mostly	over	0.99,	with	the	least-
confident	correct	answer	being	0.97.	What	about	our	incorrect	answers?	Test	row	13	was	0.45	versus	0.55	(the
machine-learning	version	of	a	teenager’s	sullen	shrug)	and	test	row	15	was	0.07	versus	0.93.

This	is	great,	as	it	means	we	can	mark	results	with	confidence	below	0.97	as	suspicious.	In	a	medical	application
that	could	mean	doing	another	test	to	get	a	second	opinion;	in	a	financial	trading	application	(or	a	poker	app)	it
could	mean	sit	this	one	out,	too	risky.

But!!	Hopefully	you	got	suspicious	as	soon	as	I	said,	“This	is	great!”	We’re	choosing	our	cutoff	criteria	of	0.97
based	on	looking	at	our	test	results,	after	being	told	the	correct	answers.	All	parameters	used	to	interpret	the	test
results	must	only	be	based	on	our	training	data.	(“Valid	Versus	Test?”	in	Chapter	2	will	touch	on	how	you	could
use	a	validation	data	set	for	this,	though.)



On	Being	Unlucky
This	is	a	good	time	to	consider	how	randomness	affects	the	results.	To	find	out,	I	tried
remaking	the	model	100	times	(using	random	seeds	1	to	100).	52	times	the	model	got	two
wrong,	and	48	times	it	got	one	wrong.	Depending	on	your	perspective,	the	random	effect	is
either	minor	(93%	versus	97%),	or	half	the	time	it	is	twice	as	bad.	The	result	set	I	analyzed	in
the	previous	section	was	one	of	the	unlucky	ones.

What	about	the	way	we	randomly	split	the	data	into	training	and	test	data?	How	did	that	affect
things?	I	tried	25	different	random	splits,	which	ended	up	ranging	from	111/39	to	130/20,	and
made	20	models	on	each.	(Making	these	500	models	took	about	20	minutes	on	my	computer;
sadly	this	experiment	is	not	so	practical	with	the	larger	data	sets	we	will	use	later	in	the	book.)

It	seems	the	randomness	in	our	split	perhaps	matters	more	than	the	randomness	in	our
model, 	because	one	split	gave	a	perfect	score	for	all	of	its	20	models	(it	had	129	rows	to
train	from,	21	to	test	on),	whereas	another	only	averaged	90%	(it	had	114	to	train	from,	36	to
test	on).	You	are	thinking	“Aha!	The	more	training	data,	the	better?”	Yet	the	split	that	had	130
training	rows	only	managed	90%	on	almost	all	its	models.

But	wait,	there’s	more!	The	single	most	important	learning	from	this	little	experiment,	for	me
at	least,	was	that	85	of	the	500	models	(17%)	gave	a	perfect	score.	Typically	you	will	use	just
one	split,	and	make	one	model;	17%	of	the	time	you’d	be	tricked	into	thinking	your	model
parameters	were	good	enough	for	perfection.

A	year	or	two	ago,	it	was	in	the	news	that	64%	of	psychology	experiments	(published	in	top
journals)	could	not	be	reproduced.	I	suspect	this	kind	of	bad	luck 	was	involved	in	a	few	of
them.
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Flow
Flow	is	the	name	of	the	web	interface	that	is	part	of	H2O	(no	extra	installation	step	needed).	It
is	actually	just	another	client,	written	in	CoffeeScript	(a	JavaScript-like	language)	this	time,
making	the	same	web	service	calls	to	the	H2O	backend	that	the	R	or	Python	clients	are
making.	It	is	fully	featured,	by	which	I	mean	that	you	can	do	all	of	the	following:

View	data	you	have	uploaded	through	your	client

Upload	data	directly

View	models	you	have	created	through	your	client	(and	those	currently	being	created!)

Create	models	directly

View	predictions	you	have	generated	through	your	client

Run	predictions	directly

You	can	find	it	by	pointing	your	browser	to	http://127.0.0.1:54321.	Of	course,	if	you	started
H2O	on	a	nonstandard	port,	change	the	:54321	bit,	and	if	you	are	accessing	a	remote	H2O
cluster,	change	the	127.0.0.1	bit	to	the	server	name	of	any	node	in	the	cluster	(the	public	DNS
name	or	IP	address,	not	the	private	one,	if	it	is	a	server	with	both).	When	you	first	load	Flow
you	will	see	the	Flow	menu,	as	shown	in	Figure	1-4.

https://en.wikipedia.org/wiki/CoffeeScript
http://127.0.0.1:54321


Data
Let’s	import	the	same	Iris	data	set	we	did	in	the	R	and	Python	examples.	From	the	start	screen
click	the	“importFiles”	link,	or	from	the	menu	at	the	top	of	the	screen	choose	Data	then
Import	Files.	Paste	the	location	of	the	csv	file	into	the	search	box,	then	select	it,	then	finally
click	the	Import	button;	see	Figure	1-5.

Figure	1-4.	The	Flow	menu

Figure	1-5.	Import	files



Now	click	“Parse	These	Files,”	and	it	gives	you	the	chance	to	customize	the	settings	as	shown
in	Figure	1-6,	but	in	this	case	just	accepting	the	defaults	is	fine.

If	you	choose	“getFrames”	from	the	main	menu,	either	after	doing	the	preceding	steps	or
after	loading	the	data	from	R	or	Python,	you	would	see	an	entry	saying	“iris_wheader.hex”
and	that	it	has	150	rows	and	5	columns.	If	you	clicked	the	“iris_wheader.hex”	link	you	would
see	Figure	1-7.

You	should	see	there	are	buttons	to	split	the	data	(into	training/test	frames),	or	build	a	model,
and	also	that	it	lists	each	column.	Importantly	it	has	recognized	the	“class”	column	as	being	of
type	enum,	meaning	we	are	ready	to	do	a	classification.	(If	we	wanted	to	do	a	regression	we
could	click	“Convert	to	numeric”	in	the	Actions	column.)

Click	Split	(the	scissors	icon),	then	change	the	0.25	to	0.2.	Under	“Key,”	rename	the	0.80	split
to	“train”	and	the	other	to	“test.”

Figure	1-6.	Set	up	file	parsing	in	Flow



Figure	1-7.	Data	frame	view	in	Flow



Models
Following	on	from	the	previous	example,	click	“train,”	then	click	“Build	Model”	(a	cube
icon).	From	the	algorithms,	choose	Deep	Learning.

Loads	and	loads	of	parameters	appear.	You	only	need	to	set	one	of	them,	near	the	top:	from
the	“response_column”	drop-down,	choose	“class.”	The	defaults	for	everything	else	are
good,	so	scroll	down	past	them	all,	and	click	“Build	Model.”	You	should	see	something	like
the	output	in	Figure	1-8.

Now	click	the	“View”	button	(a	magnifying	glass	icon).	Alternatively,	if	you	previously	made
some	models	(whether	in	R,	Python,	or	Flow),	choose	“Model”	from	the	main	menu,	then
“List	All	Models,”	and	click	the	one	of	interest.	As	you	can	see	in	Figure	1-9,	you	get	a
graphical	output;	other	options	allow	you	to	see	the	parameters	the	model	was	built	with,	or
how	training	progressed.



Predictions
You	can	do	the	full	load-model-predict	cycle	in	Flow.	From	the	model	view	click	“Predict”
(the	lightning	icon).	(Or,	choose	“Score”	from	the	main	menu,	then	“Predict,”	and	choose	the
model	from	there.)

Figure	1-8.	A	deep	learning	model	in	Flow

Figure	1-9.	Study	of	a	model	from	Flow



Choose	the	“test”	data	frame,	and	click	the	Predict	button	to	set	it	going.	You	will	see	results
like	Figure	1-10.

Figure	1-10.	A	prediction	in	Flow



Other	Things	in	Flow
The	Flow	commands	you	see	can	be	saved	as	scripts,	and	loaded	back	in	later.	But,	there	are
some	things	you	can	do	with	the	R	and	Python	APIs	that	you	cannot	do	in	Flow,	principally,
merging	data	sets	(either	by	columns	or	by	rows),	and	data	manipulation	(which	we	will	be
taking	a	look	at	very	soon,	in	Chapter	2).

So,	for	some	users,	Flow	can	do	all	you	need,	but	most	of	us	will	want	to	use	R	or	Python.	I
will	not	be	showing	Flow	examples	in	the	rest	of	the	book,	though	the	knowledge	learned	as
we	look	at	the	algorithm	parameters	in	later	chapters	can	be	directly	applied	to	models	built	in
Flow.

Having	said	that,	Flow	can	be	useful	to	you	even	if	you	intend	to	only	use	R	or	Python.	If	you
load	data	from	R/Python	you	can	see	it	in	Flow.	If	you	load	data	in	Flow,	you	can	see	it	in
R/Python.	Even	better,	you	can	start	a	long-running	model	from	Python	or	R,	then	go	over	to
Flow	and	get	immediate	feedback	on	how	the	training	is	going.	Seeing	unexpected
performance,	you	might	realize	you	forgot	something,	kill	it,	and	thus	avoid	wasting	hours	of
CPU	time.	And	the	Water	Meter	found	under	the	Admin	menu	is	a	very	useful	way	to	see	how
hard	each	CPU	core	in	your	cluster	is	working.



Summary
In	this	first	chapter	we	have	covered	a	lot	of	ground:

Installing	H2O	for	R	and	Python

Importing	data,	making	models,	and	making	predictions…

…in	any	of	R,	Python,	or	the	browser-based	Flow	UI

And	we	had	a	bit	of	fun,	wearing	the	shades,	and	deep	learning	our	data	like	a	boss.

We	also	glossed	over	quite	a	few	options,	and	the	next	chapter	(well,	in	fact,	the	whole	rest	of
the	book)	will	start	digging	in	deeper.	But	keep	the	shades	handy,	there	is	lots	of	fun	still	to	be
had.

	Chapter	10	shows	some	alternative	ways	to	install	H2O	(see	“Installing	the	Latest	Version”)
including	how	to	compile	it	from	source.	You	might	want	to	do	this	if	you	hit	a	bug	that	has
only	been	fixed	in	the	latest	development	version,	or	if	you	want	to	start	hacking	on	H2O
itself.

	http://bit.ly/2f96Hyu	as	of	June	2016.

	The	“Server	JRE”	or	“JRE”	choices	may	work	with	H2O,	but	I	recommend	you	always
install	the	JDK.

	CRAN	is	R’s	package	manager.	See	https://cran.r-project.org/	to	learn	more	about	it.

	It	is	the	ability	to	make	inferences	like	this	that	separate	the	common	herd	from	the	data
scientist.

	See	http://bit.ly/2gn5h6e	for	how	to	query	your	Java	installation	and	get	the	default	for	your
system.

	You	perhaps	see	some	deprecation	warnings?	For	the	screenshot	I	ignored	them	with	import
warnings;warnings.filterwarnings("ignore",	category=DeprecationWarning),	but	normally	I
ignore	them	by	turning	a	blind	eye.

	At	least,	as	of	version	3.10.x.x	and	earlier.

	The	R	and	Python	APIs	also	call	it	y;	in	the	REST	API	it	is	called	response_column.

	The	APIs	also	call	this	x,	though	if	you	ever	poke	your	nose	into	the	REST	API,	you	will
see	it	actually	receives	the	complement	of	x:	the	list	of	field	names	to	not	use,	called
ignored_columns.

	If	you	are	unfamiliar	with	these,	the	difference	between	validation	and	test	data,	and
validation	and	cross-validation,	is	covered	in	Chapter	3.
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	Experiment	with	seed	to	get	an	exact	split.	For	example,	h2o.splitFrame(data,	0.8,	seed=99)
works	for	me.	In	Python:	data.split_frame([0.8],seed=99).

	I	used	h2o.deeplearning(x,	y,	train,	seed	=	99,	reproducible	=	TRUE)	to	get	repeatable
numbers	for	this	book.

	This	is	more	common	with	small	data	sets	like	Iris;	with	larger	data	sets	it	is	less	likely	to
happen	unless,	for	instance,	one	category	in	an	enum	column	is	much	rarer	than	other
categories.

	Bad	luck	from	the	point	of	view	of	a	healthier,	happier,	human	society.	Of	course,	it	was
good	luck	for	the	person	needing	a	paper	accepted	by	a	journal!

12

13

14

15



Chapter	2.	Data	Import,	Data	Export

There	was	a	joke	going	around,	recently,	that	went	like	this:

In	data	science,	80	percent	of	time	is	spent	in	preparing	data,	20	percent	of	time	is	spent
complaining	about	the	need	to	prepare	data.

Sad,	but	true.	H2O	provides	some	functions	to	make	the	process	a	bit	easier,	but	ultimately
you	are	still	going	to	be	spending	a	lot	of	time	finding	data	sets,	understanding	them,
moaning	about	them,	repairing	them,	importing	them,	and	more	moaning	about	them.
However,	it	won’t	be	80%	of	your	time	any	more…	The	new	80%	is	spent	tweaking	machine
learning	parameters	and	drinking	tea	waiting	for	your	neural	nets	to	overfit.	(At	least	until
you	read	about	“Early	Stopping”	in	Chapter	4.	And	“Grid	Search”	in	Chapter	5.)

This	chapter	will	cover	getting	data	into	H2O,	manipulating	data	in	H2O,	and	getting	data	out
of	H2O.	The	skills	will	be	used,	in	context,	in	later	chapters.

1



Memory	Requirements
For	deciding	how	much	memory	your	cluster	needs,	in	total,	to	be	able	to	build	models	and
run	predictions	against	the	full	data	set,	H2O	recommends	four	times	the	size	of	the	data.	As
an	example,	you	have	100	million	rows,	which	is	5GB	when	zipped	on	disk,	and	maybe	takes
up	10GB	in	H2O’s	memory	(it	is	stored	compressed,	but	not	as	tightly	as	a	ZIP	or	GZIP	file).
So	you	need	about	40GB	of	memory.	If	your	cluster	is	made	up	of	machines	each	with	16GB
of	memory,	you	should	be	looking	at	using	three	machines,	though	you	might	get	away	with
two.

I	will	introduce	clusters	later	(“Clusters”	in	Chapter	10),	but	the	largest	data	set	we	use	in	this
book	is	70,000	rows	and	takes	up	32MB	in	H2O’s	memory.	However,	if	you	are	doing	a	lot	of
data	munging,	or	experimenting	with	a	lot	of	models,	you	can	go	through	much	more	than	the
four	times	guideline.

TIP
You	can	use	your	usual	tools,	such	as	w	and	top	on	Linux,	to	monitor	server	load,	but	I	recommend	you	take	a
look	at	the	Water	Meter,	found	under	the	Admin	menu	in	Flow.	It	shows	how	busy	each	core	of	each	node	is.
Cluster	Status	under	that	same	menu	is	a	good	one	for	keeping	an	eye	on	memory	usage	(also	available	from	the
R	and	Python	APIs	if	you	have	something	against	using	Flow).	The	key	number	to	pay	attention	to	is	the	“free”
number	in	the	“GC”	columns.	If	it	goes	below	twice	the	size	of	a	training	data	set	you	plan	to	use	to	make	a	model
from,	it	would	be	worth	trying	to	free	up	some	memory	first;	and	if	it	is	less	than	the	size	of	the	training	data,	your
model	is	unlikely	to	build	successfully.



Preparing	the	Data
Before	we	look	at	how	to	get	data	into	H2O,	we	need	to	take	a	step	back	and	consider	what	we
might	need	to	do	with	our	data.	Broadly	speaking,	that	means:

Split	it	into	two	or	three	data	sets	(train/valid/test)

Mark	field	data	types	(numeric/integer/enum)

Name	fields

Sort	out	missing	values	and	other	bad	data

Merge	data	sets

Add	new	data	columns

Knowledge	engineering,	aka,	The	Fun	Bit,	is	part	of	the	last	of	those	items.

For	each	of	those	you	have	an	important	decision:	before	loading	the	data	into	H2O,	or
afterwards.	The	bigger	your	data	the	more	thought	you	need	to	give	to	this	decision,	and	you
will	need	to	factor	in	such	things	as	your	budget,	your	deadlines,	and	if	this	is	a	one-off	or	if
you	are	getting	new	data	each	month,	each	day,	each	hour,	each	millisecond…

As	a	rule	of	thumb,	if	your	data	fits	in	one-eighth	of	the	memory	of	the	best	single	machine
you	have,	then	don’t	worry	about	whether	to	pre-process	data	before	or	after	loading	into
H2O;	just	do	the	first	approach	that	occurs	to	you,	and	fix	it	if	you	realize	a	different	way	was
better.	But	if	it	doesn’t,	either	get	a	bigger	boat	(to	paraphrase	Jaws),	or	do	all	your
experiments	and	planning	on	a	subset	of	the	data,	as	suggested	in	the	following	sidebar.



SCALING	AND	PRODUCTIVITY

However	fast	your	hardware,	however	much	memory	your	cluster	has,	if	your	data	is	big
then	you	are	going	to	end	up	sitting	around	waiting	for	both	data	manipulations	and
models	to	finish.	And	each	time	you	get	something	wrong	that	was	time	wasted.	Here	is
my	advice:	use	the	smallest	subset	of	data	that	is	representative.

Now,	the	definition	of	representative	can	be	quite	subjective,	and	can	vary	by	what	you
want	to	do	with	it,	but	if	you	can	get	away	with	1000	rows	or	less,	you	will	be	nice	and
productive.	Statistics	can	help	confirm	a	sample	is	representative:	mean,	median,	standard
deviation	(s.d.),	etc.	If	you	have	100	million	rows	of	data,	how	about	randomly	sampling
1000	from	each	of	the	first	million,	the	middle	million,	and	the	last	million,	and
confirming	the	mean	and	s.d.	match	on	all	columns?	Also	plot	a	histogram	for	each
column,	to	be	sure	the	distribution	is	the	same.	(There	are	some	normality	tests,	e.g.,
sharipo.test()	in	R,	which	can	give	you	a	number	if	you	don’t	want	to	trust	your	eyes.)

Now	do	all	your	experiments	on	that	subset.	Get	the	whole	pipeline	working,	so	you	know
how	new	data	is	coming	in,	what	you	pre-process	and	what	you	process	in	H2O,	what
reports	are	needed,	which	model(s)	and	model	parameters	you	will	be	using,	how
frequently	new	data	arrives.	Everything.

Change	the	subset	you	work	with	at	least	as	often	as	you	change	your	clothes,	to	make
sure	you	don’t	make	bad	assumptions	and	don’t	overfit.	You	there,	in	the	brown	shirt,	I
was	thinking	daily,	not	weekly.

Once	happy,	it	is	time	to	test	the	scaling.	Double	the	amount	of	data,	and	test	your	whole
process.	Then	increase	it	again,	so	it	takes	up	nearer	to	one	quarter	of	the	memory	of	a
single	machine,	and	test	again.	How	linearly	did	it	scale?	And	did	results	get	better	or
worse?	There	is	more	data,	so	you	should	be	getting	a	better	model.	But	maybe	you	have	a
bug,	or	maybe	you	need	more	epochs	or	more	trees	(because	there	are	more	concepts	to
learn	now).

Next,	split	it	across	a	cluster	of	two	machines.	Then	use	four	machines	and	double	the	data
again.	How	did	all	that	affect	the	scaling?	By	this	point	you	should	have	a	fair	idea	of	how
many	machines	you	will	need	to	handle	the	whole	data	set,	and	(from	measuring	how	the
results	improved)	how	much	business	value	you	will	get	from	going	to	that	trouble.



Getting	Data	into	H2O
To	use	the	H2O	machine-learning	algorithms	the	data	must	be	in	the	H2O	cluster;	all	that
exists	on	your	client	is	a	handle	(a	pointer)	to	H2O’s	data	frame.	This	might	frustrate	you	at
times,	but	it	is	what	allows	you	to	deal	with	big	data	sets	that	won’t	fit	on	any	single	machine
in	your	cluster,	let	alone	on	the	pokey	little	notebook	you	are	running	the	client	on.	H2O
provides	quite	a	few	ways	to	import	data,	and	we	will	look	at	each	here.



Load	CSV	Files
In	the	previous	chapter	our	iris	data	was	in	a	csv	file	on	a	remote	web	server.	This	is	a	good
approach,	because	it	will	work	equally	well	if	you	are	using	your	local	machine	or	a	remote
cluster	in	the	cloud.	You	can	use	files	on	S3	(Amazon’s	cloud	file	storage)	or	HDFS	(the
filesystem	of	a	Hadoop	cluster).	You	can	also	use	files	stored	on	local	disk.

When	client	and	H2O	cluster	are	on	the	same	machine,	relative	file	paths	usually	work.	If	a
relative	path	import	is	not	working,	trying	the	full	path	is	a	good	first	troubleshooting	step.
All	the	online	code	uses	relative	paths,	by	assuming	“code”	and	“data	sets”	are	sibling
directories.	Start	your	Jupyter,	IPython,	RStudio,	or	R	session	in	the	code	directory,	or	edit	the
scripts	to	use	full	paths.

NOTE
Python	examples	are	shown	in	this	section;	the	R	API	is	the	same	for	all	these,	but	use	h2o.importFile	instead	of
h2o.import_file.	You	can	also	load	data	(with	all	the	same	options)	from	the	browser-based	Flow	interface;	see
“Data”	in	Chapter	1.

Here	are	some	of	the	possible	upload	paths	you	can	use:

df	=	h2o.import_file("hdfs://namenode/user/path/to/my.csv")
df	=	h2o.import_file("s3://<AWS_ACCESS_KEY>:<AWS_SECRET_KEY>@mybucket/my.csv")
df	=	h2o.import_file("https://s3.amazonaws.com/mybucket/my.csv")
df	=	h2o.import_file("/path/to/my.csv")

If	the	data	file	is	compressed	it	will	be	automatically	decompressed	for	you.

If	you	are	interested	in	what	is	going	on	internally	when	loading,	especially	when	you	have	a
multinode	cluster,	there	are	some	helpful	diagrams	in	the	H2O	architecture	documentation.

For	S3,	you	can	also	specify	your	AWS	credentials	when	starting	h2o.jar;	see	“Running	from
the	Command	Line”	in	Chapter	10.	If	you	have	a	forward	slash	in	your	AWS	credentials,
putting	them	in	the	URL	won’t	work.	Regenerating	your	AWS	key,	until	you	get	one	without	a
slash,	is	often	recommended	(the	forward	slash	will	stop	some	command-line	tools	from
working	too)!	If	you	have	trouble	with	“s3://”	you	can	also	try	“s3n://”	which	is	an	older
version,	using	a	different	library	under	the	hood.	By	the	way,	when	importing	to	a	multinode
cluster,	each	node	will	be	doing	a	range	GET	request	to	S3,	for	quicker	loading.

You	can	specify	a	list	of	file	paths, 	as	follows:

df	=	h2o.import_file(["/path/to/my1.csv",	"/path/to/my2.csv"])

It	returns	one	merged	data	frame,	which	means	each	file	must	have	exactly	the	same	columns.
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It	is	equivalent	to	importing	each	file	individually,	then	rbind-ing	the	parts	together,	but	can	be
considerably	quicker 	and	also	doesn’t	leave	you	with	lots	of	file	parts	cluttering	up	your
server.

What	if	the	file	is	on	your	local	machine	(which	is	different	to	the	machine	your	cluster	is
on)?	Then	you	have	two	choices:

Put	the	file	directly	on	the	cluster	machine,	or	on	a	web	server,	S3,	a	Hadoop	cluster,	etc.,
and	continue	to	use	h2o.import_file()

Use	h2o.upload_file()	instead	of	h2o.import_file()

If	this	is	a	one-off,	the	second	way	is	simplest.	If	the	data	is	big,	use	the	first	way.	If	you	expect
to	be	regularly	starting	up	the	H2O	cluster	and	loading	this	data,	the	first	way	is	also	superior.
If	the	data	is	not	static,	but	regularly	changing,	then	use	whichever	approach	is	easiest	for
updating	the	file.

What	about	the	other	situation,	when	you	have	a	remote	multinode	H2O	cluster,	but	you	want
to	use	the	filesystem	on	it?	See	“Clusters”	for	that.

You	can	rename	data	columns	after	importing,	and	you	can	change	column	types	after
importing,	but	it	is	more	efficient	if	they	are	correctly	set	when	doing	the	import.	H2O	does	a
good	job	of	detecting	if	the	first	row	contains	column	names,	but	if	your	data	does	not	have
column	names	you	can	set	them	with	col_names	(col.names	in	R).	Similarly,	you	can	set	the
column	data	types	with	col_types	(col.types	in	R). 	(Remember,	you	don’t	specify	"integer"
versus	"real":	you	specify	"numeric"	and	it	will	analyze	the	data	to	decide	which	it	is.)

For	instance,	the	next	Python	example	takes	a	csv	file	that	has	no	header	row,	and	shows	how
to	explicitly	specify	the	column	names	and	the	column	types:

data	sets	=	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	=	h2o.import_file(data	sets	+	"iris.csv",
		col_names=[
				"Sepal	length",	"Sepal	width","Petal	length",	"Petal	width",	"Species"
				],
		col_types=[
				"numeric",	"numeric",	"numeric",	"numeric",	"enum"
				]
		)

Here	is	the	same	example	in	R:

data	sets	<-	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	<-	h2o.importFile(paste0(data	sets,	"iris.csv"),
		col.names	=	c(
				"Sepal	length",	"Sepal	width",	"Petal	length",	"Petal	width",	"Species"
				),
		col.types	=	c(
				"numeric",	"numeric",	"numeric",	"numeric",	"enum"
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				)
		)

When	you	import	or	upload	a	file,	the	frame	is	given	some	unique	name.	For	example,
running	the	preceding	code	I	got	“iris.hex_sid_9739_3”.	If	you’d	like	to	have	it	use
meaningful	names,	then	specify	destination_frame	(for	once,	the	argument	name	is	exactly	the
same	in	R	as	in	Python).

Another	reason	you	might	want	to	specify	destination_frame	explicitly	is	because	when	a
frame	is	uploaded,	and	the	same-named	frame	already	exists,	then	it	is	quietly	replaced.	This
is	great	if	you	are	uploading	new	versions	of	the	data,	because	as	long	as	you	use	the	same
name,	you	don’t	need	to	worry	about	the	old	versions	clogging	up	memory.	(Be	very	careful,
as	this	invalidates	any	handles	that	pointed	to	the	previously	uploaded	version;	see	“Using
as.h2o()	in	a	Function”.)



Load	Other	File	Formats
H2O	also	supports	a	few	alternative	formats,	not	just	CSV.	You	import/upload	exactly	as	with
csv	files.	If	you	ever	have	trouble	with	the	autodetection,	you	can	specify	the	optional
parse_type	argument,	to	be	one	of:

CSV

Comma-separated	(or	tab-separated,	semicolon-separated,	etc.).	You	can	specify	sep,	or
leave	H2O	to	work	it	out.

ARFF

A	text-based	format,	used	by	WEKA.	See	https://weka.wikispaces.com/ARFF	for	details	on
the	format.

XLS

Excel	files.

SVMLight

A	sparse	data	format.	Remember	it	will	be	expanded	out	when	loaded	into	H2O	(though
H2O’s	in-memory	compression	should	help).

I’ll	just	briefly	mention	h2o.import_sql_table()	and	h2o.import_sql_select()	(identical	naming
in	both	R	and	Python),	which	allow	you	to	bring	in	data	directly	from	an	SQL	database.	You
need	to	specify	the	location	of	the	JDBC	driver	when	starting	H2O.	Please	see	the	online
documentation	for	the	exact	requirements,	the	current	list	of	supported	SQL	systems,	and	any
other	restrictions.

https://weka.wikispaces.com/ARFF


Load	Directly	from	R
Say	you	have	some	R	code	to	take	a	data	set,	analyze	it,	and	add	some	columns	to	it.	How	do
you	then	get	that	data	into	H2O?	You	could	either	save	it	to	a	disk	file,	then	use
h2o.uploadFile()	as	described	earlier,	or	you	could	use	as.h2o(). 	This	function	takes	an	R
data.frame,	turns	it	into	an	H2O	frame,	and	returns	a	handle	to	the	latter.

as.h2o()	can	handle	any	other	data	type	that	R	can	convert	to	a	data.frame,	such	as	matrix,	xts
(time	index	is	quietly	dropped),	vector	(1-column	data	frame	created),	array	(2D	only),	list
(an	N-column,	single	row,	data	frame	is	created),	or	data.table.

As	with	h2o.uploadFile()	and	h2o.importFile(),	you	can	optionally	specify	a	frame	name	(the
name	that	will	be	used	on	the	H2O	cluster)	with	destination_frame;	but	the	default	will	be	to
use	the	name	it	is	called	in	R,	and	that	is	usually	what	you	want	(but	see	“Using	as.h2o()	in	a
Function”	for	when	you	do	need	to	specify	it).
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USING	AS.H2O()	IN	A	FUNCTION

My	intention	in	this	next	code	was	to	use	a	function	to	process	each	data	frame	in	the	same
way	(to	keep	this	example	short,	the	“processing”	is	limited	to	creating	a	new	column	c,
which	is	the	sum	of	the	other	two	columns),	then	upload	it	to	the	H2O	cluster.	What	is
wrong	with	this	code?

uploadIt	<-	function(d){
	d$c	<-	d$a	+	d$b
	as.h2o(d)
	}

d1	<-	uploadIt(	data.frame(a=1:3,	b=2:4)	)
d2	<-	uploadIt(	data.frame(a=9:5,	b=5:1)	)

If	you	run	this	and	then	look	at	the	frames	on	Flow	in	your	browser	(if	Flow	is	new	to
you,	see	“Flow”	in	Chapter	1),	you	will	see	there	is	only	a	single	data	frame,	called	d.
We’ve	lost	one!	And	if	you	try	to	use	d1	from	inside	your	R	script	you	will	get	an	error
message.

The	it’s-a-feature-not-a-bug	that	tripped	me	up	is	that	when	you	upload	a	frame	with	the
name	of	an	existing	frame,	the	old	version	is	quietly	overwritten.	And	the	local	variable
name,	at	the	time	of	the	as.h2o()	call,	is	d.	Not	d1,	not	d2,	but	d!	What	is	happening	is	that
we	upload	our	first	data	frame,	call	it	d,	and	assign	it	to	our	d1	R	variable.	Then	we
upload	another	data	frame,	also	called	d,	which	replaces	the	previous	one,	and	we	assign
it	to	the	d2	R	variable.	d1	is	left	pointing	at	a	frame	that	no	longer	exists.

One	solution	is	to	change	my	function	to	take	an	explicit	frame	name:

uploadIt	<-	function(nm,	d){
	d$c	<-	d$a	+	d$b
	as.h2o(d,	destination_frame	=	nm)
	}

d1	<-	uploadIt("d1",	data.frame(a=1:3,	b=2:4)	)
d2	<-	uploadIt("d2",	data.frame(a=9:5,	b=5:1)	)



Load	Directly	from	Python
You’ve	got	a	table	of	data	in	your	Python	script	and	want	to	push	it	to	H2O,	to	generate	a
model,	or	bind	with	other	data	there.	The	first	solution	is	to	save	it	to	a	csv	file,	then	use
h2o.upload_file()	(or	h2o.import_file()	if	the	file	is	somewhere	visible	to	all	the	nodes	in
your	cluster).

The	other	way	is	to	use	h2o.H2OFrame().	For	instance,	if	your	data	is	in	a	Python	dictionary:

patients	=	{
		'height':[188,	157,	175],
		'age':[29,	33,	65],
		'risk':['A',	'B',	'B']
		}
df	=	h2o.H2OFrame(patients)

df.types	shows	it	correctly	chose	int	for	the	first	two	fields,	and	enum	for	the	final	field;	if	it
hadn’t,	well	the	more	powerful	function	is	h2o.H2OFrame.from_python(),	which	takes	a
Python	type,	but	also	allows	you	to	specify	destination_frame,	column_names,	and
column_types.	Take	a	look	at	the	next	example,	which	has	these	changes:

Set	the	column	types	for	age	to	be	enum.	I	specified	the	other	two	as	None	to	let	them	be
autodetected.	Note:	H2O	sees	the	column	names	in	alphabetical	order,	so	you	must	specify
the	types	in	that	order.

Added	0.1	to	one	of	the	heights.	df.types	confirmed	it	chose	real	instead	of	int	for	that
column.

Gave	the	frame	a	name,	so	it	is	much	easier	to	find	later.	df.frame_id	confirmed	it	worked.

patients	=	{
		'height':[188,	157,	175.1],
		'age':[29,	33,	65],
		'risk':['A',	'B',	'B']
		}
df	=	h2o.H2OFrame.from_python(
		patients,
		column_types=['enum',	None,	None],
		destination_frame="patients"
		)
df.types
df.frame_id

You	can	also	easily	upload	pandas	objects.	If	df	is	your	pandas	object,	then
h2o.H2OFrame(df)	will	do	the	job:

import	pandas	as	pd
patients	=	pd.DataFrame({
		'height':[188,	157,	175.1],



		'age':[29,	33,	65],
		'risk':['A',	'B',	'B']
		})
df	=	h2o.H2OFrame(patients)
df.types
df.frame_id

However,	unlike	the	dictionary,	when	you	examine	df	you	will	see	the	column	names	are	C1,
C2,	and	C3.	So	you	need	to	use	the	more	long-winded	version:

patients	=	pd.DataFrame({
		'height':[188,	157,	175.1],
		'age':[29,	33,	65],
		'risk':['A',	'B',	'B']
		})
df	=	h2o.H2OFrame.from_python(
		patients,
		column_names=patients.columns.tolist()
		)
df.types
df.frame_id



Data	Manipulation
There	are	a	lot	of	operations	you	can	perform	on	your	data,	in	situ	on	the	remote	H2O
cluster,	saving	you	having	to	download	data,	modify	it,	and	then	upload	it	again.	When	the
data	is	too	big	to	fit	in	your	client	machine,	that	can	be	a	lifesaver.



Laziness,	Naming,	Deleting
There	are	two	key	concepts	you	need	to	know	for	successful	H2O	data	manipulation:

Every	change	you	make	involves	a	data	copy.	That	means	the	frame	name	will	change,	too.

A	lot	of	operations	are	lazy,	meaning	the	requested	change	is	recorded,	but	is	not	carried
out	until	it	has	to	be.

When	you	delete	a	variable	in	your	client	session	that	was	pointing	to	a	frame	on	the	H2O
server,	it	should	then	get	deleted	on	the	server.	But	garbage	collection	is	a	complicated	topic,
and	sometimes	it	doesn’t	always	happen.	In	R,	gc()	is	often	worth	calling,	to	push	things
along.	You	can	also	remove	an	H2O	frame	directly	with	h2o.remove()	(Python)	or	h2o.rm()
(in	R).	You	can	give	a	list	to	remove	multiple	items	at	once.

WARNING
H2O	is	built	on	the	assumption	of	a	single	user.	Sure,	you	can	have	multiple	clients	connected,	but	be	aware	that	if
two	clients	hold	a	reference	to	the	same	frame,	and	one	of	them	deletes	it,	the	other	client	will	get	an	error	when
it	next	tries	to	use	it.

Though	you	can	specify	a	frame	name	with	the	load	and	create	frame	operations,	you	cannot
with	other	operations.	But	proper	frame	naming	can	really	help—especially	when	you	open
Flow	and	see	300	frames,	and	have	no	idea	which	one	is	the	data	you’ve	been	working	with.
h2o.assign()	to	the	rescue.	It	is	used	identically	in	Python	and	R.	This	example	also	shows	how
a	column	is	deleted—by	doing	a	copy	and	excluding	the	column(s)	you	do	not	want:

import	h2o
h2o.init()

data	sets	=	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	=	h2o.import_file(data	sets	+	"iris_wheader.csv")
data.frame_id		#iris_wheader.hex

data	=	data[:,1:]	#Drop	column	0.	Keep	column	1	onwards.
data.frame_id		#py_2_sid_88fe

data	=	h2o.assign(data,	"iris")
data.frame_id		#iris

h2o.ls()		#iris	and	iris_wheader.hex,	no	py_2_sid_88fe
h2o.remove("iris_wheader.hex")
h2o.ls()		#Just	lists	iris

Here	is	the	same	example	in	R.	Remember	that	Python	counts	columns	from	zero,	R	counts
from	1.	I	could	also	have	used	column	names,	instead	of	indices:



library(h2o)
h2o.init(nthreads	=	-1)

data	sets	<-	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	<-	h2o.importFile(paste0(data	sets,"iris_wheader.csv"))
attr(data,"id")	#iris_wheader.hex_sid_a61b_1

data	<-	data[,	2:5]	#Drop	column	1.	Keep	columns	2	to	5	inclusive.
attr(data,"id")		#RTMP_sid_a61b_2

data	<-	h2o.assign(data,	"iris")
attr(data,"id")		#iris

h2o.ls()		#iris_wheader.hex_sid_a61b_1	and	iris,	no	RTMP_sid_a61b_2
h2o.rm("iris_wheader.hex_sid_a61b_1")
h2o.ls()		#Just	iris

In	both	languages	you	can	see	that	one	intermediate	frame	got	deleted,	but	one	didn’t	and	had
to	be	explicitly	removed.	(gc(),	or	gc.collect()	in	Python,	did	not	make	any	difference	in	this
case.)

I	mentioned	laziness	earlier.	Generally,	this	is	a	good	thing	in	computing.	It	might	catch	you
out	when	you	do	an	operation	you	expected	to	be	slow	and	it	returns	really	quickly,	and	then
you	do	the	next	operation,	which	you	expected	to	be	quick,	and	it	sits	there	for	minutes.	But
there	is	something	more	important	to	watch	out	for,	which	I	will	come	back	to	when	talking
about	cbind	and	rbind.



Data	Summaries
Whenever	H2O	imports	or	creates	a	frame	of	data	it	also	creates	some	summary	statistics	for
each	column.	You	can	access	these	with	data.describe()	in	Python,	or	h2o.describe(data)	in	R.
The	following	is	the	R	output	for	the	iris	data:

						Label	Type	Missing	Zeros	PosInf	NegInf	Min	Max	Mean		Sigma	Cardinality
1	sepal_len	real							0					0						0						0	4.3	7.9	5.843	0.828								<NA>
2	sepal_wid	real							0					0						0						0			2	4.4	3.054	0.434								<NA>
3	petal_len	real							0					0						0						0			1	6.9	3.759	1.764								<NA>
4	petal_wid	real							0					0						0						0	0.1	2.5	1.199	0.763								<NA>
5					class	enum							0				50						0						0			0			2	<NA>		<NA>												3

h2o.summary(data)	is	like	R’s	summary	function	(in	fact,	summary(data)	will	also	work).
But	if	you	want	more	detailed	information	use	h2o.quantile(data)	and/or	h2o.levels(data),	with
the	latter	giving	you	the	different	categories	for	each	enum	column	(data.quantile()	and
data.levels()	in	Python).

dim(data)	tells	you	the	number	of	rows	and	columns	in	the	H2O	frame,	or	nrow(data)	and
ncol(data)	for	just	one	of	those	values.	In	Python,	they	are	data.dim,	data.nrow,	and	data.ncol,
and	notice	that	they	are	properties,	not	function	calls.
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Operations	on	Columns
(The	examples	here	follow	on	from	an	earlier	section,	assuming	we	have	150	iris	rows	in
data,	and	that	the	sepal	length	column	has	been	removed.)

Arithmetic	and	logical	operators	can	be	used	directly,	as	well	as	some	common	statistical	and
mathematical	functions.	(Handling	missing	data,	and	data	imputation,	will	be	covered	much
later	in	this	book;	see	“Missing	Data”.)

data["petal_len"]	=	data["petal_len"]	*	1.2

Here	I’ve	made	all	the	petals	20%	longer.	New	fertilizer.	As	mentioned	earlier,	on	my	client	I
now	have	data	with	big	petals,	but	it	has	been	given	a	new	name,	and	on	the	H2O	server	you
might	see	both	the	new	frame	and	the	old	one	(still	with	its	normal-sized	petals).	Or	the	old
one	might	have	been	garbage-collected.

Next	I	will	create	a	new	column,	as	the	ratio	of	sepal	width	to	petal	width,	and	then	calculate
the	standard	deviation	of	the	(20%	longer)	petal	lengths,	and	how	well	my	new	ratio	column
correlates	with	those	petal	lengths:

data["ratio"]	=	data["petal_wid"]	/	data["sepal_wid"]
data["petal_len"].sd()	#2.117
data["ratio"].cor(data["petal_len"])		#0.956

The	next	example	creates	a	new	numeric	column	that	is	1	when	the	petal	length	is	greater	than
average,	and	0	everywhere	else.	The	syntax	is	something	that	evaluates	to	a	boolean,	followed
by	ifelse(if_true,	if_false):

data["islong"]	=	(data["petal_len"]	>	data["petal_len"].mean()[0]).ifelse(1,0)

You	can	chain	modifications	together;	here	I	change	the	enum	to	a	string,	use	a	regex	to	strip
off	the	prefix,	and	assign	that	to	a	new	string	column:

data["species"]	=	data["class"].ascharacter().gsub("Iris-",	"")

Just	quickly,	here	are	the	R	versions	of	each	of	the	above;	you	could	also	have	used
data[column]	or	data[,column]	instead	of	the	data$column	syntax	used	here:

data$petal_len	<-	data$petal_len	*	1.2
data$ratio	<-	data$petal_wid	/	data$sepal_wid
h2o.sd(data$petal_len)
h2o.cor(data$ratio,	data$petal_len)
data$species	<-	h2o.gsub("Iris-",	"",	as.character(data$class)	)
data$is_long	<-	ifelse(data$petal_len	>	mean(data$petal_len),	1,	0)

And,	a	quick	example	of	when	only	the	square	bracket	syntax	will	do	the	job—taking	the
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mean	of	two	columns:

h2o.mean(	data[,c("sepal_wid",	"petal_wid")]	)		#3.054	1.199



Aggregating	Rows
Carrying	on	with	data	from	the	previous	section,	when	we	have	an	enum	column	it	is	natural
to	want	to	analyze	by	groupings,	and	H2O	can	do	this	for	us.	In	this	example,	I	group	by	iris
species,	count	how	many	of	each,	calculate	the	mean	petal	length	of	each	group,	and	then	how
many	in	that	category	of	iris	got	described	as	long	(which	you	may	remember	from	the
previous	section	was	defined	as	having	a	length	greater	than	the	mean	length	of	all	150
irises):

data.group_by("class").count().mean("petal_len").sum("is_long").frame

The	results	look	like	this:

class mean_petal_len sum_is_long nrow_sepal_wid

Iris-setosa 2.10816 0 50

Iris-versicolor 6.1344 43 50

Iris-virginica 7.99488 50 50

The	available	aggregate	functions	are	count,	min,	max,	mean,	mode,	sd,	ss,	sum,	and	var.	var
calculates	variance,	ss	calculates	sum	of	squares,	and	sd	is	standard	deviation.	You	can	also
group	by	more	than	one	column.

count()	is	done	as	nrow("column")	in	R,	and	you	give	as	many	aggregate	functions	as	you
wish,	like	this:

h2o.group_by(data,	by	=	"class",	nrow("class"),	mean("petal_len"),	sum("is_long"))

A	different	kind	of	aggregation	is	putting	a	numeric	column	into	buckets,	which	is	typically
used	to	build	a	histogram.	It	is	as	simple	as	choosing	your	column,	and	calling	hist()	on	it:

data["petal_len"].hist()

It	looks	like	Figure	2-1.



Figure	2-1.	How	the	histogram	displays	in	Jupyter

In	R,	it	is	h2o.hist(data$petal_len).	Whichever	language,	you	can	also	specify	the	optional
breaks	if	you	don’t	like	how	many	columns	it	chooses	by	default.	If	you	give	the	plot
argument	as	false	it	will	instead	return	a	table	of	information	about	where	the	break	points
were	chosen	and	the	number	of	elements	in	each	bucket,	as	well	as	the	mid-point	and	density
of	each	bar.	Remember	that	all	this	information	is	gathered	server-side,	in	a	parallel	way	on
big	data,	and	just	that	summary	is	being	returned	to	your	client.



Indexing
If	you	data.show()	in	Python	you	only	see	the	first	10	rows,	and	print(data)	in	R	only	gives
you	the	first	6	rows.	What	if	you	want	to	see	other	rows?	What	if	you	want	all	the	data	to
operate	on	locally?

If	you	are	happy	with	up	to	6	(or	10)	at	a	time,	then	use	row	indexing.	For	example,
data[9:12,:]	in	Python	gets	the	10th,	11th,	and	12th	rows,	while	data[10:12,]	does	the	same	in	R.
You	can	still	use	the	bit	after	the	comma	to	request	a	subset	of	columns,	as	already	described.

When	you	want	to	fetch	more	than	6	(or	10)	rows,	you	use	as_data_frame()	in	Python	or
as.data.frame()	in	R	to	download	them.	The	next	examples	follow	on	from	earlier	ones	in	this
chapter,	and	assume	that	data	contains	150	rows	of	iris	data.

NOTE
In	Python	the	behavior	depends	on	if	you	have	pandas	installed.	If	you	do,	then	you	will	get	a	pandas	DataFrame,
otherwise	you	will	get	a	nested	list.	This	book	generally	assumes	you	have	pandas	installed.	By	the	way,	if	you
have	pandas	installed	but	would	prefer	the	nested	list,	use	as_data_frame(use_pandas=False).

d	=	data.as_data_frame()
d.info()		#Describes	the	pandas	DataFrame	internals
d.corr(method="spearman").round(2)

H2O’s	R	and	Python	bindings	try	to	cover	all	the	common	functionality	of	R	and	Python,	so
you	should	only	rarely	need	to	download	data.	It	does	indeed	have	its	own	cor()	function,	and
you	could	do	data.cor().round(2),	but	H2O	doesn’t	support	Spearman	correlation,	only
Pearson,	so	I	chose	that	for	this	example.

It	looks	like	the	following:

sepal_len sepal_wid petal_len petal_wid ratio

sepal_len 1.00 -0.16 0.88 0.83 0.76

sepal_wid -0.16 1.00 -0.3 -0.28 -0.44

petal_len 0.88 -0.3 1.00 0.94 0.9

petal_wid 0.83 -0.28 0.94 1.00 0.97

ratio 0.76 -0.44 0.9 0.97 1.00

Is	there	a	limit	on	how	much	data	you	can	download?	Maybe.	There	is	the	hard	limit	of	the
memory	on	your	client	machine,	of	course.	But	there	may	also	be	limits	inside	your	client;
I’ve	not	personally	hit	them,	but	I	don’t	think	I’ve	ever	downloaded	more	than	100,000	or	so
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rows	at	a	time.	(If	you	do	ever	hit	a	limit,	consider	getting	one	column	at	a	time,	and
combining	them	afterwards.)

Whether	there	is	a	limit	or	not,	I	recommend	you	only	ever	download	what	you	need.	For
example,	if	you	have	10	million	rows,	100	columns,	in	a	large,	remote,	H2O	cluster,	and	need
the	Spearman	correlation	between	age	and	current	credit	card	debt,	only	downloading	those
two	columns,	not	all	100,	reduces	the	load	to	1/50th.	Also,	surely	you	don’t	need	all	10
million	rows	to	prove	your	hypothesis, 	and	maybe	just	a	random	sample	of	1000	is
sufficient?	If	you	know	the	data	is	already	randomly	shuffled,	that	request	looks	like	the	first
line	here,	otherwise	you	need	to	specify	1000	random	indices,	which	is	the	rest	of	this
example.	The	call	to	sort()	is	required	because	indices	must	be	requested	in	order:

d	=	creditData.as_data_frame(:1000,	["age","ccdebt"]).as_data_frame()

import	random
ix	=	random.sample(xrange(1,	creditData.nrow),	1000)
ix.sort()
d	=	creditData.as_data_frame(ix,	["age","ccdebt"]).as_data_frame()

In	R,	you	specify	if	downloading	as	a	data	frame,	vector,	or	matrix.	With	a	matrix,	just	like	in
normal	R,	if	the	columns	are	not	all	numeric,	you	will	end	up	with	a	character	matrix:

#Assumes	data	contains	iris	data
d	<-	as.data.frame(data)
m	<-	as.matrix(data)
mode(m)		#"character"	because	of	the	factor	column

m	<-	as.matrix(data[,c("petal_wid","sepal_wid")])
mode(m)		#"numeric"

The	R	version	of	the	random	sampling	code	is	as	follows:

ix	<-	sort(	sample(1:nrow(creditData),	1000)	)
d	<-	as.matrix(creditData[ix,	c("age","ccdebt")])

9



Split	Data	Already	in	H2O
We	will	often	want	to	split	our	data	into	either	two	subsets	(train	and	test)	or	three	subsets
(train,	valid,	and	test).	See	the	following	sidebar	if	this	concept	is	unfamiliar.

VALID	VERSUS	TEST?

If	I	wanted	to	know	how	much	mathematics	you	know,	I	would	give	you	a	test.	But	if	I
were	to	show	you	the	exact	questions,	and	their	correct	answers	beforehand,	you	are
likely	to	get	a	higher	score	than	if	I	give	you	questions	you’ve	not	seen	before.	The
machine-learning	models	we	make	are	no	different,	which	is	why	we	take	some	of	our
training	data	to	one	side,	as	a	test	set.

How	much?	Enough	to	be	representative	of	the	real-world	questions	the	model	will	be
asked	once	it	is	in	production,	and	enough	so	that	it	will	be	really	hard	to	get	a	perfect
score	just	by	guessing.	Otherwise,	as	small	as	possible,	because	it	is	stealing	our	training
data	and	the	more	training	data	we	use	the	better	our	model	will	be.

Now,	let’s	imagine	we	make	a	model	and	evaluate	it	on	the	test	set.	We	tweak	one	of	the
parameters	and	it	gets	a	slightly	lower	score.	We	tweak	it	the	other	way	and	get	a	slightly
better	score.	We	repeat	this	process	many	times,	and	proudly	present	our	187th	model	as
having	solved	the	problem	domain	because	it	gets	100%.

Maybe	it	has.	Or	maybe	we	have	(indirectly)	overfitted	on	the	test	data.	Even	though	the
model	never	got	to	directly	see	the	test	data,	our	decisions	about	how	to	tune	the	model
was	based	on	that	test	data.

The	way	to	avoid	this	is	to	do	the	whole	splitting	process	twice,	and	create	what	is	called	a
validation	data	set.	If	I	have	70,000	rows	of	training	data,	and	I	randomly	select	10,000
rows	to	be	test	data,	I	then	randomly	select	another	10,000	from	the	remaining	60,000
rows	to	be	my	validation	data,	leaving	me	with	50,000	as	my	training	data	set.

We	train	our	models	with	the	training	data,	and	score	it	on	the	validation	data,	as	indicated
in	the	middle	of	Figure	2-2.	We	then	tweak	the	models,	and	score	again	on	the	validation
data.	Tweaking	models	also	includes	trying	alternative	algorithms	(e.g.,	random	forest
instead	of	deep	learning,	or	ensembles).	Finally,	we	choose	our	model,	and	declare	it
ready	for	production,	and	then,	and	only	then,	do	we	try	it	on	the	test	set,	as	shown	at	the
bottom	of	the	figure.



Figure	2-2.	Summary	of	how	train,	valid,	and	test	data	sets	are	used

Cross-validation	is	a	closely	related	concept,	an	alternative	to	having	a	validation	data	set.
It	is	covered	in	“Cross-Validation	(aka	k-folds)”.	Briefly,	it	allows	you	to	use	more	of
your	data	for	training,	at	the	expense	of	taking	longer	to	build	your	models.

By	the	way,	the	validation	data	doesn’t	have	to	be	the	same	size	as	the	test	data,	it	just	has



to	be	representative	of	it:	the	ideal	situation	is	if	a	model	gets	an	error	of	E	on	the
validation	data	set,	that	it	will	get	an	error	of	E	on	the	test	data	set,	no	higher,	no	lower.
But,	yes,	that	means	the	same	size	is	usually	a	good	choice.	Additional	considerations	are
the	expected	error	and	random	noise, 	and	also	training	time:	H2O	models	get	evaluated
against	the	validation	data	regularly	while	being	built	so	huge	validation	data	sets	will
cause	your	models	to	take	longer	to	build.	However,	it	is	also	common	to	have	a	bigger
validation	data	set	than	test	set:	the	bigger	it	is,	the	harder	it	is	to	overfit,	and	it	is	that
validation	data	you	will	be	(indirectly)	tuning	for.

When	you	go	to	split	data,	your	first	question	should	not	be	“What	split	ratio?”	but	“Am	I
balanced	and	independent?”	Sorry,	not	you,	I	think	we	all	know	the	answer	to	that	one.	Your
data.

First,	is	it	balanced?	Meaning,	for	any	column	in	your	data,	are	some	possible	values	less
common?	A	common	example	is	a	gender	column.	If	90%	of	the	samples	are	Male,	10%
Female,	then	you	want	each	of	your	training,	validation,	and	test	data	sets	to	also	be	90%/10%.
But	this	is	not	just	about	enum	(categorical)	columns;	an	income	column,	a	numeric	field,
might	have	a	few	very	high	earners	and	you	want	them	fairly	distributed	in	each	data	split.
Unbalanced	data	is	more	of	a	problem	with	small	data	sets.	When	you	have	plenty	of	data	the
law	of	big	numbers	tends	to	make	sure	the	data	is	evenly	distributed.	By	the	way,	if	your	data
is	unbalanced,	you	will	also	want	to	look	at	the	balance_classes	parameter	(covered	in	“Data
Weighting”).

Perhaps	more	important	is	to	ask	if	the	samples	(your	data	rows)	are	independent.	Clinical
trials,	or	iris	measurements,	or	polls	conducted	in	a	short	time	span,	are	independent.	With	all
these,	splitting	randomly	is	exactly	what	you	want.	Time-series	data	is	a	different	beast.	If	the
point	of	your	model	will	be	to	predict	future	events,	not	ones	in	the	past,	then	(usually)	you
would	use	the	oldest	data	as	training	data,	then	the	next	oldest	for	validation,	with	the	newest
data	as	test	data.

NOTE
Often	when	learning	from	a	time	series	you	will	generate	features	by	adding	moving	average	columns,	or	the
difference	since	some	earlier	point	in	time.	You	will	want	to	add	these	kinds	of	columns	before	splitting.	But	a	very
important	exception	is	if	the	calculation	uses	values	from	a	later	row, 	in	other	words,	from	the	future.	In	that	case
you	must	do	the	split	first,	and	do	the	calculation	on	each	split,	separately.	A	good	way	to	tell?	Does	the
calculation	leave	an	NA	in	the	first	row	(in	which	case	it	is	best	done	pre-split)	or	the	final	row	(in	which	case	it
must	be	done	after	the	split)?

Enough	talk,	time	to	code.	Here	is	how	to	create	a	random	60/20/20	three-way	split	of	an
existing	H2O	data	frame	(data).	Notice	how	the	size	of	the	last	split	is	left	implicit:
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train,	test,	valid	=	data.split_frame([0.6,	0.2])

And	in	R:

parts	<-	h2o.split(data,	c(0.6,	0.2)	)
train	<-	parts[[1]]
valid	<-	parts[[2]]
test	<-	parts[[3]]
rm(parts)	#Optional

Do	it	this	way	for	all	data	sets	that	are	large	and	independent.	As	we	saw	in	the	previous
chapter,	the	splits	can	end	up	different	sizes,	which	causes	a	minor	issue	with	small	data	sets.
If,	for	that	reason,	or	any	other,	you	want	splits	that	are	exactly	the	specified	size,	though	there
is	no	single	H2O	function	to	do	this,	we	can	use	sample()	just	as	we	did	earlier	in	this	chapter
in	“Indexing”.	Like	this:

ratios	<-	c(0.6,	0.2,	0.2)
sz	<-	nrow(data)
indices	<-	split(1:sz,	sample(	rep(1:3,	sz	*	ratios)	)	)
train	<-	data[	indices[[1]],	]
valid	<-	data[	indices[[2]],	]
test	<-	data[	indices[[3]],	]

For	instance,	if	data	has	10	rows,	then	indices	might	be:

$`1`
[1]	2	3	5	6	7	9

$`2`
[1]		4	10

$`3`
[1]	1	8

If	we	do	data[	c(2,	3,	5,	6,	7,	9),	]	it	will	create	a	new	data	frame	(on	the	H2O	server)	with	only
those	specified	6	elements.	valid	will	be	a	frame	with	only	rows	4	and	10,	and	test	will	get
rows	1	and	8.

WARNING
Using	fixed	sizes	like	this	is	slower;	do	not	use	it	for	large	data	sets.	Always	use	H2O’s	split	function	unless	you
have	a	good	reason	not	to.

The	same	technique	can	be	used	for	not	just	random	splits,	but	any	arbitrary	split	you	need.
For	instance,	how	about	if	data	was	a	time	series,	and	we	want	the	last	10%	as	test,	and	the



15%	before	that	as	valid,	and	all	the	earlier	rows	as	train?

It	is	just	like	the	preceding	code,	but	without	using	sample():

ratios	<-	c(0.75,	0.15,	0.1)
sz	<-	nrow(data)
indices	<-	split(1:sz,	rep(1:3,	sz	*	ratios)	)
train	<-	data[	indices[[1]],	]
valid	<-	data[	indices[[2]],	]
test	<-	data[	indices[[3]],	]

Another	way	to	split	an	H2O	frame	is	by	using	a	logical	function.	Going	back	to	our	trusty
Iris	data	set,	here	is	one	way	to	split	by	petal	size:

largePetals	<-	data[	data$petal_len	>	mean(data$petal_len),	]
smallPetals	<-	data[	data$petal_len	<=	mean(data$petal_len),	]



Rows	and	Columns
In	“Operations	on	Columns”,	we	added	some	new	columns	to	H2O	frames.	But,	under	the
surface,	what	H2O	was	doing	was	copying	all	the	columns	from	the	existing	frame,	making	a
new	frame	with	one	column,	and	then	binding	them	together.	You	could	have	done	those	steps
explictly	with	cbind(). 	Here	is	how	to	do	just	one	of	those	new	columns	that	way	(to	save
you	having	to	go	back	to	re-create	data	as	it	was	at	that	earlier	point,	this	example	loads	fresh
data):

import	h2o
h2o.init()

data	sets	=	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/data	sets/"
data	=	h2o.import_file(data	sets	+	"iris_wheader.csv")

ratio_frame	=	data["petal_wid"]	/	data["sepal_wid"]
ratio_frame.col_names	=	["ratio"]
data	=	data.cbind(ratio_frame)
data	=	h2o.assign(data,	"iris")
ratio_frame.remove()

The	cbind	operation	is	lazy.	That	means	it	delays	actually	joining	the	frames	together	until	it
has	to.	If	I	were	to	move	the	ratio_frame.remove()	up	one	line,	directly	after	the	cbind,	doing
anything	with	data	would	then	fail:	we’ve	removed	part	of	its	data	before	it	got	a	chance	to
actually	do	the	copy.	That	is	what	the	h2o.assign()	call	is	doing	(apart	from	giving	a	nice
name	to	the	new	frame,	of	course).	Other	functions	that	will	eagerly	evaluate	the	data	are
nrow(),	ncol(),	or	dim()	(to	find	out	how	large	it	is),	or	any	indexing	or	summarizing
command.	In	fact,	printing	data	would	have	been	enough.

rbind	is	the	equivalent	for	joining	frames	together	vertically:	each	frame	must	have	exactly
the	same	columns;	just	as	when	cbind-ing,	each	frame	must	have	exactly	the	same	number	of
rows.

h2o.merge()	is	for	joining	two	frames	together,	based	on	columns	they	have	in	common,	just
like	a	join	in	SQL.	The	frames	can	be	of	different	lengths.	Here	is	a	simple	example	where	I
will	merge	in	my	price	list	for	my	newly	opened	flower	shop,	though	currently	we	only	sell
(Yep!	You	guessed	it!)	irises.	The	wholesaler	has	included	measurements	of	every	iris	precise
to	the	millimeter,	but	my	price	list	is	based	solely	on	the	petal	length	in	centimeters.	My	first
step	is	to	load	my	price	list	into	H2O:

prices	=	h2o.H2OFrame({
		'petal_len':[2,	3,	4,	5],
		'price':[4,	5.5,	8,	10]
		})

Before	I	can	merge	this	with	data	(which	I	assume	is	already	loaded—see	the	previous
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example	in	this	section),	I	need	to	convert	the	petal	lengths	to	centimeters.	Actually,	by	huge
coincidence,	this	is	not	just	because	I	price	to	the	nearest	centimeter,	but	also	because	H2O’s
merge	refuses	to	run	with	floating-point	numbers.	Integers	or	enums	only.	H2O	uses	a	kind	of
duck-typing	for	numbers:	if	all	entries	in	a	column	are	whole	numbers	it	is	an	int	column,	but
if	at	least	one	entry	has	a	fractional	part	then	it	is	a	real	column.	Therefore,	the	way	to	integer-
ize	a	column	is	to	call	round().	After	that,	merge()	with	all	defaults	does	the	job.	Simple.

data["petal_len"]	=	data["petal_len"].round()
iris_prices	=	data.merge(prices)

As	Figure	2-3	shows,	I	get	a	99	row	frame,	because	51	irises,	once	rounded,	were	less	than
2cm	or	over	5cm	long,	and	my	price	list	hadn’t	allowed	for	them.	If	I	added	all.x=True	to	the
call	to	merge()	then	I	would	have	got	150	entries,	and	a	nan	in	the	price	column	for	those	51.

Figure	2-3.	Description	of	merged	frame,	and	histogram	summarizing	my	inventory

Here	is	the	same	example	in	R:

prices	<-	as.h2o(	data.frame(list(
		petal_len	=	2:5,	price	=	c(4,	5.5,	8,	10)
		)	)	)
data$petal_len	<-	round(data$petal_len)
irisPrices	<-	h2o.merge(data,	prices)

I’ll	finish	this	section	with	a	more	complex	example,	in	R:	Example	2-1.	It	has	a	couple	of
large	dependencies,	so	you	cannot	run	it,	but	I	hope	it	shows	how	these	functions	can	be	used
together.	The	scripts	it	is	taken	from	are	introduced	in	a	little	more	detail	in	“How	Low	Can
You	Go?”	in	the	last	chapter	of	this	book.

Example	2-1.	Example	of	complex	data	import	and	manipulation
#This	helper	script	is	introduced	in	the	next	chapter
#It	starts	H2O,	and	initializes	train/valid/test



source("load.mnist_enhanced.R")

prefix	<-"s3://example-bucket/"

#Load	data	from	train
genTrain	<-	h2o.importFile(paste0(prefix,	c(
		"mnist_generated.enhanced.train.501.csv.gz",
		"mnist_generated.enhanced.train.123.csv.gz",
		"mnist_generated.enhanced.train.502.csv.gz",
		"mnist_generated.enhanced.train.499.csv.gz"
		)),	destination_frame	=	"genTrain")

#Load	data	from	valid
genValid	<-	h2o.importFile(paste0(prefix,	c(
		"mnist_generated.enhanced.valid.501.csv.gz",
		"mnist_generated.enhanced.valid.123.csv.gz",
		"mnist_generated.enhanced.valid.502.csv.gz",
		"mnist_generated.enhanced.valid.499.csv.gz"
		)),	destination_frame	=	"genValid")

#Scoop	out	first	1000	of	each	file,	by	specifying
#just	the	rows	to	keep.
genValid12_9K	<-	genValid12[c(
				1001:10000,
			11001:20000,
			21001:30000,
			31001:40000
			)]

genTrain[,y]	<-	as.factor(genTrain[,y])
genValid_9K[,y]	<-	as.factor(genValid_9K[,y])

#Just	use	the	first	1000	row,	for	validating
validSmall	<-	valid[1:1000,]

#And	give	the	other	9K	to	training	data
train59	<-	h2o.rbind(train,	valid[1001:10000,])

#Now	combine	all	our	training	data	sources
trainBig	<-	h2o.rbind(train59,	genTrain,	genValid_9K)

nrow(trainBig)		#SLOW

ae_models	<-	...		#Load	pre-generated	auto-encoder	models

#generate_data()	is	a	custom	function,	not	shown	here.
train_ae	<-	generate_data(ae_models,	trainBig)
valid_ae	<-	generate_data(ae_models,	validSmall)
test_ae	<-	generate_data(ae_models,	test)

#Join	columns,	deleting	old	frames	as	I	go
validAll	<-	h2o.cbind(validSmall,	valid_ae)
nrow(validAll)
h2o.rm(validSmall);h2o.rm(valid_ae);gc()

testAll	<-	h2o.cbind(test,	test_ae)



nrow(testAll)
h2o.rm(test);h2o.rm(test_ae);gc()

trainAll	<-	h2o.cbind(train,	train_ae)
nrow(trainAll)		#SLOW
h2o.rm(train);h2o.rm(train_ae)



Getting	Data	Out	of	H2O
Broadly	speaking,	there	are	two	things	you	might	want	to	extract	from	H2O:

Frames

Models

Frames	could	be	data	you’ve	previously	imported	(and	possibly	modified),	or	generated,	or	it
might	be	predictions	from	a	model.	Models	can	be	exported	in	a	binary	format	for	re-
importing	at	a	later	time,	or	as	POJOs	(Plain	Old	Java	Objects)	for	running	models	without
H2O.	We	will	look	at	each	of	these.

WARNING
When	you	shut	down	your	H2O	cluster,	all	data	and	models	are	lost:	nothing	is	saved	to	disk	unless	you
explicitly	request	it.	And	with	a	cluster,	if	even	just	one	node	becomes	unresponsive,	the	same	thing.	For	long-
running	jobs,	a	regular	export	is	a	good	idea.



Exporting	Data	Frames
If	you	do	most	of	your	data	preparation	in	advance	of	loading	into	H2O,	you	may	not	see	the
need	for	this.	But,	if	you	have	merged	and	manipulated	data	frames	inside	of	H2O,	you	will	be
looking	for	a	way	to	get	that	data	out	again.

See	“Indexing”	earlier	in	this	chapter	for	when	you	are	looking	to	download	data	directly
from	H2O	into	a	variable	in	your	R	or	Python	client.	This	section	is	about	saving	to	files.

WARNING
The	frame	sizes	reported	by	H2O	are	compressed	sizes.	But	the	exported	files	will	be	uncompressed,	so	be
prepared	for	that!	Also,	if	exporting	to	S3,	be	aware	there	is	a	5GB	limit	on	any	one	file.

Exported	files	are	in	csv	format,	and	similarly	to	the	way	importing	worked,	we	have	two
choices	for	where	to	export	them	to:

To	our	local	machine	(where	the	client	runs)

To	the	H2O	server ’s	local	disk,	or	HDFS	or	S3

If	df	is	the	data	frame,	for	a	local	download,	use	h2o.downloadCSV(df,	"/path/to/data.csv")	in
R,	or	h2o.download_csv(df,"/path/to/data.csv")	in	Python.

For	saving	to	a	location	on	the	H2O	server,	use	h2o.exportFile()	(h2o.export_file()	in
Python),	where	the	first	parameter	is	the	frame	to	save,	and	the	second	is	the	disk	path	and
filename.	To	save	to	HDFS	use	an	“hdfs://”	prefix,	and	to	save	to	s3,	use	an	“s3://”	prefix	(or
try	the	older	“s3n://”	if	you	have	problems).	As	with	importing,	you	can	also	specify	your
AWS	credentials	when	starting	up	h2o.jar	or	in	the	pathname.	Here	are	some	examples:

h2o.exportFile(d,	"/path/to/d.csv")
h2o.exportFile(d,	"s3://mybucket/d.csv")
h2o.exportFile(d,	"s3://<AWS_ACCESS_KEY>:<AWS_SECRET_KEY>@mybucket/d.csv")
h2o.exportFile(d,	"hdfs://namenode/path/to/d.csv")

On	the	Flow	interface,	when	viewing	a	frame,	there	are	buttons	for	both	Download	and
Export.

If	you	are	running	on	a	multinode	cluster,	there	is	an	optional	argument,	parts,	which	can	have
each	node	export	its	own	rows	from	the	frame,	and	can	result	in	quicker	exports.	It	works
with	all	of	HDFS,	S3,	and	the	local	filesystem.	This	feature	is	in	active	development	as	I	type
this,	so	please	see	the	latest	documentation.

When	exporting	from	a	multinode	cluster	to	the	local	filesystem	the	file	is	written	to	just	one
node	(either	the	one	your	client	is	connected	to,	or	the	first-listed	node	in	cluster	info),	unless



you	set	parts,	in	which	case	the	file	parts	will	be	written	to	all	nodes	(e.g.,	parts	0	and	1	to
node	1,	parts	2	and	3	to	node	2,	and	so	on).



POJOs
Is	it	just	me,	or	does	POJO	sound	like	something	people	used	to	bounce	up	and	down	on	in
the	1970s?	Ah,	just	me.	Oh	well.	POJO	stands	for	Plain	Old	Java	Object.	In	the	context	of
H2O,	it	refers	to	a	self-contained	Java	file	with	everything	needed	to	use	your	model.	Taking
the	example	of	a	deep	learning	model,	the	POJO	file	would	contain	Java	code	for	the
algorithms,	and	Java	arrays	containing	all	the	weights/biases	of	all	the	layers.	The	idea	is	that
you	can	run	it	to	make	predictions,	without	having	to	install	the	rest	of	H2O.	There	is	a	special
jar	file	(h2o-genmodel.jar)	that	you	run	to	use	the	POJO	file.

Writing	programs	around	a	POJO	is	outside	the	scope	of	this	book	(see	POJO	QuickStart	in
the	H2O	docs	for	more	information	on	that);	in	this	section	we	just	cover	how	to	export	it.

If	you	view	your	model	on	the	Flow	interface,	you’ll	see	a	button	labeled	Download	POJO.
You	will	then	download	an	xxx.java	plain-text	file,	where	xxx	is	the	name	of	your	model.

In	R,	you	can	fetch	the	POJO	with:

m	<-	h2o.someLearningAlgorithm(...)
h2o.download_pojo(m)

#		...	OR	...

m	<-	h2o.getModel("my_model_id")
h2o.download_pojo(m)

That	writes	it	to	your	console.	What	if	you	wanted	it	in	a	string?	You	could	mess	around	with
capturing	cat()	output.	Or,	take	a	peek	at	the	source	of	download_pojo()	and	then	use	this
hack:

model_id	<-	m@model_id
myPojo	<-	.h2o.__remoteSend(method	=	"GET",
		paste0(.h2o.__MODELS,	".java/",	model_id),
		raw	=	TRUE)

If	you	look	closely	you	see	that	all	you	need	is	a	model	ID,	not	a	full	model	object.	If	you	had
a	list	of	100s	of	model	IDs	to	fetch	POJOs	for,	wrap	the	preceding	code	in	a	lapply(),	and
Bob’s	your	uncle.

But,	most	likely	you	want	to	save	the	POJO.	Again,	if	m	is	your	model,	you	do	that	with
h2o.download_pojo(m,	"/tmp")	That	will	create	two	files	in	your	/tmp/	directory:
myModel.java	and	h2o-genmodel.jar.	You	are	likely	to	only	want	the	jar	file	the	first	time	you
do	this,	so	to	save	downloading	it	every	time,	give	FALSE	as	the	third	parameter:
h2o.download_pojo(m,	"/tmp/",	FALSE).

In	Python,	the	function	and	arguments	are	identical,	so	I’ll	cut	straight	to	the	example	of	how
to	save	it	to	your	/tmp/	directory:	h2o.download_pojo(m,	"/tmp")	and,	again,	give	the	third

http://bit.ly/2geZBHO


parameter	as	False	if	you	don’t	want	the	jar	file	each	time.



Model	Files
The	POJO	is	a	Java	program,	and	cannot	be	imported	back	into	H2O	to	re-create	a	model.	It
doesn’t	contain	any	of	the	information	on	training	statistics,	or	what	parameters	it	was	trained
with.	For	that	you	need	to	get	the	binary	model	file.

Because	the	file	contents	are	in	a	binary	format,	only	of	meaning	to	H2O,	you	don’t	download
the	model	file:	you	just	request	it	be	saved.	And	then	later	you	can	request	it	be	loaded.

In	R	the	command	to	save	a	model	is	fname	<-	h2o.saveModel(model,	"/tmp")	and	in	Python	it
is	almost	the	same:	fname	=	h2o.save_model(model,	"/tmp")	(where	model	is	a	model	you’ve
generated	or	fetched).	The	model	ID	will	be	used	as	the	filename,	and	it	is	the	full	path	and
filename	that	is	returned.	If	it	already	exists,	the	command	will	fail;	to	force	it	to	be
overwritten	give	the	third	parameter	as	true:	h2o.save_model(model,	"/tmp",	True).

To	load	it	back	in	later,	you	will	need	the	filename	you	were	given.	The	command	is	what	you
expect	(R:	h2o.loadModel(fname),	Python:	h2o.load_model(fname)).	It	gets	created	in	H2O
with	the	same	model	ID	it	had	before.	(The	model	ID	cannot	be	changed;	use	h2o.assign()
after	loading	each	model	if	that	creates	a	conflict.)

The	path	you	specify	should	not	end	in	a	forward	slash.	The	good	news	is	that	if	the	directory
does	not	exist,	H2O	will	create	it	for	you	(assuming	it	has	permission	to).	So,	there	is	no
excuse	not	to	use	a	good	naming	scheme:	fname	<-	h2o.saveModel(model,
"/tmp/h2o_models/mnist_tests1").	(Also	consider	using	a	datestamp	as	a	subfolder.)

WARNING
A	saved	model	is	tied	to	an	H2O	version.	You	cannot	load	a	model	in	a	version	later	than	the	one	it	was	saved
with.	There	is	also	currently	no	way	to	convert	a	model	file.	That	is,	if	you	upgrade	H2O	you	are	stuck	with
having	to	regenerate	your	models.
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Save	All	Models
Say	you	have	30	models	stored	on	H2O,	and	you	want	to	save	them	all.	The	scenario	might	be
that	you	want	to	shut	down	the	cluster	overnight,	but	want	to	use	your	current	set	of	models	as
the	starting	point	for	better	models	tomorrow.	At	the	time	of	writing	H2O	does	not	offer	this
functionality,	not	even	in	Flow.	So,	what	you	need	to	do	is	make	a	loop	to	fetch	each	model,
and	then	save	each	model.

I	have	written	a	blog	post	on	how	to	enhance	the	R	API	to	add	functions	to	do	this,	including	a
helper	function	for	loading	your	models	back	in.	It	also	shows	how	to	access	the	internal
functions	of	the	R	API.	(This	is	useful,	though	it	carries	the	risk	that	some	future	H2O	release
breaks	your	code.	The	best	way	to	prevent	that	is	to	do	a	pull	request,	and	contribute	your	idea
back	to	the	H2O	project—it	is	open	source,	after	all!)

http://bit.ly/2ge2FnR


Summary
This	chapter	has	focused	on	import,	manipulation,	and	export.	It	is	important	knowledge	to
have,	even	if	it	is	about	the	“boring	80%”	of	the	data	science	job.	As	well	as	supplying	many
useful	functions	(there	are	too	many	to	cover	all	of	them	in	this	chapter,	and	they	are	being
expanded	all	the	time—use	tab-completion	from	your	editor,	or	the	online	documentation,	to
see	the	latest	list)	it	also	transparently	makes	them	work	when	the	data	is	too	big	to	fit	inside	a
single	machine.	Just	bear	in	mind	that	just	about	every	operation	will	create	a	copy,	and	that
before	you	delete	any	frames,	make	sure	that	lazy	operations	have	been	evaluated.

At	least	a	few	of	the	functions	introduced	here	will	be	seen	again	in	the	next	chapter,	which
will	introduce	the	three	data	sets	that	we	will	be	using	later	in	the	book.

	Source:	tweet	by	@BigDataBorat.

	It	seems	you	must	specify	full	paths	when	loading	multiple	files.

	At	least	when	bandwidth	is	not	the	limiting	factor,	because	the	reads	happen	in	parallel.	For
instance,	from	a	small	Amazon	EC2	cluster,	reading	a	list	of	20	csv.gz	files	(each	about
15MB)	from	Amazon	S3	took	20	to	25	seconds.	Doing	them	in	series	literally	took	an	order
of	magnitude	longer.

	Because	H2O	analyzes	each	column	as	it	loads	it,	you	don’t	often	need	to	use	this.

	At	the	time	of	writing,	as.h2o()	is	implemented	by	saving	to	a	temporary	file	then	calling
h2o.uploadFile().	So	they	are	equivalent.

	data.summary()	in	Python	is	just	the	same	output	as	data.describe().

	Mainly	for	the	sake	of	example.	You	cannot	actually	do	much	with	a	string	column	in	H2O.
By	the	way,	you	can	apply	gsub()	directly	to	an	enum,	to	alter	the	category	labels.

	Use	Pearson	correlation	when	you	expect	a	linear	relationship;	e.g.,	doubling	x	should
double	y.	Use	Spearman	when	you	think	there	is	a	correlation	between	their	rankings,	but	not
a	linear	one;	e.g.,	if	x1	is	greater	than	x2	then	y1	should	be	greater	than	y2.	Spearman	will	be
used	when	looking	at	the	football	data	in	Chapter	3.

	I’m	assuming	you	have	a	hypothesis,	a	reason	to	ask	the	question,	such	as	wanting	to	justify
not	giving	credit	cards	to	over-40s.	If	you	have	no	question,	and	just	want	to	look	busy,	steam
right	ahead!

	In	Chapter	11	I	briefly	introduce	models	built	with	over	one	million	training	rows	and
10,000	test	rows,	but	only	1000	validation	rows,	because	I	wanted	all	the	training	data	I	could
get	my	hands	on.

	ROC	(return	on	capital)	in	algorithmic	trading	is	a	good	example	of	this.	It	tells	us	how
much	money	you	would	have	made	if	you	bought	on	this	day	and	held	for	one	day;	obviously
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we	wouldn’t	know	that	until	we	find	out	the	price	on	the	next	day.

	cbind	stands	for	column	bind;	rbind	stands	for	row	bind.

	On	a	multinode	cluster,	load/save	will	go	to	the	local	filesystem	of	whichever	node	your
client	is	connected	to.	You	can	also	save	to	HDFS	or	S3.
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Chapter	3.	The	Data	Sets

This	chapter	will	introduce	three	data	sets,	how	to	load	and	prepare	each	of	them,	and	some
initial	analysis.	Later	chapters	will	then	cover	each	of	the	four	main	supervised	machine-
learning	algorithms	that	H2O	supports	(random	forest,	gradient	boosting	machines,
generalized	linear	models,	and	deep	learning), 	and	we	will	try	each	algorithm	on	each	of
these	data	sets.

The	data	sets	have	been	chosen	to	try	and	introduce	something	new	each	time.	The	first	is	a
regression,	the	second	is	a	multinomial	classification,	and	the	third	is	flexible	but	will	be	used
as	a	binomial	classification.	The	first	tests	our	green	credentials,	as	we	try	to	predict	which
house	designs	will	be	more	energy	efficient.	The	second	is	a	well-studied	problem	in	the	field
of	computer	vision,	trying	to	recognize	hand-written	digits.	The	third	is	a	sports	statistics	data
set,	a	time	series	where	we	will	try	to	predict	future	events,	specifically	who	will	win	a
football	match.	All	three	data	sets	will	fit	in	the	memory	of	a	typical	PC,	so	you	will	be	able	to
follow	along	without	needing	to	rent	a	cluster.

The	third	data	set	was	compiled	for	this	book,	so	we	spend	more	time	looking	at	it	here,
including	the	process	of	dealing	with	messy	data.	(Even	though	this	takes	us	away	from	the
core	theme	of	the	book,	using	H2O,	at	times.)

ONLINE	CODE/DATA

You	can	find	all	the	data	sets	in	the	“bk”	branch	of	our	GitHub	site.	References	to	the
original	sources	are	also	given	at	the	end	of	each	section	in	this	chapter.

All	code	(in	R	and	Python,	and	sometimes	other	languages)	is	also	available	at	the	same
place.	The	code	and	datasets	are	sibling	directories,	so	the	code	will	use	relative	paths
such	as	"../datasets/train.csv".	(If,	with	Python,	you	get	an	error	saying	“name	file	is	not
defined,”	you	need	to	manually	set	path	to	wherever	"datasets"	is	found	on	your	machine.)

If	you	are	following	along,	I	recommend	you	download	everything,	so	the	data	can	be
loaded	from	local	disk	each	time	(as	opposed	to	loading	with	a	URL	each	time).	We	will
load	them	a	lot	in	this	book,	so	it	is	just	a	bit	quicker,	and	means	you	can	study	while
enjoying	an	iced	decaf	sugar-free	soy	latte	with	extra	cream	and	caramel	sauce	at	your
local	coffee	shop,	without	being	the	loser	who	is	sucking	up	all	the	WiFi	bandwidth.	Don’t
be	that	loser.

1
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Data	Set:	Building	Energy	Efficiency
How	much	does	it	cost	to	heat	your	house?	Or	to	cool	it	in	summer?	Does	an	extra	window
make	a	difference?	Is	a	multifloor	building	with	a	small	roof	cheaper	to	heat	than	a	bungalow
of	the	same	floor	area?	Maybe	you	guessed	yes	and	yes,	but	by	how	much?

This	will	be	a	regression	problem,	on	a	relatively	small	data	set.	We	have	768	samples,	with
eight	features,	and	a	choice	of	two	responses	(heating	load,	cooling	load)	to	learn.

Example	3-1	is	the	R	code	we’ll	use	to	load	and	prepare	it	for	each	of	our	machine-learning
algorithms,	while	Example	3-2	is	the	equivalent	code	in	Python.

Example	3-1.	Loading	the	ENB	data	set	(in	R)
library(h2o)
h2o.init(nthreads	=	-1)

data	<-	h2o.importFile("../datasets/ENB2012_data.csv")

factorsList	<-	c("X6",	"X8")
data[,factorsList]	<-	as.factor(data[,factorsList])

splits	<-	h2o.splitFrame(data,	0.8)
train	<-	splits[[1]]
test	<-	splits[[2]]

x	<-	c("X1",	"X2",	"X3",	"X4",	"X5",	"X6",	"X7",	"X8")
y	<-	"Y2"		#Or	"Y1"

Example	3-2.	Loading	the	ENB	data	set	(in	Python)
import	os
import	h2o
h2o.init()

#If	next	line	fails,	instead	set	path	to	datasets	location.
path	=	os.path.dirname(__file__)
fname	=	os.path.join(path,	"../datasets/ENB2012_data.csv")
data	=	h2o.import_file(fname)

factorsList	=	["X6",	"X8"]
data[factorsList]	=	data[factorsList].asfactor()

train,	test	=	data.split_frame([0.8])

x	=	["X1",	"X2",	"X3",	"X4",	"X5",	"X6",	"X7",	"X8"]
y	=	"Y2"		#Or	"Y1"

(See	“Jargon	and	Conventions”,	in	Chapter	1,	for	a	reminder	of	the	variable	naming
conventions	being	used	in	this	book.)



Setup	and	Load
In	both	cases,	the	first	couple	of	lines	load	the	h2o	library,	and	initialize	the	connection	to	the
H2O	server,	starting	the	server	if	necessary.

The	importFile()	(in	R)	or	import_file()	(in	Python)	tells	H2O	to	import	the	specified	data
file,	as	we	saw	in	the	previous	chapter.	By	the	way,	the	original	data	was	an	xlsx	spreadsheet
file.	I	loaded	it	into	Open	Office,	and	saved	it	as	a	csv	file	instead.

If	you	didn’t	download	the	data	sets	to	your	local	disk,	remember	that	H2O	also	supports
direct	loading	from	HTTP	(as	well	as	Amazon	S3,	NFS,	and	HDFS),	so	you	could	write	(for
example):

h2o.importFile(
"https://raw.githubusercontent.com/DarrenCook/h2o/bk/datasets/ENB2012_data.csv")

The	importFile()/import_file()	command	returns	a	handle	(a	pointer)	to	the	data	on	the	H2O
server	(wrapped	in	a	class	in	Python,	in	an	environment	in	R).	You	will	use	that	handle	in	all
subsequent	operations	on	it,	but	remember	the	data	is	on	the	(possibly	remote)	server ’s
memory,	not	in	your	client’s	memory.



The	Data	Columns
The	next	couple	of	lines	in	the	listing	tell	H2O	which	fields	are	categorical	variables.	In	this
case	I	eyeballed	the	data,	and	saw	that	the	“X6”	and	“X8”	columns	contained	only	integers,
and	only	a	few	distinct	values.

Are	the	“X1”	to	“X8”	labels	feeling	a	bit	abstract?	Sometimes	data	is	delivered	like	that,	and
you	have	to	ask	the	customer,	which	can	take	you	through	four	different	contacts,	in	three
different	companies,	using	at	least	two	(human)	languages,	and	involving	at	least	one
offshore	tax	haven.	Such	fun.	Thankfully,	in	this	case,	all	we	had	to	do	was	find	the	paper,	by
A.	Tsanas	and	A.	Xifara	(also	to	be	found	in	the	datasets	directory),	and	skim	it	until	we	get	to
Table	1.	That	doesn’t	just	tell	us	more	meaningful	names,	but	looking	at	the	“Number	of
possible	values”	column,	we	also	discover	that	basically	all	the	input	variables	are
categorical!	But,	for	the	moment,	just	the	names:

X1:	Relative	Compactness

X2:	Surface	Area

X3:	Wall	Area

X4:	Roof	Area

X5:	Overall	Height

X6:	Orientation

X7:	Glazing	area

X8:	Glazing	area	distribution

Y1:	Heating	Load

Y2:	Cooling	Load

TIP
Does	it	actually	matter	what	the	names	are,	or	what	the	columns	mean?

Yes!	Once	we	know	that	a	higher	number	in	X4	means	a	bigger	roof,	or	that	an	X6	of	4	means	it	will	be	getting
more	sunlight,	we	have	more	chance	to	spot	suspicious	data	and	suspicious	results.

What	about	the	meanings	for	X6,	“orientation”?	I	can	see	the	values	range	from	2	to	5.	This	is
the	rotation	of	the	building	shape.	The	paper	is	not	explicit,	but	I’m	guessing:

2:	North

http://bit.ly/2eKPkWo


3:	East

4:	South

5:	West

Then	the	other	categorical,	X8,	describes	how	the	windows	are	distributed:

0:	No	windows

1:	Uniform,	25%	on	each	side

2:	55%	on	North	side,	15%	on	other	sides

3:	55%	on	East	side,	15%	on	other	sides

4:	55%	on	South	side,	15%	on	other	sides

5:	55%	on	West	side,	15%	on	other	sides

I	mentioned	earlier	that,	from	one	point	of	view,	all	eight	predictor	variables	are	categorical.
For	instance,	X7	(“Glazing	area”)	is	how	big	the	windows	are,	expressed	as	a	percentage	of
floor	area,	but	there	are	only	three	values	used:	10%,	25%,	40%.	0%	is	also	used,	for	when	X8
is	zero,	giving	us	a	total	of	four	values.	As	another	example,	there	are	only	two	building
heights	(X5):	3.5m	and	7m.	That	is,	single-story	or	two-story	buildings.

This	creates	an	interesting	problem.	These	other	six	variables	are	not	integers	and	have	been
detected	as	real	in	H2O,	so	trying	to	do	as.factor()	on	any	of	them 	reports	"Categorical
conversion	can	only	currently	be	applied	to	integer	columns."	I	could	try	multiplying	them
through	by	a	large	number	to	turn	them	into	integers,	and	then	into	enums.	But	I’m	not	going
to.	For	a	few	reasons.

Firstly,	there	are	factors,	and	then	there	are	factors.	To	be	less	enigmatic,	I	mean	that	factors
(categories)	can	be	either	unordered	or	ordered.	X6	is	an	unordered	factor	(you	cannot	say
that	East-facing	has	“more	direction”	than	West-facing),	as	are	things	like	gender	or	favorite
color.	But	X7	has	an	innate	ordering	(40%	windows	is	more	than	25%	windows),	as	do	things
like	income	bracket	or	obesity	level.	H2O	offers	no	explicit	support	for	ordered	factors.	And
this	is	fine	in	this	case:	X7	=	0.4	versus	X7	=	0.1	doesn’t	just	tell	me	“more”	windows,	it	tells
me	four	times	as	much	sunlight	would	enter	the	house.	If	I	changed	them	to	ordered	factors	I
would	lose	that	information.

The	second	reason	is	laziness.	Bill	Gates	will	tell	you	that	laziness	is	a	fine	virtue	in	a
programmer	(because	laziness	inspires	creative	solutions),	but	by	lazy	here	I	am	thinking
more	of	our	Donald	Knuth’s	famous:	“Premature	optimization	is	the	root	of	all	evil.” 	I	don’t
know	if	leaving	X3	as	a	real	will	give	me	a	better	model,	or	if	jumping	through	hoops	to	turn
it	into	a	factor	will	be	better.	So,	given	the	choice	between	doing	something	and	doing	nothing
I	will	choose	to	do	nothing,	until	I	find	a	reason	to	do	otherwise.
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The	third	reason	is	that	linear	models,	and	deep	learning,	generally	prefer	numbers	to	factors.
Yes,	the	tree	algorithms	prefer	categories	but,	by	their	nature,	they	are	likely	to	easily
discover	the	natural	split	points	in	features	like	X7.



Splitting	the	Data
As	you	already	know,	to	avoid	overfitting	it	is	essential	to	have	some	test	data	that	you	do	not
train	on,	and	to	be	very	careful	that	the	test	data	never	influences	either	the	training	data	or	the
choice	of	model	and	model	parameters.	(Review	“Valid	Versus	Test?”	in	the	previous	chapter,
if	necessary.)

The	earlier	listing	(Example	3-1	or	3-2)	splits	the	data	so	that	train	is	a	random	80%	of	it,	and
test	is	the	other	20%	of	it	(just	like	we	did	in	the	first	chapter,	with	the	iris	data;	also	see	“Data
Manipulation”).	The	data	set	is	relatively	small,	so	I	have	chosen	not	to	have	a	validation	test
set,	and	instead	I	will	use	cross-validation	(see	“Cross-Validation	(aka	k-folds)”).

NOTE
All	model	building	in	this	book	is	evaluated	on	the	exact	same	20%	split, 	for	consistency.	However,	be	aware
that	this	particular	data	set	is	sensitive	to	how	it	is	split:	later	in	this	book	you	will	notice	a	large	variance	on	the
results	for	the	10	cross-validation	splits,	whichever	model	is	used.

Is	my	chosen	test	split	an	easy	one?	A	hard	one?	Typical?	I	cannot	say	without	trying	lots	of	splits	and	comparing.
The	Tsanas	and	Xifara	paper,	mentioned	earlier,	took	that	approach.	They	had	no	test	set,	and	instead	used	10-fold
cross-validation,	but	for	each	model	they	did	100	iterations;	i.e.,	they	used	100	different	ways	to	split	the	data	into
10	parts,	then	took	the	mean	and	standard	deviation	of	the	results.

I	like	that	idea,	but	the	goals	are	different:	their	goal	was	to	see	if	machine	learning	could	accurately	represent	the
data.	Our	goal	is	to	compare	various	machine-learning	algorithms,	and	learn	how	to	tune	them.	100	iterations
would	have	slowed	us	down	100	times.	As	long	as	we	are	consistent	it	doesn’t	matter,	too	much,	if	we	end	up
with	an	easy,	medium,	or	hard	test	set.

The	last	few	lines	of	the	listings,	shown	previously,	set	x	to	be	the	predictor	variables,	and	y
to	be	the	response	variable.	We	have	two	to	choose	from,	and	I	have	chosen	Y2,	cooling	load,
simply	because	the	paper	mentions	that	it	was	harder	to	predict.

NOTE
You	cannot	have	more	than	one	response	variable	in	a	single	H2O	model.	If	there	are	two	things	you	want	to
predict,	build	two	models.
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Let’s	Take	a	Look!
Before	you	run	any	kind	of	machine-learning	algorithm,	it	is	well	worth	your	time	to	run
some	preliminary	analysis	on	the	data.

WARNING
Remember	that	the	frame	we	are	calling	data	is	all	the	data.	If	you	are	going	to	be	making	decisions	that	influence
how	you	model,	it	is	good	practice	to	only	look	at	the	train	frame,	as	I	do	here,	and	keep	the	test	frame
completely	untouched.

In	Python	you	can	type	train.describe()	or	h2o.describe(train)	in	R.	From	a	Jupyter	notebook
the	output	looks	like	Figure	3-1.	Similar	information	can	be	found	in	the	Flow	Web	UI.

Figure	3-1.	The	output	from	train.describe()

What	to	pay	attention	to?	First	the	type,	to	make	sure	X6	and	X8	(only)	are	“enum.”	The	data
is	not	normally	distributed	(which	we	will	see	in	a	moment),	so	I	am	less	interested	in	mean
and	sigma,	aka,	standard	deviation,	but	I	am	paying	attention	to	the	min/max	of	each	column,
to	make	sure	it	matches	my	expectations.	Speaking	of	which,	I	had	not	expected	to	see	the	165
zeros	for	the	X5	column,	because	in	the	data	they	ranged	from	2	to	5.	But	it	is	fine.	What	has
happened	is	that	the	enum	has	renumbered	the	levels	to	be	0	to	3.	165	is	just	over	a	quarter	of
the	625	rows	that	train	contains,	so	that	is	about	right.	Finally,	I	am	comforted	to	see	the
“missing”	row	says	zeros	for	all	columns.	If	this	was	not	the	case	we	would	have	to



investigate	further,	and	decide	how	we	want	to	deal	with	missing	data.

WARNING
Sometimes	missing	data	is	not	detected	as	such,	because	some	kind-hearted	person	has	repaired	it	for	you,	and
unwittingly	damaged	the	data.	Watch	out	for	more	zeros	than	expected.	(See	“Missing	Data”	for	an	example;	as	I
point	out	there,	mean	imputation	can	also	damage	the	data,	but	be	even	harder	to	spot.)

Another	common	example,	in	demographic	data,	is	birthday:	you	might	see	no	missing	data	but	that	30%	of	your
customers	were	all	born	on	January	1st.	The	problem,	of	course,	is	we	don’t	know	which	0.3%	were	actually
born	on	that	day,	and	which	29.7%	just	haven’t	told	us	their	birthday.

Now	let’s	look	at	the	correlation	between	variables.	I	am	going	to	do	this	all	H2O-side,	and
not	download	the	data.	As	mentioned	in	the	previous	chapter,	this	means	it	will	be	Pearson
correlation.	(As	we	will	see	in	a	moment,	our	data	is	not	normally	distributed,	so	Spearman
correlation	would	be	more	appropriate.	I	did	also	generate	the	Spearman	correlations	and,
while	the	numbers	are	slightly	different,	the	conclusions	we	draw	are	the	same.)

In	Python	run	train.cor().round(2)	and	in	R	round(h2.cor(train),2).	If	you	run	that	you	will	see
it	has	done	correlations	with	the	enum	columns,	which	is	just	noise.	(We	already	discussed
how	East	doesn’t	have	more	direction	than	North,	so	obviously	it	cannot	correlate	with
anything.)	Here	are	a	few	lines	of	R	to	exclude	those	columns	(setdiff	is	an	R	command	to	do
boolean	set	logic,	i.e.,	to	subtract	the	contents	of	one	vector	from	another).	I	also	set	some
meaningful	row	names.	The	output	is	shown	just	after:

numericColumns	<-	setdiff(colnames(train),c("X6","X8"))
d	<-	round(	h2o.cor(train[,numericColumns])	,2)
rownames(d)	<-	colnames(d)
d

						X1				X2				X3				X4				X5			X7				Y1				Y2
X1		1.00	-0.99	-0.20	-0.86		0.82	0.00		0.61		0.62
X2	-0.99		1.00		0.19		0.87	-0.85	0.00	-0.65	-0.66
X3	-0.20		0.19		1.00	-0.31		0.29	0.01		0.47		0.44
X4	-0.86		0.87	-0.31		1.00	-0.97	0.00	-0.86	-0.86
X5		0.82	-0.85		0.29	-0.97		1.00	0.01		0.89		0.89
X7		0.00		0.00		0.01		0.00		0.01	1.00		0.28		0.22
Y1		0.61	-0.65		0.47	-0.86		0.89	0.28		1.00		0.98
Y2		0.62	-0.66		0.44	-0.86		0.89	0.22		0.98		1.00

We	find	that	X1	and	X2	have	a	perfect	negative	correlation;	i.e.,	we	could	get	rid	of	one	or	the
other	and	we’d	still	have	the	same	information.	X4	and	X5	are	also	very	strongly	negatively
correlated	to	each	other,	and	X2	and	X4	have	a	very	strong	positive	correlation.	(X1	and	X4
have	the	same	correlation,	but	in	the	negative	direction.)	All	these	strong	correlations	between
the	predictor	variables	is	bad	for	us:	it	means	we	don’t	have	as	much	information	to	learn
from	as	we	hoped.



Y1	and	Y2	are	almost	perfectly	correlated,	0.98,	implying	that	buildings	that	are	expensive	to
heat	in	winter	are	also	expensive	to	cool	in	summer,	and	vice	versa:	if	a	building	is	cheap	to
heat	in	winter	it	is	cheap	to	cool	in	summer.	Having	said	that,	the	paper	said	Y2	was	harder	to
learn,	and	in	a	moment	we	will	see	that	they	have	quite	different	frequency	distributions.	And
some	common	sense	tells	us	that	breezy	houses	that	are	easy	to	keep	cool	in	summer	are
rarely	easier	to	keep	warm	in	winter.	The	moral	of	the	story	of	this	paragraph	is	that
correlations	are	like	politicians:	pay	attention	to	them,	but	never	fully	trust	them.

Some	genuine	good	news	is	how	well	each	field	correlates	with	our	chosen	response
variable,	Y2.	As	shown	in	Figure	3-2,	X5	and	X4	correlate	nicely,	while	X2,	X1,	and	X3	are
also	all	carrying	a	fair	bit	of	information	for	us.	Here	is	the	Python	code	used	to	make	it,
which	assumes	train,	x,	and	y	are	set	as	shown	in	Example	3-2:

import	pandas	as	pd
import	matplotlib.pyplot	as	plt

res	=	train[x].cor(train[y]).as_data_frame()
res.index	=	x
res.plot.barh()
plt.show()

Figure	3-2.	Correlations	of	predictor	variables	with	Y2
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BEYOND	THE	MATHS:	U-VALUES	IN	UK	AND	GREECE

Let’s	leave	the	mathematical	ivory	tower	of	correlations	between	Xs,	and	take	a	moment
to	think	about	what	they	mean.	X5	is	the	overall	height,	and	has	the	highest	positive
correlation:	taller	buildings	need	more	energy.	X4	is	the	roof	area,	and	it	has	the	highest
negative	correlation.	So	the	bigger	the	roof,	the	less	energy	it	needs.	(The	buildings	in
this	study	have	a	constant	volume,	which	is	also	why	X5	and	X4	are	so	strongly
correlated.)	X2	is	surface	area:	the	bigger	the	surface	area	of	the	building	the	less	energy
it	needs.	X3	is	wall	area:	the	more	wall	area	the	more	energy.	X7	is	glazing	area,	so
bigger	windows	need	more	energy.

Most	of	these	were	counterintuitive	to	this	Brit,	but	again	we	have	to	go	back	to	the	paper
to	pick	up	some	details,	specifically	the	U-values.	A	U-value	is	a	heat	transfer	coefficient;
it	is	a	measure	of	how	good	a	building	material	is	as	an	insulator.	Low	values	are	good.
For	instance,	a	single-glazed	window	might	have	a	U-value	of	5.0. 	A	solid	brick	wall	has
a	U-value	of	2.0,	while	an	insulated	cavity	wall	has	a	U-value	of	0.18.	An	uninsulated	roof
has	a	U-value	of	2.5,	whereas,	say,	225mm	of	sheep	wool	insulation	reduces	that	to	0.15.
Which	is	why,	in	the	UK,	cavity	wall	insulation	and	roof	insulation	have	been	strongly
encouraged	since	the	1980s.

When	we	look	at	the	paper,	we	see	the	houses	in	this	study	are	in	Greece	and	have	a	low
U-value	of	0.5	for	the	roof,	but	a	much	worse	1.78	for	the	walls.	In	other	words,	the	walls
are	3.5	times	worse	at	stopping	heat	loss.	So,	tall	houses	with	small	roofs	will	need	more
heating	than	shorter	houses	with	larger	roofs.	(In	case	you	wondered,	the	U-value	for	the
floors	is	0.860,	and	2.26	for	the	windows.)	Intuition	restored,	let’s	move	on.

The	last	thing	I	wanted	to	look	at	was	the	distributions,	especially	looking	for	bell-shaped
curves	that	tell	us	a	field	is	normally	distributed.	I	used	H2O’s	built-in	histogram	function,
saving	the	need	to	download	the	data.

I	wanted	to	control	the	appearance,	so	I	first	use	plot	=	FALSE	to	tell	h2o.hist()	not	to	plot	it.	It
returns	a	“histogram”	object	that	I	can	pass	to	plot(),	and	this	extra	step	allows	me	to	set	the
main	chart	title	(main),	remove	the	x-axis	label	(xlab),	which	is	the	same	text,	and	optionally
control	the	y-axis	scale	(see	note).	The	other	thing	this	code	shows	is	how	to	use	R’s	lapply	to
loop	through	the	columns.	And	I	set	breaks	=	30,	which	gives	more	bars	than	the	default,	for	a
reason	I’ll	come	to	in	a	moment:

par(mfrow	=	c(2	,5))
ylim	<-	NULL
#ylim	<-	c(0,	350)
dummy	<-	lapply(colnames(train),	function(col){
		h	<-	h2o.hist(train[,col],	breaks	=	30,	plot	=	FALSE)
		plot(h,	main	=	col,	xlab	=	"",	ylim	=	ylim)
		})
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NOTE
Some	R-specific	things	in	that	listing.	The	par(mfrow	=	c(2,	5))	line	tells	it	to	plot	them	in	a	5x2	grid.	Also,	if	you
set	ylim	to	c(0,	350)	you	will	get	all	10	y-axes	the	same	height.	That	is	useful	when	you	want	to	compare	across
columns,	but	I	find	the	default	y-axis	scaling	is	better	for	when	we	are	just	interested	in	the	shape	of	each
column’s	histogram	(as	does	setting	a	higher	value	for	breaks).	The	dummy	assignment	is	to	suppress	the
meaningless	output	from	lapply().

The	first	thing	Figure	3-3	screams	at	us,	if	we	hadn’t	already	looked	at	the	paper,	is	the
clustering	of	values,	which	tells	us	that	most	of	these	variables	are	more	like	ordered	factors,
not	continuous	numbers.	This	was	why	I	set	breaks	higher	than	the	default	gave	me:	with
fewer	bars	this	is	less	clear.

Figure	3-3.	Per-column	histograms	(training	data)

X3	(wall	area)	is	the	only	one	that	looks	even	vaguely	normally	distributed.	Looking	at	the
last	two	charts,	which	are	heating	load	and	cooling	load,	we	see	that	even	these	are	not
normally	distributed.	Useful	knowledge	to	take	with	us.



About	the	Data	Set
Data	set	citation:	A.	Tsanas,	A.	Xifara:	Accurate	quantitative	estimation	of	energy	performance
of	residential	buildings	using	statistical	machine	learning	tools,	Energy	and	Buildings,	Vol.
49,	pp.	560-567,	2012.

It	can	also	be	found	at:	http://bit.ly/2f8VDRZ.

A	paper	studying	it	can	be	found	at	http://bit.ly/2fAIKkb.

There	is	some	supplementary	information	here:	http://bit.ly/2g2Raj3.

And	here:	http://www.designingbuildings.co.uk/wiki/U-values.

http://bit.ly/2f8VDRZ
http://bit.ly/2fAIKkb
http://bit.ly/2g2Raj3
http://www.designingbuildings.co.uk/wiki/U-values


Data	Set:	Handwritten	Digits
Our	second	data	set,	called	the	“MNIST	data,”	dates	back	to	1998,	and	the	task	is	to	identify
handwritten	numbers.	It	is	well-known,	and	there	have	been	many	different	approaches	over
the	years.	It	is	typical	of	easy-for-humans-but-hard-for-machine	problems.	Another	reason
for	choosing	it	is	that	there	are	lots	of	papers	and	code	you	can	compare	your	own	attempts
with.

This	data	set	is	much	larger,	in	all	respects,	than	the	previous	building	energy	data	set.	For
starters	there	are	785	columns.	The	final	column	is	the	correct	answer,	0	to	9.	The	first	784
are	the	28x28	grid	of	grayscale	pixels,	and	each	is	0	(for	white)	through	to	255	(for	black).

Figure	3-4	shows	the	first	60	training	samples,	in	graphical	form.	This	is	enough	to
appreciate	the	challenge	here.	7s	with	and	without	a	bar.	2s	with	and	without	a	circle.	One	of
the	threes	looks	more	like	an	“m.”	Different	pen	thicknesses.	The	7	in	the	bottom	right
contains	noise	lines.

Figure	3-4.	The	first	60	MNIST	training	samples

Here	is	one	of	the	rows	(elided):

0,0,0,0,0,0,...0,0,26,133,32,0,0,0,0,0,0,0,0,62,220,25,0,0,0,
0,0,0,0,0,0,0,0,0,0,4,127,253,60,0,...,0,157,253,213,20,0,0,
0,0,45,85,167,253,253,229,55,0,...0,117,253,217,0,0,...,0,0,4

Most	rows	are	mostly	zeros.	They	are	organized	row-first,	so	the	grid	looks	like	this:

1 2 3 4 5 6 … 26 27 28

29 30 31 32 33 34 … 54 55 56

57 58 59 60 61 62 … 82 83 84

… … … … … … … … … …

729 730 731 732 733 734 … 754 755 756

757 758 759 760 761 762 … 782 783 784



Another	way	this	data	set	is	larger	is	that	we	have	60,000	rows	of	training	data,	and	20,000
rows	of	test	data	(the	data	has	already	been	split	up).	Finally,	the	files	are	heavier:	122MB	in
total,	though	“only”	about	15MB	compressed.	Happily,	H2O	can	read	the	compressed	files
directly.	Yay.



Setup	and	Load
Examples	3-3	and	3-4	show	the	code	to	load	the	MNIST	data	set	into	H2O.	Again,	if	using	an
interactive	Python	session	you	will	need	to	set	path	yourself	to	the	location	of	the	data.

Example	3-3.	Loading	MNIST	(in	R)
library(h2o)
h2o.init(nthreads	=	-1,	max_mem_size	=	"3G")

train60K	<-	h2o.importFile("../datasets/mnist.train.csv.gz")
test	<-	h2o.importFile("../datasets/mnist.test.csv.gz")

x	<-	1:784
y	<-	785

train60K[,y]	<-	as.factor(train60K[,y])
test[,y]	<-	as.factor(test[,y])

parts	<-	h2o.splitFrame(train60K,	1.0/6.0)
valid	<-	parts[[1]]
train	<-	parts[[2]]
rm(parts)

Example	3-4.	Loading	MNIST	(in	Python)
import	os
import	h2o
h2o.init(max_mem_size="3G")

path	=	os.path.dirname(__file__)
train60K	=	h2o.import_file(	os.path.join(
		path,	"../datasets/mnist.train.csv.gz")	)
test	=	h2o.import_file(	os.path.join(
		path,	"../datasets/mnist.test.csv.gz")	)

x	=	range(0,784)
y	=	784

train60K[[y]]	=	train60K[[y]].asfactor()
test[[y]]	=	test[[y]].asfactor()

valid,	train	=	train60K.split_frame([1.0/6.0])

This	time,	the	data	comes	as	two	files:	a	training	data	set	and	a	test	data	set.	But	no	validation
data	set.	I	could	use	cross-validation,	but	there	is	plenty	of	data,	so	I	have	chosen	to	randomly
split	off	10,000	rows	as	validation	data,	and	leave	50,000	as	training	data.	(train60K	is	all
60,000,	train	is	about	50,000,	and	valid	is	about	10,000	samples.)

x	is	set	to	be	the	first	784	columns,	and	y	to	be	the	final	column.	The	final	column	looks	like
an	integer,	so	it	needs	to	be	changed	to	be	an	enum	(and	remember	to	do	this	in	both	train60K
and	test).	Notice	that	I	use	numeric	indices,	rather	than	named	indices,	for	the	columns.	It	is
just	easier	when	dealing	with	so	many	columns.
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Taking	a	Look
With	so	many	columns,	I	want	to	analyze	with	graphical	methods	as	much	as	possible.	The
following	couple	of	lines	of	R	code	make	the	averaged	image	shown	in	the	left	of	Figure	3-5,
and	the	next	block	of	code	makes	the	standard	deviation	representation,	shown	on	the	right:

avg	<-	matrix(h2o.mean(train60K[,x]),	nrow	=	28)
image(avg,	col	=	grey(255:0/255))

avgsd	<-	matrix(sapply(x,	function(x)	h2o.sd(train64K[,x])	),	nrow	=	28)
image(avgsd,	col=grey(255:0/255))

The	use	of	sapply()	in	the	second	block	of	code	is	required	because	h2o.sd()	can	only	process
one	column	of	a	data	frame	at	a	time.	Using	h2o.mean()	took	0.05	seconds,	while	h2o.sd()	in	a
loop	took	90	seconds.	The	difference	between	one	function	call	and	784	function	calls!	H2O’s
R	API	has	an	R-like	apply(),	but	apply(train64K[,x],	2,	sd)	won’t	accept	sd	as	the	function.

Figure	3-5.	Mean	(left)	and	standard	deviation	(right)	of	all	the	MNIST	digits

This	is	telling	me	there	are	a	lot	of	unused	columns.	I	estimate	we	could	drop	half	the
columns	and	not	really	lose	anything:	useful	to	bear	in	mind	if	your	learning	algorithm
struggles	with	lots	of	inputs.	mean(h2o.mean(train2[,x])	>	16)	is	0.42,	meaning	only	42%	of
the	cells	have	an	average	value	above	16	(on	a	scale	of	0	to	255).	By	the	way,	if	you	leave
ignore_const_cols	as	the	default	of	true,	then	it	will	automatically	drop	columns	that	are	all
exactly	zero	(67	of	the	784	columns).

How	does	the	data	look	if	we	split	it	up	by	each	of	the	10	digits?	Let’s	show	it	in	Python	this
time:

train64K.group_by(y).count().frame



It	gives	us	the	number	of	training	samples	we	have	for	each	digit:

C785	 nrow_C1
0	 5923
1	 6742
2	 5958
3	 6131
4	 5842
5	 5421
6	 5918
7	 6265
8	 5851
9	 5949

We	have	a	lot	more	“1”s	than	“5”s!

By	the	way,	that	one-liner	is	doing	everything	on	the	H2O	cluster:	group_by()	does	the	same
as	an	SQL	GROUP	BY—dividing	the	rows	in	train64K	into	10	groups,	based	on	the	value	of
y.	And	then	count()	operates	on	each	of	those	10	groups.	.frame	returns	a	10-row,	1-column
H2O	frame.	So,	even	though	it	only	has	10	rows,	we	should	still	be	keeping	in	mind	that	this
is	data	on	the	remote	cluster,	not	the	local	client.

count()	is	not	the	only	group	operation	available.	At	the	time	of	writing,	count(),	max(),
mean(),	min(),	mode(),	sd(),	ss(),	sum(),	and	var()	are	available.	Here	is	an	example	that	gets
the	average	of	each	digit:

avg	=	train64K.group_by(y).mean()
avg_pixels	=	avg.frame[:,	1:785].as_data_frame()
sorted_columns	=	sorted(avg_pixels.columns,	key=lambda	x:	int(x[6:]))
avg_pixels	=	avg_pixels.reindex_axis(sorted_columns,	axis=1)

The	second	line	downloads	just	the	pixel	columns.	The	third	and	fourth	lines	are	needed
because	group_by(y)	does	not	preserve	the	order	of	the	columns;	normally	this	won’t	matter,
but	if	I	were	to	plot	them	(see	Figure	3-6;	the	Python	code	to	make	this	figure	is	online),	the
ordering	becomes	critical!	The	lambda	is	needed	because	the	column	names	range	from
“mean_C1”	to	“mean_C784,”	so	a	normal	lexicographic	sort	will	not	do	the	correct	thing.



Figure	3-6.	Mean	of	each	MNIST	digits



Helping	the	Models
Getting	a	perfect	score	on	reading	handwritten	digits	is	going	to	be	hard	(even	for	Hero	Of
The	Day,	Deep	Learning!). 	However	there	are	a	couple	of	ways	to	help	the	algorithms	get
better	results	on	this	data	set.

The	first	is	to	make	more	data.	One	of	the	problems	we	have	is	that	each	data	sample	is	a
noisy	representation	of	the	digit,	and	that	the	unseen	test	data	set	is	going	to	contain	bad
handwriting	we’ve	never	seen	before.	How	about	we	take	a	guess	what	other	types	of	bad
handwriting	there	might	be?	We	could	repeat	each	of	our	60,000	samples	but	rotated	1°
clockwise.	Or	anticlockwise.	Or	stretched	slightly	in	the	horizontal	direction.	Or	any
direction.	Or	with	a	bit	of	random	noise	added	to	each	pixel.	You	could	make	a	near-infinite
number	of	additional	training	samples.

Reasons	to	not	do	this?	More	work	to	generate	those	samples,	more	memory	to	store	them,
and	then	more	time	to	train.	But	if	every	drop	of	quality	matters,	it	is	a	good	investment.
“How	Low	Can	You	Go?”	at	the	very	end	of	this	book	will	look	at	these	ideas	again.

TIP
More	data	samples	can	be	as	good	as	a	better	algorithm.	Think	of	it	as	a	general	rule,	and	therefore	be	aware	that
it	is	not	always	the	case.	For	further	reading	I	like	this	article,	More	data	or	better	models?,	as	it	covers	both	the
reasons	why	more	data	can	help	and	why	it	can	hinder,	and	has	good	links	if	you	want	to	study	it	deeper.

The	next	thought:	those	784	pixels	are	a	28x28	grid,	but	for	all	the	machine	learning	attempts
in	this	book	we	just	give	them	as	784	inputs.	How	would	you	do	if	you	were	shown	a	784-by-
1-pixel	image	and	asked	to	identify	the	digits?	Badly.	So	we	are	giving	the	machines	a	much
harder	problem	than	it	might	appear—a	pattern	recognition	problem	that	a	human	finds
challenging.	The	best	models	for	the	MNIST	data	are	those	that	try	to	allow	for	that	2D
structure.	With	that	in	mind,	I	am	going	to	do	some	very	simple	pre-processing	to	add	some
more	columns	(features).	The	columns	are	in	four	groups:

49,	from	dividing	the	grid	into	4x4	blocks	and	taking	the	average	of	each	block

36,	from	dividing	the	central	24x24	pixels	into	4x4	blocks	and,	again,	averaging

14,	dividing	into	2x24	pixel	columns,	and	averaging

14,	dividing	into	24x2	pixel	rows,	and	averaging

The	second	one	differs	from	the	first	because	I	stripped	away	the	2-pixel	border.	This	wasn’t
because	the	border	is	dull	(though	it	is),	or	that	we	save	13	columns	(though	we	do):	it	was
about	shifting	the	4x4	blocks	over	2	pixels	and	down	2	pixels,	to	get	a	different	viewpoint.
Looking	at	Figure	3-7	you	can	see	the	digits	are	still	readable.	If	you	wonder	why	the	column
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and	row	averages	might	be	useful,	take	a	look	at	the	horizontals	for	the	three	7s:	they	have	a
pattern	distinctive	from	all	the	other	digits.

Figure	3-7.	Pre-processing	the	digits

These	additional	113	columns	were	added	to	the	data	frames	in	H2O, 	then	exported	as	three
csv	files,	which	you	can	find	in	the	datasets	directory:

mnist.enhanced_train.csv.gz

mnist.enhanced_valid.csv.gz

mnist.enhanced_test.csv.gz

You	can	use	them	by	loading	"load.mnist_enhanced.R"	instead	of	"load.mnist.R";	it	is	a	drop-
in	replacement,	defining	train,	valid,	test,	x,	and	y.
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About	the	Data	Set
Information	on	the	data	set,	and	a	link	to	the	1998	paper	(the	first	study	of	it)	can	be	found
here:	http://yann.lecun.com/exdb/mnist/index.html.

Searching	the	Internet	for	“MNIST”	and	the	name	of	a	machine-learning	algorithm	will
generally	find	at	least	one	person	who	has	tried	that	algorithm	on	the	data	set.

http://yann.lecun.com/exdb/mnist/index.html


Data	Set:	Football	Scores
The	third	data	set	we	will	look	at	here	is	very	different	again;	a	fun	theme	to	allow	us	to	look
at	some	of	the	special	issues	when	dealing	with	a	time	series.	This	data	set	will	also	involve
more	data	preparation,	and	more	knowledge	engineering,	than	the	previous	two,	which	both
came	ready-made.

We	will	be	trying	to	predict	football	(soccer)	match	scores.	There	will	be	three	main	types	of
input	data:

The	first	is	the	match	scores	and	stats.

The	second	is	the	betting	odds	before	the	match.

The	third	is	team	strength	before	each	match.

Most	of	the	hard	work	for	the	first	two	has	been	done	by	our	data	source,	which	is	the
Football	Data	repository	on	GitHub.	Specifically,	we	will	be	using	the	football-
data.co.uk/england	directory.

NOTE
That	repository	has	data	for	all	the	European	leagues,	in	the	same	format.	So	it	would	be	interesting	to	test	your
best	model,	built	on	British	football	data	on,	say,	the	German	or	Italian	leagues.	If	you	try	it,	let	us	know	how	it
goes!

There	is	data	of	every	football	match	played	in	the	top	four	or	five	divisions	in	England	and
Wales,	from	1993	to	the	end	of	the	2015	season	(at	the	time	of	writing).	Here	is	what	a	sample
row	from	2014-2015/Premier.csv	looks	like:

E0,16/08/14,Arsenal,Crystal	Palace,2,1,H,1,1,D,
	J	Moss,14,4,6,2,13,19,9,3,2,2,0,1,1.25,6.5,15,
	1.25,5.5,12,1.3,5,9,1.25,6,13,1.26,6.45,14.01,
	1.25,5.5,12,1.25,5.75,12,1.25,6.25,10.5,50,1.3,
	1.25,6.7,5.96,16,12.43,48,1.77,1.72,2.26,2.1,
	24,-1.5,1.81,1.78,2.2,2.1

That	is	all	one	line,	and	just	one	match!	You	can	probably	work	out	that	it	was	a	match	played
on	August	16th,	2014,	between	Arsenal	(at	home)	and	Crystal	Palace.	The	score	was	2-1.	But
what	about	all	those	other	columns?	Here	is	the	full	list	(when	H	is	used	for	“home	side,”	and
A	for	“away	side,”	I’ve	combined	them	in	one	entry).

Div

Which	division.	E0	is	the	Premier	League,	E1	is	the	Championship	(previously	Division
1),	E2	is	League	1	(previously	Division	2),	E3	is	League	2	(previously	Division	3),	and

10

https://github.com/jokecamp/FootballData
http://bit.ly/2flwbX0


EC	is	the	Conference.	Conference	data	is	only	available	since	the	2005/2006	season.

Date

When	the	match	was	played.	DD/MM/YY	format.

HomeTeam

Text	string	of	the	team	playing	at	home.

AwayTeam

Text	string	of	the	away	team.

FTHG/FTAG

Full-Time	Home	side’s	Goals.	Full-Time	Away	side’s	Goals.

FTR

Full-Time	Result:	H	is	home	team	win,	A	is	away	team	win,	and	D	is	draw.

HTHG/HTAG

The	score	at	half-time.

HTR

Who	was	winning	at	half-time.	Same	H/D/A	value	as	for	FTR.

Referee

Text	string	for	the	name	of	the	referee.

HS/AS

Shots	by	each	side.

HST/AST

Shots	on	target	by	each	side.	Therefore,	HST	≤	HS	and	AST	≤	AS.

HF/AF

Fouls	done	by	each	side.

HC/AC

Corners	received	by	each	side.

HY/AY

Yellow	cards	received	by	each	side.



HR/AR

Red	cards	received	by	each	side.

We’re	only	a	third	of	the	way,	but	take	a	quick	breather.	Deep	breath.	In,	1,	2.	And	out,	1,	2.
The	previous	columns	were	all	about	the	match.	The	remaining	ones	are	all	to	do	with	the
pre-match	betting.	I’m	deliberately	not	going	into	any	more	details	about	the	odds;	all	we
need	to	know	is	that	a	lower	number	means	the	bookmakers	think	that	that	event	is	more	likely
to	happen:

B365H/B365D/B365A

Bet365	odds	of	home-win,	draw,	or	away-win.

BWH/BWD/BWA

Bet&Win	odds	of	home-win,	draw,	or	away-win.

IWH/IWD/IWA

Interwetten	odds	of	home-win,	draw,	or	away-win.

LBH/LBD/LBA

Ladbrokes	odds	of	home-win,	draw,	or	away-win.

PSH/PSD/PSA

Pinnacle	Sports	odds	of	home-win,	draw,	or	away-win.

WHH/WHD/WHA

William	Hill	odds	of	home-win,	draw,	or	away-win.

SJH/SJD/SJA

Stan	James	odds	of	home-win,	draw,	or	away-win.

VCH/VCD/VCA

VC	Bet	odds	of	home-win,	draw,	or	away-win.

Another	breather.	These	are	the	odds	from	eight	different	bookmakers.	That	is	quite	a	lot	of
redundancy,	not	to	mention	that	any	two	of	the	three	odds	implies	the	third.

To	set	their	initial	odds	those	bookmakers	will	be	using	a	model	similar	to	what	we	are	going
to	build;	they	will	also	be	looking	at	each	other ’s	odds	and	adjusting	accordingly.	However,
don’t	forget	this	is	big	business,	not	sheltered	academia,	and	it	is	market-driven:	if	customers
(punters	in	British	English)	are	betting	on	the	less	favored	team	the	bookmaker	will	shorten
the	odds	on	them;	if	it	gets	extreme	enough	then	the	weaker	team	may	even	become	the
favorite.	For	our	purposes,	this	Stupid	Punter	Effect	adds	additional	noise	to	the	data.



Our	bookmaker	odds	are	a	snapshot,	taken	no	later	than	5	p.m.	British	local	time	on	the
Friday	afternoon	before	the	weekend	games	(and	by	3	p.m.	Tuesday	for	mid-week	games).
That	is	quite	close	to	the	game,	so	we	should	expect	them	to	be	accurate	predictors.

The	remaining	columns	in	our	data	all	come	from	BetBrain	(don’t	feel	bad,	I	hadn’t	heard	of
them	either),	which	combines	odds	from	a	large	number	of	bookmakers:

Bb1X2

The	number	of	BetBrain	bookmakers	used	to	calculate	the	following	maximum	and
average	columns.	The	sample	row	shown	earlier	had	50	bookmakers.

BbMxH/BbAvH

The	maximum,	and	average,	home-win	odds.	For	the	Arsenal	versus	Crystal	Palace	row
that	we	showed	earlier,	the	maximum	is	1.3,	and	the	average	is	1.25.

BbMxD/BbAvD

The	maximum,	and	average,	odds	of	a	draw.	Our	sample	row	had	6.7	and	5.96,
respectively.

BbMxA/BbAvA

The	maximum,	and	average,	odds	of	an	away	win.	Our	sample	row	had	16	and	12.43.
(These	bookies	really	don’t	fancy	Crystal	Palace’s	chances,	do	they!)

BbOU

The	number	of	BetBrain	bookmakers	used	to	calculate	the	following	columns.

BbMx>2.5/BbAv>2.5

Best,	and	average,	odds	for	more	than	2.5	goals 	in	the	match.

BbMx<2.5/BbAv<2.5

Best,	and	average,	odds	for	fewer	than	2.5	goals	in	the	match.	Our	sample	row	had
(average)	odds	of	3+	goals	as	1.72,	and	only	0,	1,	or	2	goals	being	scored	as	2.1.	Meaning,
they	think	it	is	close,	but	3+	goals	is	more	likely.	The	final	score	was	2-1,	so	they	were
right.	(The	bookies	were	also	right	about	the	winner.)

BbAH

Number	of	BetBrain	bookmakers	used	to	calculate	the	following	Asian	handicaps.	Our
sample	row	had	24,	half	the	number	of	the	earlier	odds,	but	still	quite	a	lot.

BbAHh

Size	of	handicap	for	the	home	team.	In	our	sample	row	this	is	-1.5.	That	means	the	away
team	are	given	a	1½	goal	handicap.	(It	is	never	an	integer:	the	purpose	of	the	handicap	is
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to	make	draws	impossible.)	Home	wins	are	more	common	than	away	wins,	so	we	expect
this	handicap	to	be	negative	more	often	than	it	is	positive.

BbMxAHH/BbAvAHH

Best,	and	average,	Asian	handicap	home-team	odds.	In	our	sample	row	the	average	is	1.78.

BbMxAHA/BbAvAHA

Best,	and	average,	Asian	handicap	away-team	odds.	Our	row	has	average	of	2.1.	This	is
higher	than	1.78,	meaning	that,	even	with	the	1.5	goal	handicap,	the	home	team	are	still
considered	more	likely	to	win.	(They	were	wrong	this	time;	after	applying	the	handicap
the	final	score	was	½	-	1.)



Correlations
Things	will	get	complex	in	a	moment,	but	before	we	get	there	I	want	to	do	some	initial
analysis	on	just	the	2013-2014	year	(2,588	samples). 	I’m	especially	curious	about	the
correlations	between	all	those	very	similar	columns.

Load	the	data	with	Example	3-5;	you	can	find	the	Python	version	in	the	online	code
(load.football_2013_2014.py),	and	I	won’t	be	going	through	it	line	by	line,	here.	The	bits	that
look	complex	are	generally	about	chopping	that	long	csv	line	into	the	following	data	sets:

betsH

The	various	bookmakers’	odds	for	a	home	win.	It	includes	both	the	maximum	and	average
columns.

betsD

The	bookmakers’	odds	for	a	draw.

betsA

The	bookmakers’	odds	for	an	away	win.

abets

The	Asian	betting	odds.

stats

The	statistics	about	each	game.	The	half-time	and	full-time	results	are	converted	to	a
number,	where	3	is	a	home	win,	2	is	a	draw,	1	is	an	away	win.	(Conveniently,	that	can	be
used	as	higher	means	the	home	team	was	stronger.)

Example	3-5.	Loading	raw	data	for	2013-2014	(in	R)
library(h2o)
h2o.init(nthreads	=	-1)

data	<-	h2o.importFolder("../datasets/england/2013-2014/")
betsH	<-	data[,c(	((1:8)*3)+21,	49,	50)]
betsD	<-	data[,c(	((1:8)*3)+22,	51,	52)]
betsA	<-	data[,c(	((1:8)*3)+23,	53,	54)]
abets	<-	data[,c(56:59,	61:65)]
stats	<-	data[,c(5:10,	12:23)]
stats[,c("FTR",	"HTR")]	<-	as.numeric(stats[,c("FTR",	"HTR")])

betsH,	betsD,	betsA	each	have	10	columns,	abets	has	9	columns,	and	stats	has	18	columns.

We	expect	strong	correlations	between	betting	odds;	if	not	there	are	arbitrage	opportunities,
implying	the	bookmakers	are	asleep	at	the	wheel.	This	code	gives	us	all	the	correlations:

d	<-	as.matrix(betsD)
d	<-	d[complete.cases(d),]
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cor(d)

The	as.matrix()	call	downloads	the	data	from	the	H2O	cluster	into	an	R	variable	(it	is	just	a
thin	wrapper	around	the	as.data.frame()	we’ve	used	before).	I	then	use	an	R	idiom	to	throw
away	rows	that	have	an	NA	(missing	data)	in	any	column.	That	is,	we	only	consider	matches
that	were	covered	by	all	bookmakers.	Rather	than	show	you	the	output	of	that,	which	is	just	a
table	of	numbers,	Figure	3-8	shows	the	output	of	R’s	pairs()	command. 	It	is	showing	the
correlation	in	the	upper	triangle,	while	the	lower	triangle	shows	the	scatterplot	for	each	pair
of	columns.

Figure	3-8.	Correlations	between	different	bookmakers’	odds	of	a	draw

This	kind	of	chart	can	feel	like	information	overload	the	first	time	you	see	one,	but	here	are
some	things	to	pay	attention	to:

Perfect	correlation	is	a	straight	diagonal	line.	BbAvD	(the	average	of	multiple
bookmakers)	has	the	neatest	lines,	and	highest	correlations.	This	hints	that	we	could	just
keep	BbAvH,	BbAvD,	and	BbAVA	and	drop	all	the	other	betting	odds?

Most	bookmakers	correlate	well	when	the	odds	are	low,	and	less	well	when	the	odds	get
high,	as	shown	by	the	flaring	in	the	upper-right	of	each	scatterplot.

IWD	has	an	outlier:	the	one	point	on	the	far	left.	It	appears	to	be	a	single	bad	row,	maybe	a
typo	in	data	entry,	not	a	systematic	problem.

WHD	correlates	(relatively)	poorly.	But	only	for	a	draw:	WHH	and	WHL	are	all	0.98s	and
0.99s.

By	the	way,	I	downloaded	the	data	because	I	wanted	to	run	pairs();	if	I	just	wanted	the
correlations	I	could	have	used	h2o.cor(betsD,	use="complete.obs").	I	chose	betsD	to	show
here,	as	betsH	and	betsA	were	less	interesting:	all	their	correlations	are	0.97	or	above	(as
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expected).	And	I	actually	ran	pairs(d[,c(3:6,10)])	as	using	all	10	bookmakers	made	the
diagram	a	bit	cramped	for	publication	here,	and	those	were	the	most	interesting	five.

For	reference	here	is	how	to	do	something	similar	in	Python;	I’ve	included	some	lines	to	load
the	data,	taken	from	load.football_2013_2014.py,	so	that	it	is	self-contained.	I	find
scatter_matrix()	less	customizable	than	R’s	pairs(),	so	all	plots	in	this	section	were	made	with
the	latter:

import	os,	h2o
import	pandas	as	pd
import	matplotlib.pyplot	as	plt
data	=	h2o.import_file("../datasets/england/2013-2014/")
betsD	=	data[	range(24,	46,	3)	+	[50,	51]	]

d	=	betsD.as_data_frame()
pd.tools.plotting.scatter_matrix(d)
plt.show()

What	about	correlations	within	abets?	Figure	3-9	shows:

The	four	columns	to	do	with	≥3	goals	versus	≤2	goals	correlate	just	about	perfectly
among	themselves,	but	hardly	at	all	with	the	other	columns.

The	handicap	column	correlates	poorly	with	all	other	abets	columns.

Figure	3-9.	Correlations	between	the	Asian	betting	columns

Home	win	versus	away	win	of	the	handicapped	result	has	almost	perfect	negative	correlation
(–0.99).	It	correlates	hardly	at	all	with	the	other	columns,	which	is	why	I	excluded	it	from	the
plot.

By	the	way,	notice	how	the	scatterplots,	especially	in	the	top	left,	have	a	curve.	This	is	why	I



used	method="spearman"	for	those	correlation	numbers.	For	instance,	for	the	average	odds
of	≥3	and	≤2	goals,	it	made	the	difference	between	–1.00	with	the	Spearman	method	and	–
0.945	with	the	default	Pearson	method.

What	about	the	match	statistics:	cor(stats)?	That	gives	a	lot	of	columns,	and	a	lot	of	noise,	so
I’m	not	even	bothering	with	a	diagram.	Full-time	goals	correlates	with	half-time	goals,	for
each	team,	with	about	0.670.	The	full-time	result	and	half-time	result	correlate	with	0.587.
Shots	(AS/HS)	and	shots-on-target	(AST/HST)	correlate	with	0.630.	Everything	else	gets	a	bit
tenuous.

There	is	one	more	I	want	to	try.	This	looks	at	correlations	between	the	match	result	(“FTR”	is
Full-Time	Result),	the	(average)	bookies’	expectations	of	a	home	win	(“BbAvH”),	and	the
Asian	Betting	handicap	(“BbAHh”).	Just	three	columns,	so	Figure	3-10	is	a	bit	easier	on	the
eyes.

Figure	3-10.	Correlations	between	match	odds	and	final	result

The	handicap	column	and	other	betting	odds	have	a	strong	positive	correlation,	but	their
correlation	with	the	actual	result	is	a	mere	–0.3.	(It	is	a	negative	correlation	because	we	used	a
higher	FTR	to	mean	the	home	team	was	better,	but	both	BbAvH	and	BbAHh	are	lower	when
there	is	a	higher	probability	of	a	home	win.)	But	that	is	important:	it	tells	us	there	is	a	fair	bit
of	unpredictability	in	results,	and	these	domain	experts	get	it	wrong	a	lot	of	the	time.	Can	we
make	a	model	that	does	better?



Missing	Data…	And	Yet	More	Columns
The	most	recent	files	have	all	the	columns	shown	in	the	previous	section.	But	the	first	few
rows	in	1993-1994/Premier.csv	present	a	stark	contrast:

Div,Date,HomeTeam,AwayTeam,FTHG,FTAG,FTR,,,,,,,,,,,,,,,,,,,,,
E0,14/08/93,Arsenal,Coventry,0,3,A,,,,,,,,,,,,,,,,,,,,,
E0,14/08/93,Aston	Villa,QPR,4,1,H,,,,,,,,,,,,,,,,,,,,,

So,	we	thought	we	had	over	twenty	years	of	rich	data,	but	in	fact	a	third	of	it	is	just	match
results.	1995-1996	adds	half-time	scores	(but	only	in	Premier.csv,	not	the	other	files).	Only
when	we	get	to	2000-2001	do	we	get	the	full	range	of	columns.	But	we	also	get	a	spanner	in
the	works.	Here	is	the	first	row	of	2000-2001/Premier.csv:

Div,Date,HomeTeam,AwayTeam,FTHG,FTAG,FTR,HTHG,HTAG,HTR,
	Attendance,Referee,HS,AS,HST,AST,HHW,AHW,HC,AC,HF,AF,
	HO,AO,HY,AY,HR,AR,HBP,ABP,GBH,GBD,GBA,IWH,IWD,IWA,
	LBH,LBD,LBA,SBH,SBD,SBA,WHH,WHD,WHA

Spot	the	problem?

Attendance,	that’s	the	problem.	Not	just	attendance,	but	HHW/AHW,	HO/AO,	and	HBP/ABP.
Seven	new	fields	not	in	the	2013-2014	data!	It	turns	out	these	only	appear	in	2000-2001	and
2001-2002.	They	have	these	meanings:

Attendance

How	many	people	turned	up	to	watch.

HHW/AHW

Hit	(the)	Woodwork.	That	is,	almost	scored,	but	the	ball	hit	the	goal	posts	or	crossbar.

HO/AO

Number	of	offsides	by	each	side.

HBP/ABP

Team	booking	points	(10	for	yellow,	25	for	red).

In	addition,	the	odds	section	is	different,	with	only	three	bookmakers	in	common.	There	is
quite	a	lot	of	variation	in	active	bookmakers,	year	to	year.	All	those	differences	make	our	life
harder,	as	we	shall	see	shortly	in	“Setup	and	Load”.



How	to	Train	and	Test?
Before	we	look	at	how	to	load	the	data	we	need	to	decide	what	will	be	our	training	data,	what
will	be	the	validation	data,	and	what	will	be	the	test	data.	Take	a	moment	(or	two)	to	ponder
the	differences,	for	time-series	data,	between:

Random	sampling	test	rows

Fine-grained	stratification	(e.g.,	use	every	fifth	match	as	test	data)

Test	on	most	recent	(e.g.,	2014–2015	onwards	as	test	data)

Think	about	a	production	system,	where	we	want	to	predict	the	result	of	next	weekend’s
matches.	The	“test”	data	equates	to	what	we	want	our	production	system	to	spit	out.	So,
generally,	with	time-series	data,	you	want	to	use	the	third	approach:	train	on	the	old	data,	test
on	the	new	data.	The	same	thought	process	applies	for	validation	data,	so	by	keeping	training
data	before	validation	data	before	test	data,	we	have	the	best	chance	of	being	kept	honest.



Setup	and	Load
My	initial	plan	was	to	use	H2O’s	h2o.importFolder()	function.	It	will	load	all	files	in	a
directory	tree	and	merge	all	files	into	a	single	data	frame.	The	pattern	argument	allows	you	to
specify	only	a	subset	of	the	files	to	be	loaded.	So	the	code	was	going	to	be:

data	<-	h2o.importFolder("/path/to/england",	pattern="[.]csv$",	header=TRUE	)

You	already	saw	h2o.importFolder()	in	action	in	“Correlations”	(Example	3-5).	But,	when	we
try	to	apply	it	to	all	years,	as	here,	it	complains	with	"Column	names	do	not	match	between
files."	If	you	try	with	header=FALSE,	the	error	is	"Files	conflict	in	number	of	columns.	21
versus	28."	However,	if	you	look	over	on	Flow	you	will	see	the	files	are	all	there.	I	previously
glossed	over	a	detail	of	how	H2O	loading	works:	under	the	surface	it	is	a	two-step	process.
First	the	file’s	raw	bytes	are	loaded,	then	they	are	parsed.	If	you	have	tried	importing	a	file
using	Flow	you	will	have	seen	this	two-step	process	made	explicit.	We	can	do	the	two-step
process	explicitly	from	our	client,	and	successfully	load	all	files,	as	follows:

fh	<-	h2o.importFolder("/path/to/england",	pattern="[.]csv$",	parse=FALSE)
dataList	<-	lapply(fh,	h2o.parseRaw)

But,	there	is	a	difference	between	data	in	the	first	example	and	dataList	in	the	second,	and	the
clue	is	in	the	name.	When	h2o.importFolder()	does	both	the	load	and	the	parse,	it	returns	a
single	data	frame,	a	merger	of	all	csv	files.	When	you	just	use	it	to	load,	and	then	run
h2o.parseRaw()	on	each	file,	you	get	a	list:	one	data	frame	per	file.	But	we	want	a	single	data
frame.	Therefore	we	use	h2o.rbind()	to	merge	them	together:	do.call(h2o.rbind,dataList).	But,
then	we	get	"rbind	frames	must	have	all	the	same	columns,	found	65	and	28	columns."	and
realize	we	have	spent	a	lot	of	time	and	effort	getting	nowhere.

Yoga,	a	run	in	the	mountains,	gargling	your	national	anthem	with	a	favorite	hot	beverage…
they	are	all	solutions	to	the	stress	this	creates,	but	each	has	its	downside	(the	need	to	be
flexible,	the	need	for	nearby	mountains,	the	need	for	a	clean	shirt),	so	let’s	persevere	with	a
programmatic	solution.

We	can	choose	from:

Merge	the	csv	files	in	advance,	with	language/tool	of	choice.

Add	the	missing	columns	in	H2O,	to	each	frame,	before	joining	them.

Get	someone	else	to	sort	it	out	for	you.

You	can	use	the	third	option,	as	there	are	ready-made	files	in	the	“datasets/”	directory.	I	gave
the	second	option	a	try,	but	gave	up.	The	data	manipulation	tools	in	H2O,	at	least	at	the
moment,	are	not	quite	up	to	the	job.	The	moral	of	the	story	is	to	use	the	best	tool	for	the	job,
so	reach	for	Python,	R,	Excel,	or	whatever	you	are	most	comfortable	with.	I	wrote	a	script,	in
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PHP	(see	code/organize_football_files.php	in	the	online	files ),	to	remake	each	csv	file,	so
they	all	have	the	same	set	of	columns;	I	then	used	some	shell	commands	to	cat	them	together
into	train,	valid,	and	test	csv	files.	The	whole	process	takes	less	than	three	seconds.
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The	Other	Third
Earlier	in	this	chapter,	so	far	back	it	may	be	long	forgotten,	replaced	in	your	mind	with	new
concepts	such	as	Asian	Betting	and	Hitting	The	Woodwork,	I	said	our	third	source	of	data
would	be	team	strength.	This	is	where	we	put	our	knowledge	engineering	hat	on.	There	is	so
much	that	can	be	done	here,	from	hunting	for	data	sources	on	players,	to	sentiment	mining
social	media	and	the	news,	to	sophisticated	moving	averages.	I	will	keep	it	relatively	simple.
Though	I’d	be	very	interested	to	hear	about	what	features	you	add.

The	first	set	of	fields	to	add	are	the	match	stats	from	each	team’s	most	recent	match.	I	have
low	expectations	of	its	utility:	how	many	corners	a	side	got	as	much	depends	on	who	they
played	as	it	does	on	some	innate	team	quality.	In	other	words,	we	are	taking	the	data	out	of
context.	But	it	is	relatively	easy	to	get,	so	let’s	try.

The	second	set	of	fields	are	recent	performance.	The	first	of	these	is	very	simple:	+1	if	they
won	their	last	match,	0	if	it	was	a	draw,	–1	if	they	lost.	Then	there	are	two	moving	averages
(see	the	sidebar	“The	Art	of	the	Moving	Average”):	over	the	last	5	matches,	and	over	the	last
20	matches.	Teams	play	38	to	46	matches	in	a	season,	so	20	matches	is	about	half	a	season,
and	should	be	a	good	proxy	for	underlying	team	quality.	The	most	recent	match	is	a	proxy	for
star	players	being	injured	or	banned,	and	things	like	the	boost	to	morale	that	a	win	can	give.
Five	matches	represents	approximately	the	last	month,	and	is	a	blend	of	team	quality	and	team
morale.

By	the	way,	I	will	treat	the	entire	data	history	as	a	single	time	series.	The	problem	with	this
approach	is	that	clubs	move	between	leagues	at	the	end	of	a	season.	For	example,	a	losing
streak	leads	to	demotion.	In	the	new	division	they	are	the	strongest,	but	our	moving	average
claims	they	are	the	weakest.	The	alternative	is	to	calculate	moving	averages	on	a	per-season
basis,	but	then	you	end	up	with	NAs	for	the	first	5	and	20	matches	of	each	season.	You	are
clever,	and	your	mind	is	already	buzzing	with	clever	workarounds—I	can	hear	it	from	here.
But	don’t	prematurely	optimize:	if	our	model’s	performance	is	not	notably	better	in	the	late
part	of	a	season	compared	to	the	early	part,	then	getting	clever	here	should	not	be	our	highest
priority.
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THE	ART	OF	THE	MOVING	AVERAGE

In	the	world	of	finance,	and	in	particular	the	area	known	as	technical	trading,	moving
averages	are	everywhere.	The	SMA	(simple	moving	average)	is	the	only	one	we	use	in
this	book,	but	the	EMA	(exponential	moving	average—full	data	history	is	used,	but	the
most	recent	values	have	most	weight)	is	also	popular	and	there	are	a	whole	host	of	other
weighted	and	smoothed	moving	averages.	My	personal	rule:	use	an	SMA	unless	you	can
come	up	with	a	good	reason	not	to.

You	will	also	see	the	concept	of	the	moving	standard	deviation.	A	current	value	can	then
be	measured	in	the	number	of	standard	deviations	it	is	above	or	below	the	moving
average	over	some	time	span.	If	you	believe	a	stock	is	mean-reverting,	then	you	should
buy	when	the	stock	is	notably	below	the	moving	average,	and	short	when	notably	above.
The	other	concept	used	a	lot	in	finance	is	crossover.	One	type	is	when	a	moving	average
crosses	from	above	or	below	the	current	price;	another	is	when	moving	averages	of
different	periods	cross	(e.g.,	a	20-day	moving	average	crosses	a	100-day	moving
average).	In	both	cases	they	suggest	to	a	trader	that	a	trend	has	ended,	and	the	price
direction	will	reverse.

Ideally	our	model	will	work	these	concepts	out	for	itself.	But	such	an	ideal	world	often
also	needs	near-infinite	data	samples,	CPU,	and	memory.	So,	when	dealing	with	time-
series	data,	keep	these	concepts	in	your	toolbox;	think	of	them	as	hints	you	can	give	your
learning	models.	If	the	hint	doesn’t	help	(low	variable	importance)	simply	remove	it
again.

I	am	not	going	to	show	the	code	to	create	the	new	columns,	but	look	in	the	online	code
repository	for	the	script(s).	Hopefully	by	the	time	you	read	this	there	will	be	a	version	in	your
favorite	language	(if	not,	how	about	contributing	one)?	If	you	are	using	R,	look	at	xts	and	its
rollMean()	function;	in	Python,	convolve()	from	the	numpy	library	can	be	used	to	make
moving	averages.

NOTE
It	has	a	bug:	I	foolishly	used	zero	for	entries	where	there	was	no	data	(mostly	the	pre-2000	data),	when	I	should
have	used	a	blank	field.	A	blank	field	would	get	imported	as	a	NA,	a	nan	in	Python,	and	get	ignored,	while	a
zero	looks	like	real	data.	After	some	consideration,	I	left	it	in	as	a	“deliberate”	bug,	because	in	Chapter	9	it	gives
us	a	good	example	and,	as	we	will	see	there,	it	turns	out	not	to	matter	in	the	end.

Three	files	have	been	made:	football.train.csv,	football.valid.csv,	and	football.test.csv.	Valid
and	test	are	the	two	most	recent	seasons,	and	train	is	all	the	earlier	data.	The	columns	that	have
been	added	are:
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HS1

The	shots	by	the	current	home	side,	in	their	previous	match	(whether	they	were	the	home
or	away	side	in	that	previous	match).

AS1

The	shots	by	the	current	away	side,	in	their	previous	match.

HST1/AST1

Shots	on	target	in	the	previous	match.

HF1/AF1

Fouls	in	the	previous	match.

HC1/AC1

Corners	in	the	previous	match.

HY1/AY1

Yellow	cards	in	the	previous	match.

HR1/AR1

Red	cards	in	the	previous	match.

res1H/res1A

The	last	result	for	the	home	and	away	sides:	–1,	0	or	+1.

res5H/res5A

Average	of	the	last	5	results:	–1.0	to	+1.0.

res20H/res20A

Average	of	the	last	20	results:	–1.0	to	+1.0.

As	you	should	expect	(because	every	winner	creates	a	loser)	the	res5	and	res20	variables	are
normally	distributed,	around	a	mean	of	zero, 	with	a	higher	standard	deviation	for	res5.

TIP
As	you	add	new	fields,	jot	down	expectations.	They	are	a	good	way	to	catch	bugs	in	your	models.

Taking	that	tip	further,	another	good	way	to	check	your	models	for	bugs	is	to	add	a	field	that
is	completely	random	and	make	sure	it	is	the	least	important	variable	in	your	model.	(You
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might	need	to	run	the	models	a	few	times	and	average	the	result,	to	allow	for	random
variation.)	If	it	ends	up	in	with	a	bunch	of	other	predictor	variables,	it	implies	those	are	also
random.	I	wouldn’t	be	surprised	to	see	HC1	or	AY1	there.	But	if	I	saw	res5H	as	having	no
more	predictive	value	than	a	random	variable	I	would	be	suspicious	and	take	a	deeper	look.

Similarly,	cheat:	add	a	field	that	is	just	some	simple	mathematical	operation	of	the	response
variable,	and	make	sure	it	is	not	just	top	of	variable	importance,	but	that	the	model	quickly
learns	perfectly.	(Just	remember	to	remove	it	again!)	If	not,	look	for	bugs	in	your	scripts.	For
example,	are	you	training	on	a	different	data	set	by	mistake?



Missing	Data	(Again)
Decision	tree	machine-learning	algorithms	cope	fairly	well	with	missing	data,	but	deep
learning	will	struggle	a	bit,	and	then	at	the	other	extreme	linear	models	will	simply	ignore
whole	rows	where	any	field	is	an	NA.	That	is	going	to	cause	us	problems,	because	there	is
quite	a	lot	of	missing	data.

However,	I	am	not	going	to	explain,	here,	how	the	missing	data	is	dealt	with,	leaving	that	for
“Missing	Data”	in	Chapter	9.	All	I	am	going	to	do	here	is	say	that	in	the	datasets	directory
you	will	find	alternative	versions	of	our	three	files	that	no	longer	have	missing	data;	the
format	is	the	same,	no	new	or	removed	columns:

football.train2.csv

football.valid2.csv

football.test2.csv

The	code	to	load	either	version	is	shown	in	a	moment.	The	decision	tree	variants,	random
forest,	and	GBM	(gradient	boosting	machines)	use	the	original	data	described	in	this	chapter,
but	GLM	(generalized	linear	models)	and	deep	learning	will	use	these	alternative	versions.



Setup	and	Load	(Again)
Phew!	Almost	there!	Now	that	we	have	a	nicely	organized	data	set,	what	shall	we	do	with	it?
The	obvious	one	would	be	to	predict	the	win/draw/loss.	But	that	is	three	outcomes,	and	our
MNIST	data	set	is	also	a	multinomial	classification	problem.	Instead,	I	would	like	to	show
binomial	classification	(also	called	logistic	regression)	in	this	book.

We	could	predict	win	versus	non-win,	from	the	home	team’s	point	of	view.	That	is,	a	draw	or
away	win	counts	as	a	failure.	To	see	why	we’d	do	that,	here	is	the	breakdown	of	the	FTR
column	in	train:

H:18336	(45%)

D:11189	(27.5%)

A:11179	(27.5%)

That	is,	the	home-team	advantage	is	huge	(45%	versus	27.5%).	When	we	consider	home-win
versus	not-home-win	it	is	45%	versus	55%,	so	it	turns	out	to	be	a	fairly	balanced	binomial
classification	problem.	Another	idea	is	to	predict	score	draws,	those	matches	where	the	result
is	a	draw,	but	not	0-0.	This	is	a	harder	problem,	and	is	not	considered	any	further	in	this	book.
Example	3-6	prepares	the	ground	for	any	of	those	three	choices:	just	uncomment	the	y	line
for	what	you	want	the	model	to	learn.

Something	we	need	to	be	aware	of	is	the	difference	in	the	H/D/A	breakdown	in	the	different
data	sets.	The	valid	and	test	sets	have	a	notably	lower	win	rate	for	home	sides. 	What	does
this	mean	for	us?	The	simplest	possible	algorithm	that	looks	at	the	training	data	and	thinks,
always	choose	not-home-win,	and	goes	away	happy	with	being	right	55%	of	the	time,	will
score	an	even	higher	57.3%	on	the	test	data,	and	57.9%	on	the	valid	data.	That	imbalance
might	cause	problems.

train train2 valid test

1993–2013 2000–2013 2013–2014 2014–2015

Home	Win 45.0% 44.6% 42.1% 42.6%

Draw 27.5% 27.2% 27.0% 26.2%

Away	Win 27.5% 28.2% 30.9% 31.1%

Example	3-6.	Loading	football	data	(in	R)
library(h2o)
h2o.init(nthreads	=	-1,	max_mem_size	=	"3G")

train	<-	h2o.importFile("../datasets/football.train.csv")
valid	<-	h2o.importFile("../datasets/football.valid.csv")
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test	<-	h2o.importFile("../datasets/football.test.csv")

train$HomeWin	<-	as.factor(train$FTR	==	"H")
valid$HomeWin	<-	as.factor(valid$FTR	==	"H")
test$HomeWin	<-	as.factor(test$FTR	==	"H")

train$ScoreDraw	<-	as.factor(train$FTHG	>	0	&	train$FTHG	==	train$FTAG)
valid$ScoreDraw	<-	as.factor(valid$FTHG	>	0	&	valid$FTHG	==	valid$FTAG)
test$ScoreDraw	<-	as.factor(test$FTHG	>	0	&	test$FTHG	==	test$FTAG)

statFields	<-	c(
		"FTHG",	"FTAG",	"FTR",	"HTHG",	"HTAG",	"HTR",
		"HS",	"AS",	"HST",	"AST",	"HF",	"AF",
		"HC",	"AC",	"HY",	"AY",	"HR",	"AR",
		"HomeWin",	"ScoreDraw"
		)
ignoreFields	<-	c("Date",	"HomeTeam",	"AwayTeam",	statFields)

x	<-	setdiff(colnames(train),	ignoreFields)

xNoOdds	<-	c(
		"Div",	"HS1",	"AS1",	"HST1",	"AST1",
		"HF1",	"AF1",	"HC1",	"AC1",	"HY1",	"AY1",	"HR1",	"AR1",
		"res1H",	"res1A",	"res5H",	"res5A",	"res20H",	"res20A"
		)

#y	<-	"FTR"		#3-value	multinomial
#y	<-	"ScoreDraw"		#Unbalanced	binomial
y	<-	"HomeWin"	#Balanced	binomial

To	load	the	version	without	any	missing	data,	just	change	the	three	h2o.importFile()	lines	to
load	"football.train2.csv"	instead	of	"football.train.csv",	and	the	same	for	valid	and	test.	The
same	goes	for	the	Python	version	(Example	3-7).

I	will	not	go	through	the	listings	in	detail,	because	you	have	seen	it	all	before.	I	give	H2O
3GB	of	memory,	but	you	can	get	by	with	less	(I	ran	out	of	memory	with	only	1GB	when
making	many	model	variations).	HomeWin	and	ScoreDraw	get	created	as	enum	fields,	where
0	means	false,	1	means	true.	For	ScoreDraw,	the	&	does	a	logical	AND	on	two	temporary
one-column	H2O	frames,	to	create	another	temporary	frame,	which	is	then	turned	into	a
factor,	then	copied	into	our	main	H2O	frame.	The	extra	parentheses	shown	in	the	Python
version	are	required.

x	is	defined	to	be	all	fields,	except	those	that	would	not	be	known	in	advance.	And	then
xNoOdds	is	the	same	but	excludes	all	the	betting	odd	fields.	It	ought	to	be	much	easier	to
predict	a	home	win	when	we	have	a	bank	of	experts	first	telling	us	their	prediction,	so	this	sets
things	up	to	try	it	both	ways.

Example	3-7.	Loading	football	data	(in	Python)
import	os
import	h2o
h2o.init(max_mem_size="3G")



path	=	os.path.dirname(__file__)
train	=	h2o.import_file(	os.path.join(
		path,	"../datasets/football.train.csv")	)
valid	=	h2o.import_file(	os.path.join(
		path,	"../datasets/football.valid.csv")	)
test	=	h2o.import_file(	os.path.join(
		path,	"../datasets/football.test.csv")	)

train["HomeWin"]	=	(train["FTR"]	==	"H").asfactor()
valid["HomeWin"]	=	(valid["FTR"]	==	"H").asfactor()
test["HomeWin"]	=	(test["FTR"]	==	"H").asfactor()

train["ScoreDraw"]	=	(
		(train["FTHG"]	>	0)	&	(train["FTHG"]	==	train["FTAG"])
		).asfactor()
valid["ScoreDraw"]	=	(
		(valid["FTHG"]	>	0)	&	(valid["FTHG"]	==	valid["FTAG"])
		).asfactor()
test["ScoreDraw"]	=	(
		(test["FTHG"]	>	0)	&	(test["FTHG"]	==	test["FTAG"])
		).asfactor()

statFields	=	[
		"FTHG",	"FTAG",	"FTR",	"HTHG",	"HTAG",	"HTR",
		"HS",	"AS",	"HST",	"AST",	"HF",	"AF",
		"HC",	"AC",	"HY",	"AY",	"HR",	"AR",
		"HomeWin",	"ScoreDraw"
		]
ignoreFields	=	["Date",	"HomeTeam",	"AwayTeam"]	+	statFields

x	=	[i	for	i	in	train.names	if	i	not	in	ignoreFields]

xNoOdds	=	[
		"Div",	"HS1",	"AS1",	"HST1",	"AST1",
		"HF1",	"AF1",	"HC1",	"AC1",	"HY1",	"AY1",	"HR1",	"AR1",
		"res1H",	"res1A",	"res5H",	"res5A",	"res20H",	"res20A"
		]

#y	=	"FTR"		#3-value	multinomial
#y	=	"ScoreDraw"		#Unbalanced	binomial
y	=	"HomeWin"	#Balanced	binomial



About	the	Data	Set
This	book’s	GitHub	repository	is	the	canonical	data	source	in	this	case.	The	data	prior	to
being	manipulated	was	downloaded	from	the	Football	Data	repository	on	GitHub.	All	code
and	data	there	is	under	the	MIT	license.	They,	in	turn,	give	the	following	data	sources:
International	Soccer	Server,	European	Football,	RSSSF	Archive,	TBWSport,	and	Livescore.

https://github.com/jokecamp/FootballData


Summary
In	this	chapter	we	looked	at	three	delightfully	different	data	sets.	The	first	two	came	to	us
perfectly	formed,	but	the	third	was	more	of	a	struggle,	wasn’t	it?	However,	this	is	more
typical	of	real-world	data	science.	Don’t	just	get	used	to	it,	learn	to	love	the	struggle.

We	built	scripts	to	load	each	of	them,	and	then	did	a	bit	of	analysis	of	the	columns	(the
features)	in	each	data	set,	and	for	the	handwritten	digits	and	the	football	data,	added	some
additional	features.	The	latter	will	hopefully	help	the	models,	and	the	former	was	to	train	our
intuition,	and	tell	us	what	to	watch	out	for.

For	the	building	energy	data,	the	main	challenge	is	going	to	be	the	small	number	of	data
samples,	and	the	way	each	predictor	field	is	discontinuous.	When	we	take	data	subsets	they	can
easily	become	unrepresentative.	For	the	MNIST	data	the	main	challenge	is	that	those	pesky
kids 	don’t	all	have	exactly	the	same	handwriting.	And	that	a	row	of	784	pixels	are	very	low-
level	features	to	learn	from;	our	113	added	features	were	easy	to	add	but	still	crude.	The
biggest	challenge	with	the	football	data	will	be	that	it	is	just	plain	hard	to	predict	the	outcome
of	22	men	kicking	a	ball	about	for	90	minutes,	summed	up	in	Figure	3-10,	where	we	saw	that
the	human	experts	(the	bookmakers)	only	managed	a	0.3	correlation	with	the	match	results.

We	are	almost	ready	to	build	models.	The	next	chapter	is	going	to	take	you	on	a	tour	of	H2O
functionality,	and	parameters	you	can	tune,	common	to	all	the	algorithms.	Then	after	that	we
will	have	four	chapters	of	machine	learning.

	There	is	also	naive	bayes,	covered	briefly	in	“Naive	Bayes”	in	Chapter	10,	but	it	is	not	used
on	these	data	sets.

	For	example,	as.factor(data[,"X7"])	in	R,	or	data["X7"].asfactor()	in	Python.

	https://en.wikipedia.org/wiki/Program_optimization#Quotes

	Using	seed=999	for	the	call	to	split().

	See	building_energy_correlations.py,	in	the	online	code,	for	the	full	Python	script	used	to
make	this	plot.

	What	that	means	is	for	every	degree	of	difference,	in	celsius,	between	the	inside	and	outside,
5W	are	transmitted	per	square	meter.	Modern	double-glazing	will	be	under	2.0,	while	the
PassivHaus	standard	requires	triple-glazing	with	a	U-value	under	0.8.

	To	get	reproducible	results,	and	exactly	a	50K/10K	split,	I	used	a	ratio	of	0.1675	and	a	seed
of	450.

	A	good	human	will	have	an	error	rate	of	0.2%	or	higher:	some	of	the	handwriting	is
atrocious,	and	some	samples	have	extra	lines	or	other	noise.

	The	code	to	make	this	is	in	mnist_enhancer.R,	in	the	online	files;	that	is	also	where	you	will
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find	the	code	used	to	make	the	images	in	this	section.

	And	cause	flashbacks	to	the	quote	in	an	earlier	chapter:	80%	of	a	data	scientist’s	time	is
spent	on	data	preparation,	the	other	20%	is	spent	on	moaning	about	it.

	Strange	terminology,	as	there	are	no	half-goals	in	football,	but	apparently	the	average
game	of	football	has	about	2.5	goals	per	match.

	Curiously,	the	first	listed	match	in	the	relatively	unfollowed	League	Two,	Accrington
versus	Southend,	still	gets	22	bookmakers	following	it;	football	betting	has	very	little	to	do
with	football	supporting!

	I’ve	chosen	this	season	as	it	is	recent	but	also	because	it	is	not	the	season	I	intend	to	use	for
test	data.

	See	analyze_football_bet_correlations.R	in	the	online	code	for	the	exact	command	that	was
run.

	Check	the	site	for	scripts	in	other	languages,	and	if	you	write	one	yourself,	please	do	a	pull
request	so	it	can	be	added.

	Well,	that	was	me	being	polite.	What	I	really	mean	is	to	only	let	me	know	if	you	added
features	that	made	the	models	better.	Keep	your	failures	to	yourself.

	Before	you	go	and	lose	your	life-savings	in	the	stock	market,	I’ll	quickly	point	out	that	this
is	the	exact	opposite	of	what	you	want	to	do	if	you	believe	a	stock	is	trending.	As	if	that	wasn’t
enough	of	a	challenge,	a	price	stream	can	be	trending	at	some	time	scales	and	mean-reverting
at	others.

	You	might	notice	the	mean	is	not	exactly	zero.	This	is	because	it	is	not	a	closed	system:
clubs	can	fall	out	of	the	bottom	league.	Club	name	changes	and	bankruptcies	also	distort	the
stats.

	Yes,	strictly,	I	shouldn’t	be	looking	at	the	test	set	here.	But	I	thought	it	important	for
interpreting	model	results.

	50%	of	the	data	came	from	American	high	school	students.
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Chapter	4.	Common	Model	Parameters

One	of	the	things	that	makes	the	H2O	APIs	so	pleasant	to	use	is	that	each	of	the	machine
learning	algorithms	have	much	of	their	interface	in	common.	Later	chapters	will	look	at	one
algorithm	at	a	time,	and	show	how	to	use	them	on	each	of	our	example	data	sets.	Rather	than
repeat	the	same	thing	in	each	of	those	chapters,	a	lot	of	the	common	functionality	will	be	here.

NOTE
The	Python	API	is	object-oriented,	which	complicates	things	for	this	chapter:	most	of	the	parameters	described
here	are	given	when	creating	the	estimator	object,	but	a	few	are	given	when	calling	train()	on	that	object.	The
latter	ones	will	be	pointed	out	as	we	go.

The	R	API	(and	the	underlying	REST	API)	take	all	parameters	in	one	go.

Each	machine	learning	algorithm	will	be	introduced	in	its	own	chapter,	but	here	are	their	one-
line	descriptions:

Random	Forest

An	ensemble	(a	team)	of	decision	trees.	Parameters	that	apply	to	it	are	marked	with	 .

GBM

Gradient	Boosting	Machines.	Another	ensemble	of	decision	trees,	but	with	a	different
approach	to	random	forest.	Indicated	with	 .

GLM

Generalized	Linear	Models.	A	linear	model	is	the	idea	of	drawing	the	best	straight	line
through	data	points.	The	generalized	bit	allows	it	to	handle	some	nonlinearity.	Indicated
with	 .

Deep	Learning

Multilayer	neural	networks,	consisting	of	neurons	in	layers,	and	weighted	connections
between	them.	The	quality	improves	by	showing	the	training	data	over	and	over:	each	pass
of	the	training	data	is	called	an	epoch.	Parameters	are	marked	with	 .



Supported	Metrics
H2O	supports	a	number	of	metrics,	ways	to	measure	a	model’s	usefulness.	Before	we	get	into
parameters	it	is	worth	taking	a	look	at	them	because	when	we	talk	about	“scoring	a	model”	we
mean	evaluating	on	one	of	these	metrics.	The	only	place	you	specify	them	directly	when
making	a	model	is	stopping_metric,	which	is	described	later	in	this	chapter	in	“Early
Stopping”.	But	you	have	additional	choices	for	sorting	grids	(described	in	“Grid	Search”),	or
when	you	script	custom	report	views.

Most	only	apply	to	either	regression	(predicting	a	continuous	number)	or	classification
(predicting	a	category),	so	they	have	been	organized	that	way	here.



Regression	Metrics
There	are	two	choices	for	early	stopping:

MSE

Mean	Squared	Error.	The	“squared”	bit	means	the	bigger	the	error,	the	more	it	is
punished.	If	your	correct	answers	are	2,3,4	and	your	algorithm	guesses	1,4,3,	the	absolute
error	on	each	one	is	exactly	1,	so	squared	error	is	also	1,	and	the	MSE	is	1.	But	if	your
algorithm	guesses	2,3,6,	the	errors	are	0,0,2,	the	squared	errors	are	0,0,4,	and	the	MSE	is
a	higher	1.333.

deviance

Actually	short	for	mean	residual	deviance.	If	the	distribution	is	gaussian,	then	it	is	equal	to
MSE,	and	when	not	it	usually	gives	a	more	useful	estimate	of	error,	which	is	why	it	is	the
default.	Needs	to	be	specified	as	“residual_deviance”	when	sorting	grids.

In	reports	you	might	also	see:

RMSE

The	square	root	of	MSE.	If	your	response	variable	units	are	dollars,	the	units	of	MSE	is
dollars-squared,	but	RMSE	is	back	into	dollars.

MAE

Mean	Absolute	Error.	Following	on	from	the	MSE	example,	a	guess	of	1,4,3	has	absolute
errors	of	1,	so	the	MAE	is	1.	But	2,3,6	has	absolute	errors	of	0,0,2	so	the	MAE	is	0.667.	As
with	RMSE,	the	units	are	the	same	as	your	response	variable.

R2

R-squared,	also	written	as	R²,	and	also	known	as	the	coefficient	of	determination.	This
used	to	be	available	as	a	choice	for	stopping_metric,	but	has	fallen	out	of	favor.

RMSLE

The	catchy	abbreviation	of	Root	Mean	Squared	Logarithmic	Error.	Prefer	this	to	RMSE	if
an	under-prediction	is	worse	than	an	over-prediction.
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Classification	Metrics
For	multinomial	classification,	the	confusion	matrix	(an	example	was	shown	back	in	the	first
chapter)	is	often	the	most	useful	way	to	evaluate	a	model,	because	it	shows	not	just	how	many
it	got	right,	but	what	category	it	chose	when	it	guessed	wrong.	I	might	see	that	an	MNIST
model	is	getting	all	the	1s	correct,	but	has	a	really	high	error	on	the	9s	because	it	classifies
half	of	them	as	4s.	Maybe	that	gives	you	an	idea	of	how	to	improve	it,	or	maybe	you	just
document	it	to	users:	“When	it	guesses	9,	be	suspicious,	it	might	be	a	4.”

The	first	three	listed	here	are	valid	choices	for	both	multinomial	and	binomial	classifications;
AUC	is	only	for	binomial	classification:

misclassification

This	is	the	overall	error,	the	number	shown	in	the	bottom	right	of	a	confusion	matrix.	If	it
got	1	of	20	wrong	in	class	A,	1	of	50	wrong	in	class	B,	and	2	of	30	wrong	in	class	C,	it
got	4	wrong	in	total	out	of	100,	so	the	misclassification	is	4,	or	4%.

mean_per_class_error

The	right	column	in	a	confusion	matrix	has	an	error	rate	for	each	class.	This	is	the
average	of	them,	so	for	the	preceding	example	it	is	the	mean	of	1/20,	1/50,	and	2/30,
which	is	4.556%.	If	your	classes	are	balanced	(exactly	the	same	size)	it	is	identical	to
misclassification.

logloss

The	H2O	algorithms	don’t	just	guess	the	category,	they	give	a	probability	for	the	answer
being	each	category.	The	confidence	assigned	to	the	correct	category	is	used	to	calculate
logloss	(and	MSE).	Logloss	disproportionately	punishes	low	numbers,	which	is	another
way	of	saying	having	high	confidence	in	the	wrong	answer	is	a	bad	thing.

MSE

Mean	Squared	Error.	The	error	is	the	distance	from	1.0	of	the	probability	it	suggested.	So
assume	we	have	three	classes,	A,	B,	and	C,	and	your	model	guesses	A	with	0.91,	B	with
0.07,	and	C	with	0.02.	If	the	correct	answer	was	A	the	error	(before	being	squared)	is	0.09,
if	it	is	B	0.93,	and	if	C	it	is	0.98.

AUC

Area	Under	Curve.	Explained	next.

Logloss	is	the	default,	and	is	usually	the	best	choice.

http://bit.ly/2gniKLm


Binomial	Classification
When	you	train	a	binomial	model,	there	are	some	additional	metrics	we	get,	the	most
commonly	used	of	which	is	AUC,	which	normally	ranges	from	0.5	to	1.0,	higher	being	better.
AUC	stands	for	Area	Under	Curve.	What	curve?	That	requires	a	bit	more	explanation.

Imagine	you	are	scanning	for	cancer	(or	hunting	for	football	wins).	You	can	say	yes	or	no,
and	the	truth	can	be	yes	or	no,	which	gives	us	four	possible	combinations.	Saying	yes	when	it
is	yes	(true	positive,	TP),	and	no	when	it	is	no	(true	negative,	TN),	are	the	aim,	and	account
for	two	of	those	four	combinations.	The	other	two	are:

We	say	cancer	when	they	are	healthy	(false	positive,	FP)	(Type	I	errors	in	statistics).

We	say	healthy	when	it	is	a	cancer	(false	negative,	FN)	(Type	II	errors).

Precision	is	defined	as	how	many	true	positives	we	got,	divided	by	the	total	number	of	cancer
predictions	we	gave,	which	can	be	written	as	TP	/	(TP	+	FP).	If	we	only	give	a	cancer
prediction	when	we	are	really	sure,	precision	will	be	high	(but	FN	might	also	be	high).	If	we
give	a	cancer	prediction	at	the	slightest	whiff	of	tobacco	on	their	clothes,	precision	will	be
low	(FN	will	be	close	to	zero,	which	is	good,	but	FP	will	be	high,	which	is	bad).

Recall	is	the	number	of	true	positives	divided	by	the	total	number	of	actual	cancer	cases.	If	we
got	every	cancer	in	the	data	set,	our	recall	will	be	high.	If	we	err	on	the	side	of	caution,	it	is
likely	to	be	lower.	Perfect	recall	is	easy:	always	say	it	is	cancer…	but	that	gives	a	low
precision.

Obviously	the	ideal	is	perfect	precision	and	perfect	recall.	But	often	you	will	err	on	the	side
of	one	or	the	other.	This	err-ing	decision	can	be	represented	as	a	chart,	with	false	positive	rate
along	the	x-axis,	and	true	positive	rate	up	the	y-axis.	This	gives	us	a	curve,	called	an	ROC
curve,	something	like	that	shown	on	the	left	of	Figure	4-1.



Figure	4-1.	Example	AUC	plot	in	H2O’s	Flow	interface

You	want	a	high	AUC;	you	can	see	here	it	is	0.64.	If	it	was	0.99	you	would	see	the	blue	line
almost	touching	the	top-left	corner.	From	the	drop-down	box	I	chose	“max	accuracy,”	which
represents	one	point	along	the	line,	to	give	the	information	on	the	right	of	the	screenshot.

What	about	when	FP	and	FN	are	of	equal	importance?	Then	you	want	to	concentrate	on
accuracy.	Accuracy	is	(TP	+	TN)	/	(TP	+	TN	+	FN	+	FP).	That	is,	the	total	number	correct	over
the	total	number	of	cases.	Another	way	of	saying	that	is	1	-	error	rate.

By	default,	H2O	uses	the	F1-optimal	threshold;	we	will	instead	use	the	threshold	of	maximum
accuracy	because,	with	the	football	predictions,	the	downside	for	guessing	a	win	when	it	was	a
loss	and	for	guessing	a	loss	when	it	was	a	win	are	equal.	When	evaluating	on	the	test	data	set,
that	threshold	will	be	calculated	as	the	average	of	the	threshold	that	gave	maximum	accuracy
on	the	train	and	validation	data.

In	Figure	4-2	the	solid	vertical	lines	show	the	threshold	for	maximum	accuracy;	the	dotted
line	shows	the	average	of	the	train	and	validation	thresholds.	Not	perfect,	but	close	enough.



Figure	4-2.	Binomial	accuracy	thresholds



The	Essentials
All	the	machine	learning	algorithms	have	fields	for	what	is	being	learned.	In	Python,	the	first
three	are	given	to	train(),	not	when	creating	the	estimator	object:

x

Which	fields	in	training_frame	to	learn	from.	The	convention	in	this	book	is	to	store	them
in	a	variable	also	called	x.	

y

Which	field	in	training_frame	should	be	learned;	in	other	words,	which	is	the	response
variable.	The	convention	in	this	book	is	to	store	it	in	a	variable	also	called	y.	(When	doing
unsupervised	learning	do	not	set	y.)	If	doing	regression	this	has	to	represent	a	numeric
field,	if	doing	binomial	classification	this	has	to	represent	a	two-level	enum,	and	if	doing
multinomial	classification	this	has	to	represent	an	enum	with	three	or	more	levels.	

training_frame

The	(handle	to	the	H2O)	data	set	to	train	from.	The	convention	in	this	book	is	to	call	this
train.	

ignore_const_cols

Defaults	to	true,	meaning	if	all	values	in	a	column	are	the	same	value,	then	ignore	that
column.	You	usually	only	set	it	to	false	if	you	want	to	see	it	shown	in	reports,	or	they
represent	a	2D	image	you	will	want	to	plot.	

In	R,	the	first	three	arguments	are	always	x,	y,	training_frame,	in	that	order,	and	so	you	can
skip	naming	them. 	That	is,	you	can	either	do	h2o.gbm(x,	y,	train)	or	h2o.gbm(x	=	x,	y	=	y,
training_frame	=	train).	In	Python	it	is	the	same:	either	m.train(x,	y,	train)	or	m.train(x=x,	y=y,
training_frame=train).

Typically,	x	and	y	are	text:	the	names	of	fields.	However,	if	your	columns	have	no	names,	or
there	are	a	lot	of	columns,	you	can	also	use	numeric	indices,	as	we	did	with	the	MNIST	data	in
the	previous	chapter.	Either	way,	remember	that	x	and	y	are	column	names	or	column	indices,
not	the	column	data	itself.

CAUTION
When	using	numeric	column	indices,	in	R	they	count	from	1,	in	Python	they	count	from	0,	i.e.,	exactly	what	you’d
expect	in	each	language.	Just	be	careful	if	sharing	code	with	someone	using	a	different	language!

If	you	look	on	Flow,	or	ever	use	the	REST	API	directly,	you	will	see	only	column	names	are	used,	never
numeric	column	indices.	Also,	rather	than	specifying	the	column	names	to	use	you	specify	which	columns	to
ignore.	So	response_column	on	Flow	is	what	we	call	y,	and	ignored_columns	is	the	inverse	of	our	x.
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For	instance,	in	Examples	4-1	and	4-2	we	will	try	to	learn	the	iris	species	from	just	the	sepal
width.	Either	of	the	first	two	ways	is	fine,	but	the	third	way,	in	each	case,	will	give	errors.

Example	4-1.	Ways	to	give	x	and	y	(in	R)
m1	<-	h2o.gbm(2,	5,	train)
m2	<-	h2o.gbm("sepal_wid",	"class",	train)
m3	<-	h2o.gbm(train["sepal_wid"],	train["class"],	train)		#BAD

Example	4-2.	Ways	to	give	x	and	y	(in	Python)
m	=	h2o.H2OGradientBoostingEstimator()
m.train(1,	4,	train)
m.train("sepal_wid",	"class",	train)
m.train(train["sepal_wid"],	train["class"],	train)		#BAD



Effort
The	first	three	items	here	tell	their	respective	algorithms	how	much	work	to	do:

epochs

The	amount	of	training	cycles	a	deep	learning	algorithm	should	do.	

ntrees

The	number	of	trees	a	tree	algorithm	should	do.	 	

max_iterations

The	amount	of	work	a	GLM	algorithm	should	do	(not	applicable	in	cases	when
coefficients	can	be	calculated	directly).	

The	other	couple	of	parameters	allow	you	to	set	a	random	seed	to	get	the	exact	same	results
again.	Useful	for	demos,	and	book	authors,	but	it	is	better	to	embrace	stochastic	diversity	the
way	you	would	embrace	a	favorite	aunt—without	a	second	thought:

seed

An	integer	to	control	random	number	generation,	which	allows	you	to	get	exactly	the
same	model	if	you	run	the	algorithm	again.	If	using	deep	learning,	you	also	need	to	set
reproducible.	Perhaps	ironically,	my	main	use	for	seed	is	in	grids	(a	way	to	tune	model
parameters,	introduced	properly	in	“Grid	Search”	in	the	next	chapter)	not	to	allow
repeatability,	but	to	allow	me	to	run	the	same	model	with	the	same	parameters	and	see
what	effect	random	variation	has	on	the	result.	(When	used	for	this	purpose,	you	don’t
need	to	set	reproducible.)	

reproducible

If	true,	then	deep	learning	will	run	on	a	single	thread.	This	takes	away	the	random
element,	but	of	course	means	it	will	train	more	slowly.	Set	this	if	also	setting	a	seed,	don’t
set	it	if	not.	

WARNING
Setting	a	seed	cannot	guarantee	you	the	same	model	results	between	different	H2O	versions.	Bug	fixes,	new
bugs,	something	as	simple	as	a	new	feature,	can	be	enough.



Scoring	and	Validation
H2O	regularly	scores	how	the	model	training	is	doing.	If	you	give	a	validation_frame	then	it
will	score	it	on	that,	if	you	are	using	cross-validation,	it	will	score	against	each	fold,	and	if
neither	of	those	it	will	score	against	training_frame:

validation_frame

The	(handle	to	the	H2O)	data	set	to	validate	against.	The	convention	in	this	book	is	to	call
this	valid.	(In	Python,	this	is	given	to	train(),	not	when	creating	the	estimator.)	

score_each_iteration

This	defaults	to	false;	if	true	it	will	do	the	scoring	more	frequently.	 	

score_tree_interval

The	default	of	zero	disables	this.	If	you	set	it	then	the	score	is	evaluated	after	this	many
trees.	 	

Deep	learning	has	a	large	number	of	additional	scoring	parameters,	which	are	covered	in
“Parameters”	in	Chapter	8.



Early	Stopping
As	described	in	“Scoring	and	Validation”,	H2O	is	regularly	scoring	your	model	against	the
validation,	cross-validation,	and/or	training	data.	If	you	are	using	the	Flow	interface	you	can
watch	how	the	learning	is	going.	Say	you	have	a	deep	learning	model,	which	you	gave	1000
epochs,	and	you	are	regularly	watching	how	it	is	doing.	After	150	epochs	you	can	see	it	has
completely	flattened	out.	You	give	it	another	20	epochs	to	be	sure,	but	after	those	it	is	clear	it
has	learned	all	it	is	going	to,	and	is	now	just	wasting	time.	You	yawn,	and	abort	it.

That	can	get	to	a	person’s	sanity	if	you	have	to	do	it	more	than	once	or	twice.	Fortunately,
H2O	has	some	options	to	help.	The	first	three	are	basically	doing	what	you	did	manually
earlier:	watching	your	metric	of	choice,	and	when	it	has	not	improved	for	a	certain	number	of
scoring	rounds,	stop.

stopping_metric

How	to	decide	if	the	model	is	improving	or	not.	“Supported	Metrics”	introduced	the
choices,	though	you	can	usually	leave	it	as	the	default	of	AUTO	(“logloss”	for
classification	and	“deviance”	for	regression).	 	 	

stopping_tolerance

Stop	if	it	(your	metric	of	choice)	has	not	improved	by	at	least	this	much.	For	example,
0.01	means	you	want	a	1%	improvement,	or	it	should	stop.	Zero	is	also	fine:	it	is	saying	to
keep	learning	while	there	is	any	improvement,	however	small.	 	 	

stopping_rounds

The	scoring	history	graphs	for	your	models	sometimes	wobble	around	a	bit.	By	setting
this	higher	than	1	you	make	space	for	things	to	get	worse	before	they	get	better.	It	works
by	comparing	two	moving	averages;	the	earliest	it	can	ever	stop	is	after	twice	this	number
of	scoring	rounds.	Choosing	1	means	the	model	has	to	improve	on	every	single	scoring
round.	Set	it	to	zero	to	not	use	early	stopping	at	all.	 	 	

How	responsive	your	early	stopping	is	depends	not	just	on	stopping_rounds	and
stopping_tolerance	but	also	on	how	frequently	scoring	rounds	happen.	As	an	example,	if	the
combination	of	your	model	complexity,	training	data	size,	and	parameters	you’ve	set	means
that	it	only	scores	once	a	minute,	and	stopping_rounds	is	5,	then	the	earliest	a	model	can	ever
stop	training	is	after	10	minutes	(twice	the	number	in	stopping_rounds).	If	using	a	grid	(see
“Grid	Search”)	this	applies	for	each	model	that	is	made.

There	are	some	other	parameters	that	can	stop	a	model	early,	though	you	will	use	them	less
often:

max_runtime_secs

The	maximum	amount	of	time	allowed	for	model	training.	The	default	of	zero	means	no



limit.	This	is	cruder	than	using	a	stopping	metric,	but	is	more	predictable:	if	you	are
making	50	models	in	a	grid,	and	you	set	max_runtime_secs	to	30	seconds,	then	you	know
that	(a)	it	will	finish	within	25	minutes	and	(b)	each	model	will	get	the	same	amount	of
CPU	resources,	which	may	be	the	most	fair	comparison.	(In	Python,	this	is	given	to
train(),	not	when	creating	the	estimator.)	

classification_stop

When	the	classification	error	is	below	this,	training	will	stop.	Set	it	to	–1	to	not	use	this.
This	works	independently	of	stopping_metric.	

regression_stop

When	the	MSE	is	below	this,	training	will	stop.	Set	it	to	–1	to	not	use	this.	This	works
independently	of	stopping_metric.	

max_active_predictors

Stops	when	there	are	more	than	this	number	of	active	predictors.	The	default	of	–1	means
no	limit.	

overwrite_with_best_model

True	by	default,	which	means	the	model	that	is	returned	will	be	the	best	model	found
during	training.	If	false,	then	the	final	model	(which	may	be	inferior)	will	be	the	one	that
is	returned.	I’ve	put	it	in	this	section,	but	this	is	also	used	even	if	not	using	early	stopping.	

H2O	has	early	stopping	on	by	default	for	deep	learning,	so	explicitly	set	stopping_rounds	to	0
if	you	don’t	want	it.	My	suggestion	is	to	always	use	it	for	deep	learning,	if	only	because	the
overwrite_with_best_model	feature	means	it	can	go	back	through	the	history	and	choose	the
best	model,	not	whatever	you	ended	up	with	at	the	end	of	training.	For	random	forest	and
GBM,	I	recommend	you	either	use	early	stopping	or	checkpoints,	explained	in	a	moment,	or
both.

The	following	example	shows	a	random	forest	model	that	will	keep	adding	trees	unless	one
of	three	things	has	happened:

It	uses	100	trees	(ntrees=100).

It	takes	60	seconds	(max_runtime_secs=60).

The	value	for	the	misclassification	metric	has	not	improved	by	2%	over	the	last	3	scoring
rounds.

This	example	uses	the	same	Iris	data	set	we	saw	back	in	the	first	chapter;	in	fact	the	first	half	is
exactly	the	same	as	Example	1-1.	But	I’m	now	splitting	off	a	validation	frame,	so	my	training
data	is	reduced	to	75%	(e.g.,	115	rows),	and	my	test	data	is	reduced	to	10%	(e.g.,	16	rows),



leaving	me	15%	for	validation	(e.g.,	19	rows).	(The	split	is	random,	so	will	be	slightly
different	each	time,	unless	you	use	seed.)

import	h2o
h2o.init()

datasets	=	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/datasets/"
data	=	h2o.import_file(datasets	+	"iris_wheader.csv")
y	=	"class"
x	=	data.names
x.remove(y)
train,	valid,	test	=	data.split_frame([0.75,	0.15])

from	h2o.estimators.random_forest	import	H2ORandomForestEstimator
m	=	H2ORandomForestEstimator(
		ntrees=100,
		stopping_metric="misclassification",
		stopping_rounds=3,
		stopping_tolerance=0.02,		#2%
		max_runtime_secs=60,
		model_id="RF:stop_test"
		)
m.train(x,	y,	train,	validation_frame=valid)

In	fact	it	stopped	after	using	8	trees,	and	0.024	seconds	of	training!

NOTE
When	used	with	cross-validation	(explained	in	a	moment)	it	will	use	your	early	stopping	criteria	on	each	cross-
validation	model.	But	from	that	it	will	work	out	the	optimal	number	of	trees/epochs	and	make	the	final	model
without	using	early	stopping.	(If	model	quality	varies	a	lot	from	run	to	run,	randomly,	this	can	sometimes	give
strange	results.)



Checkpoints
Imagine	you	spend	10	minutes	training	a	neural	net.	Then	you	test	it	and	find	it	has	improved
over	the	one	you	only	trained	for	5	minutes.	So	then	you	wonder	how	good	it	would	be	if	you
gave	it	15	minutes.	Altogether	it	takes	you	30	minutes	to	discover	those	three	things.	H2O	has
this	great	feature,	allowing	you	to	train	a	model	for	5	minutes	then	stop	it	and	try	it	out.	Then
you	can	train	it	for	another	5	minutes,	giving	you	(approximately)	the	10-minute	model.	And
then	another	5	minutes	to	give	you	the	15-minute	model.	The	same	three	models,	but	in	half
the	time.

There	are	two	variables	involved:

model_id

A	name	for	your	model.	If	not	given,	a	random	one	is	chosen.	

checkpoint

The	ID	of	a	previous	model	(which	must	currently	be	on	your	H2O	cluster)	that	you
would	like	to	use	as	a	starting	point.	 	 	

Once	you	start	any	serious	work	with	H2O,	whether	using	checkpoints	or	not,	I	recommend
you	always	set	model_id,	if	only	so	you	can	find	them	in	Flow,	or	find	the	saved	model	on
disk.	POJOs	also	get	named	based	on	the	model	ID.	And	for	the	same	reasons,	I	recommend
some	convention.	For	example,	“DL:200x200-100”	could	be	a	deep	learning	model	with	two
hidden	layers	each	with	200	neurons,	and	running	for	100	epochs.	“GBM:100-5”	could	be	a
GBM	built	with	100	trees,	and	a	max	depth	of	5.

TIP
Don’t	get	carried	away	with	structuring	your	model	IDs:	the	more	information	you	put	in	them,	the	less	useful	they
get.	If	you	find	yourself	wanting	to	put	more	than	three	parameters	in	a	model	ID,	maybe	it	is	time	to	step	back
and	give	them	names	instead.	“DL:extra-deep,”	“DL:big-and-slow,”	etc.	Or	even	“DL:Tom,”	“DL:Dick,”	and
“DL:Harry.”

The	way	checkpoints	work	is	you	define	a	new	model,	with	all	the	same	parameters	(usually:
see	the	following	comment),	but	give	a	higher	value	for	epochs	(deep	learning)	or	ntrees
(GBM,	random	forest),	and	then	set	checkpoint	to	the	ID	of	the	model	to	use	as	a	starting
point.	If	you	give	a	lower	or	equal	value	for	epochs/ntrees/max_iterations,	then	it	will	return
immediately,	as	there	is	no	new	work	to	be	done.

Example	4-3	shows	how	to	build	a	model	"DL:50x50-5"	with	5	epochs,	then	use	that	as	the
starting	point	for	a	new	model	"DL:50x50-15",	which	we	give	another	10	epochs.	When
specifying	epochs,	or	the	number	of	trees,	specify	the	total	amount	of	training	you	want	if
you	had	started	from	scratch	(epochs=15	here),	not	how	many	additional	epochs	or	trees	you



want.

Example	4-3.	Using	checkpoints	with	deep	learning	(Python)
y	=	"income"
x	=	["age",	"gender"]

m1	=	h2o.H2ODeepLearningEstimator(model_id="DL:50x50-5",	hidden=[50,50],
		epochs=5)
m1.train(x,	y,	train)

m2	=	h2o.H2ODeepLearningEstimator(model_id="DL:50x50-15",	hidden=[50,50],
		epochs=15,	checkpoint="DL:50x50-5")
m2.train(x,	y,	train)

If	we	look	at	m1.scoring_history() 	it	looks	like	this:

	duration				epochs	training_MSE
0.000	sec		0.000000					NaN
0.156	sec		0.471545					0.224481
0.205	sec		5.048780					0.036641

And	m2.scoring_history()	looks	like	this:

	duration				epochs	training_MSE
0.000	sec		0.000000					NaN
0.156	sec		0.471545					0.224481
0.205	sec		5.048780					0.036641
0.261	sec		6.504065					0.096397
0.312	sec	15.455285					0.021673

The	first	three	lines	are	identical!	When	checkpointing,	the	new	model	inherits	all	that
information	from	the	previous	model.

One	interesting	aspect	of	checkpoints	is	that	you	can	change	more	parameters	than	just	how
long	to	train,	and	thus	create	models	that	couldn’t	be	created	without	checkpoints.	For
instance,	you	can	use	a	certain	dropout	ratio	for	the	first	50	epochs	of	a	deep	learning	model,
then	switch	to	a	different	dropout	ratio	for	the	next	50.

TIP
When	I	started	using	H2O,	I	thought	checkpoints	were	the	bees	knees,	and	used	them	a	lot.	But	now	(at	least
when	using	deep	learning	and	I	have	a	validation	data	set)	I	prefer	to	use	“Early	Stopping”	to	decide	how	much	to
train	a	model,	and	instead	only	use	checkpoints	for	when	I	feel	early	stopping	has	stopped	too	soon.	Or	the
scenario	described	in	“Model	Files”,	where	I	want	to	shut	down	a	cluster	for	the	weekend	but	a	model	is	still
learning.	(You	can	export	the	latest	snapshot	of	a	model	from	Flow,	while	it	is	learning.)
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Cross-Validation	(aka	k-folds)
The	basic	idea	behind	cross-validation	is	you	chop	up	your	training	set	into	k	blocks,	then	use
one	of	those	k	blocks	as	a	validation	data	set,	and	use	the	rest	for	training.	Repeat	this	k	times,
with	a	different	part	of	the	training	set	being	the	validation	set	each	time.	The	error	of	the
final	model	is	estimated	as	the	average	error	of	the	k	models	and	it	should	therefore	be	more
reliable.	The	final	model	that	is	returned	is	built	again,	with	all	the	data,	and	no	validation.
The	cost	of	this	more	reliable	estimate	of	model	quality	is	that	it	takes	more	time.	Figure	4-3
shows	the	process	for	three	random	folds.	m	is	the	final	model	that	is	returned.



Figure	4-3.	The	cross-validation	process	for	k=3

In	this	book	I	use	cross-validation	for	the	building	energy	data	set,	but	a	validation	data	set	for



MNIST	(as	I	have	enough	data)	and	the	football	statistics	(as	I	have	enough	data	and	it	is	a
time	series).

nfolds

Number	of	folds.	The	higher	this	is	the	longer	training	takes,	but	the	more	accurate	the
error	estimate,	meaning	an	overfitted	model	is	harder	to	get	past	us.	However,	there	are
diminishing	returns.	5	and	10	are	common	choices	for	nfolds.	

The	next	two	parameters	control	how	the	data	is	split	up.	Generally	there	is	no	need	to	touch
these.	However,	if	doing	a	classification,	and	the	classes	are	not	balanced,	consider
fold_assignment="Stratified".

fold_assignment

How	to	split	up	the	training	data.	The	choices	are	“Random,”	“Modulo,”	and	“Stratified,”
with	the	default	being	“AUTO”	(which	always	means	Random,	at	the	moment).	Random	is
what	you’d	expect,	and	each	fold	might	end	up	a	slightly	different	size.	If	nfolds	is	3,
Modulo	means	rows	1,	4,	7,	…	go	into	fold	1,	rows	2,	5,	8,	…	go	into	fold	2,	and	rows	3,
6,	9,	…	go	into	fold	3.	Stratified	tries	to	get	the	same	amount	of	each	target	class	into	each
fold;	this	is	a	good	thing	but	splitting	the	data	might	take	more	time.	

fold_column

Allows	you	complete	control.	If	nfolds	is	3,	then	this	column	should	contain	the	values	1,
2,	and	3	to	say	which	fold	you	want	each	row	in.	(In	Python,	this	is	given	to	train(),	not
when	creating	the	estimator.)	

The	final	two	parameters	are	boolean,	to	control	what	information	is	returned:

keep_cross_validation_fold_assignment

If	set	to	true	then	you	can	find	out	which	rows	were	in	which	folds.	

keep_cross_validation_predictions

If	set	to	true	then	the	predictions	of	the	test	step	for	each	fold	are	kept.	

TIP
To	use	models	with	h2o.stack(),	a	technique	described	in	“Ensembles”	in	Chapter	10,	you	must	use	cross-
validation,	and	must	set	fold_assignment	=	"Modulo"	and	keep_cross_validation_predictions	=	TRUE.	If	you
think	that	is	something	you	might	want	to	do,	it	can	be	worth	choosing	those	options	on	all	your	models.



Data	Weighting
If	you	have	100	rows	of	training	data,	all	100	are	considered	equally	important.	H2O	provides
a	few	ways	to	describe	that	certain	rows	are	more	important,	without	you	having	to	resort	to
taking	a	copy	of	your	training	data	and	actually	duplicating	the	rows.	All	of	them	can	be	used
with	each	of	the	learning	algorithms.	The	first	three	only	apply	when	doing	a	classification:

balance_classes

If	false,	all	data	is	used	evenly.	If	set	to	true,	then	training	data	class	counts	(for	your
response	variable)	will	be	used	to	over/under-sample.	For	example,	assume	you	are
predicting	favorite	color,	and	in	your	100	training	rows	40	people	chose	red,	30	chose
blue,	15	chose	black,	10	chose	white,	4	chose	orange,	and	only	1	chose	green.	With
balance_classes	on,	each	of	the	blue	rows	will	be	made	1.33	times	more	important	than
each	of	the	red	rows,	the	black	rows	will	be	2.67	times	more	important	than	each	of	the
red	rows,	and	so	on,	down	to	the	single	green	row,	which	will	be	40	times	more
important.	 	 	

class_sampling_factors

Allows	explicit	control	when	using	balance_classes.	The	default	is	to	balance	so	that	all
classes	are	equally	balanced.	You	should	only	set	this	if	that	equal	balancing	is	not	desired.
The	entries	should	be	in	sort	order.	For	example,	if	you	want	the	same	ratio	of	colors	as
just	shown	but	also	want	to	limit	the	maximum	weight	of	any	one	color	to	5.0,	you	would
give:	[2.67,	1.33,	5.0,	5.0,	1.0,	4.0]	(i.e.,	black,	blue,	green,	orange,	red,	white	is	their
alphabetic	sorted	order).	Also	see	the	following	example,	where	we	happen	to	know	that
the	training	data	is	not	representative.	 	 	

max_after_balance_size

When	using	balance_classes,	this	allows	you	to	set	the	maximum	relative	size	of	the
training	data	after	balancing.	Currently	this	defaults	to	5.0,	and	you	are	unlikely	to	need	to
change	it.	 	 	

NOTE
With	h2o.deeplearning()	when	using	balance_classes,	it	is	recommended	to	also	set	shuffle_training_data	to
TRUE.	(shuffle_training_data	is	only	a	parameter	for	h2o.deeplearning()).

The	other	two	are	more	general:

weights_column

The	name	of	a	column	that	says	how	to	weight	each	row.	You	can	think	of	this	as	being
how	many	times	to	repeat	each	row	when	training,	so	the	default	is	like	an	invisible



column	with	1.0	for	every	row.	Fractional	values	are	allowed.	Cannot	be	used	when
balance_classes	is	set.	(In	Python,	this	is	given	to	train(),	not	when	creating	the	estimator.)	

offset_column

The	name	of	a	column	that	gives	a	per-row	bias.	You	can	think	of	the	default	as	being	an
invisible	column	with	0.0	for	every	row.	It	is	like	copying	and	modifying	your	response
variable	column	by	this	much,	for	each	row.	(In	Python,	this	is	given	to	train(),	not	when
creating	the	estimator.)	

Here	is	a	full	example	of	using	each	of	the	choices	for	balancing	classes:

library(h2o)
h2o.init(nthreads	=	-1)

datasets	<-	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/datasets/"
data	<-	h2o.importFile(paste0(datasets,"iris_wheader.csv"))

data	<-	data[1:120,]		#Remove	60%	of	virginica
summary(data$class)		#50/50/20

parts	<-	h2o.splitFrame(data,	0.8)
train	<-	parts[[1]]
test	<-	parts[[2]]
summary(train$class)		#41/41/14
summary(test$class)		#9/9/6

m1	<-	h2o.randomForest(
		1:4,	5,	train,	model_id	=	"RF_defaults"
		)
h2o.confusionMatrix(m1)

m2	<-	h2o.randomForest(
		1:4,	5,	train,	model_id	=	"RF_balanced",
		balance_classes	=	TRUE
		)
h2o.confusionMatrix(m2)

m3	<-	h2o.randomForest(
		1:4,	5,	train,	model_id	=	"RF_class_sampling",
		balance_classes	=	TRUE,	class_sampling_factors	=	c(1,	1,	2.5)
		)
h2o.confusionMatrix(m3)

The	first	four	lines	are	hopefully	familiar	by	now:	start	H2O,	and	load	the	iris	data.	I	then
throw	away	the	last	30	samples	(which	are	all	virginica),	by	keeping	just	rows	1	to	120.	I	now
have	an	unbalanced	data	set:	50	setosa,	50	versicolor,	20	virginica.	I	chose	the	seed
deliberately	when	splitting	the	data,	such	that	my	training	data	has	41	setosa,	41	versicolor,	14
virginica.	That	is,	virginica	is	14.58%	of	the	training	data	and	25%	in	the	test	data,	compared
to	16.67%	overall.



I	then	train	three	random	forest	models.	m1	is	all	defaults,	and	its	confusion	matrix	looks	like
this:

											setosa	versicolor	virginica		Error					Rate
setosa									41										0									0	0.0000	=	0	/	41
versicolor						0									39									2	0.0488	=	2	/	41
virginica							0										1								13	0.0714	=	1	/	14
Totals									41									40								15	0.0312	=	3	/	96

Nothing	to	see	here:	it	uses	the	data	as	it	finds	it.

Now	here	is	the	same	output	for	m2,	which	switches	on	balance_classes.	You	can	see	it	has
over-sampled	the	virginica	class	to	get	them	as	balanced	as	possible	(the	rightmost	column
says	41,41,40	instead	of	41,41,14	as	in	the	previous	output):

											setosa	versicolor	virginica		Error						Rate
setosa									41										0									0	0.0000	=		0	/	41
versicolor						0									41									0	0.0000	=		0	/	41
virginica							0										2								38	0.0500	=		2	/	40
Totals									41									43								38	0.0164	=	2	/	122

In	m3	we	still	switch	on	balance_classes,	but	also	tell	it	the	truth	of	the	situation.	That	is,	that
the	actual	data	is	16.67%	virginica,	not	the	14.58%	it	sees	in	the	train	data.	The	confusion
matrix	for	m3	shows	that	it	turned	the	14	virginica	samples	into	37	samples	instead	of	40
samples:

											setosa	versicolor	virginica		Error						Rate
setosa									41										0									0	0.0000	=		0	/	41
versicolor						0									41									0	0.0000	=		0	/	41
virginica							0										2								35	0.0541	=		2	/	37
Totals									41									43								35	0.0168	=		2	/119

How	did	I	know	to	write	c(1,	1,	2.5),	and	not	c(2.5,	1,	1)	or	c(1,	2.5,	1)?	You	can	find	out	the
correct	order	with	h2o.levels(train$class)	which	tells	me:

[1]	"setosa"					"versicolor"	"virginica"



Sampling,	Generalizing
The	common	theme	among	the	parameters	in	this	section	is	that	they	try	to	improve	your
model’s	ability	to	generalize,	and	they	do	this	by	hiding	some	of	the	data.	Generalization	is	a
good	thing;	it	means	your	model	can	make	a	good	guess	when	it	sees	some	combination	of
inputs	that	it	has	never	encountered	before.	But,	hiding	some	of	the	data?!	Surely	the	machine
learning	is	hard	enough,	and	the	more	data	the	better?

Imagine	you	are	teaching	trigonometry,	and	you	teach	the	students	about	sine	and	tangent,	but
not	about	cosine.	You	then	give	them	a	test,	and	kick	out	of	the	class	anyone	who	obviously
hasn’t	worked	out	the	existence	of	cosine	for	themselves.	This	is	a	good	way	to	make	parents
angry	and	get	yourself	sacked.	But	it	is	also	a	great	way	to	discover	who	are	the	budding
mathematical	geniuses	and	who	merely	pay	attention	in	class	but	don’t	really	get	it.

Leaving	that	metaphor	behind,	it	is	important	to	realize	that	if	you	hide	information,	you	often
need	to	spend	more	time	learning.	With	the	tree	algorithms,	you	need	to	give	them	more	trees,
and	with	deep	learning	you	need	to	give	it	more	epochs.	So	it	will	take	longer	to	train,	but
(hopefully)	give	a	more	resilient	model.

I	only	show	the	parameters	for	the	tree	algorithms	here.	Those	for	deep	learning	are	in	“Deep
Learning	Regularization”	and	those	for	GLM	are	in	“GLM	Parameters”.	In	all	cases	they	are
hard	to	select	even	with	good	knowledge	of	the	data,	so	they	are	good	candidates	for	a	grid
search.

For	the	tree	algorithms	the	parameters	are	about	two	things:

Use	all	columns?

Use	all	training	rows?

mtries

This	is	how	many	variables	to	randomly	choose	as	candidates	at	each	split,	in	a	random
forest.	The	default	is	–1,	which	means	 	(rounded	down,	minimum	of	1)	for
classification,	or	P/3	(rounded	down,	minimum	of	1)	for	regression	(where	P	is	the
number	of	columns).	

col_sample_rate

This	is	the	percentage	of	columns	(from	0.0	to	1.0)	to	sample	from,	with	GBM.	The
default	is	1.	If	you	multiply	col_sample_rate	by	the	number	of	columns	in	train,	you	get
the	equivalent	of	mtries.	

col_sample_rate_change_per_level

Relative	change	of	the	column	sampling	rate	for	every	level	in	each	tree.	The	default	is
1.0.	If	less	than	1,	then	it	will	have	fewer	columns	to	choose	from	as	it	gets	deeper	in



the	tree.	If	greater	than	1	(maximum	2.0),	then	it	will	have	more	columns	to	choose
from.	You	might	want	to	experiment	with	this	in	a	grid,	but	normally	you	can	just	leave
it	as	the	default.	 	

col_sample_rate_per_tree

This	can	be	from	0.0	to	1.0.	It	is	at	the	tree	level,	rather	than	at	the	split	level	as	with
mtries	and	col_sample_rate.	The	default	is	1.0.	 	

sample_rate

The	default	for	GBM	is	1.0,	which	means	train	each	tree	on	all	the	training	data.	0.5
would	mean	only	use	half	the	data.	The	default	for	random	forest	is	0.632.	 	

sample_rate_per_class

Like	sample_rate	but	you	give	the	value	for	each	class.	See	the	description	of
class_sampling_factors	under	“Data	Weighting”.	 	

max_abs_leafnode_pred

Maximum	absolute	value	of	a	leaf	node	prediction.	This	is	the	maximum	a	leaf	node
can	contribute,	so	it	is	a	regularization	parameter.	It	defaults	to	a	very	large	number,
but	if	set	lower	it	stops	any	one	node	from	dominating	the	prediction.	Generally	it	can
be	left	as	the	default,	but	it	might	be	worth	experimenting	with	in	a	grid.	



Regression
Regression	is	trying	to	predict	a	(continuous)	number	(as	different	from	a	classification),	and
there	are	a	few	parameters	specifically	to	control	regression.

These	first	few	only	apply	to	deep	learning	and	GBM:

distribution

Choose	the	probability	distribution	of	the	response	variable;	the	choices	are	listed	in	a
moment. 	The	default	is	“AUTO,”	which	is	always	“gaussian”	for	a	regression.	(For
binomial	classification,	distribution	is	always	“bernoulli,”	and	for	multinomial
classification	it	is	always	“multinomial.”)	 	

quantile_alpha

Used	when	distribution	is	“quantile.”	 	

tweedie_power

Used	when	distribution	is	“tweedie.”	From	1.0	to	2.0,	defaulting	to	1.5.	Note	that	1.0	is
equivalent	to	“poisson,”	while	2.0	is	equivalent	to	“gamma.”	 	

loss

Certain	distributions	(gaussian,	laplace,	huber)	allow	you	to	choose	a	loss	function.	The
default	choices	for	those	three	being:	“Quadratic,”	“Absolute,”	“Huber.”	The	final
possible	value	is	“CrossEntropy,”	which	is	for	classification.	Give	the	default	of
“Automatic”	unless	you	have	a	good	reason	not	to.	You	cannot	define	your	own	loss
function.	

These	ones	are	for	GLM:

family

As	distribution	but	for	GLMs.	The	choices	are	listed	next,	but	note	that	only	gaussian,
poisson,	gamma,	and	tweedie	are	available	(i.e.,	not	huber,	laplace,	or	quantile.)	

tweedie_link_power

Used	when	distribution	is	“tweedie.”	Default	is	1.	

tweedie_variance_power

Used	when	distribution	is	“tweedie.”	Default	is	0.	
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PROBABILITY	DISTRIBUTIONS	IN	H2O

Here	are	the	currently	available	distributions:

gaussian

This	is	another	name	for	the	normal	distribution,	the	bell	curve	that	I	am	sure	you	are
familiar	with.

poisson

Use	if	modeling	the	number	of	times	an	event	happens,	in	a	given	interval.	When	the
average	number	of	events	per	interval	is	high	it	looks	like	the	normal	curve.	The	per-
week	intake	at	a	hospital	emergency	ward	might	average	200,	so	could	safely	be
modeled	as	gaussian	(or	poisson),	but	the	per-hour	intake	mean	is	1.2,	so	would	be
better	modeled	with	poisson.

gamma

Often	used	to	model	the	time	between	events.	The	exponential	decay	curve	is	a	special
case	of	the	gamma	distribution.

tweedie

A	family	of	distributions.	A	power	of	0	gives	you	gaussian,	1	gives	you	poisson,	and	2
gives	you	gamma,	but	fractional	values	from	1.0	upwards	can	give	you	other
distributions.

laplace

A	continuous	distribution	that	looks	a	bit	like	two	exponential	distributions	stuck
together.

huber

Specify	this	to	do	robust	regression.

quantile

Specify	this	if	you	want	to	do	quantile	regression.	Used	with	quantile_alpha,	where	the
default	of	0.5	is	another	way	of	saying	the	median,	but	you	can	set	any	value	from	0.0
to	1.0.

https://en.wikipedia.org/wiki/Robust_regression
https://en.wikipedia.org/wiki/Quantile_regression


Output	Control
In	this	final	group	are	a	few	parameters	that	control	what	information	is	reported	back	to	the
client.	With	some	it	is	about	controlling	verbosity;	with	others	it	is	about	avoiding	extra
machine	load	if	you	do	not	need	the	extra	information:

max_hit_ratio_k

The	maximum	number	of	predictions	to	report	in	hit	ratios	(only	applies	to	multinomial
classification).	Use	0	to	disable	(meaning	it	will	make	predictions	for	all	classes).	

max_confusion_matrix_size

Maximum	number	of	classes	to	use	when	printing	confusion	matrices	in	the	logs.	

export_weights_and_biases

Set	this	to	true	to	request	to	save	a	deep	learning	model’s	weights	and	biases.	They	are
available	afterwards	with	h2o.weights()	and	h2o.biases()	(or	member	functions	of	those
names,	in	Python).	

variable_importances

The	other	learning	algorithms	always	tells	you	relative	importance	of	your	input
variables,	but	it	can	slow	down	deep	learning;	therefore	it	is	off	by	default.	Set	this	to	true
to	have	them	calculated	and	returned. 	

diagnostics

Enable	diagnostics	for	hidden	layers.	

compute_p_values

Request	p-values	computation	for	your	linear	model.	Only	available	when	using	the
IRLSM	solver	and	no	regularization.	(The	latter	limits	its	usefulness	more	than	the
former.)	
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Summary
That	was	a	lot	of	parameters!	But,	along	the	way,	we	also	got	a	look	at	some	key	concepts	in
machine	learning	and	H2O:	cross-validation	and	validation	data	sets,	early	stopping,	scoring
metrics,	checkpoints,	dealing	with	unbalanced	data,	random	sampling	to	improve	model
generalization,	and	probability	distributions.

The	next	chapter	starts	our	four	chapter	tour	of	the	supervised	machine	learning	algorithms.
And,	because	it	is	the	first	of	the	four,	it	will	also	introduce	some	techniques	that	apply	to	all
of	them,	grid	search	in	particular.

	See	http://data.library.virginia.edu/is-r-squared-useless/	for	a	good	explanation	of	why.

	If	your	coding	standards	and/or	coworkers	and/or	boss	allow	it.

	m1.scoring_history()[['duration','epochs','training_MSE']]	was	used	here;	there	are	lots	of
other	columns	telling	you	how	training	progressed,	but	we	don’t	want	to	see	them	in	this
example.

	If	you	have	questions	about	exactly	what	a	distribution	does,	the	Java	source	is	authoritative.

	The	implementation	is	based	on	Gedeon,	and	the	code	for	computeVariableImportances()	is
in	http://bit.ly/2f8ewED.	It	uses	the	first	two	layers,	so	could	be	inaccurate	for	very	deep
networks,	but	it	is	only	an	estimate	anyway.

1
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Chapter	5.	Random	Forest

In	this	chapter	we	will	look	at	the	random	forest	machine	learning	algorithm.	It	is	a	wonderful
algorithm:	effective	on	a	wide	range	of	data	sets,	while	having	relatively	few	parameters	to
tune.	It	is	a	decision	tree	algorithm	(as	is	GBM,	which	we	look	at	it	in	the	next	chapter).

I	start	with	a	brief	look	at	basic	decision	trees,	then	how	random	forest	is	different,	and	then
go	through	the	optional	parameters	that	H2O’s	implementation	offers.	Then	I	apply	random
forest	to	each	of	the	three	data	sets:	first	out-of-the-box,	with	all	defaults,	then	using	a	tuning
process	to	find	the	best	single	model	I	can.	Each	of	the	subsequent	three	chapters	will	follow
this	same	pattern.	As	the	first	of	the	four	chapters,	grids—a	great	tool	to	aid	in	tuning—are
also	introduced	here.	The	results	of	all	models	are	summarized	at	the	end	of	the	book,	in
Chapter	11.

The	tuning	process	is	to	try	and	improve	on	the	default	settings.	But	the	H2O	implementations
tend	to	have	good	defaults	that	adapt	to	characteristics	of	your	data,	so	I	quickly	reach	the
point	of	diminishing	returns.	Have	in	your	mind	how	much	time	and	effort	a	certain	increase
in	model	accuracy	is	worth.	Maybe	your	day	is	better	spent	on	feature	engineering	than
tuning?	Maybe	$1000	would	be	better	spent	on	additional	data	(whether	buying	data	sets,	or
running	your	own	surveys)	than	buying	500	node-hours	on	EC2	to	run	grids?

Throughout	this	book,	but	particularly	in	the	next	few	chapters,	I’ve	deliberately	shown	some
of	the	bad	hunches,	the	wrong	turns,	and	the	just	plain	(with	hindsight)	stupidity.	I	find	these
just	as	educational	as	seeing	what	worked	in	the	end,	and	I	hope	you	do	too.



Decision	Trees
Decision	trees,	in	their	simplest	form,	are	perhaps	the	most	easily	understandable	approach	to
machine	learning.	Unlike	the	black	box	of	neural	networks,	or	the	mathematical	equations	of
linear	models,	decision	trees	look	just	like	a	flow	chart.

See	Figure	5-1	for	an	example	of	a	decision	tree	for	classification	(these	are	called
classification	trees).

Figure	5-1.	A	classification	tree:	deciding	whether	to	walk	or	catch	a	taxi



You	don’t	need	to	know	much	about	how	decision	trees	are	built	to	be	able	to	use	them.
Basically,	the	variable	at	each	level	that	will	give	the	best	split	is	chosen,	and	the	most
common	definition	of	best	is	information	gain.

They	can	also	be	used	as	regression	trees,	where	the	value	to	be	learned	is	a	continuous
variable.	Regression	trees	are	really	still	just	classifying:	the	value	in	the	leaf	nodes	is	the
average	of	all	the	training	data	that	matched	that	branch	of	the	tree.	They	are	built	by	choosing
the	variable	that	gives	the	greatest	reduction	in	standard	deviation	at	each	node.	See	Figure	5-
2.

http://bit.ly/2gniT1s


Random	Forest
Random	forest	is	an	ensemble	algorithm,	meaning	more	than	one	model	is	made,	and	their
results	used	together,	the	aim	being	to	cope	better	with	unseen	situations	(i.e.,	to	avoid
overfitting).	This	is	not	the	only	time	we	will	meet	ensemble	algorithms	in	this	book.

Figure	5-2.	A	regression	tree:	estimating	how	long	a	car	journey	will	take

If	you	train	a	decision	tree	on	a	fairly	complex	data	set	(and	don’t	take	precautions	against
overfitting),	you	will	find	a	very	deep	tree	full	of	fragile	rules.	The	idea	behind	random	forest
is	to	instead	have	lots	of	trees.	Then,	when	you	use	it	to	predict	on	new	data,	you	give	the	new
data	to	each	of	those	trees	and	ask	each	for	their	prediction.	If	it’s	a	classification	you	choose
the	most	popular	answer,	and	if	it’s	a	regression	you	take	the	mean	of	each	tree’s	answer.

That	is	the	“forest”	half.	The	other	half,	the	“random,”	says	that	when	training	you	don’t	give
each	tree	all	the	training	data;	you	randomly	hold	back	some	rows,	or	hold	back	some
columns.	This	makes	each	individual	tree	a	bit	dumber	than	if	it	had	seen	all	the	data.	But
when	their	results	are	averaged	together	the	whole	is	more	intelligent	than	any	one	part.



Parameters
Most	of	the	parameters	were	introduced	in	Chapter	4,	but	there	are	some	specific	to	random
forest.	For	Python	users,	all	of	these	are	given	when	creating	the	object,	not	when	calling
train().

The	two	most	important	parameters	are:

ntrees

How	many	trees	in	your	forest.

max_depth

How	deep	a	tree	is	allowed	to	grow.	In	other	words,	how	complex	each	tree	is	allowed	to
be.

Together	these	two	parameters	control	how	big	your	random	forest	will	be:	acres	of	squat
apple	trees,	or	a	small	grove	of	giant	oaks.	The	defaults	are	50	trees,	to	a	max	depth	of	20.
The	training	time	is	going	to	be	roughly	proportional	to	the	number	of	trees	times	the
number	of	training	rows.	So	you	want	ntrees	to	be	as	small	as	possible…	but	no	smaller.

The	control	of	the	random	part	is	done	by	parameters	already	introduced	in	“Sampling,
Generalizing”.	To	remind	you:

mtries

This	is	how	many	variables	to	randomly	choose	as	candidates	at	each	split.	The	default	is

–1,	which	means	 	for	classification,	or	p/3	for	regression	(where	p	is	the	number	of
columns).	Set	it	to	the	number	of	columns	in	train	to	have	it	use	all	variables.

col_sample_rate_change_per_level

Relative	change	of	the	column	sampling	rate	for	every	level	in	each	tree.	The	default	is
1.0.	If	less	than	1,	then	it	will	have	fewer	columns	to	choose	from	as	it	gets	deeper	in	the
tree.	If	greater	than	1	(maximum	2.0)	then	it	will	have	more	columns	to	choose	from.

col_sample_rate_per_tree

This	can	be	from	0.0	to	1.0.	It	is	at	the	tree	level,	rather	than	at	the	split	level	as	with	mtries
and	col_sample_rate.

sample_rate

The	default	is	0.632,	which	means	each	tree	is	trained	on	63.2%	of	the	training	data.

sample_rate_per_class

Like	sample_rate	but	you	give	the	value	for	each	class.	See	the	description	of
class_sampling_factors	under	“Data	Weighting”.



The	next	two	parameters	control	if	splitting	is	done:

min_rows

How	many	training	data	rows	are	needed	to	make	a	leaf	node.	The	default	is	1,	meaning
that	you	can	have	a	path	through	the	tree	that	represents	something	that	was	only	seen	once
in	the	training	data.	That	obviously	encourages	overfitting.	But,	if	you	know	you	have
some	cases	only	represented	once	in	your	data,	then	1	is	what	you	want.

min_split_improvement

Each	time	a	split	happens	there	is	reduction	in	the	inaccuracy,	in	the	error.	This	controls
how	much	that	error	reduction	has	to	be	to	make	splitting	worthwhile.	The	default	is	zero.

The	next	set	of	parameters	control	how	the	splitting	is	done:

histogram_type

What	type	of	histogram	to	use	for	finding	optimal	split	points.	Can	be	one	of	“AUTO,”
“UniformAdaptive,”	“Random,”	“QuantilesGlobal,”	or	“RoundRobin.”

nbins

For	numerical	columns,	build	a	histogram	of	(at	least)	this	many	bins,	then	split	at	the	best
point.	The	default	is	20.

nbins_top_level

For	numerical	columns,	build	a	histogram	of	(at	most)	this	many	bins	at	the	root	level,
then	decrease	by	factor	of	two	per	level.	The	default	is	1024.

nbins_cats

For	categorical	columns,	build	a	histogram	of	(at	most)	this	many	bins,	then	split	at	the
best	point.	Higher	values	can	lead	to	more	overfitting.	The	default	is	1024.

The	next	one	only	applies	to	binary	classification:

binomial_double_trees

Build	one	set	of	trees	for	each	output	class.	Can	give	higher	accuracy,	and	the	trade-off	is
that	you	get	twice	as	many	trees.	(ntrees	*	2	will	be	built.)

Finally,	when	using	random	forest	on	a	cluster	there	is	a	fair	bit	of	network	communication.
Unless	you	are	using	the	cluster	because	you	have	big	data,	I	recommend	you	set	this	to	true.
With	small	data	sets	the	communication	overhead	will	destroy	any	benefit	you	were	hoping	to
get	from	using	those	other	nodes.

build_tree_one_node

Run	on	one	node	only.	You	will	only	be	using	the	CPUs	on	that	node;	the	rest	of	the	cluster



will	be	unused.



Building	Energy	Efficiency:	Default	Random	Forest
This	data	set	has	to	do	with	the	heating	costs	of	houses	(see	“Data	Set:	Building	Energy
Efficiency”	if	you	skipped	the	earlier	introduction	to	it),	and	it	is	a	regression	problem.	If	you
are	following	along,	run	either	Example	3-1	(for	R)	or	Example	3-2	(for	Python)	from	the
earlier	chapter,	which	sets	up	H2O,	loads	the	data,	and	defines	train,	test,	x,	and	y.	(See
“Jargon	and	Conventions”	in	Chapter	1	for	a	reminder	of	naming	conventions.)

There	is	no	valid	(i.e.,	no	validation	data	set);	instead	we	will	use	k-fold	cross-validation.	It	is
a	relatively	small	data	set,	and	is	quick	for	random	forest	to	model,	so	I	have	used	10-fold.
(Refer	back	to	“Cross-Validation	(aka	k-folds)”	if	you	need	a	reminder	about	cross-
validation.)

With	our	train	and	test	data	sets	prepared,	training	the	random	forest	is	a	one-liner,	which
takes	just	a	couple	of	seconds	to	run:

m	<-	h2o.randomForest(x,	y,	train,	nfolds	=	10,	model_id	=	"RF_defaults")

In	Python	that	looks	like:

m	=	h2o.estimators.H2ORandomForestEstimator(model_id="RF_defaults",	nfolds=10)
m.train(x,	y,	train)

Now,	type	m	to	see	how	the	training	went.	I	will	show	an	extract	from	an	IPython	console	here
(trimmed	to	fit)	but	the	R	client	shows	all	the	same	figures.	By	the	way,	in	R,	summary(m)
shows	more	information	than	just	printing	m:

In	[23]:	m.train(x,	y,	train)
drf	Model	Build	progress:	|██████████████████████████████|	100%

In	[24]:	m
Out[24]:	Model	Details
=============
H2ORandomForestEstimator	:		Distributed	Random	Forest
Model	Key:		RF_defaults
Model	Summary:
	num_of_trees	model_size	min_depth	max_depth	min_leaves	max_leaves	mean_leaves
	------------	----------	---------	---------	----------	----------	-----------
	50											133472					20								20								77									364								204.56

ModelMetricsRegression:	drf
**	Reported	on	train	data.	**

MSE:	3.29872615438
RMSE:	1.81623956415
MAE:	1.24760757203
RMSLE:	0.0567712695161
Mean	Residual	Deviance:	3.29872615438



ModelMetricsRegression:	drf
**	Reported	on	cross-validation	data.	**

MSE:	3.22444719482
RMSE:	1.79567457932
MAE:	1.23071814584
RMSLE:	0.0561318898512
Mean	Residual	Deviance:	3.22444719482

Firstly	it	says	there	are	50	trees,	and	in	this	case	they	all	used	the	maximum	allowed	depth	of
20.	(You	will	see	some	random	variation	from	run	to	run,	unless	you	set	a	seed. )

Under	regression	metrics	(the	ones	“Reported	on	cross-validation	data”)	I	see	an	MSE,	mean
squared	error,	of	3.224.	Not	zero,	so	our	model	is	not	perfect.	See	“Supported	Metrics”	in	the
previous	chapter	for	more	on	the	various	metrics.

If	I	look	over	on	Flow	I	will	see	11	models,	one	for	each	of	the	10	folds,	and	then	one	final
model	on	the	whole	data.	The	preceding	model	summary	gave	me	all	those	metrics	on	each
fold.	In	this	extract	notice	the	wide	range—the	average	MSE	was	3.16,	but	ranged	from	2.33	to
4.85:

Cross-Validation	Metrics	Summary:
																			mean							sd										cv_1_valid		...		cv_9_valid	cv_10_valid
-----------------		---------		----------		----------		...		----------	-----------
mae																1.21774				0.144463				1.00348					...		1.60152				1.07393
mse																3.16326				0.682396				2.23307					...		4.85474				2.55511
r2																	0.965288			0.0048532		0.973659				...		0.955043			0.971501
residual_deviance		3.16326				0.682396				2.23307					...		4.85474				2.55511
rmse															1.75908				0.185602				1.49434					...		2.20335				1.59847
rmsle														0.0553582		0.0044408		0.0466292			...		0.0655638		0.0514496

How	does	it	do	on	the	unseen	test	data?	In	R	you	get	that	with	h2o.performance(m,	test),	in
Python	m.model_performance(test),	and	it	looks	like	this:

In	[25]:	m.model_performance(test)
Out[25]:
ModelMetricsRegression:	drf
**	Reported	on	test	data.	**

MSE:	3.62649127211
RMSE:	1.90433486344
MAE:	1.33001699261
RMSLE:	0.0582354639097
Mean	Residual	Deviance:	3.62649127211

A	higher	MSE	than	on	either	our	training	data,	or	our	cross-validation	mean.	The	square	root
of	MSE	(RMSE	here)	is	in	real-world	units,	kWh/(m²yr)—i.e.,	kilowatt-hours,	per	square
meter	of	floorspace,	per	year—so	just	a	reminder	that	we	were	trying	to	predict	Y2,	the
required	cooling	load.	The	range	on	Y2	is	from	10.90	to	48.03.	The	RMSE	of	1.90	is	not	too

1



bad—the	guesses	are	in	the	right	ballpark.	The	average	error,	that	is.	The	mean	can	hide	all
kinds	of	sins,	so	let’s	also	look	at	the	results	graphically ;	see	Figure	5-3.

Figure	5-3.	Default	performance	of	random	forest	on	test	data

The	black	dots	are	the	correct	answers,	the	squares	are	relatively	close	predictions,	and	the	up
and	down	triangles	are	the	worst	predictions;	for	the	sake	of	this	plot	a	bad	prediction	was
defined	as	8%	above	or	below	the	correct	answer,	and	that	represents	27	(14	too	high,	13	too
low)	of	the	143	test	samples	here.

2
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Grid	Search
All	the	H2O	machine	learning	algorithms	have	parameters:	knobs,	which	you	can	tweak,	that
will	often	affect	the	performance	of	the	model	you	build.	But	the	interactions	between	the
parameters	can	be	complex.

The	labor-intensive	way	is	to	try	a	model,	evaluate	it,	then	fiddle	with	one	of	the	parameters,
and	repeat.	If	your	intuition	is	good	this	may	be	the	most	efficient	way.

A	more	systematic	way	would	be	to	set	up	nested	loops	of	all	the	values	for	each	parameter
that	you	think	might	be	important.	So,	for	deep	learning	you	might	try	100,	200,	and	300
epochs,	with	three	network	toplogies	(200x200,	64x64x64,	500x50),	and	L1	regularization	of
0	or	0.0001.	(The	meaning	of	these	parameters	will	be	explained	in	Chapter	8.)	That	is	18
combinations,	so	it	takes	18	times	as	long	as	making	one	model.

Alternatively,	rather	than	comprehensively	trying	all	18	combinations,	you	might	randomly
choose	6	of	them	to	try,	which	only	takes	one-third	of	the	time,	and	the	hope	is	that	you	still
get	to	learn	which	are	best	and	worst	values	for	the	parameters.

When	we	created	the	random	forest,	it	used	defaults	for	all	the	parameters,	except	for
specifying	the	10-fold	cross-validation.	But	the	results	were	not	as	good	as	they	can	be.	So	the
question	becomes,	how	can	we	make	it	better?

You,	at	the	back,	what	was	that?	“Throw	a	load	of	trees	at	it.”	Brute	force,	I	like	your	style,	sir.
And	what	was	that	ma’am?	Early	stopping?	(See	“Early	Stopping”.)	Excellent.	You	are	the	yin
to	his	yang.	But,	you	lack	depth.	No,	not	you	personally,	sir,	you	have	plenty	of	depth.

I	mean	you	could	also	make	deeper	trees.	H2O’s	random	forest	defaults	to	ntrees=50	trees,
with	a	max_depth	of	20.	Do	we	want	to	try	100	trees,	keeping	depth	as	20?	Or	keep	50	trees,
but	allow	them	to	grow	to	a	depth	of	40?	Or	both?

Those	are	the	easy	ones	to	tune:	higher	values	are	better	(well,	to	the	point	of	diminishing
returns,	at	least).	But	then	there	are	all	the	fiddly	ones.	For	instance,	is	mtries	better	nudged	a
bit	higher,	or	nudged	a	bit	lower?	Don’t	look	at	me,	I	don’t	know.	I	just	work	here.

Grids	are	the	solution	to	this	dilemma,	and	the	H2O	implementation	currently	comes	in	two
forms:

Comprehensive	("Cartesian")

Random	("RandomDiscrete")



Cartesian
The	first,	the	default,	will	try	all	combinations.	Here	is	an	example	of	that	type	of	grid,	first	in
R,	then	in	Python:

g	<-	h2o.grid("randomForest",
		hyper_params	=	list(
				ntrees	=	c(50,	100,	120),
				max_depth	=	c(40,	60),
				min_rows	=	c(1,	2)
				),
		x	=	x,	y	=	y,	training_frame	=	train,	nfolds	=	10
		)

TIP
If	you	ever	get	a	500	Server	Error	with	h2o.grid(),	in	R,	check	that	you’ve	given	the	algorithm	name	correctly!	It
is	case-sensitive.

import	h2o.grid

g	=	h2o.grid.H2OGridSearch(
		h2o.estimators.H2ORandomForestEstimator(
				nfolds=10
				),
		hyper_params={
				"ntrees":	[50,	100,	120],
				"max_depth":	[40,	60],
				"min_rows":	[1,	2]
				}
		)
g.train(x,	y,	train)

In	R,	you	call	h2o.grid,	telling	it	which	function	to	run,	the	hyper-parameters,	then	the
constant	parameters.	By	constant	parameter	I	mean	a	model	parameter	that	you	don’t	want	to
experiment	with	in	the	grid,	so	it	will	have	a	fixed	value	in	each	model.	In	Python	you	make
the	H2OGridSearch	object,	giving	it	an	instance	of	the	function	to	use,	with	most	of	the
constant	parameters,	then	you	give	the	hyper-parameters	as	a	dictionary	of	arrays;	next	you
call	train()	just	as	you	do	when	calling	train()	on	a	model	object.

hyper_params	specifies	the	combinations	we	want	it	to	try.	So,	here	I	have	given	three
alternatives	for	ntrees,	two	for	max_depth,	and	two	for	min_rows.	3	x	2	x	2	=	12,	so	12
models	will	get	made.	Because	of	the	combinatorial	explosion,	each	additional	hyper-
parameter	that	gets	added	has	a	huge	effect	on	the	time	taken	to	complete.

Type	g	(whether	using	R	or	Python)	to	get	output	like	this:

	min_rows	ntrees	max_depth						model_ids						deviance



1					1				120								60	RF_structure1_model_10		3.2616
2					1				120								40		RF_structure1_model_4		3.2616
3					1				100								60		RF_structure1_model_8		3.2724
4					1				100								40		RF_structure1_model_2		3.2724
5					1					50								60		RF_structure1_model_6		3.3210
6					1					50								40		RF_structure1_model_0		3.3210
7					2				120								40		RF_structure1_model_5		3.3518
8					2				120								60	RF_structure1_model_11		3.3518
9					2				100								40		RF_structure1_model_3		3.3525
10				2				100								60		RF_structure1_model_9		3.3525
11				2					50								60		RF_structure1_model_7		3.3662
12				2					50								40		RF_structure1_model_1		3.3662

It	has	ordered	from	best	to	worst:	lower	residual	deviance	(equivalent	to	MSE	here)	is	what
we	are	after.	Though	the	range	of	values	looks	narrow,	we’ve	actually	learned	a	lot	from	this.
First,	min_rows	of	1	is	always	better	than	2.	Second,	max_depth	of	40	and	60	gives	exactly	the
same	result. 	And,	third,	that	more	ntrees	was	always	better.	Such	clear-cut	results	are	unusual
—normally	you	have	to	piece	apart	these	conclusions.

To	seed	or	not	to	seed?	That	is	the	question:	whether	’tis	nobler	in	the	mind	to	suffer	the
slings	and	arrows	of	outrageous	random	variation,	or	to	take	arms	against	a	sea	of	troubles
by	setting	the	same	seed	each	time.	Or—and	I	feel	Hamlet	overlooked	this	third	choice—you
could	set	seed	as	one	of	the	grid	hyper-parameters,	and	get	a	feel	for	how	much	random
variation	is	disturbing	your	conclusions.	I	use	this	third	approach	regularly.

Including	nfolds=10	makes	the	computation	much	slower	(24	seconds	instead	of	5.5	seconds
in	this	case,	so	4x	to	5x	slower),	but	the	estimate	of	model	performance	becomes	more
consistent.	When	I	tried	without	nfolds,	a	couple	of	the	min_rows=1	entries	ended	up	down	the
bottom,	instead	of	in	the	middle,	and	the	range	of	deviance	was	bigger.	Trying	nfolds=5	took
17	seconds	instead	of	24	seconds,	but	all	the	deviances	were	higher;	however,	it	gave	the	same
ordering	as	for	nfolds=10	and	that	is	the	important	thing.

You	can	use	a	different	metric	to	order	your	grid	models;	the	preceding	was	using	the	default
of	deviance.	If	you	were	most	interested	in	how	they	compare	on	the	R²	metric,	the	next	code
is	what	you	want.	Notice	how	R’s	h2o.getGrid()	takes	a	grid	ID,	rather	than	a	grid	object:

g_r2	<-	h2o.getGrid(g@grid_id,	sort_by	=	"r2",	decreasing	=	TRUE)

TIP
To	find	out	your	sorting	options,	give	sort_by	=	"xxx"	and	they	are	listed	in	the	error	message.	Refer	to
“Supported	Metrics”	if	some	are	unfamiliar.

In	Python	you	get	all	models	when	you	print	g	or	g_r2.	However,	printing	a	grid	in	R
currently	shows	just	the	best	6	and	worst	6	models;	if	you	have	more	than	12	models	then	you
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will	need	to	download	it	with	this	rather	clunky	idiom:

as.data.frame(	g_r2@summary_table	)

TIP
Grids	in	H2O	are	basically	just	a	set	of	nested	loops	(or	random	parameter	selection	for	the	other	form),	and	you
could	hack	your	own	solution	in	a	few	minutes.	On	the	other	hand,	they	get	their	own	top-level	menu	in	Flow,	and
the	g	object	is	a	nice	container	for	the	models,	and	the	API	comes	with	tables	to	compare	them.

Just	bear	in	mind	that	if	you	start	craving	more	flexibility,	and	don’t	mind	giving	up	those	home	comforts,	you
could	write	your	own	loop…



RandomDiscrete
The	other	mode	for	grids	is	“RandomDiscrete.”	Use	this	when	you	have	so	many	hyper-
parameters	that	trying	all	combinations	exhaustively	would	be,	well,	exhausting.
RandomDiscrete	will	jump	from	one	random	combination	to	another.	It	needs	some
additional	parameters	to	control	when	it	should	stop,	and	you	should	specify	at	least	one	of
these:

max_models

Make	this	many	models,	then	stop.

max_runtime_secs

Run	for	this	long,	then	stop.

stopping_metric

AUTO,	misclassification,	etc.

stopping_tolerance

For	example,	0.0001,	to	require	at	least	0.01%	improvement	in	the	given	metric.

stopping_rounds

For	example,	5.	In	combination	with	stopping_tolerance	of	0.0001	it	means:	if	none	of	our
last	five	random	models	has	managed	to	be	0.01%	better	than	the	best	random	model
before	that,	then	stop.

The	three	stopping	choices	work	just	like	the	ones	we	saw	in	“Early	Stopping”,	for	stopping	a
model’s	learning,	but	they	are	being	applied	at	the	grid	level.	Note	that	you	can	still	have	these
three	stopping	parameters	in	your	grid’s	hyper-parameters,	or	constant	parameters,	and	these
will	apply	to	each	model	that	is	built.

To	see	how	this	works,	the	next	example	uses	early	stopping	on	both	the	models	and	on	the
grid.	The	grid	search	will	stop	if	the	best	MSE	out	of	the	last	10	models	is	not	at	least	0.1%
better	than	the	best	MSE	of	a	model	the	grid	made	before	those	10.	There	is	also	an	overall
time	limit	of	120	seconds.

The	hyper-parameters	being	tried	are:

ntrees:	from	50	to	250.

mtries:	the	building	energy	data	set	has	eight	predictor	columns,	so	the	default	of	8÷3,
rounded-down,	is	2.	That	feels	unreasonably	low,	so	I	also	try	3,	4,	and	5.

sample_rate:	the	default	is	0.632,	so	a	bit	below,	a	bit	above,	and	then	quite	a	lot	above
(95%	of	samples).



col_sample_rate_per_tree:	the	default	is	1.0,	so	a	bit	below	that,	then	a	lot	below	that
(50%).

That	is	a	total	of	240	model	combinations.

The	max_depth	is	fixed	at	40	for	all	models,	and	5-fold	cross-validation	is	used	(instead	of
10-fold,	so	as	to	speed	things	up).	Then	the	per-model	early	stopping	says	that	if	we	go	four
scoring	rounds	without	any	improvement	at	all	(scoring_tolerance=0)	in	the	deviance,	then
stop.

TIP
Normally	random	forest	is	scored	after	every	tree	is	added,	but	score_tree_interval=3	(which	is	just	a	way	of
telling	it	to	spend	more	time	building	trees	relative	to	time	spent	scoring)	combined	with	four	scoring	rounds
actually	means	12	trees	have	to	be	added,	with	zero	improvement,	before	it	will	stop	early.

g	<-	h2o.grid("randomForest",
		search_criteria	=	list(
			strategy	=	"RandomDiscrete",
			stopping_metric	=	"mse",
			stopping_tolerance	=	0.001,
			stopping_rounds	=	10,
			max_runtime_secs	=	120
			),
		hyper_params	=	list(
				ntrees	=	c(50,	100,	150,	200,	250),
				mtries	=	c(2,	3,	4,	5),
				sample_rate	=	c(0.5,	0.632,	0.8,	0.95),
				col_sample_rate_per_tree	=	c(0.5,	0.9,	1.0)
				),
		x	=	x,	y	=	y,	training_frame	=	train,
		nfolds	=	5,	max_depth	=	40,
		stopping_metric	=	"deviance",
		stopping_tolerance	=	0,
		stopping_rounds	=	4,
		score_tree_interval	=	3
		)

For	me,	it	ran	for	a	bit	under	90	seconds,	and	made	61	of	the	possible	240	models.	The	early
stopping	meant	it	never	used	all	the	tree	allowance	it	was	given;	in	fact,	the	biggest	model
used	70	trees.	This,	of	course,	means	it	was	a	waste	to	have	ntrees	as	a	hyper-parameter!	On
another	run,	I	got	just	42	models,	with	the	largest	forest	having	51	trees.

For	mtries	the	best	model	used	5,	but	3	and	4	were	also	in	the	best	3.	However,	the	default	of	2
seems	to	have	done	relatively	poorly.	So,	for	our	next	grid	consider	dropping	2.	(In	another
run,	the	top	10	were	all	3	and	4.)	For	col_sample_rate	all	the	0.5	models	were	in	the	bottom-
third,	but	9	of	the	best	10	used	0.9,	rather	than	the	default	of	1.0.	How	about	0.85,	0.90,	and
0.95	for	the	next	round?	sample_rate	is	less	clear-cut,	but	the	top	9	are	either	0.632	or	0.8,



while	0.95	looks	poor.	Maybe	0.55,	0.60,	0.65,	0.70,	0.75,	0.80,	and	0.85	for	the	next	round?	In
yet	another	run	3	of	the	top	6	were	0.95.	So,	maybe	0.55,	0.65,	0.75,	0.85,	0.95?	Or,	maybe	this
is	a	sign	to	stop	trying	to	tune	it?	That	is,	your	energy	is	better	spent	elsewhere.

WARNING
Certain	combinations	of	parameters	can	be	illegal,	and	when	this	happens	those	models	will	just	fail	to	build,	but
the	rest	of	the	grid	will	complete,	and	you	may	not	realize	there	was	a	problem.

If	you	look	on	Flow	you	will	see	the	error	messages.	To	see	them	in	Python,	type	g.failure_details	(you	get	no
output	if	there	are	no	problems).	You	can	see	failures	in	R	by	just	outputting	the	grid	with	g.

Currently	H2O’s	grid	implementation	is	still	a	bit	immature:	there	is	no	mode	yet	that	guides
its	search	by	which	parameters	on	previous	models	worked	better.	There	is	also	no	support
yet	for	running	models	in	parallel	over	a	cluster.	There	is	also	no	way	to	have	dependencies
between	the	parameters,	or	have	one	be	a	function	of	another.	For	instance,	you	might	want	to
try	various	values	of	sample_rate,	but	increase	ntrees	when	learn_rate	is	lower.	If	you	need
that	level	of	flexibility,	or	any	of	the	other	missing	features	of	h2o.grid,	you’ll	need	to
implement	your	own	version.	Alternatively,	put	a	high-level	loop	on	top	of	multiple	calls	to
h2o.grid(),	and	combine	the	results.	(You	will	see	this	used	in	Chapter	8,	when	trying	to
experiment	with	differing	number	of	hidden	layers,	for	instance.)

TIP
If	you	use	the	same	grid_id	on	multiple	grid	requests,	the	results	get	merged!	This	can	allow	you	to	narrow	in	on
your	parameters,	but	still	see	all	the	models	in	one	big	table.



High-Level	Strategy
What	is	the	best	way	to	use	grids?	I	often	start	with	a	small	exhaustive	search,	testing	the	most
important	few	parameters,	to	get	a	feel	for	where	it	might	be	going.	Then	I	do	a	few	random
searches	across	more	of	the	parameters	(this	grid	search	tutorial	shows	the	list	of	parameters
that	can	be	tuned,	for	each	algorithm),	with	relatively	short	iterations	(on	the	order	of	a	few
minutes	to	complete).	After	each	iteration	see	if	there	are	any	obvious	conclusions	to	use	to
guide	the	next	iteration.	(col_sample_rate=0.5	being	bad	was	a	good	example.)

As	you	narrow	in	on	what	you	think	are	the	best	iterations	you	may	switch	to	cartesian
(exhaustive	search)	mode.	This	is	also	a	good	time	to	try	three	or	four	random	seeds,	to	test
the	sensitivity	to	random	numbers.	And	if	you	reduced	the	number	of	k-folds,	to	speed	things
up,	it	is	a	good	idea	to	increase	it	again,	for	a	bit	more	precision.

WARNING
Never	use	the	test	data	set	in	the	grid	search	phase.	Rely	on	the	validation	score,	or	the	cross-validation	score.
Only	when	you	have	selected	a	final	model,	“ready	for	production,”	can	you	then	evaluate	it	on	the	test	set.

http://bit.ly/2gmnNMb


Building	Energy	Efficiency:	Tuned	Random	Forest
The	previous	section,	“Grid	Search”,	has	made	a	good	start	on	improving	the	parameters.
There	may	not	be	much	more	to	do.

I’ve	tried	using	nbins,	which	is	the	minimum	number	of	levels	to	divide	a	numeric	predictor
column	into,	when	considering	how	to	split	on	it.	It	defaults	to	20,	but	most	of	our	numeric
fields	don’t	have	even	20	distinct	values.	So	I	tried	values	of	8,	12,	16,	20,	and	24.	The
conclusion?	All	five	possible	values	were	used	in	the	top	8	models	(out	of	the	49	that	were
made	in	that	grid	iteration).	So	that	was	a	failed	experiment;	best	to	leave	nbins	as	the	default.

If	I	was	trying	to	get	two	or	three	diverse	models	for	an	ensemble	(see	“Ensembles”)	then	I
would	perhaps	choose	(out	of	the	best	models)	those	with	the	biggest	range	of	hyper-
parameters.	But,	for	the	sake	of	choosing	one	best	model,	I	did	a	few	more	iterations	of	grids
and	settled	on:

max_depth	=	40

ntrees	=	200

sample_rate	=	0.7

mtries	=	4

col_sample_rate_per_tree	=	0.9

nbins	left	as	default	(20)

The	choice	of	random	seed	was	a	big	influence,	so	I	chose	six	seeds,	and	used	the	following
listing	to	compare	the	default	model	with	this	tuned	model:

seeds	<-	c(101,	109,	373,	571,	619,	999)

defaultModels	<-	lapply(seeds,	function(seed){
		h2o.randomForest(x,	y,	train,	nfolds	=	10,	seed	=	seed)
		})

tunedModels	<-	lapply(seeds,	function(seed){
		h2o.randomForest(x,	y,	train,	nfolds	=	10,	seed	=	seed,
				max_depth	=	40,	ntrees	=	200,	sample_rate	=	0.7,
				mtries	=	4,	col_sample_rate_per_tree	=	0.9,
				stopping_metric	=	"deviance",
				stopping_tolerance	=	0,
				stopping_rounds	=	5,
				score_tree_interval	=	3)
		})

def	<-	sapply(defaultModels,	h2o.rmse,	xval	=	TRUE)
tuned	<-	sapply(tunedModels,	h2o.rmse,	xval	=	TRUE)

boxplot(c(def,	tuned)	~	c((rep(1,	6),rep(2,	6))	)



Figure	5-4	shows	how	there	does	seem	to	be	a	distinct	improvement,	though	the	best	of	the
default	models,	and	the	worst	of	the	tuned	models,	stop	it	from	being	clean.

Figure	5-4.	Box	plot	comparing	random	variation	in	default	and	tuned	models

I	chose	RMSE,	but	MSE	gives	identical	conclusions. 	I	also	chose	to	plot	the	cross-validation
metric,	rather	than	the	self-train	metric.	Oh,	and	check	the	y-axis	before	you	get	too
impressed—notice	how	far	away	0.0	is.

Remaking	the	same	chart	from	earlier, 	can	you	spot	the	difference?	We	went	from	14	too
high,	13	too	low,	to	8	too	high	and	17	too	low!	We	come	to	the	same	conclusion	as	the
previous	box	plots:	tuning	has	given	us	a	little	improvement,	but	nothing	earth-shattering.

The	results	of	all	models	on	this	data	set	will	be	compared	in	“Building	Energy	Results”	in
the	final	chapter.
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Figure	5-5.	Tuned	performance	of	random	forest	on	test	data

NOTE
As	a	follow-up,	I	tried	repeating	the	grid	experiments,	but	without	early	stopping:	each	model	got	to	use	all	200
trees.	I	settled	on	almost	the	same	parameters,	but	a	higher	sample_rate	of	0.9.

Naturally,	training	took	more	time.	The	cross-validation	MSE	was	slightly	better,	with	a	narrower	range,	but	the
MSE	was	notably	worse	on	the	test	data,	suggesting	that	early	stopping	was	preventing	some	overfitting?



MNIST:	Default	Random	Forest
This	is	a	pattern	recognition	problem	(see	“Data	Set:	Handwritten	Digits”	for	a	reminder),	and
because	we	are	trying	to	assign	one	of	ten	values	to	each	sample,	it	is	a	multinomial
classification	problem.	If	following	along,	run	either	Example	3-3	or	Example	3-4	from	the
earlier	chapter,	which	sets	up	H2O,	loads	the	data,	and	defines	train,	valid,	test,	x,	and	y.

Unlike	before,	with	the	building	energy	data	set,	this	time	we	have	a	valid	set,	and	so	won’t
use	cross-validation.	Here	is	the	Python	code:

m	=	h2o.estimators.H2ORandomForestEstimator(model_id="RF_defaults")
m.train(x,	y,	train,	validation_frame=valid)

And	the	R	code:

m	<-	h2o.randomForest(
		x,	y,	train,	model_id	=	"RF_defaults",	validation_frame	=	valid
		)

That	code	takes	about	two	minutes	to	run	on	my	machine;	all	eight	cores	were	used	equally	at
almost	100%.

NOTE
If	you	look	in	the	model	information	you	might	see	it	says	500	trees	were	made—not	the	50	that	the	default
settings	requested!	What	is	going	on	is	that	with	a	multinomial	classification,	for	both	random	forest	and	GBM,
one	internal	tree	is	built	per	output	class.	(Binomial	and	regression	tree	models	have	just	the	one	internal	tree	per
requested	tree.)	Each	internal	tree	is	predicting	how	likely	a	value	is	in	that	class,	and	we	have	10	classes.	Those
10	internal	trees	each	produce	a	probability.	The	class	with	the	highest	probability	is	the	one	that	is	chosen	as	the
prediction	(but	all	the	probabilities	are	returned	if	you	want	to	do	something	more	sophisticated	with	them).

If	you	look	at	the	confusion	matrix	(over	on	Flow,	or	from	R	with	h2o.confusionMatrix(m,
valid	=	TRUE),	or	m.confusion_matrix(valid)	on	Python)	you	will	see	it	has	done	rather	well:
it	got	only	370	out	of	the	10,000	validation	samples	wrong.



TIP
I	use	this	little	MNIST-specific	helper	in	Python,	to	both	quickly	view	the	confusion	matrix,	and	get	rid	of	all	the
annoying	“.0”	on	the	end	of	the	counts:

def	cm(m,	data=valid):
		d	=	m.confusion_matrix(data).as_data_frame()
		d[list("0123456789")]	=	d[list("0123456789")].astype(int)
		return(d)

0 1 2 3 4 5 6 7 8 9 Error Rate

0 1004 0 0 1 1 2 3 1 3 2 0.012783 13	/	1,017

1 0 1083 7 1 2 0 2 3 1 2 0.016349 18	/	1,101

2 4 5 941 4 4 0 3 2 10 2 0.034872 34	/	975

3 0 0 16 976 4 7 0 13 12 5 0.055179 57	/	1,033

4 1 1 3 0 910 0 3 1 4 26 0.041096 39	/	949

5 2 2 3 14 1 897 12 1 5 3 0.045745 43	/	940

6 4 0 1 0 0 12 935 0 2 0 0.019916 19	/	954

7 1 0 13 2 8 1 0 1002 2 17 0.042065 44	/	1,046

8 9 3 7 11 4 7 3 1 931 10 0.055781 55	/	986

9 2 0 2 14 15 2 0 5 8 951 0.048048 48	/	999

10 1027 1094 993 1023 949 928 961 1029 978 1018 0.0370 370	/	10,000

When	you	look	at	h2o.hit_ratio_table(m,	valid=TRUE)	(in	Python,
m.hit_ratio_table(valid=True)),	it	is	a	bit	less	impressive:

				k	hit_ratio
1			1		0.963000
2			2		0.988400
3			3		0.993100
4			4		0.996500
5			5		0.997500
6			6		0.998000
7			7		0.998500
8			8		0.998600
9			9		0.998600
10	10		1.000000



There	were	10,000	samples.	You	can	interpret	the	first	value	of	0.9630	as:	“On	the	first	guess
it	got	9630	correct	and	370	wrong.”	The	second	value	is	0.9884,	and	(0.9884	-	0.9628)	*	10000
=	256,	meaning	it	got	another	256	right	on	its	second	guess.	And	so	on.	The	“0.9986”	in	the
ninth	row	means	there	were	(1	-	0.9986)	*	10000	=	14	that	it	still	hadn’t	got	after	nine	guesses.

h2o.performance(m,	test)	is	how	to	evaluate	it	on	the	test	data.	Running	this	it	told	me	327
wrong,	so	in	fact	it	did	slightly	better	than	the	370	score	on	the	validation	test	data.	And	there
were	only	7,	not	14,	that	it	couldn’t	get	after	nine	guesses	(the	h2o.performance()	function
outputs	all	this	information).



MNIST:	Tuned	Random	Forest
In	our	default	random	forest	the	max_depth	of	each	tree	was	20,	but	almost	every	tree	was
banging	into	that	limit.	So	increasing	that	parameter	is	an	obvious	tuning	idea.	And	giving	it
more	trees	is	another	sensible	idea.	But	both	of	those	mean	it	will	take	longer	to	learn	each
model.	So,	I	start	by	adding	early	stopping,	trying	to	find	a	compromise	between	not	killing	a
model	before	it	gets	chance	to	shine,	and	not	taking	too	long	to	compute!

stopping_tolerance	=	0.0001,
stopping_rounds	=	3,
score_tree_interval	=	3,

These	say	that	if	it	hasn’t	improved	by	at	least	0.01%	over	the	last	9	trees,	then	stop	and	call	it
a	day.	With	that	in	place,	we	can	increase	ntrees	from	50	to	500	(and	hope	it	doesn’t	use	all
500	each	time).

The	other	thing	for	the	initial	grid	is	seeing	if	min_rows	is	important.	It	wasn’t	important	with
the	building	energy	data,	but	that	data	set	only	had	768	rows;	now	we	have	50,000	rows.	So	I
tried	min_rows	of	1,	2,	and	5.	And	max_depth	of	20,	50,	and	120	was	tried.	I	also	used	two
random	seeds	to	get	a	feel	for	sensitivity	to	randomness.

It	ran	for	over	an	hour	before	I	stopped	it	early.	max_depth	of	50	and	20	were	almost
identical,	with	50	just	a	fraction	better	each	time,	and	the	couple	of	max_depth	=	120	models
that	completed	were	exactly	identical	to	the	depth	50	ones.	The	min_rows	=	5	was	distinctly
worse,	while	min_rows	=	1	was	fractionally	better	than	2.	Each	model	used	between	66	and
132	trees.

The	best	model	from	the	first	grid	is	better	than	the	default	model,	though	not	by	anything
amazing:	96.62%	correct	on	the	first	guess,	compared	to	96.3%	with	default	settings;	in	other
words,	a	net	improvement	of	32	more	samples	correctly	recognized.	(Remember	that	random
variations	mean	you	are	likely	to	see	slightly	different	results.)

What	else	might	we	try?	The	10	classes	are	not	perfectly	balanced,	but	are	not	far	off,	so	there
should	be	no	need	to	weight	any	training	rows.	What	about	sampling?	mtries	defaults	to	the
(rounded-down)	square	root	of	the	number	of	columns,	and	the	square	root	of	784	is	28.
(With	the	enhanced	data,	the	square	root	of	898	columns,	rounded	down,	is	29—close	enough
not	to	make	much	difference.)	We	could	try	a	higher	number.	We	could	try	fiddling	with
col_sample_rate_per_tree	and	sample_rate	too.	And	with	those	changes,	maybe	different
values	for	min_rows	and	max_depth	have	become	more	important,	so	try	a	couple	each	for
those:

g2	<-	h2o.grid("randomForest",	grid_id	=	"RF_2",
		search_criteria	=	list(
			strategy	=	"RandomDiscrete",
			max_models	=	20		#Of	the	108	possible



			),

		hyper_params	=	list(
				min_rows	=	c(1,	2),
				mtries	=	c(28,	42,	56),
				col_sample_rate_per_tree	=	c(0.75,	0.9,	1.0),
				sample_rate	=	c(0.5,	0.7,	0.9),
				max_depth	=	c(40,	60)
				),

		x	=	x,	y	=	y,	training_frame	=	train,
		validation_frame	=	valid,
		ntrees	=	500,
		stopping_tolerance	=	0.0001,
		stopping_rounds	=	3,
		score_tree_interval	=	3
		)

Altogether	that	gave	108	possible	models,	and	I	set	it	to	stop	after	20	models.	However,	after
about	2.5	hours	(!)	I	decided	the	17	models	were	enough	so	I	canceled	it	at	that	point.	The
results	are	shown	next:

sample_rate	min_rows	max_depth	mtries	col...tree		logloss
								0.9								2								60					42								0.9		0.21656
								0.7								2								60					56								0.9		0.22380
								0.7								2								60					56										1		0.22463
								0.9								1								40					28							0.75		0.22666
								0.9								1								40					28								0.9		0.22854

								0.5								2								40					56										1		0.23525
								0.5								2								60					56								0.9			0.2388
								0.5								1								60					56								0.9		0.24018
								0.5								1								60					56							0.75		0.24054
								0.7								1								40					28										1		0.24193
								0.5								2								60					42										1		0.24331

								0.5								1								60					42							0.75		0.25012
								0.5								2								60					28										1		0.25705
								0.5								1								40					28										1		0.25745
								0.5								2								60					28							0.75		0.26080
								0.5								1								40					28							0.75		0.26168
								0.5								1								60					28							0.75		0.27034

This	RandomDiscrete	grid	search	has	chosen	0.5	for	the	sample_rate	parameter	11	times	out
of	17	(compared	to	only	three	times	each	for	0.7	and	0.9);	these	things	happen	with	random
processes.	But,	they	have	all	done	worse	than	than	0.7	and	0.9	so	I	think	we	can	confidently	say
sample_rate=0.5	is	a	bad	choice.	If	so,	I	will	often	mentally	remove	them,	so	the	grid	results
now	look	like	this:

sample_rate	min_rows	max_depth	mtries	col...tree		logloss
								0.9								2								60					42								0.9		0.21656
								0.7								2								60					56								0.9		0.22380



								0.7								2								60					56										1		0.22463
								0.9								1								40					28							0.75		0.22666
								0.9								1								40					28								0.9		0.22854
								0.7								1								40					28										1		0.24193

That	looks	clear-cut!	min_rows	of	2	is	better	than	1,	max_depth	of	60	is	better	than	40,	and
mtries	of	28	is	not	good?	Maybe,	but	the	unfortunate	random	sampling	hurts	us	here	too:
every	time	we	had	min_rows	of	1	we	also	had	max_depth	of	40	and	also	had	mtries	of	28.
Maybe	only	one	of	these	is	significant,	and	the	other	two	are	just	along	for	the	ride?	Second
and	third	best	differ	only	by	the	col_sample_rate_per_tree	value,	as	do	fourth	and	fifth.	So
maybe	0.75	is	superior	to	0.9	is	superior	to	1.0?	But	the	logloss	is	very	close	in	each	case.

For	a	third	grid	I	varied	mtries	(42	or	56)	and	sample_rate	(0.7	or	0.9)	and	then	tried	with	two
different	random	seeds,	keeping	min_rows	constant	at	2	and	max_depth	constant	at	40.	(The
results	given	here	also	merge	in	the	best	five	from	the	previous	grid.)

sample_rate	seed	min_rows	max_depth	mtries	logloss
								0.9		999						2								40					56			0.20486
								0.9		999						2								40					42			0.21214
								0.9		101						2								40					42			0.21454
								0.9		300						2								60					42			0.21656
								0.9		101						2								40					56			0.22024
								0.7		999						2								40					56			0.22317
								0.7		350						2								60					56			0.22380
								0.7		400						2								60					56			0.22463
								0.7		101						2								40					56			0.22358
								0.9		450						1								40					28			0.22666
								0.9		500						1								40					28			0.22854
								0.7		999						2								40					42			0.23153
								0.7		101						2								40					42			0.23511

It	looks	like	a	sample_rate	of	0.9	is	better	than	0.7;	the	jury	is	still	out	on	if	a	higher	mtries	has
an	effect,	but	I’m	going	to	go	with	56.

I	will	go	with	the	first	model	in	that	grid	as	the	Chosen	One.	The	grid	was	called	g3;	I	can
fetch	and	evaluate	that	first	model	on	the	test	data	with:

bestModel	<-	h2o.getModel(g3@model_ids[[1]])
h2o.performance(bestModel,	test)

It	gets	305	wrong	out	of	10,000,	which	is	22	better	than	the	default	model.	(Second	guess,
third	guess,	etc.	are	all	slightly	better	too.)



Enhanced	Data
If	I	repeat	the	default	random	forest	model,	but	use	the	enhanced	MNIST	data	(the	extra	113
columns),	it	gets	355	wrong	in	the	validation	set	and	326	wrong	in	the	test	set.	So,	only	a
smidgeon	better	than	on	the	pixel-only	data.

When	I	tried	that	final	grid	with	the	enhanced	MNIST	data	I	got	these	grid	results:

		sample_rate	seed	min_rows	max_depth	mtries	col_sample_rate_per_tree					logloss
1									0.9		999								2								40					56																						0.9		0.19946616
2									0.9		101								2								40					56																						0.9		0.20147704
3									0.9		101								2								40					42																						0.9		0.20494049
4									0.9		999								2								40					42																						0.9		0.20636335
5									0.7		101								2								40					56																						0.9		0.21045509
6									0.7		999								2								40					42																						0.9		0.21215725
7									0.7		101								2								40					42																						0.9		0.21510395
8									0.7		999								2								40					56																						0.9		0.21713063

We	get	similar	conclusions	(0.9	better	than	0.7,	56	better	than	42),	and	slightly	better	logloss
results.	However,	the	following	confusion	matrix	on	the	best	model	shows	it	was	one	worse,
with	an	error	rate	of	306	instead	of	the	earlier	305	when	using	just	the	raw	pixels.	Bad	luck?

Confusion	Matrix:	vertical:	actual;	across:	predicted
									0				1				2				3			4			5			6				7			8				9		Error											Rate
0						971				0				0				0			0			1			4				1			3				0	0.0092	=						9	/	980
1								0	1124				3				2			1			1			3				0			1				0	0.0097	=			11	/	1,135
2								7				0		996				7			1			0			1				7		13				0	0.0349	=			36	/	1,032
3								0				0				8		971			0			4			1			14			8				4	0.0386	=			39	/	1,010
4								0				0				3				0	948			0			4				0			6			21	0.0346	=					34	/	982
5								3				0				1			12			1	859			6				2			5				3	0.0370	=					33	/	892
6								4				3				1				0			3			6	937				0			4				0	0.0219	=					21	/	958
7								1				5			12				3			2			0			0		992			2			11	0.0350	=			36	/	1,028
8								6				1				3				7			3			6			4				2	938				4	0.0370	=					36	/	974
9								5				6				4			13		12			2			0				4			5		958	0.0505	=			51	/	1,009
Totals	997	1139	1031	1015	971	879	960	1022	985	1001	0.0306	=	306	/	10,000

Top-10	Hit	Ratios:
				k	hit_ratio
1			1		0.969400
2			2		0.990900
3			3		0.995200
4			4		0.998000
5			5		0.998700
6			6		0.999300
7			7		0.999400
8			8		0.999400
9			9		0.999400
10	10		1.000000

The	results	of	all	four	learning	algorithms	will	be	compared	in	“MNIST	Results”	in	the	final
chapter	of	this	book.
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Football:	Default	Random	Forest
Our	third	data	set	is	a	time	series,	football	results	(see	“Data	Set:	Football	Scores”),	and	we
have	phrased	it	as	a	binomial	classification:	estimate	if	the	home	side	will	win	or	not.	We	have
two	alternatives	for	the	fields	to	learn	from:	with	or	without	the	bookmaker	odds,	that	is,	with
or	without	expert	predictions.	It	is	expected	to	be	tougher	without	the	odds.

If	you	are	following	along,	run	either	Example	3-6	or	Example	3-7	from	the	earlier	chapter,
which	sets	up	H2O,	loads	the	data,	and	has	defined	train,	valid,	test,	x,	xNoOdds,	and	y.	This	is
the	first	time	we	have	met	a	binomial	model,	and	AUC	will	be	our	main	metric	(see
“Binomial	Classification”	for	a	reminder).

Before	we	go	any	further	I	want	to	introduce	a	helper	function.	Because	we	are	going	to	be
making	multiple	models,	I	will	often	want	to	analyze	them	side	by	side.	Example	5-1	shows
how	to	compare	metrics	for	multiple	models,	on	each	of	our	data	sets:	train,	valid,	and	test.	It
returns	a	3D	array,	which	we	can	then	slice	up.

The	function	is	a	bit	long,	but	worth	studying	as	it	shows	both	how	to	use	H2O’s	built-in
functions,	such	as	h2o.auc(),	as	well	as	how	to	hack	out	the	information	you	want	when	there
is	no	built-in	function:	I	used	str(m)	to	poke	around	in	the	objects,	to	find	the	variable	names	I
needed.

The	information	it	needs	for	the	train	and	valid	data	is	found	inside	of	H2O’s	model	object;
whereas	it	has	to	call	h2o.performance()	to	get	the	same	numbers	on	the	test	data.	The	default
for	labels	uses	the	model	IDs.	You	will	see	how	to	use	this	function	later	in	this	chapter.	There
is	a	similar	function	in	Python	in	the	online	code.

Example	5-1.	Comparing	metrics	for	multiple	models	(in	R)
compareModels	<-	function(models,	test,	labels	=	NULL){
#Use	model	IDs	as	default	labels,	if	not	given
if(is.null(labels)){
		labels	<-	lapply(models,	function(m)	m@model_id)
		}

res	<-	sapply(models,	function	(m){
		mcmsT	<-	m@model$training_metrics@metrics$max_criteria_and_metric_scores
		mcmsV	<-	m@model$validation_metrics@metrics$max_criteria_and_metric_scores
		maix	<-	which(mcmsT$metric=="max	accuracy")		#4	(at	the	time	of	writing)
		th	<-	mean(mcmsT[maix,	'threshold'],		mcmsV[maix,	'threshold']	)

		pf	<-	h2o.performance(m,	test)
		tms	<-	pf@metrics$thresholds_and_metric_scores
		ix	<-	apply(outer(th,	tms$threshold,	"<="),	1,	sum)
		if(ix	<	1)ix	<-	1		#Use	first	entry	if	less	than	all	of	them

		matrix(c(
				h2o.auc(m,	TRUE,	TRUE),	pf@metrics$AUC,
				mcmsT[maix,	'value'],	mcmsV[maix,	'value'],	tms[ix,	'accuracy'],
				h2o.logloss(m,	TRUE,	TRUE),	pf@metrics$logloss,
				h2o.mse(m,	TRUE,	TRUE),	pf@metrics$MSE



				),	ncol	=	4)
		},	simplify	=	"array")

dimnames(res)	<-	list(
		c("train","valid","test"),
		c("AUC","Accuracy","logloss",	"MSE"),
		labels
		)

res
}

NOTE
Close	study	of	that	code	will	show	it	gets	its	threshold	for	test	accuracy	by	averaging	the	values	for	train	and
valid	results,	but	that	the	train	and	valid	results	instead	use	maximum	accuracy.	This	means	the	accuracy	numbers
for	test	and	valid	will	be	slightly	overstated,	compared	to	those	for	test.	See	Figure	4-2	in	Chapter	4	to	get	a	feel
for	the	difference.

I	will	train	two	models,	the	first	with	all	fields	(x),	the	second	excluding	the	odds	data
(xNoOdds).	See	Examples	5-2	and	5-3.

Example	5-2.	Two	default	random	forest	models,	in	R
m1	<-	h2o.randomForest(x,	y,	train,
		model_id	=	"RF_defaults_Odds",
		validation_frame	=	valid)

m2	<-	h2o.randomForest(xNoOdds,	y,	train,
		model_id	=	"RF_defaults_NoOdds",
		validation_frame	=	valid)

Example	5-3.	Two	default	random	forest	models	(Python)
m1	=	h2o.estimators.H2ORandomForestEstimator(model_id="RF_defaults_Odds")
m1.train(x,	y,	train,	validation_frame=valid)

m2	=	h2o.estimators.H2ORandomForestEstimator(model_id="RF_defaults_NoOdds")
m2.train(xNoOdds,	y,	train,	validation_frame=valid)

It	finished	relatively	quickly:	about	one-tenth	of	the	time	it	took	random	forest	to	train	on	the
MNIST	data.	Here	is	how	compareModels()	can	be	used	to	compare	the	AUC	and	accuracy
scores	of	each	of	m1	and	m2	on	each	of	the	three	data	sets:

res	<-	compareModels(c(m1,	m2),	test)
round(res[,"AUC",],	3)
round(res[,"Accuracy",],	3)

The	results	show	AUC	first,	then	accuracy	underneath:	they	are	easy	to	confuse	on	this
particular	data	set,	as	the	numbers	are	close:



						HomeWin	HW-NoOdds
train			0.552					0.556
valid			0.637					0.601
test				0.604					0.581

						HomeWin	HW-NoOdds
train			0.556					0.561
valid			0.634					0.609
test				0.609					0.599

Our	benchmark	numbers	(the	linear	model,	using	just	the	average	bookmaker	odds)	were	an
AUC	of	0.650	and	an	accuracy	of	0.634	on	predicting	home	wins,	and	we	are	well	below	that
here.	A	comparison	of	how	all	models	did	is	in	the	final	chapter;	see	“Football	Data”.

Incidentally,	at	the	top	of	the	summary,	it	says	it	made	50	trees,	with	a	max_depth	of	20,	but	it
also	says	the	min_depth	is	20.	Perhaps	we	should	try	allowing	deeper	trees	when	we	try
tuning?



Football:	Tuned	Random	Forest
Out	of	the	box,	random	forest	did	not	do	too	great	at	predicting	football	scores.	For	this
section	I	will	focus	on	the	easiest	problem	(predicting	a	home	win,	when	including	the	expert
opinion	fields	as	input	fields),	and	then	hope	whatever	we	learned	from	that	will	apply	to	the
other	model.

As	with	the	other	data	sets,	the	first	thing	we	will	do	is	use	early	stopping.	The	following
parameters	say	that	if	there	are	four	scoring	rounds	with	zero	improvement	on	the	AUC
metric,	then	stop:

stopping_metric	=	"AUC",	stopping_tolerance	=	0,	stopping_rounds	=	4

That	gives	us	the	freedom	to	request	lots	of	trees,	and	means	one	less	parameter	to	tune:

ntrees	=	500

The	hyper-parameters	to	try	are:

max_depth:	I	will	try	20,	40,	and	60.

mtries:	There	are	58	columns,	so	the	default	(the	square	root,	rounded	down)	is	7	columns.
I	will	try	5,	7,	and	10.

col_sample_rate_per_tree:	0.9	or	1.0.

sample_rate:	0.5,	0.75,	and	0.95.

min_rows:	1,	2,	and	5.

In	search_criteria	I	set	strategy	=	"RandomDiscrete",	and	then	set	max_models	to	be	54,	which
is	one-third	of	the	combinations,	though	I	interrupted	it	after	38	models.

By	default	g1	is	giving	me	logloss,	but	I	want	to	see	AUC,	so	I	will	use	this	code:

g1_auc	<-	h2o.getGrid(g1@grid_id,	sort_by="auc",	decreasing	=	TRUE)
range(g1_auc@summary_table$auc)

The	AUC	for	the	38	models	is	quite	narrow:	from	0.644	to	0.668.	However,	our	default	model
only	managed	0.637.	When	all	models	in	the	first	grid	(which	tends	to	involve	quite	a	bit	of
guesswork)	are	better,	I	get	suspicious.	The	explanation,	in	this	case,	is	that	we	moved	from
the	default	50	trees	to	a	generous	500	trees.	Even	though	early	stopping	means	all	500	are
never	used,	it	does	now	get	enough	trees.

I	won’t	show	the	full	grid	results,	and	instead	will	pick	out	the	highlights:

The	best	models	use	min_rows	=	5;	in	contrast	the	min_rows	=	1	entries	are	mostly	at	the



very	bottom.

sample_rate	=	0.5	is	always	in	the	top	half.	0.75	is	also	good,	but	0.95	has	consistently	done
badly.

There	is	no	obvious	pattern	for	any	of	max_depth	(hinting	that	max_depth	=	20	is
sufficient),	mtries,	or	col_sample_rate_per_tree.

Because	our	experimental	high	value	for	min_rows	did	best,	my	next	grid	will	try	even
higher	values	(10	and	15).	Similarly,	a	sample_rate	below	0.5	will	be	tried	and	the	0.95	value
dropped	(0.45,	0.55,	0.65,	0.75).	It	took	just	over	20	minutes	to	make	24	models.

I’ll	save	you	those	results,	too,	because	I	found	that	four	of	the	best	five	models	used
sample_rate	=	0.45	and	four	of	the	best	five	models	used	min_rows	=	15.	So	I	made	another
grid,	adding	two	lower	sample_rate	values	(0.25,	0.35),	and	two	higher	min_rows	values	(20,
25).	Again,	the	highest	values	of	min_rows	have	come	out	on	top,	so	repeat	again!	And	again
30,	35,	and	40	came	out	on	top,	so	I	repeated	again.	With	each	new	grid	I	also	removed	some
of	the	under-performing	values,	to	keep	the	combinatorial	explosion	under	control.

Even	though	the	best	three	models	come	from	the	highest	values	of	min_rows	that	I	tried	(50
and	60),	so	I	could	keep	trying	higher	values,	I	decided	to	stop	at	this	point	because	the	AUC
of	the	top	8	models	are	all	within	0.001,	and	I’m	getting	diminishing	returns:

				sample_rate	min_rows	mtries								auc
110								0.25							50						7		0.6777874
111								0.35							60						5		0.6776425
112								0.55							60						5		0.6776103
70									0.35							35						5		0.6774847
114								0.35							40						5		0.6774416
71									0.35							30						5		0.6771522
116								0.45							60						5		0.6771512
72									0.35							40						5		0.6768411

What	about	accuracy?	Let’s	try	that	compareModels()	function;	here	is	how	to	use	it	to
compare	just	the	top	models	from	a	grid:

d	<-	as.data.frame(g@summary_table)
topModels	<-	lapply(head(d$model_ids),	h2o.getModel)
res	<-	compareModels(topModels,	test)
round(res[,"AUC",],	3)
round(res[,"Accuracy",],	3)

For	the	best	three	models,	that	code	gave	these	results,	AUC,	then	accuracy	(I’ve	edited	the
output	to	show	the	hyper-parameters	for	each	model):

				sample_rate:		0.25								0.25							0.35
							min_rows:				50										40									60
									mtries:					5											7										5



train												0.612							0.613						0.612
valid												0.678							0.678						0.678
test													0.646							0.646						0.646

train												0.591							0.591						0.591
valid												0.650							0.649						0.651
test													0.634							0.633						0.635

By	the	rules,	we	would	choose	the	third	model	as	it	gave	the	best	result	on	the	validation	data;
luckily	that	also	gave	the	best	result	on	the	test	data.	The	AUC	of	0.646	is	worse	than	the
benchmark	linear	model	(0.650),	but	the	accuracy	of	0.635	just	beats	the	benchmark	of	0.634.
Not	enough	to	justify	the	extra	effort	and	complexity	of	a	random	forest,	but	at	least	it	shows
it	is	competitive.	And	we	have	significantly	improved	on	the	default	random	forest	model
results	(AUC	was	0.604,	accuracy	was	0.609).

A	reminder	that	“Football	Data”,	in	the	final	chapter,	will	compare	the	results	of	all	models.



Summary
Random	forests	models	are	generally	quick	to	build,	and	give	effective	results	on	most
problems.	There	are	not	too	many	tuning	knobs	and,	looking	back	over	this	chapter,	the	most
effective	technique	was	to	increase	ntrees,	in	combination	with	early	stopping.	Increasing
max_depth	was	also	effective.

Random	forest	is	not	the	only	way	that	the	basic	decision	tree	idea	has	been	improved,	though,
and	the	next	chapter	will	look	at	an	alternative	approach.

	I	used	a	seed	of	999,	both	here	and	for	the	data	split.	But	you	can	still	see	different	results	if
you	are	using	a	different	version	of	H2O.

	See	code/makeplot.building_energy_results.R,	in	the	online	code	repository,	for	the	code
used	to	make	this	chart.

	To	stop	this	chart	from	being	hopelessly	crowded,	only	the	first	75	test	samples	are	plotted.

	Probably	because	I	set	a	random	seed:	normally	you’d	expect	a	bit	more	variation	even
when	a	change	of	parameter	has	no	effect	at	all.

	I	also	tried	MAE,	which	gives	a	more	distinct	gap	between	the	boxes.

	Arbitrarily	using	the	first	of	our	six	models.

	Yes,	actually,	it	was.	If	I	try	with	the	second	best	model	from	the	grid,	I	get	an	error	rate	of
288,	and	would	have	concluded	enhanced	data	was	worth	an	improvement	of	17!	The	error
rate,	on	test,	for	the	other	six	models	was	310,	292,	312,	308,	320,	313,	respectively;	so	a
different	random	seed	can	cause	a	range	of	at	least	18.
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Chapter	6.	Gradient	Boosting	Machines

A	gradient	boosting	machine	(GBM,	from	now	on)	is	another	decision	tree	algorithm,	just
like	random	forest	(Chapter	5).	If	you	skipped	that	chapter,	and	also	don’t	know	what	decision
trees	are,	I	suggest	you	go	back	and	at	least	read	some	of	it;	this	next	section	is	going	to	talk
more	about	how	GBMs	are	different,	and	the	pros	and	cons	of	their	difference.	Then,	as	in
other	chapters,	we’ll	see	how	the	H2O	implementation	of	GBM	performs	out-of-the-box	on
our	data	sets,	and	then	how	we	can	tune	it.



Boosting
Just	like	random	forest,	GBM	is	an	ensemble	method:	we’re	going	to	be	making	more	than
one	tree,	then	combining	their	outputs.	Boosting	is	the	central	idea	here.	What	is	getting	the
“boost”	is	the	importance	of	the	harder-to-learn	training	data.	Imagine	a	data	set	with	just	10
rows	(10	examples	to	learn	from)	and	two	numeric	predictor	columns	(x1,	x2),	and	we	are
trying	to	learn	to	distinguish	between	two	possible	values:	circle	or	cross.

The	very	simplest	decision	tree	we	can	make	has	just	one	node;	I	will	represent	it	with	a
straight	line	in	the	following	diagrams,	which	divides	our	training	data	into	two.	Unless	we
get	lucky,	chances	are	it	has	made	some	mistakes.	Figure	6-1	shows	the	line	it	chose	on	its
first	try.

The	truth	table	from	our	first	decision	tree	looks	like:

											Correct
							Circle		Cross
	Circle			3						1
	Cross				3						3

Figure	6-1.	First	try	to	partition	the	data

It	scored	60%:	six	right,	four	wrong.	It	called	one	cross	a	circle,	and	there	were	three	circles
it	thought	were	crosses.	What	we	do	now	is	train	another	very	simple	tree,	but	first	we	modify
the	training	data	to	give	the	four	rows	it	got	wrong	a	higher	weight.	How	much	of	a	higher
weight?	That	is	where	the	“gradient”	bit	of	GBM	comes	in	(but	we	don’t	need	to	understand	it
to	use	and	tune	GBMs).



In	Figure	6-2	I’ve	made	the	circles	and	crosses	for	the	wrong	items	bigger,	and	our	next	tree
pays	more	attention	to	them.

It	helped,	as	it	got	three	of	those	four	right…	But	it	got	a	different	three	items	wrong,	so	it
still	scores	60%.	So,	for	our	third	tree,	we	tell	it	those	four	are	more	important;	the	one	it	has
got	wrong	twice	in	a	row	is	the	biggest	of	all.	Figure	6-3	shows	its	third	attempt.

If	we	stop	training	here,	we	end	up	with	three	weak	models	that	scored	60%,	60%,	and	80%,
respectively.	However,	at	least	one	of	each	of	those	three	trees	got	every	training	row	correct.
You	can	see	how	they	can	work	together	to	cover	each	other ’s	weaknesses,	but	hopefully	you
also	got	a	glimpse	of	how	easy	it	would	be	to	overfit	the	data.

Figure	6-2.	Second	try	to	partition	the	data



Figure	6-3.	Final	try	to	partition	the	data



The	Good,	the	Bad,	and…	the	Mysterious
GBM	naturally	focuses	attention	on	the	difficult	rows	in	your	training	data,	the	ones	that	are
hard	to	learn.	That	is	good,	but	it	can	also	be	bad.	If	there	is	one	outlier	that	each	tree	keeps
getting	wrong	it	is	going	to	get	boosted	and	boosted	until	it	is	bigger	than	the	whole	universe.
If	that	outlier	is	real	data	(an	unusual	event,	a	black	swan),	then	this	is	good,	as	it	will	know
what	to	do	when	it	sees	one	again.	If	it	was	bogus	(a	measuring	error,	a	typo)	it	is	going	to
distort	your	accuracy.

The	H2O	implementation	of	GBM	works	well	across	a	cluster	if	your	data	is	large.	However,
in	my	tests,	there	was	not	much	speed-up	from	using	a	cluster	on	smaller	data	sets.

The	mysterious?	Well,	unlike	(simple)	decision	trees,	which	can	be	really	good	at	explaining
their	thinking,	it	becomes	a	bit	of	a	black	box.	You	have	all	these	dumb	little	trees,	yet	quality
answers	kind	of	emerge	out	of	them.



Parameters
If	you	read	Chapter	5,	you	will	have	seen	most	of	these,	but	the	relevant	ones	will	be	shown
again	here.	learn_rate,	learn_rate_annealing,	and	max_abs_leafnode_pred	are	GBM-specific.
What	random	forest	calls	mtries,	GBM	calls	col_sample_rate;	see	“Sampling,	Generalizing”
in	Chapter	4—in	fact,	see	the	whole	of	that	chapter	for	the	other	parameters	you	can	use	to
control	GBM.

For	Python	users,	all	of	the	following	parameters	are	given	to	the	model’s	constructor,	not	to
the	train()	function.

Just	as	with	random	forest,	the	two	most	important	parameters	are:

ntrees

How	many	trees	to	make.

max_depth

How	deep	each	tree	is	allowed	to	grow.	In	other	words,	how	complex	each	tree	is	allowed
to	be.

GBM	trees	are	usually	shallower	than	random	forest	ones,	and	that	is	reflected	in	the	lower
default	of	5	for	max_depth.	ntrees	defaults	to	50	(same	as	random	forest).

These	two	control	the	learning	rate:

learn_rate

Learning	rate	(from	0.0	to	1.0).	The	default	is	0.1.	Lower	takes	longer	and	requires	a
higher	ntrees,	both	of	which	will	increase	training	time	(and	query	time),	but	give	a	better
model.

learn_rate_annealing

Scale	the	learning	rate	by	this	factor	after	each	tree	(e.g.,	0.99	or	0.999).	This	defaults	to
1.0,	but	allows	you	to	have	the	learn_rate	start	high,	then	gradually	get	lower	as	trees	are
added.

The	next	two	parameters	control	if	splitting	is	done:

min_rows

How	many	training	data	rows	are	needed	to	make	a	leaf	node.	The	default	is	10;	if	you	set
it	lower	you	may	have	more	of	a	problem	with	overfitting.

min_split_improvement

This	controls	how	much	reduction	in	the	inaccuracy,	in	the	error,	there	has	to	be	for	a	split
to	be	worthwhile.	The	default	is	zero,	meaning	it	is	not	used.



The	next	set	of	parameters	control	how	the	splitting	is	done:

histogram_type

What	type	of	histogram	to	use	for	finding	optimal	split	points.	Can	be	one	of	“AUTO,”
“UniformAdaptive,”	“Random,”	“QuantilesGlobal,”	or	“RoundRobin.”	Can	usually	be	left
as	AUTO,	but	worth	trying	in	a	grid	if	you	are	hunting	for	ideas.

nbins

For	numerical	columns,	build	a	histogram	of	(at	least)	this	many	bins,	then	split	at	the	best
point.	The	default	value	is	20.	Consider	a	lower	value	if	cluster	scaling	is	poor.

nbins_top_level

For	numerical	columns,	build	a	histogram	of	(at	most)	this	many	bins	at	the	root	level,
then	decrease	by	factor	of	two	per	level.	It	defaults	to	1024.

nbins_cats

For	categorical	columns,	build	a	histogram	of	(at	most)	this	many	bins,	then	split	at	the
best	point.	Higher	values	can	lead	to	more	overfitting,	and	also	worse	performance	on	a
cluster.	Like	nbins_top_level,	the	default	is	1024.

Finally,	there	is	this	one	for	when	you	are	running	on	a	cluster,	but	find	it	scaling	poorly:

build_tree_one_node

Run	on	one	node	only.	You	will	only	be	using	the	CPUs	on	that	node;	the	rest	of	the	cluster
will	be	unused.

Regarding	scaling,	the	communication	overhead	grows	with	the	number	of	calculations	to
find	the	best	column	to	split,	and	where	to	split	it.	So	more	columns	in	your	data,	higher	value
for	nbins	and	nbins_cats,	and	a	higher	value	for	max_depth	will	all	make	it	scale	less	well.



Building	Energy	Efficiency:	Default	GBM
This	data	set	deals	with	the	heating/cooling	costs	of	various	house	designs	(see	“Data	Set:
Building	Energy	Efficiency”),	and	it	is	a	regression	problem.	If	you	are	following	along,	run
either	Example	3-1	or	Example	3-2	(from	Chapter	3),	which	sets	up	H2O,	loads	the	data,	and
has	defined	train,	test,	x,	and	y.	We	are	using	10-fold	cross-validation,	instead	of	a	validation
set.	(See	“Cross-Validation	(aka	k-folds)”	for	a	reminder	about	cross-validation.)

m	<-	h2o.gbm(x,	y,	train,	nfolds	=	10,	model_id	=	"GBM_defaults")

In	Python	use:

from	h2o.estimators.gbm	import	H2OGradientBoostingEstimator
m	=	H2OGradientBoostingEstimator(model_id="GBM_defaults",	nfolds=10)
m.train(x,	y,	train)

Try	m	(in	R	or	Python),	and	see	how	it	did.	Fifty	trees	were	made,	each	of	depth	5.	On	cross-
validation	data,	the	MSE	(mean	squared	error)	is	2.462,	and	R²	is	0.962.	(You	may	see
different	results	due	to	random	variation.)

In	the	“Cross-Validation	Metrics	Summary”	(seen	when	printing	m)	note	that	the	standard
deviation	on	the	"mse"	row	is	a	high	0.688,	and	the	mse	on	our	10	folds	ranges	from	1.471	to
4.369.	(You	will	see	slightly	different	numbers,	as	the	10	folds	are	selected	randomly.)

Under	“Variable	Importances”	(shown	next),	which	can	be	seen	with	h2o.varimp(m)	in	R,	or
m.varimp(True)	in	Python,	you	will	see	it	is	giving	X5	way	more	importance	than	any	of	the
others;	this	is	typical	for	GBM	models:

variable				relative_importance				scaled_importance				percentage
----------		---------------------		-------------------		------------
X5										236888																	1																				0.796119
X1										19310.6																0.0815178												0.0648979
X3										18540.1																0.0782653												0.0623086
X7										13867.3																0.0585397												0.0466046
X4										4211.8																	0.0177797												0.0141548
X8										3442.27																0.0145313												0.0115686
X6										1293.23																0.00545927											0.00434623
X2										0																						0																				0

When	we	looked	at	this	data	set	back	in	“Let’s	Take	a	Look!”,	and	especially	the	correlations,
X5	was	the	most	highly	correlated	with	Y2,	our	response	column.	Notice	how	X1	is	second
most	important,	but	X2	was	not	used	at	all—this	is	good,	because	those	two	columns	were
perfectly	(negatively)	correlated.

How	about	on	the	unseen	data?	h2o.performance(m,	test)	(m.model_performance(test)	in
Python)	is	saying	MSE	is	2.318,	better	than	on	the	training	data.	By	taking	the	square	root	of



2.318	(or	looking	at	RMSE)	we	get	1.522kWh/(m²yr),	which	is	in	the	same	units	as	Y2.	To
give	that	some	context,	the	range	of	Y2	is	from	10.90	to	48.03kWh/(m²yr).

As	in	the	other	chapters,	let’s	plot	its	actual	predictions	on	a	chart	(see	Figure	6-4).	The	black
dots	are	the	correct	answers,	the	small	squares	are	guesses	that	were	quite	close,	while	the	up
arrows	are	where	it	was	more	than	8%	too	high,	and	the	down	arrows	are	where	it	was	more
than	8%	too	low.	Out	of	143	test	samples,	there	are	7	up	arrows	and	7	down	arrows.	(Only	the
first	75	samples	are	shown	on	the	plot.)

Figure	6-4.	Default	performance	of	GBM	on	test	data



Building	Energy	Efficiency:	Tuned	GBM
I	decided	to	start,	this	time,	with	a	big	random	grid	search.	If	you	skipped	over	the	description
of	grids	(“Grid	Search”	in	Chapter	5)	the	idea	is	to	try	making	lots	of	models	with	different
sets	of	parameters,	and	see	which	the	best	performing	models	are,	and	therefore	which
parameters	suit	this	data	set	best.

The	first	50	models	that	the	grid	spits	out	(which	were	made	rapidly:	about	10	seconds	per
model)	have	MSEs	that	range	from	1.02	to	4.02.	Putting	that	in	context,	the	default	model	had
an	MSE	of	2.46.	Some	much	better,	some	much	worse.	Let’s	look	at	each	parameter	that	was
tried,	and	how	it	did	in	that	small	50-model	sample:

max_depth

The	default	is	5,	and	I	tried	11	different	values	(5,10,15,20,25,30,40,50,60,75,90).	But,	four
of	the	top	six	models	were	max_depth=5!	(The	other	two	in	the	top	6	were	20	and	10.)	Just
to	muddy	the	waters	a	bit,	the	ninth	best	model	was	max_depth=75,	so	high	values	may	not
be	bad,	as	such,	but	they	don’t	appear	to	help.

min_rows

The	default	is	10,	but	because	we	don’t	have	that	much	data,	and	because	there	is	no
duplication	or	noise	in	it,	I	guessed	lower	values	might	be	useful,	so	tried	1,	2,	5,	and	10.	I
guessed	wrong.	All	but	one	of	the	top	28	are	either	5	or	10,	while	the	bottom	22	models
are	all	1	or	2.	It	is	very	clear-cut,	except	for	one	small	detail…	the	best	model,	the
Numero	Uno,	the	Mr.	Big	of	our	candidate	models,	uses	min_rows=1.	And	this	is	where
we	have	to	watch	out	for	random	grid	search	being	random:	this	was	the	only	time	it
combined	min_rows	of	1	with	max_depth	of	5;	almost	all	those	poorly	performing
min_rows	=	1	and	min_rows	=	2	models	have	high	values	for	max_depth.

sample_rate

I	tried	0.67,	0.8,	0.9,	0.95,	and	(the	default	of)	1.0,	expecting	high	numbers	to	perform
better.	There	is	no	strong	pattern,	but	the	top	7	all	use	one	of	0.9,	0.95,	and	1.0,	so	I	feel	I
could	narrow	it	to	just	those.

col_sample_rate

I	tried	0.7,	0.9,	and	1.0,	which	(because	there	are	only	eight	predictor	columns)	should
correspond	to	6,	7,	and	8	columns.	I	see	all	three	values	evenly	scattered	in	the	results,	so
it	appears	the	model	is	not	sensitive	to	this.

nbins

The	final	hyper-parameter	tried	was	how	many	groups	to	divide	the	values	in	a	column
into.	The	default	is	20,	and	I	decided	to	try	8,	12,	16,	24,	and	32.	All	values	are	represented
in	the	top	quarter	of	the	models,	so	no	conclusion	can	be	drawn	yet.



What	about	ntrees?	Isn’t	that	the	first	parameter	you	want	to	be	tuning?	Instead	of	trying	to
tune	it,	I	set	it	high	(1000)	and	used	early	stopping,	with	the	following	settings:	if	there	is	no
improvement	over	20	trees	(which	will	represent	4	scoring	rounds),	then	stop:

ntrees	=	1000,
stopping_tolerance	=	0,
stopping_rounds	=	4,
score_tree_interval	=	5,

Given	that	the	models	were	being	built	so	quickly	I	decided	to	narrow	the	parameters	slightly
(dropped	40	and	higher	for	max_depth	and	dropped	sample_rate	of	0.67)	and	build	another
150	models,	then	merge	the	results.	(A	different	random	seed	was	also	used.)

…time	passes	(over	40	minutes,	in	fact)…

More	model	results	just	confirmed	the	first	impression:	min_rows	of	1	(or	2)	is	effective	with
max_depth	of	5,	but	really	poor	with	higher	values.	min_rows	of	10	is	effective	with	any
value	of	max_depth,	but	possibly	10	to	20	is	best.	Curiously	min_rows	of	5	is	mediocre.	A
sample_rate	of	0.9	or	0.95	looks	best,	while	there	is	still	no	clarity	for	col_sample_rate	or
nbins.

So,	the	remaining	grids	will	be	done	in	two.	Think	boxing	match:	in	the	blue	corner,	weighing
in	with	max_depth	of	only	5,	we	have	min_rows	=	1.	(The	crowd	goes	wild.)	He	will	be
experimenting	with	sample	rates	of	0.9	and	0.95,	and	three	col_sample_rate	values.	Over	in
the	red	corner,	competing	at	a	variable	max_depth	weight	of	anywhere	between	10	and	20,	and
threatening	to	go	higher	if	the	mood	takes	him,	we	have	min_rows	=	10!	(Mix	of	boos	and
cheers	from	the	crowd.)	He	says	he	will	be	sticking	to	using	all	his	columns,	but	will	also	be
experimenting	with	the	same	sample_rate	choices.	Both	competitors	will	be	switching	to	10-
fold	cross-validation,	and	a	much	lower	learn_rate,	for	this	bout	and	all	tests	will	done	using
three	random	seeds	(to	make	it	a	fair	contest).	The	two	grids	use	the	same	grid_id,	so	all	the
models	can	be	compared	in	a	single	table	at	the	end.

Fight!

And	we	have	a	clear	winner!	But	the	value	for	seed	was	the	biggest	factor,	so	before	I	show
the	results	I	want	to	look	at	how	the	model	performance	across	the	10	folds	varies.	(It	is	a
good	exercise	in	extracting	values	from	the	individual	models	when	using	cross-validation.)

Deep	in	the	model	information	we	have	cross_validation_metrics_summary,	which	has	12
columns	(one	for	each	of	the	10	folds,	then	two	more	columns	for	the	mean	and	standard
deviation	of	the	10	folds,	respectively)	and	three	rows	(MSE	and	R²,	and	then	MSE	again
under	the	alias	of	deviance).	Assuming	g	is	the	variable	representing	the	grid	of	interest,	then
the	following	three	lines	of	code	will	append	mean	and	s.d.	columns	to	the	grid	summary:

models	<-	lapply(g@model_ids,	h2o.getModel)
mse_sd	<-	t(	as.numeric(	sapply(models,	function(m){

1



		m@model$cross_validation_metrics_summary["mse",c("mean","sd")]
		}	)	)	)
cbind(	as.data.frame(g@summary_table),	mse_sd)

That	code	first	extracts	the	“mean”	and	“s.d.”	columns	into	mse_sd.	The	call	to	as.numeric()	is
because	all	the	data	in	the	H2O	object	is	in	character	format.	The	t()	call	is	a	matrix	transpose;
this	allows	appending	the	columns	to	the	grid’s	existing	summary.

Here	are	the	results:	a	clear	win	for	the	blue	corner!

			sample_rate	seed	min_rows	max_depth	co...rate	deviance			mean						sd
1										0.9		373								1									5							0.9	1.15003	1.15368	0.22753
2										0.9		373								1									5									1	1.15067	1.15349	0.23298
3										0.9		101								1									5							0.9	1.15626	1.15657	0.28437
4										0.9		101								1									5									1	1.16233	1.16137	0.26933
5									0.95		101								1									5									1	1.19692	1.19775	0.26828
6										0.9		373								1									5							0.7	1.22472	1.23143	0.26176
7										0.9		101								1									5							0.7	1.22559	1.22727	0.28405
8									0.95		373								1									5							0.9	1.22681	1.23102	0.27219
9									0.95		373								1									5									1	1.23035	1.23382	0.25511
10								0.95		101								1									5							0.9	1.25170	1.25348	0.28567
11								0.95		101								1									5							0.7	1.27758	1.28178	0.29919
12								0.95		373								1									5							0.7	1.30143	1.30826	0.29126
13									0.9		373							10								10									1	1.31844	1.33174	0.32268
14									0.9		373							10								20									1	1.31936	1.33165	0.31374
15									0.9		101							10								10									1	1.35430	1.34822	0.29901
16								0.95		373							10								20									1	1.35664	1.36992	0.34305
17								0.95		101							10								20									1	1.37336	1.36631	0.30533
18								0.95		101							10								10									1	1.37717	1.37018	0.30708
19								0.95		373							10								10									1	1.38266	1.39670	0.34485
20									0.9		101							10								20									1	1.38350	1.37478	0.33678
21									0.9		999								1									5									1	1.44974	1.37334	0.58270
22									0.9		999								1									5							0.9	1.48146	1.40514	0.58647
23								0.95		999								1									5									1	1.48949	1.41238	0.61211
24								0.95		999								1									5							0.9	1.50276	1.43098	0.58378
25									0.9		999							10								10									1	1.50816	1.45265	0.48877
26									0.9		999							10								20									1	1.54106	1.48196	0.51210
27									0.9		999								1									5							0.7	1.60933	1.53082	0.62574
28								0.95		999							10								20									1	1.62599	1.58178	0.47222
29								0.95		999							10								10									1	1.62983	1.58302	0.48109
30								0.95		999								1									5							0.7	1.65019	1.57151	0.64591

sample_rate	of	0.9	consistently	beat	0.95.	A	col_sample_rate	of	0.7	was	consistently	worse;
but	it	was	hard	to	separate	col_sample_rate	of	0.9	versus	1.0.

Looking	at	the	rightmost	column,	the	lower	the	s.d.	the	better	it	did.	However,	seed=999	is	a
little	different,	with	the	lower	standard	deviations	coming	from	the	min_rows=10	models.

I’d	be	tempted	at	this	point	to	grab	half	a	dozen	of	these	models	and	use	them	in	an	ensemble,
to	get	even	lower	standard	deviation.	But	let’s	stick	with	the	game	plan	of	choosing	one	single
model,	and	go	with	the	top-performing	model	from	this	grid	(h20	<-
h2o.getModel(g@model_ids[[1]])),	and	see	how	it	does	on	the	test	data:	h2o.performance(m,



test).	1.640	for	me.	This	is	way	better	than	the	default	GBM’s	2.462,	and	also	way	better	than
the	best	tuned	random	forest	model	from	the	previous	chapter.

Plotting	the	results	(Figure	6-5),	there	are	just	two	up	triangles,	and	four	down	triangles
(indicating	when	its	guess	was	over	8%	from	the	correct	answer).

Figure	6-5.	Tuned	performance	of	GBM	on	test	data

The	results	of	all	models	on	this	data	set	will	be	compared	in	“Building	Energy	Results”	in
the	final	chapter.



MNIST:	Default	GBM
See	“Data	Set:	Handwritten	Digits”	if	you	need	a	refresher	on	this	pattern	recognition
problem.	It	is	a	multinomial	classification,	trying	to	look	at	the	784	pixels	of	a	handwritten
digit,	and	say	which	of	0	to	9	it	is.

If	you	are	following	along,	run	either	Example	3-3	then	Example	6-1,	or	Example	3-4	then
Example	6-2.	The	first	one,	from	the	earlier	chapter,	sets	up	H2O,	loads	the	data,	and	has
defined	train,	valid,	test,	x,	and	y.	We	have	a	validation	data	set,	so	qw	won’t	be	using	cross-
validation.

Example	6-1.	Default	GBM	model	for	MNIST	data	(in	R)
m	<-	h2o.gbm(x,	y,	train,	model_id	=	"GBM_defaults",
		validation_frame	=	valid)

Example	6-2.	Default	GBM	model	for	MNIST	data	(Python)
m	=	h2o.estimators.H2OGradientBoostingEstimator(model_id="GBM_defaults")
m.train(x,	y,	train,	validation_frame=valid)

This	took	almost	five	minutes	to	run	on	my	machine,	and	kept	the	cores	fairly	busy.	The
confusion	matrix	on	the	training	data	(h2o.confusionMatrix(m))	shows	an	error	rate	of
2.08%,	while	on	the	validation	data	(h2o.confusionMatrix(m,	valid	=	TRUE))	it	is	a	bit	higher
at	4.82%.	MSE	is	0.028	and	0.044,	respectively.	So	we	have	a	bit	of	overfitting	on	the	training
data,	but	not	too	much.	h2o.performance(m,	test)	tries	our	model	on	the	10,000	test	samples.
The	error	this	time	is	4.44%	(MSE	is	0.048);	in	other	words,	the	validation	and	test	sets	are
giving	us	similar	numbers,	which	is	good.

The	following	code	can	be	used	to	compare	hit	ratios	on	training,	validation,	and	test	data
sets,	in	table	format:

pf	<-	h2o.performance(m,	test)
cbind(
		h2o.hit_ratio_table(m),
		h2o.hit_ratio_table(m,valid=T),
		pf@metrics$hit_ratio_table
		)

Notice	that	GBM,	with	default	parameters,	needs	9	or	10	guesses	to	get	them	all	correct:

							TRAIN									VALID										TEST
	k	hit_ratio		k		hit_ratio		k		hit_ratio
	1			0.97922		1				0.95180		1				0.95560
	2			0.99540		2				0.98400		2				0.98450
	3			0.99828		3				0.99240		3				0.99200
	4			0.99924		4				0.99580		4				0.99650
	5			0.99972		5				0.99780		5				0.99850
	6			0.99996		6				0.99870		6				0.99910
	7			0.99998		7				0.99910		7				0.99950
	8			0.99998		8				0.99970		8				0.99970



	9			1.00000		9				1.00000		9				0.99980
10			1.00000	10				1.00000	10				1.00000

NOTE
To	give	you	an	idea	of	random	variability,	a	second	run	of	the	preceding	code	gave	an	error	rate	on	train	of
1.83%,	valid	of	4.73%,	and	test	of	4.28%	(i.e.,	all	slightly	better).	MSEs	were	0.0253,	0.0489,	and	0.0464
(slightly	better).



MNIST:	Tuned	GBM
We	will	switch	to	using	the	enhanced	data	for	all	these	tuning	experiments.	This	change,
sticking	with	default	settings,	improved	the	error	rate	from	4.82%	(on	the	valid	test	set)	to
4.19%.	Not	huge,	but	not	to	be	sneezed	at.

As	usual,	the	first	thing	I	want	to	do	is	switch	to	using	early	stopping,	so	I	can	then	give	it	lots
of	trees	to	work	with.	I	first	tried	this:

stopping_tolerance	=	0.0001,
stopping_rounds	=	3,
score_tree_interval	=	3,
ntrees	=	1000,

It	was	very	slow,	and	also	was	spending	a	lot	of	time	scoring,	so	I	aborted	it	and	switched	to:

stopping_tolerance	=	0.001,
stopping_rounds	=	3,
score_tree_interval	=	10,
ntrees	=	400

These	early	stopping	settings	are	saying	stop	if	there	is	less	than	0.1%	improvement 	after
three	scoring	rounds,	which	represents	30	trees.

Just	using	this,	with	all	other	default	settings,	had	some	interesting	properties:

Training	classification	score	was	perfect	after	140	trees	(3.3	times	the	runtime	of	the
default	settings,	for	2.8	times	the	number	of	trees).

Validation	score	was	down	to	2.83%	at	the	point.

The	MSE	and	logloss	of	both	the	training	data	and	validation	data	continued	to	fall,	and	so
did	the	validation	classification	score.

Relative	runtime	kept	increasing.	That	is,	each	new	tree	is	taking	longer.

It	finished	up	with	360	trees,	with	a	very	respectable	2.17%	error	on	the	validation	data.

Well,	how	can	we	improve	that	further?	Compared	to	the	building	energy	data,	there	is	a	lot
more	training	data,	both	in	terms	of	columns	and	rows,	so	we	expect	that	lower	sample	ratios
will	be	more	effective.	I’m	not	sure	about	a	low	min_rows:	there	are	going	to	be	some	bad
handwriting	examples	that	only	crop	up	a	few	times,	so	we	won’t	want	to	place	an	artificial
limit	on	them.	Because	we	have	so	many	columns,	I	am	going	to	try	increasing	max_depth,	so
it	can	express	some	complex	ideas.

What	about	learn_rate?	Low	is	slower,	but	better…	and	we	have	a	lot	of	data.	So	the	plan	is	to
use	a	high	(quick)	learn_rate	for	the	first	grid	or	two,	then	lower	it	later	on,	once	we	start	to
home	in	on	the	best	parameters.
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This	is	going	to	be	a	random	grid	search,	because	I’m	going	to	throw	loads	of	parameters
into	the	stew	and	see	what	bubbles	to	the	top.	The	full	listing	to	run	the	grid	is	shown	next,	but
I	recommend	you	read	the	text	that	follows,	rather	than	running	it,	as	most	of	my	hunches
were	wrong!

g1	<-	h2o.grid("gbm",	grid_id	="GBM_BigStew",
		search_criteria	=	list(
				strategy	=	"RandomDiscrete",
				max_models	=	50
				),

		hyper_params	=	list(
				max_depth	=	c(5,	20,	50),
				min_rows	=	c(2,	5,	10),
				sample_rate	=	c(0.5,	0.8,	0.95,	1.0),
				col_sample_rate	=	c(0.5,	0.8,	0.95,	1.0),
				col_sample_rate_per_tree	=	c(0.8,	0.99,	1.0),
				learn_rate	=	c(0.1),		#Placemarker
				seed	=	c(701)		#Placemarker
				),

		x	=	x,	y	=	y,	training_frame	=	train,	validation_frame	=	valid,

		stopping_tolerance	=	0.001,
		stopping_rounds=3,
		score_tree_interval	=	10,
		ntrees	=	400
		)

My	first	discovery	was	that	a	high	max_depth	was	not	just	very	slow,	but	no	better	than	a
shallow	one.	And	that	min_rows=1	seemed	poor.	I	killed	the	grid	very	early	on,	and	got	rid	of
max_depth=50	and	min_rows=1.	I	left	the	updated	version	to	run	for	a	while,	and	found	that
max_depth=20	was	distinctly	worse	than	max_depth=5	(the	default!).	I	also	noticed	that
min_rows=10	(again,	the	default!)	seemed	to	be	doing	best,	though	it	was	less	clear.	Reducing
the	three	sample	rates	(from	their	defaults	of	1)	did	seem	to	help,	though	there	was	not
enough	data	to	draw	a	confident	conclusion.

So,	another	try.	I’ll	leave	max_depth	and	min_rows	at	their	defaults,	and	just	concentrate	on
testing	sampling	rates:

g2	<-	h2o.grid("gbm",	grid_id	="GBM_Better",
		search_criteria	=	list(
				strategy	=	"RandomDiscrete",
				max_models	=	9
				),

		hyper_params	=	list(
				max_depth	=	c(5),
				min_rows	=	c(10),
				sample_rate	=	c(0.5,	0.8,	0.95),
				col_sample_rate	=	c(0.5,	0.8,	0.95),



				col_sample_rate_per_tree	=	c(0.8,	0.99),
				learn_rate	=	c(0.1),		#Placemarker
				seed	=	c(701)		#Placemarker
				),

		x	=	x,	y	=	y,	training_frame	=	train,	validation_frame	=	valid,

		stopping_tolerance	=	0.001,
		stopping_rounds	=	3,
		score_tree_interval	=	10,
		ntrees	=	400
		)

TIP
Even	though	they	have	now	been	reduced	to	one	choice,	so	they	could	be	moved	to	normal	model	parameters,
I’ve	left	max_depth	and	min_rows	in	the	hyper_params	section	deliberately.	This	does	no	harm,	and	allows	me	to
change	my	mind	later.

That	took	a	while	to	complete.	Measured	in	number	of	errors	on	the	10,000	validation
samples,	the	models	ranged	from	214	to	239,	and	used	from	350	to	400	trees.	(They	all	scored
perfectly	on	the	training	data.)

There	was	not	that	much	clarity	in	the	parameters,	but	the	best	two	had	col_sample_rate	of	0.8
and	sample_rate	of	0.95.	sample_rate=0.5	was	only	chosen	once,	but	was	the	worst	of	the	nine.
My	default	model	(all	sample	rates	of	1.0),	with	just	early	stopping	added,	would	have	come
second	best	in	the	grid	measured	on	classification	error,	but	fourth	on	MSE,	and	seventh	on
logloss,	whereas	the	“tuned”	model	is	top	on	all	metrics,	so	I	have	more	confidence	in
selecting	it.

As	a	final	step,	I	ran	the	chosen	model	on	the	test	data	and	got	an	error	rate	of	2.33%.	This
compares	to	4.44%	with	the	default	settings.	However,	most	of	that	improvement	came	from
using	early	stopping	and	giving	it	six	times	more	trees.

A	reminder	that	the	results	of	all	four	learning	algorithms	will	be	compared	in	“MNIST
Results”	in	the	final	chapter	of	this	book.



Football:	Default	GBM
Check	out	“Data	Set:	Football	Scores”	if	you	need	a	reminder	of	what	this	one	is	all	about.	It
is	a	time	series,	we	added	some	moving	averages	of	recent	results	and	stats	from	each	team’s
previous	match,	and	we	also	have	a	number	of	fields	of	expert	opinion	(bookmaker	odds).

If	you	are	following	along,	run	either	Example	3-6	or	Example	3-7	from	the	earlier	chapter,
which	sets	up	H2O,	loads	the	data,	and	has	defined	train,	valid,	test,	x,	xNoOdds,	and	y.

Just	as	with	MNIST,	we	have	a	validation	data	set,	so	will	use	that	instead	of	cross-validation.
We	want	to	try	models	using	all	fields	(x),	and	the	harder	challenge	of	not	using	the
bookmaker	odds	(xNoOdds),	to	predict	a	home	win	(a	fairly	balanced	binomial	problem).
Let’s	make	both	models	at	once:

m1	<-	h2o.gbm(x,	"HomeWin",	train,
		model_id	=	"GBM_defaults_HomeWin_Odds",
		validation_frame	=	valid)
m2	<-	h2o.gbm(xNoOdds,	"HomeWin",	train,
		model_id	=	"GBM_defaults_HomeWin_NoOdds",
		validation_frame	=	valid)

It	took	about	10	seconds	for	each	model,	and	during	that	time	my	8	cores	were	evenly	used	at
about	60–70%.	Using	the	compareModels()	function	(see	Example	5-1)	from	Chapter	5,	these
are	the	AUC	scores	on	each	data	set:

						HomeWin	HW-NoOdds
train			0.652					0.633
valid			0.667					0.620
test				0.643					0.613

For	m1,	the	accuracy	was	0.644	on	the	validation	data,	and	0.626	on	the	test	data	(compared	to
0.650	and	0.634	with	the	benchmark	linear	model).	For	m2	it	was	0.607	and	0.602,
respectively.	No	results	to	write	home	about.	Notice	how	the	expert	opinion	is	making	a
difference	(m1	does	better	than	m2),	though	not	that	much.	The	final	chapter	(“Football	Data”)
compares	all	the	algorithms	on	this	data	set.



Football:	Tuned	GBM
As	usual,	we	start	the	tuning	by	giving	it	loads	more	trees,	in	conjunction	with	early	stopping:

stopping_metric	=	"misclassification",
stopping_tolerance	=	0,
stopping_rounds	=	4,
score_tree_interval	=	5,
ntrees	=	500

As	an	experiment,	rather	than	diving	into	making	a	grid	search,	I	went	ahead	and	made	both
models	with	just	that	early-stopping	change.	Hardly	any	more	trees	and	basically	the	same
results;	in	one	case,	it	used	fewer	trees	than	with	the	default	parameters!	(It	seems	sensitive	to
the	random	seed,	so	your	results	might	vary.)

As	a	second	experiment	I	went	back	to	default	settings,	no	default	stopping,	but	with	300	trees
(instead	of	the	default	50).	What	I	get	is	much	better	metrics	on	the	training	set,	but	distinctly
worse	on	the	validation	set,	and	even	worse	on	the	test	set.	Over-fitting.	I’m	big	enough	to
admit	it:	early	stopping	was	right,	I	was	wrong.

So,	let’s	go	back	to	early	stopping	(increasing	score_tree_interval	from	5	to	10),	but	make	a
few	more	changes:

Use	a	much	lower	learn_rate.	0.01	instead	of	the	0.1	default.	This	should	give	better	results,
but	take	longer	to	converge.

Set	balance_classes	to	true.	It	might	help,	and	should	not	do	any	harm.

col_sample_rate	to	0.9,	col_sample_rate_per_tree	to	0.9,	and	sample_rate	to	0.8.	This
should	guard	against	overfitting.

Again,	results	that	are	not	so	exciting.	AUC	is	a	fraction	higher	for	the	valid	data	(e.g.,	0.678
compared	to	0.667	for	the	home-win	model	that	uses	betting	odds,	and	0.624	versus	0.620
when	not	using	the	betting	odds),	but	lower	for	the	train	data.

Time	to	pull	out	a	grid?	I’m	going	to	concentrate	just	on	the	no-odds	model,	and	hope
anything	we	discover	generalizes. 	I’m	sticking	with	learn_rate=0.01	and
balance_classes=true,	and	trying	extreme	values	for	each	of	max_depth	(5,	12,	40),	min_rows
(2,	10,	40),	and	then	0.5	and	0.9	for	each	of	the	sampling	rates	(sample_rate,	col_sample_rate,
col_sample_rate_per_tree).	I	also	put	in	seed=c(10)	as	a	placeholder:	this	is	so	we	have	a
column	for	when	we	try	varying	it	in	the	future.	That	is	72	combinations,	and	based	on	earlier
models	my	estimate	was	it	would	take	12	minutes,	but	in	fact	it	took	almost	half	an	hour.
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TIP
At	this	point	in	the	book	I	made	a	mistake	typing	in	the	grid:	I	forgot	to	include	validation_frame.	It	spent	two
hours	making	72	models,	a	lot	of	which	overfitted,	and	then	I	wasted	an	hour	writing	about	how	unusual	they
were.	I	finally	realized	when	I	looked	at	the	best	model	and	saw	an	AUC	of	0.99.	We	can	confidently	say	that	is
impossible	for	this	data	set:	football	match	prediction	is	too	hard.	Even	a	model	that	had	really	detailed	player
statistics,	right	down	to	data	from	a	spy	on	how	each	was	doing	in	training	the	week	before	the	match,	would	not
do	that	well.	So,	what	I	should	have	immediately	done	was	a	sanity	check	on	the	best	model.	Even	better	would
have	been	to	do	that	while	the	grid	was	still	making	models,	using	the	Flow	web	interface;	then	I	would	have
known	something	was	wrong	even	earlier	and	could	have	aborted	the	grid	search.

The	most	distinct	result	of	the	grid	search	was	that	max_depth	of	12	was	better	than	either	5	or
40.	Secondly,	that	min_rows	of	40	or	2	was	good,	but	not	10.	The	third	thing	that	stood	out
was	that	sample_rates	of	0.9	did	better	than	0.5,	though	this	was	not	as	clear-cut	as	I	would
have	liked.

EXTRACTING	CERTAIN	METRICS	FOR	EACH	MODEL	IN	A	GRID

If	g	is	a	grid,	first	fetch	all	the	models	in	it	with:

models	<-	lapply(g@model_ids,	h2o.getModel)

Now,	with	a	list	of	models,	we	can	pull	out	any	metric	we	want.	To	find	out	the	syntax	I
normally	use	str()	on	the	first	model.	I	want	to	find	out	how	long	the	models	took	to	build,
and	str(models[[1]])	told	me	there	is	something	called	$run_time,	which	is	found	inside
@model.	So	I	use:

runTimes	<-	sapply(models,	function(m)	m@model$run_time)

A	useful	bonus	is	that	models	is	ordered	from	best	to	worst.	So	plot(runTimes)	can
highlight	a	relation	between	model	quality	and	time	spent	learning	it.	I	might	also	do
range(runTimes),	mean(runTimes),	sd(runTimes),	and	so	on.

If	you	return	2+	values	from	the	inner	function,	you	get	a	matrix.	This	example	code
shows	how	to	extract	both	how	long	it	ran	for	and	how	many	trees	it	made	(then	finds
their	correlation):

timeAndTrees	<-	sapply(models,	function(m)	c(
		m@model$run_time,
		m@model$model_summary$number_of_trees
		)	)
cor(timeAndTrees[1,],	timeAndTrees[2,])



I	experimented	with	a	few	variations,	but	surprisingly	couldn’t	improve	on	the	best	two	from
that	first	grid.	I’ve	decided	to	go	with	my	second	best	model	(as	judged	on	the	validation	set),
which	differs	from	the	top	model	only	in	min_rows	(2	versus	40),	for	these	reasons:

All	the	top	models	have	close	scores,	so	all	should	be	good	enough.

The	best	model	used	min_rows=2,	but	five	of	the	top	six	used	min_rows=40.

Low	min_rows	are	more	likely	to	overfit.

I	get	my	chosen	model	from	the	grid,	then	evaluate	it	on	the	test	data,	with:

m	<-	h2o.getModel(g@model_ids[[2]])
p	<-	h2o.performance(m,	test)
h2o.auc(p)

This	gets	an	AUC	of	0.607.	Our	model	with	default	parameters	got	0.613	on	the	test	set	(this	is
the	model	without	the	help	of	betting	odds,	remember).	Uh-oh.	Our	tuning	has	made	things
worse.	What	about	accuracy?	It	has	gone	from	0.602	to	0.604,	basically	the	same.	See
“Football	Data”	in	the	final	chapter	for	the	comparison	of	all	models.



Summary
GBM	is	an	interesting	alternative	to	random	forest.	It	has	more	parameters	and	requires	a	bit
more	effort	to	tune,	but	maybe	gives	slightly	better	results?	Particularly	on	the	regression
problem	it	seemed	to	outperform	random	forest.	The	main	danger	is	that	it	can	happily
overfit	if	you	keep	giving	it	more	and	more	trees.	GBM	was	particularly	disappointing	when
given	more	trees	on	the	noisy	football	data	set.

In	the	next	chapter	we	will	look	at	GLM	(generalized	linear	models).	Linear	models	might
lack	the	trendiness	of	GBM	and	deep	learning,	but	they	still	have	their	strengths	and	are	worth
studying.

	Incidentally,	the	relative	ranking	is	identical	if	you	instead	look	at	R².

	In	the	default	metric,	which	is	logloss	for	a	classification.

	The	first	time	I	ran	this	was	with	H2O	3.8.2.x,	and	I	got	approximately	the	results	shown
here.	When	double-checking	results,	with	version	3.8.3.x,	as	part	of	working	on	Chapter	11,	I
could	not	get	better	than	4%	error.	Now,	in	final	checking	with	3.10.0.8,	I	get	these	(good!)
results	again.	A	bug	must	have	been	introduced,	and	the	bug	must	have	been	fixed!	I’ve	used
the	3.10.0.8	results	here	and	in	Chapter	11.

	Not	a	completely	arbitrary	choice;	the	no-odds	model	is	building	in	about	two-thirds	of	the
time,	because	there	are	fewer	columns	to	deal	with.
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Chapter	7.	Linear	Models

Only	one	letter	different	from	GBM,	GLMs	(generalized	linear	models)	take	a	very	different
approach.	Whereas	decision	trees	are	based	on	logic,	and	deep	learning	is	a	black	box
inspired	by	the	human	brain,	GLMs	are	based	on	mathematics.	The	underlying	idea	is
something	you	almost	certainly	did	at	school:	make	a	scatterplot	of	data	points	on	graph
paper,	then	draw	the	best	straight	line	through	them.	And	perhaps	you	have	used	lm()	in	R	or
linear_model.LinearRegression	in	Python’s	scikit-learn,	or	something	similar,	to	have	the
computer	do	this	for	you.	Once	you	progress	beyond	the	graph	paper	you	can	apply	it	to	any
number	of	dimensions:	each	input	column	in	training	data	counts	as	one	dimension.

Sticking	with	school	memories,	when	I	first	heard	about	Einstein’s	general	and	special
theories	of	relativity,	I	assumed	the	special	theory	was	the	complicated	one,	to	handle	some
especially	difficult	things	that	the	general-purpose	one	couldn’t	deal	with.	It	turns	out	the
general	theory	was	called	that	because	it	generalized	both	the	special	theory	and	some	other
stuff	into	one	über-complicated	theory.	And	so	it	is	with	generalized	linear	models:	they	can
do	your	grandfather ’s	linear	model	(in	fact,	that	is	the	default	behavior),	but	they	can	also	do
other	stuff.

That	other	stuff	comes	down	to	a	couple	of	things:	using	link(y)	=	mx	+	c	instead	of	y	=	mx	+
c	(where	link()	is	a	function	that	allows	introducing	nonlinearity);	and	specifying	the
distribution	of	the	response	variable.	The	distributions	were	described	in	“Probability
Distributions	in	H2O”	in	Chapter	4.	I	am	not	going	to	go	into	any	more	detail,	but	if	you
wanted	a	more	mathematical	explanation	of	linear	models	and/or	generalized	linear	models,
the	Internet	has	plenty	of	them.	A	good	starting	point	is	section	4	of	the	GLM	vignette,
Generalized	Linear	Modeling	with	H2O,	and	then	that	document	gives	further	references	if
your	curiosity	still	burns	bright.

H2O’s	implementation	of	GLM	is	nice	and	easy	to	use,	and	it	can	be	used	for	both	regression
(set	family	to	one	of	“gaussian,”	“poisson,”	“gamma,”	or	“tweedie”)	and	classification	(set
family	to	either	“binomial”	or	“multinomial”	as	appropriate;	binomial	classification	is	also
called	logistic	regression).	GLM	can	work	with	categorical	(enum)	inputs,	by	creating	one
binary	input	(0	or	1)	for	each	possible	value	of	a	category.	(This	is	called	one-hot	encoding,
and	is	covered	in	a	bit	more	detail	in	the	next	chapter,	because	deep	learning	uses	the	same
approach.)

http://bit.ly/2f8vWOo


NOTE
What	happens	when	you	have	a	categorical	input,	and	when	using	your	model	to	make	predictions	you	give	it	a
value	it	has	never	seen	before?	With	H2O’s	GLM	what	will	happen	is	that	it	is	ignored:	it	will	be	a	zero	on	all
known	possible	values	for	that	category.



GLM	Parameters
Many	of	the	parameters	to	define	a	GLM	are	common	to	most	of	the	H2O	algorithms,	and
those	were	described	in	Chapter	4.	However,	there	are	a	fair	few	specific	to	GLM.	(Python
users:	all	of	the	following	parameters	are	given	to	the	model’s	constructor,	not	to	the	train()
function.)

This	first	set	of	parameters	are	about	the	type	of	data	it	is	trying	to	fit	to:

family

The	probability	distribution	of	the	response	variable	(called	distribution	in	GBM	and	deep
learning).	For	regression	the	choices	are	gaussian,	poisson,	gamma,	and	tweedie;	for
logistic	regression	(i.e.,	binomial	classification)	you	must	set	this	to	binomial,	and	for
multinomial	regression	you	must	set	this	to	multinomial.	(Note:	it	currently	won’t	auto-
detect	when	the	response	variable	is	an	enum,	so	you	must	explictly	say	binomial	or
multinomial.)	Family	defines	how	the	deviance	metric	is	calculated;	it	is	only	the	same	as
MSE	when	the	family	is	gaussian.

tweedie_link_power

Used	when	distribution	is	“tweedie.”	Default	is	1.

tweedie_variance_power

Used	when	distribution	is	“tweedie.”	Default	is	0.

link

Can	be	one	of	“family_default,”	“identity,”	“logit,”	“log,”	“inverse,”	or	“tweedie.”	As	the
name	suggests,	“family_default”	is	the	default,	and	is	usually	best.

The	next	batch	are	about	regularization,	which	is	a	way	to	avoid	overfitting.	There	are	two
types:	L1	(also	called	lasso	regularization	or	lasso	regression)	and	L2	(also	called	ridge
regularization	or	ridge	regression).	Some	of	the	theory	behind	L1	and	L2	regularization	can
be	found	on	Wikipedia.	Briefly,	L1	regularization	will	set	some	of	your	coefficients	to	zero
(this	can	be	useful	to	simplify	a	problem	when	you	have	a	lot	of	predictor	columns	but	don’t
know	which	ones	are	important),	whereas	L2	regularization	tries	to	keep	all	the	coefficients
close	to	zero,	but	nonzero,	stopping	any	single	coefficient	from	dominating.	If	your	data	is
dense	(meaning	all	columns	are	likely	to	explain	something	about	the	response	variable),	L2
regularization	is	likely	to	be	better	than	L1.

You	choose	lasso	regression	by	setting	alpha	to	1.0,	and	you	choose	ridge	regression	by
setting	alpha	to	0.0.	Or	you	can	choose	elastic	net,	which	is	“have	your	cake	and	eat	it”:	you
set	alpha	between	0.0	and	1.0	to	mix	them	together.	The	other	parameter	is	lambda.	While
alpha	decides	what	type	of	regularization	to	use,	lambda	decides	how	strong	to	make	it.

http://bit.ly/2g4RZaE


NOTE
The	lambda	here	is	not	what	Python	(and	many	other	languages)	call	a	lambda,	i.e.,	an	anonymous	function.	It	is
just	“λ,”	just	a	variable	in	a	mathematical	equation;	those	mathematicians	are	trying	to	impress	us	with	their	Greek
again.	If	a	programmer	had	got	there	first,	it	might	instead	have	been	called	regStrength.	(It	is	also	different	to	the
lambda	learning	rate	of	some	machine-learning	algorithms.)

If	you	are	omniscient	then	of	course	you	know	what	value	to	set	lambda. 	I	can’t	even	spell
omnissiant,	let	alone	be	it,	so	instead	I	set	lambda_search	to	true.	This	is	magic	that	tells	the
computer	to	try	lots	of	different	values	for	lambda	and	choose	the	best	one.	You	can	use
nlambdas	to	control	how	many	distinct	lambda	values	to	try,	and	lambda_min_ratio	to	control
how	low	it	should	go;	intelligent	defaults	are	chosen	based	on	your	data,	so	I	normally	use
those	defaults.	The	lambda	search	starts	high	and	then	goes	down,	and	if	you	watch	it	at	work
in	Flow	you	may	see	it	start	very	quickly	but	then	slow	down.	This	is	because	as	the	lambda
decreases	there	are	more	coefficients	being	included	in	the	model,	so	the	model	is	getting
more	complex:

alpha

Described	earlier,	it	is	how	much	L1	regularization,	and	1-alpha	is	how	much	L2
regularization.	The	default	is	0.5.	(If	you	didn’t	want	either,	ignore	this	parameter	and
instead	set	lambda	to	zero.)	This	is	one	of	the	most	common	parameters	to	try	grid
experiments	with.

lambda

Regularization	strength.	The	default	is	chosen	based	on	lambda	max	(described	under
lambda_search)	but,	as	already	mentioned,	it	is	often	useful	to	try	lambda	search	to
automatically	find	a	good	value.	If	you	want	to	explicitly	choose	values	for	lambda	that
lambda	search	should	try,	specify	them	as	a	list	here.

lambda_search

If	true,	then	it	will	try	multiple	values	of	lambda	for	you.	It	starts	with	the	maximum	value
of	lambda,	which	is	a	lambda	value	such	that	the	regularization	causes	all	coefficients	to
end	up	as	zero.	It	then	keeps	reducing	the	lambda	value	until	the	minimum	value	(which	is
decided	by	lambda_min_ratio).	Note	that	when	setting	lambda_search	to	true	you	would
never	also	set	lambda	to	a	single	value.	Normally	you	would	not	set	lambda	at	all,	but	if
you	wanted	to	explicitly	give	2+	values	for	lambda	search	to	try	(and	no	others)	you
specify	them	as	a	list	in	the	lambda	parameter.

lambda_min_ratio

Minimum	lambda	used	in	lambda	search,	specified	as	a	percentage	of	the	starting
(maximum)	lambda.	Defaults	to	0.0001.	For	example,	if	lambda	search	chooses	15	as	the
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starting	value,	then	0.0015	is	the	final	lambda	value	it	will	try.	Lambda	search	will	never
try	a	lambda	of	zero.	If	you	suspect	it	may	be	best	(e.g.,	the	best	value	from	lambda	search
was	the	final	and	smallest	one),	you	will	need	to	try	it	separately.

nlambdas

Number	of	lambdas	to	be	used	in	a	search.	The	default	of	–1	normally	means	it	will	try
100	lambdas	but	when	doing	ridge	regression,	i.e.,	alpha=0.0,	it	instead	defaults	to	30
lambdas.	Consider	setting	this	to	a	lower	number	if	you	need	to	speed	things	up.

max_active_predictors

The	default	of	–1	means	no	restriction,	but	you	can	set	it	to	have	lambda_search	stop
early,	once	it	has	reached	this	number	of	nonzero	coefficients.	You	might	set	this	just	to
have	it	finish	more	quickly,	or	because	you	expect	a	sparse	solution	and	have	an	upper
limit	in	mind.

TIP
If	that	block	of	parameters	seemed	complex,	I	recommend	you	experiment	(in	a	grid)	with	three	values	of	alpha
(0,	0.5,	and	1.0)	and	set	lambda_search	to	true,	and	ignore	all	the	others.

The	next	parameter	to	look	at,	solver,	decides	how	GLM	will	attack	the	problem.	Note	that	if
the	family	is	gaussian,	and	there	is	no	L1	regularization,	the	parameters	in	this	section	are	not
applicable	because	it	can	be	solved	analytically.	solver	takes	a	string	that	can	be	any	of	the
following	values:

AUTO

AUTO	will	set	the	solver	based	on	given	data	and	the	other	parameters.

IRLSM

This	stands	for	Iterative	Re-weighted	Least	Squares	Method.	If	you	have	only	a	relatively
small	number	of	columns	it	is	usually	the	best	choice.	What	counts	as	small?	Well,	it	is
mainly	to	do	with	memory	usage;	it	is	described	as	usable	up	to	about	500	columns.	If	you
have	a	lot	of	columns,	but	also	want	to	use	IRLSM,	consider	using	lambda	search,
combined	with	a	high	alpha	(to	use	mostly	lasso	regression,	and	therefore	force	many	of
your	coefficients	to	zero).

L_BFGS

The	L	is	for	limited	memory,	and	the	BFGS	is	for	the	Broyden–Fletcher–Goldfarb–
Shanno	algorithm.	Wikipedia	describes	it	as	a	quasi-Newton	method,	and	that	article	is	a
good	starting	point	if	you	are	interested	in	the	details.	The	limited	memory	aspect	is	the

http://bit.ly/2fNdg87


reason	you	would	choose	it	over	IRLSM,	as	it	allows	large	numbers	of	predictor
columns;	H2O’s	implementation	handles	up	to	100,000s	of	columns.

COORDINATE_DESCENT,	COORDINATE_DESCENT_NAIVE

These	two 	are	experimental 	variants	of	IRLSM.	See	Wikipedia	for	more	details.	They
are	good	for	up	to	about	5000	columns.

There	are	a	few	parameters	the	refine	how	your	chosen	solver	works.	Well,	not	so	much	how
it	works	as	how	quickly	it	will	finish:

max_iterations

This	controls	how	much	work	the	solver	will	do.	It	defaults	to	50.

beta_epsilon

This	is	for	the	IRLSM	solver:	if	the	beta	changes	less	than	this,	then	stop.

gradient_epsilon

This	is	for	the	L-BFGS	solver:	if	the	objective	changes	less	than	this,	then	stop.

objective_epsilon

Stop	when	the	objective	value	changes	less	than	this.

The	common	theme	of	the	next	set	of	parameters	is	that	they	place	restrictions	on	the
coefficients.	(Yeah,	okay,	you’re	right,	L1	and	L2	regularization	are	also	doing	that;	stop
trying	to	be	clever,	I’ve	already	talked	about	them.)

non_negative

Restrict	coefficients	(not	intercept)	to	be	nonnegative.

beta_constraints

Set	this	to	the	name	of	an	H2O	data	frame,	with	one	row	per	predictor	and	the	following
columns:	names,	lower_bounds,	upper_bounds,	beta_given,	rho.	The	bounds	force	a
range	for	each	coefficient,	while	the	latter	two	are	starting	value	and	L2	penalty	for
proximal	operators.	This	parameter	feels	like	one	for	experts.	Or	control	freaks.

This	next	bunch	have	to	do	with	data	preparation;	they	save	you	having	to	do	this	work
yourself:

remove_collinear_columns

Remove	some	of	the	columns,	if	any	are	linearly	dependent.	False	by	default.	There	is	no
need	to	set	this	if	using	regularization.

standardize
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Standardize	numeric	columns	to	have	zero	mean	and	unit	variance.	This	is	true	by	default.
You	are	unlikely	to	need	to	set	it	to	false,	but	always	make	sure	it	is	true	if	using
regularization	(i.e.,	lambda	>	0).

missing_values_handling

The	default	is	“MeanImputation,”	which	gives	them	the	mean	value	from	that	column.	The
alternative	is	“Skip”	to	ignore	rows	with	missing	values	(i.e.,	not	learn	from	them).	If	you
want	something	more	sophisticated,	do	it	yourself	in	advance.	If	you	have	certain	columns
with	lots	of	missing	data,	it	is	usually	better	to	remove	the	whole	column,	because	in	that
case	imputation	will	be	useless,	and	skip	will	cause	you	to	lose	most	of	your	training	data.

Then	there	are	parameters	to	describe	something	extra	about	the	inputs	and	the	model	to
make:

interactions

This	is	a	list	of	columns	you	want	to	interact.	For	example,	if	you	give	three	columns,
such	as	A,	B,	and	C,	then	AB,	AC,	and	BC	will	be	added	to	your	model.

intercept

Whether	to	include	a	constant	term	in	the	model.	The	default	is	true,	so	setting	it	to	false
effectively	means	force	an	intercept	of	zero.

obj_reg

An	advanced	option	for	when	you	want	to	modify	the	objective	function.	The	default	of	–1
means	it	will	use	1	divided	by	the	number	of	rows	in	your	training	data	set.

prior

Used	for	binomial	classification,	and	it	is	the	prior	probability	for	the	first	of	the	two
classes.	Being	a	probability,	it	must	be	between	0.0	and	1.0.	The	default	is	simply	the
percentage	of	samples	of	the	first	class	in	the	training	data;	you	only	need	to	set	this	if	you
know	that	the	default	is	wrong.

compute_p_values

Set	this	to	true	to	have	the	p-values	for	each	coefficient	returned.	Only	available	when
using	solver="IRLSM"	and	lambda=0.



Building	Energy	Efficiency:	Default	GLM
This	is	a	regression	problem,	estimating	cooling	load	based	on	house	design	features	(see
“Data	Set:	Building	Energy	Efficiency”).	Run	either	Example	3-1	or	Example	3-2	from	the
earlier	chapter,	which	sets	up	H2O,	loads	the	data,	and	has	defined	train,	test,	x,	and	y.	We	are
using	10-fold	cross-validation,	instead	of	a	validation	set.	(See	“Cross-Validation	(aka	k-
folds)”,	from	Chapter	4,	for	a	reminder	about	cross-validation.)

m	<-	h2o.glm(x,	y,	train,	nfolds	=	10,	model_id	=	"GBM_defaults")

In	Python	use:

from	h2o.estimators.glm	import	H2OGeneralizedLinearEstimator
m	=	H2OGeneralizedLinearEstimator(model_id="GLM_defaults",	nfolds=10)
m.train(x,	y,	train)

It	runs	quickly.	Type	summary(m)	(or	m.summary()	in	Python).	The	first	line	just	summarizes
what	kind	of	linear	model	was	being	fitted,	while	the	next	couple	of	sections	tell	us	various
metrics.	The	MSE	is	10.77.	If	you’ve	looked	at	the	other	chapters	you	will	see	this	is	the	worst
out-of-the-box	performance,	by	quite	a	way.	The	range	of	the	MSE	on	the	10	folds	goes	from
6.13	to	14.28.

NOTE
Even	though	GLM	has	no	random	element,	you	might	still	see	slightly	different	results	because	of	the	way	the
training	and	test	data	was	split,	and	because	of	the	random	way	the	10	folds	for	cross-validation	get	made.

The	variable	importances	(available	directly	with	h2o.varimp(m)	in	R	or	m.varimp()	in
Python),	shown	next,	tells	us	that	it	thinks	X5	is	the	most	useful	variable;	this	agrees	with	the
other	models,	and	also	back	in	“Let’s	Take	a	Look!”	where	it	had	the	best	correlation	(+0.896)
with	Y2.	The	variable	importances	also	tell	us	the	sign	for	X5	is	positive,	meaning	that	the
more	X5	there	is,	the	more	Y2	there	is.	(X5	is	height:	the	taller	the	building	is,	the	more
energy	is	needed	to	cool	it.)

Standardized	Coefficient	Magnitudes:
												names	coefficients	sign
1														X5					7.874073		POS
2														X1					3.468041		NEG
3														X4					2.131229		NEG
4												X8.0					1.998280		NEG
5														X7					1.758337		POS
6														X2					1.321006		NEG
7														X3					0.777868		POS
8												X8.1					0.366337		POS



9												X6.5					0.299039		POS
10											X8.3					0.245411		NEG
11											X8.2					0.209615		POS
12											X8.4					0.162054		POS
13											X6.3					0.156978		NEG
14											X8.5					0.000000		POS
15	X8.missing(NA)					0.000000		POS
16											X6.2					0.000000		POS
17											X6.4					0.000000		POS
18	X6.missing(NA)					0.000000		POS

The	other	thing	to	notice	in	the	variable	importances	is	how	our	couple	of	enum	(factor)
columns	are	handled:	each	possible	value	counts	as	one	input	variable,	and	when	one	of	them
is	set	(has	the	value	1),	all	the	others	will	have	the	value	0.

If	you	run	h2o.performance(m,	test)	you	will	see	similar	metrics	to	those	on	the	training	data
(MSE	of	9.01).	So,	finally,	let’s	plot	its	actual	predictions	for	the	test	set	on	a	chart	(see
Figure	7-1).	The	black	dots	are	the	correct	answers,	the	small	squares	are	guesses	that	were
quite	close,	while	the	up	arrows	are	where	it	was	more	than	8%	too	high,	and	the	down
arrows	are	where	it	was	more	than	8%	too	low.	Out	of	143	test	samples,	there	are	27	down
arrows	and	33	up	arrows.

Figure	7-1.	Default	performance	of	GLM	on	test	data
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Building	Energy	Efficiency:	Tuned	GLM
If	you	understand	your	data,	and	the	math,	you	will	already	know	what	family	and	link
function	you	want,	and	the	values	for	some	of	the	other	parameters.	But	I	will	start	this	section
by	assuming	that	is	not	the	case.	Unfortunately,	H2O	grids	do	not	support	using	any	of	solver,
family,	and	link	in	a	grid.	No	problem:	just	fall	back	on	using	loops.	But	then	there	is	another
problem:	not	all	the	options	work	together.	Even	that	will	not	stop	us,	though	it	does	make
things	bit	more	fiddly.

To	see	how	I	fiddled	it,	take	a	look	at	Example	7-1.	In	addition	to	looping	through	the	legal
family/link/solver	combinations	(tweedie	excluded—I’ll	come	back	to	that	in	a	moment),	it
does	a	grid	search	on	four	values	of	alpha.	When	alpha	is	0.0	it	is	doing	ridge	regression,
when	0.1	it	is	90%	ridge,	10%	lasso	regression,	0.5	is	half	and	half,	and	0.99	does	almost	all
lasso	regression	(this	is	recommended	over	1.0,	as	apparently	a	small	bit	of	ridge	helps
stability	a	lot).

Example	7-1.	Trying	solver/family/link	combinations	(in	R)
solvers	<-	c("IRLSM",	"L_BFGS",	"COORDINATE_DESCENT_NAIVE",	"COORDINATE_DESCENT")

families	<-	c("gaussian",	"poisson",	"gamma")

gaussianLinks	<-	c("identity",	"log",	"inverse")

poissonLinks	<-	c("log")

gammaLinks	<-	c("identity",	"log",	"inverse")
gammaLinks_CD	<-	c("identity",	"log")

allGrids	<-	lapply(solvers,	function(solver){
		lapply(families,	function(family){

				if(family	==	"gaussian")theLinks	<-	gaussianLinks
				else	if(family	==	"poisson")theLinks	<-	poissonLinks
				else{
						if(solver	==	"COORDINATE_DESCENT")theLinks	<-	gammaLinks_CD
						else	theLinks	=	gammaLinks
						}

				lapply(theLinks,	function(link){
						grid_id	=	paste("GLM",	solver,	family,	link,	sep="_")
						h2o.grid("glm",	grid_id	=	grid_id,
								hyper_params	=	list(
										alpha	=	c(0,	0.1,	0.5,	0.99)
										),
								x	=	x,	y	=	y,	training_frame	=	train,
								nfolds	=	10,
								lambda_search	=	TRUE,

								solver	=	solver,
								family	=	family,
								link	=	link,



								max_iterations	=	100
								)
						})
				})
		})

Something	else	to	notice	in	the	listing	is	that,	rather	than	specifying	lambda	(also	called	the
regularization	parameter),	lambda_search	is	switched	on.	This	is	a	bit	like	a	built-in	grid
search,	as	it	means	instead	of	having	to	know	in	advance	what	the	best	value	is,	it	will	try	its
hardest	to	find	out. 	We	leave	the	default	of	nlambdas=-1;	it	will	then	choose	a	suitable
number	(normally	100).	max_iterations	is	100,	double	the	default.	We	still	do	10-fold	cross-
validation.

It	only	took	77	seconds	to	make	27	grids,	a	total	of	104	models.	Here	are	the	best	10	models
that	were	found:

alpha								mse																														grid_id
	0.50			9.829750																GLM_IRLSM_poisson_log
	0.50			9.873685															GLM_IRLSM_gaussian_log
	0.00			9.911911			GLM_COORDINATE_DESCENT_poisson_log
	0.10			9.934379																GLM_IRLSM_poisson_log
	0.00			9.937172															GLM_IRLSM_gaussian_log
	0.99			9.953601															GLM_IRLSM_gaussian_log
	0.10			9.963859															GLM_IRLSM_gaussian_log
	0.99			9.979255																GLM_IRLSM_poisson_log
	0.00			9.981798					GLM_COORDINATE_DESCENT_gamma_log
	0.50			9.999247																		GLM_IRLSM_gamma_log

Approximately	half	the	models	had	an	MSE	from	9.8	to	13.3;	the	other	half	of	the	models
were	much	worse,	ranging	from	25.9	to	471.5!	Conclusion:	these	three	parameters	matter	a
lot!	And	sometimes	the	solver	is	the	only	thing	to	blame.	One	of	the	worst	models	(MSE	=
91.9)	was	GLM_COORDINATE_DESCENT_NAIVE_poisson_log	(alpha=0.50),	which	differs
solely	in	the	use	of	solver="COORDINATE_DESCENT_NAIVE"	instead	of
solver="GLM_IRLSM".

Our	default	model	from	the	previous	section	had	an	MSE	of	10.77	(though	the	10	folds
ranged	from	6.13	to	14.28).	Our	best	model	so	far	is	distinctly	better,	though	there	is	still	a
large	range	on	the	10	folds	(from	7.39	to	12.92).

One	thing	the	preceding	results	should	have	screamed	out	at	you	is	that	“log”	is	the	best
choice	for	the	link!	I	think	we	can	also	go	with	“IRLSM”	as	the	solver.	That	makes	sense,	as
we	only	have	eight	columns,	and	IRLSM	is	the	recommended	choice	except	when	you	have
lots	of	columns.	(The	experimental	“GLM_COORDINATE_DESCENT,”	with	an	alpha	of	0.0,
i.e.,	only	L1,	no	L2	penalty,	looks	promising,	but	not	enough	for	me	to	want	to	double	the
number	of	models	being	made	in	the	next	few	grids.)

For	family,	poisson	and	gaussian	both	look	acceptable,	and	even	gamma	is	not	far	behind.
That	brings	us	to	the	other	option	for	family,	“tweedie”.	It	is	a	tricky	one,	as	it	has	another
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couple	of	parameters,	which	can	make	it	act	like	any	of	normal	(aka	gaussian),	poisson,	or
gamma—and	some	other	things	too.	If	you	want	to	run	a	grid	on	those	special	tweedie
parameters	(tweedie_variance_power	and	tweedie_link_power)	you	should	make	a	dedicated
grid	for	it. 	By	the	way,	the	default	values	(variance	power	of	0,	link	power	of	1)	make	it	act
like	a	gaussian.	If	you	just	want	to	try	one	value,	try	tweedie_variance_power=1.5	and	leave
the	link	as	the	default.

But	trying	one	value	is	for	losers.	The	truly	heroic	data	scientist,	the	one	who	thirsts	for
knowledge	for	the	greater	good	of	mankind,	the	one	who,	er,	has	some	spare	CPU	cycles,
uses	210	models,	as	shown	in	Example	7-2,	which	tries	all	combinations	of
tweedie_variance_power	from	1.0	(aka	poisson)	through	2.0	(aka	gamma)	to	4.0,	with	all
combinations	of	tweedie_link_power	from	0.0	to	2.0.	Yes,	tweedie_variance_power=1.0	and
tweedie_variance_power=2.0	duplicate	models	we’ve	already	made	(poisson	and	gamma,
respectively),	but	the	difference	here	is	link	power	also	gets	varied.

Example	7-2.	Tweedie	experiments	(in	R)
g_tweedie	<-	h2o.grid("glm",	grid_id	=	"GLM_tweedie",
		hyper_params	=	list(
				tweedie_variance_power	=
						c(1.0,	1.25,	1.50,	1.75,	2.0,	2.33,	2.67,	3.0,	3.5,	4.0),
				tweedie_link_power	=
						c(0,	0.33,	0.67,	1.0,	1.33,	1.67,	2)
				),
		x	=	x,	y	=	y,	training_frame	=	train,
		nfolds	=	10,
		lambda_search	=	TRUE,

		solver	=	"IRLSM",
		family	=	"tweedie",
		alpha	=	0.5,

		stopping_tolerance	=	0,
		stopping_rounds	=	5,
		max_iterations	=	100
		)
)

That	was	70	models,	and	I	repeated	it	three	times	to	get	a	feel	for	random	variance	(the	only
random	element	is	how	the	10	folds	get	split	up);	210	models	sounds	like	a	lot,	but	it	only
took	5	minutes.	I	found	that	higher	values	for	tweedie_variance_power	when	combined	with
higher	values	for	tweedie_link_power	are	bad	(they	give	a	very	high	mean	squared	error).
However,	seeing	which	values	are	good	is	a	bit	harder,	so	I	first	filtered	out	those	definitely
bad	results,	then	made	the	chart	shown	in	Figure	7-2.
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Figure	7-2.	How	tweedie	link	power	and	variance	power	affect	MSE

This	works	much	better	as	an	interactive	3D	color	chart	than	a	static	grayscale	chart	in	a
book;	you	might	just	have	to	believe	me	when	I	tell	you	it	shows	that	link_power	of	0	or	0.33
is	best,	but	that	the	best	value	for	variance_power	could	be	anywhere	from	1.0	to	2.67,	and	that
this	is	due	to	the	large	amount	of	random	variance.

To	be	honest	there	is	not	much	more	to	try;	most	of	the	other	parameters	are	for	trying	to
speed	up	the	model	generation,	but	for	this	relatively	small	data	set	that	is	not	an	issue.
However,	I	did	give	interactions=x	a	try,	where	x,	if	you	remember,	is	the	list	of	all	eight	of
the	predictor	variables.	By	setting	it	to	all	eight	columns	it	added	all	combinations,	e.g.,
X1_X2,	X1_X3,	all	the	way	up	to	X7_X8.	It	did	terribly,	even	with	trying	a	range	of	values	for
alpha	(i.e.,	with	each	of	ridge	regression,	lasso	regression,	and	elastic	net).

As	the	random	variation	was	quite	noticeable,	I	decided	to	do	the	final	tests	10	times,	and	then
use	the	mean.	I	made	four	gaussian	models	and	four	poisson	models,	using	alpha	of	0.2,	0.3,
0.4,	and	0.5;	for	tweedie	the	grid	made	96	models:	variance	power	from	1.25	to	1.60	in	0.05
increments,	link	power	chosen	from	0.0,	0.2,	0.33,	and	0.4,	and	finally	alpha	chosen	from
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0.33,	0.5,	and	0.67.

See	the	online	code	for	how	the	grids	were	run,	and	results	merged.	The	result	was	that	the
best	models	were	all	tweedie;	going	by	the	mean,	the	best	parameters	were	variance	power	of
1.55,	link	power	of	0.0,	and	alpha	of	0.33.	This	got	a	mean	MSE	of	9.919	on	the	training	data,
compared	to	10.77	with	GLM	default	settings.	When	I	run	this	best	model	on	the	unseen	test
data	set	I	get	an	MSE	of	8.922,	compared	to	9.01	from	the	earlier	default	model.

When	plotting	the	points	(Figure	7-3),	we	find	26	are	8%	or	more	below	the	correct	answer,
and	27	are	over	8%	above	(the	down	and	up	triangles,	respectively).

Figure	7-3.	Tuned	performance	of	GLM	on	test	data

That	is	a	slim	improvement	for	so	much	effort.	The	tuned	GLM	is	considerably	worse	than
the	out-of-the-box	default	settings	for	any	of	the	other	three	algorithms	(random	forest,	GBM,
or	deep	learning).	Obviously	this	data	set	is	not	well-suited	to	linear	models,	but	I	hope	the
tuning	process	gave	you	some	ideas.	A	reminder	that	the	results	of	all	models	on	this	data	set
will	be	compared	in	“Building	Energy	Results”	in	the	final	chapter.
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MNIST:	Default	GLM
This	is	a	pattern	recognition	problem	(see	“Data	Set:	Handwritten	Digits”,	in	Chapter	3),	and
even	with	all	its	smarts,	I	am	expecting	GLM	to	be	the	worst	performer	on	this	data	set.	It	is	a
multinomial	classification,	with	784	inputs,	and	the	output	being	a	digit	from	0	to	9.

If	you	are	following	along,	run	either	Example	3-3	or	Example	3-4	from	the	earlier	chapter,
which	sets	up	H2O,	loads	the	data,	and	defines	train,	valid,	test,	x,	and	y.	(We	are	not	using
cross-validation	this	time,	as	valid	is	set.)	Then	run	either	Example	7-3	or	Example	7-4.

Example	7-3.	Default	GLM	on	MNIST	(Python)
m	=	h2o.estimators.H2OGeneralizedLinearEstimator(
				model_id="GLM_defaults",	family="multinomial")
m.train(x,	y,	train,validation_frame=valid)

Example	7-4.	Default	GLM	on	MNIST	(in	R)
m	<-	h2o.glm(x,	y,	train,	model_id	=	"GLM_defaults",
		validation_frame	=	valid,	family	=	"multinomial")

It	took	about	four	minutes	to	run,	for	me,	and	kept	all	eight	cores	toasty-warm.

WARNING
This	is	a	multinomial	problem,	and	so	we	must	explicitly	set	family="multinomial".	If	we	don’t	it	will	return	a
meaningless	model	(rather	than	an	error).

It	has	done	better	than	I	expected,	getting	only	6.25%	wrong	on	the	training	data,	and	only
7.82%	wrong	on	the	unseen	validation	set.	Here	is	the	full	confusion	matrix	for	the	validation
data:

Confusion	Matrix:	vertical:	actual;	across:	predicted
										0				1			2				3			4			5			6				7			8			9		Error											Rate
0							988				0			4				2			3			5			8				3			2			2	0.0285	=			29	/	1,017
1									0	1069			6				2			2			4			0				2		13			3	0.0291	=			32	/	1,101
2									4			17	867			13		15			3		20				7		23			6	0.1108	=		108	/			975
3									3				4		25		923			2		35			3			10		21			7	0.1065	=		110	/	1,033
4									2				6			3				2	883			1			8				3			6		35	0.0695	=			66	/			949
5								10				4			3			28		13	833		17				2		22			8	0.1138	=		107	/			940
6									7				2			6				0			7		14	912				5			0			1	0.0440	=			42	/			954
7									1				2		13				4		11			1			0		976			3		35	0.0669	=			70	/	1,046
8									9			19		11			19			6		29			5				2	876		10	0.1116	=		110	/			986
9									5				3			4			12		40			1			0			33		10	891	0.1081	=		108	/			999
Totals	1029	1126	942	1005	982	926	973	1043	976	998	0.0782	=		782	/10,000

It	is	interesting	to	see	that	a	linear	model	can	tell	the	difference	between	handwritten	zeros	and
ones	rather	well.	It	has	the	most	trouble	telling	the	difference	between	4s	and	9s,	and	7s	and	9s.
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On	the	10,000	test	samples	the	error	is	746,	about	the	same	as	on	the	validation	data.	You	get
this	with	p	<-	h2o.performance(m,	test)	in	R	(then	h2o.confusionMatrix(p)	and
h2o.hit_ratio_table(p)),	and	with	p	=	m.model_performance(test)	in	Python	(then
p.confusion_matrix()	and	p.hit_ratio_table()):

k				hit_ratio
---		-----------
1				0.9254
2				0.9708
3				0.9849
4				0.9912
5				0.995
6				0.9973
7				0.9988
8				0.9995
9				1
10			1

That	hit	ratio	table	shows	it	is	having	trouble	on	some	numbers	even	if	you	give	it	eight	or
nine	guesses,	but	this	is	no	different	than	all	the	other	algorithms.

The	last	thing	I	want	to	point	out	about	this	(almost)	out-of-the-box	model:	the	default
parameters	are	different	to	that	on	the	previous	data	sets.	When	making	the	building	energy
data	set	models	we	were	assigned	a	default	of	50	iterations,	and	used	none.	This	time	we	were
given	a	default	of	500	iterations,	and	used	180	of	them.	The	value	chosen	for	lambda	is	also
different.	This	wasn’t	anything	I	chose:	H2O	looked	at	the	data	and	chose	these	defaults.



MNIST:	Tuned	GLM
There	are	two	things	to	try	here	that	immediately	jump	to	mind.	First,	how	much	better	does	it
do	with	the	extended	data	set	(the	extra	113	rows	we	add	in	“Helping	the	Models”	in
Chapter	3),	and	secondly	as	we	have	quite	a	lot	of	columns,	which	solver	is	going	to	be	best?

Then	there	are	the	questions	I	always	have	with	a	GLM:	which	value	for	alpha	(0,	0.5,	0.99,
i.e.,	L1,	elastic	net,	or	L2),	and	for	lambda	(lambda_search	will	be	set	to	true,	to	have	it	find
the	best	one	for	us).

How	about	we	first	try	with	the	same	default	settings,	but	using	the	extended	data?	I	won’t	bore
you	with	either	the	code	or	the	detailed	results,	and	will	just	say	it	took	slightly	longer	to	run
and	gave	near-identical	results	(6.35%	error	on	training	data,	7.96%	error	on	validation	data,
7.45%	error	on	the	test	data).

The	identical	results	are	not	so	surprising	as	five	of	the	top	six	coefficients	(as	extracted	with
h2o.varimp(m))	are	for	raw	pixels,	not	the	new	columns	that	were	added.	How	about	trying	a
model	that	only	uses	those	new,	richer	columns?

m	<-	h2o.glm(1:113,	y,	train,
		validation_frame	=	valid,
		model_id	=	"GLM_first113",
		family	="	multinomial"
		)

This	model	builds	in	approximately	one-eigth	of	the	time,	but	has	a	7.88%	error	rate	on	the
training	data,	and	8.67%	on	the	validation	data.	In	other	words,	the	performance	is	distinctly
worse.	These	richer	columns	seem	harder	for	a	linear	model	to	get	to	grips	with.

So,	I	went	back	to	using	all	columns,	and	set	up	a	grid	to	try	and	answer	my	earlier	question
of	which	solver	is	best,	while	also	answering	the	question	of	the	best	alpha	and	lambda	values.

By	the	way,	Figure	7-4	is	a	screenshot	from	Flow	during	this	grid	building	process.	This	was
done	on	two	36-core	nodes,	and	the	mostly-50%	CPU	usage	shown	in	the	Water	Meter	is
typical	for	GLM,	at	least	on	a	data	set	of	this	size.



Figure	7-4.	Viewing	one	model	in	Flow,	while	another	is	building

Example	7-5.	Running	a	grid	for	each	possible	solver
solvers	<-	c("IRLSM",	"L_BFGS",	"COORDINATE_DESCENT_NAIVE",	"COORDINATE_DESCENT")
system.time(
allGrids	<-	lapply(solvers,	function(solver){
		grid_id	=	paste("GLM",solver,sep="_")
		cat("GRID:",grid_id",\n")
		h2o.grid("glm",	grid_id=grid_id,
				hyper_params	=	list(
						alpha	=	c(0,	0.5,	0.99)
						),
				x	=	x,	y	=	y,	training_frame	=	train,
				validation_frame	=	valid,
				lambda_search	=	TRUE,

				solver	=	solver,
				family	=	"multinomial",

				max_iterations	=	100
				)
		})
)

I	got	errors	when	I	tried	COORDINATE_DESCENT_NAIVE,	but	the	rest	of	the	results	are
interesting:



solver alpha MSE logloss error

IRLSM 0 0.075 0.292 0.0791

COORDINATE_DESCENT 0 0.077 0.297 0.0802

L_BFGS 0 0.08 0.31 0.0839

IRLSM 0.99 0.098 0.343 0.0931

COORDINATE_DESCENT 0.5 0.101 0.352 0.0941

IRLSM 0.5 0.101 0.352 0.0942

COORDINATE_DESCENT 0.99 0.1 0.35 0.0953

L_BFGS 0.5 0.81 2.302 0.8899

L_BFGS 0.99 0.81 2.302 0.8899

While	the	differences	of	the	parameters	is	interesting,	all	of	them	are	worse	than	our	default
model,	which	scored	0.0782!	So,	in	this	case,	I	think	the	default	GLM	model	parameters
cannot	be	beaten.

The	results	of	all	four	learning	algorithms	will	be	compared	in	“MNIST	Results”	in	the	final
chapter	of	this	book.



Football:	Default	GLM
This	is	the	most	challenging	of	our	data	sets:	predicting	football	match	results,	based	on	a
combination	of	recent	performance	and	expert	predictions	in	the	form	of	bookmaker	odds.
(See	“Data	Set:	Football	Scores”	in	Chapter	3	for	how	it	was	prepared.)	If	you	are	following
along,	run	either	Example	3-6	or	Example	3-7	from	the	earlier	chapter,	but	make	sure	you
change	it	to	use	football.train2.csv,	football.valid2.csv,	and	football.test2.csv,	because	those
are	the	files	where	the	missing	values	have	been	either	removed	or	filled	in, 	and	GLM	does
not	handle	missing	values	very	well.	The	aforementioned	scripts	set	up	H2O,	load	the	data,
and	define	train,	valid,	test,	x,	xNoOdds,	and	y.	We	have	a	validation	data	set,	so	we	will	use
that	instead	of	cross-validation.

As	a	first	step,	let’s	make	a	linear	model	with	all	default	settings,	except	it	will	be	given	just	a
single	input,	rather	than	all	of	them.	The	single	input	will	be	the	average	bookmaker	odds	of	a
win,	and	the	model	is	therefore	the	simplest	one	possible.	The	result	it	gives	is	a	good
baseline	with	which	to	evaluate	the	other	models;	in	fact,	you	will	already	have	seen	this	result
referenced	in	the	other	chapters.

Here	is	the	R	code:

mAvH	<-	h2o.glm("BbAvH",	"HomeWin",	train,
		model_id	=	"GLM_defaults_HomeWin_BbAvH",
		validation_frame	=	valid,	family	=	"binomial")

First,	the	AUCs:

						HomeWin
train			0.618
valid			0.675
test				0.650

Then,	the	accuracy:

						HomeWin
train			0.589
valid			0.650
test				0.634

Okay.	With	that	baseline	number	in	mind,	let	us	make	both	models	we	are	interested	in:
predicting	home	win,	first	using	all	fields	(x),	and	the	harder	challenge	of	not	using	the
bookmaker	odds	(xNoOdds):

m1	<-	h2o.glm(x,	"HomeWin",	train,
		model_id	=	"GLM_defaults_HomeWin_Odds",
		validation_frame	=	valid,	family	=	"binomial")
m2	<-	h2o.glm(xNoOdds,	"HomeWin",	train,
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		model_id	=	"GLM_defaults_HomeWin_NoOdds",
		validation_frame	=	valid,	family	=	"binomial")

Each	of	those	ran	quickly.	I’m	going	to	use	the	compareModels()	that	was	introduced	in
Chapter	5	(see	Example	5-1	for	the	code)	to	take	a	look	at	their	AUC,	and	their	accuracy:

res	<-	compareModels(c(m1,m2),	test)
round(res[",AUC",],	3)
round(res[",Accuracy",],	3)

I	get	this	output	for	AUC:

									Odds				NoOdds
train			0.636					0.595
valid			0.678					0.625
test				0.645					0.612

And	this	output	for	accuracy:

									Odds				NoOdds
train			0.607					0.582
valid			0.650					0.615
test				0.622					0.605

On	accuracy,	0.634	was	our	target	for	HomeWin	(0.650	for	valid),	so	adding	more	fields	has
made	the	model	worse.	Sigh.	If	we	take	a	look	at	the	most	useful	input	variables,	with
h2o.varimp(m1)	it	tells	me	the	first	24	variables	are	all	betting	odds;	number	25	is	res5a.	So	it
is	strange	it	didn’t	give	an	identical	result,	rather	than	a	worse	one.

Without	betting	odds	to	help,	we	naturally	score	worse,	though	not	terribly	so.	Here	are	the
top	five	variables	for	m2:

			names	coefficients	sign
1	res20A					0.199159		NEG
2	res20H					0.183050		POS
3	Div.E0					0.098531		POS
4				HS1					0.080411		POS
5		res5H					0.062600		POS

The	top	two	were	the	“long-term	team	strength”	estimates,	based	on	the	results	of	the	previous
20	matches:	the	away	team’s	strength	is	a	negative	influence,	and	the	home	team’s	strength	is	a
positive	influence.	That	makes	sense.	The	third	one	shows	how	GLM	deals	with	factors:	it	is
saying	“if	the	match	is	a	top-division	match	then	a	home	win	is	more	likely.”	Unlikely,	but
could	the	home-team	effect	be	bigger	for	the	most	heavily	supported	teams?	The	fourth	one
says	that	the	number	of	shots	made	by	the	home	team	in	their	most	recent	match	is	an
influence:	the	higher	it	is,	the	more	chance	they	will	win.



Football:	Tuned	GLM
So,	having	seen	that	using	all	columns	gave	us	a	worse	result	than	just	using	one,	the	question
becomes	can	we	tune	GLM	to	do	better?	I	am	going	to	concentrate	on	just	the	first	of	our	two
variations:	using	all	available	columns,	and	trying	to	predict	home	wins.	We	have	quite	a	lot
of	columns,	79,	but	that	is	still	comfortably	below	the	500	columns	guideline	for	the	IRLSM
solver,	so	I	am	going	to	stick	with	that	solver.	With	a	binomial	classification,	you	set	family	=
"binomial",	and	there	is	no	choice	for	the	link	function	(it	is	always	“logit”).

I	will	use	early	stopping,	lambda	search	on,	and	try	the	three	main	values	of	alpha	(0.0	to	get
ridge	regression,	1.0	to	get	lasso	regression,	and	0.5	to	get	elastic	net).	The	only	grid	hyper-
parameter	is	alpha,	and	the	following	code	runs	nice	and	quickly:

g	<-	h2o.grid("glm",	grid_id	=	"GLM_1",
			hyper_params	=	list(
					alpha	=	c(0,	0.5,	0.99)
			),
			x	=	x,	y	=	"HomeWin",	training_frame	=	train,
			validation_frame	=	valid,
			family	=	"binomial",

			lambda_search	=	TRUE,

			stopping_metric	=	"AUC",
			stopping_tolerance	=	0,
			stopping_rounds	=	4,
			max_iterations	=	100
			)

To	three	decimal	places,	the	AUC	turned	out	to	be	identical	(0.645	on	test	set)	for	all	values	of
alpha,	and	therefore	slightly	worse	than	the	benchmark	model.	Results	for	accuracy	were
similarly	unexciting.

The	best	value	of	alpha	was	0.0.	I	tried	again	with	some	more	low	values	of	alpha,	0.05	and
0.15,	but	0.0	came	out	top	again.	The	difference	between	the	models	is	minor.

And	the	exciting	conclusion	is	that	there	is	nothing	else	worth	tuning,	and	that	our	best	model
performs	exactly	the	same	as	our	default	model.	The	AUC	on	the	test	set	is	0.645!	The	final
chapter	(“Football	Data”)	compares	all	the	models	on	this	data	set.



Summary
Linear	models	are	great	when	there	is	a	linear	relationship	between	your	predictor	variables
(even	if	hundreds	or	even	thousands	are	involved)	and	your	response	variable.	It	is	less	well-
suited	to	more	nonlinear	data,	and	to	the	kind	of	pattern	matching	problems	that	humans	are
good	at.

But	when	the	data	suits	the	problem	it	can	generally	give	a	good	model	with	less	effort	than
the	other	algorithms,	and	the	H2O	implementation	can	work	very	quickly	on	really	large	data
sets.	I	will	use	GLM	when	imputing	missing	data	in	Chapter	9,	because	of	these	good	enough
and	quick	properties.

The	next	chapter	is	the	last	of	this	block	of	four,	and	looks	at	deep	learning.	This	has	almost
the	opposite	benefits	of	linear	models:	deep	learning	is	good	at	pattern-matching	problems,
but	is	usually	the	slowest	model	to	build.

	Or	if	you	previously	used	lambda	search,	and	made	a	note	of	what	value	it	found,	and	want
to	save	a	bit	of	CPU	time.

	The	difference	between	the	two	is	that	COORDINATE_DESCENT_NAIVE	knows	less	about
how	the	world	works,	how	people	can	be	cruel,	how	people	can	make	you	cry.	It	also	differs
in	how	the	inner	loop	of	cyclical	coordinate	descent	is	implemented.

	COORDINATE_DESCENT	has	become	the	default	for	when	you	switch	lambda	search	on,
so	no	longer	experimental?

	I	kept	the	same	8%	threshold	to	allow	easier	comparison	between	chapters.	Unfortunately
here	it	gives	a	noisier	chart.

	lambda=0	(no	regularization)	does	not	get	tried.	If	you	suspect	that	may	give	the	best	model,
you	will	have	to	try	it	separately.

	That	is,	those	parameters	have	no	meaning	for	the	other	families,	so	you	would	be	wasting
time.

	If	I	had	to	choose	one,	at	this	stage,	I’d	go	with	tweedie_variance_power	=	1.5	and
tweedie_link_power=0.0,	as	it	has	the	best	“worst	of	the	three	runs.”

	There	may	be	a	small	bit	of	optimization	to	be	wrung	out	by	trying	other	alpha	values	near
0.33.

	The	3.8.3.x	and	3.10.0.x	versions	appeared	to	have	a	bug	that	means	only	one	core	is	kept
busy.	It	is	fixed	in	3.10.0.8,	so	if	you	see	this	problem,	upgrade	to	at	least	that	version.

	m.confusion_matrix(valid)	in	Python,	or	h2o.confusionMatrix(m,	valid=TRUE)	in	R.	Also
part	of	the	output	when	you	print	m.
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	See	“Missing	Data”	in	Chapter	9	for	how	this	was	done.	All	data	prior	to	August	2000	got
removed,	because	too	many	columns	were	missing.
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Chapter	8.	Deep	Learning	(Neural	Nets)

Deep	learning	is	the	new	and	trendy	name	for	neural	networks,	and	it	sure	is	trendy!	But
deservedly	so,	as	it	is	behind	some	of	the	most	spectacular	advances	in	AI	and	machine
learning	at	the	moment.	Deep	learning	algorithms	tend	to	be	the	best	performers	at	problems
that	humans	find	easy	yet	(other)	machine	learning	approaches	find	difficult,	such	as	pattern
recognition.	Theoretically	they	can	solve	any	problem,	but	they	have	their	downsides	too:
they	can	be	slow,	they	are	black	boxes	and	cannot	explain	their	thinking,	and	they	struggle	a
bit	with	categorical	inputs.	If	your	problem	is	to	take	a	company’s	annual	transactions	and
calculate	how	much	tax	is	owed,	a	neural	net	is	not	the	right	choice.

If	you’ve	used	another	library	for	neural	nets	or	deep	learning,	one	complaint	you	won’t	have
about	H2O’s	implementation	is	ease	of	use.	As	we	saw	back	in	Chapter	1,	it	takes	care	of	most
of	the	details	for	you,	and	you	can	get	good	results	with	a	one-liner.	Yes,	there	are	still	a	huge
number	of	parameters	to	tune	but,	as	we	will	see	in	this	chapter,	the	majority	of	them	never
need	to	be	touched.

As	in	the	other	chapters,	we	will	take	look	at	how	they	work,	but	only	the	parts	you	need	to
understand	to	effectively	tune	them,	then	we	will	go	through	the	parameters,	and	then	dive	into
using	deep	learning	on	each	of	our	data	sets,	first	with	defaults,	then	going	through	the	tuning
process.

However,	a	few	special	points	to	note.	First,	the	use	of	deep	learning	as	an	auto-encoder,	i.e.,
unsupervised	deep	learning,	is	instead	in	Chapter	9.	Second,	there	are	so	many	parameters	that
some	of	them	(the	ones	I	have	never	needed	to	touch)	are	in	an	appendix	at	the	end	of	this
chapter.	Third,	deep	learning	grids	can	be	slow.	If	you	have	faithfully	followed	along	with
every	code	example	to	this	point,	you	may	need	more	patience	or	more	hardware.

TIP
Even	if	you	are	sure	deep	learning	is	the	model	for	you,	it	can	be	worth	making	some	quick	models	with	the	other
algorithms,	if	only	to	get	an	idea	of	what	a	good	score	on	your	data	set	will	be.	If	deep	learning	is	doing	better
than	all	the	other	algorithms,	but	you	seem	to	have	hit	a	wall,	maybe	that	is	just	the	best	that	can	be	done	without
overfitting.	But	if	it	is	doing	worse,	chances	are	there	is	still	some	parameter	you	can	tweak	to	improve
performance.



What	Are	Neural	Nets?
I	am	supposed	to	mention	the	human	brain	here,	but	let’s	cut	to	the	chase:	a	neuron	is	a
function	that	takes	multiple	numeric	inputs	and	gives	out	one	numeric	output.	These	neurons
are	organized	into	layers,	and	the	outputs	from	all	the	neurons	in	one	layer	become	the	inputs
for	each	neuron	in	the	next	layer.

NOTE
I	am	only	describing	the	implementation	in	H2O,	which	is	called	a	feed-forward	neural	network.	The	H2O
implementation	is	designed	to	be	run	in	parallel	across	a	cluster	on	very	large	data.	At	the	time	of	writing,	H2O
does	not	support	GPUs.

As	Figure	8-1	shows,	the	very	first	layer	is	your	data:	a	training	sample,	or	a	test	sample,	or
real	inputs	once	you	are	in	production.	And	the	very	last	layer	is	your	outputs:	the	answer.	If
you	are	doing	a	regression	(learning	a	single	value)	then	the	output	layer	will	have	one
neuron.	If	you	are	doing	a	classification	then	the	output	layer	will	have	one	neuron	for	each
possible	answer	(and	each	output	value	will	be	a	probability	for	that	answer:	the	answer	with
the	highest	probability	for	your	set	of	inputs	is	chosen).	The	layers	between	the	input	layer
and	the	output	layer	are	called	the	hidden	layers.

Each	neuron	in	each	hidden	layer	has	a	weight	for	each	of	its	inputs,	and	modifying	those
weights	is	how	the	network	learns.	(There	is	also	a	“bias”	input	to	each	neuron,	which	can	be
thought	of	as	a	weight	connected	to	a	constant	input;	it	is	also	tuned	during	training.)	The
functions	inside	the	neuron	are	discussed	later,	in	“Activation	Functions”.

The	idea	is	you	start	with	random	weights,	then	you	give	it	the	first	training	sample	and	the
correct	answer	(this	is	supervised	learning,	remember),	calculate	the	error,	and	then	use	that
to	go	back	and	tweak	each	of	the	weights,	so	that	there	is	a	bit	less	error. 	Then	you	take	the
second	training	sample	and	repeat.	Working	your	way	through	every	piece	of	training	data	is
called	an	epoch.	You	specify	the	number	of	epochs 	you	want	the	algorithm	to	perform.
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Figure	8-1.	Network,	layers,	neurons

If	you’ve	used	or	studied	other	deep	learning	libraries	you	may	have	met	mini	batches.	A	mini
batch	of,	say,	size	32	means	it	will	process	32	training	samples,	then	go	back	and	update	the
weights	in	one	batch.	H2O	does	not	use	mini	batches,	which	means	it	works	exactly	as	just
described:	the	weights	get	updated	after	every	single	sample.	However,	when	run	across	a
multinode	cluster,	each	node	in	the	cluster	works	independently	for	one	iteration,	and	at	the
end	of	each	iteration	the	network	weights	are	averaged	with	those	on	every	other	node.	One
iteration	can	be	larger	or	smaller	than	an	epoch;	the	parameters	that	control	this	are	discussed
later	in	this	chapter.



Numbers	Versus	Categories
Everything	is	a	number	in	a	neural	net,	and	they	are	happiest	when	all	your	predictor
variables	are	numeric.	For	instance,	when	we	try	it	on	the	MNIST	digit	recognition	problem
there	will	be	one	input	neuron	per	pixel,	and	the	value	will	be	the	intensity	of	that	pixel.
However,	when	you	have	a	categorical	input,	each	possible	value	of	that	category	will	become
one	input	neuron;	one	of	that	set	of	input	neurons	will	be	set	to	1	and	all	the	others	will	be	set
to	0.	This	is	called	one-hot	encoding.

Let’s	say	you	have	a	gender	field,	and	the	possible	values	are	“Male,”	“Female,”	“Unknown.”
You	also	have	an	age	field,	which	is	a	number.	This	means	we	will	have	four 	input	neurons:

Male?

Female?

Gender-unknown?

Age

For	a	21-year-old	man,	the	inputs	would	be:

Male	=	1

Female	=	0

Gender-unknown	=	0

Age	=	21

For	a	55-year-old,	who	didn’t	answer	the	gender	question,	the	inputs	would	be:

Male	=	0

Female	=	0

Gender-unknown	=	1

Age	=	55

Luckily	the	H2O	implementation	takes	care	of	all	this	for	you:	give	it	a	data	set	with	a	mix	of
numeric,	integer,	and	enum	variables,	and	it	will	do	whatever	data	manipulation	has	to	be
done.
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NUMBERS	OR	CATEGORIES?	(ORDERED	FACTORS)

By	the	way,	what	if	your	data	had	age	as	a	categorical	input?	For	example:

under	18

18	to	24

25	to	39

40	to	59

60+

In	R	terminology,	this	is	an	example	of	an	ordered	factor:	“under	18”	is	less	than	“18	to
24”	is	less	than	“25	to	39”	is	less	than	“40	to	59”	is	less	than	“60+”.	Should	this	be	five
input	neurons	to	your	network,	or	should	you	convert	it	to	a	single	numeric	input?

Tricky.	In	this	case	I’d	leave	it	as	five	categories,	because	it	is	not	obvious	how	to	convert
it	to	a	number	([1,	18,	25,	40,	60]?	[18,	25,	40,	60,	120]?).	And,	also,	because	the	intent
behind	that	data	wasn’t	to	know	their	age,	it	was	a	proxy	for	their	lifestyle.	However,	if	the
age	field	was	made	up	of	20	categories,	each	a	nice,	clean,	five-year	range,	I’d	be	much
more	tempted	to	convert	it	to	a	single	value.



Network	Layers
The	main	two	things	you	need	to	concern	yourself	with,	when	using	h2o.deeplearning(),	are
the	number	of	epochs	(how	long	you	are	willing	to	spend	training)	and	the	shape	of	the
network	(the	number	of	layers,	and	the	number	of	neurons	in	each	of	those	layers).	The	more
layers	and	neurons	you	have,	the	longer	it	will	take	to	train	(and	the	slower	it	will	be	to	use),
so	you	want	as	few	as	you	can	get	away	with.	While	theoretically 	one	hidden	layer	is	enough
to	represent	all	your	data,	whether	involving	nonlinear	relationships	or	not,	in	practice	it
won’t	be.	Anyway,	most	people	wouldn’t	consider	it	deep	learning	if	you	only	had	one	hidden
layer!

Some	hints	for	choosing	the	number	of	layers	and	neurons:

For	nonlinear	problems,	start	with	two	layers	and	see	how	it	does.

The	more	nonlinear	your	problem,	the	more	layers	you	need.	If	you	feel	it	is	just	not
getting	it,	try	adding	another	layer.	Or	more	epochs.	Or	more	training	data.	But	if	you	are
up	to	five	layers,	a	sixth	is	probably	not	going	to	help	(and	you	are	looking	at	a	lot	of
training	time).

The	more	neurons	in	a	layer,	the	more	clearly	it	will	be	able	to	understand	the	data.	If	you
feel	it	has	the	general	idea,	but	is	a	bit	fuzzy,	try	adding	more	neurons.	Or	more	epochs.	Or
more	training	data.

The	more	data	inputs	you	have,	the	more	neurons	you	are	likely	to	need	in	the	first	hidden
layer.	Maybe.

The	more	output	neurons	you	have,	the	more	neurons	you	are	likely	to	need	in	the	final
hidden	layer.	Maybe.

The	more	layers	you	have,	the	more	likely	you	are	to	benefit	from	a	dropout	function
(described	in	“Activation	Functions”).

TIP
You’ll	be	able	to	see	if	more	epochs	is	going	to	help	or	not	by	looking	at	the	scoring	history	plot	(on	Flow,	or
plot	it	yourself	with	data	from	h2o.scoreHistory(m)	in	R,	or	m.scoring_history()	in	Python).	If	the	line	wobbles
erratically,	and	the	overall	trend	is	sideways,	not	down,	then	more	epochs	is	unlikely	to	help;	try	one	of	the	other
ideas.	If	it	is	merely	getting	rather	flat,	you	have	entered	the	realm	of	diminishing	returns	but,	if	you	don’t	mind
waiting,	then	more	epochs	might	give	a	small	improvement.

The	time	spent	training	a	deep	learning	model	is	primarily	decided	by	the	number	of	training
samples	times	the	number	of	epochs.	Which	is	a	shame,	as	more	of	both	is	better,	though	with
diminishing	returns.	But	how	long	you	need	to	spend	training	(to	reach	the	same	point	of
diminishing	returns)	is	related	to	the	number	of	weights	in	your	model:	the	more	you	have,
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the	more	there	is	to	learn.	The	number	of	weights	between	two	layers	is	simply	the	product	of
the	number	of	neurons	in	those	two	layers.	Don’t	forget	to	count	the	input	layer	and	the	output
layer.

Consider	a	100x100	network,	with	2	numeric	inputs	and	1	output.	It	has	(2	*	100)	+	(100	*
100)	+	(100	*	1)	=	10,300	weights.	If	you	add	a	third	layer,	also	with	100	neurons,	it	goes	to	(2
*	100)	+	(100	*	100)	+	(100	*	100)	+	(100	*	1)	=	20,300	weights.	It	(hopefully)	will	understand
your	problem	better,	but	might	need	more	time	to	settle	down	and	converge.

Now	consider	that	100x100	network,	but	with	10	numeric	inputs,	and	classifying	into	3	states.
The	number	of	weights	is	now	(10	*	100)	+	(100	*	100)	+	(100	*	3)	=	11,300.	That	is,	there	are
800	more	between	the	input	layer	and	the	first	hidden	layer,	and	200	more	between	the	second
hidden	layer	and	the	output	layer,	but	the	total	is	still	dominated	by	the	weights	between	the
two	hidden	layers.

Now	take	the	same-sized	network,	but	this	time	with	5	numeric	inputs	and	5	enum	inputs:
gender	(2	levels),	favorite	color	(10	levels),	Myers–Briggs	personality	type	(16	levels),
astrology	sign	(12	levels),	and	Chinese	horoscope	sign	(12	levels).	Yep,	we’re	making	the
world’s	best	online	dating	site.	Now	how	many	weights?	Remember	the	earlier	discussion:
each	enum	level	becomes	an	input	neuron	(plus	an	extra	input	neuron	in	each	category	to
handle	missing	or	unseen	values).	We	now	have	5	+	3	+	11	+	17	+	13	+	13	=	62	input	neurons,
so	our	total	number	of	weights	is	(62	*	100)	+	(100	*	100)	+	(100	*	3)	=	16,500.	We	still	only
have	10	input	columns	in	our	data,	but	suddenly	we	have	50%	more	weights.

Why	should	you	care?	The	more	weights,	the	slower	training	will	be.	And	because	if	you
naively	use	a	factor	with	50,000	levels	(e.g.,	zip	code),	and	1000	neurons	in	your	first	hidden
layer,	you	might	have	50	million	more	weights	than	you	were	expecting.6



Activation	Functions
If	you	remember	the	diagram	of	the	neuron	(Figure	8-1),	near	the	start	of	this	chapter,	you
know	it	has	lots	of	(weighted)	inputs	coming	in,	and	one	output	going	out.	The	inputs	are
summed,	and	then	it	is	the	activation	function	that	decides	the	value	of	the	output.

H2O	supports	three	activation	functions:

Rectifier

The	most	common	activation	function,	and	the	default.	It	outputs	the	sum	of	its	weighted
inputs,	but	clips	all	negative	values	to	zero.	See	the	upper	line	in	Figure	8-2.	This	implies
that	it	will	be	generating	quite	a	few	zeros	(zeros	are	good	for	training	deeper	networks),
but	also	means	that	positive	values	are	unbounded.

Tanh

Short	for	hyperbolic	tangent. 	This	takes	an	input	range	of	negative	infinity	to	positive
infinity	and	converts	that	to	an	output	range	of	–1	to	+1.	But	it	varies	most	rapidly	when
the	sum	of	the	inputs	is	close	to	zero.	See	the	lower	line	in	Figure	8-2.

Maxout

This	simply	outputs	the	highest	(the	max)	of	the	inputs,	meaning	the	weighted	inputs	are
used	directly,	not	summed.

Figure	8-2.	Rectifier	and	Tanh	activation	functions

You	can	find	claims	of	“the	best”	for	each	of	these	activation	functions,	but	it	does	really	seem
to	depend	on	your	data,	so	wherever	possible	use	a	grid	search	to	try	all	three	options.
However,	Rectifier	is	generally	quicker,	so	if	in	doubt	go	with	that.	And	if	you	get	complaints
about	numeric	instability	with	Rectifier	or	Maxout,	switch	to	Tanh.
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H2O	supports	the	preceding	three	activation	functions,	but	there	are	six	possible	values	for
the	activation	parameter.	This	is	because	each	of	the	above	has	a	“WithDropout”	variant,
which	allows	using	hidden_dropout_ratios	to	control	the	rate	at	which	outputs	are	randomly
set	to	zero,	as	a	regularization	technique	(to	avoid	overfitting	and	give	a	more	robust	model).



Parameters
Of	all	the	H2O	algorithms,	deep	learning	has	the	most	parameters.	You	could	spend	the	rest	of
your	life	trying	to	tune	them	all.	Some	were	introduced	in	Chapter	4;	a	lot	of	the	advanced
ones	have	been	moved	to	an	appendix	at	the	end	of	this	chapter.	From	what	is	left	most	have
been	divided	into	either	scoring-related	or	regularization-related.	But	the	first	one	that	you
will	often	be	setting	is	to	describe	how	many	hidden	layers	there	will	be	and	how	big	each
should	be:

hidden

Hidden	layer	sizes.	The	default	is	200,200,	meaning	there	will	be	two	hidden	layers,	with
200	neurons	in	each	layer.	If	you	give	60,40,20	then	you	will	have	three	hidden	layers,
with	60	in	the	first,	40	in	the	second,	and	20	in	the	third.

The	next	parameter	sets	the	mode	of	operation,	deciding	if	you	want	an	auto-encoder	or	a
supervised	network.	Auto-encoding	with	deep	learning	is	covered	in	“Deep	Learning	Auto-
Encoder”	in	Chapter	9:

auto-encoder

Defaults	to	false	(meaning	to	do	supervised	learning).	Set	this	to	true	if	auto-encoding.
Usually	you	should	set	activation	to	Tanh	at	the	same	time.



Deep	Learning	Regularization
The	idea	of	regularization	was	introduced	in	“Sampling,	Generalizing”.	For	deep	learning,
there	are	two	main	things	you	can	try:

Drop	connections	when	connecting	one	layer	to	the	next.

Regularization.

The	activation	function	is	here,	as	the	choice	decides	what	other	parameters	you	can	use:

activation

This	parameter	has	six	possible	values,	because	it	is	doing	two	things.	First	you	can
choose	between	three	activation	functions	(introduced	in	“Activation	Functions”).	Then
you	choose	whether	to	use	dropout	or	not.	In	other	words,	if	you	want	to	use
hidden_dropout_ratios	you	must	specify	one	of	“TanhWithDropout,”
“RectifierWithDropout,”	or	“MaxoutWithDropout.”	The	choice	of	activation	cannot	be
changed	when	using	checkpointing,	and	also	you	can’t	have	a	grid	with	some	models
using	hidden	ratios,	some	not.	So,	in	those	cases,	I	recommend	you	always	use	one	of	the
“WithDropout”	activation	functions,	and	set	hidden_dropout_ratios	to	0.0	when	you	don’t
want	any	dropout.

hidden_dropout_ratios

You	specify	one	ratio	per	hidden	layer.	The	default	of	0.5	means	for	each	training	row	that
is	processed	through	the	network,	there	is	a	50%	chance	a	neuron	will	pass	its	value	on	to
the	next	hidden	layer,	and	a	50%	chance	it	will	pass	on	zero.	It	is	ignored	if	not	using	an
activation	function	that	supports	dropout.	Hard	to	choose	intuitively,	so	it	is	best
experimented	with	in	a	grid.	Try	a	higher	dropout	rate	in	networks	with	a	higher	number
of	layers.

input_dropout_ratio

This	ratio	says	what	percentage	of	the	input	neurons	to	feed	into	the	first	hidden	layer.
Unlike	hidden_dropout_ratios	it	can	be	used	with	any	activation	setting.	The	default	is	0.0
(meaning	no	input	dropout).	If	it	is	0.5	then	it	means	for	each	row	in	the	training	data,
there	is	a	50%	chance	of	each	feature	being	used.	Rephrasing,	it	sets	half	your	columns	to
zero.	A	different	half	on	each	training	sample,	and	on	each	epoch.	This	can	work	well	if
there	is	a	lot	of	noise	in	your	data,	though	0.5	is	quite	high.	It	is	a	good	one	to	use	in	a
grid,	perhaps	initially	with	a	wide	range,	e.g.,	0.0,	0.1,	0.2,	0.3,	0.4,	and	0.5.

l1

L1	regularization.	Also	known	as	lasso	regularization.	Defaults	to	0,	and	typical	values	to
try	are	0.0001	or	smaller.



l2

L2	regularization.	Also	known	as	ridge	regularization.	Defaults	to	0,	and	typical	values	to
try	are	0.0001	or	smaller.

max_w2

An	upper	limit	for	the	(squared)	sum	of	the	incoming	weights	to	a	neuron.	The	default	is
to	have	no	limit.	This	is	a	very	direct	way	to	stop	weights	from	growing	too	big.



Deep	Learning	Scoring
There	are	a	large	number	of	parameters	to	control	the	frequency	of	scoring.	They	allow	you
to	control	the	conflict,	or	balance,	between	a	few	concepts:

You	need	accurate	scores	(to	judge	models,	to	know	when	to	early-stop).

Time	spent	scoring	is	time	not	spent	training.

Regular	scoring	means	finer-grained	choice	for	returning	the	best	model.

Cluster	considerations.

Training	data	size.

The	following	sidebar	walks	through	how	they	work	together	in	a	realistic	example.	You	may
want	to	keep	referring	back	to	it	as	you	read	the	parameter	descriptions.



DEEP	LEARNING	SCORING	EXAMPLE

I	will	assume	a	3-node	cluster,	and	I	will	assume	120,000	training	rows,	with	40,000	on
each	node.	Early	stopping	defaults	to	stopping	after	five	scoring	rounds	with	no
improvement.

Each	node	starts	training	on	its	40,000	rows,	from	random	weights,	and	effectively	each	is
building	its	own	deep	learning	model	based	only	on	the	40,000	rows.	After	every	single
row	the	weights/biases	are	updated, 	but	there	is	no	network	communication	yet.

It	does	this	for	one	iteration,	the	length	of	which	is	controlled	by
train_samples_per_iteration.	If	you	left	that	as	the	default	of	–2	it	will	be	decided	based	on
other	factors	(such	as	target_ratio_comm_to_comp),	but	typically	it	will	be	a	fraction	of
an	epoch	for	large	data	sets,	and	could	be	dozens	of	epochs	for	small	data	sets.	A	higher
value	for	score_interval	or	a	lower	value	for	score_duty_cycle	can	also	mean	an	iteration
takes	longer.

At	the	end	of	the	iteration,	each	node	will	stop	and	share	its	weights/biases	with	every
other	node.	They	get	averaged	(so	that	each	node	now	has	identical	weights).	Then	each
node	will	score	on	3333	of	its	40,000	samples	(because	score_training_samples	defaults
to	10,000),	and	then	score	on	all	the	validation	data	(because	score_validation_samples
defaults	to	zero).

Now	a	new	entry	is	made	in	the	scoring	history	of	the	model.	If	it	is	the	best	model	so	far,
a	snapshot	of	the	model	is	saved.	And	then	each	node	starts	training	again,	still	on	just	its
own	40,000	rows.	At	the	end	of	the	second	iteration,	the	weights/biases	are	shared	and
averaged	again.

It	will	consider	early	stopping	for	the	first	time	after	10	iterations.	It	will	make	an	average
of	the	scoring	metric	for	rounds	1	to	5,	and	the	average	of	the	scoring	metric	for	rounds
6	to	10.	If	the	second	number	is	equal	to	or	lower	than	the	first	number,	it	stops.	Otherwise
it	does	another	iteration	(and	will	compare	the	average	of	rounds	2	to	6	against	7	to	11).

If	train_samples_per_iteration	was	0,	each	node	would	do	40,000	samples	per	iteration.	If
–1,	each	node	would	do	exactly	120,000	samples	per	iteration.	If	I	set	it	to	240,000	(twice
the	size	of	my	training	data),	each	node	would	do	80,000	samples	per	iteration,	and
scoring	would	be	every	2	epochs.	But,	be	cautious	about	setting	this	higher	than	say
100,000	(whatever	the	training	data	size),	as	you	want	your	nodes	to	share	their	weights
with	each	other	fairly	frequently.	Leaving	train_samples_per_iteration	as	–2	is	usually
best	when	using	multiple	nodes.

train_samples_per_iteration

This	controls	how	many	training	rows	(samples)	to	use	per	iteration;	an	iteration	can	be
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thought	of	as	when	the	model	is	scored.	It	is	an	integer,	and	normally	you	will	use	one	of
the	following	three	special	values.	–2	is	the	default,	and	lets	H2O	decide.	0	and	–1	mean
the	same	thing	when	on	a	single	node:	score	every	epoch.	See	“Deep	Learning	Scoring
Example”	for	how	they	differ	when	using	multiple	nodes.

score_interval

The	minimum	time	between	scoring	models,	in	seconds.	The	default	is	5.	If
stopping_rounds	is	also	5,	meaning	there	will	be	a	minimum	of	10	scoring	rounds,	then
you	know	the	model	will	build	for	at	least	50	seconds.	By	the	way,	if	other	parameters
(e.g.,	low	score_duty_cycle,	high	train_samples_per_iteration)	mean	that	scoring	rounds
are	already,	say,	30	seconds	apart,	then	changing	this	from	5	to,	e.g.,	15	or	20,	will	have
no	effect.

score_duty_cycle

How	much	time	to	spend	scoring,	versus	training.	The	range	is	0.0	to	1.0,	where	lower
values	mean	more	training,	while	higher	values	mean	more	scoring.	The	default	is	0.1
(10%	of	the	time	spend	on	scoring,	90%	on	training).	If	you	set	it	to	0.01	then	typically	it
will	be	10	times	longer	between	scoring	events	which,	for	instance,	might	mean	you	see	a
scoring	history	entry	every	50	epochs	instead	of	every	5	epochs.

target_ratio_comm_to_comp

Target	ratio	of	communication	overhead	to	computation.	The	default	is	0.05,	spending	5%
on	communication	between	nodes,	and	95%	of	time	on	training	each	node.	This	only
matters	for	multinode	clusters,	and	also	it	is	only	used	when	train_samples_per_iteration
=	-2.	Lowering	it	will	either	mean	the	scoring	rounds	are	further	apart	(implying	fewer	of
them),	or	have	no	effect	at	all.

replicate_training_data

Defaults	to	true.	If	true	then	it	will	replicate	the	entire	training	data	set	on	every	node	in
your	cluster.	For	small	data	sets	this	can	result	in	faster	training.

shuffle_training_data

Defaults	to	false.	If	true	then	training	data	is	randomly	sorted.	This	is	recommended	if	you
have	set	balance_classes	(see	“Data	Weighting”	in	Chapter	4),	for	instance.

score_validation_samples

How	many	of	the	validation	data	set	rows	to	use	when	scoring.	The	default	of	0	means	to
use	them	all.	If	your	validation	data	is	large,	or	you	are	scoring	more	frequently,	you
might	want	to	choose	a	lower	number	to	speed	up	scoring	(at	the	expense	of	accuracy);
personally	I	would	instead	try	to	score	less	frequently.	When	using	cross-validation,	the
fold	that	is	not	used	as	training	data	is	treated	as	the	validation	data,	and	this	setting	also



applies	to	that	too.

score_training_samples

Like	score_validation_samples,	but	for	when	scoring	on	the	training	data	instead	of	a
validation	test	set.	The	default	is	10,000,	to	make	sure	that	very	large	data	sets	do	not	make
scoring	really	slow.	If	scoring	frequently,	you	might	want	to	make	this	even	lower.	When
using	cross-validation,	this	is	only	used	when	making	the	final	model.

score_validation_sampling

Only	used	when	score_validation_samples	has	been	changed	from	the	default	of	0.
Defaults	to	“Uniform,”	but	can	also	be	“Stratified”	(which	might	give	better	results	if
doing	a	classification	and	the	target	class	is	unbalanced).

TIP
If	you	feel	that	scoring	is	happening	more	frequently	than	you	need,	lowering	score_duty_cycle	or	increasing
score_interval	is	often	best.	Explicitly	setting	train_samples_per_iteration	would	also	do	the	job.	If	you	feel	early
stopping	is	triggering	too	early,	you	could	also	do	any	of	those,	but	in	that	case	the	best	fix	is	often	to	simply
increase	stopping_rounds.	For	example,	using	checkpoint	to	restart	a	model,	with	stopping_rounds	doubled,	works
well.



Building	Energy	Efficiency:	Default	Deep	Learning
You	know	by	now	that	this	is	a	regression	problem,	unless	you	have	jumped	straight	here,	in
which	case	you	can	learn	about	it	at	“Data	Set:	Building	Energy	Efficiency”.	Run	either
Example	3-1	or	Example	3-2	from	the	earlier	chapter,	which	sets	up	H2O,	loads	the	data,	and
defines	train,	test,	x,	and	y.	We	are	using	10-fold	cross-validation,	instead	of	a	validation	set.
(See	“Cross-Validation	(aka	k-folds)”	for	a	reminder.)	The	cross-validation	means	it	has	11
times	the	work	to	do	(10	folds,	plus	making	the	final	model),	which	is	sometimes	a	problem
as	deep	learning	is	already	quite	slow.	But	this	data	set	is	small	enough	for	it	to	be
manageable:

m	<-	h2o.deeplearning(x,	y,	train,	nfolds	=	10,	model_id	=	"DL_defaults")

In	Python	use:

m	=	h2o.estimators.H2ODeepLearningEstimator(model_id="DL_defaults")
m.train(x,	y,	train,	nfolds=10)

That	took	just	over	10	seconds	to	run,	with	all	8	cores	fully	used.	It	gave	an	average	MSE	of
8.15	across	the	10	folds	(with	a	standard	deviation	of	1.40),	but	a	lower	6.60	on	the	test	data.

As	in	previous	chapters,	Figure	8-3	shows	the	predictions	on	the	test	data.	The	black	circles
are	the	correct	answers,	the	13	up	arrows	indicate	where	it	was	over	8%	too	high,	and	the	34
down	arrows	indicate	where	it	was	over	8%	too	low.	(The	small	squares	are	where	it	was
within	8%.)
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Figure	8-3.	Default	performance	of	deep	learning	on	test	data

Notice	that,	out	of	the	box,	this	was	a	worse	result	than	either	of	random	forest	or	GBM,	and
only	just	slightly	better	than	GLM.	The	results	of	all	models	on	this	data	set	will	be	compared
in	“Building	Energy	Results”	in	the	final	chapter.



Building	Energy	Efficiency:	Tuned	Deep	Learning
Deep	breath.	There	is	so	much	we	can	do	here.	So	many	parameters,	so	little	time.	There	is
time	pressure	for	another	reason:	typically	the	deep	learning	models	take	more	CPU	time	than
the	other	algorithms	we’ve	looked	at.	That	means	we	want	to	keep	our	grid	searches	as
focused	as	possible.	(See	“Grid	Search”,	back	in	Chapter	5,	if	grids	are	new	to	you.)

As	usual,	the	first	thing	I	want	to	do	is	use	early	stopping	(see	“Early	Stopping”)	so	that	I	can
give	each	model	lots	of	epochs,	and	not	have	to	worry	about	it.	For	the	first	few	grids,
however,	I	will	be	more	severe	than	I	was	with	the	other	supervised	learning	algorithms:	for
deep	learning,	if	it	hasn’t	improved	at	least	0.5%	over	the	last	three	scoring	rounds,	it	stops.
My	hope	is	that	this	severity	affects	all	models	in	the	grid	equally. 	Here	are	the	parameters:

stopping_metric	=	"MSE",
stopping_tolerance	=	0.005,
stopping_rounds	=	3,
epochs	=	1000,
train_samples_per_iteration	=	0,
score_interval	=	3,

NOTE
The	default	stopping	metric,	for	a	regression	problem,	is	“deviance,”	which	is	short	for	“mean	residual	deviance,”
which	is	identical	to	MSE	when	the	distribution	is	gaussian	(which	is	another	default).	I	decided	to	specify	it
explicitly,	in	case	other	distributions	get	tried.

You	will	see	I	have	also	set	train_samples_per_iteration	to	be	0,	which	means	it	will	score
after	every	epoch	(which	in	this	case	means	after	every	600	to	625	training	samples).	And
score_interval	has	been	slightly	reduced	to	3	seconds,	from	the	default	of	5	seconds.	This
means	that	early	stopping	should	react	more	quickly.	In	particular,	because	the	data	set	is	so
small,	I	was	finding	the	default	settings	meant	it	was	doing	so	few	scoring	events	that	it	kept
reaching	maximum	epochs.

To	see	the	effect	of	simply	adding	more	epochs,	how	about	we	give	the	previous	settings	a
go,	with	everything	else	still	set	to	default?	I	did,	and	the	results 	were	so	good,	I	had	to	run	it
again	to	see	if	it	had	somehow	just	got	lucky.	So,	here	is	a	comparison	of	the	default	model,
with	those	two	models	that	used	20	times	more	epochs:

											Default		Early#1		Early#2
Train-MSE			5.587				0.223				0.092
			CV-MSE		17.510				4.854				4.908
	Test-MSE			7.089				0.580				0.437
			Epochs		11.519		194.000		192.000

The	model	is	way	better	on	all	three	data	sets.	The	cross-validation	models	ranged	from	using

10

11



117	to	327	epochs.	The	standard	deviation	on	the	10	cross-validation	model	scores	was
around	0.60.	You	may	be	asking	why	the	“CV-MSE”	row	is	so	high;	see	the	sidebar	at	the	end
of	this	section	(“The	CV	Metric	Mystery”).

NOTE
If	you	look	at	a	plot	of	the	scoring	history,	you	might	be	surprised	to	see	very	few	entries:	no	nice	curve,	just	one
or	two	straight	lines.	This	is	because	of	using	the	combination	of	cross-validation	and	early	stopping:	it	can	see
how	many	epochs	were	needed	in	the	cross-validation	models,	so	it	uses	that	many,	and	switches	early	stopping
off.	If	you	look	at	any	of	the	10	cross-validation	models	you	will	see	more	of	a	curve	in	the	scoring	history.

So,	from	that	good	start,	how	much	further	can	we	take	it?	The	first	thing	to	experiment	with
is	the	network	layout:	how	many	layers,	and	how	many	neurons	in	each.	I	know	the	problem	is
nonlinear,	so	I	feel	I	need	two	hidden	layers,	but	I	don’t	see	it	as	so	complicated	that	it	will
need	more	than	three	layers.	We	have	only	18	input	neurons 	so	I’m	going	to	try	first	hidden
layer	sizes	of	54,	162,	and	324	(18	times	3,	9,	and	18,	respectively). 	I	then	tried	halving
(except	54),	doubling	(except	324),	or	keeping	the	second	layer	the	same	size.	And	where	I
tried	a	third	layer,	I	kept	it	the	same	size	as	the	second	layer.	That	gave	14	combinations.	To
speed	things	up	a	bit,	I	dropped	from	nfolds	=	10	to	nfolds	=	6.

If	I	lost	you	with	all	those	combinations,	refer	to	the	next	table,	where	the	results	are	shown
(ordered	by	cross-validation	results):

								hidden	train.mse	xval.mse					sd	epochs			time
1		324,324,324					0.347				4.368		0.494				177			23.4
2								54,54					0.087				4.712		0.556				982				5.2
3						162,162					0.059				4.744		0.446				525			10.4
4						324,162					0.096				4.788		0.503				236				7.0
5		324,162,162					0.162				4.946		0.479				171				9.9
6				162,81,81					0.270				4.978		0.457				418				8.0
7			54,108,108					0.022				5.005		0.581				518				7.4
8		162,324,324					0.135				5.026		0.322				158			17.5
9		162,162,162					0.152				5.065		0.629				243			10.0
10						162,81					0.035				5.077		0.649				623				7.9
11					162,324					0.087				5.147		0.520				244				9.3
12						54,108					0.015				5.242		0.573				836				6.3
13					324,324					0.131				5.456		0.627				205				8.4
14				54,54,54					0.049				5.983		1.173				720				6.5

Not	much	to	conclude	from	all	that,	is	there!	I	actually	ran	it	again	and,	unhelpfully,
everything	shuffled	around.	From	these	results	I	feel	no	strong	need	to	give	it	more	neurons
or	more	layers.	However,	more	epochs	might	bear	fruit,	as	even	with	quite	strict	early
stopping	a	few	of	the	models	are	hitting	the	ceiling.

The	next	thing	we	want	to	consider	is	the	best	value	for	activation,	and	if	dropout	and/or
regularization	helps.	There	are	two	types	of	dropout:	between	the	input	neurons	and	the	first
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hidden	layer	(input_dropout_ratio),	and	then	leaving	each	of	the	hidden	layers
(hidden_dropout_ratios).	There	are	only	8	input	columns	(18	input	neurons)	so	high	values	of
input_dropout_ratio	can	be	expected	to	do	badly.

TIP
When	experimenting	with	both	hidden	and	hidden_drop_ratios	in	the	same	grid,	you	must	use	a	constant	number	of
layers.	If	you	want	to	compare,	say,	some	2-layer	networks	with	3-layer	networks	in	the	same	grid,	run	h2o.grid
twice,	with	the	same	grid	ID	each	time:	once	for	2-layer,	then	again	for	the	3-layer	ones.	That	is	what	I	will	do
here.

We	will	use	the	following	hyper-parameters	for	the	grid:

If	3	layers	then	just	324,162,162;	if	2	layers	try	both	54,54	and	162,162

RectifierWithDropout,	TanhWithDropout,	or	MaxoutWithDropout

Hidden	dropout	ratios	of	0	(no	dropout),	0.1	(a	little	dropout	each	time),	0.2	(drop	20%),
and	0.5	(drop	50%—this	is	the	default)

Input	dropout	ratios	of	0	(no	dropout)	or	0.1	(10%	of	inputs	ignored)

L1	regularization	of	0	(none)	or	0.00001	(1e-05)

L2	regularization	of	0	(none),	0.00001	(1e-05),	or	0.0001	(1e-04)

If	you	have	already	read	Chapter	7,	you	might	remember	L1	and	L2	regularization.	L1
regularization,	in	neural	nets,	causes	the	neurons	to	use	fewer	of	their	inputs	(the	most
significant	ones,	hopefully!);	this	might	make	them	more	resistant	to	noise	(not	an	issue	in
this	data	set,	so	the	expectation	is	that	L1	regularization	will	not	help—that	is	why	I	only	try
one	value).	L2	regularization	reminds	me	of	Tall	Poppy	Syndrome,	because	the	biggest
weights	get	knocked	down,	and	the	smaller	weights	survive	unscathed.	It	encourages	the
network	to	use	all	its	inputs	a	bit,	and	not	just	use	a	few	of	them.	L1	and	L2	seem	in	conflict,
yet	one-third	of	the	models	in	this	grid	will	try	both	together.	We	could	use	two	grids	to	avoid
this,	but	how	about	we	just	try	it	and	see	what	happens?

That	was	a	lot	of	combinations,	so	I	set	the	grid	search	to	use	strategy	=	"RandomDiscrete"
with	max_models	=	50	(for	each	of	2	layer	and	3	layer).	It	took	rather	a	long	time.

The	results	were	quite	clear:	the	best	models	used	no	dropout	at	all.	The	top	3	(and	9	of	the	top
12)	were	all	zeros	for	the	hidden	layer	dropout.	The	top	6	(and	again	9	of	the	top	12)	were
zero	for	the	input	dropout.	The	models	with	hidden_dropout_ratios=0.5	were	definitely	the
worst	performers.

The	choice	of	activation	function	seemed	quite	minor.	For	two	hidden	layers,	Tanh	or
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Maxout,	and	no	hidden	dropout.	For	three	hidden	layers,	Rectifier	or	Maxout,	and	either	no
dropout,	or	a	little.	Rectifier	is	notably	quicker	than	Tanh	or	Maxout.

For	L2	regularization,	half	the	top	models	use	0.00001,	half	use	0.	So	it	seems	to	neither	help
nor	hinder.	For	L1,	it	is	again	about	50-50	between	0	and	0.00001;	however	0.0001	seems	to
make	results	worse.

At	this	stage	I	am	quite	happy	with	this,	and	don’t	feel	the	need	to	try	other	parameters.	I’m
going	to	take	our	best	model,	and	run	it	again,	with	nfolds=10,	and	less	severe	early	stopping,
and	allow	it	up	to	2000	epochs,	then	use	that	on	the	test	data:

m	<-	h2o.deeplearning(
		x,	y,	train,
		nfolds	=	10,
		model_id	=	"DL_best",

		activation	=	"Tanh",
		l2	=	0.00001,		#1e-05
		hidden	=	c(162,162),

		stopping_metric	=	"MSE",
		stopping_tolerance	=	0.0005,
		stopping_rounds	=	5,
		epochs	=	2000,
		train_samples_per_iteration	=	0,
		score_interval	=	3
		)

This	model	ended	up	using	“only”	479	epochs.	On	the	training	data	it	managed	an	MSE	of
0.148,	both	the	best	we’ve	seen	in	this	book.	“Best	on	training	data”	can	be	another	way	to	say
“most	overfitted,”	but	that	is	not	the	case	here,	as	it	also	gives	excellent	results	on	the	test	set;
here	it	is	shown	next	to	those	we	got	earlier:

											Default		Early#1		Early#2				Best
Train-MSE			5.587				0.223				0.092				0.148
			CV-MSE		17.510				4.854				4.908				4.619
	Test-MSE			7.089				0.580				0.437				0.434
			Epochs		11.519		194.000		192.000		196.000

Yes,	our	Best	model	is	best,	but	only	just:	all	the	benefit	came	from	giving	more	epochs.	In
fact	I’ve	made	this	model	four	times	now,	and	the	test-MSE	has	been	0.425,	0.434,	0.581,	and
0.605.	Out	of	the	143	samples,	just	three	are	more	than	8%	too	low,	and	none	were	too	high.
Figure	8-4	shows	just	the	first	75	samples,	and	has	just	one	down	triangle.



Figure	8-4.	Tuned	performance	of	deep	learning	on	test	data

NOTE
The	model	took	3	to	4	minutes	to	train	(including	making	the	10-fold	cross-validation).	While	it	is	the	best
performer,	it	is	also	the	most	CPU-intensive.



THE	CV	METRIC	MYSTERY

Earlier	I	promised	I’d	take	a	look	at	why	the	cross-validation	results	are	so	different.
These	numbers	are	from	a	run	when	the	MSE	on	the	test	set	was	0.425	(slightly	better	than
shown	elsewhere).

Here	are	the	MSEs	for	the	10	cross-validation	models:

3.486		5.882		4.903		4.172		5.186
5.232		4.087		3.328		6.048		4.285

The	mean	is	4.661,	and	the	standard	deviation	is	0.63.

Under	the	model	information	I	see	another,	slightly	different,	MSE	metric:	4.724274.	It	is
described	as	“10-fold	cross-validation	on	training	data	(Metrics	computed	for	combined
holdout	predictions.”

But	just	above	that	I	see	“MSE:	0.128,”	which	is	even	better	than	the	0.425	on	the	test	data
set.	This	is	the	model	that	was	made	based	on	all	the	training	data,	and	that	score	is	the
score	when	evaluated	on	all	the	training	data.

This	might	be	a	good	time	to	remind	you	that	the	cross-validation	metrics	are	solely	about
scoring	your	models; 	they	don’t	do	anything	else.	They	are	just	thrown	away,	and	the
actual	model	that	is	returned	is	trained	on	100%	of	your	training	data.

This	data	set	is	quite	unusual	in	that	there	is	no	noise,	no	repeats:	it	contains	exactly	one
sample	of	each	building	type.	Of	the	768	rows	(in	the	full	data),	143	(20%)	are	test,	562
(80%	x	90%)	are	(constantly	changing)	training	data,	and	63	(80%	x	10%)	are	(constantly
changing)	validation	data.	What	I	think	is	going	on	is	that	562	is	not	quite	enough	to	be
representative,	but	when	it	is	given	the	whole	625	(the	full	80%)	training	rows,	it	crosses	a
threshold	and	is	able	to	make	a	jump	in	understanding,	and	apply	these	new
generalizations	to	the	unseen	test	data.

Deep	learning	was	the	only	algorithm	that	behaved	this	way:	in	all	the	others	I	saw	mean
cross-validation	MSEs	about	the	same	as	the	MSE	on	test	data.
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MNIST:	Default	Deep	Learning
This	is	a	pattern-recognition	problem	(see	“Data	Set:	Handwritten	Digits”,	if	you	are	not
familiar	with	it),	and	so	I	have	high	hopes	that	deep	learning	is	going	to	give	the	best	results
on	it.	It	is	a	multinomial	classification,	trying	to	decide	which	of	the	digits	0	to	9	a	set	of	784
pixels	represents.

First	run	either	Example	3-3	or	Example	3-4	from	the	earlier	chapter,	which	sets	up	H2O,
loads	the	data,	and	has	defined	train,	valid,	test,	x,	and	y	(no	cross-validation	this	time	because
we	instead	have	a	validation	data	set).	Then	run	either	Example	8-1	or	Example	8-2.

Example	8-1.	Default	deep	learning	on	MNIST	(Python)
m	=	h2o.estimators.H2ODeepLearningEstimator(model_id="DL_defaults")
m.train(x,	y,	train,	validation_frame=valid)

Example	8-2.	Default	deep	learning	on	MNIST	(in	R)
m	<-	h2o.deeplearning(x,	y,	train,
		model_id	=	"DL_defaults",	validation_frame	=	valid)

It	took	just	over	three	minutes,	maxing	out	all	eight	cores	on	my	machine.	It	first	tells	me	it
has	dropped	67	constant	columns	(they	were	the	pixels	we	identified	as	being	zero	in	all
samples	when	we	first	looked	at	the	data).	So	there	will	be	717	input	neurons,	rather	than	784.

Doing	summary(m)	(m.summary()	in	Python)	gives	details	of	each	layer,	followed	by	metrics
such	as	MSE,	then	the	cross-validation	table	for	each	of	train	and	valid.	There	is	a	random
element,	so	the	exact	numbers	will	be	different	on	each	run,	but	they	will	be	similar.	The
standout	feature	of	the	result,	for	me,	is	summarized	by	Figure	8-5,	a	screenshot	from	the
Flow	interface.

There	is	quite	a	lot	to	discuss	here,	but	the	big	thing	is	the	gap	between	the	blue	(lower)	line,
which	is	performance	on	the	training	data,	and	the	orange	(upper)	line,	which	is	performance
on	the	validation	set.

Those	charts	are	interesting	in	other	ways:

They	wobble	about,	so	don’t	give	up	at	the	first	uptick.

For	the	validation	line,	logloss	and	MSE	are	quite	distinctly	different	(not	so	much	for	the
training	line).

That	uptick/downtick	at	the	end.	What	is	that	all	about?
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Figure	8-5.	Logloss	and	MSE	for	train	and	valid	data

What	it	is	all	about	is	that	the	overwrite_with_best_model	parameter	is	true.	It	is	using	logloss
to	judge,	and	according	to	logloss	the	best	model	was	just	before	epoch	5,	so	at	the	end	of
training	it	went	back	and	used	that	model.	That	explains	the	downtick	in	the	top	line	in	the
logloss	chart;	the	uptick	in	the	lower	line	is	because	on	our	training	data	it	didn’t	think	that
was	the	best	model.	In	the	MSE	chart,	both	jumped	up	at	the	end.	This	difference	comes	down
to	logloss	and	MSE	disagreeing	about	the	best	model.	(See	“Classification	Metrics”	for	a
reminder	about	the	available	metrics	for	multinomial	classifications.)

Let’s	quickly	run	h2o.performance(m,	test)	to	get	performance	on	the	test	set.	So,	we	have	an
error	rate	of	0.55%	(train)	versus	3.32%/3.04%	(valid/test),	and	MSE	of	0.005	versus
0.028/0.027.	That	ghastly	demon,	overfitting,	has	decided	to	show	up	and	spoil	the	party.
When	tuning	we	will,	therefore,	want	to	be	very	aware	of	this.

NOTE
In	the	model	summary,	it	told	me	the	“Metrics	reported	on	temporary	training	frame	with	9960	samples”	for	the
training	data,	rather	than	all	50,000	samples.	It	was	doing	this	for	speed.	It	gave	an	error	rate	of	0.45%	and	MSE
of	0.0039.

If	you	want	to	see	the	results	on	all	50,000	samples,	the	command	is	h2o.performance(m,newdata=train).	It	was
the	numbers	from	that	command	that	I	quoted	above;	they	are	slightly	worse,	but	close	enough	to	make	no	real
difference.

By	the	way,	just	as	with	the	other	models	on	default	parameters	that	we	have	looked	at	in	this
book,	the	top	10	hit	ratios	chart	shows	it	was	still	having	trouble	getting	a	few	of	them	right
even	on	its	eighth	or	ninth	guess.



NOTE
You	might	notice	the	validation	and	test	results	were	very	close.	I	did	a	test	on	a	large	(40)	and	realistic	(each
taking	at	least	15	minutes	to	build)	set	of	tuned	models	on	this	data	set,	and	I	got	0.97	correlation	on	the	error	rate
with	validation	and	test	results	(0.98	for	MSE	and	logloss).	This	is	very	good:	it	means	we	can	tune	for
improvements	in	the	validation	set,	safe	in	the	knowledge	that	those	improvements	will	carry	over	to	our	unseen
test	data.	In	absolute	terms	the	difference	in	errors	on	10,000	test	cases	ranged	from	+18	(model	got	18	more
right	on	the	validation	set)	to	–19	(model	get	19	more	correct	on	the	test	set),	on	the	better	models.	The	gap	was
a	bit	bigger	on	the	weakest	half	a	dozen	models	(up	to	–30).	That	means	the	stronger	the	model	is,	the	more
reliably	validation	data	metrics	indicate	performance	on	test	data.



MNIST:	Tuned	Deep	Learning
We	are	going	to	be	using	the	enhanced	data,	so	use	"load.mnist_enhanced.R"	or
"load.mnist_enhanced.py"	(see	“Helping	the	Models”	for	more	on	what	was	added).	First
question:	what	difference	did	enhanced	data	make	on	the	default	settings,	still	sticking	with	the
default	of	just	10	epochs?	I	tried	two	more	runs	on	the	“raw”	MNIST	data,	and	got	(validation
data	set)	errors	of	417	and	390.	(It	was	332	on	our	run	in	the	previous	section.	This	high
variance	is	common	when	not	using	enough	epochs.)	On	the	enhanced	data	I	got	317	and	313
errors	(and	292	with	a	later	run),	so	over	a	20%	improvement. 	The	reduction	in	training	set
errors	was	even	greater.	Summary:	deep	learning	finds	it	much	easier	to	overfit	our	enhanced
data,	but	the	benefits	on	unseen	data	are	also	significant.

The	next	thing	to	try	is	to	use	more	epochs,	and	therefore	we	want	to	set	early	stopping	to
keep	computation	under	control:

stopping_metric	=	"misclassification",
stopping_tolerance	=	0.01,
stopping_rounds	=	3,
epochs	=	500,
classification_stop	=	-1,

These	settings	say	it	will	only	stop	if	there	has	been	less	than	a	1%	improvement,	in
misclassification, 	over	a	sliding	window	of	three	scoring	rounds.	Oh,	and	if	it	just	keeps	on
getting	better	and	better,	pull	the	plug	after	500	epochs.	That	is	strict:	we’ll	let	it	train	a	bit
more	once	we	narrow	the	best	parameters	down.	classification_stop	is	zero	by	default,
meaning	it	stops	learning	once	it	perfectly	classifies	the	whole	of	the	training	data.	But	the
model	will	keep	improving	its	validation	score	even	once	this	happens,	so	we	want	it	off.
Consider	always	switching	it	off	(setting	it	to	–1)	when	using	early	stopping.

Let’s	jump	straight	in,	with	enhanced	data	and	the	early	stopping,	and	see	how	it	does.

I	did	two	runs	and	they	hit	the	early	stopping	after	40	and	46	epochs.	Both	sucked	all	the
marrow	out	of	the	training	data—in	fact	the	first	run	got	a	perfect	score	when	evaluated	on	the
training	set.	Validation	errors	were	268	and	272,	respectively	(out	of	10,000).	This	compares
to	317	and	313	when	only	given	10	epochs,	so	we’ve	got	another	17%	improvement.

The	next	thing	to	think	about	is	how	many	hidden	layers,	and	how	many	neurons	in	each?	And
what	other	parameters	are	going	to	be	important?

The	challenge	we	are	setting	for	this	deep	learning	model	is	to	look	at	groups	of	those	pixels
and	form	concepts	that	can	be	used	to	decide	which	digit	it	is	likely	to	be.	Because	each	layer
is	fully	connected	to	every	neuron	in	the	previous	level,	as	long	as	you	have	enough	neurons
in	a	hidden	layer,	it	can	learn	lots	of	concepts	in	parallel.	However,	more	layers	is	also	going
to	help,	so	it	can	build	more	and	more	advanced	concepts	on	top	of	lower-level	ones.

There	is	an	article	on	deep	learning	performance	by	Arno	Candel 	where	he	has	tuned	many
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parameters	on	the	MNIST	data	set.	Much	of	that	article’s	emphasis	is	on	tuning	for	speed,	and
most	experiments	are	on	just	0.1	epochs	(representative	for	testing	speed-ups,	not
representative	for	evaluating	quality),	but	I	will	shamelessly	steal	what	I	can.	His	very	best
model	used	1024,1024,2048	neurons.	Think	back	to	that	idea	of	building	advanced	concepts
on	lower-level	ones,	in	the	previous	paragraph—does	the	final	layer	need	more	neurons	to
handle	those	advanced	concepts,	perhaps?

TIP
One	practical	reason	to	favor	increasing	neurons	between	layers,	rather	than	decreasing,	is	that	we	have	898	input
neurons,	and	only	10	output	neurons.	The	number	of	input	neurons	gets	multiplied	by	the	number	of	neurons	in	the
first	hidden	layer.	So	a	10,20,30	model	needs	10,080	weights,	but	a	30,20,10	model	needs	27,840	weights.
Fewer	weights	means	quicker	training	times.

As	for	other	parameters,	I	already	see	overfitting	on	the	training	data,	so	I	want	to	tackle	that.
There	are	both	more	training	samples,	and	more	columns,	than	in	the	building	energy	data	set
we	previously	looked	at.	So	I	will	experiment	with	all	of	the	following	in	my	first	grid:

l1

L1	regularization.	Might	help	make	the	model	more	resistant	to	noise.	Trying	0	(no
regularization)	and	1e-5	(a	little).

input_dropout_ratio

Drop	some	of	the	input	neurons.	0.1	means	it	will	randomly	set	to	zero	10%	of	the	pixels.
A	different	random	set	of	pixels	on	each	sample.	The	grid	will	compare	10%	with	20%.

hidden_dropout_ratios

Trying	0%,	10%,	and	50%.	If	10%	then	it	means	at	each	neuron,	for	each	training	sample,
there	is	a	10%	chance	it	will	pass	on	zero	to	the	next	layer	instead	of	its	actual	value.

max_w2

I	chose	to	only	use	this	for	the	4-layer	networks,	and	experiment	at	comparing	the	default
value	of	infinity	(given	as	Inf	in	R,	and	float("inf")	in	Python),	with	a	value	of	20
(arbitrarily	chosen).

In	this	section,	I	am	going	to	stick	with	an	activation	function	of	Rectifier	(WithDropout).	The
aforementioned	article	concluded	it	was	better	than	Maxout,	and	perhaps	slightly	better	than
Tanh,	while	being	notably	quicker	than	Tanh.

You	may	remember	from	a	previous	section	that	we	cannot	experiment	with
hidden_dropout_ratios	in	a	grid	unless	we	fix	the	number	of	layers	of	hidden	neurons.	But	I
want	this	first	grid	to	experiment	with	2-,	3-,	and	4-layer	neural	networks.	So	the	grid	had	to



be	made	in	three	steps	(as	long	as	the	same	grid	ID	is	chosen,	H2O	will	combine	the	results
for	you).	In	the	first	step	I	compared	these	2-hidden-layer	models.	The	number	in	brackets	is
how	many	weights.

200	x	200	(221,600)

512	x	512	(727,040)

1024	x	1024	(1,978,368)

In	the	second	step	I	tried	one	3-layer	model	and,	later	on,	added	another	one:

400	x	800	x	800	(1,327,200)

1024	x	1024	x	2048	(4,085,760)

And	in	the	third	step	I	tried	two	4-layer	models:

200	x	200	x	200	x	200	(301,600)

300	x	400	x	500	x	600	(895,400)

The	final	hyper-parameter	I	added	was	seed.	This	was	solely	for	telling	the	difference
between	different	runs,	not	for	reproducibility:	with	H2O’s	implementation	of	deep	learning
you	cannot	expect	the	same	model	even	if	you	try	again	with	the	same	seed.

Naturally,	with	so	many	combinations	of	hyper-parameters,	I	set	it	to	do	“RandomDiscrete.”
By	the	way,	if	you	are	still	following	along	on	a	notebook,	you	are	not	going	to	get	many
models	built:	this	is	more	a	“go	away	for	the	weekend”	grid,	than	a	“go	and	get	a	cup	of	tea”
grid.

So,	what	did	we	learn?	The	clearest	thing:	l1=0.00001	is	way	better	than	0;	all	the	top	13
models	used	L1	regularization.	Everything	else	is	a	bit	fuzzier.	max_w2	seems	to	have	no
effect,	and	input_dropout_ratio	of	0.1	versus	0.2	seems	to	make	little	difference	(the	best
model,	and	four	of	the	top-	ive,	use	0.2,	though).

hidden_dropout_ratios	is	a	bit	more	confusing.	The	best	model	used	0.1	for	its	4	layers.	We
can	say	that	0.0	is	poor:	in	one	direct	comparison,	0.5	had	124	validation	errors	(out	of
10,000)	while	hidden_dropout_ratios=0.0	had	150.	But	the	only	direct	comparison	I	got
between	0.1	and	0.5	was	that	0.5	was	better	by	just	3	(an	error	rate	per	10,000	of	167	versus
170).

So,	what	about	hidden	neurons?	Table	8-1	shows	the	best	10	models,	with	their	validation
errors	(per	10,000),	and	also	the	logloss	on	the	validation	data	set.	The	right	two	columns
show	the	relative	time 	it	took	to	build	the	model,	and	the	number	of	epochs;	the	asterisk
marks	those	that	hit	the	limit,	and	didn’t	early-stop.
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Table	8-1.	Best	10	models	from	first	grid

Hidden Errors Logloss Time Epochs

300,400,500,600 121 0.0701 796 210

1024,1024 124 0.0602 2079 410

1024,1024,2048 126 0.0720 3382 459

400,800,800 127 0.0673 1266 501*

1024,1024 134 0.0655 1660 200

400,800,800 137 0.0646 1419 272

512,512 137 0.0634 943 476

1024,1024 150 0.0671 2249 240

300,400,500,600 161 0.0699 1037 501*

300,400,500,600 167 0.0820 1099 501*

Well,	no	clear	conclusion	about	which	is	best!	Another	way	to	view	this	table	is	that	all	of
these	hidden	layer	alternatives	have	about	the	same	potential	to	learn.	However,	the	4-layer
model	has	the	best	score	(even	if	it	also	has	the	two	worst	scores),	telling	me	it	has	the
capacity	to	learn	well	on	this	data,	so	I	will	go	with	that.

The	final	model	is	shown	next,	and	this	code	shows	how	I	am	giving	it	a	less	strict	early-
stopping	criteria	(not	just	lowering	the	tolerance,	but	increasing	stopping	rounds—important
if	it	is	going	to	wobble	noisily	on	its	way	to	improving)	and	up	to	2000	epochs:

DLt	<-	h2o.deeplearning(x,	y,	train,	validation_frame	=	valid,
		model_id	=	"DL_tuned",	seed	=	seed,
		hidden	=	c(300,400,500,600),
		activation	=	"RectifierWithDropout",
		l1	=	0.00001,
		input_dropout_ratio	=	0.2,
		hidden_dropout_ratios	=	c(0.1,	0.1,	0.1,	0.1),

		classification_stop	=	-1,
		stopping_metric	=	"misclassification",
		stopping_tolerance	=	0.001,
		stopping_rounds	=	8,
		epochs	=	2000
		)
)



TIP
Giving	a	“best”	model	from	a	grid	some	less	strict	early-stopping	criteria	is	a	great	time	to	use	checkpoints	(see
“Checkpoints”);	in	this	case	that	would	have	given	me	a	796-epoch	head-start,	and	guaranteed	a	model	with	at
least	the	score	it	got	in	the	grid.

It	took	approximately	two	hours	to	build	on	my	machine, 	and	ended	up	with	a	validation
score	of	130	(not	as	good	as	in	the	grid—see	the	tip	for	what	I	should	have	done),	and	on	the
test	data	it	had	138	errors:	easily	the	best	of	the	models	we	have	built	in	this	book.	It	used	642
epochs	in	the	end,	though	the	model	it	returned	was	actually	from	epoch	275	(at	26	minutes),
so	it	spent	a	lot	of	time	bouncing	around	after	that.	The	results	of	all	four	learning	algorithms
will	be	compared	in	“MNIST	Results”	in	the	final	chapter	of	this	book.	There	is	also	a	section
in	that	chapter	on	how	to	improve	the	result	further.
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Football:	Default	Deep	Learning
This	data	set,	predicting	football	results	based	on	a	mix	of	recent	performance	and	betting
odds	(see	“Data	Set:	Football	Scores”	in	Chapter	3),	has	a	lot	of	noise,	so	a	bit	like	the	MNIST
data	set	we	can	perhaps	expect	dealing	with	overfitting	to	be	our	main	challenge?	But	it	is	also
a	different	kind	of	noise:	in	the	MNIST	data	all	the	clues	were	there,	and	a	human	could	expect
to	score	over	99.5%.	With	the	football	result	prediction,	the	human	experts	only	reach	an
accuracy	of	0.634. 	That	is,	the	clues	are	not	all	there.

If	you	are	following	along	on	your	own	machine,	run	either	Example	3-6	or	Example	3-7
from	the	earlier	chapter,	but	make	sure	you	load	the	csv	files	with	the	missing	data
removed/patched, 	i.e.,	football.train2.csv,	football.valid2.csv,	and	football.test2.csv.	Deep
learning	would	otherwise	be	handicapped	by	missing	data.	Running	those	listings	will	set	up
H2O,	load	the	data,	and	define	train,	valid,	test,	x,	xNoOdds,	and	y.	Because	valid	is	defined,
cross-validation	will	not	be	used	with	this	data	set.

As	in	other	chapters	we	are	making	two	versions	of	the	model,	and	then	using
compareModels()	(see	Example	5-1	in	Chapter	5;	it	is	also	found	in	football_helper.R	in	the
online	code)	to	get	some	metrics	on	them.	We	are	trying	to	predict	if	each	match	will	be
“home-win”	or	“draw-or-away-win.”	We	try	it	two	ways:

Pre-match	team	strength	estimates	+	pre-match	bookmaker	odds

Just	the	pre-match	team	strength	estimates

It	is	a	binomial	classification	so	we	are	focusing	on	the	AUC	and	accuracy	scores:

m1	<-	h2o.deeplearning(x,	y,	train,
		model_id	=	"DL_defaults_Odds",
		validation_frame	=	valid,	seed	=	seed)

m2	<-	h2o.deeplearning(xNoOdds,	y,	train,
		model_id	=	"DL_defaults_NoOdds",
		validation_frame	=	valid,	seed	=	seed)

The	AUC	scores	are	summarized	here:

									Odds				NoOdds
train			0.647					0.607
valid			0.672					0.630
test				0.645					0.606

And	the	accuracy	results:

						HomeWin	HW-NoOdds
train			0.612					0.586
valid			0.648					0.617
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test				0.624					0.601

You	can	see	the	results	are	not	great,	but	not	bad.	We	do	not	seem	to	have	any	overfitting;
instead	what	this	seems	to	show	is	the	validation	data	set	is	a	bit	easier	to	make	predictions	on.
Remember	that	this	was	time-series	data,	so	the	three	data	sets	are	consecutive	in	time,	not
randomly	sampled.	It	may	be	that	the	particular	seasons	we	use	for	valid	and	test	were	more
predictable,	e.g.,	fewer	upsets,	more	matches	following	the	form	book.	And	vice	versa:
sometimes	what	smells	like	overfitting	can	just	be	that	the	test	data	set	has	more	noise.

“Football	Data”	in	the	final	chapter	will	compare	the	results	of	all	models.



Football:	Tuned	Deep	Learning
The	first	thing	is	to	allow	more	epochs,	but	to	keep	that	under	control	by	using	early	stopping.
As	you	have	already	seen	in	this	chapter,	this	can	be	the	biggest	improvement	we	will	get,	so
let’s	first	try	that	and	nothing	else.	I	will	try	this	for	both	models.	Here	is	the	code	for	the
second	model;	pay	attention	to	the	last	four	lines:

m2es	<-	h2o.deeplearning(xNoOdds,	y,	train,
		model_id	=	"DL_ES_NoOdds",
		validation_frame	=	valid,	seed	=	seed,
		replicate_training_data	=	TRUE,

		stopping_metric	=	"AUC",
		stopping_tolerance	=	0.01,
		stopping_rounds	=	3,
		epochs	=	1000
		)

That	is	saying	it	can	have	1000	epochs	(100	times	more	effort	than	the	default	model),	but	if	it
goes	three	scoring	rounds	with	less	than	a	1%	improvement	in	the	AUC	metric,	then	stop.

TIP
I’ve	also	set	replicate_training_data	to	true;	because	our	data	set	it	fairly	small,	this	will	speed	things	up	if	you	run
on	a	multinode	cluster,	and	won’t	have	any	effect	if	not.

Running	with	more	epochs,	on	each	model,	gave	these	results	(AUC):

									Odds				NoOdds
train			0.622					0.584
valid			0.632					0.605
test				0.601					0.577

And	these	accuracy	numbers:

									Odds				NoOdds
train			0.593					0.571
valid			0.637					0.611
test				0.588					0.589

In	the	case	of	m2es	it	ran	for	about	15	times	as	long	as	the	default,	and	did	832	epochs	instead
of	10.	So	why	are	the	results	so	disappointing?	The	scoring	history	chart	(again,	for	m2es)
can	answer	that;	see	Figure	8-6	(a	screenshot	from	the	Flow	interface).

As	it	got	better	at	learning	the	training	data	(bottom	line),	it	got	worse	at	the	validation	data
(the	top	line).	At	the	end	it	chose	the	best	model	on	the	validation	set,	which	was	the	first	one	it



scored.	Incidentally,	over	in	the	training	data	results	the	AUC	had	reached	0.9844	by	epoch
331;	at	that	point	the	AUC	on	the	validation	set	was	0.5589,	much	worse	than	the	0.6323	it
returned.

I	will	come	back	to	tackling	those	diverging	training/validation	results,	but	next	let’s	consider
the	number	of	hidden	layers,	and	the	number	of	neurons.	All	of	the	previous	default	models
used	two	hidden	layers,	with	200	neurons	in	each.	I	will	experiment	with	just	one	of	our
models:	I’ve	chosen	the	second	model	(predicting	a	home	win,	but	without	the	help	of	the
betting	odds).	At	the	end	we	will	apply	it	to	the	data	with	the	betting	odds,	and	hope	the	best
hidden	layer	choice	applies	equally	well	to	that.

Figure	8-6.	Scoring	history	(validation	on	top,	training	below,	lower	is	better)

I	have	three	questions:

Are	three	layers	better	than	two?

Are	more	neurons	needed	in	the	first	layer?

Are	more	neurons	needed	in	the	final	layer?

To	answer	those	three	questions,	the	three	topologies	I	will	try	are	200x200x200,	400x200,
and	200x400,	respectively.	The	first	one	adds	40,000	weights	(200x200).	We	have	N	inputs,	so
the	second	one	adds	200*N	weights.	And	we	have	two	outputs 	so	the	third	one	adds	just24



200*2	weights.

But,	I	want	to	consider	dropouts	at	this	point	too.	No,	not	those	nerdy	losers	who	drop	out	of
school	to	start	massively	successful	companies.	If	you’d	been	paying	attention	you’d	know	I
mean	these	two	parameters:

hidden_dropout_ratios

input_dropout_ratio

Rather	than	use	a	grid,	I	will	try	0.3	for	input_dropout_ratio	(throw	30%	of	the	inputs	away
each	time)	and	0.5,0.3	for	hidden_dropout_ratios	(drop	50%	of	the	outputs	from	the	first
hidden	layer,	then	drop	30%	of	each	subsequent	layer).

I	will	go	with	RectifierWithDropout	for	the	activation	function.	On	a	hunch.	Why	not	Tanh?
Because	it	gives	similar	results	to	Rectifier	but	is	slower.	Why	not	Maxout?	Because	I	don’t
think	summing	inputs	will	be	so	useful	here.	But	mainly	because	I	don’t	think	the	type	of
activation	function	will	matter	too	much,	and	I	want	to	focus	my	CPU	cycles	elsewhere.	If	you
experiment	and	discover	one	of	the	others	is	better,	let	me	know.

Though	I	am	using	dropouts,	I	will	use	L1	and	L2	regularization	too.	I’ll	try	0.0005	(5e-4)	for
each.	And	set	balance_classes	to	true.	And	I’m	going	to	set	shuffle_training_data	to	true,	too,
because	the	documentation	tells	me	to	do	that	when	I	set	balance_classes.

To	get	a	baseline	measurement,	so	the	network	topologies	can	be	fairly	evaluated,	I	first	try
all	those	new	parameters	with	the	default	of	two	hidden	layers,	with	200	neurons	in	each.

Example	8-3	is	what	that	looks	like.	Later	versions	will	just	change	the	hidden	line:

Example	8-3.	Deep	learning	first	tuned	model
m2_200x200	<-	h2o.deeplearning(xNoOdds,	"HomeWin",	train,
		model_id	=	"DL_200x200",
		validation_frame	=	valid,	seed	=	seed,

		replicate_training_data	=	TRUE,
		balance_classes	=	TRUE,
		shuffle_training_data	=	TRUE,

		hidden	=	c(200,200),

		activation	=	"RectifierWithDropout",
		hidden_dropout_ratios	=	c(0.5,	0.3),
		input_dropout_ratio	=	0.3,
		l1	=	0.0005,
		l2	=	0.0005,

		stopping_metric	=	"AUC",
		stopping_tolerance	=	0.01,
		stopping_rounds	=	3,
		epochs	=	1000
		)



Here	are	the	results,	compared	with	the	default	m2	model,	and	the	version	that	was	just	given
more	epochs.	First	AUC:

						Defaults	MoreEpochs	Drop+Reg
train				0.607						0.584				0.594
valid				0.630						0.605				0.630
test					0.606						0.577				0.604

Then	accuracy:

						Defaults	MoreEpochs	Drop+Reg
train				0.586						0.571				0.568
valid				0.617						0.611				0.619
test					0.601						0.589				0.609

So	dropping	out	is	not	just	good	for	socially	awkward	geniuses.	Figure	8-7	is	the	MSE	chart,
over	time,	for	the	model	doing	dropout	and	regularization.	You	might	miss	this	if	you	are
looking	at	it	in	black-and-white,	but	the	validation	result	is	the	lower	(better)	line!

Figure	8-7.	Scoring	history	with	dropout	(training	on	top,	validation	below!)



NOTE
It	chose	the	“best”	model	at	the	end,	so	why	didn’t	it	choose	one	of	those	at	around	750	or	1000	epochs?
Because	this	is	the	MSE	chart,	but	the	decision	of	best	was	made	using	AUC.	And	the	best	result	according	to
AUC	was	at	203	epochs.	If	you	ever	find	one	of	these	scoring	charts	confusing,	go	and	look	at	the	more	detailed
scoring	history.

Next	I	used	those	results	to	make	the	models	with	the	different	topologies	previously
described.	After	taking	a	first	look,	I	decided	to	also	try	two	hidden	layers	with	400	neurons	in
each.

Here	is	the	comparison	table	for	AUC:

						200x200	200x200x200	200x400	400x200	400x400
train			0.594							0.597			0.591			0.598			0.595
valid			0.630							0.631			0.633			0.629			0.630

And	then	for	accuracy:

						200x200	200x200x200	200x400	400x200	400x400
train			0.568							0.571			0.563			0.570			0.565
valid			0.619							0.621			0.618			0.615			0.618

So	more	input	neurons	in	the	first	layer	didn’t	help.	And	it	didn’t	really	help	in	the	second
layer	either.	But	a	third	layer	does	seem	to	have	helped,	if	only	slightly.	(Though,	without
running	more	experiments	I	cannot	say	for	sure	if	this	isn’t	just	random	variation	we	are
seeing.)

Well,	if	three	is	good,	then	four	must	be	even	better?	AUC	then	accuracy:

						200x200	200x200x200	200x200x200x200
train			0.594							0.597													0.5
valid			0.630							0.631													0.5

						200x200	200x200x200	200x200x200x200
train			0.568							0.571											0.501
valid			0.619							0.621											0.421

Oh.	That’s	a	“no”	then.	Those	are	some	really	bad	results.	It	looks	like	there	is	just	too	much
noise	in	the	data	set	to	be	able	to	train	a	4-layer	network.

To	make	my	final	model	I	will	go	with	200x200x200,	but	relax	the	early-stopping	criteria,	so
it	can	have	up	to	2000	epochs	(up	from	1000	epochs),	unless	it	fails	to	improve	by	0.1%	over
4	scoring	rounds	(was:	1%	over	3	scoring	rounds).	This	model	will	be	tried	on	the	test	data	to
predict	home	wins,	and	I	will	make	versions	both	with	and	without	the	odds	data.

Here	are	those	new	early-stopping	criteria;	the	rest	of	the	code	is	identical	to	the	version



shown	previously:

		stopping_metric	=	"AUC",
		stopping_tolerance	=	0.001,
		stopping_rounds	=	4,
		epochs	=	2000

Here	are	the	final	results	for	our	two	models.	First	the	AUCs:

						HomeWin	HW-NoOdds
train			0.635					0.596
valid			0.678					0.632
test				0.648					0.616

Next,	the	accuracy	values:

						HomeWin	HW-NoOdds
train			0.595					0.567
valid			0.649					0.618
test				0.617					0.606

How	have	we	done?	Well,	extra	epochs	improved	the	train	and	validation	scores,	but	our
reference	AUCs	were	0.675	for	the	validation	data	set,	and	0.650	for	the	test	data.	One	above,
one	below.	And	on	accuracy,	the	targets	were	0.650	and	0.634,	so	we’ve	done	poorly	there.	A
reminder	that	“Football	Data”	in	the	last	chapter	of	this	book	compares	all	the	algorithms	on
this	data	set.



Summary
Tuning	deep	learning	can	feel	more	like	art	than	science,	and	with	so	many	parameters	it	can
always	leave	you	feeling	like	you	missed	something	important.

The	superior	performance	on	the	MNIST	data	was	what	we	expected.	The	poor	performance
on	the	football	data	was	a	bit	unexpected:	it	tells	me	that	with	difficult,	noisy,	data	sets	deep
learning	can	fail	to	outperform	the	other	algorithms,	and	take	longer	doing	it.	The	building
energy	results	were	the	most	interesting.	It	needed	both	the	full	training	data	(not	just	the	90%
that	cross-validation	gave	it),	and	the	extra	epochs	from	switching	to	early	stopping,	to	get	a
big	jump	in	comprehension—one	that	none	of	the	algorithms	managed.	Similarly,	“Deep
Learning	Auto-Encoder”	(in	the	next	chapter)	shows	a	trend	between	increasing	the	number	of
hidden	neurons	and	MSE	but,	again,	it	really	only	appeared	when	given	enough	epochs.

So,	I’m	still	wondering	if	I	missed	something	important	on	the	football	data.

The	remainder	of	this	chapter	gives	a	list	of	all	the	other	parameters	that	might	be	that
“something	important.”	Or	you	can	jump	ahead	to	the	next	chapter,	to	see	what	H2O	offers	for
unsupervised	learning.



Appendix:	More	Deep	Learning	Parameters
My	main	criterion	for	putting	a	parameter	here,	rather	than	at	the	top	of	the	chapter,	was	that	I
didn’t	use	it	in	this	book:

missing_values_handling

Handling	of	missing	values.	If	“Skip”	then	rows	with	missing	values	are	ignored.	If
“MeanImputation,”	which	is	the	default,	then	missing	values	are	assigned	the	mean	value
of	that	column.

use_all_factor_levels

This	is	true	by	default,	meaning	there	is	one	input	neuron	for	every	level	for	each	enum
(categorical,	factor)	variable.	If	you	set	it	to	false	then	the	first	level	in	each	enum	is
dropped.	This	can	be	done	with	no	loss	in	accuracy	(and	a	small	speed-up	in	training
speed,	due	to	one	less	neuron).	However,	if	you	have	set	variable_importances	to	true,
then	you	should	keep	use_all_factor_levels	as	true.

max_categorical_features

The	maximum	number	of	categorical	features,	enforced	via	hashing	(Experimental).	The
default	is	to	have	no	limit.

single_node_mode

The	default	is	false.	If	true,	then	it	will	run	on	a	single	node	of	your	cluster.	I	find	cluster
scaling	to	be	quite	efficient	for	deep	learning,	so	it	is	hard	to	imagine	a	need	for	it	that	is
not	better	served	by	tweaking	target_ratio_comm_to_comp.

fast_mode

Enable	fast	mode	(minor	approximation	in	backpropagation).	It	defaults	to	true.

force_load_balance

Force	extra	load	balancing	to	increase	training	speed.	Defaults	to	true.

standardize

Defaults	to	true,	meaning	the	data	will	automatically	be	normalized.	If	false	then	you	need
to	scale	the	data	as	part	of	your	data	preparation.

sparse

Defaults	to	false.	Set	it	to	true	if	your	data	has	lots	of	zero	values,	to	make	it	more
efficient.

sparsity_beta



Sparsity	regularization	(Experimental).	The	default	is	0.0.

You	can	specify	the	initial	state	of	the	neural	network;	you	might	do	this	if	you	had	previously
trained	the	neural	net.	(In	fact,	if	you	just	wanted	to	load	a	previously	trained	network,	and	not
train	it	any	more,	set	these	parameters,	and	also	set	epochs	to	zero.)

initial_biases

A	list	of	H2OFrame	IDs	to	initialize	the	bias	vectors	of	this	model	with.

initial_weights

A	list	of	H2OFrame	IDs	to	initialize	the	weight	matrices	of	this	model	with.

But	normally	you	will	let	the	weights	be	initialized	randomly.	The	following	two	parameters
allow	you	control	over	that:

initial_weight_distribution

This	defaults	to	“UniformAdaptive,”	but	the	alternatives	are	“Uniform”	and	“Normal.”
(UniformAdaptive	is	an	optimized	initialization	that	considers	the	size	of	the	network.)

initial_weight_scale

This	is	a	double.	If	initial_weight_distribution	is	“Uniform,”	then	this	is	the	range.	For
example,	if	you	give	0.5,	then	the	initial	weights	will	be	randomly	between	–0.5	and	+0.5.
If	initial_weight_distribution	is	“Normal”	then	this	is	the	standard	deviation	for	weights.
That	is,	the	same	0.5	would	have	68%	of	weights	between	–0.5	and	+0.5,	but	16%	would	be
above	+0.5,	and	16%	would	be	below	–0.5.	The	default	value	is	1.0.

The	remaining	parameters	have	to	do	with	the	learning	rate.	I	find	the	H2O	default	behavior
to	be	intelligent	enough	that	I	would	rather	spend	my	tuning	time	on	other	things.	Then	there
is	the	fear	of	not	knowing	if	I’ve	made	things	worse!	If	you	want	to	learn	more	about	these,
many	neural	net	video	and	book	courses	cover	them:

rate

Learning	rate.	Higher	will	be	less	stable,	while	lower	means	it	will	take	longer	(more
epochs)	to	converge.	The	default	is	0.005.

rate_annealing

Learning	rate	annealing:	rate	/	(1	+	rate_annealing	*	samples).	Default	is	1e–6.

rate_decay

Learning	rate	decay	factor	between	layers	(N-th	layer:	rate*alpha^(N-1)).	Default	is	1,
meaning	it	is	not	used	by	default.

adaptive_rate



Adaptive	learning.	Defaults	to	true.

epsilon

Adaptive	learning	rate	smoothing	factor	(to	avoid	divisions	by	zero	and	allow	progress).
The	default	is	1e–8.

rho

Adaptive	learning	rate	time	decay	factor.	Defaults	to	0.99.

momentum_ramp

Number	of	training	samples	for	which	momentum	increases.	The	default	is	1e–6	(one
million	training	samples).

momentum_stable

Final	momentum	after	the	ramp	is	over.	The	default	is	0.0.

momentum_start

Initial	momentum	at	the	beginning	of	training.	The	default	is	0.0.

nesterov_accelerated_gradient

Use	Nesterov	accelerated	gradient.	It	is	a	boolean	and	defaults	to	true;	there	is	not	usually
a	good	reason	to	try	false.

	The	Deep	Water	project,	under	development	as	I	write	this,	will	allow	leveraging	other	deep
learning	libraries,	such	as	Tensorflow,	Caffe,	and	Mxnet,	and	so	will	gain	GPU	support	from
them.

	This	process	is	called	backpropagation,	but	H2O	takes	care	of	the	whole	process	for	us.
Explanations	of	the	sums	involved	are	easy	to	find	with	your	favorite	search	engine,	e.g.,
https://en.wikipedia.org/wiki/Backpropagation.

	Fractional	epochs	are	allowed.	For	instance,	requesting	10.5	epochs	means	all	training	data
samples	are	processed	10	times,	but	the	first	half	of	the	training	data	is	also	processed	an
eleventh	time.

	Possibly	five:	each	categorical	input	also	gets	an	extra	input	neuron	for	NAs	and	missing
data.	It	depends	if	gender-unknown	was	encoded	as	NA,	or	as	the	literal	string	“Unknown.”
And	possibly	three:	if	you	set	use_all_factor_levels=false	(it	is	true	by	default)	then	one	of	the
categories	can	be	implied	by	setting	all	of	the	others	to	zero,	so	one	of	the	input	neurons	can
be	dropped.

	Search	for	the	universal	approximation	theorem.
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	As	an	aside,	an	interesting	approach	using	H2O	and	an	extra	data	set	to	reduce	the
dimensions	of	large	factors	such	as	zip	code	is	shown	in	this	H2O	World	video	by	Madeleine
Udell	(specifically	from	about	19:00	to	25:00).

	Not	to	be	confused	with	hyperbole	and	going	off	at	a	tangent,	the	mainstay	of	modern
politics.

	Due	to	Hogwild!,	a	lock-free	multithreaded	stochastic	gradient	descent	algorithm.

	With	quite	a	bit	of	variance.	On	another	run	I	get	MSEs	20%	higher	on	all	of	train,	valid,	and
test	data,	meaning	the	model	is	worse.	This	is	simply	because	10	epochs	is	too	few,	as	we’ll
see	as	soon	as	we	start	tuning.

	We	could	test	that	theory	by	repeating	the	grids	with	stopping_rounds	set	to	4,	then	5,	and
see	if	the	relative	ordering	of	the	best	models	stays	the	same.

	I	know	we	are	not	supposed	to	test	on	the	test	data	set	until	the	end,	but	the	knowledge
gained	here	is	not	being	used	to	tune:	the	best	model	will	still	be	chosen	based	on	the	results
from	cross-validation.

	Eight	parameters,	but	X6	and	X8	are	enums	with	4	and	6	levels,	respectively,	plus	the	spare
input	neuron	for	unseen	values.	6	+	(4	+	1)	+	(6	+	1)	=	18.

	In	some	earlier	experiments	I	also	tried	just	18	neurons	in	the	first	layer.	They	were	better
than	you	might	expect,	but	still	inferior	to	the	bigger	models.

	I	ran	this	grid	on	a	2-node	cluster	on	Amazon	EC2,	totalling	72	cores,	and	it	averaged	40
seconds	per	2-layer	model,	and	120	seconds	per	3-layer	model.

	Well,	sometimes	it	influences	things	such	as	automatically	choosing	the	best	numbers	for
early	stopping.

	Though	you	could	equally	well	have	made	this	in	R	or	Python;	the	data	is	all	there	in	the	m
model	object	that	H2O	returns.

	If	you’re	curious,	on	the	test	data	I	get	an	even	lower	273	errors.

	Meaning,	we	want	to	see	improvement	in	the	digit	recognition,	not	just	in	the	MSE	or
logloss.

	Chief	Architect	at	H2O.ai,	and	the	main	author	of	the	deep	learning	code.

	Seconds,	but	on	a	3-node,	108-core	cluster	I	set	up	for	this	test.

	Estimated,	based	on	taking	43	minutes	on	a	2-node,	72-core	cluster.

	This	was	the	result,	in	“Football:	Default	GLM”,	of	using	a	linear	model	based	on	the
average	bookmaker	odds	of	a	win	as	the	only	input.

	See	“Missing	Data”	in	Chapter	9	for	how	they	were	made,	and	also	why
h2o.deeplearning()’s	default	of	mean	imputation	is	undesirable.
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	You	might	have	expected	just	one	output?	Binomial	classifications	have	two	outputs,	one
for	the	likelihood	of	it	being	true,	and	one	for	the	likelihood	of	it	being	false.	They	get	used
together	for	the	final	model	output.
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Chapter	9.	Unsupervised	Learning

Take	a	look	at	Figure	9-1,	and	tell	me	what	you	see.

Figure	9-1.	Two	scatterplots

It	doesn’t	matter	what	the	x-	and	y-axes	are	in	those	two	plots;	imagine	each	plot	represents	a
scientific	domain.	For	the	chart	on	the	left	you	likely	identified	about	10	different	concepts,	so
that	domain	is	likely	to	have	about	10	specialist	words;	some	are	blurring	into	each	other,	so
maybe	9,	maybe	11	or	12?	But	the	domain	on	the	right	has	two	concepts,	and	is	only	going	to
have	two	specialist	words.	Or	they	might	be	describing	weather	conditions	over	a	year.	The
chart	on	the	left	might	be	describing	a	place	with	lots	of	distinct	weather	patterns,	so	the
weather	becomes	a	talking	point,	and	lots	of	weather	phrases	enter	the	vocabulary	(“Is	it
chucking	it	down	outside?”	“No,	just	a	light	drizzle”).	The	chart	on	the	right	might	represent
the	climate	of	Southern	California,	where	only	two	weather	phrases	are	needed	(“lovely	and
sunny,”	and	“slightly	cloudy”).

The	point	is,	you	didn’t	need	to	know	the	subject	or	the	“correct	answer”	to	be	able	to	do
something	useful	with	the	data	you	were	given,	and	this	is	a	core	strength	of	human
intelligence.	In	machine	learning,	it	is	called	unsupervised	learning,	and	this	chapter	will	look
at	some	of	the	functionality	H2O	has	for	it.

This	automatic	organization	of	the	data	can	be	thought	as	a	form	of	data	compression.	If	you
have	5000	input	columns,	that	are	quite	sparse	and	contain	lots	of	duplication,	you	might	use
the	techniques	in	this	chapter	to	reduce	them	to	a	more	manageable,	and	information-dense,
12	columns;	then	you	can	use	one	of	the	supervised	learning	techniques	on	those	12	columns.



K-Means	Clustering
The	idea	behind	k-means	is	to	divide	your	data	up	into	k	groups	(you	have	to	specify	k)	such
that	each	data	item	is	closer	to	the	center	of	its	cluster	than	to	the	center	of	any	other	cluster.	It
is	doing	what	I	asked	you	to	do	in	those	scatterplots	earlier.

For	this	section	I	am	going	to	use	a	Natural	Language	Processing	(NLP)	example.	But	as
space	is	limited,	and	I	want	to	keep	this	chapter	focused,	I	am	going	to	take	the	tf-idf	(more	on
that	in	a	moment)	data	that	someone	else	has	made,	and	direct	you	to	their	article	and	GitHub
site;	see	the	following	sidebar.

NLP	DATA	PREPARATION

I	got	this	data	by	running	cluster_analysis.ipynb,	found	at	http://bit.ly/2gaYcEm	and
described	very	well	in	Brandon	Rose’s	article.	He	took	a	list	of	the	best	100	movies,	then
fetched	their	story	descriptions	from	the	IMDB	site,	and	did	a	lot	of	processing	in	Python,
using	NLTK.

He	went	on	to	do	some	analysis	and	make	some	charts,	but	I	stopped	before	the	k-means
clustering	section,	just	after	the	terms	=	tfidf_vectorizer.get_feature_names()	line.	terms	is
a	list	of	words,	or	short	phrases,	found	in	one	or	more	synopses.	tfidf_matrix	holds	the
data	I	want;	it	is	a	sparse	matrix	with	100	rows	and	563	columns.	The	columns	are	the
terms,	the	rows	are	the	movies.	The	values	are	what	is	called	Term	Frequency–Inverse
Document	Frequency,	or	tf-idf.	They	range	from	0.0	to	1.0,	and	a	high	value	means	that
word	in	that	document 	is	important	or	signficant.	A	zero	means	the	term	is	not	in	the
synopsis;	most	values	are	zero.

To	export	the	data	for	use	in	H2O	I	used	the	following	commands—first	turn	that	sparse
matrix	into	a	pandas	data	frame,	then	export	it	as	a	csv	file:

d	=	pd.DataFrame(
		tfidf_matrix.todense(),
		index=titles,
		columns=terms
		)
d.to_csv("tfidf.csv")

H2O	currently	has	very	little	native	NLP	support,	but	this	shows	how	easy	it	is	to	integrate
with	NLTK,	or	your	preferred	library.	Note	that	I	could	have	used	tfidf	=
h2o.H2OFrame(d)	to	load	it	directly	into	H2O	(or	h2oContext.asH2OFrame()	from
Sparkling	Water,	if	this	was	big	data	on	a	Spark	cluster).	But	making	a	csv	file	means	I
will	still	have	it	tomorrow	when	I	come	up	with	a	new	idea.	(I	also	manually	shortened
some	movie	titles,	purely	for	book	formatting	reasons,	which	was	also	very	easy	because
I	had	saved	the	csv	file.)
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The	csv	file	has	564	columns:	the	first	one	is	the	name	of	the	movie,	the	other	563	are	the
terms	that	were	extracted.	I	want	to	use	those	563	values	to	divide	the	movies	up	into	5
clusters;	if	we	get	lucky	the	set	of	movies	in	each	cluster	will	be	similar	to	each	other.
Example	9-1	shows	how	to	do	that	in	R.	Most	of	it	should	be	familiar	by	now;	tapply	is	an	R
function	to	group	the	values	in	one	column	(movie	names)	by	another	column	(each	movie’s
k-means	group),	then	apply	the	given	function	(print)	to	each	group.

Example	9-1.	k-means	example,	in	R
library(h2o)
h2o.init(nthreads	=	-1)

tfidf	<-	h2o.importFile("./datasets/movie.tfidf.csv")

m	<-	h2o.kmeans(tfidf,	x	=	2:564,	k	=	5,
		standardize	=	FALSE,	init	=	"PlusPlus")

p	<-	h2o.predict(m,	tfidf)

tapply(as.vector(tfidf[,1]),	as.vector(p$predict),	print)

Example	9-2	is	how	to	do	that	in	Python;	see	the	inline	comments.

Example	9-2.	k-means	example,	in	Python
import	h2o
h2o.init()

tfidf	=	h2o.import_file("./datasets/movie.tfidf.csv")

from	h2o.estimators.K-means	import	H2OKMeansEstimator
m	=	H2OKMeansEstimator(k=5,	standardize=False,	init="PlusPlus")
m.train(x=range(1,564),	training_frame=tfidf)

#Get	the	group	that	each	movie	is	in
p	=	m.predict(tfidf)

#Join	that	to	our	movie	names,	then	download	it
d	=	tfidf[0].cbind(p).as_data_frame()
d.columns	=	["movie","group"]

#Iterate	through	and	print	each	group
for	ix,	g	in	d.groupby("group"):
				print	"---",ix,"---"
				print	',	'.join(g["movie"])

I	set	a	couple	of	optional	parameters.	First	init="PlusPlus", 	which	I	felt	gave	better	results
than	the	default	of	“Furthest,”	or	the	other	alternative,	“Random.”	(You	can	also	specify	your
own	initialization	values.)	I	also	set	standardize	to	false,	because	the	data	is	already	nicely
between	0.0	and	1.0.	The	m	object	tells	you	quite	a	lot	of	information,	including	how	many
items	are	in	each	cluster,	but	if	you	want	to	find	out	which	item	is	in	which	cluster	you	have	to
ask	it	to	predict	them!
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It	runs	quickly,	a	matter	of	seconds.	Here	is	the	first	of	the	five	groups:

Schindler's	List											One	Flew	Over	Cuckoo	Nest		Gone	with	the	Wind
The	Wizard	of	Oz											Lawrence	of	Arabia									Forrest	Gump
E.T.	the	Extra-Terrestrial	LOTR:	Return	of	the	King			Gladiator
Saving	Private	Ryan								Raiders	of	the	Lost	Ark				Streetcar	Named	Desire
Best	Years	of	Our	Lives				My	Fair	Lady															Ben-Hur
Doctor	Zhivago													Platoon																				The	Pianist
The	Exorcist															The	Deer	Hunter												All	Quiet	on	Western	Front
Mr.	Smith	Goes	Washington		Terms	of	Endearment								The	Grapes	of	Wrath
Shane																						The	Green	Mile													Close	Encounters	3rd	Kind
The	Graduate															Stagecoach																	A	Clockwork	Orange
Wuthering	Heights

Here	is	the	second	group:

Raging	Bull											Citizen	Kane										Singin'	in	the	Rain
12	Angry	Men										Amadeus															Gandhi
Rocky																	To	Kill	a	Mockingbird	Braveheart
Dances	with	Wolves				City	Lights											Good	Will	Hunting
Network

And	the	third	group:

It's	a	Wonderful	Life	Philadelphia	Story				American	in	Paris
Patton																The	King's	Speech					A	Place	in	the	Sun
Out	of	Africa									Tootsie															Giant
Nashville													Yankee	Doodle	Dandy

The	fourth	group	has	both	Godfather	movies	in	it;	most	of	the	Westerns	seem	to	be	in	here
too:

The	Godfather												The	Shawshank	Redemption	Casablanca
Titanic																		The	Godfather:	Part	II			Psycho
Sunset	Blvd.													Vertigo																		On	the	Waterfront
West	Side	Story										The	Silence	of	the	Lambs	Chinatown
Some	Like	It	Hot									Unforgiven															Good,	Bad	and	Ugly
Butch	Cassidy	&	Sundance	Treasure	of	Sierra	Madre	The	Apartment
High	Noon																Goodfellas															The	French	Connection
It	Happened	One	Night				Midnight	Cowboy										Rain	Man
Annie	Hall															Fargo																				American	Graffiti
Pulp	Fiction													The	Maltese	Falcon							Taxi	Driver
Double	Indemnity									Rebel	Without	Cause						Rear	Window
The	Third	Man												North	by	Northwest

And	the	fifth	has	some	scary	ones	like	Jaws	and	The	Sound	of	Music:

The	Sound	of	Music							Star	Wars																2001:	A	Space	Odyssey
Bridge	on	the	River	Kwai	Dr.	Strangelove										Apocalypse	Now
From	Here	to	Eternity				Jaws																					The	African	Queen
Mutiny	on	the	Bounty
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I’m	sure	you	can	see	how	this	can	form	the	basis	of	a	“People	who	enjoyed	Saving	Private
Ryan	also	enjoyed	Platoon"	movie	recommendation	system,	but	the	fact	that	the	five	groups
change	so	much	from	run	to	run	makes	me	cautious.	It	might	just	be	that	the	input	data	needs
more	work.4



Deep	Learning	Auto-Encoder
We	previously	had	a	whole	chapter	(Chapter	8)	on	using	h2o.deeplearning()	for	supervised
learning,	but	now	we	will	look	at	it	for	unsupervised	learning.	You	switch	it	into	this	mode	by
setting	autoencoder	to	true.	The	other	difference	is	to	not	set	the	y	argument	(i.e.,	the	field	you
want	to	learn,	in	supervised	learning).

It	is	a	bit	of	a	trick:	it	still	does	supervised	learning,	but	it	copies	your	input	layer	to	be	the
output	layer	(aka	“the	answer”).	In	other	words,	it	tries	to	learn	the	inputs.	That	might	sound	a
bit	pointless,	but	what	is	happening	is	that	the	hidden	layers	are	being	forced	to	summarize	the
data,	to	compress	it.	All	the	tuning	knowledge	we	learned	in	the	earlier	chapter	can	be	applied.

As	an	example	of	its	use,	I	am	going	to	take	the	same	NLP	data	set	that	was	used	in	“K-Means
Clustering”,	where	we	have	100	movies,	and	563	terms,	and	see	if	we	can	reduce	those	563
dimensions	to	just	two	dimensions.	That	is	quite	an	ask,	but	I	have	chosen	two	because	then	I
can	plot	the	results.

The	nice	thing	about	this	data	set	is	there	are	only	100	rows,	so	the	experiments	can	be	quite
quick.	Example	9-3	is	almost	the	simplest	possible	auto-encoder:	there	will	be	563	input
neurons,	going	down	to	just	two	neurons	in	a	single	hidden	layer,	then	going	to	563	output
neurons.	It	will	train	for	the	default	10	epochs.

Example	9-3.	Minimal	auto-encoder	example,	in	R
m	<-	h2o.deeplearning(
		2:564,	training_frame	=	tfidf,
		hidden	=	c(2),	auto-encoder	=	T,	activation	=	"Tanh"
		)
f	<-	h2o.deepfeatures(m,	tfidf,	layer	=	1)

I	said	almost:	I’ve	added	activation	=	"Tanh"	instead	of	using	the	default	Rectifier.	You	can	use
the	default	Rectifier,	but:

It	gives	poor	results:	x	or	y	will	be	zero	for	many	of	them,	giving	a	clustering	along	the
bottom	and	left.

In	more	complex	auto-encoders	you	will	get	complaints	of	numerical	instability.

So,	with	auto-encoders	I	recommend	always	using	Tanh.

The	code	in	Python	(Example	9-4)	is	quite	similar,	though	note	that	layers	(and	column
indices)	count	from	zero,	whereas	in	R	they	counted	from	one.

Example	9-4.	Minimal	auto-encoder	example,	in	Python
m	=	h2o.estimators.deeplearning.H2OAutoEncoderEstimator(
		hidden=[2],
		activation="Tanh"
		)
m.train(x=range(1,564),	training_frame=tfidf)
f	=	m.deepfeatures(tfidf,	layer=0)
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Despite	the	simplicity,	it	gives	acceptable	results,	with	an	MSE	of	0.035.	Figure	9-2	shows	the
movies	plotted	by	the	value	of	the	two	reduced	dimensions.

Figure	9-2.	Movies	in	two	dimensions,	made	by	the	simplest	auto-encoder.

NOTE
In	this	series	of	plots	only	the	first	30	movies	are	plotted	each	time,	to	stop	them	looking	too	cluttered.	You	will
see	overlapping	names.	These	are	not	printing	errors!	It	is	where	the	algorithm	has	not	managed	to	separate	those
two	movies	in	the	meager	two	dimensions	it	has	been	given.

By	the	way,	I	am	plotting	the	first	30	with	R	code	like	this:

d	<-	as.matrix(f[1:30,])
labels	<-	as.vector(tfidf[1:30,	1])
plot(d,	pch	=	17)		#Triangle
text(d,	labels,	pos	=	3)	#pos=3	means	above

Next	I	made	19	models,	where	I	experimented	with	the	amount	of	reduction:	between	2	and	20
dimensions.	For	each	model,	hidden	was	set	to	128,64,nodes,64,128,	where	nodes	ranged
from	2	to	20.	So	563	input	nodes	linked	to	the	first	hidden	layer	with	128	nodes,	then	to	64
nodes	in	the	second	hidden	layer,	then	the	2+	nodes	of	interest	are	the	third	hidden	layer,	then



back	up	to	64,	then	up	to	128	in	the	fifth	and	final	hidden	layer,	and	then	finally	out	to	563
output	nodes.	I	first	tried	this	with	5	epochs	(the	upper	line	in	Figure	9-3),	and	then	again	with
400	epochs	(the	mostly	lower	line).

Figure	9-3.	Model	quality	(lower	is	better)	by	number	of	dimensions

The	more	dimensions	in	the	middle	hidden	layer	the	easier	it	is	to	learn,	but	the	steeper	angle
of	the	lower	curve	means	it	needs	plenty	of	epochs	to	take	advantage	of	this.	It	is	curious	that
the	first	four	values	did	worse	with	more	epochs.



Stacked	Auto-Encoder
A	neural	net	model	can	be	built	up	in	stages,	which	is	a	useful	technique,	even	with	supervised
learning,	when	you	find	you	want	more	layers	but	learning	is	too	slow	or	just	not	working.

NOTE
Terminology	alert:	You	might	also	see	stacking	models	used	to	mean	ensembles	(described	in	Chapter	10).	But
with	auto-encoding	neural	networks	it	means	learning	one	layer	at	a	time.

Staying	with	the	movie	NLP	data	set:

m1	=	h2o.estimators.deeplearning.H2OAutoEncoderEstimator(
		hidden	=	[128,64,11,64,128],	activation	=	"Tanh",	epochs	=	400
		)
m1.train(x	=	range(1,564),	training_frame	=	tfidf)
f1	=	m1.deepfeatures(tfidf,	layer	=	2)

m2	=	h2o.estimators.deeplearning.H2OAutoEncoderEstimator(
		hidden	=	[2],	activation	=	"Tanh",	epochs	=	400
		)
m2.train(x	=	range(0,11),	training_frame	=	f1)
f2	=	m2.deepfeatures(f1,	layer	=	0)

What	is	happening	is	that	a	model	m1	with	5	hidden	layers,	and	11	neurons	in	the	middle
layer,	is	trained	on	the	raw	data,	tfidf. 	Then	that	third	hidden	layer	is	extracted	into	f1.	f1	is	a
transformation	of	tfidf,	still	with	100	rows,	but	now	only	11	columns.	m2	then	uses	f1	as	its
input,	and	it	builds	a	much	simpler	model,	reducing	11	input	nodes	to	2	hidden	nodes	then
back	out	to	11	output	nodes.	At	the	end	the	results	are	put	in	f2.	f2	has	2	columns,	but	still	has
100	rows,	one	for	each	movie.

I	can’t	objectively	say	if	Figure	9-4	looks	any	better:	this	is	unsupervised	learning,	after	all!
But	the	key	point	here	is	that	f1	could	have	been	used	as	the	training	frame	into	any	algorithm,
whether	another	auto-encoder,	as	here,	or	a	supervised	learning	algorithm	such	as	random
forest.

TIP
A	common	example	you	might	see	is	to	auto-encode	the	MNIST	data	set,	into	two	columns,	which	you	then	plot
to	show	the	digits	(normally	color-coded).	If	you	have	got	it	right	you	should	see	each	digit	clustering	together
nicely.	It	is	also	interesting	to	see	the	different	clustering	you	get	when	using	PCA	(see	“Principal	Component
Analysis”)	to	reduce	the	same	data	to	two	dimensions.

You	might	then	train	on	just	those	two	columns.	Or	add	them	to	the	data,	just	like	the	enhanced	data	that	was
added	before	(see	“Helping	the	Models”).
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Figure	9-4.	Movies	in	two	dimensions,	made	by	a	stacked	auto-encoder



Principal	Component	Analysis
Principal	component	analysis	is	normally	called	PCA,	though	the	H2O	API	and	R	call	it
prcomp.	It	is	another	way	to	reduce	the	dimensionality	of	numeric	data.	Wikipedia	tells	me
“PCA	can	be	done	by	eigenvalue	decomposition	of	a	data	covariance	matrix	or	singular	value
decomposition	of	a	data	matrix.”	Fortunately	I	don’t	need	to	know	my	eigenvalue	from	my
eigenvector	to	be	able	to	use	it.

I	am	going	to	call	PCA	with	k	=	2,	meaning	I	just	want	to	get	the	first	two	principal
components.	The	first	one	will	be	the	x-axis	in	my	plot,	and	accounts	for	as	much	variability
in	the	data	as	it	can.	The	second	one,	which	will	become	my	y-axis,	gets	as	much	of	the
remaining	variability	as	it	can,	while	being	orthogonal	to	the	first	principal	component.	So,
with	PCA	each	additional	dimension	brings	along	less	information.	This	is	in	contrast	to
using	an	auto-encoder	to	reduce	dimensions—there	the	dimensions	are	all	equal	citizens.	(See
Figure	11-4	in	Chapter	11	for	a	visual	example	of	the	difference.)

The	data,	and	application,	is	the	same	as	shown	in	“Deep	Learning	Auto-Encoder”:	take	the	tf-
idf	scores	for	563	terms	used	to	describe	100	movies,	then	reduce	the	563	dimensions	to	just
two,	so	that	they	can	be	plotted.

Here	is	the	complete	code,	in	R:

library(h2o)
h2o.init(nthreads	=	-1)

tfidf	<-	h2o.importFile("./datasets/movie.tfidf.csv")
m	<-	h2o.prcomp(tfidf,	2:564,	k	=	2)
p	<-	h2o.predict(m,	tfidf)

After	running	that	code	p	will	have	2	columns	and	100	rows,	and	plotted	it	looks	like
Figure	9-5	(again,	just	the	top	30	movies,	to	avoid	it	getting	overly	messy).

https://en.wikipedia.org/wiki/Principal_component_analysis


Figure	9-5.	Movies	organized	by	the	first	two	principal	components

Despite	a	few	more	overlaps,	it	looks	just	as	plausible	as	any	of	the	other	plots	of	this	data:	the
two	Godfather	movies	are	quite	close,	as	are	The	Wizard	of	Oz	and	Silence	of	the	Lambs.



GLRM
GLRM	stands	for	Generalized	Low	Rank	Model,	and	it’s	another	algorithm	for	reducing	the
number	of	columns,	while	maintaining	as	much	information	as	possible. 	The	additional
thing	that	GLRM	brings	is	being	able	to	cope	with	nonnumeric	data	and	missing	data.

GLRM	is	also	being	suggested	as	a	lossy	compression	algorithm	(to	reduce	storage
requirements),	and,	related	to	that,	as	a	way	to	fill	in	missing	values.	I	will	look	at	that	at	the
end	of	this	chapter.	But	here	I	am	going	to	run	it	on	the	same	NLP	movie	data	as	I	did	with
auto-encoder	and	PCA:

library(h2o)
h2o.init(nthreads	=	-1)

tfidf	<-	h2o.importFile("./datasets/movie.tfidf.csv")

m	<-	h2o.glrm(tfidf,	cols	=	2:564,	k	=	2)
X	<-	h2o.getFrame(m@model$representation_name)
#	Y	<-	m@model$archetypes

GLRM	works	by	taking	the	563	column	by	100	row	data,	and	creating	two	smaller	matrices:
X,	which	is	2	columns	by	100	rows,	and	Y,	which	is	563	columns	by	2	rows.	That	is,	56,300
cells	have	been	reduced	to	200	+	1126	=	1326	cells.	Y	is	commented	out	here,	as	it	not	being
used	in	this	example.	To	restore	your	original	data	(also	not	needed	here)	you	would	do	X	*
Y.	You	can	do	this	with	h2o.proj_archetypes(m,	tfidf)	or	h2o.predict(m,	tfidf)	or
h2o.reconstruct(m,	tfidf).

As	in	the	previous	sections	we	can	plot	the	contents	of	X,	and	attach	movie	names	(Figure	9-
6).

NOTE
GLRM	contains	a	number	of	options,	including	transform.	The	default	is	“NONE,”	but	if	you	change	this	default
then	you	should	also	set	reverse_transform	to	be	true	when	calling	h2o.proj_archetypes.	For	example,
h2o.proj_archetypes(m,	tfidf,	reverse_transform	=	TRUE).
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Figure	9-6.	Movies	in	two	dimensions,	made	by	GLRM



Missing	Data
The	building	energy	and	MNIST	data	sets	came	to	us	perfectly	formed:	no	missing	data	at	all.
The	same	cannot	be	said	for	the	football	data.	It	was	hard	enough	just	to	get	it	all	into	a	single
file,	but	at	the	point	we	left	it	(at	the	end	of	Chapter	3)	there	were	quite	a	lot	of	NAs	(the	early
years	had	no	stats,	and	the	set	of	bookmakers	that	we	get	odds	from	changes	year	to	year).	If
we	run	GLM	or	deep	learning	on	it,	with	missing	data	handling	set	to	“Skip,”	then	any	row
that	has	an	NA	in	any	column	will	get	ignored	completely.

The	missing	fields	in	our	train,	valid,	and	test	data	sets	are	different.	You	can	see	number	of
missing	values	by	looking	at	the	data	on	Flow,	for	instance,	but	to	investigate	this	issue	more
deeply,	I	loaded	the	data	into	H2O	(see	Example	3-6	from	Chapter	3)	to	set	up	train,	test,	valid,
x,	y,	and	so	on,	then	I	ran	the	following	lines	to	download	all	the	data	into	the	R	client:

d	<-	as.data.frame(train)
dv	<-	as.data.frame(valid)
dt	<-	as.data.frame(test)

R	has	a	nice	couple	of	idioms	to	help.	First,	to	find	out	how	many	rows	we	have	with	no	NAs
in	any	column,	use	sum(complete.cases(d)).	15,648	in	training,	1,984	in	the	validation	data	set,
and	only	310	in	the	training	data.	mean(complete.cases(d))	gets	that	as	a	percentage:	38%,
97%,	and	15%.	That	is	a	lot	of	data	we	could	potentially	be	throwing	away,	especially	in	the
test	data	set.

Second,	to	see	what	percentage	of	each	column	is	a	missing	value,	use	colMeans(is.na(d)).
Here	is	a	sample:

			Div							Date			HomeTeam			AwayTeam							FTHG							FTAG
	0.000						0.000						0.000						0.000						0.000						0.000
			HTR									HS									AS								HST								AST									HF
	0.262						0.350						0.350						0.350						0.350						0.350
				HY									AY									HR									AR						B365H						B365D
	0.350						0.350						0.350						0.350						0.450						0.450
		...								...								...								...								...								...
	BbAvH						BbMxD						BbAvD						BbMxA						BbAvA							BbOU
	0.600						0.600						0.600						0.600						0.600						0.600
BbAv<2.5					BbAH						BbAHh				BbMxAHH				BbAvAHH				BbMxAHA
	0.600						0.600						0.600						0.600						0.600						0.600
		HST1							AST1								HF1								AF1								HC1								AC1
	0.000						0.000						0.000						0.000						0.000						0.000
			AR1						res1H						res1A						res5H						res5A					res20H
	0.000						0.000						0.000						0.000						0.000						0.000

In	the	training	set,	all	the	columns	starting	“Bb”	are	60%	missing.	The	other	betting	odds
columns	vary	from	35%	to	55%	missing.	34%	of	rows	have	no	match	stats	(number	of
corners,	etc.),	and	26%	don’t	have	the	half-time	result.

The	validation	data	is	completely	different:	dv[!complete.cases(dv),'Date']	tells	me	that	there



were	45	matches	affected	in	mid-August,	and	that	3	more	matches	were	affected	in	April,	i.e.,
just	2.3%,	and	just	betting	odd	columns.	The	test	data	is	different	again:	85%	of	columns	SJH,
SJD,	SJA	are	missing.

The	test	data	is	the	easiest	to	fix:	if	we	remove	the	SJH,	SJD,	and	SJA	columns,	we	end	up	with
2032	complete	cases.	So	it	jumps	from	15%	complete	to	99.8%	complete!	The	way	to	remove
columns	in	H2O	is	by	doing	a	copy,	specifying	the	columns	we	want	to	keep. 	Look	at	this
code,	but	don’t	run	it	just	yet:

test	<-	test[!(colnames(test)	%in%	c('SJH',	'SJD',	'SJA'))]

Naturally,	if	you	remove	some	columns	from	the	test	data	set,	you	need	to	remove	those	same
columns	from	the	training	and	validation	data	sets.	But	we	need	to	think	what	to	do	about	all
the	missing	data.	There	have	been	entire	books	written	about	missing	data,	entire	conferences
on	the	subject,	so	brace	yourself,	because	I’m	about	to	reduce	it	to	two	techniques:

Throw	It	Out

Make	It	Up

You	just	saw	an	example	of	Throw	It	Out,	when	we	got	rid	of	the	entire	SJH/SJD/SJA
columns.	The	“Skip”	behavior	of	GLM	and	deep	learning,	which	ignores	data	rows	with	any
NA,	is	another	example.

The	very	simplest	approach	to	Make	It	Up	is	to	set	it	to	zero.	I	did	that,	kind	of	inadvertently,
when	adding	the	previous-match	stats	(see	“The	Other	Third”).	Figure	9-7	shows	the
histogram	of	HS	(home	shots	in	each	match)	on	the	left,	with	HS1	(shots	by	the	home	side	in
their	previous	match),	on	the	right.	Have	I	done	a	bad	thing	here?	Maybe.	But	before	you	shun
me,	ostracize	me,	shut	me	out	of	your	life	forever,	we	should	consider	the	alternatives.
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Figure	9-7.	Comparison	of	HS	and	HS1	distribution	(with	zero)

One	step	up	the	sophisticated	scale	is	to	take	the	mean	of	the	column	and	replace	all	missing
values	with	that.	And	GLM	and	deep	learning	will	do	this	for	you,	for	all	NAs,	if	you	specify
missing_values_handling	=	"MeanImputation".	There	is	also	the	h2o.impute()	function,	which
offers	not	just	mean,	but	also	median	and	mode	options.	(Imputation	is	what	statisticians	call
making	things	up.)	Surely	that	is	going	to	be	better	than	using	a	zero?	Figure	9-8	is	what	mean
imputation	looks	like	for	that	same	HS1	field.

Figure	9-8.	Comparison	of	HS	and	HS1	distribution	(with	mean	imputation)



I’d	argue	that	in	some	situations	this	is	just	as	bad.	What	I	mean	is	that	for	algorithms	like
GLM,	which	will	use	HS1	as	a	numeric	field	in	mathematical	equations,	yes,	the	second	way	is
better.	But	for	tree	algorithms,	that	cut	the	numbers	up	into	ranges,	the	second	way	has
disguised	the	difference	between	a	genuine	12	and	a	“shrug,	no	idea	what	actually	happened.”
Using	a	zero	is	better	for	the	tree	algorithms,	as	zero	was	a	rare	value.

Both	approaches,	zero	or	mean,	are	poor. 	The	ideal	would	be	something	that	kept	the	shape
of	the	histogram.	One	way	that	might	work,	with	HS1,	is	to	guess	that	if	a	team	scored	zero
goals	they	likely	made	fewer	shots	than	a	team	that	scored	one	goal,	while	a	team	that	scored
two	goals	likely	made	more	shots,	and	so	on.	A	quick	check	shows	a	0.23	correlation	between
home-side	goals	and	home-side	shots,	and	a	0.37	correlation	between	home-side	goals	and
home-side	shots	on	target	(the	“HST”	field).

With	up	to	60%	values	missing,	it	is	the	betting	odds	columns	that	are	causing	the	most
anguish.	New	bookmaker	sources	get	added,	bookmakers	go	broke,	or	merge,	and	generally
it	all	gets	horribly	messy.	But,	every	cloud	has	a	silver	lining,	and	the	Ag	layer	here	is	that	all
those	bookmaker	odds	are	highly	correlated.	“Estimating	HS1	based	on	goals	scored”	is	a
level	of	making	stuff	up	that	gives	even	a	politician	pause,	but	if	the	odds	of	a	home	win	from
our	other	bookmakers	range	from	1.35	to	1.39,	for	a	certain	match,	we	are	going	to	be	fairly
safe	going	with	1.37	for	any	missing	bookmaker	values.
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GLRM
Unhappy	with	both	“Skip”	and	“MeanImputation”	options,	I	first	tried	the	GLRM	algorithm	to
fill	in	the	data.	My	first	try	was	a	very	naive	h2o.glrm(train,	k	=	9).	It	took	so	long	I	had	to
abort	it,	and	found	out	that	it	was	trying	to	work	with	3830	columns!	Each	unique	date,	and
each	unique	team	name,	had	become	a	column.	So	I	tried	again,	using	just	x,	the	list	of	column
names	we	can	validly	use	to	learn	a	model	from.

Objective	is	the	measure	of	error	in	GLRM,	and	the	default	50	iterations	gave	an	objective	of
2.76	million,	and	completed	in	12.4	seconds;	by	increasing	to	200	iterations	it	reduced	the
objective	839K,	and	increased	the	run	time	to	45	seconds.	Here	is	the	code	to	make	the	model,
and	then	to	make	a	version	of	train	with	no	missing	values:

m	<-	h2o.glrm(train,	cols	=	x,
		k	=	9,	max_iterations	=	200
		)
train2	<-	h2o.reconstruct(m,	train)

train2	just	contains	the	x	columns,	and	the	column	names	are	all	different,	so	it	would	take
some	data	hacking	to	merge	these	in	to	replace	just	the	missing	values	in	train.	But	the	real
problem	with	train2	is	the	values	are	outside	the	range	of	values	in	the	original	data.	For
instance,	betting	odds	always	have	to	be	above	1.0.	But	some	of	the	restored	betting	odds
values	were	not	just	below	1.0	but	were	even	negative.	Other	fields	had	a	range	of	–1.0	to
+1.0,	but	were	being	given	values	outside	that	range.

I	made	a	number	of	attempts	to	use	GLRM’s	various	parameters,	or	to	try	just	using	the	odds
columns,	or	different	values	for	k,	or	more	iterations,	but	couldn’t	get	past	this	fundamental
flaw.



Lose	the	R!
I	got	much	better	results	when	I	switched	from	using	GLRM	to	using	GLM.	The	idea	is,	for
any	given	column,	make	a	linear	model	to	predict	it	based	on	the	value	in	all	the	other
columns.	There	are	39	columns	that	have	at	least	one	missing	value,	so	this	requires	making
39	linear	models.

As	a	first	step,	I	decided	to	drop	all	data	prior	to	the	2000/2001	season.	It	only	consisted	of	the
final	result,	no	match	stats,	no	betting	odds,	so	very	little	to	impute	off	of.	That	was	done	with
this	code,	which	creates	a	new	data	frame	on	the	H2O	cluster,	and	also	gives	it	a	friendly
name:

train2000	<-	h2o.assign(train[14237:nrow(train),],	"train2000")

The	following	R	loop	shows	how	the	fields	storing	betting	odds	were	filled	in.	Because	these
columns	are	so	highly	correlated,	I	just	trained	each	line	model	from	the	other	odds	columns
and	nothing	else.	That	is	what	the	setdiff(oddFields,	y)	statement	is	doing:

dNew	<-	as.data.frame(train2000)
colnames(dNew)	<-	colnames(train2000)

lapply(oddFields,	function(y){
		missingCount	=	sum(is.na(dNew[,y]))
		if(missingCount	==	0)return(NULL)

		m	<-	h2o.glm(setdiff(oddFields,	y),	y,
				train2000,	model_id	=	paste0("GLM_",y),
				lambda_search	=	TRUE
				)
		res	<-	h2o.predict(m,	train2000[is.na(train2000[,y]),])
		v	<-	as.vector(res)

		dNew	<-	get('dNew',	envir	=	.GlobalEnv)
		dNew[is.na(dNew[,y]),y]	<-	as.vector(res)
		assign('dNew',	dNew,	envir=.GlobalEnv)
		})
train2000x	<-	as.h2o(dNew,	destination_frame	=	"train2000x")

The	first	couple	of	lines	prepare	a	client-side	data	frame	to	store	the	imputed	data	in,	and	the
last	three	lines	in	the	loop	are	some	R	hackery	to	insert	results,	replacing	just	the	missing
values.

The	final	line	uploads	the	filled-in	data	to	the	H2O	cluster,	which	is	essential	so	we	can
reference	it	in	the	next	block	of	code,	which	will	fill	in	gaps	in	the	other	fields.	It	allows	using
the	imputed	odds	data	as	a	field	to	learn	from	when	filling	in	the	stats	fields.	Other	than	that,
the	following	loop	works	just	like	the	previous	one:

mostFields	<-	setdiff(colnames(train),	c("Date",	"HomeTeam",	"AwayTeam")	)
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lapply(statFields,	function(y){
		missingCount	<-	sum(is.na(dNew[,y]))
		if(missingCount	==	0)return(NULL)

		m	<-	h2o.glm(setdiff(mostFields,	y),	y,
				train2000x,	model_id	=	paste0("GLM_",y),
				lambda_search	=	TRUE
				)
		res	<-	h2o.predict(m,	train2000x[is.na(train2000x[,y]),])
		v	<-	as.vector(res)

		dNew	<-	get('dNew',	envir	=	.GlobalEnv)
		dNew[is.na(dNew[,y]),y]	<-	as.vector(res)
		assign('dNew',	dNew,	envir=.GlobalEnv)
		})
train2000x	<-	as.h2o(dNew,	destination_frame	=	"train2000x")

To	get	higher-quality	results,	valid2000x	was	made	by	merging	the	new	training	data	with	the
current	validation	data:

trainValid	<-	h2o.rbind(train2000x,valid)

The	two	loops	were	the	same.	And	the	test	data	was	filled	in	in	just	the	same	way,	using	the
merger	of	three	data	sets:

trainValidTest	<-	h2o.rbind(train2000x,	valid2000x,	test)

WARNING
Why	not	just	merge	train,	valid,	and	test	at	the	start,	and	run	the	loops	once,	instead	of	three	times?	Because	that
would	be	infecting	the	training	data	with	knowledge	of	the	future.	When	dealing	with	time-series	data	you	need	to
keep	thinking	what	data	was	available	at	what	point	in	time,	and	remember	that	the	test	data	represents	unseen	data
that	your	model	will	be	used	on	in	production.

The	final	step	was	to	export	those	data	frames	to	csv	files:

path	=	"/path/to/datasets/"
h2o.exportFile(train2000x,	paste0(path",football.train2.csv"))
h2o.exportFile(valid2000x,	paste0(path",football.valid2.csv"))
h2o.exportFile(test2000x,	paste0(path",football.test2.csv"))

Unlike	importing	data,	relative	paths	are	not	allowed	by	exportFile(),	so	a	full	path	must	be
given.



TIP
I	used	GLM	almost	out-of-the-box,	the	only	customization	being	to	specify	lambda	search	(and	even	that	was	not
needed).	Of	course,	it	didn’t	need	to	be	GLM,	and	I	imagine	any	of	random	forest,	GBM,	or	deep	learning	would
have	done	the	job	just	as	well,	if	not	better.

But	GLM	was	good	enough,	and	is	quick,	and	stays	quick	when	scaled	across	clusters.

To	close	this	section,	the	comparison	of	HS	and	HS1	in	football.train2.csv	is	shown	in
Figure	9-9.	The	distributions	look	almost	exactly	the	same!

Figure	9-9.	The	final	imputed	HS1	data

See	I	told	you	it	would	all	work	out	in	the	end.	(Smug	grin.)	Where	did	all	the	zeros	go,	do	I
hear	you	cry?	It	turns	out	that	practically	all	of	them	were	in	the	pre-2000	data.	So,	that	huge
imbalance	went	away	when	I	truncated	away	the	first	14,237	rows.	I	know,	it	feels	like
cheating.	But,	all’s	well	that	ends	well!



MISSING	DATA	STRATEGY

GLM	worked	well,	so	let’s	use	it	everywhere?	Unfortunately	there	is	no	single	best
approach	for	dealing	with	missing	data.	To	illustrate 	this,	let’s	have	a	think	about	what
the	choices	mean	for	missing	data	in	a	birthday	column:

Zero

Everyone	gets	set	to	January	1st.

Mean

Everyone	gets	set	to	June	30th.

GLM,	etc.

Everyone	gets	an	arbitrary	birthday,	as	there	are	no	useful	predictors.

Skip

Ignore	everyone	who	hasn’t	told	us	their	birthday.

Remove	Column

No	one’s	birthday	is	used.

If	marketing	wants	to	send	out	birthday	cards	to	customers,	Skip	is	what	you	want,	the
others	are	all	very	stupid.	If	you	want	to	build	a	model	from	this	data,	Remove	Column	is
likely	best.	Those	are	not	the	only	choices.	Leaving	birthday-unknown	as	just	another
categorical	level	would	work	(though	this	would	most	likely	slow	the	model	down	for	no
advantage	compared	to	Remove	Column).	A	marketing	campaign	to	ask	customers	their
birthday	is	good.	And	maybe	another	database	can	contain	useful	predictors,	such	as
noticing	the	number	of	friend	posts	on	a	person’s	Facebook	feed	is	much	higher	on	one
day	of	the	year.

Never	deal	with	missing	data	on	your	response	variable;	instead,	simply	remove	those
rows.	This	happens	automatically	with	the	H2O	supervised	algorithms.

TIP
When	imputing	data,	always	keep	the	original	(on	disk,	in	a	data	warehouse;	where	doesn’t	matter).
Never	“fix”	the	data	by	writing	over	the	original.	Someone	may	come	up	with	a	better	approach	in	the
future.	Government	regulation	might	enforce	a	different	one.	And	today’s	predictor	variable	may	be
tomorrow’s	response	variable.
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Summary
This	chapter	showed	how	to	use	H2O	with	Natural	Language	Processing,	but	was	mainly
about	dealing	with	data	when	the	correct	answer	is	either	unavailable	or	does	not	exist.
Sometimes	this	is	a	means	to	an	end,	for	instance	when	creating	better	or	additional	training
data	for	a	supervised	learning	algorithm,	and	sometimes	it	is	the	end	in	itself,	such	as
clustering	or	filling	in	missing	values.

This	chapter	also	took	a	detailed	look	at	dealing	with	missing	data,	and	you	should	now	know
when	to	specify	the	missing_values_handling	parameter,	when	you	need	to	do	something	as
part	of	the	data	preparation	stage,	and	when	you	don’t	need	to	do	anything.	We	also	saw	how
H2O	can	be	of	use	at	any	stage	in	your	pipeline,	not	just	to	build	the	big	model	at	the	end.

We	have	now	looked	at	four	supervised	learning	algorithms,	and	a	variety	of	unsupervised
ones.	The	next	chapter	will	take	a	quick	look	at	everything	in	H2O	that	has	not	already	been
dealt	with.

	Each	movie	synopsis	counts	as	a	document;	the	corpus	is	the	set	of	all	100	movie	synopses.

	See	https://en.wikipedia.org/wiki/K-means%2B%2B	for	a	description	of	this	initialization
algorithm.

	They	will	change	each	time	you	run	it,	unless	you	set	a	seed	(123	used	here).

	The	combination	of	stopwords	and	stemming	seemed	to	give	some	strange	terms.	Doing
some	proper	grammatical	parsing	would	improve	results,	though,	would	also	give	a	huge
increase	in	computation	time.	But	all	that	is	outside	the	scope	of	this	book.

	Maxout	is	not	supported	for	auto-encoding.

	Stacked	auto-encoders	usually	model	a	single	layer	at	a	time;	I	wanted	to	show	here	that	you
don’t	have	to	do	it	that	way.

	If	you	go	back	to	Brandon	Rose’s	article,	and	code,	you	will	see	the	genre	of	each	movie	is
available.	Could	that	be	used	for	supervised	learning?

	It	builds	on	top	of	k-means:	in	fact	if	you	look	on	Flow	you	will	see	that	for	every	GLRM
model	a	k-means	model	has	also	been	built.

	Yes,	it	is	strange	you	need	the	original	data	tfidf,	when	the	point	of	X	and	Y	was	that	they	can
replace	it,	and	so	free	up	storage.	Also	strange	that	there	appears	to	be	three	functions	to	do
the	same	thing.

	Remember	to	then	do	dt	<-	as.data.frame(test)	to	get	the	data	again,	if	you	plan	on	any	more
client-side	analysis	with	it.

	I	should’ve	used	a	blank	value	instead	of	zero;	then	H2O	would	have	loaded	them	as
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missing	values,	and	they	would	not	have	appeared	in	the	histogram	at	all.	But,	stay	with	me,	it
will	all	work	out	for	the	best.

	That	isn’t	mean	imputation.	Mean	imputation	is	the	mean	over	the	whole	column.	This	is
the	average	of	selected	fields	over	a	row.

	I	was	able	to	do	all	these	columns	in	one	go	because	it	would	fit	in	memory.	If	you	are
dealing	with	Bigger	Data,	this	might	have	to	be	done	one	column	at	a	time.

	The	bad	choices	here	are	very	obvious.	They	won’t	always	be.
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Chapter	10.	Everything	Else

There	is	lots	still	to	say:	enough	to	fill	another	book!	This	chapter	will	introduce	quite	a	few
topics,	without	going	into	too	much	detail,	but	pointing	you	toward	where	you	can	find	out
more.

This	chapter	starts	with	a	look	at	where	to	get	the	latest	documentation,	and	how	to	Use	The
Source,	Luke!	Then	we	look	at	how	to	upgrade	H2O,	and	how	to	install	it	from	source.	Which
leads	on	to	how	to	set	up	clusters,	which	leads	on	to	Spark	and	Sparkling	Water.	Finally,	a
look	at	other	algorithms:	naive	bayes	and	ensembles.



Staying	on	Top	of	and	Poking	into	Things
H2O	is	well-documented,	so	http://docs.h2o.ai	should	be	your	first	port	of	call.	The	latest
user	guide	is	at	http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html.

If	you	want	to	see	if,	say,	any	new	parameters	have	been	added	to	GBM,	you	could	go	to	the
REST	API	Reference,	then	find	GBMParametersV3.	Alternatively,	regularly	check
Changes.md	over	on	the	GitHub	site!

If	you	wanted	to	see	how	GBM	is	implemented	in	Java	you	would	start	at	the	Javadocs,	find
"hex.tree.gbm,”	then	"GBM.”	The	corresponding	code	will	be	over	on	Github.

Random	forest	is	called	DRF	in	the	REST	endpoints,	and	hex.tree.drf	in	the	Java	source;
everything	else	is	fairly	much	named	how	you	would	expect.

http://docs.h2o.ai
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
http://bit.ly/2g6l5Hg
http://bit.ly/2grKqyH
http://bit.ly/2g6qqhK
http://bit.ly/2g3rEZc
http://bit.ly/2grIfv9
http://bit.ly/2fNoOZl


Installing	the	Latest	Version
Installing	from	packages,	as	shown	back	in	the	first	chapter	(“Install	H2O	with	R	(CRAN)”
and	“Install	H2O	with	Python	(pip)”)	is	going	to	be	good	enough	for	most	people.	However,
installing	the	latest	stable	version	(or	even	the	latest	bleeding-edge	version)	is	not	that	much
harder.

Unfortunately	the	latest	versions	do	not	have	nice	aliases,	like	“stable”	and	“nightly,”	so	I
cannot	just	give	you	some	instructions	to	copy	and	paste;	it	changes	with	each	release.	Instead,
go	to	the	H2O	download	page,	click	the	link	for	the	latest	stable	release	of	H2O,	and	follow
the	instructions	for	either	R	or	Python	there.

Instead,	go	to	the	H2O	R	download	page	or	the	H2O	Python	download	page	and	follow	the
instructions	given	there.

http://www.h2o.ai/download/
http://www.h2o.ai/download/h2o/r
http://www.h2o.ai/download/h2o/python


Building	from	Source
Some	people	are	hopeless	control	freaks,	but	not	you—you	have	a	genuine	reason	to	need	to
compile	everything	from	source.	How	to	build	H2O	from	source	are	the	instructions	you	are
looking	for.	There	are	a	couple	of	dependencies	beyond	what	you	need	to	just	install	and	run
H2O,	but	it	is	not	too	bad.	There	are	subsections	for	various	platforms	(including	Hadoop).

https://github.com/h2oai/h2o-3#Building


Running	from	the	Command	Line
Throughout	the	book	we	have	let	our	R	or	Python	client	start	H2O	for	us.	This	is	the	easiest
way,	and	also	makes	sure	the	versions	are	compatible.

But	if	the	client	finds	H2O	is	already	running,	it	will	happily	connect	to	that	running	instance.
Starting	H2O	separately	like	this	has	some	advantages.	The	main	one	is	stability.	When	you
close	your	client	it	closes	H2O	for	you,	too.	If	you	only	ever	have	one	client,	and	you	never
need	H2O	running	when	that	client	is	closed,	that	is	just	what	you	want;	if	not,	it	will	cause
problems!

The	following	example	shows	how	to	start	H2O	with	3GB	of	memory,	on	the	local	IP	address
and	default	port:

java	-Xmx3g	-jar	/path/to/h2o.jar

The	other	reasons	for	using	the	command	line	usually	have	to	do	with	starting	clusters	on	a
remote	server.	You	can	get	help	on	all	the	current	command-line	options	with:

java	-jar	/path/to/h2o.jar	--help

NOTE
The	H2O	you	start	must	still	be	the	same	version	as	the	version	of	the	client	you	have	installed.

If	you	need	to	pass	authentication	details	to	S3	or	HDFS,	you	can	specify	"core-site.xml"	like
this:

java	-jar	h2o.jar	-hdfs_config	core-site.xml

See	the	documentation	on	what	should	go	inside	that	XML	file.

I	mentioned	in	“Privacy”	that	H2O	calls	Google	Analytics	to	record	which	versions	are	being
used.	If	you	need	to	opt	out,	the	command-line	argument	-ga_opt_out	is	an	alternative	to
creating	the	.h2o_no_collect	file	in	your	home	directory:

java	-Xmx3g	-jar	/path/to/h2o.jar	-ga_opt_out

http://bit.ly/2goq6xt


Clusters
H2O	data	structures,	and	its	algorithms,	have	been	built	with	clusters	in	mind,	rather	than	as
an	afterthought.	Even	so,	there	are	a	few	restrictions	with	H2O	clusters:

Each	H2O	node	on	the	cluster	must	be	the	same	size.	So	if	the	smallest	machine	in	your
cluster	has	3GB	free,	every	node	must	be	given	3GB,	even	if	some	of	them	have	64GB.

Machines	cannot	be	added	once	the	cluster	starts	up.

If	any	machine	dies,	the	whole	cluster	must	be	rebuilt. 	No	high	availability	support.

Each	node	must	be	running	the	same	version	of	h2o.jar.	(And	if	you	are	planning	to
control	the	cluster	from,	say,	an	R	client,	then	that	also	must	be	running	the	same	API
version	as	your	h2o.jar.)

Nodes	should	be	physically	close,	to	minimize	network	latency.

For	more	than	one	of	those	reasons,	you	should	favor	a	few	big	nodes	over	lots	of	small
nodes.	And	for	models	that	take	many	hours	to	create,	use	regular	checkpoints	(see
“Checkpoints”	in	Chapter	4)	and	model-saving	(see	“Model	Files”	in	Chapter	2).

An	H2O	cluster	can	be	created	in	one	of	two	ways:

Flatfile

A	simple	textfile	giving	the	IP	address	and	port	of	each	node	in	the	cluster.	You	must
prepare	this	file	identically	on	each	machine.	You	specify	it	when	starting	h2o.jar	with	-
flatfile	myfile.txt.

Auto-discovery

If	you	specify	-network	192.168.1.0/24	when	starting	h2o.jar,	then	it	will	hunt	through	that
subnet	to	find	all	nodes	and	join	them	together	in	a	cluster.	This	is	slower	than	the	flatfile,
but	saves	you	having	to	create	that	file	and	upload	it	to	every	node	beforehand.

You	can	also	give	your	cluster	a	name,	and	specify	this	name	when	starting	on	each	node.	I
recommend	you	do	this	(and	name	your	flatfile	with	the	same	name).	It	becomes	essential	if
you	want	to	run	two	or	more	clusters	on	the	same	subnet.

You	have	a	few	minutes	to	get	all	the	nodes	started	before	the	first	one	will	complain	and	shut
down.	However,	as	soon	as	a	client	(R,	Python,	Flow)	connects	to	any	node	in	the	cluster,	the
cluster	will	lock	down,	and	no	further	nodes	can	be	added.

To	connect	to	your	cluster,	just	use	h2o.init()	giving	the	IP	address	of	any	node.	There	is	no
master	node;	they	are	all	equal	peers.	However,	the	first	node	listed	in	the	cluster	status	(get	it
from	Flow,	h2o.clusterStatus()	in	R,	or	h2o.cluster_status()	in	Python)	sometimes	has	special
status	when	it	comes	to	importing	or	exporting	data	or	models.	And	sometimes	it	is	the	node
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your	client	is	connected	to.	I	recommend	you	connect	to	the	first	node	when	you	plan	to	be
using	the	local	filesystem	for	import	or	export,	to	avoid	any	confusion. 	For	importing	data,
the	data	has	to	be	visible	by	all	nodes	in	the	cluster,	which	generally	means	you	will	need	to
have	a	copy	on	each	node,	in	exactly	the	same	place.	I	find	it	easier	to	be	using	S3	or	HDFS.
Alternatively,	run	your	R	or	Python	client	on	the	node	that	has	the	data,	and	use	upload	file
instead	of	import	file.
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EC2
Setting	up	an	H2O	cluster	on	Amazon	EC2	machines	is	nice	and	easy	because	of	a	set	of	pre-
made	scripts.	Those	scripts	have	a	Python/boto	dependency,	but	this	is	solely	for	running	the
AWS	commands.	So	if	you	already	have	scripts	to	set	up	AWS	servers	in	some	other
language,	it	is	quite	possible	to	learn	what	you	need	from	these	scripts	and	then	integrate	it
into	the	code	you	already	have.

You	will	find	the	Flow	UI	listening	on	port	54321	of	each	machine	in	your	cluster.	Extract	the
global	DNS	name	from	either	the	script	output,	or	from	the	EC2	Management	Console.	A	nice
touch	is	that	each	machine	in	the	cluster	will	also	come	with	RStudio	installed;	you	will	find	it
on	port	8787.

Those	scripts	implement	the	following	steps:

1.	 Start	a	set	of	EC2	instances,	recording	their	IP	addresses.

2.	 Once	they	are	all	running,	get	that	information,	and	h2o.jar,	on	each	node.

3.	 Start	h2o.jar	on	each	node.

SSH	is	used	for	steps	2	and	3.

The	script	default	is	to	have	no	security	group.	Instead,	I	recommend	that	you	create	a	security
group 	called	“for_h2o”	that	allows	inbound	connections	on	TCP	ports	22,	8787,	54321,	and
54322,	and	UDP	ports	54321	and	54322. 	Then	find	the	“securityGroupName”	line	in	h2o-
cluster-launch-instances.py	and	set	it	to	read:

securityGroupName	=	'for_h2o'

4

5

https://github.com/h2oai/h2o-3/tree/master/ec2


Other	Cloud	Providers
There	are	no	ready-made	scripts	for	Azure,	Google,	Rackspace,	Digital	Ocean,	and	the	other
cloud	providers.	But	there	is	no	reason	H2O	cannot	run	there.	Assuming	you	are	familiar	with
scripting	their	APIs,	you	should	be	able	to	borrow	and	adapt	the	EC2	scripts	quite	easily.



Hadoop
Running	H2O	on	Hadoop	is	like	the	normal	setup,	but	you	should	fetch	and	install	a	version
for	your	specific	Hadoop	setup	by	going	to	the	H2O	download	page,	choosing	the	latest
stable	release,	then	clicking	on	the	“Install	on	Hadoop”	tab,	and	following	the	instructions
there.	Then	instead	of	java	h2o.jar,	you	will	do	hadoop	jar	h2odriver.jar.	(There	are
additional	parameters:	view	the	previous	URL	to	get	the	latest	ones.)	After	that	you	can	use
Flow,	or	connect	to	H2O	using	your	R	or	Python	client,	just	as	with	the	local	version.	Data
can	be	loaded	from	HDFS	as	we’ve	already	seen	in	earlier	chapters.

http://www.h2o.ai/download/


Spark	/	Sparkling	Water
In	some	ways	Spark	and	H2O	are	competing	products:	they	are	both	about	analyzing	Big
Data,	in-memory.	However,	each	has	its	strengths, 	and	“Sparkling	Water”	is	a	way	to	get
them	to	work	together	closely	so	you	can	get	the	best	of	each	world.	There	are	versions	for
Spark	2.0,	1.6,	1.5,	1.4,	and	1.3.

Sparkling	Water	is	run	as	a	regular	Spark	application.	You	run	the	H2O	functions	using
Scala. 	Once	the	data	is	inside	an	H2O	data	frame,	it	can	be	shared	with	Spark	functions,
without	involving	a	memory	copy	(using	the	asRDD()	or	asDataFrame()	functions).

To	learn	more	about	Sparkling	Water,	the	best	resources	are	the	booklet,	which	can	be	found
at	http://docs.h2o.ai	or	directly	at	http://bit.ly/2g2zfJg,	and	then	the	directory	of	examples	on
GitHub.
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Naive	Bayes
There	is	another	supervised	machine-learning	algorithm,	naive	bayes.	I	didn’t	look	at	it	in	the
main	section	of	the	book,	as	it	is	a	bit	more	limited,	with	binomial	and	multinomial
classifications	only,	and	not	so	many	parameters,	and	well,	basically,	there	wasn’t	enough
space	to	include	everything.

Naive	bayes	is	often	associated	with	NLP	(Natural	Language	Processing)	applications,	such	as
spam	recognition	or	sentiment	analysis.	But,	to	get	you	started,	Example	10-1	is	the	iris
example	from	the	first	chapter	(“Our	First	Learning”),	done	with	naive	bayes	instead	of	deep
learning.

Example	10-1.	Naive	bayes	on	the	Iris	data	set,	in	R
library(h2o)
h2o.init(nthreads	=	-1)

datasets	<-	"https://raw.githubusercontent.com/DarrenCook/h2o/bk/datasets/"
data	<-	h2o.importFile(paste0(datasets",iris_wheader.csv"))
y	<-	"class"
x	<-	setdiff(names(data),	y)
parts	<-	h2o.splitFrame(data,	0.8)
train	<-	parts[[1]]
test	<-	parts[[2]]

m	<-	h2o.naiveBayes(x,	y,	train)
p	<-	h2o.predict(m,	test)

That	manages	the	same	28	out	of	30	score	I	got	in	the	first	chapter,	so	naive	bayes	is	certainly
not	an	algorithm	just	for	NLP	applications.	Your	next	stop	should	be	the	API	documentation
(it	is	supported	from	R,	Python,	and	also	Flow).



Ensembles
Imagine	you	are	putting	together	a	team	of	three	for	a	quiz	night.	Further,	imagine	that	you
are	a	god	when	it	comes	to	Python,	are	rather	good	at	math	and	physics,	think	sports	are	for
losers,	and	don’t	even	own	a	TV,	preferring	to	play	online	video	games.	For	some	of	you	that
will	require	a	lot	of	imagination,	I’m	sure.	One	option,	what	with	you	being	so	clever,	is	to
just	enter	the	quiz	night	solo.	Alternatively,	you	could	invite	Bob	(an	R	guy,	but	on	the	plus
side	he	is	better	at	statistics	and	League	of	Legends	than	you)	and	Betsy	(she	studied
chemistry,	but	she	is	not	so	bad	as	she	uses	Python	and	you	like	the	same	video	games)	to	be
in	your	team,	the	Brainy	Boffins.	Or	should	you	invite	your	brother-in-law,	Viv,	who	is	a
lawyer	and	always	watching	the	TV	news	and	shouting	at	politicians	to	clean	up	their	act;	and
old	school	friend,	Valerie,	who	knows	everything	about	hockey,	football,	and	half	a	dozen
other	sports,	and	can	also	tell	you	who	performed	at	the	Super	Bowl	halftime	show,	every
year,	for	the	past	20	years?	Valerie	can	be	very	boring.

I	hope	you	chose	wisely.	This	is	the	basic	idea	behind	ensemble	algorithms:	a	group	of
algorithms,	conferring	over	their	final	answer,	is	better	than	a	single	algorithm,	because	it
can	balance	out	the	weaknesses	and	oversights.	And	the	greater	the	differences	between	the
algorithms,	the	better.

Having	decided	to	use	an	ensemble	you	have	three	main	decisions	to	make:

Whether	to	use	a	library,	or	roll	your	own

What	member	models

How	to	combine	their	results

Taking	them	in	order:	H2O	has	an	ensemble	package;	it	doesn’t	come	with	H2O,	so	you	need
to	install	it	separately.	It	only	supports	R	currently.

You	could	make	your	member	models	by	training	the	best	model	for	each	algorithm.	An
alternative	approach	is	to	run	a	random	grid	search	over	a	wide	range	of	parameters,	and
choose	the	best	few	models	that	have	a	good	diversity	of	model	parameters.	For	example,	if
your	top-two	deep	learning	algorithms	had	different	network	layouts,	one	with	(200,200)
hidden	layers,	and	the	other	with	(50,40,40,40),	then	they	are	likely	to	be	useful	ensemble
members,	as	they	will	be	seeing	the	world	in	different	ways.

To	combine	results,	you	could	take	a	page	out	of	random	forest’s	book:	use	averaging	for
regression,	and	use	the	most	common	result	for	categorization.	Or	you	could	use	any
supervised	learner	introduced	in	this	book,	to	take	take	the	output	of	each	member	model,	and
decide	the	ensemble’s	output.

http://bit.ly/2fVjtPK


Stacking:	h2o.ensemble
I	mentioned	H2O’s	ensemble	package,	h2o.ensemble().	At	the	time	of	writing	it	only	supports
regression	and	binomial	classification,	so	I’m	going	to	show	a	quick	example	applied	to	the
building	energy	data	set,	which	was	a	regression	problem.	It	can	be	used	in	one	of	two	ways:

h2o.ensemble()

You	specify	wrapper	functions	for	each	element	of	the	ensemble.	It	then	builds	those
models,	then	trains	a	metalearner	to	combine	their	results.

h2o.stack()

You	pre-build	the	constituent	models,	and	pass	them	in	as	a	list.	It	trains	a	metalearner	to
combine	their	results.

So,	use	h2o.stack()	if	you	already	have	the	models,	and	h2o.ensemble()	if	you	don’t.	I
personally	find	specifying	the	wrapper	functions	as	much	work	as	just	making	the	model
myself,	so	for	that	reason	I	will	show	h2o.stack().	But	you	need	to	prepare	the	models	in	a
certain	way:

All	models	must	have	been	built	with	cross-validation

All	the	same	value	for	nfolds

fold_assignment	=	"Modulo"

keep_cross_validation_predictions	=	TRUE

If	you	use	h2o.ensemble()	these	details	are	taken	care	of	for	you:

library(h2oEnsemble)

source("load.building_energy.R")

RFd	<-	h2o.randomForest(x,	y,	train,	model_id="RF_defaults",	nfolds=10,
		fold_assignment	=	"Modulo",	keep_cross_validation_predictions	=	T)
GBMd	<-	h2o.gbm(x,	y,	train,	model_id="GBM_defaults",	nfolds=10,
		fold_assignment	=	"Modulo",	keep_cross_validation_predictions	=	T)
GLMd	<-	h2o.glm(x,	y,	train,	model_id="GLM_defaults",	nfolds=10,
		fold_assignment	=	"Modulo",	keep_cross_validation_predictions	=	T)
DLd	<-	h2o.deeplearning(x,	y,	train,	model_id="DL_defaults",	nfolds=10,
		fold_assignment	=	"Modulo",	keep_cross_validation_predictions	=	T)

models	<-	c(RFd,	GBMd,	GLMd,	DLd)

The	preceding	listing	prepares	the	models	(default	settings,	except	for	the	cross-validation
settings	required	for	the	ensemble),	and	puts	them	in	a	list	object:

m_stack	<-	h2o.stack(models,	response_frame	=	train[,y])
h2o.ensemble_performance(m_stack,	test)



This	code	then	calls	h2o.stack	giving	that	list,	and	requires	you	specify	a	one-column	H2O
frame	with	the	correct	answer;	this	is	different	to	the	other	H2O	algorithms,	which	take	train
and	y	as	two	separate	parameters. 	I	then	call	h2o.ensemble_performance()	to	evaluate	how	it
does	on	the	test	data.	It	will	output	how	each	individual	model	did,	and	then	how	the	ensemble
did.	The	results	look	like	the	following:

Base	learner	performance,	sorted	by	specified	metric:
							learner						MSE
3	GLM_defaults	9.013281
4		DL_defaults	7.651445
1		RF_defaults	3.626491
2	GBM_defaults	2.547896

H2O	Ensemble	Performance	on	<newdata>:
Family:	gaussian

Ensemble	performance	(MSE):	2.55156175744006

Oh.	The	ensemble	did	slightly	worse	than	just	the	best	model	by	itself.	If	I	use	an	ensemble	of
just	the	best	model,	and	models	of	close	strength 	(i.e.,	the	random	forest	and	the	GBM)	I
instead	get	a	slight	improvement:

Base	learner	performance,	sorted	by	specified	metric:
							learner						MSE
1		RF_defaults	3.626491
2	GBM_defaults	2.547896

H2O	Ensemble	Performance	on	<newdata>:
Family:	gaussian

Ensemble	performance	(MSE):	2.51780794131118

You	might	want	to	go	ahead	and	use	this	on	the	tuned	models…	but,	because	the	deep	learning
model	(with	an	MSE	of	0.388)	is	so	much	stronger	than	any	of	the	other	models,	it	works	best
as	a	team	of	one.
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Categorical	Ensembles
For	categorization	models,	I	use	a	different	approach,	taking	advantage	of	the	fact	that	H2O
doesn’t	just	return	a	prediction,	it	returns	a	confidence	in	each	category	being	the	correct
answer.	You	may	remember	back,	way	back,	in	the	first	chapter	of	this	book,	that	we	looked	at
those	confidence	numbers;	here	it	is	again	as	a	reminder:

predict									Iris-setosa		Iris-versicolor		Iris-virginica
-----------					-----------		---------------		--------------
Iris-setosa					0.999016					0.0009839								1.90283e-19
Iris-setosa					0.998988					0.0010118								1.40209e-20
...
Iris-virginica		1.5678e-08			0.3198963								0.680104
Iris-versicolor	2.3895e-08			0.9863869								0.013613

It	was	99.9%	sure	about	those	two	setosa,	98%	sure	about	the	versicolor,	but	only	68%	sure
about	the	virginica.	What	you	tend	to	see,	with	a	good	model,	is	that	almost	all	the	answers	it
felt	confident	about	were	correct,	but	that	most	of	the	wrong	answers	had	lower	confidence.
How	do	ensembles	comes	into	this?	Think	back	to	our	quiz	team,	on	a	four-choice	question:
Viv	is	fairly	sure	(he	says	60%	sure)	the	answer	is	benzene,	while	you	are	guessing	and	think
40%	benzene	and	20%	each	of	the	other	answers,	but	Valerie	tells	you	she	is	certain	that
C H O 	is	glucose,	because	she	has	just	finished	reading	a	book	on	diabetes.	You	go	with
Valerie’s	confidence…	and	win	the	contest.

That	idea	can	be	wrapped	up	in	just	a	few	lines	of	code:

predictTeam	<-	function(models,	data){
probabilities	<-	sapply(models,	function(m){
		p	<-	h2o.predict(m,	data)
		as.matrix(p[,setdiff(colnames(p),	"predict")])
		},	simplify	=	"array")
apply(probabilities,	1,	function(m)	which.max(apply(m,	1,	sum))	)
}

It	works	by	getting	each	model’s	predictions,	grabbing	the	probabilities	as	a	three-
dimensional	array,	then	working	through	that	array	to	choose	the	answer	that	has	the	highest
average	confidence	across	all	models. 	It	returns	the	index	of	the	category	it	thinks	is	best.
You	will	see	it	in	action	in	the	next	chapter,	and	for	more	details,	and	more	code,	see	my	blog
post	on	the	subject.
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Summary
Well,	that	was	a	whirlwind	tour	of	some	things	I	didn’t	have	space	in	the	book	to	go	into	in
more	detail.	The	next	chapter,	the	final	one	in	this	book,	will	bring	together	all	the	results	of
the	supervised	learning	experiments	on	each	of	the	three	data	sets,	and	also	give	some	ideas
for	what	to	do	when	they	are	not	good	enough.

	You	could	try	running	20	3GB	nodes	on	your	64GB	machine,	but	chances	are	you’d	be
better	off	just	running	a	single	64GB	node,	and	not	bothering	with	the	little	3GB	machine.

	And	the	whole	cluster	becomes	unusable	if	a	single	node	gets	removed:	you	cannot	even
export	data	or	models	from	the	rest	of	the	cluster.

	This	behavior	is	in	flux	at	the	time	of	writing.

	It	needs	to	be	created	in	each	region	you	want	to	use	those	scripts.

	If	you	will	never	use	RStudio	on	the	cluster	you	can	drop	8787;	similarly,	if	you	will	use
RStudio	or	other	R/Python	clients	only	running	on	the	cluster,	you	do	not	need	to	open	the
54321/54322	ports.

	H2O	is	considered	to	be	considerably	faster	than	the	algorithms	in	MLLib,	though	the	latter
offers	a	lot	more	algorithms.	Spark	is	currently	better	at	the	data	preparation	and	data
munging	steps	than	H2O.

	From	the	documentation	site	you	can	also	find	links	to	PySparkling	and	RSparkling,	which
are	Python	and	R	interfaces	to	Sparkling	Water.

	I	left	the	metalearner	parameters	as	the	default,	so	it	will	use	h2o.glm	to	decide	how	to
combine	the	four	models.	This	could	have	been	any	of	the	other	H2O	supervised	learning
algorithms.

	To	avoid	biasing	the	results,	we	need	to	decide	to	do	this	before	evaluating	on	test	data,	so
base	it	on	the	evaluation	on	the	results	on	train.

	Implemented	with	sum,	rather	than	mean,	as	they	are	equivalent	inside	a	which.max().
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Chapter	11.	Epilogue:	Didn’t	They	All	Do
Well!

This	book	compared	three	data	sets	on	the	four	supervised	machine-learning	algorithms	that
H2O	offers:

Random	Forest	(Chapter	5)

GBM	(Chapter	6)

GLM	(Chapter	7)

Deep	Learning	(Chapter	8)

In	each	case	I	first	tried	them	on	the	default	settings,	the	minimal	set	of	parameters:	H2O	API
commands	that	will	comfortably	fit	on	one	line.	That	was	then	followed	by	trying	to	tune
some	of	the	many	parameters	that	H2O	offers,	choosing	the	best	model	(based	on
performance	on	either	cross-validation	or	a	validation	data	set),	and	evaluating	that	on	the
unseen	test	data.	Because	the	results	are	scattered	throughout	the	book,	I	want	to	quickly	bring
them	together	here,	and	see	what	insights	are	to	be	found.	As	a	bonus	section,	I	show	some
ideas	for	improving	results	by	methods	other	than	just	parameter	tuning.

By	the	way,	in	the	online	code	you	will	find	epilogue.*.R	files	that	contain	the	code	to	make
each	of	the	default	and	tuned	models,	as	well	as	some	code	to	compare	them.	(You	will	also
find	timing	information,	and	dput()	output	of	the	results,	in	the	comments.)



Building	Energy	Results
This	was	a	regression	problem,	and	MSE	was	the	key	metric.	A	chart	was	also	made	for	each
model,	using	triangles	to	represent	results	that	were	8%	above	or	below	the	correct	answer.

This	data	set	was	sensitive	to	how	it	got	split.	In	other	words,	some	test	data	splits,	and	some
cross-validation	folds,	are	harder	to	predict	than	others.	So	to	fairly	compare	algorithms,	the
use	of	a	random	seed	when	splitting	the	data	is	important;	the	results	in	Figure	11-1	are	all
based	on	the	exact	same	143	unseen	test	samples.

Figure	11-1.	Comparison	of	all	default	and	tuned	models	(building	energy)

Model Time/s MSE V.Low V.High

RF,	default 1.3 3.596 13 14

RF,	tuned 7.3 3.802 17 8

GBM,	default 1.3 2.318 7 7

GBM,	tuned 12.4 1.640 4 2

GLM,	default 1.3 9.013 27 33

GLM,	tuned 1.3 8.904 26 27

DL,	default 3.5 7.096 34 13

DL,	tuned 93.9 0.425 3 0

	Timings	were	done	on	a	single	node,	36	cores.

RF	tuning:	ntrees	from	50	to	200;	max_depth	from	20	to	40;	sample_rate	from	0.632	to	0.9,
mtries	from	2	to	4;	col_sample_rate_per_tree	from	1.0	to	0.9,	score_tree_interval	set	to	10.
But	the	choice	of	random	seed	has	as	much	effect	as	anything.
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GBM	tuning:	ntrees	from	50	to	1000	(with	early	stopping	of	4	rounds	of	zero	improvement;
score_tree_interval	of	5),	min_rows	from	10	to	1	(though	I	am	not	convinced),	sample_rate
from	1	to	0.9,	col_sample_rate	from	1	to	0.9,	learn_rate	from	0.1	to	0.01,	seed	of	373.

GLM	tuning:	Change	family	to	tweedie,	with	tweedie_variance_power	of	1.55,
tweedie_link_power	of	0,	lambda	search	on,	alpha	of	0.33,	and	max_iterations	of	100.

DL	tuning:	Almost	the	entire	benefit	came	from	the	switch	to	early	stopping,	which	effectively
meant	an	increase	from	10	epochs	to	just	under	200	epochs.	Other	tweaks	were	activation	of
Tanh,	L2	regularization	of	0.00001,	and	two	hidden	layers	each	with	162	nodes	(instead	of	the
default	200	nodes).

Deep	learning	was	the	clear	winner,	though	only	when	given	enough	resources.	GBM	beat
random	forest,	which	in	turn	beat	GLM.	Only	GBM	and	deep	learning	made	any	worthwhile
improvement	when	tuned.

Ideas	for	further	work:	Can	deep	learning	be	tuned	further?	Would	Rectifier	(instead	of
Tanh)	give	the	same	results,	but	train	more	quickly?	Would	an	ensemble	of	deep	learning	and
GBM	give	even	better	results?	Also,	it	would	be	interesting	to	use	the	methodology	in	the
paper	the	data	came	from:	use	cross-validation	on	the	whole	data	set,	and	repeat	100	times	to
get	a	mean	and	standard	deviation.



MNIST	Results
This	was	a	10-way	classification	problem,	and	the	key	metric	was	the	error	rate:	how	many	it
misclassified	out	of	the	10,000	test	samples.	This	is	a	very	well-studied	problem,	and
everyone	uses	the	same	test	data	set,	so	there	is	bound	to	be	lots	of	(inadvertent	or	otherwise)
tuning	on	that	supposedly	unseen	data.	However,	I	tried	to	stay	honest	and	choose	the	final
model,	each	time,	based	on	results	on	the	validation	data	set.	Figure	11-2	compares	the	error
rates	on	the	test	set	of	each	model,	and	also	how	long	each	model	took	to	build.

Figure	11-2.	Comparison	of	all	default,	enhanced,	and	tuned	models	(MNIST)

Time/s Errors-Test MSE-Test Errors-Valid MSE-Valid

RFd 117 327 0.065 372 0.069

RFe 126 331 0.061 347 0.064

RFt 385 306 0.05 317 0.052

GBMd 61 445 0.048 481 0.051

GBMe 75 410 0.041 428 0.044

GBMt 1026 233 0.019 214 0.018

GLMd 55 746 0.068 782 0.073

GLMe 87 745 0.069 796 0.074

DLd 34 304 0.027 332 0.028

DLe 42 273 0.024 292 0.026

DLt 2636 138 0.012 130 0.012

	These	times	are	on	72	cores,	organized	as	2	nodes	of	36	cores	each.	However,	the	tree	algorithms	didn’t	use	the	second
node	very	effectively.
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For	the	models,	XXd	means	default	settings,	XXe	means	default	settings	but	with	enhanced
data,	and	XXt	means	the	final	tuned	model.

RF	tuning:	min_rows	from	1	to	2,	mtries	from	28	(sqrt	of	columns)	to	56	(but	didn’t	really
matter),	sample_rate	from	0.632	to	0.9,	col_sample_rate_per_tree	from	1.0	to	0.9,	max_depth
from	20	to	40,	ntrees	from	50	to	500	(and	early	stopping	of	0.01%	improvement	over	3
scoring	rounds,	with	score_tree_interval	of	3).

GBM	tuning:	Almost	all	the	benefit	came	from	moving	from	50	to	about	300	trees	(it	was
given	400	trees,	combined	with	early	stopping	of	0.1%	improvement	over	3	scoring	rounds,
with	score_tree_interval	of	10).	But	the	other	tweaks	were:	sample_rate	from	1.0	to	0.95,
col_sample_rate	from	1.0	to	0.8,	col_sample_rate_per_tree	from	1.0	to	0.8,	learn_rate	from
0.1	to	0.01.

GLM	tuning:	Every	tuning	tried,	even	just	putting	lambda	search	on,	failed.	So	the	tuned
model	is	identical	to	the	base	model.

DL	tuning:	Deep	learning	got	a	20%	improvement	from	switching	to	enhanced,	then	another
17%	improvement	by	giving	it	40–50	epochs	instead	of	the	default	of	10.	The	best	model	used
4	layers,	with	300,400,500,600	neurons,	activation	function	of	RectifierWithDropout,	L1
regularization	of	0.00001,	input_dropout_ratio	of	0.2,	and	hidden_dropout_ratios	of	0.1,	and
it	was	given	2000	epochs	and	early	stopping	(0.1%	improvement	over	8	scoring	rounds
required,	measured	on	misclassification,	classification_stop	off).

The	relatively	simplistic	data	engineering	only	helped	with	GBM	and	deep	learning.	However,
the	comparison	was	only	done	while	still	on	default	settings	and	the	point	of	the	enhanced	data
was	to	give	the	algorithms	more	opportunities	to	learn.	Often	more	trees/epochs	are	needed
for	additional	columns	(or	rows)	to	bear	fruit.	As	an	aside,	most	models	got	a	worse	score	on
the	validation	data	set	compared	to	the	test	set.	So	the	validation	data	set	maybe	contained
more	hard-to-read	samples?

The	tuned	deep	learning	model	was	the	clear	winner,	though	it	also	used	the	most	effort.
Tuned	GBM	was	second,	and	took	the	second	most	effort.	However,	the	third	and	fourth	best
models	were	the	deep	learning	models	that	only	had	10	epochs,	and	they	were	much	quicker.

Ideas	for	further	work:	See	“How	Low	Can	You	Go?”	for	some	further	experiments,	and
their	results.



Football	Data
This	was	a	binomial	classification	problem:	will	it	be	a	win	for	the	home	side	or	not
(implying	a	draw	or	a	win	for	the	away	side)?	Our	key	metric	was	accuracy	(using,	for
threshold,	the	average	of	the	optimal	threshold	on	training	and	validation	data).	There	were
two	models	considered:	using	the	help	of	expert	opinion	in	the	form	of	betting	odds,	and	then
not	using	them.

There	was	also	a	GLM	made	to	predict	HomeWin	using	just	“BbAvH,”	which	is	the	average
bookmaker	odds	of	a	win	for	the	home	team.	This	was	used	as	the	benchmark.	There	was
another	benchmark	I	could	have	used,	the	simplest	possible	model	for	a	binomial	problem,
which	is	to	always	guess	the	biggest	class. 	In	this	case	it	means	always	guessing	“no-win,”
and	it	gives	an	accuracy	of	0.573	on	the	test	data.	In	Figure	11-3	I	have	used	that	as	the	baseline
of	the	chart.	You	can	clearly	see	that	all	models	did	better	than	that,	even	those	built	without
the	help	of	the	betting	odds.

Figure	11-3.	Comparison	of	default/tuned	models,	with	and	without	odds	data

This	next	table	compares	the	results	for	the	first	model	(using	all	columns):
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Model Time/s Valid Test

Biggest-class 0.579 0.573

Benchmark 1.4 0.650 0.634

RFd1 19.7 0.632 0.596

RFt1 78.2 0.649 0.634

GBMd1 10.5 0.644 0.626

GBMt1 27.0 0.649 0.622

GLMd1 1.3 0.650 0.620

DLd1 6.6 0.649 0.606

DLt1 46.7 0.652 0.602

	These	times	are	on	72	cores,	organized	as	two	nodes	of	36	cores	each.	However,	the	tree	algorithms	didn’t	use	the	second
node	very	effectively.

And	then	for	the	second	model,	without	the	benefit	of	the	bookmaker	odds:

Model Time/s Valid Test

Biggest-class 0.579 0.573

RFd2 14.5 0.602 0.581

RFt2 54.9 0.613 0.601

GBMd2 7.4 0.607 0.602

GBMt2 33.7 0.608 0.604

GLMd2 1.3 0.615 0.605

DLd2 5.5 0.610 0.609

DLt2 54.3 0.620 0.594

RF	tuning:	sample_rate	of	0.35	instead	of	default	of	0.632,	min_rows	increased	from	1	to	60,
mtries	of	5	instead	of	7.	Trees	were	increased	from	50	to	500,	with	early	stopping	criteria	of
0%	improvement	(of	AUC)	over	4	scoring	rounds.

GBM	tuning:	Learn	rate	reduced	from	0.1	to	0.01,	balanced_classes	set	to	true,
col_sample_rate	1.0	to	0.9,	col_sample_rate_per_tree	1.0	to	0.9	and	sample_rate	1.0	to	0.8,
min_rows	increased	from	10	to	40,	max_depth	of	12	(instead	of	default	of	5).	It	was	given	400
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trees	and	early	stopping	(4	scorings	rounds	with	no	improvement	on	the	misclassification
metric,	with	score_tree_interval	set	to	10).

GLM	tuning:	None	of	the	ideas	tried	got	anything	better	than	the	default	model.	And	both	were
worse	than	just	building	a	GLM	on	a	single	column	I	chose.

DL	tuning:	All	the	tuning	was	done	on	the	no-odds	model;	notice	how	it	made	the	with-odds
version	worse.	Overfitting!	Anyway,	three	hidden	layers,	each	with	200	neurons,
balance_classes	was	set	to	true,	activation	=	"RectifierWithDropout",	hidden_dropout_ratios	=
c(0.5,	0.3,	0.3),	input_dropout_ratio	=	0.3,	l1	=	0.0005,	l2	=	0.0005,	and	2000	epochs	with	early
stopping	set	to	require	at	least	a	0.1%	improvement	(on	the	AUC	metric)	over	4	scoring
rounds.

Two	conclusions,	one	positive,	one	not.	The	positive	is	that	all	the	models	did	better	than
simply	guessing	the	biggest	class.	On	the	other	hand	all	models	were	disappointing:	they
should	have	at	least	been	able	to	replicate	the	result	that	a	GLM	could	get	on	just	a	single
input.	Only	random	forest	managed	that	(it	was	also	the	most	responsive	to	tuning).

Ideas	for	further	work:	These	results	surprised	me,	so	there	is	some	fertile	study	here	to
understand	why	more	sophisticated	models	did	worse.	Making	ensembles	of	the	models
should	improve	results,	especially	if	random	variation	is	a	big	part	of	the	problem.	There	is
also	loads	of	potential	for	gathering	additional	data	sets.	Weather?	Manager	changes?
Signings?	Injuries?	And	maybe	a	per-division,	or	even	per-team,	model	could	work	better?



How	Low	Can	You	Go?
With	most	of	this	book	written,	I	decided	to	go	back	to	the	MNIST	problem,	and	see	how	low
I	could	go	if	I	got	rid	of	some	artificial	constraints:

Throughout	this	book	I’ve	been	following	the	rule	of	choosing	one	best	model	for	each
algorithm.	But	here	I	will	also	try	ensembles	of	models.

I’ve	tried	to	keep	things	relatively	small,	so	you	should	be	able	to	run	everything	on	a
reasonably	powered	notebook.	But	here	I’m	going	straight	to	a	cluster	of	machines	on
EC2.

In	Chapter	3	I	didn’t	do	much	pre-processing	(to	stay	on-topic);	but	here	there	is	going	to
be	quite	a	lot	of	manipulating	the	data	before	giving	it	to	H2O.

I	am	going	to	keep	this	as	a	high-level	overview,	not	showing	code,	and	instead	pointing	you
to	some	blog	posts	of	mine	if	you	want	more	details.



The	More	the	Merrier
More	training	data	rows	are	better.	If	you	have	enough	data	your	machine-learning	algorithm
can	be	(relatively)	dumb	and	it	will	still	outperform	the	competition.	But	it	has	to	be	new	data:
just	doing	20	exact	copies	of	the	50,000	MNIST	rows	is	of	very	little	use.

And	not	just	new	data—the	ideal	is	training	data	that	is	going	to	be	similar	to	the	ones	in	the
test	data	that	we	got	wrong.	We	want	more	scruffy	handwriting	samples.	There	are	a	few	ways
to	get	that.	If	we	had	money	to	throw	at	the	problem,	one	idea	is	to	hire	some	doctors	(or	any
group	of	people	notorious	for	unreadable	handwriting)	and	ask	them	to	spend	an	hour	writing
out	digits.	Scan	them	in,	rescale	each	to	28x28	pixels,	and	do	any	other	pre-processing	that
was	done	on	the	original	MNIST	data.	Another	way	to	find	the	most	difficult	samples	is
introduced	in	a	moment.	But	I	simply	looked	at	ones	in	the	validation	data	set 	that	it	got
wrong,	and	observed	they	were	often	fatter,	often	had	some	extra	lines,	and	were	often	quite
distorted.

I	used	R’s	imager	library.	As	described	in	this	long	blog	post,	this	was	not	as	simple	as	simply
throwing	a	few	rotations	in:	extra	actions	were	needed,	such	as	resizing,	and	re-sharpening
(image	processing	tends	to	make	the	images	more	blurred),	and	re-histogram-ing	(making
sure	the	image	had	about	the	same	shades	of	gray).

I	prepared	nine	effects,	each	with	a	random	element:

rotate

warp	(make	it	“scruffier”)

shift	(move	it	1	pixel	up,	down,	left,	or	right)

bold	(make	it	fatter)

dilate	(make	it	fatter)

erode	(make	it	thinner)

erodedilate	(one	or	the	other)

scratches	(add	lines)

blotches	(remove	blobs)

I	then	defined	“all”	and	“all2,”	which	combined	most	of	them.

In	the	end	I	made	20	new	versions	of	each	of	train	and	valid	data:	10	of	a	specific	effect,	10	of
either	“all”	or	“all2.”	I	gzipped	the	csv	files	and	uploaded	them	to	S3.	It	took	just	under	3
hours	to	generate	all	the	files	on	a	fast,	36-core,	Amazon	EC2	instance.	However	I	didn’t
make	the	effort	to	parallelize	the	R	code,	so	most	of	the	time	those	36	cores	were	going	to
waste.
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A	funny	thing	happens	when	I	train	models	on	this	generated	data:	the	training	data	error	is
higher	than	the	validation	or	test	set	error!	For	example,	I	might	get	1.5%	error	on	the
training	data,	but	1%	on	both	validation	and	test.	This	is	sometimes	a	sign	you	have	overfitted
(not	the	case	here,	as	it	happens	on	all	models,	however	sophisticated),	or	that	you	have	a	bug.

TIP
Always	consider	the	possibility	of	bugs.	A	few	months	ago,	I	wasted	two	weeks	trying	to	tune	models	(financial
data)	and	couldn’t	understand	why	I	kept	getting	near-random	results,	however	many	epochs	I	threw	at	it,	and
however	many	clever	ideas	I	tried.	It	turned	out	to	be	a	lag	bug:	my	predictor	variable	and	my	response	variables
were	for	different	time	periods.	Another	time	I	was	testing	to	see	how	many	epochs	were	needed	to	perfectly
(over-)fit	some	training	data,	but	more	epochs	gave	a	worse	score.	Turned	out	I	was	accidentally	training	on	the
validation	test	set.

However,	here	it	is	a	sign	that	the	training	data	is	not	representative.	That	is,	I	deliberately
generated	data	that	is	on	average	harder	than	the	original	data	and	that	generated	data	now
makes	up	95%	of	the	training	data.	And	some	of	it	will	be	impossibly	hard:	a	“3”	might	have
got	so	distorted	that	it	looks	like	a	1,	or	a	scratch	has	turned	it	into	a	9.

Ideally	I’d	like	an	infinite	supply	of	training	data	that	is	perfectly	representative	of	the	real-
world	data	the	model	will	be	used	on.	But,	if	I	had	to	choose,	I’d	prefer	it	to	be	slightly	harder,
than	slightly	easier.



Still	Desperate	for	More
Why	did	I	generate	new	data	from	my	10,000	validation	samples	too?	To	give	myself	more
options.	I	desperately	wanted	to	use	the	validation	data—the	increase	from	50,000	to	60,000
training	samples	would	give	me	20%	more	training	data,	and	that	means	a	much	greater
chance	that	my	model	gets	to	see	some	awkward	digits	that	are	currently	tripping	it	up.	I	did	a
few	experiments	with	no	validation	data	set,	i.e.,	using	all	60,000	samples	for	training.	But	it
was	like	working	blind—I	had	no	reliable	way	to	tell	when	the	model	was	good	and	when	it
was	overfitting. 	I	also	needed	a	validation	data	set	when	I	wanted	to	rank	models	for	use	in	an
ensemble	(more	on	that	in	a	moment).

So,	I	did	a	compromise.	I	kept	the	first	1000	validation	samples	(and	threw	away	the	first	1000
samples	in	each	of	the	data	files	generated	from	validation	data),	and	added	the	other	9000
samples	both	from	the	original	validation	data	and	the	20	generated	files.	The	code	to	do	this
filtering	was	Example	2-1,	shown	near	the	end	of	Chapter	2.	This	extra	189,000	rows	took	me
to	a	total	of	1,239,000	training	rows.

Using	just	1000	validation	samples	worked	fairly	well.	It	still	correlated	fairly	well	with	the
test	data.	That	was	my	hope:	it	was	why	I	arbitrarily	cut	at	row	number	1000,	rather	than
stealing	away,	say,	the	most	interesting	9000	for	training,	and	keeping	the	easiest	1000	for
validation.

But	1000	did	turn	out	to	be	a	bit	small.	The	problem	was,	I	was	aiming	for	an	error	rate	of
0.5%,	which	means	just	five	errors.	It	is	hard	to	compare	models	with	6	out	of	1000	with	those
that	got	7	or	8	errors	out	of	the	1000,	and	know	it	has	generalized	better,	rather	than	just
getting	lucky	on	one	sample.	But	60	errors	out	of	10,000,	compared	to	70	or	80,	is	less	likely
to	just	be	due	to	luck.
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Filtering	for	Hardness
In	any	real-world	training	data	there	are	going	to	be	samples	that	your	model	finds	easier	to
learn,	and	those	it	finds	harder	to	learn.	Of	course,	it	is	staring	us	in	the	eyes	with	the	MNIST
data:	the	easy	samples	are	the	nice	neat	ones,	that	look	just	like	the	mean	images	we	made
(Figure	3-5)	before.	The	hard	ones	look	like	Bart	Simpson	drawing	with	his	right	hand.
While	skateboarding.

I	know	the	Lisa	Simpsons	of	the	world	are	going	to	be	deeply	offended,	but	all	we	really	need
to	see	are	the	handwriting	samples	of	the	most	Bart-like	people.	Oh,	with	one	important	detail:
the	mean	of	their	handwriting	samples	must	match	the	mean	of	the	whole	population.

Here	is	how	to	get	the	hardest	1000	of	the	50,000	MNIST	training	samples:

1.	 Make	a	relatively	simple	model,	on	all	50,000	training	samples.	For	example,	m	<-
h2o.deeplearning(x,	y,	train,	valid).

2.	 Run	p	<-	h2o.predict(m,	train).

3.	 Get	the	prediction	probabilities,	and	the	maximum	probability.

4.	 Sort	them,	and	choose	the	lowest	1000.

Point	3	is	the	key	one:	if	our	model	is	99.9%	confident	of	an	answer	it	must	be	finding	it
easier	than	one	where	it	was	only	80%	confident.	Whether	it	is	right	or	wrong	does	not
matter:	only	how	easy	or	difficult	the	model	finds	it.	Well,	except	being	wrong	is	also	very
important	to	know.	So	I	replaced	the	actual	prediction	probability	with	0.1	when	the	model	got
it	wrong,	to	be	sure	they	were	included.

I	still	needed	all	50,000	samples,	so	what	have	I	gained	by	doing	this?	Well,	I	could	speed	up
learning	subsequent	models	by	just	using	those	1000.	Or	I	could	weight	them	(see	“Data
Weighting”	back	in	Chapter	4)	so	the	model	spends	more	effort	learning	them.	Or	when
generating	data	I	could	use	just	these	hard	samples	as	the	starting	points.	(I	didn’t,	but	I	suspect
it	would	mean	I	could	get	the	same	results	with	something	like	200,000	generated	samples,
instead	of	1.2	million	generated	samples.)
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Auto-Encoder
In	“Deep	Learning	Auto-Encoder”	a	deep	learning	auto-encoder	was	used	as	a	way	to	reduce
a	data	set	to	just	two	dimensions,	so	that	it	could	be	visualized.	But	another	way	auto-encoders
can	be	used	is	to	work	around	the	difficulty	with	training	many-layered	neural	networks:	learn
them	one	or	two	layers	at	a	time,	as	an	unsupervised	auto-encoder,	then	add	one	or	two
supervised	layers	at	the	end.

You	may	remember	from	that	discussion	how	Figure	9-3	showed	that	you	get	a	lower	MSE
the	more	dimensions	you	give	it	(as	long	as	you	also	give	it	enough	epochs).	The	MNIST	data
is	larger	and	I	didn’t	have	time	to	do	a	rigorous	experiment	to	find	the	best	values.	Instead	I
tried	a	few	small	experiments,	mostly	inconclusive,	then	decided	to	get	a	variety	of	input	data
by	building	three	auto-encoders:

AE200

Large,	with	200	hidden	units.	A	single	layer.	Quite	high	dropout/L2.

AE32

Small:	32	hidden	units.	Lower	dropout/L2.

AE128

Two	layers.	The	first	layer	is	almost	the	same	size	as	the	input	(768	hidden	nodes),	but
with	relatively	high	dropout	and	high	L2,	then	the	second	layer	is	128,	but	no	dropout.	It	is
built	in	two	stages.

Please	see	my	blog	post	for	more	details,	and	code.

This	gave	me	360	features,	and	I	used	them	instead	of	the	784	raw	pixels.	I	still	kept	the	113
enhanced	features	that	were	introduced	in	“Helping	the	Models”.

This	proved	quite	effective,	bringing	the	results	of	the	individual	models	from	the	120	to	140
range	down	to	the	80	to	110	range,	and	into	the	70s	(0.7%	error)	when	used	in	an	ensemble
(see	“Ensembles”).	Though	this	was	also	done	in	conjunction	with	starting	to	use	generated
data,	so	it	is	hard	to	know	how	much	each	contributed.

http://bit.ly/2gnk9S4


Convolute	and	Shrink
The	best	performing	models	on	the	MNIST	data	set	are	based	on	convolutional	neural
networks	(CNNs).	H2O	does	not	offer	them, 	and	they	can	get	very	computationally	intensive.
The	idea	is	that	you	match,	e.g.,	5x5	patterns,	as	sliding	tiles,	all	over	your	image.	This	is
alternated	with	a	shrink	layer,	where	the	maximum	pixel	value	is	chosen	from	each
(nonoverlapping)	2x2	block.	This	gives,	say,	a	12x12	output	per	pattern.	You	might	then
repeat	with	a	3x3	pattern,	and	another	round	of	2x2	shrinkage.	Most	of	this	is	inspired	by	the
human	visual	system,	and	Internet	searches	will	find	plenty	of	papers	explaining	the	idea	in
more	detail,	and	variations	people	have	tried.

Are	you	thinking	this	sounds	a	bit	like	the	113	extended	fields	I	added?	Kind	of,	but	they	are
crude	in	comparison,	and	don’t	use	patterns:	they	were	the	mean	of	each	pixel	group.

I	decided	to	try	what	I	call	“Poor	Man’s	Convolution,”	somewhere	between	a	real	CNN	and
those	extended	fields.	I	generated	twelve	5x5	patterns	(more	on	that	in	a	moment),	then	did	a
2x2	max	shrinking	pass,	giving	me	twelve	12x12	outputs.	That	is	1728	columns	that	I	could
then	feed	to	H2O’s	supervised	deep	learning.	(I	also	used	the	auto-encoder-generated
columns,	and	I	still	kept	the	113	extended	fields,	but	I	dropped	the	raw	pixels.	Including	the
answer	column,	my	training	data	frame	now	had	2202	columns.)

But	how	could	I	train	the	5x5	patterns?	Well,	I	took	a	look	at	some	academic	papers	for	what
their	patterns	looked	like,	and	they	reminded	me	of	the	outputs	I	had	seen	applying	auto-
encoders	and	PCA	to	images.	So	I	made	six	5x5	patterns	by	using	a	one-layer	auto-encoder
with	six	hidden	nodes,	and	I	made	another	six	5x5	patterns	by	taking	the	first	six	principal
components	returned	by	h2o.prcomp().	For	training	data	I	took	the	1000	hardest	training
samples,	and	extracted	all	5x5	overlapping	windows,	which	gave	576,000	training	samples.
See	Figure	11-4	for	what	the	12	patterns	look	like	(top	row),	and	how	they	modify	an	MNIST
digit.	The	six	columns	on	the	left	are	the	patterns	from	the	auto-encoder.	The	six	on	the	right
are	from	PCA;	the	increasing	amounts	of	noise	with	each	additional	PCA	dimension	is
striking.

My	training	set	of	1,239,000	rows	and	2202	columns	was	17GB	when	compressed	in	H2O’s
memory,	and	I	used	four	“c4.8xlarge”	instances	on	EC2	to	work	with	this:	together	they	gave
a	cluster	of	144	cores	and	about	180GB	memory.

Here	are	the	four	deep	learning	models	I	built	(each	taking	one	to	two	hours	on	that	cluster),
and	their	individual	scores:
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Model	ID Valid	Error Hidden	Nodes Dropout L1,L2 Test	Score

DLt2 4 400,500,600,700 0.1 1e-5,0 73

DLt1 6 300,400,500,600 0.1 1e-5,0 57

DLx1 8 800,800,800 0.3 1e-4,1e-4 58

DLb1 12 1024,2048 0.1 1e-5,0 93

Figure	11-4.	12x12px	convoluted-and-shrunk	images	(first	six	columns	are	from	an	auto-encoder,	second	six	are	from	a
PCA)

This	did	indeed	give	the	best	scores	yet	(described	in	a	moment),	and	this	approach	is	much
quicker	to	train	than	a	normal	CNN,	so	I	will	consider	using	it	again.	But	it	didn’t	give	results
as	good	as	the	best	convolutional	networks	do	on	the	MNIST	data.



Ensembles
In	“Categorical	Ensembles”	(in	Chapter	10)	I	described	an	ensemble	technique	to	average	the
prediction	probabilities	of	multiple	models.	When	using	ensembles	you	want	models	that	are
as	distinct	from	each	other	as	possible,	which	presents	us	with	a	problem	because,	once	the
models	were	tuned,	the	deep	learning	model	was	considerably	better	than	the	other
algorithms.	On	the	bright	side,	deep	learning	has	a	lot	of	knobs	to	fiddle	with,	so	by	varying
the	number	and	size	of	the	hidden	layers,	the	dropout	ratios,	etc.,	you	can	engineer	in	a	bit	of
variability.

What	I	found	was	that	an	ensemble	of	relatively	weak	models	got	more	of	a	boost	than	when
the	models	got	stronger.	One	of	my	early	experiments	had	eight	models	(two	different	deep
learning	configurations,	and	our	best	random	forest	model )	with	these	scores:

Test	Error Hidden	Nodes

DLt1 144 300,400,500,600

DLt2 140 300,400,500,600

DLb1 120 1024,1024

DLb2 143 1024,1024

RFt1 302 Tuned	random	forest

DLt1_TV 130 300,400,500,600

DLt2_TV 127 300,400,500,600

RFt1_TV 284 Tuned	random	forest

The	scores	range	from	120	(1.2%)	to	302	(3.02%),	but	when	using	all	eight	in	an	ensemble	it
got	a	score	of	105.	That	is	almost	70	better	than	the	mean	error	of	those	eight	models,	and	15
better	than	the	best	one.	Just	the	six	deep	learning	models	got	107:	adding	in	the	much	weaker
random	forests	was	worth	(a	net	improvement	of)	two	more	answers.

However,	when	I	tried	an	ensemble	of	the	best	three	deep	learning	models,	the	ones	from	the
poor	man’s	CNN	experiment,	their	ensemble	scored	a	disappointing	56—only	one	better	than
the	best	model.	The	problem,	I	feel,	is	that	by	pushing	to	get	the	best	performance	out	of	each
model,	I	have	lost	a	lot	of	the	variability	between	them.
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That	Was	as	Low	as	I	Go…
I	hope	this	bonus	section	was	educational.	That	score	of	56	(a	0.56%	error	rate),	from	the
ensemble,	was	the	best	score	I	had	at	the	point	I	ran	out	of	time.	My	expectation	beforehand
was	that	the	usefulness	order	would	be:

1.	 Much	more	training	data

2.	 Ensemble

3.	 Poor	man’s	convolution

4.	 Bigger	models

5.	 Auto-encoder	instead	of	pixels

I’ve	not	done	enough	experiments	to	say	for	sure,	but	my	gut	feeling	is	that	the	actual
usefulness	was:

1.	 Much	more	training	data

2.	 Auto-encoder	instead	of	pixels

3.	 Poor	man’s	convolution

4.	 Ensemble	(but	more	useful	with	weaker	models)

5.	 Bigger	models



Summary
Deep	learning	came	out	on	top	on	both	the	first	data	set	(a	regression	on	a	small	data	set),	and
the	second	(a	10-way	classification	on	a	larger	data	set),	but	on	the	third	(a	binomial
classification	on	data	with	a	large	random	element)	it	was	a	simple	GLM,	followed	by
random	forest,	that	fared	best.

One	common	theme	was	that	tweaking	parameters	quickly	reached	a	point	of	diminishing
returns:	the	models	are	generally	very	good	with	default	settings.	Especially	when	combined
with	giving	more	trees/epochs	and	then	using	early	stopping.

As	the	bonus	section	showed,	your	energy	can	usually	be	better	spent	on	data	engineering	and
gathering	more	data,	than	on	fine-tuning	parameters.

Good	and	bad	results	apart,	I	hope	this	book	has	given	you	a	good	feel	for	when	each
algorithm	might	shine,	and	for	how	to	go	about	evaluating	and	improving	your	models,	as
well	as	for	how	the	design	and	features	in	H2O	make	these	experiments	just	about	as	easy	as
they	could	possibly	be.

	See	table	in	“Setup	and	Load	(Again)”.

	In	the	case	of	deep	learning	it	would	be	the	same	as	increasing	epochs	by	a	factor	of	20.

	Remember,	I	am	not	allowed	to	look	at	the	test	data	when	making	tuning	decisions.

	Cross-validation?	Yes,	that	might	also	have	worked,	but	would	have	increased	the	model-
making	time	by	so	much	more.

	That	is,	his	wrong	hand.	Bart,	like	a	disproportionate	number	of	cartoon	characters,	is	left-
handed.	I’ll	leave	you	to	work	out	why.

	The	DeepWater	project,	in	development	as	I	write,	will	add	support	for	them,	as	well	as	GPU
support.

	There	was	no	generated	data	being	used	at	this	point.	The	TV	suffix	indicates	it	used	all
60,000	samples	for	training,	with	no	validation	data	set,	using	the	same	number	of	epochs	or
trees	as	DLt1/RFt1	had.
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Colophon

The	animal	on	the	cover	of	Practical	Machine	Learning	with	H2O	is	a	crayfish,	a	small
lobster-like	crustacean	found	in	freshwater	habitats	throughout	the	world.	Alternate	names
include	crawfish,	crawdads,	and	mudbugs,	depending	on	the	region.

There	are	over	500	species	of	crayfish,	over	half	of	which	occur	in	North	America.	There	is
great	variation	in	size,	shape,	and	color	across	species.	Crayfish	are	typically	3	to	4	inches	in
North	America,	while	certain	species	in	Australia	grow	to	be	a	staggering	15	inches	and	can
weigh	as	much	as	8	pounds.

Like	crabs	and	other	crustaceans,	crayfish	shed	their	hard	outer	shells	periodically,	eating
them	to	recoup	calcium.	They	are	nocturnal	creatures,	possessing	keen	eyesight	as	well	as	the
ability	to	move	their	eyes	in	different	directions	at	once.

Crayfish	have	eight	pairs	of	legs,	four	of	which	are	used	for	walking.	The	other	legs	are	used
for	swimming	backward,	a	maneuver	that	allows	the	crayfish	to	dart	quickly	through	the
water.	Lost	limbs	can	be	regenerated,	a	capability	that	comes	in	handy	during	the	competitive
(and	often	aggressive)	mating	season.

Crayfish	are	opportunistic	omnivores	who	consume	almost	anything,	including	plants,	clams,
snails,	insects,	and	dead	organic	matter.	Their	own	predators	include	fish	(they	are	widely
regarded	as	a	tackle	box	staple),	otters,	birds,	and	humans.	More	than	100	million	pounds	of
crawfish	are	produced	each	year	in	Louisiana,	where	it	was	adopted	as	the	state’s	official
crustacean	in	1983.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Treasury	of	Animal	Illustrations	by	Dover.	The	cover	fonts	are
URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is
Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.
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