
Practical Swift
—
Eric Downey

www.allitebooks.com

http://www.allitebooks.org

 Practical Swift

Eric Downey

www.allitebooks.com

http://www.allitebooks.org

Practical Swift

Eric Downey
Columbus, Ohio, USA

ISBN-13 (pbk): 978-1-4842-2279-9 ISBN-13 (electronic): 978-1-4842-2280-5
DOI 10.1007/978-1-4842-2280-5

Library of Congress Control Number: 2016960664

Copyright © 2016 by Eric Downey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Technical Reviewer: Felipe Laso-Marsetti
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Rebecca Rider
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

 There are a lot of people that I can dedicate this book to. Many people have helped me and
pushed me and made this possible, but one person sticks out. I would not have been

capable of writing this book without her. I want to dedicate this book to Grace Tay.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Part I: Building the Reference Guide ... 1

 ■Chapter 1: Evolution of Swift ... 3

 ■Chapter 2: Xcode ... 17

 ■Chapter 3: Package Managers ... 39

 ■Chapter 4: iOS Architecture ... 55

 ■Chapter 5: Protocol-Oriented Programming .. 71

 ■Chapter 6: Generics ... 101

 ■Chapter 7: iOS UI and Storyboards .. 111

 ■Chapter 8: Testing .. 145

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

 ■Part II: Building the Grocery App .. 171

 ■Chapter 9: Grocery List App Interface Builder ... 173

 ■Chapter 10: Grocery App: MVVM ... 201

 ■Chapter 11: Grocery App: Core Data .. 239

 ■Chapter 12: Grocery App: Finish Line .. 267

Index ... 307

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Part I: Building the Reference Guide ... 1

 ■Chapter 1: Evolution of Swift ... 3

What You’ll Learn .. 3

Swift 1 .. 3

Transition from Objective-C to Swift ... 4

Why Was Swift Created? ... 4

Swift 2 .. 5

Guard and Defer ... 5

Error Handling ... 7

Protocol Extensions .. 9

Availability Checking... 9

Swift 3 .. 10

Argument Labels .. 11

API Design Guidelines ... 11

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Swift 3 Proposals ... 13

SE-0006 .. 14

SE-0033 .. 14

SE-0005 .. 15

Wrap Up .. 16

 ■Chapter 2: Xcode ... 17

What You’ll Learn .. 17

What’s New .. 18

Storyboards and Auto Layout.. 20

Xcode Source Editor Extensions ... 22

What’s Old .. 24

Code Coverage .. 24

UI Debugging .. 26

Sanitizers ... 28

Address Sanitizer .. 29

Thread Sanitizer ... 31

Memory Graph Debugger ... 33

Wrap Up .. 36

 ■Chapter 3: Package Managers ... 39

What You’ll Learn .. 39

Packaging Code in iOS ... 40

Static Library .. 40

Dynamic Framework .. 41

CocoaPods and CocoaPods-Rome ... 42

CocoaPods .. 42

CocoaPods-Rome ... 45

Carthage ... 45

Swift Package Manager ... 48

Wrap Up .. 53

www.allitebooks.com

http://www.allitebooks.org

ix Contents

 ■Chapter 4: iOS Architecture ... 55

What You’ll Learn .. 55

Playgrounds and Markup Syntax .. 56

Sample Header ... 58

Design Patterns .. 58

Dependency Injection ... 58

MVC .. 61

MVVM.. 62

Presenter .. 64

Singleton .. 66

When Is It Too Much? ... 68

AntiPatterns .. 68

The God Class and the Blob .. 69

Poltergeists ... 69

Wrap Up .. 70

Articles ... 70

 ■Chapter 5: Protocol-Oriented Programming .. 71

What You’ll Learn .. 71

What Are Protocols? ... 72

Interfaces ... 72

Traits ... 73

Protocol-Oriented Thinking... 74

The Problem: Object-Oriented Programming ... 76

Abilities... 79

Creatures, Animals, People, and Aliens ... 80

SpriteKit Game Development .. 84

Value and Reference Types ... 88

Protocols in UIKit .. 90

www.allitebooks.com

http://www.allitebooks.org

x Contents

Testing with Protocols .. 93

Testing AlertDisplayer ... 93

Testing UIApplication .. 95

Wrap Up .. 98

Articles ... 99

 ■Chapter 6: Generics ... 101

What You’ll Learn .. 101

Swift Generics .. 101

Classes and Structs .. 103

Functional Paradigms with Generics .. 105

Generic Type Constraints .. 106

Protocol Associated Types .. 108

Wrap Up .. 110

Articles ... 110

 ■Chapter 7: iOS UI and Storyboards .. 111

What You’ll Learn .. 111

Auto Layout and Constraints .. 111

Interface Builder ... 112

Constraints in Code .. 123

Blocking a View .. 131

Trait Variations .. 134

Storyboard Tips and Tricks ... 138

Custom Views and Gestures ... 138

Designables and Inspectables .. 142

Wrap Up .. 143

Articles ... 143

 ■Chapter 8: Testing .. 145

What You’ll Learn .. 145

Mocks ... 146

XCTest... 150

www.allitebooks.com

http://www.allitebooks.org

xi Contents

DRY vs. WET Testing ... 153

WET Testing .. 153

DRY Testing ... 157

Balanced Testing .. 158

Swift Package Manager Testing ... 160

Test-Driven Development .. 167

Wrap Up .. 168

Articles ... 169

 ■Part II: Building the Grocery App .. 171

 ■Chapter 9: Grocery List App Interface Builder ... 173

What You’ll Learn .. 174

Project Setup .. 174

Nib Files and Storyboards .. 177

Segues .. 177

When to Use Nib Files ... 179

Storyboard Limitations ... 179

Grocery Lists and Items.. 180

Grocery Lists ... 181

Grocery Items ... 186

Adding Lists and Items ... 192

Wrap Up .. 199

 ■Chapter 10: Grocery App: MVVM ... 201

What You’ll Learn .. 201

Grocery Lists .. 202

Placeholder Data .. 203

View Model ... 205

Grocery Lists View Controller ... 217

Grocery Items ... 223

View Model ... 224

Grocery Items View Controller .. 226

xii Contents

Transferring Data .. 232

Wrap Up .. 237

 ■Chapter 11: Grocery App: Core Data .. 239

What You’ll Learn .. 239

Persistent Container ... 240

XCDataModel .. 245

View Model and Core Data ... 255

View Model Tests .. 259

Wrap Up .. 265

 ■Chapter 12: Grocery App: Finish Line .. 267

What You’ve Learned .. 267

Adding Grocery Lists .. 267

Core Data .. 268

View Model ... 270

View Controller ... 271

Refreshing the UI .. 277

Alerts and Blocking ... 280

Adding Grocery Items ... 291

Core Data .. 293

View Model ... 294

View Controller ... 296

Refreshing the UI .. 301

Final Wrap Up ... 305

Index ... 307

xiii

 About the Author

 Eric Downey an iOS developer from Columbus, Ohio
employed at Information Control Company, the largest Ohio-
owned IT consulting company. He coordinates the Tech Sig for
ICC, monthly meetings focused on a variety of tech talks. As a
consultant for ICC, he has spent the last three years working
on Java, Javascript, and iOS applications. He has been in iOS
development for 6 years, specializing in Swift for the last two
years. Eric hold a Bachelor’s degree in Computer Science with
a minor in Art from Capital University.

xv

 About the Technical
Reviewer

 Felipe Laso-Marsetti is a Senior Systems Engineer working at
 Lextech Global Services . He’s also an aspiring game designer/
programmer. You can follow him on Twitter as @iFeliLM or on
 his blog .

http://www.lextech.com/
http://twitter.com/#!/iFeliLM
http://ifeli.me/

xvii

 Acknowledgments

 First, everyone over at Apress , you’re awesome! I had a great time writing this book and I
wanted to thank you for the opportunity. In particular, Jessica Vakili, James Markham, Steve
Anglin, Mark Powers, and Matthew Moodie. Next, Scott Preston, thank you for forcing me
to write this book. Also, thank you for putting me in touch with Apress and for helping me
achieve level 50. To the original ICC team (Holden and Bobby) and my current team thank
you for challenging me and pushing me to do better. Let me also acknowledge Amber Fiore
and Steve Leppert for helping me strengthen my career with ICC.

 I also want to take a moment to thank my parents, as well as my brother, Matt, and Aunt
Norma. You’ve always supported me and this book wouldn’t be possible without you. Thank
you to the local Starbucks, your caffeine kept me awake long enough to write this book.
Last, but definitely not least, I wanted to thank my professor, Dr. David Reed. You helped
me get my start in iOS and set me on this path, so thank you. There were a bunch of others
I wanted to thank, but I’m not going to because it would take too long. You know who you
are, so thank you.

xix

 Introduction

 Welcome to Practical Swift . I’m Eric Downey and I have been developing iOS applications
for the last six years. When Swift was released over 2 years ago, I dedicated all of my time
and energy to learning Swift and its nuances. Starting off, you might have these questions
about this book:

 Who should read this book?

 What am I going to learn?

 What sets this book apart?

 That’s easy! You should read this book if you have a working knowledge of Swift. This book
assumes familiarity with the standard iOS frameworks and general programming knowledge.
You should read this book if you are an iOS developer looking to increase your skills. You are
going to learn the new features and API of Swift 3. You will develop a well-architected iOS
app in Swift 3 and the new Xcode.

 Why Write This Book?
 This book is about Swift 3.0 and iOS. I will explain ideas and concepts that exist in iOS and
Swift. I will show how I would write code and provide justifications for my decisions. Then
I want you, the reader, to decide for yourself how you want to write your code using your
newfound techniques and concepts.

 My goal is not to tell you how to write Swift code, but give you the knowledge you need to
feel comfortable deciding how to write your own code. I want to structure the book in this
way because I have seen too many books and articles that describe how to do a particular
task. They give you a list and explain what task each piece accomplishes. However, they
never teach you why or how it could change, depending on the circumstances. Software
development is an art form and there are many ways to structure the same solution.

xx Introduction

 Book Format
 Each chapter will be broken down as sections. The first section in each chapter will have
an overview of the material that will be covered. It will highlight each section and give an
overview of what you will learn in the chapter. The end of each chapter will then contain a
recap of the material. This section will go over the information that will be presented in each
chapter. We will also talk about the playground reference guide we are going to create. Let’s
start with the walkthrough of the chapters.

 Chapter Walkthrough
 This section is going to cover each chapter. Chapters have been grouped based on their
information. Some chapters feed into others, while some are standalone. Each chapter is
also associated with a half of the book. Section I is the first half of the book. This section
is the theory and reference building section. We will discuss concepts and techniques. The
second half, Section II, will be applying Section I in building our app. Let’s get started with
Section One and Chapter One.

 Section I
 Section I is going to include Chapters One through Eight. I will explain key concepts and
ideas using Swift 3.0. This book expects the reader to have a working knowledge of iOS and
Swift. Using an Xcode playground, I want you to follow along, creating a reference book of
your own. This reference will be key in Section II. The following is a walkthrough of the first
eight chapters and the information they will contain.

 Chapter 1
 Let’s start at the beginning, the Evolution of Swift . This is probably one of the most, if not
the most, important chapter, as it sets the stage for everything. The first chapter is, in part,
a look back at the previous versions of Swift. It will walk through the release of Swift 1 and
what the new language offered us as iOS developers (I was just starting to get good at
Objective-C). We will then jump right into Swift 2 and all the cool new features. The biggest
addition and my favorite, Protocol Oriented Programming, was added in this release. If this is
not apparent, look at how many times protocols show themselves throughout this book. If I
counted right, we will discuss protocols in Chapters Five, Seven, Ten, Eleven, and Twelve. ☺

 Then, by far the most important section in Chapter One, is Swift 3 . We will look at some of
the biggest changes in Swift 3. One of the biggest changes in Swift 3 is the introduction of
the API design guidelines. I will try to follow the guidelines as best I can. There will always
be room for improvement, but I hope you can look at each and every method, protocol,
class, etc. and know exactly what it is meant to do given the grammar used. Chapter One
also discussed other major proposals that are going live with Swift 3. We will go into detail in
Chapter One.

http://dx.doi.org/10.1007/978-1-4842-2280-5_1

xxi Introduction

 Chapters 2
 Chapters Two and Three, are somewhat external to Swift 3. I included them because they
are important topics. We should know what features are available to use in our IDE, Xcode.
We will examine previous features in Xcode such as the UI Debugger and Code Coverage as
well as the brand new Xcode Source Editor Extensions. Given that we can now extend our
IDE, this opens the door for a much better development experience. I know I am going to
enjoy all the emojification extensions and making life harder on my coworkers. Chapter Two
will also discuss the Address Sanitizer, Thread Sanitizer, and the Memory Graph Debugger.
The Memory Graph Debugger is a very powerful tool and I am really looking forward to using
it in Xcode 8.

 Chapter 3
 Chapter Three explains the idea of Swift modules. Swift modules include our apps and
dynamic frameworks. Dynamic frameworks make creating third party libraries super easy,
which just makes them more important to understand as more can show up our projects. We
will also touch on some package managers available, such as Cocoapods, Carthage, and
the official Swift Package Manager.

 The official Swift Package Manager is where I am very hopeful. The more widely adopted
this package manager becomes, the greater the potential for Swift to run anywhere.
Since Swift was open sourced, I have been very hopeful to see it pop up in other areas of
development, such as game development. The Swift Package Manager and Swift being
open source make this a possibility. In Chapter Three we are going to build a basic package
of our own.

 Chapters 4
 Chapter Four is all about architecture. We will examine several design patterns including
MVC, MVVM, Presenter, and Dependency Injection. Design patterns are key to software
development in general. Everything has its own flavor and iOS is no different. We will only
briefly touch on MVC, the main design pattern in iOS. The two main patterns we will go
into detail about are MVVM and Dependency Injection. These are the two main patterns we
are going to use when building our app in Section II. Chapter Four will also discuss Anti-
Patterns. Design Patterns can make our code extensible and allow it to scale. Anti-Patterns
are the opposite. We will examine how certain Anti-Patterns can ruin our code bases and
how to avoid them. Chapter Four will then feed directly into Chapter 5 , Protocol Oriented
Programming.

 Chapter 5
 Protocol Oriented Programming (POP) is a really awesome topic. It can solve a lot of
different problems, but it requires a slightly different way of thinking. Chapter Five is going to
prepare us to use POP in Section II and our app. POP was introduced in Swift 2 and we will
touch on it in Chapter One when discussing the evolution. POP can describe architecture,
which is why Chapter Four is so important, but more on that later. Understanding how to
effectively use POP can also avoid Anti-Patterns.

http://dx.doi.org/10.1007/978-1-4842-2280-5_2
http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_4
http://dx.doi.org/10.1007/978-1-4842-2280-5_5
http://dx.doi.org/10.1007/978-1-4842-2280-5_5

xxii Introduction

 Chapter 6
 Chapter Six is all about Swift generics. It walks through how generics allow for some
pretty awesome functional paradigms in Swift. This is so important to understand as
these techniques show up more and more in Swift. Then, it’s right back to protocols
with associated types. Associated types are really the last piece of Protocol Oriented
Programming. We can keep the type information in a particular protocol and use this to our
advantage in our extensions.

 Chapter 7
 This is going to be a heavy chapter. There are a lot of figures. We will discuss Auto Layout,
constraints, the new device configurations, and trait variations. The trait variations are by
far my favorite part of this chapter. We will see how to build a completely different interface
for landscape versus portrait. We can see how to activate and deactivate constraints and
properties based on different traits. And how could I resist throwing in a protocol. ☺ As the
iOS ecosystem expands and we see more devices, the more we are going to have to do as
developers to make sure our apps run and display correctly on each device. My hope is this
chapter will go a long way in helping you understand how to achieve this goal.

 Chapter 8
 This chapter is going to be all about testing. The previous chapters will take you through
techniques and concepts that can make coding super simple and quick. This chapter is
going to discuss how to rein all of these concepts in, so we can write high quality code that
is also testable. We will build a small class that has been influenced by another project on
Github called MockFive. We will then use this in our tests for our app in Section II. We will
build a package in Chapter Three and in Chapter Eight, we will revisit this package and write
tests for it.

 The last topic we will touch on in Chapter Eight will be Test Driven Development (TDD). We
will examine what TDD is and how it works. Testing in iOS is still relatively new and TDD
even more so. It is important we talk about this topic and how it relates to iOS so we can
effectively write code and tests. We will discuss the benefits and drawbacks.

 Section II
 This half of the book will be about building our app. The app will be a simple grocery
list app. We will be able to create lists and items. The items are then associated with a
specific list. The purpose of this simple idea is to keep the focus on the techniques and the
architecture. We will have a clean architecture that will be tested. You can then take these
skills to any project. Here is a walkthrough for these chapters.

 Chapter 9
 This is the first chapter where we start our grocery list app. Chapter 9 is all about Interface
Builder and building the app’s UI. We are going to build this up first, so we do not have to
switch between Interface Builder and our code. This is also how I like to build apps. I like to

http://dx.doi.org/10.1007/978-1-4842-2280-5_6
http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

xxiii Introduction

start with the interface, so I can plan out how the pieces will communicate and which pieces
need to communicate. Even though we build our UI first, this does not mean we cannot
change it later.

 This chapter is going to use code and discussion about Auto Layout from Chapter Seven. In
Chapter Seven we will build UI and constraints that we will use in our app. We are also going
to take our code and pull it into the app as well. This will be a fun chapter as we build our UI
and figure out how our app is going to look and feel.

 Chapter 10
 Chapter Ten is where we start coding our grocery list app. We will implement the MVVM
pattern in this chapter. The grocery app is going to use Core Data , but we will not start by
adding any support for Core Data . This chapter is going to create a placeholder, so we can
get going and not have to deal with Core Data here. We then use code from Chapter Four
and use the MVVM pattern to implement the two main pages in our app. We are also going
to use Dependency Injection here as well. Dependency Injection will become more clear
after Chapter Four but it will be used everywhere.

 Chapter 11
 Once we finish implementing half of our app, we will take a step back and stop using the
hardcoded data that was introduced in the Chapter Ten. This chapter is all about Core Data.
Core Data is a big topic and I have dedicated this entire chapter to discuss the topic and
how to implement it properly. We are going to rely on Protocol Oriented Programming and
Dependency Injection heavily to implement our interactions with Core Data . We will not
advance our grocery list app very much, but this chapter allows our app to use real data.
This brings us to the final chapter.

 Chapter 12
 In the last chapter, we are going to finish building our grocery list app. We are going to
examine all the loose ends we have left and we are going to finish them. We are also going
to take a look back at the app as a final reflection. It is going to be important to reflect on our
app, so we can bring this book together.

 Playground Reference
 The playground reference is the biggest take away from this book. I will be showing code
samples and I want you to use a Swift playground to hold onto all of this information. I then
ask you to keep using this playground once you finish this book. I have found it invaluable
to keep a running playground of all my ideas and issues I’ve found. The purpose of the
playground is that you use it in your day-to-day development.

 I will explain how to effectively use the playground in Chapter Four. Swift playgrounds have a
cool markup system so you can document your code. I will document the code samples as I
go, but feel free to add more. We are also going to use code from our playground in Section
II when we build our app. All right, now that you have a good idea of what each chapter is
going to walk through, let’s get started with Chapter One, the Evolution of Swift .

http://dx.doi.org/10.1007/978-1-4842-2280-5_10
http://dx.doi.org/10.1007/978-1-4842-2280-5_11
http://dx.doi.org/10.1007/978-1-4842-2280-5_12

xxiv Introduction

 Required Materials
 Here are the required materials to follow along with this book:

� MacOS El Capitan (or a later version)

� Xcode 8

� Swift 3.0

� iPhone (highly recommended, but not required)

 Part I
 Building the Reference
Guide

3© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_1

 Chapter 1
 Evolution of Swift
 This chapter will walk through all three iterations of Swift and how Swift has evolved over
the last two years. This chapter will take a look back at the features of Swift and the core
concepts. We will then get to see how these features have evolved over the short span of
time Swift has been alive. Then once we reach Swift 3, we will get to see how the newest
features of Swift have modernized the language even more. By seeing the influences and
evolution of the language, we can see where the language is going and its potential future.

 What You’ll Learn
 In section Swift 1 , we will review the transition from Objective-C to Swift and discover why
Swift was created. In section Swift 2 , we will review the new Guard and Defer keywords,
multiple optional binding, error handling, protocol extensions, and availability checking. In
section Swift 3 , we will examine a selection of accepted proposals that were implemented
in Swift 3. Section Swift 3 will showcase the brand new API design guidelines. Apple
implemented and released these new guidelines to set the standard for Swift 3 and all
versions beyond. We are not going to examine all of the implemented proposals in Swift 3,
but I have selected a few for us to focus on. Let’s get started with Swift 1!

 Swift 1
 The day was June 2, 2014. I was hard at work when WWDC hit. Everything seemed pretty
normal until they announced Swift 1. Once I saw Swift in action, I was hooked. So hooked,
I stopped working and downloaded the Xcode 6 beta . I had been using Objective-C for four
years at this point, and I was tired of all the square braces. I know I am not the only one.
This is just one of the many differences between the Swift and Objective-C. This section will
discuss the transition from Objective-C to Swift and why Swift was created in the first place.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2280-5_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2280-5_1

4 CHAPTER 1: Evolution of Swift

 Transition from Objective-C to Swift
 Swift 1 was just released, now what? iOS developers all over the world have mountains of
Objective-C code and there are hundreds of libraries on GitHub. How do we transition a
community such as this to a brand new language that is so different? Well, Apple has made
this as simple and seamless as possible. Objective-C projects can contain Swift code and
you can also use Objective-C APIs in Swift. The interoperability of these two languages
makes the transition from Objective-C to Swift very simple for Apple and developers.

 I believe the biggest transition pain into Swift 1 is the introduction of optional values . I know
this caught me off guard at first. In Objective-C I would always have to check for nil and
this was just a normal exercise that I was used to. This is also the case for many other
languages, such as Java. Swift, however, can guarantee a value to be non-nil if it is
non-optional. This allows you to keep the nil checks to a minimum. It also creates safer
code because it forces you to think about nil where it can happen. When anything can be
 nil , it is easy to forget to check, and that creates a potential crash in your application.

 Another huge difference is the functional style Swift brings. Swift 1 brings closures to
your everyday iOS toolbox. Objective-C did contain blocks, but these were an addition,
whereas Swift has closures built in from the start. Closures can serve many purposes, such
as functional programming, handling asynchronous tasks, and much more. Closures can
clean up your code and provide a mechanism for keeping less state, but they also bring the
opportunity to leak memory, so be careful.

 Swift 1 does have its drawbacks. It is a very young language and as it develops, it will
bring breaking changes as it solidifies. These reasons, however, should not hold you back.
Transitioning to a new language can be difficult. Apple has made it very simple and there is
no reason you should not use Swift.

 Why Was Swift Created?
 That’s simple; Swift was created to replace Objective-C. This seems like a daunting task.
macOS and iOS are both written in Objective-C and these are two of the biggest platforms
in the world. According to Apple

 Swift is a powerful and intuitive programming language…. Writing Swift code
is interactive and fun, the syntax is concise yet expressive…. Swift code is
safe by design, yet also produces software that runs lightning-fast.

 —Apple Inc.

 Swift was also created to be simple. It is easy to start writing Swift and it allows less-
experienced developers to easily create iOS apps. I started iOS when I was in college and I
had very little experience in C at the time. This made it harder for me to make iOS apps, as
Objective-C has a lot of pitfalls. Swift can also appeal to even younger audiences, allowing
kids to get started with programming. Swift was created for many reasons and it has the
potential to run anywhere. In my opinion, this tells me that the reason Swift was created was
not only to replace Objective-C, but many languages and many systems that currently exist.
Swift for all!

5CHAPTER 1: Evolution of Swift

 Swift 2
 Swift 2 witnessed some of the most innovative changes to Swift and the Foundation
Framework. The changes not only altered the language and the Foundation Framework , but
also how developers think about problems. One of these many changes is called protocol-
oriented programming , discussed in depth in Chapter 5 . This section will focus on the
changes between Swift 1 and 2 and the brand-new features of Swift 2. Swift 2 will discuss
the new guard and defer keywords, multiple optional binding, exception-style error handling,
protocol extensions, and availability checking.

 Guard and Defer
 Swift 2 offers new keywords. We will focus on guard and defer . These two new keywords
give us new functionality to keep our Swift code more legible with fewer lines of code. Let’s
start with the new guard keyword.

 Guard
 Think of guard as your basic if statement, allowing for control flow. Traditionally, an if
statement branches when a condition evaluates to true. The guard keyword, however,
branches if a condition evaluates to false. The guard also disallows the execution of the
branched code, as well as the code beyond the guard statement. This means the inner
block of the guard must return or throw . The following code shows an example the new
 guard keyword:

 let condition = false
 guard condition else { return nil } // condition is false
 // condition is true

 You can see this is very useful in making your code more legible with fewer lines of code.
You now might be wondering, does this work with optional binding? Absolutely, you can
 guard let any optional value as if it were an if let block. This leads us into the next feature
Swift 2 added, multiple optional bindings.

 Multiple optional bindings is now available in any if or guard statement. In Swift 1, writing
multiple if lets was tedious and created illegible code due to multiple nested if let
statements. Swift 2 introduced a comma- separated list of optional bindings in one if/guard
statement. Let’s see a comparison:

 // Swift 1
 let optionalValue1: String? = someString()
 let optionalValue2: String? = someOtherString()
 if let value1 = optionalValue1 {
 if let value2 = optionalValue2 {
 value1
 value2
 }
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

6 CHAPTER 1: Evolution of Swift

 // Swift 2
 let optionalValue1: String? = someString()
 let optionalValue2: String? = someOtherString()
 if let value1 = optionalValue1,
 let value2 = optionalValue2 {
 value1
 value2
 }

 The previous code shows how to use multiple optional bindings in an if statement. The
syntax for a guard statement is exactly the same. You can see how this can really clean up
our code. We can avoid all the unnecessary nesting of guard s or if statements and just
comma-separate our bindings.

 Defer
 The next keyword introduced in Swift 2 is defer . Using defer forces any code within the
statement block to be run at the end of the current scope. Multiple defer blocks can be
declared within a single scope; however, please know the defer blocks will be run in reverse
order of appearance. Defer blocks are run in reverse order to allow you to refer to resources
that are used/cleaned up in early defer blocks. The following code shows how defer holds
the execution of the block until the end of the function:

 func postFixAdd(inout x: Int) -> Int {
 defer {
 x += 1
 }
 return x
 }

 var x = 1
 postFixAdd(&x) // Value of x is 1

 x // Value of x is 2

 This can be a bit of an obscure concept. I have found there are two key use cases for this
action. First, I believe it is useful when you want to communicate to others that an action has
to be at the end of a scope. If you were to write code where the order matters and someone
else comes in, they could change the order. This might break something without anyone
knowing. Using defer makes this more explicit.

 The second use case I have found is around cyclomatic complexity . You might run into
a situation where you need to run code at the end of your scope, but there are multiple
branches within the current scope. Instead of reworking your branches or adding more, you
can use defer within the correct branch. Then it will execute at the end of your scope, only
when the specific branch is executed. Pretty cool, huh? Up next, we will take a look at the
first new major feature introduced in Swift 2, exception-style error handling.

7CHAPTER 1: Evolution of Swift

 Error Handling
 Swift 1 did not have an exception-handling model . The only pattern available for handling
errors was injecting an NSError object that would either be nil or non-nil, signaling an
error occurred. This is also the pattern that has been used for years in Objective-C. Swift
2 fixed this issue. Apple added an exception-handling model using the keywords try,
throw(s), and catch . This new pattern now works perfectly through the use of protocols.
The ErrorType protocol is the “error” a catch block will catch and NSError conforms to this
protocol. If you have not heard about the power of protocols and their use in Swift, the next
section, as well as Chapter 5 , will be going in-depth on protocols and protocol-oriented
programming.

 Let’s now look at an example of how exception handling works in Swift. You may follow
along in a Playground; however, this syntax will be in Swift 2 and may need to be converted
if you are using Swift 3. This example has a simple function that converts an optional string
to a non-optional string. First, let’s create our “catchable” exception:

 enum StringParsingException: ErrorType {
 case NotThere
 case Empty
 }

 You can see our exception is just an enum with two cases. The enum conforms to the
 ErrorType protocol and since ErrorType is just a protocol, anything can conform to this
protocol, which makes it very easy to throw exceptions . The first case is NotThere and the
second is Empty . These are the two cases we want to guard against in our function and
throw an exception if either of these conditions is met. Now, let’s look at how we can use
this StringParsingException enum in our function.

 func throwStringError(str: String?) throws -> String {
 guard let s = str else { throw StringParsingException.NotThere }
 if s.isEmpty { throw StringParsingException.Empty }
 return s
 }

 First, we have to mark this function with the keyword throws in the function signature. This
tells the Swift compiler our function could generate an exception. Now every time you make
a call to this function without using the keyword try , Xcode will generate this error: “Call can
 throw but is not marked with try .” The following is how you wrap this function to properly
catch the error:

 do {
 let result = try throwStringError(nil)

 result
 }
 catch {
 error
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

8 CHAPTER 1: Evolution of Swift

 This first block of code will throw a NotThere exception and will be caught by the catch
block.

 do {
 let result = try throwStringError("")

 result
 }
 catch {
 error
 }

 This previous block will throw an Empty exception and will also be caught by the catch block.
Finally, this last block will not throw an exception and will continue execution.

 var str = “Hello Exception”

 do {
 let result = try throwStringError(str) // str = “Hello Exception”

 result
 }
 catch {
 error
 }

 Pretty easy, right? This mechanism is very similar to the exception handling in Java. First,
you have to mark a function that can throw with the keyword throws . Then every subsequent
call to this function must be marked with try . Now, it would not be Swift without the ? or !
characters. You can write try?, which will silence the exception and return nil if the
function does throw an exception. It will return the value of the function if it does not throw
an exception. However, using ? will effectively create an optional value even if the function
does not return an optional. You can also use try!, which forces the function to be called
without the need for a corresponding catch block.

 I know that was a lot to take in, especially for a subsection in the first chapter. This is a very
important concept because it will affect the code we are going to write throughout this book.
Error handling is important when we build our own frameworks and other people can use our
code. This is just a quick introduction to the error handling that is now available in Swift and
there are more things you can do with the try and catch blocks that I will not go into here.
Up next, we are going to talk about protocol extensions , which is my favorite feature within
the Swift language.

 Caution Be warned, using try! will cause your application to crash if the function does throw
an exception.

9CHAPTER 1: Evolution of Swift

 Protocol Extensions
 As Swift developers, we use protocols every day. From UITableViewDataSource to NSCoding ,
protocols are everywhere in the Objective-C/Swift ecosystem. Protocols are similar to
interfaces (Java), and prior to Swift 2, a protocol only offered

 a blueprint of methods, properties, and other requirements that suit a
particular task or piece of functionality.

 —Apple Inc., The Swift Programming Language

 As of Swift 2, protocols have taken on a more trait or mixin style. You can now extend
protocols using the keyword extension to give a particular protocol a default implementation
or other functionality that should belong to that protocol. The implications of this are
huge. Allowing protocols to have an implementation, we can essentially achieve multiple
inheritance. A Swift object can conform to as many protocols as it wants. If each of those
has some implementation, then our object would have all of that code. If that does not hurt
your brain, it probably should.

 We are also no longer bound to just object-oriented programming. Objected-oriented
programming has its own drawbacks, and protocols can help us get around these issues. I
am not going to show any code in this section. I will leave that to Chapter 5 . The next feature
added in Swift 2 is a small one, but it does offer some noteworthy functionality.

 Availability Checking
 Who out there has seen the following block of code?

 if NSClassFromString("<ClassName>") != nil {
 // <ClassName> exists
 }
 else {
 // <ClassName> does not exist
 }

 A new version of iOS is released every year. Keeping up with the API changes, additions,
and deprecations can be a headache if you have to maintain an app for multiple versions of
the operating system. Swift 2 is now making this a little easier. Swift 2 added the ability to
use #available to check for the current OS version number. The following is a code snippet
showing how to use #available .

 var constraints: [NSLayoutConstraint] = []

 if #available(iOS 9.0, *) {
 let top = view1.topAnchor.constraintEqualToAnchor(view2.topAnchor)
 let bottom = view1.bottomAnchor.constraintEqualToAnchor(view2.bottomAnchor)
 let lead = view1.leadingAnchor.constraintEqualToAnchor(view2.leadingAnchor)
 let trail = view1.trailingAnchor.constraintEqualToAnchor(view2.trailingAnchor)
 constraints += [top, bottom, lead, trailing]
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

10 CHAPTER 1: Evolution of Swift

 else {
 let top = NSLayoutConstraint(item: view1, ... constant: 0)
 let bottom = NSLayoutConstraint(item: view1, ... constant: 0)
 let lead = NSLayoutConstraint(item: view1, ... constant: 0)
 let trail = NSLayoutConstraint(item: view1, ... constant: 0)
 constraints += [top, bottom, lead, trail]
 }

 constraints // Contains the 4 constraints

 In iOS 9.0, Swift added anchors for programmatically working with layout constraints. This
makes it easy to generate constraints in code; however, if your app supports iOS 8.0 and
above, you will not be capable of using this new feature. With #available you can use an
 if statement to check the current iOS version and use these anchors if the iOS version is
above 9.0. The else statement can then take care of the backward compatibility. Swift does
not stop there; it allows you to add #available to functions, which means that function can
only be called if the OS is above the specified version. This is a great way to keep your app
backward compatible with earlier versions of iOS or macOS, but still use the new APIs in a
cleaner way. Then, when you are ready to drop support for an old OS, all you would need to
do is get rid of your #available if statements.

 This wraps it up for Swift 2. We went through a lot of the new features and what is available
to us, such as a new exception-style error handling, protocol extensions, and achieving
backward compatibility through availability checking . The next section is going to cover the
major changes in Swift 3. I hope everyone is excited and ready!

 Swift 3
 Now, what you have all been waiting for, Swift 3 is making breaking changes. Although Swift
2 brought some of the biggest language updates, Swift 3 brings the biggest API updates.
This release marks the first major release since Swift went open source. This means that
not only has Apple been hard at work updating Swift, the community has as well. All
implemented proposals can be found at the following link: https://github.com/apple/
swift-evolution . This section will go over a few of the accepted proposals and the reasons
these changes are being introduced.

 The primary goal of this release is to solidify and mature the Swift language
and development experience.

 —Apple Inc., Swift Evolution

www.allitebooks.com

https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
http://www.allitebooks.org

11CHAPTER 1: Evolution of Swift

 Argument Labels
 Argument labels are one of the first most notable changes of Swift 3. The goal of this change
is to normalize all parameter labels across method invocations and initializers. This change is
based on proposal SE-0046. The authors of this proposal are Jake Carter and Erica Sadun.
The entire proposal can be found at the following link: https://github.com/apple/swift-
evolution/blob/master/proposals/0046-first-label.md .

 In previous versions of Swift, the first parameter in a method or function declaration does
not appear in the corresponding invocation. An extra label must be specified to include it for
the first parameter. However, all parameters following the first label are included. Swift 3 is
changing this behavior.

 Now, all parameters are listed in the signature unless otherwise specified. The first block of
code illustrates a method or function declaration for Swift 2 and the second block illustrates
the new Swift 3 conventions.

 // Swift 2
 func swift2(arg1: Int, arg2: Int, arg3: Int) -> Int {
 return arg1 + arg2 + arg3
 }
 swift2(1, arg2: 2, arg3: 3)

 // Swift 3
 func swift3(arg1: Int, arg2: Int, arg3: Int) -> Int {
 return arg1 + arg2 + arg3
 }
 swift3(arg1: 1, arg2: 2, arg3: 3)

 You can see how the first parameter is now used in the invocation. You might remember
when Swift 2 was released; first parameter labels were omitted by default. This behavior
comes from an old Objective-C style. One of the reasons this change has been introduced is
to create a Swift standard, as opposed to using an old style from Objective-C. This change
also ensures a consistent behavior among initializers , methods, and functions. It is possible
to omit the first parameter label in Swift 3. You must specify an underscore preceding the
first argument. In the next section, we will be discussing multiple proposals, but they are all
related to the new API Design Guidelines released by Apple.

 API Design Guidelines
 Apple is making big changes to the way they design and write their APIs. There are three separate
Swift proposals related to the new API Design Guidelines. These proposals are SE -0023, SE-
0006, and SE-0005. SE-0023 is the umbrella proposal to implement the new guidelines. SE-0006
and SE-0005 are specifically applying these guidelines to the Standard Library and ensuring the
guidelines can be met when translating Objective-C APIs into Swift, respectively. Before we talk
about each of these proposals, let’s examine the guidelines themselves.

https://github.com/apple/swift-evolution/blob/master/proposals/0046-first-label.md
https://github.com/apple/swift-evolution/blob/master/proposals/0046-first-label.md

12 CHAPTER 1: Evolution of Swift

 The guidelines can be found at https://swift.org/documentation/api-design-guidelines/ .
There is too much content on the guidelines to reasonably fit in this section. I will be going
through the CliffsNotes version here to give you an overview, and we will be adhering to
these guidelines throughout this book. We want to enforce these guidelines as we build our
playground reference and our app to ensure the code is easily recognizable as Swift. I highly
recommend reading through the swift.org documentation on the new guidelines. There is
a lot of good information there and as Swift developers, we should all be adhering to the
official guidelines. Here are the fundamentals of the new API Design Guidelines:

 Clarity at the point of use

 Clarity is more important than brevity

 Write a documentation comment

 —Apple Inc., API Design Guidelines

 Let’s examine what each of these mean in terms of code. The following code is going to
be from our grocery list app. First is “ clarity at the point of use .” The following code is from
some class that is used to retrieve grocery lists from some backend.

 func getLists() -> [GroceryList] {
 ...
 }

 There is nothing technically wrong with this method. However, the language is very
ambiguous. You can imagine this being used in viewDidLoad or viewWillAppear to retrieve
the grocery lists, but you cannot be sure. This could be retrieving some other type of list.
What if the app has two different types of lists? Obviously, this is not clear. To disambiguate
this method, let’s change the API to look more like the following:

 func retrieveGroceryLists() -> [GroceryList] {
 ...
 }

 Now, this is a lot clearer and gives us insight into the intent of this method. The next
fundamental is “ clarity is more important than brevity ,” which means, if you need to write a
full sentence to get your point across, do it. Okay, maybe not a full sentence. The following
code illustrates brevity, but not clarity.

 func loadList(tableView: UITableView, list: [GroceryList], complete: Void -> Void) {
 ...
 }
 loadList(UITableView(), list: [], complete: {})

 This method takes in three parameters, a UITableView , an array of GroceryList objects,
and a completion block. This code is brief and saves the user from writing a lot of code.
However, looking at this line without documentation, it would be very difficult to discern the
meaning. Let’s take a look at the same function written in a Swiftier way.

https://swift.org/documentation/api-design-guidelines/

13CHAPTER 1: Evolution of Swift

 func animateReload(onTableView tableView: UITableView, withGroceryLists list: [GroceryList],
andCompletion completion: Void -> Void) {
 ...
 }
 animateReload(onTableView: UITableView(), withGroceryLists: [], andCompletion: {})

 There is a lot more code here, but it is very clear about its purpose and the operations it
performs. Just from the method signature, we can tell; this method is going to reload the
 UITableView with the list of GroceryList objects we give it, and then it is going to run a
 completion block when everything is finished animating.

 The next and last fundamental of the API Design Guidelines is “ write a documentation
commen t . ” If you were to give a documentation comment to every method, function, class,
struct, enum, and so on, nothing would be ambiguous. Now, we are all human. We are not
going to write documentation for every single one of these items every time we code. If we
try to follow the fundamentals, even if we are not perfect every time, our code will become
less ambiguous and will be self-documenting. Self-documenting code makes using our
own code easy and makes using other developer’s code a dream. Also, the more self-
documenting our code is, the more we might be able to get away with fewer documentation
comments. J

 In the last code example, I included another part of the API Design Guidelines. The method
starts with animateReload . The other part of the guidelines is to give methods and functions
names that correspond to their side effects. The guidelines state this:

 “Those without side-effects should read as noun phrases” and “Those with
side-effects should read as imperative verb phrases.”

 —Apple Inc., API Design Guidelines

 We renamed our method to use two verbs as the base: animate and reload . These both
speak to the side effects of this method. This method will perform an animation on the
view and it will reload our table view. I wanted to point this out because I believe it is a very
important piece to new guidelines, and it can be confusing to start thinking and writing code
in this way.

 These are the very basics of the new API Design Guidelines. There is a lot more to them
and all the guidelines and conventions are discussed in length at the link provided at
the beginning of this section. I would highly recommend reading through the article to
completely familiarize yourself with the guidelines. Next, we are going to look at all three
proposals that were mentioned earlier in this section.

 Swift 3 Proposals
 As I stated in the previous section, the three proposals we are going to examine in this
section are SE-0006, SE-0033, and SE-0005. These proposals encompass the work
necessary to apply the API Design Guidelines to the Swift language and frameworks. We are
first going to look at SE-0006 where the Standard Library is being overhauled.

14 CHAPTER 1: Evolution of Swift

 SE-0006
 SE-0006 is the proposal to apply the new API Design Guidelines to the Standard Library .
This proposal was authored by Dave Abrahams, Dmitri Gribenko, and Maxim Moiseev. The
full proposal can be found at https://github.com/apple/swift-evolution/blob/master/
proposals/0006-apply-api-guidelines-to-the-standard-library.md .

 There are too many changes to discuss here. This includes such things as renaming
 Generator to Iterator , removing the Type suffix from protocol names such as BooleanType
and CollectionType , and one of the most notable changes, String methods that mirror their
 NSString counterpart have been renamed. The following code is the method to convert the
 string to an NSData object:

 // Swift 2
 public func dataUsingEncoding(encoding: NSStringEncoding, allowLossyConversion:
Bool = false) -> NSData?

 // Swift 3
 public func data(usingEncoding encoding: String.Encoding, allowLossyConversion:
Bool = false) -> Data?

 This new API fits perfectly in line with the guidelines. The method returns an object and has
no side effects on the original string; therefore, a noun phrase is used. You can also see in
the signature that that the prefix NS has been removed from the return value. In Swift, the use
of modules avoids potential naming collisions and thus the prefix NS has been removed. We
will be discussing modules at length in Chapter 3 .

 The encoding parameter in the new API is also a little different. It is of type String.Encoding .
The old Objective-C API asked for the encoding as a normal String . Now, in Swift 3, the
Objective-C constants are imported into Swift code in a much safer way. The last part of this
section is going to discuss two proposals: SE-0005 and SE- 0033 . The proposals are better
translation of Objective-C APIs into Swift and importing Objective-C constants as Swift
types. Also, the encoding is now a sub struct within String . Now, let’s examine these two
proposals starting with SE-0033.

 SE-0033
 SE-0033, importing Objective-C constants as Swift types. This proposal was created by Jeff
Kelley. Many constants in Objective-C are in the form of strings and this does not lend itself
to Swift very well. The initializers in Swift that rely on these constants have to be failable . If
you have never heard of a failable initializer, the syntax is as follows:

 init?(constant: String) {
 if constant != "<expected>" {
 return nil // Failed to initialize
 }
 // Initialized
 }

https://github.com/apple/swift-evolution/blob/master/proposals/0006-apply-api-guidelines-to-the-standard-library.md
https://github.com/apple/swift-evolution/blob/master/proposals/0006-apply-api-guidelines-to-the-standard-library.md
http://dx.doi.org/10.1007/978-1-4842-2280-5_3

15CHAPTER 1: Evolution of Swift

 A failable initializer is marked with the ? character. Then, when the initializer does not have
the expected values, returning nil will cause the initializer to fail and return a nil value. Any
variable that is created from a failable initializer will be optional. This is not a very Swift API.
The proposal uses the HealthKit API, and it is a perfect example of why this is necessary.
Here are some of the constants used in HealthKit :

 HKQuantityTypeIdentifierBodyMassIndex

 HKQuantityTypeIdentifierBodyFatPercentage

 HKQuantityTypeIdentifierHeight

 HKQuantityTypeIdentifierBodyMass

 HKQuantityTypeIdentifierLeanBodyMass

 All of these constants are strings and the HKQuantityType has this API:

 HKQuantityType.quantityTypeForIdentifier(identifier: String)

 This method returns an optional HKQuantityType because you can pass it any string you
want. The aim of this proposal is to convert these string types to a Swift type such as an
 enum or a struct . This would allow the API to be

 HKQuantityType.quantityType(for identifier: HKQuantityTypeIdentifier)

 where HKQuantityTypeIdentifier is an enum that is defined as such:

 enum HKQuantityTypeIdentifier : String {
 case BodyMassIndex
 case BodyFatPercentage
 case Height
 case BodyMass
 case LeanBodyMass
 }

 This will allow you to pass the previous method one of these values and the method can
then return a non-nil value. This will allow APIs to be less optional, but it gives us an added
benefit. We can now use Swift’s powerful type inference instead of having to type out the full
constant, which saves us time and keeps our code leaner.

 SE-0005
 The last proposal we are going to examine is SE-0005, which is a better translation of
Objective-C APIs into Swift, and was written by Doug Gregor and Dave Abrahams . This
proposal brings massive breaking changes to our code. The bullet points of this proposal are
the following:

 Prune redundant type names.

 Add default arguments.

 Add first argument labels.

https://github.com/DougGregor
https://github.com/dabrahams

16 CHAPTER 1: Evolution of Swift

 Prepend “is” to Boolean properties.

 Lowercase values.

 As stated in the new API Design guidelines, conciseness and clarity are the goals of the new
APIs and Objective-C can be redundant. Take a look at this code:

 addGestureRecognizer(recognizer: UIGestureRecognizer)
 setTextColor(color: UIColor)
 stringByTrimmingCharactersInSet(set: NSCharacterSet)

 The first aim of this proposal is to remove this redundancy. In Swift 3, the previous APIs
might become the following:

 add(recognizer: UIGestureRecognizer)
 setText(color: UIColor)
 trimming(set: NSCharacterSet)

 This makes Swift code even more readable, clear, and concise. The next two bullet points
are adding default arguments and first argument labels. These are self-explanatory. We
only want to write purely necessary code and nothing else. The argument labels were the
proposal we examined first and is important to how these APIs will be read and understood.
The last two bullet points are simple. Any Boolean property will now be prefixed with “is”
and values such as CGColor will be renamed cgColor .

 This section has walked through three of the biggest proposals that have been implemented
in Swift 3. There are way too many proposals to talk about here and they are all important.

 I wanted to make sure to thank anyone who has submitted a proposal or implemented a
proposed change to Swift 3. I absolutely love the Swift language and I appreciate all the
work that has gone into making it the best possible language it can be.

 Wrap Up
 One down, eleven more to go! This chapter walked you through the evolution of Swift from
the release of Swift 1 in 2014 to the newest release of Swift 3 in 2016.There are a lot of new
features in Swift 3 and I have shown only a few.

 I have presented a lot of information here and will be reinforcing topics from this chapter
throughout this book, especially the new API Design Guidelines. Swift has the potential to
go anywhere and it is getting stronger and more robust with every release. Up next, we will
be walking through Xcode, including some of the more advanced features like the Address
Sanitizer and the new Memory Graph Debugger .

17© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_2

 Chapter 2
 Xcode
 We just covered the evolution of Swift from Swift 1 through Swift 3. Now that you have
seen a few of the new features in Swift 3, let’s take a step back and examine the new tools
we have in Xcode 8. The new features I want to highlight in this chapter pertain to things
we will use in this book and what I believe every Swift developer should know how to use
effectively. I am going to provide a general overview of the new features and tools, but I
would highly recommend more research. The best way to learn a new tool is to just use it, so
you should try to work these new features into your everyday development.

 What You’ll Learn
 This section is going to walk through the new features within Xcode 8 and some features
introduced prior to Xcode 8 that are worth talking about. First, we have the “What’s
New” section. In this section, we will look at some of the new features in Xcode 8. One of
those features was added to storyboards and the other is the amazing addition of Xcode
extensions. After this section, you should feel comfortable using the new storyboard Device
Configuration panel and the features associated with this update. You will also learn about
the new app extensions that can be built for Xcode. This is a really exciting new feature that
will hopefully open the door to more community support for Xcode.

 After we look at a couple of the new features, we are going to look back at previous features
that have been in Xcode. We are going to quickly look over Xcode code coverage. Code
coverage can give you a good idea about the effectiveness of your tests. This will be more
important when we get to later chapters and when we will build our app. The last old feature
we will examine is UI Debugging . This is a pretty cool feature within Xcode and it is very well
hidden.

 Looking through these features will be fun, but the focus of this chapter is going to be
centered on the Address Sanitizer , Thread Sanitizer, and the Memory Graph Debugger .
These awesome tools are a bit difficult to understand and use. After this chapter, you should
feel comfortable using these tools and understanding what they offer you. Let’s get started
with a few of the new features in Xcode 8.

18 CHAPTER 2: Xcode

 What’s New
 First, I want to bring your attention to the Issue Navigator panel in Xcode 8 . You might
notice there are two new sub-tabs within this panel. This can be seen in Figure 2-1 . The
first sub-tab is called Buildtime . This is the tab we should all be familiar with because
it is where we see all of the warnings and build errors we are so used to. The second
sub-tab, however, is new. This one is called Runtime . Now, in Xcode 8, we will get to
see issues that arise during runtime, such as potential memory leaks. The new runtime
issues work hand in hand with the new Memory Graph Debugger , which we will discuss
later in this chapter.

 Figure 2-1. New Issue Navigator panel with a Buildtime errors tab and a Runtime errors tab

 Caution Feel free to follow along in Xcode. However, this chapter is more of an overview for the
features of Xcode and not necessarily a walkthrough.

 The new Runtime sub-tab can also display potential threading issues that will lead us
into the Thread Sanitizer . The last type of issue that can show up here is related to Auto
Layout. When a view has conflicting constraints at runtime, those issues will show up
here as well.

 The next feature added is a small one, but still pretty cool. Xcode 7.1 Swift playgrounds
added color , image , and file literals . These literals made it very simple to embed content
such as an image or color reference without using code. Now, Xcode 8 has the color and
image literals available to us in all of our projects. Figure 2-2 shows Xcode 8 adding a new
 color literalI set a constant color for the navigation bar tint color. To create one of these color
literals, just start typing Color Literal in the source; clicking on Xcode’s suggestion should
present the menu from Figure 2-2 .

19CHAPTER 2: Xcode

 The next small feature Xcode 8 added was the addition of automatic code signing . I cannot
tell you how many times I have struggled with code signing. This is a huge addition. In
Figure 2-3 , you can see the new sections in the app’s Target settings under the General tab.
It has Automatically manage signing turned off, but once I turn it on, I can choose my Team ;
I then get an Xcode managed provisioning profile, the signing certificate from my Apple ID.

 Figure 2-2. Xcode 8 adding the new color literal to a Constants struct in an Xcode project

 Figure 2-3. New automatic signing section in the Target settings under the General tab

20 CHAPTER 2: Xcode

 That’s just a few of the new features that are available in Xcode 8. There is a lot more
that happened and it can be found at https://developer.apple.com/library/content/
documentation/DeveloperTools/Conceptual/WhatsNewXcode/introduction.html . Now, let’s
get to the meat of this section. We are going to start with the new changes in storyboards
and Auto Layout.

 Storyboards and Auto Layout
 Storyboards and Auto Layout are going to be the focus of this section. There are some great
new features and we will be using these new features heavily in Chapter 7 and Chapter 9 .
Chapter 7 will be all about Auto Layout and storyboards. Chapter 9 is where we build the
app’s UI, but it all starts here.

 Figure 2-4 shows the new Device Configuration panel that was added in Xcode 8. This
panel can be found at the bottom of Xcode when editing a storyboard by clicking on View
as: <device name> . This panel has taken the place of size classes. Before, you were able to
select a size class to edit your view such as wR hC. This stands for width regular and height
compact. If you look closely at Figure 2-4 , you can still see the size class, but this new panel
now allows us to use actual device configurations instead of abstract size classes. This
makes things so much easier. We can switch between devices and orientations with ease to
see how our view reacts.

 Figure 2-4. The new Device Configuration panel at the bottom of a storyboard file. Using this panel,
we can see view layouts in all devices and orientations

 You will also notice there is a button on the right that says Vary for Traits . Trait variations are
a new topic we are going to examine more in-depth in Chapter 7 . The short explanation is
that when you click this button, you can add or modify the traits of a particular element for a
particular configuration.

 The last feature that was added to storyboards in Xcode 8 is Autoresizing Masks . Actually,
this feature has also been in storyboards. Before Auto Layout, in the dark days, there was
Autoresizing Masks. When building views with Autoresizing, we could allow elements on
the screen to adapt to the screen size, but this was before iOS added so many devices with
different screens and resolutions to support. Auto Layout was added to allow our views to
be more dynamic and resize to any device configuration. However, many times , our views do
need the power of Auto Layout depending on their simplicity. This is where autoresizing is
coming back.

 In previous storyboards, when a view element did not have constraints with Auto Layout,
implicit constraints were added. This is no longer the case. Now, we can configure our
view elements to use the old style autoresizing. This will also help with migrating old style
layouts to Auto Layout. Let’s see how we can use this on a view. Figure 2-5 shows a view I
configured with a button that says Do Something .

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/WhatsNewXcode/introduction.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/WhatsNewXcode/introduction.html
http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://dx.doi.org/10.1007/978-1-4842-2280-5_7

21CHAPTER 2: Xcode

 Now selecting the button , if you flip over to the Size Inspector panel on the Utilities panel,
you will see Figure 2-6 , which shows just the Autoresizing section. Focusing on this section,
you can see that I have configured the leading / trailing to stick to the sides of the screen
and that I’ve told the inner spring to expand horizontally and vertically.

 Figure 2-5. View with a single button that has no constraints

 Figure 2-6. Autoresizing section in the Size Inspector

22 CHAPTER 2: Xcode

 With this configuration, nothing happens in the current view, but let’s switch between
landscape and different devices. Figure 2-7 shows what happens to the red button using the
current device in landscape.

 Figure 2-7. Red button resizes on an iPhone 6 in landscape

 Using the Autoresizing capabilities , the red button’s left and right sides are proportionally
the same distance from the side of the view as they were in Figure 2-5 . The horizontal spring
configuration allows the button to scale horizontally. In Chapter 7 and Chapter 9 , we will
be looking more into the new trait variations and we can use the old autoresizing behavior
to configure the simple views in our app. The last feature we are going to examine in this
section is the new Xcode extensions .

 Xcode Source Editor Extensions
 You better sit down for this next part. Xcode 8 has now opened up development for
everyone. In OS X Yosemite, App Extensions allowed developers to create small features for
apps such as Finder and Notification Center. This same app extension system is now
available in Xcode 8 and is called Xcode Source Editor Extension It is important to note that
you will need to create a full macOS app to create an Xcode extension. Figure 2-8 shows the
steps to create a new source editor extension. Step 1 in Figure 2-8 first creates a new
macOS Cocoa app. After creating a macOS Cocoa application, go to the project settings
and add a new target. Step 2 shows the menu for adding a new target and at the bottom is
the Xcode Source Editor Extension icon.

http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

23CHAPTER 2: Xcode

 Apple made the decision to use the app extension system to allow developers to create an
extension and sell it in the App Store. These extensions are very limited right now. Currently,
the only action you can perform with an Xcode extension is string replacement within the
current file. This might not seem like much, but the 2016 WWDC video showed an extension
that converted all color and image code references to the new color and image literals. The
following code block shows the default code you get when you start a new Xcode source
editor extension.

 import Foundation
 import XcodeKit

 class SourceEditorCommand: NSObject, XCSourceEditorCommand {

 func perform(with invocation: XCSourceEditorCommandInvocation, completionHandler:
(NSError?) -> Void) -> Void {

 // Implement your command here, invoking the completion handler when done.
 //Pass it nil on success, and an NSError on failure.

 completionHandler(nil)
 }
 }

 The code uses the class XCSourceEditorCommandInvocation. This class gives you access
to a text buffer for the file that is currently open when running the extension. Unfortunately,
there is no information about the project or any other context within Xcode. Sadly, this
means we will not be able to get refactoring functionality from an extension.

 This should not deter you from checking out this new functionality. Being capable of
extending the Xcode app is a huge leap forward and opens the door for more community
support in the future. Up next, we will be diving into previous Xcode features that I want to
highlight in this chapter.

 Figure 2-8. The process to create an Xcode source editor extension

 Note (1) Create a new macOS Cocoa project. ➤ (2) Add a new target. ➤ (3) Add a new Xcode
source editor extension. Steps 1 and 3 are highlighted in the above figure.

http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

24 CHAPTER 2: Xcode

 What’s Old
 This section is going to highlight two previous features of Xcode. Those features are code
coverage and UI debugging . I wanted to quickly go through these features because we
will use them when we build our app starting in Chapter 9 . Let’s start with Xcode’s code
coverage.

 Code Coverage
 The Xcode code coverage tool is not new in Xcode 8. It was actually released in Xcode 7.
Code coverage is a very important tool. It can tell you how much of your code is covered
in tests and what you still have untested. It can also lie. Code coverage tools, whether they
are in Xcode or not, cannot discern the meaning of your test or how effective your test is at
asserting particular cases.

 Xcode’s code coverage tool is very minimal and it gives you a count of your coverage right
in the source file. This coverage count is based on the number of times a set of instructions
is run from a test. So even though a test might not assert anything, it would show up as
covered if it ran the instructions of a method or class.

 You can quickly scan through a file to see coverage . Uncovered code will show up red and
covered code will show up as green. Xcode also has a more detailed coverage report in the
Report Navigator. Figure 2-9 shows the Report Navigator. In Figure 2-9 , you can see that I
have three passing tests for one file. I have also added the results of the Coverage tab. It
shows the code we have tests for is 100% covered and everything else is uncovered. At the
top of the coverage report, it shows the coverage for the entire app.

 Figure 2-9. Two views within the Report Navigator displaying the passing tests and the code coverage

http://dx.doi.org/10.1007/978-1-4842-2280-5_9

25CHAPTER 2: Xcode

 To enable this feature, you have to edit the scheme you want test. So, you would select the
active scheme you want to enable code coverage for and then select Edit Scheme .
Figure 2-10 shows the scheme configuration. Select the test section and then you will see
an option for Code Coverage . This is turned off by default.

 Figure 2-10. Edit your project’s scheme to turn code coverage on

 Figure 2-11. The Show Code Coverage option in the Editor menu

 Once you have the code coverage option turned on for your scheme, navigate to a source
file and click the Editor menu. Figure 2-11 shows the Editor menu and the option at the very
bottom is how you show code coverage in source files. After selecting this option, the code
coverage for source files will show up in the right gutter.

26 CHAPTER 2: Xcode

 Code coverage is a pretty good tool for getting a sense for the amount of tests you have and
sometimes even the quality of your tests. We are going to use this feature when we build our
app in Chapter 9 . The next section is going to briefly discuss the UI Debugging tool available
in Xcode.

 UI Debugging
 UI Debugging is probably one of my favorite tools in Xcode. It was introduced way back in
Xcode 6 and iOS 8. The goal of the tool is to give developers the ability to see the entire view
hierarchy at runtime. It’s also pretty cool because you can configure the tool to see views
that are cut off or off screen. It also allows you to see the constraints that are applied to each
and every view. It can be invaluable when you have problems with your view and cannot
figure out why from the code or Interface Builder.

 The UI Debugger gives you a 3D snapshot of your app while it is running. Figure 2-12 shows
how to activate the UI Debugger in Xcode. The button is at the top of the bottom pane that
is available while your app is running. It is directly to the right of the breakpoint options.

 Note You can also activate the UI Debugger from this menu: Debug ➤ View Debugging ➤
Capture View Hierarchy

 Figure 2-12. Shows how to start the UI Debugger. The button is at the top of the bottom pane that is available
while your app is running

 You can rotate your UI around and see if views are hiding behind others or are somewhere
off in space. This tool can also display the constraints that are active on any particular view.
This can be a huge time saver when you have ambiguous layouts. The UI Debugging stops
execution of your app in the same way a breakpoint does. This means you can inspect
elements on your view via the memory address. Figure 2-13 shows the UI Debugger in
action.

http://dx.doi.org/10.1007/978-1-4842-2280-5_9

27CHAPTER 2: Xcode

 The view in Figure 2-13 shows why this is one of my favorite tools in Xcode. It shows the 3D
view of the view hierarchy at runtime . This is so helpful when you have views that are hiding
behind others. Before this tool, there was no good way to see what was wrong if a view just
did not show up. This tool can alleviate a lot of that pain.

 Also, this tool pauses the app just like the debugger, so you can use LLDB commands in the
console to get further information about your view elements. Figure 2-14 shows the console
after starting the UI Debugger. I found the memory address of a UIButton on the view and
then using the LLDB command po , I was able to get information about that element. The rest
of it shows setting up a variable through the expression command aliased to e and then
printing out the layer property of that particular UIButton .

 Note LLDB is a command-line debugging environment integrated with Xcode.

 Figure 2-13. The UI Debugger with constraints and subview clipping turned off

28 CHAPTER 2: Xcode

 Caution Any variables declared through LLDB commands with the expression command must
start with a $.

 Figure 2-15. Turn on the Address Sanitizer and Thread Sanitizer for your project’s scheme

 Figure 2-14. The Xcode console and the use of LLDB commands to debug the UI

 The UI Debugger is a very powerful tool that can give you a great idea of what is going on
in the view hierarchy. There is also a lot you can do through the LLDB debugger commands
and Figure 2-14 highlights some of the basic features . That about does it for this section. I
have just scratched the surface of all the new and old features that are worth talking about in
Xcode. The next section is going to be really fun. We are going to cover the Thread Sanitizer
and the Address Sanitizer.

 Sanitizers
 The Thread Sanitizer is a new feature that was introduced in Xcode 8. The Address Sanitizer
was released with Xcode 7, but only for Objective-C. Xcode 8 is bringing support for the
Address Sanitizer to Swift. This section will take a look at both of these sanitizers and the
capabilities they offer us. Figure 2-15 shows how to turn on the Address Sanitizer and
Thread Sanitizer through the scheme-editing menu. Let’s start with the Address Sanitizer
and memory corruption.

29CHAPTER 2: Xcode

 Address Sanitizer
 First, let’s look at the Address Sanitizer. The purpose of this tool is to help you fix memory
corruption errors. In Xcode 7, it only supported C languages. Memory corruption is very easy
in C languages. C is very powerful, but it can be very unsafe. In C, you can access an array
element that is out of bounds. It then gives you whatever value is at that memory location
without an error. This is clearly wrong, but C will let you continue, and this is what the
Address Sanitizer is meant to solve.

 As of Xcode 8, the Address Sanitizer is compatible with Swift 3. You might be wondering
how you could run into a memory corruption error in Swift. It’s supposed to be safe, right?
It is unless you use the appropriately named UnsafeMutablePointer or UnsafePointer . It
literally has unsafe in the name. This is right from Apple’s documentation on UnsafePointer :

 A raw pointer for accessing data of type Pointee. This type provides no
automated memory management, and therefore must be handled with great
care to ensure safety.

 —Apple, Inc.

 You might use these types when interacting with some of the lower-level C APIs that are
available. The following code block is meant to illustrate how unsafe these UnsafePointer
objects can be. You would never write this, but this will cause the Address Sanitizer to yell at
you:

 func unsafelyAdd(one: UnsafePointer<Int>, two: UnsafePointer<Int>) -> Int {
 return one.pointee + two.pointee
 }

 I created this global function to unsafely add two Ints . It takes two parameters that are both
 UnsafePointer objects that contain Int values . I then use the property pointee to access the
 Int the pointer is wrapping. This code will work. The following code block shows how you
call this function:

 var one = 1
 var two = 2
 let value = unsafelyAdd(one: &one, two: &two)

 Now, let’s make this implode. The UnsafePointer is just a pointer to some memory address.
We can do some crazy stuff with this object, but it might not be a good thing. The following
 code block is how you can change the unsafelyAdd function so that it will cause the Address
Sanitizer to get involved:

 func unsafelyAdd(one: UnsafePointer<Int>, two: UnsafePointer<Int>) -> Int {
 return one.pointee + two[1]
 }

 Note Malloc Stack must be turned off in order to enable Address Sanitizer or Thread Sanitizer.

30 CHAPTER 2: Xcode

 The previous code is completely valid. The subscript operator on the UnsafePointer struct
is meant to access the memory address of the pointer plus an offset. If you look at the
documentation for this, it has a precondition that the memory address plus the offset is
initialized. In the preceding code, I have no idea what is at that memory address. So, if I run
this with the Address Sanitizer turned on, what happens? Well, we get a huge output to the
console and Xcode pauses on the line within the unsafelyAdd function. Here is the console
output :

 ===
 ==18694==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fff5535d5e8 at pc
0x00010a8a361c bp 0x7fff5535d530 sp 0x7fff5535d528
 READ of size 8 at 0x7fff5535d5e8 thread T0
 #0 0x10a8a361b in _TF12ClosureCycle11unsafelyAddFT3oneGSPSi_3twoGSPSi__Si

ViewController.swift:23
 #1 0x10a8a31e6 in _TFC12ClosureCycle14ViewController11viewDidLoadfT_T_ ViewController.

swift:18
 #2 0x10a8a36d2 in _TToFC12ClosureCycle14ViewController11viewDidLoadfT_T_ ViewController.
swift

 // TL;DR

 Address 0x7fff5535d5e8 is located in stack of thread T0 at offset 72 in frame
 #0 0x10a8a2dbf in _TFC12ClosureCycle14ViewController11viewDidLoadfT_T_ ViewController.
swift:13

 This frame has 3 object(s):
 [32, 40) ''
 [64, 72) '' <== Memory access at offset 72 overflows this variable
 [96, 112) ''
 HINT: this may be a false positive if your program uses some custom stack unwind mechanism
or swapcontext
 (longjmp and C++ exceptions *are* supported)
 SUMMARY: AddressSanitizer: stack-buffer-overflow ViewController.swift:23 in _TF12ClosureCycl
e11unsafelyAddFT3oneGSPSi_3twoGSPSi__Si
 Shadow bytes around the buggy address:
 0x1fffeaa6ba60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 // TL;DR

 ==18694==ABORTING

 There are a lot of memory addresses and really low-level stuff here. Ultimately, the important
part is where is it says This frame has 3 object(s) and Memory access at offset 72
overflows this variable . Essentially, we have gone beyond the size of the Int .

 This might seem scary at first, but it is very important. If I were to run this app with the
Address Sanitizer turned off, nothing happens. It accesses whatever is at that memory
address and adds it with the first value. This might not seem like a big deal here, but what if
the memory address it accesses and uses is something critical to the app? It could very well
corrupt that memory and then the entire app could do some pretty weird stuff. Next up, the
Thread Sanitizer.

www.allitebooks.com

http://www.allitebooks.org

31CHAPTER 2: Xcode

 Thread Sanitizer
 The Thread Sanitizer is a new addition to Xcode 8 and is used to detect data races . There
is no one line of code we can write to cause an issue that will be detected by the Thread
Sanitizer. To cause an error that can be detected by the Thread Sanitizer, I am going to use
 dispatch async to put some work on a background thread. Let’s start with a Model class :

 class Model {
 var data: Int = 0
 }

 We have the Model class that holds the app’s data. This next part is where the code creates
a race condition by using two background threads :

 class ViewController: UIViewController {

 var model = Model()

 override func viewDidLoad() {
 super.viewDidLoad()

 DispatchQueue.global().async {
 self.model.data = 3
 }

 DispatchQueue.global().async {
 self.model.data = 4
 }
 }
 }

 In this code, there is a view controller subclass with the model property, and in viewDidLoad
it tries to set the data on model . It sets the data twice on two separate background threads.
Basically, there is no way to tell which one is going to execute first. Upon running this code,
the Thread Sanitizer outputs a warning to the console and a runtime issue shows up in the
Issue Navigator. The following block shows the output of the console :

 ==================
 WARNING: ThreadSanitizer: data race (pid=19543)
 Write of size 8 at 0x7d08000045f0 by thread T2:
 #0 _TFC12ClosureCycle5Models4dataSi ViewController.swift (ClosureCycle+0x000100002fe7)
 #1 _TFFC12ClosureCycle14ViewController11viewDidLoadFT_T_U0_FT_T_ ViewController.swift:33

(ClosureCycle+0x000100003cb5)
 #2 _TPA__TFFC12ClosureCycle14ViewController11viewDidLoadFT_T_U0_FT_T_ ViewController.

swift (ClosureCycle+0x000100003d8e)
 #3 _TTRXFo___XFdCb___ ViewController.swift (ClosureCycle+0x000100003af5)

 // TL;DR

 Thread T2 (tid=7411193, running) created by thread T-1
 [failed to restore the stack]

32 CHAPTER 2: Xcode

 Thread T1 (tid=7411192, running) created by thread T-1
 [failed to restore the stack]

 SUMMARY: ThreadSanitizer: data race ViewController.swift in _TFC12ClosureCycle5Models4dataSi
 ==================

 Just like the Address Sanitizer, there is a lot here, but it is just trying to trace where the
data race issue takes place. Unlike the Address Sanitizer , the Thread Sanitizer will not stop
execution of the app on the line that creates the race condition; it just tries to trace it and
create a runtime issue. The runtime issue can be seen in Figure 2-16 . This Issue Navigator
tries to give you as much information as possible. You can see it locates the data race issue
to the Model class and gives us a memory address. There is also information about the
separate threads that caused this issue.

 Figure 2-16. Issue Navigator displaying the data race issue in the app

33CHAPTER 2: Xcode

 Just like the memory corruption errors the Address Sanitizer showed us, the data race issue
does not cause the app to crash or anything visually bad happen, so it would be very difficult
to trace this error down with the Thread Sanitizer . These tools should be a part of your day-
to-day development to make sure these issues do not fester in your codebase.

 I hope this section has given you a good introduction to the Address Sanitizer and Thread
Sanitizer. They have specific use cases for the UnsafePointer and threading issues, but they
can highlight issues that you might not know are there. For this reason, they are invaluable
tools that should be understood and used. The next and last feature of Xcode 8 we are
going to examine is the Memory Graph Debugger .

 Memory Graph Debugger
 The new Memory Graph Debugger is bringing more instrumentation to Xcode 8. In previous
versions of Xcode, if you wanted to check for memory leaks , it would require a trip through
 Instruments . I do not know about you, but I usually forgot this step when developing features
for my apps. This meant I would usually find memory leaks later and have no context for
that section of the app. Now that this tool is integrated into Xcode 8 , it will be easy to find
memory leaks and fix them earlier and faster.

 Let’s take a look at how we can use the Memory Graph Debugger. It works the same way as
the UI Debugger . It will snapshot your app and gives you a massive amount of information
regarding memory allocations and references for your app at that time. Figure 2-17 shows
how to enable the Memory Graph Debugger at runtime and the Memory Graph Debugger in
action.

 Figure 2-17. Enabling the Memory Graph Debugger. You can find this in the bottom bar directly to the
right of the UI Debugging button .

 In Figure 2-18 , we can see how the memory for the ViewController class is allocated.
First, there is a UIWindow on the left. Then, a UINavigationController is allocated that
then contains a NSMutableArray that holds onto this ViewController . You can see this in
the API for UINavigationController . This is not all of the information we get, though. We
can expand and collapse each of these nodes to see more information. If we expand the
 UIWindow node, it shows us what leads to the UIWindow being allocated. Pretty cool stuff!

34 CHAPTER 2: Xcode

 Now, that we have some background on this tool, let’s see a common memory problem in
Swift. Closures in Swift can make our code really simple, but they have some drawbacks,
specifically having to do with memory. We have to be careful with the capture lists and
strong references that closures can create. The following example is going to intentionally
capture self. Let’s start with the code that holds onto the closure:

 class MyClass {
 var closure: ((Void) -> Void)? = nil

 init() {}
 }

 This has the optional closure and that is it. The app I have set up has two view controllers .
The first view controller is configured to segue to the second controller through a navigation
controller. Then the viewDidAppear method for the second view controller looks like the
following:

 class SecondViewController: UIViewController {

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 let instance = MyClass()

 instance.closure = {
 print(self)
 print(instance)
 }
 }
 }

 Figure 2-18. Xcode with the Memory Graph Debugger running

35CHAPTER 2: Xcode

 ViewDidAppear creates an instance of the MyClass and then sets the closure to print the view
controller and the instance of MyClass . This is pretty simple, but once this code executes
and we transition back to the first view controller, this leaks memory. Transitioning back to
the first view controller should deallocate the second view controller, but the closure has
captured self, so the second view controller sticks around. Figure 2-19 shows the Memory
Graph Debugger after transitioning away from the second view controller .

 Figure 2-19. The Memory Graph Debugger after leaking memory by capturing self through the closure on MyClass

 It’s pretty obvious that the closure creates a strong reference cycle. This is really easy to do
by mistake, and suddenly we are leaking memory. Now, if we captured something with a lot
more allocated memory, this could cause a crash quickly. The fix for this is to make sure we
create weak references for the items being captured. The SecondViewController will now
look like the following:

36 CHAPTER 2: Xcode

 class SecondViewController: UIViewController {

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 let instance = MyClass()

 instance.closure = { [weak self, weak instance] in
 print(self)
 print(instance)
 }
 }
 }

 The only difference is the capture lists on the closure. We add [weak self, weak instance] .
By marking these two captured objects as weak references, the reference count for these
objects are not increased by the closure. This means that everything will deallocate once the
navigation stack pops this view controller from the navigation stack.

 That does it for the Memory Graph Debugger. We have seen how to use the debugger and
even how to fix common closure errors through weak references. There is so much I have
not covered here. The Memory Graph Debugger and all of these tools deserve a lot more
research.

 Wrap Up
 This chapter has covered a lot of new and old features in Xcode. We started with the new
color and image literals, the new runtime issues, and the automatic signing features. All of
these additions are going to make our lives simpler and make development faster. We then
discuss the Xcode Source Editor Extension. This addition has great potential and hopefully
leads to a more community-driven approach to Xcode upgrades (it could happen J).

 We then took a step back to older features that have been in Xcode for a release or two.
After walking through this chapter, you should know how to effectively use Xcode’s code
coverage tool. The reintroduction of Autoresizing Masks is a cool throwback and should
make the lives of developers still supporting older interfaces a little better.

 After all of the previous features, we examined the Address Sanitizer and Thread Sanitizer.
You should now feel comfortable folding these tools into daily development to highlight
issues that may have flown under the radar. We covered the concept of memory corruption
in C and Swift with UnsafePointer . The Thread Sanitizer then showed how easily it could be
to create previously undetectable race conditions through the use of background threads.

 Finally, there was the Memory Graph Debugger. I am really excited about this tool. It is so
much easier to use than Instruments and creates a very fast feedback loop for memory
leaks. Previously, memory leaks were so hard to find and required time in Instruments. We
can now just flip on the Memory Graph Debugger while running an app and see if there are
any leaks. Memory Graph Debugger then tells us where this memory was leaked. It couldn’t
be easier.

37CHAPTER 2: Xcode

 The intention of this chapter was to give you an overview of the IDE you use every day to
develop Swift/iOS code. Xcode has a mountain of features, and sometimes it can be hard
to find the cool little features that make us faster. Memory leaks, data race conditions,
and memory corruption are so obscure and hard to fix; it is important we understand
what causes these issues and how to fix them to create cleaner apps. And that’s it for this
chapter. The next chapter is going to cover a few third-party package managers in Swift as
well as the official package manager.

39© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_3

 Chapter 3
 Package Managers
 This chapter is all about package managers in Swift. We are going to discuss two popular
managers, CocoaPods , and Carthage . CocoaPods has been out for years and is heavily
used. Since the introduction of Swift, however, Carthage has been on the rise. CocoaPods’
response to the rise of Carthage is CocoaPods-Rome, but more on that later.

 To talk about these package managers, we are going to need to discuss dynamic
frameworks and static libraries . It is important to understand the differences between
these and the direction in which Swift is moving. Once we have an understanding of these
concepts, we are going to look at how to use these concepts in Xcode.

 Afterward, we are also going to take an in-depth look at the official Swift Package Manager .
I am really excited about this. The Swift Package Manager is the one of the first steps
toward Swift running everywhere. We are going to build a Swift package using this package
manager. We are going to look at the frameworks we have available and how to pull in
dependencies. Let’s see the specifics of what you are going to learn in this chapter.

 What You’ll Learn
 In this chapter, you will learn about two of the most popular and widely used Swift package
managers, CocoaPods and Carthage. You will learn the differences between the two and
why you might pick one over the other. To discuss how these package managers work, we
are going to need to understand the differences between dynamic frameworks and static
libraries.

 Dynamic frameworks and static libraries are very important when we discuss the future
of Swift and what iOS and macOS are moving toward. At the end of this chapter, you will
understand the differences and be able to pick which one suits your project. Spoiler alert—
dynamic frameworks are the future of iOS and macOS packages.

 The last section in this chapter is going to be all about the new Swift Package Manager
created by Apple. We are going to build our own Swift package here. Chapter 8 will revisit
the package we are going to create here. In Chapter 8 , we will examine testing in the Swift
Package Manager. The rest of this section will look at how to include external dependencies

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

40 CHAPTER 3: Package Managers

in a Swift package. By the end of this section, you should feel comfortable creating
packages with the new Swift Package Manager and including external dependencies to
build cool new packages that can run on more than just Macs.

 Packaging Code in iOS
 This section is going to cover the topics of dynamic frameworks and static libraries. These
are the two concepts we have in iOS that allow us to bundle code together so another
party can consume it. In Xcode, these concepts are referred to as Cocoa Touch Dynamic
Framework and Cocoa Touch Static Library, respectively. Prior to iOS and Swift, static
libraries were all that were available to us in iOS, so let’s start there.

 Static Library
 Prior to iOS 8 and the introduction of Swift, the only option Objective-C had for managing
and distributing packaged code was the Cocoa Touch Static Library . Static libraries are still
around, but they have a few limitations. First and foremost, you cannot create a static library
that contains Swift code, only Objective-C code. Since this is a book on Swift, that seems
like a big limitation. Objective-C is still around, however, so it is important to understand how
to work with these libraries.

 So the first question is what are static libraries ? They are just what their name suggests.
They are libraries of code that are statically linked at compile time. So, let’s break down what
this means. First, an individual library contains all the header files and implementation files
associated with the particular task the library is solving. Then at compile time, the static
library is linked with a project. Effectively, this means the library’s code and the project’s
code are sitting right next to each other in the compiled binary. The end result is that the
project has access to the code within the library and can use it.

 Now, let’s discuss the limitations of static libraries. Let’s first talk about static linking . I said
previously that the library’s code sits right next to the project’s code after it has been linked.
This means there could be a situation in which a class within the library is named the same
as something in the project’s source. Since the code within the library is not separated from
the project’s code at the link phase, it would be like naming two classes in the project a
duplicate name.

 This is where prefixing Objective-C code comes from. When a third-party library is created,
if all classes are properly prefixed, then there should be no naming collisions. An example
would be if a networking library called one of its classes HTTPRequestSerializer . This
class would have to be prefixed with something representing that library, so in the case of
 AFNetworking , it would be AFHTTPRequestSerializer . The AFNetworking library prefixed its
classes with AF . This library can be found on GitHub at https://github.com/AFNetworking/
AFNetworking . This is obviously a pain when creating these libraries. Let’s move on to the
next big limitation.

 Another limitation is static libraries are not allowed to contain any images or assets. They
cannot contain any PNGs , image catalogs, Nib files, or storyboard files. This is a huge
limitation since apps require these assets to be there. It is possible to bundle these assets

https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking

41CHAPTER 3: Package Managers

together, but they cannot be contained within the library itself. In order to contain images
and assets you must create a separate bundle . This bundle can then be distributed with
the static library. Although this works, it is not ideal to separate the concept of code and a
bundle. It would be nice if it could all be packaged together. Cue dynamic frameworks.

 Dynamic Framework
 Once iOS 8 hit and Swift was released, Apple opened the door for iOS developers to create
and manage the Cocoa Touch Dynamic Framework . Just like the static library, the name
says it all. Instead of being statically linked, dynamic frameworks are dynamically linked. This
means the code is not included with the app’s code. Instead, everything is done at runtime.
The framework is loaded into memory at runtime, the app can use the pieces of framework it
needs, and then the framework can clean up after itself.

 As previously mentioned, static libraries do not support Swift code, so dynamic frameworks
have to be used. Objective-C, however, has both options available. Before we make a
decision on which type of package should be used going forward, let’s first look at the
benefits of dynamic frameworks. Even though dynamic frameworks work with Objective-C,
there are more tangible benefits to using dynamic frameworks in Swift. In Swift, the access
control model is based on the idea of modules. In Xcode, each app/framework is treated as
a separate Swift module. This completely alleviates the pain found in static libraries around
naming collisions.

 Let’s look at the successor to AFNetworking : Alamofire. Alamofire is the Swift version of
AFNetworking and it is available as a dynamic framework. In the source for Alamofire,
there are global functions. An example would be the request function responsible
for creating a DataRequest object. This works because the framework is treated as a
module. This means you can include Alamofire in one of your projects and also have
a global request function without any collisions. This works by using the framework
name as the prefix to identify the Alamofire request function. The call to this function
would look like Alamofire.request(... instead of request(... . Now, using Swift and
dynamic frameworks, prefixing classes is no longer necessary unless you are supporting
Objective-C through interpolation.

 Dynamic frameworks also come packaged with their own bundles . That is, they can contain
images and assets. Using frameworks can keep our PNGs, image catalogs, Nib files, and
storyboards all contained within the framework directly with the source code. Therefore,
the source within the framework does not need to reference any external bundle. It can just
reference the framework’s bundle. This is a benefit to any external party consuming the
framework. They no longer need to include two separate files in their Xcode project.

 So what does this mean for the future? Well, static libraries cannot contain Swift code, so
it seems pretty obvious that dynamic frameworks are the winners. At least for Swift code.
So, it all depends on your project and what suits you. This section has given you the briefest
of introductions to the two concepts and it is a lot more complicated than described here.
I would highly recommend more research. Now that we know how Objective-C and Swift
code have been packaged for consumption, let’s start looking at the package managers. We
will start with CocoaPods.

42 CHAPTER 3: Package Managers

 CocoaPods and CocoaPods-Rome
 This section is going to cover the popular CocoaPods and the newer response to Carthage,
CocoaPods-Rome. CocoaPods has been around since late 2011 and is meant to manage
dependencies for Objective-C and Swift. CocoaPods is open source and is supported and
driven by the community. The source can be found on GitHub at https://github.com/
CocoaPods/CocoaPods . CocoaPods-Rome is newer and was built in response to Carthage.
Let’s start with vanilla CocoaPods.

 CocoaPods
 CocoaPods is built in Ruby and is available as a RubyGem. If you have never used Ruby or
RubyGems before, you should definitely check both out. If you look on the wiki page for Swift,
under the languages it was influenced by, you will find Ruby. You can see the Ruby influence in
certain aspects of Swift. RubyGems.org is a community-driven repository of open source code
written in Ruby. This influenced CocoaPods and how their system is designed.

 CocoaPods takes a similar approach and has a public list of available CocoaPods for
 iOS code . CocoaPods also tries to make the process as easy as possible. CocoaPods
can modify an Xcode project and create an Xcode workspace. Once it creates the Xcode
workspace, it can then link the packages it has downloaded. This makes it very easy for
anyone to set up CocoaPods and start pulling in packages. It then handles all the work and
you can immediately start using the packages. In CocoaPods, a package is called a pod .

 Let’s look at how we can use CocoaPods in an example project. There is no need to
follow along, but feel free. First, we have to make sure we have Ruby, RubyGems, and the
CocoaPods gem installed. Once we have all of these things, we can start by creating a sample
Xcode project. I have called my project CocoapodsTest . With all of these requirements set up,
we move to the Terminal app. Most of this work will take place in Terminal.

 To initialize CocoaPods in Terminal, you must navigate to the directory that contains
the Xcode project. In my case that directory would be CocoapodsTest . Once I am in this
directory, I can run the pod init command. This will create a file called Podfile . This file is
where we can define the dependencies for the app. So, in this example, I am going to pull in
Alamofire. Before I tell the Podfile to pull in Alamofire, here is what it looks like after a fresh
 pod init :

 # Uncomment this line to define a global platform for your project
 # platform :ios, '8.0'

 Note Feel free to follow along, but depending on the versions you are using, there might be
compatibility issues.

 Note The Ruby language can be found at https://www.ruby-lang.org/en/ and RubyGems
can be found at https://rubygems.org/ .

https://github.com/CocoaPods/CocoaPods
https://github.com/CocoaPods/CocoaPods
https://www.ruby-lang.org/en/
https://rubygems.org/

43CHAPTER 3: Package Managers

 # Uncomment this line if you're using Swift
 # use_frameworks!

 target 'CocoapodsTest' do

 end

 You can see the previous code block has a section called CocoapodsTest defined with the
word target . This is the actual target in the Xcode project for CocoapodsTest . If I included
unit tests or UI tests when I created the project, those targets would be in the Podfile as
well. By defining different dependencies in different targets within the Podfile , we can pull
in separate dependencies based on a unit test target or the production app target. Let’s add
Alamofire to the CocoapodsTest target.

 If you go to Alamofire’s documentation, specifically on the CocoaPods installation, it has
you turn the use_frameworks! option on and set the platform to iOS 10.0. It also specifies an
Alamofire version of 4.x. Adding this pod to the Podfile , it now looks like the following:

 platform :ios, '10.0'
 use_frameworks!

 target 'CocoapodsTest' do
 pod 'Alamofire', '~> 4.0'
 end

 Now, the Podfile is in place. The next step is to install the pod via the pod install
command. Running pod install , I received the following terminal output :

 Updating local specs repositories

 CocoaPods 1.1.0.rc.2 is available.
 To update use: `gem install cocoapods --pre`
 [!] This is a test version we'd love you to try.

 For more information see http://blog.cocoapods.org
 and the CHANGELOG for this version http://git.io/BaH8pQ.

 Analyzing dependencies
 Downloading dependencies
 Installing Alamofire (4.0.0)
 Generating Pods project
 Integrating client project

 [!] Please close any current Xcode sessions and use `CocoapodsTest.xcworkspace` for this
project from now on.
 Sending stats
 Sending stats
 Pod installation complete! There is 1 dependency from the Podfile and 1 total
 pod installed.

44 CHAPTER 3: Package Managers

 Running this command, CocoaPods will resolve all the dependencies between any
pods you pull down and their dependencies. You can see on the two lines after it says
 Installing Alamofire (4.0.0) that it generates a new Xcode project and then integrates
the CocoapodsTest project with the Pods project in an Xcode workspace. After this process
is finished, it then states that I must use the new CocoapodsTest.xcworkspace instead of
the previous CocoapodsTest.xcodeproj . Figure 3-1 shows the Project Navigator panel after
opening the new CocoapodsTest.xcworkspace file . I have the original CocoapodsTest project as
well as the new Pods.xcodeproj . The Pods project then has Alamofire under the pods group.

 Figure 3-1. Cocoapods.xcworkspace Project Navigator after running the pod install

 And that’s all there is to it. CocoaPods was designed to be very easy to use and it just
works. We should be able to import Alamofire now and start making network requests in
 CocoapodsTests . Now, do not be fooled, there is some magic going on in the background
here. CocoaPods hides this from you, but it is useful information to know. We will discuss
the magic when we get to Carthage. For now, let’s move on to CocoaPods-Rome.

45CHAPTER 3: Package Managers

 CocoaPods-Rome
 CocoaPods-Rome is not a different tool from CocoaPods; instead, it is another RubyGem
that is built on top of CocoaPods. It can be found on GitHub at https://github.com/
CocoaPods/Rome . The purpose of CocoaPods-Rome is to build Cocoa Touch Dynamic
Frameworks out of the pods that CocoaPods use. This is useful when you want to use
CocoaPods to manage your dependencies, but you want to use the pods outside of Xcode.

 So now the question, why is it called CocoaPods-Rome? Well, it comes from the Punic
Wars, which took place from 264 BC to 146 BC. The Punic Wars was a series of battles
between Rome and Carthage that eventually ended with the defeat of Carthage. So,
because of all that, we now get to call our Swift package managers Carthage and Rome. We
will discuss Carthage in the next section, but for now, let’s focus on CocoaPods-Rome.

 CocoaPods-Rome starts off the same way CocoaPods does with a Podfile generated via
 pod init . Here is the same Podfile as the previous one CocoapodsTest used, except this
time it is integrating CocoaPods-Rome:

 platform :ios, '10.0'
 use_frameworks!

 plugin ‘cocoapods-rome’

 target 'CocoapodsTest' do
 pod 'Alamofire', '~> 4.0'
 end

 In the previous block, the only difference in the Podfile is the line that reads plugin
‘cocoapods-rome’ . Since CocoaPods-Rome is a gem built on top of CocoaPods, by specifying
this plugin here, we can integrate the Rome gem. Now, if all goes well, this should pull
down Alamofire and then build a dynamic framework instead of creating and integrating a Pods
project in Xcode.

 However, at the time of writing this book, there appear to be compatibility issues with Swift 3
and Xcode 8 and this gem. So, let’s just discuss what we expected to happen. After running
 pod install with the CocoaPods-Rome plugin successfully, there should be a new directory at
the root of the project. The directory should be called Rome and contain the pre-built Alamofire.
framework file. We can then use this in Xcode instead of integrating the Pods project.

 The next section is going to delve into Carthage and how to integrate the dynamic
frameworks that Carthage builds . Integrating dynamic frameworks managed by Carthage
will be the same process as integrating frameworks that are built with CocoaPods-Rome.
Let’s get to it.

 Carthage

 … we created Carthage because we wanted the simplest tool possible—a
dependency manager that gets the job done without taking over the
responsibility of Xcode.

 —Carthage

https://github.com/CocoaPods/Rome
https://github.com/CocoaPods/Rome

46 CHAPTER 3: Package Managers

 Carthage is the last third-party package manager we are going to discuss in this chapter.
Carthage is very different from CocoaPods, but it is similar to CocoaPods-Rome. As the
preceding quote suggests, Carthage is meant to manage Swift packages and get out of your
way. CocoaPods handles the entire Xcode configuration for you when integrating the Pods.
xcodeproj . However, when using Carthage, you have to handle the Xcode configuration .

 Let’s use Carthage to manage Alamofire in this section. If you are following along, before
we can use Carthage to integrate Alamofire, we must deintegrate the Pods.xcodeproj .
There is a nifty RubyGem called cocoapods-deintegrate that can handle this work. Just like
CocoaPods-Rome, it is built on top of CocoaPods. This gem can be found on GitHub at
 https://github.com/CocoaPods/cocoapods-deintegrate . It is very easy to use and I am not
going to cover this here.

 I have removed CocoaPods from the project I am using. Now, let’s start with Carthage.
Carthage can be installed via Homebrew. Homebrew is just another package manager,
but it manages packages for macOS, not Xcode projects. It’s package manager inception.
Homebrew can be found at http://brew.sh/ . Carthage can be found on GitHub at https://
github.com/Carthage/Carthage . I am not going to go over installation here.

 After installing Homebrew and Carthage, we can finally get started. First, we need a Cartfile .
The purpose of the Cartfile is the same as CocoaPods’s Podfile —to define the dependencies
we want Carthage to manage. The Cartfile is far simpler than the Podfile. A Cartfile only
requires a reference to whatever Git repository holds the framework you want to pull down.
The following is my Cartfile for managing Alamofire:

 github "Alamofire/Alamofire" ~> 4.0

 That’s all it needs. Now, all I need to run is the carthage update command and it will pull
down Alamofire. This process will be a little different than a pod install. When Carthage pulls
down Alamofire, it then uses Xcode’s command-line tool xcodebuild to build the Alamofire.
framework file. After building the framework there will be a Carthage directory and a new
 Cartfile.resolved . The resolved file is the Carthage equivalent of the Podfile.lock . This
file describes the dependency graph that is required to build the managed frameworks. If
Alamofire depended on other frameworks, it would have to resolve those dependencies and
build everything.

 Now that the Alamofire framework has been pulled down and built in the Carthage directory ,
we have to integrate this framework in Xcode. This is where CocoaPods handled the magic
for us. Carthage however, does nothing to help us integrate frameworks. Let’s look at how I
can integrate Alamofire in my project.

 First, I navigate to the Alamofire.framework file in Carthage à Build à
iOS and drag and drop it into my Xcode project. It is very important that I keep the Copy
items if needed option turned off. If I copied the framework into my project, I would not be
able to update the framework via Carthage anymore, so I just need a reference. Figure 3-2
shows the result of this action. In the target’s settings on the General tab, it puts Alamofire.
framework under the Linked Frameworks and Libraries section .

https://github.com/CocoaPods/cocoapods-deintegrate
http://brew.sh/
https://github.com/Carthage/Carthage
https://github.com/Carthage/Carthage

47CHAPTER 3: Package Managers

 After this step, if I import Alamofire in one of my files, everything will build and we can run
the app. However, we are not done integrating yet. Once the app starts to run, it will crash
and give the following error in the console:

 dyld: Library not loaded: @rpath/Alamofire.framework/Alamofire
 Referenced from: .../CocoapodsTest.app/CocoapodsTest
 Reason: image not found

 This looks like a crazy error, but we are still missing some pieces, and ultimately the app
cannot find Alamofire. In previous versions of Carthage there would still be two steps left.
In the recent versions, Carthage handles one of these for us, but I still want to mention it
here. Navigate to the Build Settings tab under the Target’s settings . Make sure the All and
 Combined options are turned on and search for framework search paths . Figure 3-3 shows
the Build Settings and Framework Search Paths .

 Figure 3-2. The Alamofire.framework listed under the Linked Frameworks and Libraries section

 Figure 3-3. Framework Search Paths under the Build Settings tab

 This setting must be set to the iOS directory within the Carthage/Build directories so Xcode
knows where to find the actual Alamofire.framework file. The last step is in the Build Phases
tab . We are going to add a new phase for the framework. Figure 3-4 shows the steps to
adding a new build phase for Alamofire. First, add a new phase by clicking the + button at
the top left. Then switch the Destination from Resources to Frameworks . The last step is to
drag in the Alamofire.framework file from the Project Navigator panel.

48 CHAPTER 3: Package Managers

 Now, if I build and run my app, it works! Carthage is a bit more involved than CocoaPods,
but we do not have to worry about the configuration CocoaPods does to the Xcode
workspace . With Carthage, we get to choose how we manage our project.

 That is it for this section. So far, we have seen how to use CocoaPods, CocoaPods-Rome,
and Carthage. These package managers are great tools for pulling in third-party libraries for
both Swift and Objective-C. Finally, we can talk about the official Swift Package Manager .
This package manager is still very new, but the implications are pretty cool. In the last
section, we are going to see the Swift Package Manager in action.

 Swift Package Manager
 This chapter has been all about package managers, but so far all of them have been third-
party managers that have been developed by people outside of Apple. The Swift Package
Manager , which can be found at https://swift.org/package-manager/ , is the official
package manager created by Apple. One of the greatest features with which this package
manager provides developers is the ability to write and run Swift code on Linux.

 The iOS ecosystem has always been locked down and any code has always required Xcode
and a Mac. Releasing Swift as open source and now releasing the Swift Package Manager
has changed these restrictions. In this section, we are going to build a Swift package of our
own. If you have not been following along, now is the time to start. Chapter 8 is going to

 Figure 3-4. The Build Phases tab and the steps to adding a new phase that will copy the Alamofire framework

https://swift.org/package-manager/
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

49CHAPTER 3: Package Managers

expand on the package we create here. The package we are going to build here is going to
be a simple logger . Before we jump right in, let’s make sure we are set up correctly. Start by
opening the Terminal application and typing the following command :

 $ swift package --version

 When I run this command, I see the following response:

 Apple Swift Package Manager - Swift 3.0.0 (swiftpm-19)

 If you receive any error like the following, you most likely do not have the necessary Swift
version or environment set up correctly:

 <unknown>:0: error: no such file or directory: ‘package’

 You can find the Swift Package Manager on GitHub with installation instructions at https://
github.com/apple/swift-package-manager#installation . Once you can successfully run the
 swift package --version command in Terminal, we can start to build our Logger package.

 First thing is to create a directory to hold our package. I have created a Logger directory on
my desktop. In Terminal, navigate to the Logger directory and type swift package --help .
This will output the following:

 OVERVIEW: Perform operations on Swift packages

 USAGE: swift package [command] [options]

 COMMANDS:
 init [--type <type>] Initialize a new package
 (type: empty|library|executable|system-module)
 fetch Fetch package dependencies
 update Update package dependencies
 generate-xcodeproj [--output <path>] Generates an Xcode project
 show-dependencies [--format <format>] Print the resolved dependency graph
 (format: text|dot|json)
 dump-package [--input <path>] Print parsed Package.swift as JSON

 OPTIONS:
 -C, --chdir <path> Change working directory before any other operation
 --color <mode> Specify color mode (auto|always|never)
 --enable-code-coverage Enable code coverage in generated Xcode projects
 -v, --verbose Increase verbosity of informational output
 --version Print the Swift Package Manager version
 -Xcc <flag> Pass flag through to all C compiler invocations
 -Xlinker <flag> Pass flag through to all linker invocations
 -Xswiftc <flag> Pass flag through to all Swift compiler invocations

 NOTE: Use `swift build` to build packages, and `swift test` to test packages

https://github.com/apple/swift-package-manager#installation
https://github.com/apple/swift-package-manager#installation

50 CHAPTER 3: Package Managers

 These are all the commands and options we can feed to the swift package command. The
very first command is where we are going to start. Let’s initialize a new package by running
 swift package init --type library . After running this command, our Logger package
should initialized. Let’s look at what the previous command created for us:

 .
 ├── Package.swift
 ├── Sources
 │ └── Logger.swift
 └── Tests
 ├── LinuxMain.swift
 └── LoggerTests
 └── LoggerTests.swift

 3 directories, 4 files

 You can see that the Swift Package Manager uses the name of the containing directory to name
the library we created. I chose the library type for this package. The library option creates a
Swift module that we can import in other code. This is not something we are going to build and
execute by itself. Initializing our library also gave us two directories, Sources and Tests . Every
Swift package must have these two directories to expose public code and to run tests.

 Before we start coding, let’s discuss the Package.swift file. In the Swift Package Manager,
this file is the manifest file and it uses the PackageDescription module provided by Apple.
This file defines the name of the package, any targets the current package contains, and the
dependencies of this package. Here is what our package file looks like for Logger:

 import PackageDescription

 let package = Package(
 name: "Logger"
)

 Our Package.swift file is very simple, but let’s look at a more complicated use of this file.
The following example is from the documentation on the package manager from swift.org .
The Package.swift file in this example defines a module called DeckOfPlayingCards with
zero targets, and two external dependencies:

 import PackageDescription

 let package = Package(
 name: "DeckOfPlayingCards",
 targets: [],
 dependencies: [
 .Package(url: "https://github.com/apple/example-package-fisheryates.git",
 majorVersion: 1),

 Note I installed the tree command via Homebrew to get this output from my Logger directory.

51CHAPTER 3: Package Managers

 .Package(url: "https://github.com/apple/example-package-playingcard.git",
 majorVersion: 1),
]
)

 The dependencies are defined through the use of this .Package type that has URL and
 majorVersion parameters . Just like Carthage, the URL must resolve to a Git repository. Let’s
jump back to our Logger package and start writing some code. If you looked closely at the
available commands in swift package , you would see that there is a generate-xcodeproj
command. Run the following command in Terminal at the root of the Logger directory:

 $ swift package generate-xcodeproj

 After running this command, you should see the following response in your Terminal:

 generated: ./Logger.xcodeproj

 We now have an actual Xcode project that is configured to build our Logger package . Open
this up and let’s start coding. In the sources directory, there is already a file and struct
defined for us. The generated code looks like the following:

 struct Logger {

 var text = "Hello, World!"
 }

 Let’s leave this as a struct . If you are unclear on the difference between a class and struct ,
do not worry. We are going to cover this topic in Chapter 5 . The first thing we can do is add
a LogFilter enum to the Logger.swift file :

 public enum LogFilter {
 case Info
 case Severe
 }

 public struct Logger {

 var text = "Hello, World!"
 }

 I have also marked the enum and the Logger struct as public . Way back in the “ Dynamic
Framework ” section we talked about Swift modules and their access control. If we want
to use these outside the logger module, we have to use public . Let’s fill out the rest of the
implementation for our logger. We need an initializer that defaults a severity for the log filter.
We then need to expose some way for the users to actually log something. Here is the code:

 public enum LogFilter {
 case Info
 case Severe
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

52 CHAPTER 3: Package Managers

 public struct Logger {

 public var severity: LogFilter

 public init() {
 severity = .Info
 }

 public func log(item: String?, withSeverity severity: LogFilter) {
 if self.severity == severity {
 print(item)
 }
 }
 }

 I know this is extremely simple, but we are going to expand on this later in the book. The
next thing we need to do is to build our package. Let’s go back into Terminal and run the
following command:

 $ swift build

 This will generate a .build directory at the root of Logger . This command builds our
package, generating a lot of files. Here is the tree of the .build directory :

 .
 ├── build.db
 ├── debug
 │ ├── Logger.build
 │ │ ├── Logger.d
 │ │ ├── Logger.swift.o
 │ │ ├── Logger.swiftdeps
 │ │ ├── Logger~partial.swiftdoc
 │ │ ├── Logger~partial.swiftmodule
 │ │ ├── master.swiftdeps
 │ │ └── output-file-map.json
 │ ├── Logger.swiftdoc
 │ ├── Logger.swiftmodule
 │ ├── LoggerPackageTests.xctest
 │ │ └── Contents
 │ │ ├── Info.plist
 │ │ └── MacOS
 │ └── ModuleCache
 │ ├── CGC1TPJT37OH
 │ │ └── SwiftShims-1HJGLIW7H35BO.pcm
 │ └── modules.timestamp
 └── debug.yaml

 7 directories, 14 files

 Buried in this tree is the Logger.swiftmodule file. This is the file that represents our built Swift
module. If we switch back over to Xcode, it will build a .framework file. The framework is just
another Swift module, but it works with Xcode. Figure 3-5 shows Xcode’s Project Navigator
panel for our Logger package. Under the products group, we have a Logger.framework file .

53CHAPTER 3: Package Managers

 And that’s it. We have just built our first package with the official Swift Package Manager.
This section has been a quick introduction to the new package manager, but hopefully it
gives you some idea of what the future of Swift might be like. If you want to keep working on
this package, we will be adding more code and even tests in Chapter 8 , so stay tuned.

 Wrap Up
 That’s a wrap for Chapter 3 . We have discussed many different topics in this chapter
including static libraries and dynamic frameworks, and the third-party package managers
CocoaPods, CocoaPods-Rome, and Carthage. We then built our very own Swift module
with the official Swift Package Manager by Apple.

 After you read the first section on static libraries and dynamic frameworks, I hope you know
the differences between the two. We discussed the idea of Swift modules here, which is how
all Swift apps and frameworks are treated. Afterward, we started to look at package managers
including CocoaPods, CocoaPods-Rome, and Carthage. If you are using third-party frameworks/
code in your project, I would highly recommend evaluating these tools to see if they can benefit
you. After this chapter, I hope you can pick the right package manager for your project.

 And finally, we have the Swift Package Manager. We built a small Logger package that
we are going to revisit in Chapter 8 after you have some more chapters under your belt.
Hopefully, you can see the power of the Swift Package Manager and how it can be the start
of Swift running everywhere. The idea of Swift code in more areas than iOS and macOS is
a really awesome idea that I hope is the future of Swift. Up next, we are going to discuss
design patterns specifically in iOS.

 Figure 3-5. The Project Navigator panel for the Logger package in Xcode

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

55© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_4

 Chapter 4
 iOS Architecture
 And… we’re back. This chapter will discuss software architecture and design patterns
in iOS. This is the first chapter where we will use Xcode playgrounds . Playgrounds are
amazing! If you have not used them yet, this is going to be a good introduction. If you have,
then you know what I am talking about. Playgrounds can have multiple pages and include
a markup system for rendering comments and annotations. They have the potential to be
interactive books.

 I started a playground about a year ago and I have been adding more to it since. I have
about 30 pages of code and markup. It helps me keep my examples, ideas, and the
problems I have figured out in one central location. This is invaluable because before
playgrounds, any time I wanted to try new code, I had to start a new project, and I always
lost track of it. Starting a new project was also kind of heavy handed or the simplicity of the
code. Playgrounds are much more lightweight and quick. This is why we will be building
a playground reference throughout the first section of this book. We will then refer to this
playground in the second half when building our app. I also hope you not only create this
reference from the book, but do more research and expand on it.

 Now, entire books have been written on the subject of architecture. There is so much to
this topic that it cannot all fit in this chapter. So, this chapter is going to look at a small set
of design patterns that will be used later. I have found that these patterns provide huge
benefits for their simplicity. We will then look at the patterns that we should avoid, c alled
 AntiPatterns . Let’s get star ted.

 What You’ll Learn
 This chapter will discuss Xcode’s playground system along with the playground markup
syntax. I would highly recommend more research into this topic. Providing comments for
the code in playgrounds can be invaluable when you are keeping a long-running playground
alive. We are just going to examine the basics.

56 CHAPTER 4: iOS Architecture

 Afterward, we will use our playground to create examples of a few design patterns:
dependency injection, MVC, MVVM, presenter, and singleton. These patterns are very simple
in nature, but the benefits can be clean and concise code. These design patterns can be
categorized as structural patterns. This means they describe the overall structure of an
application. There are many other design patterns that can be used for smaller problems. We
will not examine these design patterns since they are so situational.

 After examining the structural design patterns we can use, we will examine how these
patterns can be used effectively and how to determine if a pattern is necessary or over-
engineering. Over-engineering can be a struggle. It is so hard to determine when enough is
enough. We are going to examine this problem in a more theoretical way rather than through
code.

 After examining all of these design patterns, we will look at the patterns that we want to
avoid. These patterns are called AntiPatterns a nd they can destroy a codebase. There’s a lot
to cover so let’s get started!

 Playgrounds and Markup Syntax
 This section is going to give you an overview of Xcode’s playground markup syntax. There is
a lot to the markup syntax and we will not cover everything here. First, let’s talk the about
the basics—the single-line comments versus the block comments.

 //: # This is a single line Header

 /*:

 # Hello
 - First Point
 - Second Point

 */

 The first comment is a single-line comment , whereas the second is the block syntax . The
 # symbol describes a header . The more # symbols, the smaller the header, like the h1 , h2 ,
and h3 tags in HTML. As you might have guessed, in the block comment, we have a list,
but playgrounds add a little extra for us. Figure 4-1 shows how these two comments are
rendered.

 Caution Avoid AntiPatterns like the plague. J

 Note Everything you want to know about playgrounds’ markup syntax can be found at the
following link: https://developer.apple.com/library/ios/documentation/Xcode/
Reference/xcode_markup_formatting_ref/index.html .

https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html
https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

57CHAPTER 4: iOS Architecture

 You can see that the playground renders this with two headers and our list. It also denotes
this section as an “Example.” There is a lot more you can add to this. You can add callouts ,
which are described here: https://developer.apple.com/library/ios/documentation/
Xcode/Reference/xcode_markup_formatting_ref/Attention.html . The next thing you will
want to know about is links . You can add links in your markup to other pages within your
playground. This is really cool! The syntax for a playground page link is as follows:

 //: [My Playground Page](@PlaygroundPage)

 First, the brackets denote the display name for the link and the parentheses (using the @
symbol) denote the actual name of the playground page. You can also create next and
 previous links for the next and previous pages that do not need the specific name of the
playground page.

 The last features we will talk about in this section are image and video assets. Playground
pages can contain images and videos directly in the source. In the left pane of the
playground, you can see a folder reference called Resources . You can put images and
videos here and reference them in markup. The syntax for resources is very similar to
the page link syntax. Square brackets contain the display name for the resource and the
parentheses contain the actual name of the resource. The parentheses can also contain
HTTP links to external resources.

 The last thing we need to discuss is the format this book is going to use for our playground
reference. The section header is going to contain the name of the corresponding playground
page. The following text details a sample header and playground page.

 Figure 4-1. The rendered markup from the previous two comments

https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/Attention.html
https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/Attention.html

58 CHAPTER 4: iOS Architecture

 Sample Header
 In the previous example, the section “Sample Header” would correspond to the playground
page named Ch04—Playground Reference . This section would either add more code to
that page or it would mean you needed to create the new playground page for this section.
Sections that do not correspond with a playground page will have the following subheading:
 Playground Page: N/A . We might use the same playground page for more than one section,
so be sure to pay attention to the name of the page.

 Also, the code blocks that we are going to add to our playground will be marked with the
name of the page like the following:

 var message: String = “Yay Playgrounds!”
 print(message)

 If the code box appears without a playground page, that means the code is meant for
reference but should not be added to your playground page.

 Xcode playgrounds are very useful and have the potential to be interactive books. As Swift
grows in popularity, I hope to see full books published using playgrounds. Next up, we will
start our discussion of design patterns by first describing what a design pattern is.

 Design Patterns

 A design pattern is a general repeatable solution to a commonly occurring
problem in software design.

 —sourcemaking.com

 The preceding quote describes the purpose of design patterns in software. They are meant
to be a common solution that is not tied to any particular system or technology. There are
many different types of problems in software development, so there are many different
types of design patterns. We are going to cover four of the most common design patterns:
dependency injection, MVC, MVVM, presenter, and singleton.

 The goal of this chapter is to set us up for success when we go to build our app, but also to
set you up for making architectural decisions in your everyday development. We can be the
best Swift developers ever, but if we do not understand when to use design patterns and
more importantly, when not to use design patterns, we will not succeed. Let’s first start with
dependency injection.

 Dependency Injection
 First up, dependency injection . This pattern can sound kind of scary at first. When I
first heard it used in a discussion, it sounded like some crazy, complicated thing that I
would never understand. This could not be further from the truth. In fact, you have used
dependency injection before. Anytime you pass a value to a method or function, you are
using dependency injection.

59CHAPTER 4: iOS Architecture

 The first thing you will learn in researching this pattern is that it can take a few different
forms. First, let’s examine what your code would look like without dependency injection. This
is where we will start adding code to our playground. If you have not done so, please create
a playground now. Start a new page, and add the following code:

 //: ## Dependency Injection

 //: #### Without D.I.

 class Service {
 func doSomething() {
 print("hello")
 }
 }

 Now, in this first example, we are going to not use dependency injection and see what
problems arise. In the previous code block we have a Service class that has a doSomething
method. Next, we are going to define the consumer of this class:

 class Client {
 let service: Service

 init() {
 service = Service()
 }

 func startSomething() {
 service.doSomething()
 }
 }

 let client = Client()
 client.startSomething()

 Now, we have declared a Client class, which has a dependency on our Service class.
You might notice that the service member is declared with the let keyword. Once we set
our service in the initializer, we cannot assign it again. The initializer also does not allow a
 service object to be injected.

 This might not seem like that big of a deal, but imagine you are writing a framework. If
someone wanted to use your Client class, but subclass and override your Service class,
they would be unable to do so. The problem here is that we have written code that is not
extensible. That is the ultimate goal of design patterns. When we are using design patterns
properly, we open our code up to be extensible and scalable. The previous example is
neither.

 Let’s reexamine this with dependency injection:

 //: #### With D.I.

 class DIClient {
 var service: Service

60 CHAPTER 4: iOS Architecture

 init(service: Service = Service()) {
 self.service = service
 }

 func startSomething() {
 service.doSomething()
 }
 }

 Here, we are using the same exact Service class as in the earlier example. Since we are
on the same page in our playground, we cannot redeclare the Client class, as doing so
would generate a compile error. Now we have a dependency injection–capable class called
 DIClient . There are two differences here that open up the implementation.

 First, we have changed our declaration of service to be a variable instead of a constant . This
allows a user of DIClient to inject a service object via the service variable. This is called
 setter injection . The second form of dependency injection we have is in the initializer ,
called constructor injection . Before, we just instantiated a service object; now, we are
allowing one to be injected as a parameter and we have given this a default parameter. The
purpose of the default parameter is to allow the class to instantiate its own service object
to save the user the trouble if it uses the base Service class. Therefore, instantiating one of
these objects is the same as before, but we have opened ourselves to be extensible .

 One of the more complicated forms of dependency injection is called Inversion of Control
(IoC) . This is a really fancy name and it’s what most dependency injection frameworks are
doing. An IoC container’s purpose is to hold a dependency and the knowledge of how to
create said dependency. You can then use the container to create your dependencies where
you need them. This can be very useful because a class can register itself as a dependency
and it knows how to instantiate itself and what dependencies it requires. That means that all
the logic associated with a particular object is all contained within the object itself, instead of
spread across your app. Let’s look at some code:

 //: #### Inversion of Control Container

 class Container {
 typealias Closure = (Void) -> AnyObject
 var registry: [String: Closure] = [:]

 func register(name: String, for type: @escaping Closure) {
 registry[name] = type
 }
 }

 The previous code block declares a class called Container . This class holds a dictionary
of closures that can be registered on the class by name. These closures then have a return
type of AnyObject , which is the dependency. We have our container, so how can we use
this? Well, we are going to need one more function. We need our container to be able
resolve dependencies by name.

 //: #### Inversion of Control Container

 class Container {

61CHAPTER 4: iOS Architecture

 typealias Closure = (Void) -> AnyObject
 var registry: [String: Closure] = [:]

 func register(name: String, for type: @escaping Closure) {
 registry[name] = type
 }

 func resolve(name: String) -> AnyObject? {
 return registry[name]?()
 }
 }

 We now can register dependencies and then resolve them all through this Container class.
Here is an example of usage for this class:

 let container = Container()
 container.register(name: "Service") {
 Service()
 }
 container.register(name: "Client") {
 DIClient(service: container.resolve(name: "Service") as! Service)
 }
 let result = container.resolve(name: "Client") as? DIClient
 result?.startSomething()

 All right, we instantiate a container and register our service class. We then register the
 client class and we also resolve the service class. After everything has been registered, we
then resolve the client. This action should run the closure for the client object, which then
runs the closure for the service object. Our dependencies are now resolved and we can
then use the result to startSomething .

 We have just created an IoC container. This is a really cool class, but it can be hard to see its
power here. Imagine you had a class that required a bunch of other properties to initialize,
but they were not readily available at the correct point in time. You can register a closure that
instantiates your type, then use that closure elsewhere when you need it.

 Awesome! Dependency injection is a really cool pattern. We have talked about the many
forms it can take like setter injection, constructor injection, and even an IoC container. Next
up, we are going to discuss MVC.

 MVC
 MVC is the most widely used design pattern; you have already used it before because it is
built right into iOS. MVC has three categories of objects: model, view, and controller. UIKit
is packaged with UIViewController , Xcode has Storyboard/Nib files as your view, and the
model is just the object that represents your data. Your view could also be a subclass of
 UIView depending on how you have set things up. The general structure and communication
of MVC is described in Figure 4-2 . It has the model and view on opposite ends with the
controller set directly in the middle coordinating the communication.

62 CHAPTER 4: iOS Architecture

 The benefit of MVC is reusability and extensibility. In iOS, you should be able to represent
any component as these three parts. Each view has a controller and a model behind it. This
separation can allow you to switch out a model and reuse the same exact view. This pattern
is also extendible because your app is just a repetition of these three components over and
over again. There is not much more to say about MVC. It is widely adopted, there is a lot
of documentation online, and you have most likely already used it if you have built any iOS
applications before. Next up, we have MVVM, a very cool pattern with roots in MVC.

 MVVM

 Ever heard of MVC? Massive View Controller, some call it.

 —Ash Furrow, objc.io

 As the quote above suggests, there can be some problems with MVC. This is where we can
start to talk about when not to use patterns. MVC is basically built into iOS, but this does not
mean it is the end all, be all pattern. I like to think of MVVM as an evolution of MVC. So, what
is MVVM? It stands for model, view, view model. Just like MVC, MVVM is describing the
layers of the design. However, one key point is left out. Remember, UIViewController has
to be used in iOS to communicate with the view layer. Figure 4-3 describes how MVVM can
look in an iOS application.

 The preceding quote is from an article by Ash Furrow at Objc.io called ‘Introduction to
MVVM.” Figure 4-2 and 4-3 are also from that article . Let’s break down both the quote
and the diagram in Figure 4-3 . First let’s talk about the quote. Massive view controllers
are a problem. You may have seen them or even created a few in your time. I know I have.
Eventually, you might get to a point where you are reimplementing something from another
 view controller , or you are breaking code out into helpers to manage the size and complexity.
This is only a Band-Aid though, because there is a structural issue going on in your app. The
structural issue is that there is not enough structure.

 Figure 4-2. Describes the communication in a system built with MVC architecture. Figure retrieved from Ash Furrow,
Objc.io at www.objc.io/issues/13-architecture/mvvm/

http://www.objc.io/issues/13-architecture/mvvm/

63CHAPTER 4: iOS Architecture

 Now, let’s discuss the diagram. You can see Ash has coupled the view layer and the view
controller layer together. He has done this because, all too often, view controllers and the
views they control go hand in hand. Theoretically, you should be capable of switching a view
controller with another view, depending on the data behind the view. This is hardly ever the
case, which is why he has coupled these two pieces together. The next part of the diagram
is the view model. This is in between the view controller and the model. The job of the view
model is to take the model and transform it into something the view controller can use. The
example Ash uses is a model that contains a Date object. When the view controller asks for
the model’s date , the view model transforms it into a properly date-formatted string . Let’s
see how this code looks in action:

 class MyModel {
 var date: Date = Date()
 }

 class ViewModel {
 var model: MyModel

 init(model: MyModel) {
 self.model = model
 }
 }

 All right, we have created a MyModel class and a ViewModel class . Notice we are using
dependency injection here with the model. Now, let’s add the date example Ash was talking
about:

 class ViewModel {
 var model: MyModel
 var dateFormatter: DateFormatter

 init(model: MyModel) {
 self.model = model
 self.dateFormatter = DateFormatter()
 self.dateFormatter.dateStyle = .short
 }

 var modelDate: String {
 return dateFormatter.string(from: model.date)
 }
 }

 Figure 4-3. Describes the interaction and communication in the MVVM design pattern. Figure retrieved from Ash
Furrow, Objc.io at www.objc.io/issues/13-architecture/mvvm/

http://www.objc.io/issues/13-architecture/mvvm/

64 CHAPTER 4: iOS Architecture

 This is a fairly simple example, but a good illustration of this pattern. We create a
 dateFormatter in the init , and then in a computed property at the bottom, we return a
formatted date string. Now, let’s see what our UIViewController would look like with this
 ViewModel attached.

 import UIKit

 class MyViewController: UIViewController {
 var viewModel: ViewModel?
 var model = MyModel()

 @IBOutlet var dateLabel: UILabel?

 override func viewDidLoad() {
 super.viewDidLoad()

 viewModel = ViewModel(model: model)
 }

 @IBAction func setDate() {
 dateLabel?.text = viewModel?.modelDate
 }
 }

 Let’s walk through this view controller. First, we have an optional ViewModel and a MyModel
defined. Next, we have a label called dateLabel . In the viewDidLoad method, we then set
up our ViewModel and inject the model. Finally, we have some @IBAction that is hooked up
in our storyboard and it just sets the dateLabel ’s text to the formatted date string from our
model. You can see how the controller layer does not communicate with the model layer.
Instead the controller layer communicates with ViewModel .

 Now, the idea is we can switch out the ViewModel and the MyModel without disturbing the
controller and the view. Now, it might not always work out this way, so here is how I like
to think about my view models. The view model is responsible for the business logic. The
business logic is anything that needs to happen to your data that is not associated with your
view. This is what I personally associate with the ViewModel layer. Then you are capable of
breaking out your presentation logic.

 These are the basics of MVVM. It is a simple pattern, but it can really clean up your
codebase and reduce massive view controllers to a manageable size. Next up, we are going
to look at the presenter pattern. This is a fun pattern that can be used with MVC or MVVM.

 Presenter
 The previous two patterns have been more about the base structure for an application. The
 presenter pattern can be a little bit different. This pattern has been associated with MVP and
VIPER. MVP stands for model-view-presenter . VIPER stands for view-interactor-presenter-
entity-routing . The presenter pattern has also shown up in MVVM as MVVMP.

 Note You will have to import UIKit in your playground to use UIViewController .

65CHAPTER 4: iOS Architecture

When described in articles, the presenter shows up in between the controller layer and the
model layer. It can also show up in between the view controller and the view model in the
case of MVVMP. It can be very similar to the ViewModel . Its purpose is supposed to be to
convert the model data into a presentable form. This seems very similar to the purpose of
the ViewModel . This is why I like to think about the presenter as a sort of modifier.

 In iOS, things can be very heavily tied to the view and controller. This is what Figure 4-3
described. In the section on MVVM, I described how I like to think of the ViewModel as
 business logic and not presentation logic. I like to think the presenter is meant to be the
yin to the ViewModel ’s yang. The presenter will house the presentation logic, whereas your
 ViewModel contains the business logic. These two layers would then never talk directly to
each other but instead through the view controller acting as a coordinator. The presenter
pattern can take different forms based on other patterns being used. This makes the pattern
a bit tricky. Now that we have gone through what the pattern is, let’s see how it looks in
code.

 First, let’s create a very simple presenter class to illustrate the pattern:

 //: ## Presenter

 class Presenter {
 weak var view: UIView?

 init(view: UIView) {
 self.view = view
 }
 }

 This is about as simple as it gets. All this class contains is a weak reference to a UIView . The
idea is this UIView is a reference to the UIViewController ’s view property. You can see we
have used dependency injection here with the UIView . Now, let’s look at a view controller
that uses one of these:

 class ViewController: UIViewController {
 var presenter: Presenter?

 override func viewDidLoad() {
 super.viewDidLoad()
 presenter = Presenter(view: view)
 }
 }

 This is very similar to our ViewModel example. We just instantiate a presenter and inject
the view controller’s view property. Now, let’s add a UIAlertController to display some
information. Our presenter class will now look like the following:

 class Presenter {
 weak var view: UIView?

 init(view: UIView) {
 self.view = view
 }

66 CHAPTER 4: iOS Architecture

 func displayAlert(on viewController: UIViewController, withTitle title: String?,
message: String?, andActions actions: [UIAlertAction]) {

 let alert = createAlert(withTitle: title, message: message, andActions: actions)
 viewController.present(alert, animated: true, completion: nil)
 }

 func createAlert(withTitle title: String?, message: String?, andActions actions:
[UIAlertAction]) -> UIAlertController {

 let alert = UIAlertController(title: title, message: message, preferredStyle:
.alert)

 actions.forEach { alert.addAction($0) }

 return alert
 }
 }

 We have added a createAlert method that returns a UIAlertController and a displayAlert
method that takes the view controller and displays the alert. These methods are responsible
for creating and displaying an alert based on the given information. Next, let’s use this
functionality in our controller:

 class ViewController: UIViewController {
 var presenter: Presenter?

 override func viewDidLoad() {
 super.viewDidLoad()
 presenter = Presenter(view: view)
 }

 @IBAction func userDoesSomething() {
 let action = UIAlertAction(title: "OK", style: .destructive, handler: nil)
 presenter?.displayAlert(on: self, withTitle: "Error", message: "You did something

bad", andActions: [action])
 }
 }

 The new @IBAction in our controller uses this functionality to display an alert. You can see
how simply displaying an alert is using this pattern. Not to get ahead of ourselves, but you
might also be able to see how testable this pattern can make our code, but more on that in
Chapter 8 . That is pretty much it for the presenter pattern. It can be very simple, but it can
also take multiple forms depending on the structure around it.

 Singleton
 The singleton pattern is a very common pattern in iOS development. Singletons are
used extensively in Apple’s frameworks such as the UIApplication , NSFileManager , and
 NSNotificationCenter . The purpose of a singleton is to provide a global point of access to
the object and to guarantee there is only ever one instance of the object. The UIApplication
can be accessed anywhere in our apps by using UIApplication.shared .

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

67CHAPTER 4: iOS Architecture

 These objects make sense to be singletons because they hold global application state.
Therein lies the problems that can arise with singletons, though. Global state can be very
difficult to manage and even harder to debug. This is why many people avoid creating
singletons in their applications. This section is going to cover how to build a singleton in
code, and then we will continue our discussion of advantages and disadvantages.

 Let’s flip back over to our playground reference and create a singleton:

 //: ## Singleton

 class MyAppState {
 static let instance: MyAppState = MyAppState()
 }

 In the preceding code block, we have defined a new class called MyAppState . This class has
a static variable called instance . The static keyword on a variable creates a type property.
 Type properties are global values that are associated with the specific type. It might not
seem like much, but that is all that is required to define a singleton in Swift. Let’s add a
method to our class to print a string:

 class MyAppState {
 static let instance: MyAppState = MyAppState()

 func handleSomething() {
 print("Singleton working here...")
 }
 }

 Now, let’s use our singleton and its new functionality:

 MyAppState.instance.handleSomething()

 Instead of instantiating a new object of type MyAppState , we just access the instance
property and we can call handleSomething . If you have ever used singletons before, you are
probably familiar with this style. You can see how easy they are to define. The only difference
between a singleton and a normal class is the singleton is always accessible.

 This is why we have to be careful with this pattern. It is very easy to define singletons
and then access/use them everywhere. We could use this pattern instead of MVVM. If we
encapsulated all of our data logic in a singleton, there would be no need to create a view
model. The view controller could then access the app’s data through the singleton. There is
nothing necessarily wrong with this pattern, but we must consider the downside.

 First, we are coupling code with the singleton, which makes the architecture rigid. We
cannot extend any code that uses a singleton, because there will only be one singleton. We
also have to consider testing. Since a singleton controls its own lifecycle, we run the risk of
the singleton influencing our tests differently for different runs. This is called idompotency .

 This term in the context of testing means our tests should produce the same results for
every run. Since the purpose of singletons is to hold global state, it is possible for the state
of a singleton to change during a test and cause a previously passing test to fail even though
the underlying code being tested has not changed.

68 CHAPTER 4: iOS Architecture

 I do not mean for this to deter you from using singletons altogether. They still have their
place, especially in iOS. This section has looked at how we can define singletons and some
common pitfalls to using them. That will do it for our discussion on design patterns. I highly
recommend more research into these patterns as their definitions and responsibilities can be
a bit murky. The entire goal of design patterns is to clean up code. As developers, we want
to write scalable, extensible code. Design patterns have been proven to accomplish this
task. However, when are you using too many design patterns; how can you know? Read on!

 When Is It Too Much?

 The KISS principle states that most systems work best if they are kept simple
rather than made complex; therefore simplicity should be a key goal in design
and unnecessary complexity should be avoided.

 —effectivesoftwaredesign.com

 We just discussed four great design patterns and how they can really clean up your code.
Now, let’s talk about how they can be a detriment to your project. It can be very easy to fall
into situations in which design patterns can be used and you say, “Why not?” You might
start your iOS app out using MVC, but then start to have big view controllers, so you decide
to refactor to MVVM. However, this might be overkill. You might be able to get away with just
using a presenter or some other, smaller pattern.

 This is the problem with design patterns. How can you know when to use them and when
not to use them? When too many design patterns start to get used in your application,
it can be hard to spot. Each pattern has its purpose and, logically, it can make sense.
However, when you are combining multiple patterns, applications can grow to nearly
unmanageable sizes. I believe it is possible to see when too many design patterns are used
in an application, but the argument against them can be difficult to formulate. Logically, it
might make sense for certain design patterns to be used, so this is how I like to approach
this problem. Keep it simple. If this sounds familiar it should. There is a principle of software
development called KISS . It stands for “Keep it simple, stupid.”

 AntiPatterns
 This will be the last major section in this chapter and it is very important. This section
will be describing AntiPatterns . As you can imagine, AntiPatterns are the opposite of
design patterns. They take your scalable, extendable code and ensure it is difficult to
understand and change. I have selected two AntiPatterns to discuss, the God class/Blob
and Poltergeists. This section is not going to contain any code. I will not help you code
AntiPatterns. Instead, it will be a discussion about the AntiPatterns and how to spot them in
the wild. Let’s get started.

69CHAPTER 4: iOS Architecture

 The God Class and the Blob

 [A God/Blob object]… leads to one object with a lion’s share of the
responsibilities… solution includes refactoring the design to distribute
responsibilities more uniformly…

 —sourcemaking.com

 This AntiPattern is tied into a principle of software design called the single-responsibility
principle . This principle is the first in the SOLID principles that were created by Robert
Martin. The principle states, “A class should have only one reason to change.” This
AntiPattern is the opposite of this principle. The quote above states this God/Blob object
can have a bunch of responsibilities and this can lead to very bad design. This type of object
can be very difficult to reuse and can be so complex and disjointed, it is hard to understand.

 So, how can you be sure you do not create any blobs and how can you spot them if they
already exist? Most of the time, an object such as this is hard to name. If you were to create
a UIViewController that lists a set of data, you might call it DataListViewController .
Imagine what you would call an object that has 20 different responsibilities. This is the first
sign and they usually wind up being called helper or utilit (y)(ies)

 This AntiPattern does not just appear as helpers or utilities . A base class can just as
easily become a Blob/God class. In objected-oriented design (OOD), inheritance is used
heavily. There can be issues with OOD, which we will discuss in the next chapter. When you
start merging base classes to satisfy inheritance, most likely, that object is becoming a God
class. The next AntiPattern we will discuss is Poltergeists.

 Poltergeists

 Poltergeists are classes with very limited roles and effective life cycles.

 —sourcemaking.com

 As the quote and name of this AntiPattern suggests, it is all about the life cycle and responsibilities
of the object. They are very limited and you might wonder what the object is even doing. Let’s
examine a form of this AntiPattern in terms of building a networking layer. Let’s say you break out
your networking code in two halves. One half is responsible for coordination with the rest of the
app, while the other half is responsible for actually making the networking requests.

 You can imagine the first half talks with the second half and vice versa to complete
one whole network transaction. A poltergeist that could appear in this scenario is the
communication between the two objects. What would the communication look like

 Note Not all objects called helper or utility are implementations of this AntiPattern. Targeted,
simple helpers and utility classes can be created and used and can be very effective. The
problem is when there is one helper or utility object to rule them all. Don’t be Frodo.

70 CHAPTER 4: iOS Architecture

now? The first half instantiates an object, whose entire responsibility is to handle the
communication back to the rest of the app. The first half then sends this object to the
second half along with the original request. The job of the second half is still the same
and makes the network request. When the network request completes, instead of
communicating back to the first object, it uses the poltergeist to communicate back. What
exactly is the responsibility of the poltergeist object? It is taking over a small portion of the
first network object’s job. The object is also only alive for the single network request. This is
a lot of overhead for something the original object should be capable of doing.

 Poltergeists are small, can add unnecessary complexity, and violate the principle of single
responsibility, as they have no real responsibility. AntiPatterns can be hard to track down.
They can also be difficult to fix. Moreover, the problem is not just a code issue. AntiPatterns
are hints at deeper problems. Please be aware that there are a lot of other AntiPatterns out
there and, just like design patterns, they can be subjective in nature.

 Wrap Up
 This has been a really fun chapter to write. I have a love/hate relationship with architecture.
It is often more subjective than objective and this can make it difficult to discuss. Please
note that this chapter is based on architecture I have used and what I have seen work and
not work. Take this with a grain of salt and figure out what is best for you. Experiment with
architecture and figure out your best practices and approaches. I hope you have gained
some knowledge in this chapter and you continue to do your own research. Architecture will
continue to be a theme in the first half of this book and will be heavily focused on when we
go to build our app. The next chapter is going to be about protocol-oriented programming.

 Articles
 1. iOS Architecture Patterns

 https://medium.com/ios-os-x-development/ios-architecture-
patterns-ecba4c38de52#.ne1su4f9w

 2. Introduction to MVVM

 www.objc.io/issues/13-architecture/mvvm/

 3. From MVC to MVVM in Swift

 http://rasic.info/from-mvc-to-mvvm-in-swift/

 4. Design Patterns

 https://sourcemaking.com/design_patterns

 5. AntiPatterns

 https://sourcemaking.com/antipatterns

 6. Dependency Injection in Swift

 https://medium.com/ios-os-x-development/dependency-injection-
in-swift-a959c6eee0ab#.me0i6nloq

https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52#.ne1su4f9w
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52#.ne1su4f9w
http://www.objc.io/issues/13-architecture/mvvm/
http://rasic.info/from-mvc-to-mvvm-in-swift/
https://sourcemaking.com/design_patterns
https://sourcemaking.com/antipatterns
https://medium.com/ios-os-x-development/dependency-injection-in-swift-a959c6eee0ab#.me0i6nloq
https://medium.com/ios-os-x-development/dependency-injection-in-swift-a959c6eee0ab#.me0i6nloq

71© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_5

 Chapter 5
 Protocol-Oriented
Programming
 This chapter is going to walk you through protocol-oriented programming, which is my
favorite paradigm in the Swift language. We will go over what protocols are, how they work,
and how you have already used protocols. We will look at interfaces and protocols to see
how these concepts have been implemented in Swift and other languages, and this will lead
us into the concepts of traits and abilities .

 Next, we will look at an object-oriented example that is better suited to be protocol
oriented. This objected-oriented example will touch on a few problems that are common
in an objected-oriented world. We will also take a look at Swift game development using
 SpriteKit . Game development is a really fun topic and we will really be able to see the
power of protocol-oriented programming here.

 Finally, we will wrap up the chapter talking about testing. Testing our code can be a whole
lot easier when we use protocols properly. I am also going to introduce a concept for testing
that I will go into depth on in Chapter 8 . Let’s get started!

 What You’ll Learn
 This chapter is going to discuss Swift protocols. We are going to examine the difference between
interfaces and protocols. If you think there is no difference, you’re in the right place. The core
of this chapter is about the concepts of traits and abilities . Once we have an understanding of
these concepts, we will move on to how we can think in a protocol-oriented manner.

 Thinking in a protocol-oriented way is the biggest hurdle when you’re first starting protocol-
oriented programming. It can be difficult to transition from pure inheritance with objected-
oriented programming to protocols. Apple has also added the discussion of reference types
and value types , but more on this later. We will extend our Xcode playground reference
with an object-oriented problem and discuss how we can rework our solution to achieve a
protocol-oriented result.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

72 CHAPTER 5: Protocol-Oriented Programming

 In the last section of this chapter, we are going to cover testing with protocols. The idea of
this section is abstraction . We will look at how we can test code that uses the UIApplication
singleton. Adding protocols will make this previously impossible-to test-code, testable.
Protocols can make testing easier, when used correctly. Let’s start this chapter by
discussing what protocols are.

 What Are Protocols?

 A protocol defines a blueprint of methods, properties, and other requirements
that suit a particular task or piece of functionality.

 —The Swift Programming Language

 “A blueprint of methods, properties, and other requirements….” This is taken directly from
Apple’s documentation on the Swift language from their Protocols section. The link to
their documentation is https://developer.apple.com/library/ios/documentation/Swift/
Conceptual/Swift_Programming_Language/Protocols.html . I want you to read this entire
quote a few times. This next part took me a few readings. Also, skim through the code
provided by Apple at this link. Based on this quote and the code provided by Apple, I treat
Swift protocols as traits. The definition of a trait i s a distinguishing quality or characteristic .
All too often, I hear Swift protocol being equated to interfaces and I believe this is not
necessarily correct. To fully understand this, let’s examine an interface.

 Interfaces

 A point where two systems, subjects, organizations, etc., meet and interact.

 —Google

 This is the definition of an interface provided by Google. This difference between protocols
and interfaces boils down to how two things interact. Interfaces would be how two objects
talk with one another in objected-oriented programming. Each object has an interface to
the outside world, the public methods, and properties. Let’s examine an interface in Java.
The following code sample is from Oracle’s documentation on interfaces at https://docs.
oracle.com/javase/tutorial/java/concepts/interface.html . The following code defines an
interface called Bicycle :

 interface Bicycle {

 // wheel revolutions per minute
 void changeCadence(int newValue);

 void changeGear(int newValue);

 void speedUp(int increment);

 void applyBrakes(int decrement);
 }

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

73CHAPTER 5: Protocol-Oriented Programming

 This interface provides four methods that all describe how something can interact with a
 Bicycle . The rest of this article creates a class that implements this interface and this is
a normal pattern in Java and other languages . The problem here is that the interface is
called Bicycle and provides methods for interacting with a bicycle concept. You can see it
has a set of brakes, pedals with which to speed up, multiple gears to switch between, and
the ability to change what it calls the cadence. Next, let’s examine a trait and how we can
change this example to be more inline with Swift protocols.

 Traits

 A distinguishing quality or characteristic.

 —Google

 This is the definition for a trait and how Swift protocols should be treated. If we reexamine
the Bicycle interface from the last section in terms of traits, what would it look like?

 //: # Bicycle Object with Traits

 //: #### 1. An object can have a cadence
 protocol hasCadence {
 func changeCadence(by value: Int)
 }

 //: #### 2. An object can have gears
 protocol hasGears {
 func changeGears(to value: Int)
 }

 //: #### 3. An object can have pedals
 protocol hasPedals {
 func speedUp(by value: Int)
 }

 //: #### 4. An object can have brakes
 protocol hasBrakes {
 func applyBrakes(by amount: Int)
 }

 Here, I have defined four separate protocols . Each of these protocols corresponds with
one of the methods defined in the previous interface. Each one represents a trait a bicycle
might have. However, this does not have to be the case. In the previous interface, the idea of

 Note I have omitted any properties of each protocol for clarity. Most likely, each protocol would
have a set of properties associated with them.

74 CHAPTER 5: Protocol-Oriented Programming

pedals, brakes, gears, and so on are all associated with a bicycle concept. This is not how it
would work in the real world. Brakes could also apply to cars, planes, or even tricycles. This
means that in the previous interface, we would then need to duplicate code and concepts to
achieve the other objects.

 This is not the case with our trait example. The following is an implementation of a Bicycle
class using the previously defined traits:

 class Bicycle: hasCadence, hasGears, hasPedals, hasBrakes {

 // MARK: - Properties for a bike

 // 1
 func changeCadence(by value: Int) { }

 // 2
 func changeGears(to value: Int) { }

 // 3
 func speedUp(by value: Int) { }

 // 4
 func applyBrakes(by amount: Int) { }
 }

 This models our bicycle object perfectly. You can imagine, we would implement our methods
and our bicycle could operate exactly as it should. We can then take our protocols and
immediately create a plane class that conforms to hasPedals and hasBrakes . We would then
have all the information required without the baggage of the other two protocols.

 Using Swift protocols in this way alleviates any potential for a Blob or God Class (refer
back to Chapter 4 , where these are discussed in more detail). This is the power of treating
Swift protocols as traits. We can model many different types of objects in our system and
avoid common AntiPatterns that bog down other systems. Now, with all of this being said,
interfaces still have their place in Swift. Developing to an interface is a valid objected-
oriented pattern. Even though I would say Swift protocols are more in line with traits, Swift
is still an object-oriented language. It is just protocol oriented as well. We will talk about this
more once we go through the concept of abilities.

 This section has walked through the differences between interfaces and traits . This
difference is key to understanding this chapter and protocol-oriented programming.
Essentially, it boils down to shifting your thinking to a different programming paradigm. The
next section is going to delve into this shift.

 Protocol-Oriented Thinking
 We have already discussed the difference between an interface and a trait. This section is
going to cover how we can start thinking differently to take full advantage of Swift protocols.
This section is going to examine the idea of abilities . We are going to learn what this means
in terms of code and our way of thinking.

http://dx.doi.org/10.1007/978-1-4842-2280-5_4

75CHAPTER 5: Protocol-Oriented Programming

 If you’re subclassing, you’re doing it wrong.

 —Hector Matos

 The preceding quote is from an article by Hector Matos. His article discusses many of
the same concepts we will touch on in this chapter. The article can be found at http://
krakendev.io/blog/subclassing-can-suck-and-heres-why . In his article he talks about a lot
of important concepts and ideas. He discusses AntiPatterns, abstractions and simplicity,
and functional programming. He discusses all of these topics and centers the article on
preferring composition and protocols instead of inheritance. I would highly recommend this
article; it is a great read.

 Moreover, I believe the title of his article says it all. The concepts from his article and those in
this chapter allow us to move away from heavy inheritance and subclassing. These concepts
then help us avoid the AntiPatterns we discussed in Chapter 4 .

 Let’s take a step back and examine where you have used protocols before. If you have
ever used a UITableView , UICollectionView , or UIWebView , then you have most likely used
protocols in iOS. The UITableViewDataSource is an Objective-C protocol that requires a
certain subset of methods to be implemented on the conforming object. These methods
include the following:

 // Asks the data source for a cell to insert in a particular location of the table view.

 func tableView(_ tableView : UITableView, cellForRowAtIndexPath indexPath : NSIndexPath) ->
UITableViewCell

 // Tells the data source to return the number of rows in a given section of a table view.

 func tableView(_ tableView : UITableView, numberOfRowsInSection section : Int) -> Int

 The previous code is pulled from Apple’s UITableViewDataSource reference. Once your
object conforms to this protocol, it is required to have these methods along with others. The
results of these methods are then used to fill out a table view. These methods are used via
the dataSource property on a table view. If you look at the type of the dataSource property, it
is a UITableViewDataSource? .

 These methods can be implemented on any object. Swift has structs. We could conform to
the UITableViewDataSource protocol on a struct and then hold onto it in our view controller.
Normally, you would conform to this protocol on your view controller class, but with the
power of protocols, this is not required. This is one of the keys to thinking in a protocol-
oriented way.

 Before we go any further, let’s discuss what problem protocol-oriented programming is
trying to solve. I argue the problem is pure objected-oriented programming. I use the word
 pure because Swift is still an object-oriented programming language. We still want to
use objected-oriented programming paradigms where it makes sense. We can then use
protocol-oriented programming where appropriate. Many languages are objected oriented
and it will mostly likely also be in our programming languages in one form or another until
the end of time.

http://krakendev.io/blog/subclassing-can-suck-and-heres-why
http://krakendev.io/blog/subclassing-can-suck-and-heres-why
http://dx.doi.org/10.1007/978-1-4842-2280-5_4

76 CHAPTER 5: Protocol-Oriented Programming

 I also used the word pure because languages without other paradigms do suffer from
problems. I talked about how easy it can be to fall into AntiPatterns in Chapter 4 . Using just
inheritance can easily create a God Class. Let’s examine this problem in depth in the next
section.

 The Problem: Object-Oriented Programming
 Object-oriented programming can have its issues . It can also solve a lot of problems. The
example we are going to look at in this section will be a simple one, but it illustrates this
problem perfectly. We are going to model people and animals. I know this has been
overdone a million times. Well, buckle up, because this will be a million and one.

 So, say you are a consultant. You get a new client and they want to build an awesome
mobile app. They describe the problem to you as follows: “We want to build an app that can
display different categories of creatures including animals and people. Users can then take
pictures and upload them, and we want to classify their pictures based on specific types
’cause big data and all that cool stuff.”

 All right, so what you heard was “blah, blah, blah, take pictures, and classify into specific
categories.” So you get to work, deciding to start with the data models . For this project,
we just need a model for Creature , Animal , and Person . Your first instinct might be object-
oriented programming and inheritance , so let’s see how this would look:

 //: # Protocol-Oriented Thinking

 //: ## The Problem: Object-Oriented Programming

 class Creature {
 var alive: Bool

 init(alive: Bool) {
 self.alive = alive
 }
 }

 The previous code defines a Creature class that has one Boolean property: alive . We then
have an initializer that injects this property. Pretty simple, and you are off to a good start. The
next class you would then create would be an Animal class :

 class Animal: Creature {
 var eyes: Int
 var nose: Int
 var ears: Int

 Note It is still possible to solve this example with object-oriented programming, but this chapter is
about protocols, so tough noogies.

http://dx.doi.org/10.1007/978-1-4842-2280-5_4

77CHAPTER 5: Protocol-Oriented Programming

 init(alive: Bool, eyes: Int, nose: Int, ears: Int) {
 self.eyes = eyes
 self.nose = nose
 self.ears = ears
 super.init(alive: alive)
 }
 }

 Here we have defined our Animal class that has three more properties : eyes , nose , and ears .
All of these properties are Int properties because animals can have more than one eye, ear,
or nose. Our initializer makes sure all of these properties are initialized properly. The next and
last class to implement is the Person class :

 class Person: Animal {
 var name: String
 var age: Int

 init(name: String, age: Int) {
 self.name = name
 self.age = age
 super.init(alive: true, eyes: 2, nose: 1, ears: 2)
 }
 }

 The Person class inherits from the Animal class, which inherited from the Creature class. It
then adds two more properties for the name and age of the person. Now, pat yourself on the
back because all of your data models are written and you can move on to implementing the
meat of the app, except… the client then changes requirements on you. It turns out, aliens
just made first contact.

 So, now we have to be able to model an Alien , but technically, aliens are not animals.
They might be classifiable as a Creature , but these aliens have eyes, ears, and noses.
We would have to reimplement our functionality from the Animal class in our Alien class;
we could also move the Animal functionality into the Creature class, which is not a good
idea either.

 You can see the issues with this approach. We have locked ourselves into an inheritance
structure that would require refactoring to adapt to our new requirements. This is where
protocols can come to the rescue. Let’s reimplement the previous example in a
protocol-oriented way. Before we start implementing, let’s create a new playground
page called Ch05—Protocol-Oriented Thinking Pt2 . We can start with the trait the
 Creature class had:

 //: ## The Solution: Protocols

 protocol Living {
 var alive: Bool { get set }
 }

78 CHAPTER 5: Protocol-Oriented Programming

 We have defined a Living protocol that has our alive property on it. In protocols, we have
to mark any variables as get and set . The set is not required as some properties might not
be settable, but the get is always required. So far, so good; now let’s finish this example with
the traits from our Creature class and our Person class:

 protocol Vision {
 var eyes: Int { get set }
 }

 protocol CanSmellThings {
 var nose: Int { get set }
 }

 protocol Evesdropper {
 var ears: Int { get set }
 }

 protocol Identifiable {
 var name: String { get set }
 }

 protocol CanGrowUp {
 var age: Int { get set }
 }

 We have all of our possible traits defined as protocols . We are almost done. I selected an
example where it would be easy to identify the traits from our objects. Most likely, in the real
world, you would not split create protocols that only contain one property. You would most
likely create protocols that contain groups of properties and methods that all correspond
to one possible trait. Now, let’s finish this example by defining all four classes with our
protocols instead of inheritance .

 //: #### Creature, Animal, Person, & Alien with Protocols

 class Creature: Living {
 var alive: Bool
 init(alive: Bool) {
 self.alive = alive
 }
 }

 class Animal: Living, Vision, CanSmellThings, Evesdropper {
 var alive: Bool
 var eyes: Int
 var nose: Int
 var ears: Int

 init(alive: Bool, eyes: Int, nose: Int, ears: Int) { ... }
 }

79CHAPTER 5: Protocol-Oriented Programming

 class Person: Living, Vision, CanSmellThings, Evesdropper, Identifiable, CanGrowUp {
 var name: String
 var age: Int

 var eyes: Int
 var nose: Int
 var ears: Int

 var alive: Bool

 init(name: String, age: Int) { ... }
 }

 class Alien: Living, Vision, Evesdropper, Identifiable {
 var name: String

 var eyes: Int
 var ears: Int

 var alive: Bool

 init(name: String, eyes: Int, ears: Int) { ... }
 }

 You can see with the previous code, we have created a little more overhead for ourselves.
Now, every class must define each property instead of just inheriting it from a superclass.
However, imagine this was how we implemented our models the first time. When the client
came back to us and asked to add aliens, we would have said “Sure,” and it would have
been done in no time.

 If you are saying to yourself,” This is great and all, but where is the new paradigm?” know
that what I have shown you so far is just part of the equation. The next section is going to
expand on this example with protocol extensions. This is where abilities come into play. The
next section is going to expand on our previous example. It will then show where protocol-
oriented programming really shines in SpriteKit and how we can use it in UIKit. It’s going to
be a big section, so I will see you there.

 Abilities
 We have a lot to cover. First, we are going to expand on our previous example and start by
explaining abilities using extensions and constraints. After we finish this example, we are going
to get into some iOS game development through SpriteKit. This should be a really fun part.
This will lead us into our discussion on value types and reference types. Finally, we will finish
this section up with a more practical look at where we can take advantage of protocol-oriented
programming while using UIKit. I want to start by explaining what I mean with I say abilities .

 This entire chapter, I have been using the word ability. This word is not from any Swift
documentation. I use this word to describe the concept of extending protocols to give them
default implementations. The extension keyword and the word extend are a bit overloaded,
so I wanted a different word to explain the concept. I also believe the term ability drives
home the purpose of the concept.

80 CHAPTER 5: Protocol-Oriented Programming

 So here it is—the full explanation of trait and ability . We want to create protocols that
represent traits our objects can have. We then want to give our traits abilities through the
use of protocol extensions and constraints. I will still be using the terms protocol extension
and constraints to explain the specific code. The term ability is great when describing the
concept and purpose of the code.

 Now, I want to take a step back and talk about interfaces one more time. Earlier we
discussed the differences between an interface and a trait. Treating Swift protocols as traits
is key to protocol-oriented programming. Remember, though, that Swift is still an object-
oriented language. Interfaces have their place, and they should describe a common interface
to a type of object. Here’s the drawback to interfaces, though. I have found that when
you create an interface, it is not always appropriate to give it abilities . Traits, however, can
and should have abilities. Protocols can act as a traits or an interface, but it is up to us to
distinguish between the two and use them appropriately.

 This is not a hard and fast rule. I believe that by following this rule, we can write better code.
This is where you can take this information and make your own decision. Now that we have
a handle on this whole idea of traits and abilities, let’s expand on our Creature/Person/Alien
example.

 Creatures, Animals, People, and Aliens
 Let’s start this section by jumping right into our code. First, we need to add methods to three
of our protocols:

 protocol Vision {
 var eyes: Int { get set }
 func look(for something: Any)
 }

 protocol CanSmellThings {
 var nose: Int { get set }
 func smell(thing: Any)
 }

 protocol Evesdropper {
 var ears: Int { get set }
 func listen(for aSound: Any)
 }

 I have edited the Vision , CanSmellThings , and Evesdropper protocols . I have added look ,

 Tip I have modified and added to the protocols and classes in my playground reference. It might
be better for you to keep the old page and create a new page if you want to see the progression.
However, I am still using the old playground page name.

81CHAPTER 5: Protocol-Oriented Programming

 smell , and listen methods to the protocols respectively. Now the playground page will not
compile because the conforming classes do not have any of these methods. Before we add
these methods to our classes, let’s start with an extension on our Vision protocol:

 //: #### Abilities for Vision, CanSmellThings, and Evesdropper

 extension Vision {
 func look(for something: Any) {
 print("Look for \(something)")
 }
 }

 In the previous code, we have added an implementation to the Vision protocol. Now,
our protocol has an implementation and our classes no longer need to provide one. It is
important to know that our classes can still provided an implementation, but it will not have
any connection to the protocol’s implementation. Protocol extensions do not work the same
way inheritance works. Before we continue, let’s implement this method in our Animal class :

 class Animal: Living, Vision, CanSmellThings, Evesdropper {
 var alive: Bool
 var eyes: Int
 var nose: Int
 var ears: Int

 init(alive: Bool, eyes: Int, nose: Int, ears: Int) {
 self.eyes = eyes
 self.nose = nose
 self.ears = ears
 self.alive = alive
 }

 func look(for something: Any) {
 // Do something here
 }
 }

 Here is the entire Animal class. When you start to type look , if the playground completes
the code for you, you will notice it does not contain the override keyword . This is because
the override keyword signifies this method is already implemented and we are going to
add an overriding implementation, but we can still call super . This is a common inheritance
and polymorphism . However, for protocol extensions, there is no super and there is no
inheritance. The protocol extension implementation is mixed into our object. This is very
important, so I wanted to make sure I was very clear about this subject. Now, here are all of
our protocol extensions :

 Caution I have placed the protocol extensions in-between the protocols and the conforming
classes’ definitions.

82 CHAPTER 5: Protocol-Oriented Programming

 //: #### Abilities for Vision, CanSmellThings, and Evesdropper

 extension Vision {
 func look(for something: Any) {
 print("Look for \(something)")
 }
 }

 extension canSmellThings {
 func smell(thing: Any) {
 print("Smelling: \(thing)")
 }
 }

 extension Evesdropper {
 func listen(for aSound: Any) {
 print("Listen for \(aSound)")
 }
 }

 These extensions are very simple, but that is all there is to it. Now, with all of our protocol
methods implemented in extensions, our code should compile. Also, be sure to remove the
 look method’s implementation from our Animal class. Let’s instantiate our classes and see
what happens when we use these APIs :

 //: #### Using our classes and protocol extensions

 var bob = Person(name: "Bob", age: 30)
 bob.listen(for: "Music")

 var anteater = Animal(alive: true, eyes: 2, nose: 1, ears: 2)
 anteater.smell(thing: "Ants")

 var ET = Alien(name: "ET", eyes: 2, ears: 2)
 ET.look(for: "Home")

 We have created three objects in the previous example. We created bob , anteater , and ET .
Each object then uses one of our protocol methods. Take a look at the method list on ET ; the list
should not contain a smell method. Our Alien class does not conform to the CanSmellThings
protocol, so ET cannot smell anything. Here is the entire playground page Ch05—Protocol-
Oriented Thinking Pt2 . I have omitted the class implementations to conserve space:

 //: ## The Solution: Protocols

 protocol Living {
 var alive: Bool { get set }
 }

 Note I have placed this section at the bottom of the playground.

www.allitebooks.com

http://www.allitebooks.org

83CHAPTER 5: Protocol-Oriented Programming

 protocol Vision {
 var eyes: Int { get set }
 func look(for something: Any)
 }

 protocol CanSmellThings {
 var nose: Int { get set }
 func smell(thing: Any)
 }

 protocol Evesdropper {
 var ears: Int { get set }
 func listen(for aSound: Any)
 }

 protocol Identifiable {
 var name: String { get set }
 }

 protocol CanGrowUp {
 var age: Int { get set }
 }

 //: #### Abilities for Vision, CanSmellThings, and Evesdropper

 extension Vision {
 func look(for something: Any) {
 print("Look for \(something)")
 }
 }

 extension CanSmellThings {
 func smell(thing: Any) {
 print("Smelling: \(thing)")
 }
 }

 extension Evesdropper {
 func listen(for aSound: Any) {
 print("Listen for \(aSound)")
 }
 }

 //: #### Creature, Animal, Person, & Alien with Protocols

 class Creature: Living {
 // ...
 }

 class Animal: Living, Vision, CanSmellThings, Evesdropper {
 // ...
 }

84 CHAPTER 5: Protocol-Oriented Programming

 class Person: Living, Vision, CanSmellThings, Evesdropper, Identifiable, CanGrowUp {
 // ...
 }

 class Alien: Living, Vision, Evesdropper, Identifiable, SuperVision {
 // ...
 }

 This is pretty awesome stuff and this is the power behind protocol-oriented programming.
Now, let’s take this up a notch. In the next code block, we are going to add another protocol
and another extension. We are then going to use constraints to modify our Alien ’s behavior
all through protocols. Let’s see how this works:

 //: The SuperVision protocol is more of a decorator
 protocol SuperVision {}

 //: Extension on the SuperVision protocol where the conforming type also conforms to Vision
 extension Vision where Self: SuperVision {
 func look(for something: Any) {
 print("Really look for \(something)")
 }
 }

 I have grouped the protocol and the extension here for clarity, but in my playground
reference, they are in their appropriate sections. All right, we have defined a new protocol
called SuperVision . This protocol does not have any methods or properties. In this example,
I am using it more as a decorator. So, the really interesting piece here is our new protocol
extension. We extend our Vision protocol where the conforming type also conforms to the
 SuperVision protocol. This means we will have two extensions for the Vision protocol. One
extension is where we have no constraints and then we have our second that is constrained
to SuperVision .

 Now, instead of me just explaining this, conform to the SuperVision protocol on the Alien
class and see what happens in the console. Before ET was just looking for home. Now, he is
 really looking for home. Because he’s an alien, he has superhuman powers. However, if you
were to call look on bob , he is just able to look for things.

 By defining our SuperVision constraint on the Vision protocol, we have added more
functionality to any conforming type that has both protocols, but only where both protocols
are present. Using these constraints can be very useful when we have traits that we want to
add abilities to, but only in certain circumstances. We can also use classes as constraints on
our protocols and we will see this more in the next section.

 You have seen the basics of protocols, protocol extensions, and constraints. Let’s make this a
little more complicated by looking at game development. We are going to see how protocol-
oriented programming can make our SpriteKit games very easy to write and maintain.

 SpriteKit Game Development
 If you have ever done iOS game development with SpriteKit before, you know the framework
is really easy to use, but there are a few things that can present problems. If you have never
used SpriteKit, it is a 2D game development framework built by Apple. It was released with

85CHAPTER 5: Protocol-Oriented Programming

iOS 7. I wanted to focus on a couple of the issues and how we can solve them through the
use of protocol-oriented programming . I believe protocol-oriented programming can really
shine in game development, which is why it is included in this chapter.

 Let’s first describe the problem. It is not just a problem with SpriteKit, but the same problem
is described in the object-oriented programming section. SpriteKit has an object called
 SKNode . This object is the base building block for all visual objects in the SpriteKit framework.
Then, to draw content, such as an image, we need to use the SKSpriteNode class.
 SKSpriteNode inherits from the SKNode class.

 This works great, but these objects do not have game behavior to them such as scrolling
across the screen. These objects just provide the mechanisms available to developers to
create such an action. This makes sense too because these objects are the foundation for
our games and they should not contain game-specific logic, just facilitate our logic. This
makes it difficult on us though.

 Let’s examine the scrolling problem. Figure 5-1 shows the problem with adding scrolling to
our game. Just like many other game frameworks, SpriteKit uses a node hierarchy structure
to represent game scenes where SKNodes can contain other SKNodes . So let’s say we create
a Background class that needs to scroll. We also want to create a Platform class that the
player of our game can interact with. Both of these objects will need the ability to scroll
across the screen. However, in Figure 5-1 you can see we cannot have our Background class
inherit from SKNode and a Scrolling class. The same issue exists with SKSpriteNode and the
 Platform class .

 Using our knowledge of protocol-oriented programming , think about what the solution to
this would be. We are going to define a trait and give that trait the ability to scroll, but this
one is going to be a bit tricky. We need SKNode functionality to scroll a node, but all we are
going to have is a trait and an ability. The following code is how I have implemented the
solution to the problem described in Figure 5-1 :

 //: # SpriteKit example to illustrate POP techniques in Game Development

 //: #### ScrollDirection defines the direction a node can scroll

 enum ScrollDirection {
 case Forward
 case Backward
 }

 //: #### The Scrolling protocol defines the necessary properties and actions
 //: #### to properly scroll a node

 protocol Scrolling {
 var scrollDirection: ScrollDirection { get set }
 var scrollSpeed: CGFloat { get set }

 func scroll()
 func scrollForever()
 func scrollAction() -> SKAction
 func scrollForeverAction() -> SKAction
 }

86 CHAPTER 5: Protocol-Oriented Programming

 I have defined an enum and a protocol called Scrolling here. The enum defines the two
directions we can scroll a node, Forward and Backward . This protocol defines four methods
and two properties meant to control how the node scrolls. Now, let’s add two separate
extensions for our Scrolling protocol. Let’s start with the first extension on our Scrolling
protocol :

 extension Scrolling {
 /// Using the scrollDirection and the scrollSpeed to describe the direction and speed
used for scrolling
 var scrollDelta: CGVector {
 return CGVector(dx: 1.0, dy: 0.0)
 }

 /// Defines the SKAction used to scroll
 func scrollAction() -> SKAction {
 return SKAction.move(by: scrollDelta, duration: 1.0/60.0)
 }

 /// Repeats the scrollAction's SKAction forever
 func scrollForeverAction() -> SKAction {
 return SKAction.repeatForever(scrollAction())
 }
 }

 The first extension on Scrolling defines the implementation for the scrollAction and
 scrollForeverAction methods. I have also added a computed property for a CGVector .
This describes the vector used for the scrolling direction and speed. I have hardcoded this
value, but in a real implementation, it would combine the scrollDirection and scrollSpeed
properties to calculate the vector.

 SKAction is a class that allows you to change a node’s properties and the structure within
the game scene. In our case, we just want to scroll a node by creating a move SKAction .
The previous protocol extension is just half of our implementation, though. We still need
to implement the other two methods, scroll and scrollForever . Let’s define the second
protocol extension where we implemented these methods:

 extension Scrolling where Self: SKNode {
 /// Uses the run method on SKNode to execute the SKAction object from scrollAction
 func scroll() {
 run(scrollAction())
 }

 /// Uses the run method on SKNode to execute the SKAction object from
scrollForeverAction
 func scrollForever(){
 run(scrollForeverAction())
 }
 }

87CHAPTER 5: Protocol-Oriented Programming

 So, in our first protocol, we defined SKAction objects . The only way we can run these actions
is by using an SKNode object. This is where the constraints on the second protocol extension
come into play. We constrain the two methods scroll and scrollForever to be implemented
where the conforming type is an SKNode type . We can then call self as if it was an SKNode
type and this gives us the run method. We then just call the other two protocol methods to
get our SKAction objects to run, and we run them.

 There was not a lot of code in this section, but what we have created is pretty awesome.
We can now use this protocol on any SKNode subclass and it will automatically be capable of
scrolling across our scene. Let’s go back to our original problem described in Figure 5-1 . We
want a Background class that is a subclass of SKNode and a Platform class that inherits from
 SKSpriteNode and both need the ability to scroll.

 Figure 5-1. Shows the issue with creating a Background class and a Platform class that inherits from SKNode and
SKSpriteNode, respectively, that both need scrolling logic

 So, in our solution, we built a Scrolling protocol that described how scrolling can work.
We then built two separate extensions. Using these two extensions, any SKNode subclass
we create can conform to the Scrolling protocol and then have the ability to scroll. It is
important to understand that if a type conforms to our Scrolling protocol that is not an
 SKNode type, we will not have an implementation for the scroll and scrollForever methods.
However, we will still retain the implementation from the first protocol extension with no
constraints. We can see how this solution looks in Figure 5-2 .

88 CHAPTER 5: Protocol-Oriented Programming

 Figure 5-2. Shows the solution we created with a Scrolling trait

 In Figure 5-2 , we can see our two classes inherit from their proper classes, SKNode and
 SKSpriteNode . We can then give our Background and Platform classes the trait : Scrolling .
I chose to have scrolling represented with two boxes. We still only have one protocol and
one set of extensions. This is to illustrate the idea that protocols are lightweight and they are
a trait given to classes rather than an object in space we can inherit from. We can also have
each class implement their own version of scrolling logic if need be.

 This section has examined using protocol-oriented programming in iOS game development
with the SpriteKit framework. We have seen how employing protocols as traits can clean up
the implementation of game behavior. In the next section, we are going to cover value types
and reference types. This is another aspect to protocol-oriented programming and a very
important aspect of Swift.

 Value and Reference Types
 In Swift, there are two categories of types: value types and reference types. This section is
going to cover both categories, with a focus on value types. Then we are going to look at
how and when to use each category.

 Let’s start with the first category, value types. In Swift, value types are structs, enums, and
tuples. Swift’s String , Array , Dictionary , Int , and so on are all structs. Structs do not have
the ability to inherit from other structs. They can however, conform to protocols. Protocols
for the win! This means if we need to give multiple structs a common set of functionality, the
only mechanism we have is through protocols. Structs are also very safe.

89CHAPTER 5: Protocol-Oriented Programming

 This is why structs are favored in Swift. Each instance of a Swift struct holds onto a unique
copy of its own value. Therefore anytime we set a variable to a struct, that struct is copied
into the variable and we have two copies. Let’s see this in code:

 //: # Basics of Value Types

 struct Thing {
 var id: Int
 }

 let thing1 = Thing(id: 1)
 var thing2 = thing1
 thing2.id += 1

 thing1.id
 thing2.id

 In the previous code block, we have defined a struct called Thing . This struct has an id
variable and that’s it. We then declare an instance of this struct called thing1 and then another
variable called thing2 , which is just set to thing1 . We then increment the id of thing2 by 1.
The last two lines will just print out the value of id on thing1 and thing2 . We are dealing with
value types, so thing1 will still have the correct id of 1, while thing2 has an id of 2.

 This works because the value of thing1 was copied to our variable thing2 . If we were using
reference types here, the result would have been much different. The last thing you will
notice is that we have used the let keyword with thing1 , but the var keyword with thing2 .
This is because we mutated the value of thing2 . Structs are safe because they will prevent
you from mutating their values if it is declared as a constant with let . Structs also force you
to mark methods that change the internal values as mutating. Let’s see this in action:

 struct Thing {
 var id: Int

 mutating func change(id: Int) {
 self.id = id
 }
 }

 let thing1 = Thing(id: 1)
 var thing2 = thing1
 thing2.change(id: 2)

 thing1.id
 thing2.id

 We have added a mutating method to the Thing struct called change . The purpose of
this method is to mutate the value of id and we still cannot declare thing2 as a constant
because it is being mutated. This is not the case with reference types. If a constant is
declared with a reference type, the constant itself cannot be mutated, but the internals of
the reference can be mutated. So, we declare a constant set to a UIViewController . We
cannot set that constant to any other UIViewController , but we can set the view property on
 UIViewController to another UIView .

90 CHAPTER 5: Protocol-Oriented Programming

 You can see how safe this type of coding can be. The compiler forces us to think about the
mutation of this object. We can only mutate this object if it is a variable. We also cannot run
into a situation where we have two references trying to update the value simultaneously. This
is a huge win in a multithreaded application. If we were working with reference types, we
would have to worry about all of those problems.

 References types in Swift are classes. Anything defined as a class, is a reference type. This
includes most of UIKit and SpriteKit and many other iOS frameworks. Reference types are
not copied, hence their name. Let’s reexamine our last code using reference types:

 //: # Basics of Reference types

 class Object {
 var id: Int

 init(id: Int) {
 self.id = id
 }
 }

 let object1 = Object(id: 1)
 let object2 = object1
 object2.id = 2

 object1.id
 object2.id

 The differences here should be very apparent. Our Object class is just like our Thing struct.
However, when we declare object2 , it can be a constant. We then set the id of object2 to
2 and see what happens. Because we are dealing with reference types here, the id of both
 object1 and object2 is now 2.

 Sometimes, this is what we want and can be an advantage, but if we are in a multithreaded
system , this can create unwanted side effects that would be very difficult to track down. We
have to be careful and understand that reference types are not copied when set to another
variable like the preceding example.

 So, what does this all mean and why is it in the protocol-oriented programming chapter?
Apple has said that Swift developers should favor value types because of their safety.
This safety makes our lives easier. In Chapter 1 , I talked about optionals . Optionals were
a strange new concept to iOS introduced in Swift 1. I then argued that when optionals are
used correctly, our apps become safer. I argue the same thing here. As iOS developers, if we
use value types and protocols over classes and inheritance, our apps become cleaner and
safer. The next section is going to cover a practical look at protocols in UIKit.

 Protocols in UIKit
 UIKit and protocols can be a bit tricky. UIKit is comprised mostly of classes. This framework
houses our UIViewController , UITableViewController , and so on. This can make protocol-
oriented programming hard to think about at first. UIKit is where you might think value types

http://dx.doi.org/10.1007/978-1-4842-2280-5_1

91CHAPTER 5: Protocol-Oriented Programming

are great, but if we are dealing with UIViewControllers and mostly classes, we will have to
use reference types. That is not necessarily true. Yes, we will have to use classes for certain
things to work, but if we start to think in a more protocol-oriented way, we can use protocols
and value types to do some pretty cool stuff.

 This section is where we bring everything we have talked about together. We will see how to
use traits and abilities and how to use value types all in UIKit. We will rely heavily on this
section in future chapters, especially when building our app. Let’s get started!

 We are going to start with three protocols. The three protocols are going to describe an
object that can have a view, an object that can present view controllers, and an object that
can block the UI. These three protocols are defined as follows:

 //: # Protocols for working with UIKit

 protocol hasView {
 var view: UIView! { get set }
 }

 protocol canPresentViewControllers {
 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,
completion: (() -> Void)?)
 }

 protocol canBlockView {
 func block()
 }

 The previous code block has defined three protocols: hasView , canPresentViewControllers ,
and canBlockView . A UIViewController subclass can conform to the first two protocols
without any more code being required. These protocols are meant to replace references
to UIViewController . Let’s start with the canBlockView protocol and add an extension with
a constraint. The idea is that we want to block the view of a particular UIViewController
without being constrained to the UIViewController type:

 extension canBlockView where Self: hasView {
 func block() {
 // block the view
 }
 }

 Note Let’s start a new page in our playground reference. Also, be sure to import UIKit at the top of
the new playground page.

92 CHAPTER 5: Protocol-Oriented Programming

 I am not going to write the implementation of this method here for clarity. We will go in-
depth into the functionality of this protocol in Chapter 7 . So, we have defined an extension
for canBlockView with an implementation of block and this method will only be available to
types that conform to hasView . If we did not have the hasView protocol, we most likely would
have constrained our implementation to the UIViewController type. This does not scale
very well. So, now with the canBlockView and hasView protocols, we can block the view on a
 UIViewController or any other object that has a view property.

 Let’s now examine the third protocol. This is again going to free us from using a
 UIViewController type. All right, we want to be good Swift developers, and we know we
should favor value types and protocols. We already have our protocol, so let’s define the
value type. We want to be able to present UIAlertControllers in a clean way.

 To do this, let’s define a struct called AlertDisplayer . This struct is then going to hold a
reference to something that can present view controllers. Then all we need to do is present
the alert controller. Again, the implementation is going to be omitted for clarity:

 //: #### Alert Displayer using struct and protocol

 struct AlertDisplayer {
 var canPresentControllers: canPresentViewControllers

 init(canPresentControllers: canPresentViewControllers) {
 self.canPresentControllers = canPresentControllers
 }

 func displayAlert(withTitle title: String?, andMessage message: String?) {
 // present UIAlertController
 }
 }

 This code block defines the AlertDisplayer struct . The constructor takes a type that
conforms to our protocol and holds onto it. We then have a displayAlert method that would
create a UIAlertController and present it. Pretty cool, huh? We have completely freed
ourselves of the UIViewController type here. Let’s see how we can now use this:

 extension UIViewController: canPresentViewControllers {}

 let viewCtrl = UIViewController()
 let alertDisplayer = AlertDisplayer(canPresentControllers: viewCtrl)
 alertDisplayer.canPresentControllers

 let secondAD = alertDisplayer
 secondAD.canPresentControllers

 The first line is key here. We extend the UIViewController type to conform to our
 canPresentViewControllers protocol. All right, I am going to get a bit technical on you. This
first line is an extension on UIViewController that makes it conform to our protocol. This is
called retroactive modeling . This is another aspect to protocol-oriented programming.

http://dx.doi.org/10.1007/978-1-4842-2280-5_7

93CHAPTER 5: Protocol-Oriented Programming

 We can have any class, struct, or enum that we define easily conform to our protocols.
Extensions, though, allow us to have classes, structs, and enums outside our control
conform to our protocols as well. So, anything we have access to in UIKit can conform to
our protocols. In the previous code block, we extend UIViewController to conform to our
 canPresentViewControllers protocol. Without subclassing, all view controllers can now be
used as this protocol type.

 Let’s now look at the rest of the code from the previous block. It creates a view controller
(viewCtrl), then an alert displayer (alertDisplayer) with that view controller. I also added in
the last three lines to show that the alert displayer object will be copied, but the reference to
the view controller is still intact.

 Wow! This has been a gigantic section and it has been really fun to write. So what have we
learned in this section? We have learned about the concept of traits and abilities working
together. We define our protocols as a trait an object can have. We then give abilities to this
trait. This section also described my theory that Swift protocols distinguish between two
concepts: the first being traits and abilities and the second being interfaces . I think these
two concepts working together start to create the paradigm shift in Swift that is protocol-
oriented programming. I think this is one of the greatest takeaways from this section as well
as the entire chapter and book.

 We expanded on our knowledge of traits and how much of a difference they can make in iOS
game development. We took a common problem in SpriteKit and made a very simple solution
that scales for any SpriteKit game . After SpriteKit, we examined the differences of value types
and reference types. Finally, we brought all this all knowledge together and took a practical look
at how we can use traits, abilities, and value types in our normal everyday UIKit work. This will
be very important when we start building our app. The last section is going to finish things off by
describing how protocols and our newfound techniques can make testing easy.

 Testing with Protocols
 This is the last section in this chapter. We are going to discuss unit testing using protocols.
Chapter 8 will go more in-depth on the subject of testing in iOS and Swift, but I wanted to
make sure protocols are fresh in your mind when discussing this section.

 This section is going to look at how we can test the previous section’s code, specifically,
the AlertDisplayer struct. We will then look at how we can test another aspect of UIKit.
In general, singletons can be very hard to test, and we will examine how we might test the
 UIApplication singleton . Let’s get started!

 Testing AlertDisplayer
 We are going to look at how we can test the AlertDisplayer struct we created in the
previous section. Testing Swift code, especially when you mix in the UIKit framework, can
sometimes be difficult. By using protocols, we can make this process easy, if not trivial. Here
is all of the code we are going to test:

 Note I have posted the code here for clarity. I would recommend starting a new playground page
and putting this code at the top.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

94 CHAPTER 5: Protocol-Oriented Programming

 protocol canPresentViewControllers {
 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,

completion: (() -> Void)?)
 }

 struct AlertDisplayer {
 var canPresentControllers: canPresentViewControllers

 init(canPresentControllers: canPresentViewControllers) {
 self.canPresentControllers = canPresentControllers
 }

 func displayAlert(withTitle title: String?, andMessage message: String?) {
 // present UIAlertController
 }
 }

 We are going to write test code here, but we are still in a playground , so we will not be able
to run our test. Here is the start of the test code:

 //: # Testing with protocols

 class ProtocolTest {

 }

 This class will contain the test method for our AlertDisplayer struct. Before we write the
test, let’s see what we are going to test. The AlertDisplayer struct does not contain a view
controller, but a reference to the protocol canPresentViewControllers . Even though we are
going to use this struct in an app to display a UIAlertController on a UIViewController , we
do not need this to occur in the test. Instead, we can have anything conform to this protocol.
Let’s set this up now:

 class ProtocolTest {

 // Fake test object that conforms to canPresentViewControllers

 class TestObject: canPresentViewControllers {
 var controller: UIViewController? = nil
 var flag: Bool? = nil
 var completion: (() -> Void)? = nil

 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,
completion: (() -> Void)?) {
 self.controller = viewControllerToPresent
 self.flag = flag
 self.completion = completion
 }
 }
 }

95CHAPTER 5: Protocol-Oriented Programming

 Now, the class TestObject does not do anything to present a view controller; it just records
the parameters. Now, let’s write the test method using this TestObject class :

 class ProtocolTest {

 func testDisplayAlert() {
 let testObj = TestObject()
 let subject = AlertDisplayer(canPresentControllers: testObj)

 subject.displayAlert(withTitle: "Title", andMessage: "Message")

 testObj.controller != nil
 testObj.flag == true
 testObj.completion == nil
 }

 class TestObject: canPresentViewControllers {
 // Test Object Code ...
 }
 }

 In the test for the AlertDisplayer , we create an instance of the TestObject class and we
create an instance of the AlertDisplayer called subject . This is the key to the test: we inject
the instance of TestObject . Then, we call displayAlert and expect the testObj properties to
prove our code actually displays a UIAlertController .

 As stated previously, this code is not a valid test that will run but the concept is what is
important. By using protocols, in our implementation, we were able to avoid using view
controllers and we successfully isolated the test for the AlertDisplayer . Let’s look at a
slightly more complicated example using the UIApplication .

 Testing UIApplication
 The title for this section is a bit of a misnomer. We are not going to test any code within
the UIApplication . We are going to test code that was previously untestable because
the UIApplication was used. First, I cannot take credit for this example. It is an amazing
example and it is from Eli Perkins’ blog post http://blog.eliperkins.me/mocks-in-swift-
via-protocols . It is such a good example I had to include it here.

 All right, the problem is that we need to register our app for push notifications. If you do not
know how this is done, that’s okay, I don’t know either. This example is going to focus on one
method: registerForRemoteNotifications . This method is on the UIApplication singleton and
feels like a black hole. We call it, a lot of things happen, and at the end, the app is registered
for remote push notifications. How can we possibly test this? Well, there’s this function on
 UIApplication : isRegisteredForRemoteNotifications . That won’t work though, because this
is a singleton and once we are registered, that’s it, we are registered. By using this property,
we would create a test that actually tries to register us for remote notifications. It would also be
a very brittle test since we do not know what any of this code does.

http://blog.eliperkins.me/mocks-in-swift-via-protocols
http://blog.eliperkins.me/mocks-in-swift-via-protocols

96 CHAPTER 5: Protocol-Oriented Programming

 This is the problem and this is what we are going to test, but let’s take a step back and write the
code behind the problem. We are going to assume we are in an app using the MVVM design
pattern from Chapter 4 . So, we will have a ViewModel class. This is also about registering a user
for remote notifications, so we will also need a User object. Let’s see this in code:

 //: # Testing UIApplication with Protocols
 struct User {}

 class ViewModel {
 var user: User? = nil {
 didSet {
 print("Registered")
 UIApplication.shared.registerForRemoteNotifications()
 }
 }
 }

 The previous code block defines a struct for our user. We then have a ViewModel class that
contains the user. The ViewModel class then uses Swift’s property observer didSet on the
 User property to register for remote notifications when the user object is set. Now, with the
previous code, imagine what your test would look like. The following code block shows the
beginning of a test for this code. However, once we reach the assertions , what do we do?

 class TestViewModel {
 func testShouldRegisterForRemoteNotifications() {
 // Setup
 let subject = ViewModel()
 let user = User()

 // Action
 subject.user = user

 // Assert
 // ??????
 }
 }

 So, here is the problem. Now, let’s look at how we can make this testable with protocols.
Thinking about how the AlertDisplayer struct works is the key to this problem. If we
could have a protocol that could represent the UIApplication , this would become instantly
testable. Let’s define this protocol:

 // Protocol used to describe functionality from the UIApplication
 protocol PushNotificationRegistrar {
 func registerForRemoteNotifications()
 }

 This protocol only has one function on it and it might look familiar. Next, let’s modify our
 ViewModel to inject an object that conforms to this protocol as a dependency:

 class ViewModel {
 var user: User? = nil {

http://dx.doi.org/10.1007/978-1-4842-2280-5_4

97CHAPTER 5: Protocol-Oriented Programming

 didSet {
 print("Registered")
 registrar.registerForRemoteNotifications()
 }
 }
 // This registrar holds the functionality for registering for remote notifications
 var registrar: PushNotificationRegistrar

 // Dependency injection allows us to inject anything that conform to this protocol
 init(registrar: PushNotificationRegistrar) {
 self.registrar = registrar
 }
 }

 The ViewModel class now does not use UIApplication at all. It just uses the registrar.
Through dependency injection, this can be any object. Now, let’s bring this all together:

 extension UIApplication: PushNotificationRegistrar {}

 Earlier in this chapter you might remember extending UIViewController with a protocol and
we can do the same to UIApplication . We are using retroactive modeling on UIApplication
because it already has the method from our protocol. This means the production code can
use UIApplication , while our test can look like the following:

 class TestViewModel {
 func testShouldRegisterForRemoteNotifications() {
 // Setup
 let registrar = FakeRegistrar()
 let subject = ViewModel(registrar: registrar)
 let user = User()

 // Action
 subject.user = user

 // Assertion
 registrar.registered == true
 }

 // This class conforms to our protocol for testing
 class FakeRegistrar: PushNotificationRegistrar {
 var registered = false
 func registerForRemoteNotifications() {
 registered = true
 }
 }
 }

 Now, the test contains a FakeRegistrar class that conforms to the
 PushNotificationRegistrar protocol. An instance of this object is then injected into the
 ViewModel that is under test. Now, the test is easy and we can just assert the registered
property is true at the end. No need for any black magic voodoo to figure out if the
 UIApplication is registered, which makes our test isolated, reliable, and easy to understand.

98 CHAPTER 5: Protocol-Oriented Programming

 This has been a pretty cool section (at least I hope so). This section has covered how to
test code using protocols and protocol-oriented programming. There is a huge reason iOS
and Swift developers should start thinking this way. We can write all the awesome code
we want, but if it is not testable, it will not be used. Swift also does not have all the nifty
tricks of Objective- C , so we will have to think in different ways when testing Swift code.
We will discuss this more in Chapter 8 . I wanted to end this section with huge thank you to
Eli Perkins’ blog post at http://blog.eliperkins.me/mocks-in-swift-via-protocols for
coming up with this example.

 Wrap Up
 Wow, this has been a big chapter! We have discussed many aspects of protocol-oriented
programming. I introduced the concept of traits and abilities and explained the differences
with nterfaces. I want to reiterate this concept, since it is a cornerstone of this chapter/book.
Swift protocols lend themselves more to the idea of a trait (a characteristic or quality of an
object) rather than just to an interface (a contract for common communication for an object).
Swift then allows us to give these traits abilities through the use of protocol extensions. With
all of this being said, interfaces still have their place in Swift.

 Using this concept, we then looked at how we can use traits and abilities in iOS game
development. This concept can clean up game code and create smaller building blocks for
faster game prototyping. We also examined the differences between value and reference
types. Using value types in combination with protocols in UIKit can create safer and scalable
apps. Finally, the last concept we discussed what retroactive modeling. This can take our
protocol functionality to the next level since we are not limited to objects within our control.
 Retroactive modeling allows us to extend objects outside our control with our protocols and
functionality.

 I think all of these concepts working together describe the protocol-oriented programming
paradigm. This new paradigm requires a greater shift in thinking required for modern
day development. In modern day development, we cannot silo ourselves into one way
of thinking. We need to think differently and use different paradigms to create scalable
applications. I think this is what Swift is trying to do and as Swift matures, I believe these
paradigms will allow Swift to be used in more than just iOS and macOS apps.

 The chapter then finished by using these concepts to write tests for our code. Chapter 8
is going to be an in-depth look at testing Swift code, but this was a glimpse at how easy it
can be to test Swift code using protocols. Retroactive modeling also made the last example
using UIApplication possible and made untestable code testable. This is a huge win for
protocol-oriented programming. And that is it for this chapter. Next up, we are going to
explore Swift generics. Rest assured, we are not done with protocols. We will use protocols
as much as we can when we build our app in the second half of this book. The next chapter
is also going to have a section on protocols. See you there.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://blog.eliperkins.me/mocks-in-swift-via-protocols
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

99CHAPTER 5: Protocol-Oriented Programming

 Articles
 1. Protocol-Oriented Programming in Swift

 https://developer.apple.com/videos/play/wwdc2015-408/

 2. If You're Subclassing, You're Doing It Wrong.

 http://krakendev.io/blog/subclassing-can-suck-and-heres-why

 3. Parametric (Compile-Time) Polymorphism in Swift

 http://nsomar.com/parametric-compile-time-polymorphism-in-
swift/

 4. The Ghost of Swift Bugs Future

 http://nomothetis.svbtle.com/the-ghost-of-swift-bugs-future

 5. Mixins and Traits in Swift 2.0

 http://matthijshollemans.com/2015/07/22/mixins-and-traits-in-
swift-2/

 6. Mocks in Swift via Protocols

 http://blog.eliperkins.me/mocks-in-swift-via-protocols

https://developer.apple.com/videos/play/wwdc2015-408/
http://krakendev.io/blog/subclassing-can-suck-and-heres-why
http://nsomar.com/parametric-compile-time-polymorphism-in-swift/
http://nsomar.com/parametric-compile-time-polymorphism-in-swift/
http://nomothetis.svbtle.com/the-ghost-of-swift-bugs-future
http://matthijshollemans.com/2015/07/22/mixins-and-traits-in-swift-2/
http://matthijshollemans.com/2015/07/22/mixins-and-traits-in-swift-2/
http://blog.eliperkins.me/mocks-in-swift-via-protocols

101© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_6

 Chapter 6
 Generics
 I hope everyone enjoyed the protocol-oriented programming chapter, and I hope you have
your playground ready. This chapter is going to cover Swift generics and we are only going
to scratch the surface. In the first section, we will discuss the basics of Swift generics. This
will include the functional paradigms in Swift with generics. We will then end the section with
a discussion of generic type constraints.

 The second half of this chapter will discuss more protocol-oriented goodness with
associated types. Associated types are how we can achieve generic members through the
use of protocols. These associated types have their advantages and disadvantages.

 What You’ll Learn
 Generics are essential to coding in Swift, albeit a bit arcane. You have already worked with
generics in Swift; you just might not have known it. We are going to examine the basics of
Swift’s generics by creating our own generic classes and structs. Swift is very functional
by nature, and this functionality works through the use of generics. We are going to focus
on functionality for sequences here. Afterward, we are going to use generics with type
constraints. Type constraints are similar to protocol extension constraints in functionality.

 We will then transition back to Swift protocols , specifically, associated types. Associated
types are abstract members that, essentially, create generic protocols. After walking through
this section, you should feel comfortable creating and using associated types in your
protocols. Let’s get started!

 Swift Generics
 Generic code enables you to write flexible, reusable functions and types…
and expresses its intent in a clear, abstracted manner.

 —Swift Programming Language

102 CHAPTER 6: Generics

 I think the preceding quote says it all about generics. There are times when we want our
code to be very specific and precise. However, more often, we want to write our code once
and just have it work. Generics give us the ability to accomplish this. Generics are different
from the common Any or AnyObject types. These two types are actually protocols and just
represent the concept of anything or anything that is a reference type.

 These two protocols, however, do not persist type information. That means, once we have
a variable that is of type Any , the compiler only see this variable as an Any and we cannot
use string functionality, even if it was instantiated as a string. Let’s start our new playground
page and reexamine this problem with code:

 //: # Generics

 //: #### Ability to print a string and only a string

 func printString(str: String) {
 print(str)
 }

 let someString = "hello"

 // This works!
 printString(str: someString)

 The previous code should work just fine; so let’s break this code. In the next code block, we
have set the type of someString to be an Any type:

 //: # Generics

 //: #### Ability to print a string and only a string

 func printString(str: String) {
 print(str)
 }

 let someString: Any = "hello"

 // This does not work
 printString(str: someString)

 If you change this in your playground, it will not compile. Please remove this and make sure
your playground page compiles before moving on. So, why does this break? Well, in the first
code block, the compiler inferred our someString variable as a string type. The printString
function then only allows string types. When we explicitly set someString ’s type in the second
block, we set it to Any . The Any type is not the same as a string, and the compiler cannot see
 someString as a string type anymore. Therefore, it cannot be treated as a string type.

 This might seem awfully simple, but this is the problem generics are solving. We want the
ability to treat something generically, but we don’t want to lose functionality. Now before we

103CHAPTER 6: Generics

start building generic structures, how would we change the previous example to work by
using generics? Here is the previous example with a new generic method:

 //: #### A generic function that can print any type

 func printSome<Type>(item: Type) {
 print(item)
 }

 let myInteger = 1
 let myString = "goodbye"

 printSome(item: myInteger)
 printSome(item: myString)

 Now we have this printSome function and it has a parameter named item . The type of the
 item parameter is defined within the signature of the function. This is how generics are
defined in functions, classes, structs, and methods. In Swift, the generic type is required to
appear as parameter or a return value. Below our function, we create two variables that have
two different types, but our function still works. This is a generic function. It is important to
note that we could have solved this without generics, but this is just a quick introduction.
The next section is going to build our very own generic structure.

 Classes and Structs
 Let’s start with where you have used generics before. If you have ever used an array or
dictionary in Swift, you have used generics. Many of the underlying data structures provided
by Apple are generic. It makes sense for these to be generic since we want an array to work
for any type, not just strings or integers. We are going to build our own generic Stack struct
in this section. Previously you saw how to define a generic function. The syntax is the same
for a generic class or struct. Let’s define a Stack struct and give it a generic type called Type :

 //: # Generic Stack

 struct Stack<Type> {
 private var list: Array<Type> = []
 }

 You will usually see T , U , or S used for generic types, but I used Type to be more explicit
about its purpose. The struct then has an array called list . Since Swift’s Array is a generic
type, we must specify the type of the Array . This line can also be written as follows:

 private var list: [Type] = []

104 CHAPTER 6: Generics

 Next, let’s add an initializer for our struct. We want to allow a developer to inject the items
for the stack on initialization. Let’s also make the init variadic , so we can inject more than
one object:

 struct Stack<Type> {
 private var list: [Type] = []

 init(items: Type...) {
 self.list = items
 }
 }

 You will notice, we do not need to specify the type using angle brackets. The struct itself is
generic, so there is a struct level generic type and we do not need to specify the type again.
Next, let’s give this struct add and pop methods.

 struct Stack<Type> {
 private var list: [Type] = []

 init(items: Type...) {
 self.list = items
 }

 mutating func add(items: Type...) {
 list += items
 }

 mutating func pop() -> Type? {
 guard list.count > 0 else { return nil }
 return list.removeLast()
 }
 }

 These two methods modify the structure, so we must declare them as mutating . We use the
generic Type throughout the code where we usually expect a concrete type . This might not
seem very cool, but wait until we start using this struct. Let’s define three separate Stack
structs in our playground, giving each one a separate type like the following:

 var stack1 = Stack<String>()
 var stack2 = Stack<Int>()
 var stack3 = Stack<Array<Int>>()

 stack1.add(items: "hello", "goodbye")
 stack2.add(items: 1, 2, 3)
 stack3.add(items: [1, 2], [3, 4])

 stack1.pop() // Returns "Goodbye"
 stack2.pop() // Returns 3
 stack3.pop() // Returns [3, 4]

105CHAPTER 6: Generics

 We just created generic data structure . The power behind this struct lies in the usage. We
could have declared our struct with an array that holds onto Any types. However, when we go
to retrieve any items, we would have to cast that value to the specific type we want. We then
have to deal with optionals. By using generics, the Stack already knows what type it holds
and then we can directly access any item as the correct type.

 Many languages, some of which are very functional in nature, have influenced Swift.
These functional paradigms would be very difficult to use if Swift did not have support for
generics. The next section is going to expand on our generic knowledge and examine these
paradigms in the collection types in Swift’s Foundation Framework .

 Functional Paradigms with Generics
 Let’s start this section by creating our new playground page: Ch06—Functional Generics .
The idea behind functional programming is to avoid changing state. This can be
accomplished through the use of functions/methods that take in data and spit it back out in
a transformed state. This is not to be confused with modifying state. The internal states of
the objects being used by the function are not modified. Let’s go to our playground and see
how these work on the array collection type in Swift.

 First, create a new variable that is a [String?] type:

 let array1: [String?] = ["hello", nil, "goodbye"]

 Let’s first examine the map method on array. This method has one parameter, a closure called
 Transform . The purpose of the map method is to transform a sequence of types. The closure
parameter describes the conversion. We can transform our array1 so all strings are prefixed
with Transform :

 let newArray1 = array1.map { str in
 return "Transform \(str ?? "")"
 }

 newArray1 // ["Transform hello", "Transform", "Transform goodbye"]

 You will notice that the second string in the newArray1 says, “Transform” with no value. The
original value in array1 was nil , so there should be no value. This is not what we want. We
want there to be no nil values in the final result. There is another functional method called
 filter ; let’s try that:

 let newArray2 = array1.filter { str in
 return str != nil
 }
 .map { str in
 return "Transform \(str ?? "")"
 }

 newArray2 // ["Transform hello", "Transform goodbye"]

106 CHAPTER 6: Generics

 Awesome! We have only two values in the previous result newArray2 . So how does this
work? Each of these methods is generic. The array already contains the type information,
and in this case, it is String? . This type is then injected into the map or filter methods and
in the case of map , it is expecting another type out. That means we can chain multiple maps
or filters and we retain our type information.

 Now, if you have used functional programming before, you are probably yelling at me that
there is a better way than using filter and map . And you would be correct. There is another
nifty method called flatMap . This method will actually omit any nil values and the result is a
nonoptional sequence. Try out flatMap for yourself and see what happens.

 Functional programming can be really cool. It also lends itself very well to Swift’s value
types and generics. We can chain filter s and map s and other functional methods to quickly
transform a collection or perform complex tasks with very few lines of code. This would not
be possible without the use of generics.

 Generic Type Constraints
 We have seen the basic usage of generics. We have seen how to utilize generics for
functional programming. There is still one last problem to talk about. We want to be generic,
but not so generic we cannot accomplish our task. This is where generic type constraints
come into play. Through the use of type constraints similar to the ones used in Chapter 5 ,
we can keep our generic type, but constrain the object to a specific type.

 Let’s examine type constraints by creating a new playground page and a new struct
called Pair . This struct is actually going to hold onto two different generic types. The
implementation is as follows:

 struct Pair<T, U> {
 let key: T
 let value: U
 }

 let p1 = Pair(key: "hello", value: 1)

 This struct holds a key value pair , like a dictionary. If we created an array of these objects,
we would achieve an implementation similar to a dictionary. Now, let’s add two generic type
constraints:

 struct Pair<T: Equatable, U: Equatable> {
 let key: T
 let value: U
 }

 We are now constraining our two generic types, T and U , to conform to the Equatable
protocol . This means, whatever type T and U are, they have to conform to this protocol. So,
what’s the benefit of these constraints? Well, let’s make our Pair struct conform to this same
protocol:

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

107CHAPTER 6: Generics

 struct Pair<T: Equatable, U: Equatable>: Equatable {
 let key: T
 let value: U
 }

 This will cause a compiler error until we have the following code in place:

 func ==<T, U>(lhs: Pair<T, U>, rhs: Pair<T, U>) -> Bool {
 return true
 }

 Here we are overloading the double equals (==) operator and making it a generic function.
We then inject two different Pair objects whose generic types are T and U . Currently, we are
just returning true , so this will compile, but let’s think about what the implementation would
be if we had not added the previous type constraints. We cannot compare a generic type
because the compiler will not know if it is possible. The generic type constraint clears this
ambiguity up, thus making it possible to implement an equality operator for this struct:

 func ==<T, U>(lhs: Pair<T, U>, rhs: Pair<T, U>) -> Bool {
 return lhs.key == rhs.key && lhs.value == rhs.value
 }

 Putting all of this together, we have a generic Pair struct that can only contain Equatable
types and itself is Equatable . These constraints allow us to write a generic comparison
function. All of the code for the playground page Ch06—Generic Type Constraints is as
follows:

 import Foundation

 struct Pair<T: Equatable, U: Equatable>: Equatable {
 let key: T
 let value: U
 }

 func ==<T, U>(lhs: Pair<T, U>, rhs: Pair<T, U>) -> Bool {
 return lhs.key == rhs.key && lhs.value == rhs.value
 }

 let p1 = Pair(key: "hello", value: 1)
 let p2 = Pair(key: "hello", value: 1)

 let p3 = Pair(key: "goodbye", value: 2)

 p1 == p2 // True
 p1 == p3 // False

 So what have we learned in this section? We have gone over the basics of Swift generics,
we have examined some functional paradigms that are implemented with generics, and
we have discussed generic type constraints. Next up, we are going to discuss protocol
associated types.

108 CHAPTER 6: Generics

 Protocol Associated Types
 Unlike classes, structs, and enums, protocols don't support generic type
parameters. Instead they support abstract type members ; in Swift terminology
 Associated Types .

 —Russ Bishop

 As the preceding quote says, protocols cannot be generic in the traditional sense. Instead,
they can contain generic members . This section describes how to create protocols with
these generic members, which is a core piece to protocol-oriented programming. I wanted
to include it in this chapter so you had some background on generics beforehand. The
following code describes a ViewModelContainer :

 import Foundation

 class ViewModel {
 func doSomething() {
 print("A")
 }
 }

 protocol ViewModelContainer {
 associatedtype VM: ViewModel
 var viewModel: VM { get set }
 }

 First, we have declared a ViewModel class . We then declared our protocol and gave it an
associated type. The associated type is called VM and the right-hand side is telling the Swift
compiler this associated type is constrained to types that inherit from our base ViewModel
class. This type information will then be preserved on any object that conforms to this
protocol. Then, the viewModel property is declared with type VM . Next, let’s add a set method
so our protocol will now look like the following:

 protocol ViewModelContainer {

 associatedtype VM: ViewModel
 var viewModel: VM { get set }

 mutating func set(viewModel vm: VM)
 }

 We have encountered the mutating keyword before. We have to use it here because our
protocol is going to modify internal state. Since value types can conform to protocols, this
is required on the protocol method declaration. The way to circumvent this safety is to mark
a protocol as a class protocol. In the protocol declaration, if you use the class keyword like
so— protocol Trait: class {...} —it is not necessary to mark methods as mutating , as

http://docs.scala-lang.org/tutorials/tour/abstract-types.html#_blank
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Generics.html#//apple_ref/doc/uid/TP40014097-CH26-XID_289#_blank

109CHAPTER 6: Generics

classes are not value types, but reference types. Now that that’s out of the way, back to your
regularly scheduled programming. The next step is to declare an extension and give it the
functionality we want:

 extension ViewModelContainer {
 mutating func set(viewModel vm: VM) {
 viewModel = vm
 }
 }

 Now, why the associated type? We could just have our property be a base ViewModel . Read
on:

 class SomethingViewModel: ViewModel {}

 class Something: ViewModelContainer {
 var viewModel: SomethingViewModel

 init() {
 viewModel = SomethingViewModel()
 }
 }

 let s = Something()
 s.viewModel

 And presto! The power of the associated type is that we do not need to hold onto our
 ViewModel as a base ViewModel . We can have the specific type we want. In the previous
case, it was a S omethingViewModel , which, in a real app, should add more functionality
specific to this class.

 This is why associated types are so powerful, but why you might run into some arcane errors
using them. The downside of this power comes when you want to reference an associated
type protocol without specific type information. Do not add the following code to your
playground because it will not compile:

 let container: ViewModelContainer = Something() // This will not compile

 This line will give you this error: 'ViewModelContainer' can only be used as a generic
constraint because it has Self or associated type requirements . Let’s examine why this is the
case. First, we are using our Something class that is a ViewModelContainer . All we want to do
is reference this container’s viewModel property because we do not care what the concrete
type really is, just that it is a ViewModelContainer .

 This is pretty normal for protocols, but guess what, that associated type member makes
this impossible. The protocol essentially does not have enough type information because
the associated type is relying on a concrete implementation. We take away the concrete
implementation of our Something class and the VM type is unknown to the compiler.

110 CHAPTER 6: Generics

 If we look back at the error from the previous line of code, it tells us the protocol
 ViewModelContainer can only be used as a generic constraint. We cannot declare a type with
this protocol, but we can create generic functions with the type constrained to this protocol.
Let’s add one of these functions to our playground:

 let s = Something()
 s.viewModel

 func viewModelDoSomething<T: ViewModelContainer>(subject: T) {
 subject.viewModel.doSomething()
 }

 viewModelDoSomething(subject: s)

 This function uses the view model that is contained within the parameter subject. In this
case, the compiler has enough type information and can give us access to the base
view model functionality. We can also use this protocol in other protocol extension type
constraints. That does it for this section. We have seen how to implement associated types
in protocols and the constraints they put on our code.

 Wrap Up
 Another chapter bites the dust. We have just scratched the surface of Swift’s generics. There
is a lot more to know about generics, but it is out of scope for this book. We have gone
through the basics of Swift generics and some slightly more complex usages. We have seen
functional paradigms in Swift and how they use generics to create some pretty powerful
features.

 We then discussed generic type constraints. The constraints can keep our structures and
functions generic but at the same time give us enough information to create useful features.
We saw this when we create a generic Pair struct. This originally had zero constraints, which
made it impossible to write an equality operator for it. Once we constrained the generic
types to the Equatable protocol, we were able to implement the equality operator. Because
there is so much more to generics, I hope you do more research and keep learning about it.
I know I am still learning about generics. The next chapter is going to discuss Autolayout
and constraints in iOS. We will look at the coding side of Autolayout as well. See you there.

 Articles
 1. Generics

 https://developer.apple.com/library/ios/documentation/Swift/
Conceptual/Swift_Programming_Language/Generics.html

 2. Type Variance in Swift

 https://nomothetis.svbtle.com/type-variance-in-swift

 3. Swift: Associated Types

 www.russbishop.net/swift-associated-types

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Generics.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Generics.html
https://nomothetis.svbtle.com/type-variance-in-swift
http://www.russbishop.net/swift-associated-types

111© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_7

 Chapter 7
 iOS UI and Storyboards
 Welcome to Chapter 7 . You are almost finished with the first section of this book. Only two
chapters remaining! This chapter is going to be a bit different than our previous chapters. So
far, we have been able to write code in our playground and that’s been it, but in this chapter,
we are going to be working, partially, in Interface Builder! Don’t worry, we will not be starting
a new Xcode project and fragmenting our references. We are going to keep our storyboard
file in our playground, but more on that later.

 What You’ll Learn
 This chapter will be discussing Auto Layout and constraints. We are going to look at how to
set up constraints in our storyboard and how to set up constraints in our code. If you have
never coded constraints, you may find that it can be difficult to understand at first; in fact,
when I began, I found it to be a nightmare! My hope for this chapter is to save you from that.
We are going to examine the trait variations in Xcode 8 and how we can set up different
constraints based on different devices, orientations, and other UI differences. We will finish
up the chapter discussing some storyboard tips and tricks to keep in mind to make your
development go faster.

 Auto Layout and Constraints

 Auto Layout dynamically calculates the size and position of all the views in
your view hierarchy, based on constraints placed on those views.

 —Apple, Inc.

 This section is going to be half in Interface Builder and half in code. We are going to set up
our storyboard in our playground and build two sample interfaces. The first sample interface
we are going to build cannot be created with the Add Missing Constraints button. The
second half of this section will look at how we can set up views with constraints via Swift

http://dx.doi.org/10.1007/978-1-4842-2280-5_7

112 CHAPTER 7: iOS UI and Storyboards

code. We will examine the API and just how easy it can be to create complicated views. I
also cannot pass up an opportunity to talk about protocols, so we will take a closer look at a
protocol we have already seen in Chapter 5 . First, what is Auto Layout ?

 Auto Layout is a huge topic and there is a lot of math involved. The important part of the
math behind Auto Layout is that it represents each constraint as a separate equation.
According to Apple Inc. at https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/AutolayoutPG/AnatomyofaConstraint.html , the goal is to create
a view that has a series of equations that have only one possible solution. When there are
multiple possible solutions, you will get an ambiguous view. Figure 7-1 is an image from the
preceding link at Apple showing a sample constraint equation.

 Figure 7-1. An image from Apple Inc. showing a sample constraint equation

 Using these equations, Auto Layout can then define the size and position for every element.
Ultimately, this is its entire purpose, to specify the X, Y, width, and height of a particular
element. It can be really difficult to do this when you factor in all the different devices,
orientations, and other UI differences. In Figure 7-1 , you can see all the information
constraints have on Interface Builder. If you select a constraint on a view, you will see
a menu with this information. Later in this chapter, the constraint menu can be seen in
Figure 7-10 . This has been the briefest of introductions to the inner workings of Auto Layout.
Now let’s start building our first sample view in Interface Builder.

 Interface Builder
 Let’s start by adding our storyboard file to our playground. It’s not as easy as right clicking
our Resources folder and tapping New File . Start by opening Xcode and closing out any
existing playgrounds, projects, or workspaces. Once you see the Xcode launch screen, in
the top menu bar, tap File ➤ New ➤ New File . You will be able to create a new storyboard
file and just put it on your Desktop or anywhere that is easily accessible. Now, click and drag
the new storyboard file into your playground’s Resources folder. You will not be able to open
the storyboard and add view controllers and UI elements.

http://dx.doi.org/10.1007/978-1-4842-2280-5_5
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/AnatomyofaConstraint.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/AnatomyofaConstraint.html
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/

113CHAPTER 7: iOS UI and Storyboards

 I mentioned earlier that we would be building sample interfaces. The first sample I have for
you is from the future app we are going to start building in Chapter 9 . Figure 7-2 shows one
of the interfaces for our Grocery List app.

 Caution This is not a compiled storyboard file. You will not be able to link view controllers/
UI elements to classes. If you want to compile your storyboard, follow this link: http://
ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-

playgrounds/ .

 Figure 7-2. The interface for adding a grocery list in our future app

 Our interface in Figure 7-2 has a label, a text field , and two buttons. The buttons are fixed
at the bottom of the screen and the title and text field are fixed to the top of the screen.
The two buttons are also the same width and height. This is the first interface we are going
to build and, as you can see, it is a portrait design. We will not worry about landscape just
yet. Hop on over to our playground storyboard and drag a new view controller onto the
storyboard if you have not done so. Way back in Chapter 2 , Figure 2-1 showed the new
pane at the bottom of storyboards. I have provided the figure here a second time, so you do
not have to flip back. I have selected the smallest size available to me to make the figures
easier to see, but feel free to play with these settings as we go.

http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://dx.doi.org/10.1007/978-1-4842-2280-5_2

114 CHAPTER 7: iOS UI and Storyboards

 New pane available at the bottom of a storyboard file for seeing your layout in all devices
and orientations

 Let’s start building the interface from Figure 7-2 . First we need to drag a new label and
text field onto our view. Figure 7-3 shows the result of this action. I have also changed the
settings for the label and text field. Figures 7-4a through 7-4d show the attribute and size
inspectors for our label and text field.

 Figure 7-3. The view controller with our new label and text field added

115CHAPTER 7: iOS UI and Storyboards

Figure 7-4b. The Size Inspector for the label

 Figure 7-4a. The Attribute Inspector for the label

116 CHAPTER 7: iOS UI and Storyboards

 Figure 7-4d. The Size Inspector for the text field

 Figure 7-4c. The Attributes Inspector for the text field

117CHAPTER 7: iOS UI and Storyboards

 Now, that we have our first elements, let’s start adding constraints. Your first instinct might
be to tap Add Missing Constraints . This action can be really helpful when you’re starting
out and give you some idea how the constraints are going to look. I want you to refrain
from using this action, though. I also want you to try adding constraints by hand before I
show you the constraints I used. You will not be able to run your storyboard since we are in
a playground, but you can flip between the different device sizes, and this can give you a
good idea of what your constraints are doing. Figure 7-5 shows our view after tapping Add
Missing Constraints and moving from the smallest device to an iPhone 6+.

 Figure 7-5. Our view after choosing Add Missing Constraints and changing the display to iPhone 6+ instead of iPhone 4s

 You can see the constraints that were added were close, but are not exactly what we want,
and this just gets more complicated as we add more elements to our views. Hopefully,
you have tried to add the constraints yourself by hand. Now, I am going to step through
the constraints I used. I added four constraints to my title label from the Pin menu shown
in Figure 7-6 . Now, if you resize your view, you can see the label reacting correctly to the
screen resizing. The text field, however, does not, so let’s fix that next.

118 CHAPTER 7: iOS UI and Storyboards

 Now, we should have enough constraints on our title label. Figure 7-7 shows the Size
Inspector panel and the four constraints on our title label. Our title label has a Trailing Space
to Superview constraint, a Leading Space to Superview constraint, a Bottom Space to our
text field with a constant of 8 constraint, and a Top Space to the bottom of the Top Layout
Guide with a constant of 8 constraint.

 Figure 7-6. The Pin menu and the four constraints I selected to add to the title label

119CHAPTER 7: iOS UI and Storyboards

 Figure 7-7. All four constraints on our title label

120 CHAPTER 7: iOS UI and Storyboards

 Constraints can be difficult to talk about. I just listed out the constraints and you can see
them here, but what does all of this information mean? Remember when we were discussing
the purpose of Auto Layout? The only purpose of constraints is to specify the X, Y, width,
and height of a particular UI element. The Leading Space and Top Space constraints specify
the X and Y coordinates. The Trailing Space constraint then specifies the width of our
element and the Bottom Space constraint then handles the height of the element.

 Knowing this information, let’s move on to the text field. If we look at the Pin menu again, in
Figure 7-8 , we can see that the top, left, and right all look like the same constraints, but the
bottom constraint is giving me the value 383. You might see something different depending
on the device you have selected. If I were to use this constraint, the text field would always
be 383 pixels away from the bottom of the view. Therefore, if our view grows, so does our
text field. This is not what we want, so let’s select the three other constraints.

 Figure 7-8. The Pin menu while our text field is selected

121CHAPTER 7: iOS UI and Storyboards

 We now have three constraints on our text field, but this is not enough information for our text
field to know its X, Y, width, and height. Let’s examine what constraints we have applied. We
have a Trailing Space to Superview constraint, a Leading Space to Superview constraint, and a
Top Space to our title label with a constant of 8 constraint. Basically, we have the X, Y, and width
defined, but no height is defined. The last constraint in Figure 7-8 with a constant value of 383
would have defined the height, but in the wrong way. We can also define the height for our text
field by defining a Height constraint. Figure 7-8 shows this option directly below the Constrain to
Margins option. Let’s add this constraint. Figure 7-9 shows all of the constraints on our text field
after adding the Height constraint. Now, there is no more ambiguity on our view. If you choose
different devices in the bottom pane, you can see both of our UI elements resizing correctly.

 Figure 7-9. All four of our constraints on our text field

122 CHAPTER 7: iOS UI and Storyboards

 We are now going to add the last two elements from Figure 7-2 , the two buttons. The
requirements for the two buttons are (1) they will be fixed to the bottom of the view, (2) the
widths are the same, and (3) the heights are the same. Let’s start by adding a new button
to our view and setting the text to Cancel . We can then press Alt+Option to duplicate the
element. Set this new button’s text to Add List . This next part is going to be really cool.
Select the Cancel button, open up the Pin menu, add a Leading Space to Superview
constraint, and add a Bottom Space to the top of the Bottom Layout Guide with a constant
of 20 constraint.

 Now, add the mirror constraints to our Add List button. Those constraints would be the Trailing
Space to Superview constraint and another Bottom Space constraint. Now, select both
buttons, select the Pin menu, and add an Equal Widths constraint. We have one constraint left.
 C trl-drag from the Add List button to the Cancel button and add a Horizontal Space constraint.
Nothing is going to change on our view, so select the constraint by clicking on the blue line
between the two buttons. Figure 7-10 shows the Horizontal Space constraint.

 Figure 7-10. The Horizontal Space constraint

 The Constant on my view is set to 176. Let’s set this to something more reasonable like 15.
Once we set the Constant property, our view should update, and due to the Equal Widths
constraint and our two buttons, it should resize appropriately. That will about do it for our
view. There are more configurations we can do, but the important parts are done. Let’s move
on to the next section, where we will code constraints.

123CHAPTER 7: iOS UI and Storyboards

 Constraints in Code
 There is going to be a lot of code in this section. We are going to build the view from
Figure 7-11 in our playground using constraints instead of frames. This section will also look
back and expand on a protocol I introduced in Chapter 5 , the canBlockView protocol. This
protocol will also show up again when we are building our app. Let’s start with our first view.
Figure 7-11 shows the view we are going to build in our playground.

 Figure 7-11. The next view we are going to build via code instead of Interface Builder. We are going to use constraints
to build to view instead of frames.

 This is a pretty simple view, but there is a lot of code behind it. Start a new playground
page and let’s start coding. First, make sure you have the frameworks, UIKit and
PlaygroundSupport imported. Let’s add the following code to start out view:

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

124 CHAPTER 7: iOS UI and Storyboards

 import UIKit
 import PlaygroundSupport

 let view = UIView(frame: CGRect(x: 0, y: 0, width: 500, height: 500))
 view.backgroundColor = .white
 PlaygroundPage.current.liveView = view

 We have a square view with a white background and we then set the playground’s live view to
this view. This is how we can see and create views in our playgrounds. Figure 7-12 shows how
to turn the live view on in our playground. Open the Assistant Editor, which is represented by the
two interlocking circles at the top right, then make sure Timeline is selected instead of Manual .

 Figure 7-12. The Assistant Editor open and our Timeline selected instead of Manual to display the live view in our playground

125CHAPTER 7: iOS UI and Storyboards

 Now, that our playground is set up, let’s add our three UI elements. The following code is
adding our two UIButtons and one UIView :

 let orangeButton = UIButton(frame: .zero)
 orangeButton.backgroundColor = .orange
 orangeButton.setTitle("Button 1", for: .normal)

 let greenButton = UIButton(frame: .zero)
 greenButton.backgroundColor = .green
 greenButton.setTitle("Button 2", for: .normal)

 let purpleView = UIView(frame: .zero)
 purpleView.backgroundColor = .purple

 view.addSubview(orangeButton)
 view.addSubview(greenButton)
 view.addSubview(purpleView)

 We have created our two buttons and view and we have given them all a frame of
 zero . Once this code is added, nothing is going to happen on our view because
all of their frames are zero . The next step is critical. We must set the property
 translatesAutoresizingMaskIntoConstraints to false for all three of our elements. Here is
the documentation for this property:

 A Boolean value that determines whether the view’s autoresizing mask is
translated into Auto Layout constraints.

 —UIView Class Reference

 Remember in Chapter 2 when I said the old springs and struts system never left? Well, here
it is. If we set this property to true , the old system will take priority and any Auto Layout
constraints we add will create conflicts and not work. I always forget this step, so I wanted
to make sure I called it out for you. You have to set this property as false any time you want
to create constraints in code:

 orangeButton.translatesAutoresizingMaskIntoConstraints = false
 greenButton.translatesAutoresizingMaskIntoConstraints = false
 purpleView.translatesAutoresizingMaskIntoConstraints = false

 All right, we have all our elements set up and added to our live view. Let’s add constraints
to the orangeButton . Figure 7-11 is the view configuration we are shooting for, so you can
try adding the constraints yourself first, or just follow along. If you want to try it yourself, a

http://dx.doi.org/10.1007/978-1-4842-2280-5_2

126 CHAPTER 7: iOS UI and Storyboards

good place to start might be Interface Builder. When I started writing constraints in code, I
would create my view in Interface Builder and then translate the constraints into code from
there. Just an suggestion. Let’s add the leading, bottom, top, and trailing constraints to the
 orangeButton :

 var constraints: [NSLayoutConstraint] = []

 constraints += [
 orangeButton.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant: 10),
 orangeButton.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -10),
 orangeButton.trailingAnchor.constraint(equalTo: greenButton.leadingAnchor, constant: -10),
 orangeButton.topAnchor.constraint(equalTo: purpleView.bottomAnchor, constant: 10)
]

 // All of our constraints will go here...

 NSLayoutConstraint.activate(constraints)

 I have created an Array<NSLayoutConstraint> , so I do not have to think of names for all of
our constraints. The last line is where we tell the constraint system to activate all of our
constraints. Any constraints we create from now on will go before this last line where I have
our “All of our constraints will go here…” comment. Let’s examine the constraints we have
created here. We align our orangeButton ’s leadingAnchor to the live view’s leadingAnchor
with a constant of 10 pixels.

 The bottomAnchor is then constrained to the bottomAnchor of our live view. We then also
supply a negative constant value here to offset the constraint by ten pixels, so our button
will be ten pixels from the bottom of our live view. We then add our trailingAnchor to be
constrained to the leadingAnchor of the greenButton . This will make sure our two buttons
are always ten pixels away from each other. The last constraint we have defined is the
 topAnchor and we have constrained this to ten pixels away from our purpleView . Figure 7-13
shows the results of our constraints in our playground’s live view.

 Note We will be using the new iOS 9 API in this chapter. In Chapter 1 , we discussed the old API
briefly.

http://dx.doi.org/10.1007/978-1-4842-2280-5_1

127CHAPTER 7: iOS UI and Storyboards

 The orangeButton looks like it’s in the right place, but our greenButton is just kind of floating.
Let’s add one more constraint to the previous definitions, so our greenButton will be closer
to the final layout:

 constraints += [
 orangeButton.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant: 10),
 orangeButton.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -10),
 orangeButton.trailingAnchor.constraint(equalTo: greenButton.leadingAnchor, constant: -10),
 orangeButton.topAnchor.constraint(equalTo: purpleView.bottomAnchor, constant: 10),
 orangeButton.firstBaselineAnchor.constraint(equalTo: greenButton.firstBaselineAnchor)
]

 Figure 7-13. Our live view in our playground after applying constraints to our orangeButton

128 CHAPTER 7: iOS UI and Storyboards

 The new constraint is the last one in this array. We have aligned the firstBaselineAnchor
of our orangeButton to the firstBaselineAnchor of the greenButton . Figure 7-14 shows the
result of all of our constraints.

 Figure 7-14. All of our constraints including the firstBaselineAnchor constraint applied to the orangeButton

 The constraints for our two buttons are almost done. We need to add two more constraints,
this time to our greenButton . The new constraints are as follows:

 constraints += [
 greenButton.trailingAnchor.constraint(equalTo: view.trailingAnchor, constant: -10),
 greenButton.widthAnchor.constraint(equalTo: orangeButton.widthAnchor)
]

129CHAPTER 7: iOS UI and Storyboards

 The constraints here tell the greenButton ’s trailingAnchor to be constrained to our
live view’s trailingAnchor with a constant of ten pixels to offset the button just like our
 orangeButton . Our second constraint here then makes sure our two buttons have the same
width. These constraints are all we need because the constraints for our orangeButton have
defined the X and Y coordinates as well as the Height constraint for our greenButton . Adding
the Trailing and Width constraints then defines the width of our buttons. Figure 7-15 shows
our view with these new constraints.

 Figure 7-15. The live view after our new constraints

 Last up is our purpleView . We will be able to get away with three constraints here. We have
already defined the bottomAnchor for our purpleView in the constraints for our orangeButton .
The following code is our last three constraints:

130 CHAPTER 7: iOS UI and Storyboards

 constraints += [
 purpleView.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant: 10),
 purpleView.trailingAnchor.constraint(equalTo: view.trailingAnchor, constant: -10),
 purpleView.topAnchor.constraint(equalTo: view.topAnchor, constant: 10)
]

 These last three constraints keep our purple view within the bounds of the view and the
 bottomAnchor is already set up to be constrained to the orange button. Figure 7-16 shows
the final live view with all of our constraints applied.

 Figure 7-16. The final live view with all constraints applied to our three UI elements

131CHAPTER 7: iOS UI and Storyboards

 We made it! Now, that we have all of our constraints set up, start changing the frame for the
live view to see how the view adapts. It should automatically resize all subviews correctly. In
the last part of this section, we are going to build the canBlockView protocol.

 Blocking a View
 Part of the reason I did not show you the implementation for this protocol when it first
showed up was that it was not relevant to the chapter, but it also involved constraints. We
can now implement this protocol. Here is the skeleton code for this section. I would highly
recommend a new playground page :

 import UIKit
 import PlaygroundSupport

 let view = UIView(frame: CGRect(x: 0, y: 0, width: 320, height: 640))
 view.backgroundColor = .white
 PlaygroundPage.current.liveView = view

 protocol canBlockView {
 var view: UIView { get set }
 func blockUI()
 }

 extension canBlockView {
 func blockUI() {

 }
 }

 class ViewContainer: canBlockView {
 var view: UIView

 init(view: UIView) {
 self.view = view
 }
 }

 let container = ViewContainer(view: view)
 container.blockUI()

 All right, we have our live view; we have the canBlockView protocol defined. In this example,
I have added a view property to the protocol so we do not need to instantiate an actual
 UIViewController conforming to the protocol. We have an empty extension on our protocol
and a ViewContainer class. This class conforms to our protocol so it must have a view and

 Tip Take this time to open the Assistant Editor and our Timeline to show the live view.

132 CHAPTER 7: iOS UI and Storyboards

we allow the view to be injected. We then instantiate the container with our live view and
call blockUI . Currently, you should see a white screen. Figure 7-17 shows the final result of
 blockUI working successfully.

 In Figure 7-17 , I have a black “blocking” view with a UIActivityIndicatorView in the center.
I have added some padding to the edges of the “blocking” view so you can see the view
behind it. Now, take some time and see if you can’t code the constraints on this one. You
will need a total of six constraints to have a view that blocks the other and a centered
 UIActivityIndicatorView . See what constraints you can apply to your blocking view and
when you are ready to move on, here is the code for the canBlockView extension :

 extension canBlockView {
 func blockUI() {
 let activityIndicator = UIActivityIndicatorView(activityIndicatorStyle: .whiteLarge)
 let blockingView = UIView(frame: .zero)

 blockingView.backgroundColor = .black

 Figure 7-17. The playground’s live view with blockUI running successfully

133CHAPTER 7: iOS UI and Storyboards

 activityIndicator.translatesAutoresizingMaskIntoConstraints = false
 blockingView.translatesAutoresizingMaskIntoConstraints = false

 blockingView.addSubview(activityIndicator)
 view.addSubview(blockingView)

 NSLayoutConstraint.activate(
 constraints(for: activityIndicator, on: blockingView) +
 constraints(for: blockingView)
)

 activityIndicator.startAnimating()
 }

 private func constraints(for indicator: UIActivityIndicatorView, on blockingView:
UIView) -> [NSLayoutConstraint] {

 return [
 indicator.centerXAnchor.constraint(equalTo: blockingView.centerXAnchor),
 indicator.centerYAnchor.constraint(equalTo: blockingView.centerYAnchor)
]
 }

 private func constraints(for blockingView: UIView) -> [NSLayoutConstraint] {
 return [
 blockingView.topAnchor.constraint(equalTo: view.topAnchor, constant: 10),
 blockingView.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant:

10),
 blockingView.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -10),
 blockingView.trailingAnchor.constraint(equalTo: view.trailingAnchor, constant: -10)
]
 }
 }

 You might have coded yours a bit differently, but here is how I implemented
 canBlockView . I instantiated both of the UI elements. Then, I set the
 translatesAutoresizingMaskIntoConstraints property to false and added both of the
elements to the live view. You have to add these elements to the view before you create
the constraints. The constraints depend on the two views having some sort of hierarchical
relationship. Then we just activate all of our constraints and make sure the activity
indicator starts animating. The UIActivityIndicatorView will not show up if we do not call
 startAnimating . That’s it for the protocol. Pretty simple, but powerful. We can constrain our
protocol to work with UIViewControllers or some other protocol with a view property. Then
we can just start blocking UI anywhere we have one.

 In this section, we have successfully applied constraints in Interface Builder and created
a view with constraints in code. We also implemented our old canBlockView protocol with
constraints. I hope you have a greater understanding of Auto Layout and constraints now.
If this has been more review than new for you, don’t worry; we will be exploring advanced
constraints in our next section.

134 CHAPTER 7: iOS UI and Storyboards

 Trait Variations
 In this section, we will be working in our storyboard file again. We are going to build a
view that will adapt to the orientation of the device, the size of the device, and other UI
differences. Traits are not a new concept to Xcode 8 and iOS 10. They are just now stepping
into the spotlight. The new device configuration pane from Figure 2-1 has the button Vary
for Traits on the far right. This button puts Interface Builder into a state where any new
constraints or configurations are based on the selected size class. This is invaluable when
building our adaptive layouts.

 This section is going to be a bit different than the last section. I am going to give you an
overview of the layout we are going to build, but there are too many constraints and steps
to reasonably walk through. It would also create a ton more figures. Instead, in this section I
am going to show you how to changes traits and apply different constraints for different size
classes. I then provide a table near the end of this section that lists all of the constraints and
variations to build this view.

 The view we are going to build here is going to contain a text view, two buttons, and a stack
view containing three buttons. The idea of the view is that it’s an entry form for some app.
We want to maximize the amount of space the user has to enter text, so we do not want the
other elements getting in the way or shrinking our entry field. We also need to make sure it’s
very easy for the user to tap both buttons and interact with the buttons in our stack view.
Figure 7-18 shows the sample view we will build in this section in portrait and landscape
orientations.

 Figure 7-18. The new view we are going to build in portrait and landscape orientations

135CHAPTER 7: iOS UI and Storyboards

 You can see in Figure 7-18 how we have maximized the space for our text view. We have
also placed the buttons in good positions for the user to tap them easily. It might not seem
like it, but there is a lot here. There are constraints and properties that only apply in certain
size classes. This next part is going to cover how to modify these traits and then I am going
to show you the table with all of the constraints and views so you can re-create this view.

 Start by dragging a new view controller onto our storyboard, and then add a text view on
the same view controller. Now, select the text view and select the Attributes Inspector in
the right pane. If you look at the font color and font size attributes, you might notice a little
plus (+) sign to the left of the attributes. Clicking this button will present a popover view to
introduce a new trait variation. Figure 7-19 shows this popover.

 Figure 7-19. The trait variation menu for the font color of a text view

 We have three options on our menu including Width , Height , and Gamut . The Gamut setting
is for the colors in our app. We will not worry about this setting here. Within the Width and
 Height menus, we have the options Any , Compact , and Regular . The combination of the
width and height create the size classes the new trait variation would apply to. If we were to
select Any Width and Compact Height, then the new font color would only apply to views
where the Height is classifiable as Compact. You will use this menu extensively to create the
variations we need for Figure 7-18 .

 Way back in Figure 7-10 where we defined our Horizontal Space constraint , you can see
there is a plus sign (+) next to the installed property. Checking/unchecking this property will
install and uninstall the constraint and we can apply trait variations on this property, just
like for our font color. If we added a specific size class to a constraint and unchecked the
 default installed property , this would effectively uninstall the constraint where we are not that
specific size class. This is key to building our new view.

 Here is an overview of the interface we are going to build. The view contains a UITextView ,
three UIButtons embedded in a UIStackView , and two other UIButtons with the text Cancel
and Add. The three buttons embedded in the stack view are all Width: 46 and Height: 30.
I have also added Width and Height constraints to these buttons before embedding them.
Once embedded, I give a ten-pixel Spacing to the stack view. The stack view also starts
out with a horizontal axis. Figure 7-20 is an abbreviated version of Figure 7-1 . Refer to the
format of the constraint in this figure, as this is the format I will use in the following table.

136 CHAPTER 7: iOS UI and Storyboards

 Applied Constraints

 UITextView

 Portrait Size Class

 Superview.Trailing Margin = 1.0 × Text View.Trailing + 0.0 wA hR

 Superview.Leading Margin = 1.0 × Text View.Leading + 0.0 wA hA

 Text View.Top = 1.0 × Top Layout Guide.Bottom + 0.0 wA hA

 Stack View.Top = 1.0 × Text View.Bottom + 8.0 wA hR

 Landscape Size Class

 Add.Trailing = 1.0 × Text View.Trailing + 0.0 wA hC

 Superview.Leading Margin = 1.0 × Text View.Leading + 0.0 wA hA

 Text View.Top = 1.0 × Top Layout Guide.Bottom + 0.0 wA hA

 Stack View.Leading = 1.0 × Text View.Trailing + <Standard> wA hC

 Cancel.Top = 1.0 × Text View.Bottom + <Standard> wA hC

 UIStackView

 Portrait Size Class

 Stack View.Center X = 1.0 × Superview.Center X + 0.0 wA hR

 Cancel.Top = 1.0 × Stack View.Bottom + 8.0 wA hR

 Stack View.Top = 1.0 × Text View.Bottom + 8.0 wA hR

 Axis Horizontal wA hR

 Spacing 10 N/A

 Landscape Size Class

 The following table is the list of all the constraints and trait variations needed to build
this view for portrait, landscape, and different devices. Each element is a section with
all of the corresponding constraints. The constraints under portrait or landscape are the
constraints that should be activated for that orientation. All of the constraints under portrait
and landscape still need to be applied to the element. The order of the equation is also
important, so be sure to pay close attention.

 Figure 7-20. An abbreviated version of Figure 7-1

137CHAPTER 7: iOS UI and Storyboards

 Stack View.Center Y = 1.0 × Superview.Center Y + 0.0 wA hC

 Superview.Trailing Margin = 1.0 × Stack View.Trailing + 0.0 wA hC

 Stack View.Leading = 1.0 × Text View.Trailing + <Standard> wA hC

 Axis Vertical wA hC

 Spacing 10 N/A

 UIButton - Cancel

 Portrait Size Class

 Superview.Leading Margin = 1.0 × Cancel.Leading + 0.0 wA hA

 Add.Leading = 1.0 × Cancel.Trailing + 10.0 wA hA

 Bottom Layout Guide.Top = 1.0 × Cancel.Bottom + 20.0 wA hA

 Cancel.Top = 1.0 × Stack View.Bottom + 8.0 wA hR

 Cancel.Width = 1.0 × Add.Width + 0.0 wA hA

 Landscape Size Class

 Superview.Leading Margin = 1.0 × Cancel.Leading + 0.0 wA hA

 Add.Leading = 1.0 × Cancel.Trailing + 10.0 wA hA

 Bottom Layout Guide.Top = 1.0 × Cancel.Bottom + 20.0 wA hA

 Cancel.Top = 1.0 × Text View.Bottom + <Standard> wA hC

 Cancel.Width = 1.0 × Add.Width + 0.0 wA hA

 UIButton - Add

 Portrait Size Class

 Superview.Trailing Margin = 1.0 × Add.Trailing + 0.0 wA hR

 Add.Leading = 1.0 × Cancel.Trailing + 10.0 wA hA

 Bottom Layout Guide.Top = 1.0 × Add.Bottom + 20.0 wA hA

 Cancel.Width = 1.0 × Add.Width wA hA

 Landscape Size Class

 Add.Trailing = 1.0 × Text View.Trailing + 0.0 wA hC

 Add.Leading = 1.0 × Cancel.Trailing + 10.0 wA hA

 Bottom Layout Guide.Top = 1.0 × Add.Bottom + 20.0 wA hA

 Cancel.Width = 1.0 × Add.Width wA hA

138 CHAPTER 7: iOS UI and Storyboards

 The previous table contains all the constraints for all the UI elements on our view. Step
through this slowly. There is a lot here. I have duplicated the constraints for portrait and
landscape where the size class is listed as wA hA . When adding these variations, you can
select the Vary for Traits button and select the trait you want to vary, Width and/or Height .
Then add the constraints and variations. Xcode 8 will then automatically create the variations
based on the selected size class.

 This has been a relatively short section, but a lot has happened here. I hope you gave the
trait variations a try first and also walked through the table and built a successful view that
adapts to portrait and landscape orientations. It’s been a long chapter and we are almost
done. Next up, we are going to quickly go through storyboard tips and tricks.

 Storyboard Tips and Tricks
 This is going to be a quick section. We are going to discuss some cool features storyboards
have available. The first cool features are custom views and gesture recognizers, all
configured in our storyboard. The second set of cool features are the relatively new @
IBDesignable/@IBInspectable . Let’s jump right in.

 Custom Views and Gestures
 In the same storyboard we have been editing, let’s add another view. Let’s add this new
view to our Add Grocery List view . Make sure you have selected a UIView element from the
 Object Library instead of the view controller. Then click and drag this new UIView directly
next to the little yellow icon in the top bar of the view controller. Figure 7-21 shows the new

 Caution The constraints will not display in the Size Inspector when they do not apply to the
current trait collection (size class). I recommend switching between portrait and landscape and
different devices while building this view.

139CHAPTER 7: iOS UI and Storyboards

 Figure 7-21. The new UIView added to our Add Grocery List view

140 CHAPTER 7: iOS UI and Storyboards

view on our Add Grocery List view.

 This feature allows us to create views in our storyboard using Auto Layout and constraints.
These views are then not added to the base view on our view controller. However, we
can create an @IBOutlet to the view and then add it later during the execution of our view
controller. This can save a huge amount of time and coding, because we do not have to
create this view in code and we can add as many extra UIView s to our view controller as we
want. This feeds directly into the next cool feature of our storyboards, gestures.

 We can add UIGestureRecognizer s in the same way as the previous UIView s. If you search
for “gesture” in the Object Library, you will receive a number of options including these:

 Tap Gesture Recognizer

 Pinch Gesture Recognizer

 Rotation Gesture Recognizer

 Swipe Gesture Recognizer

 Pan Gesture Recognizer

 Screen Edge Pan Gesture Recognizer

 Long Press Gesture Recognizer

 Select any one of these gesture recognizers and drag it to any element on our view controller
or custom view. I added a UITapGestureRecognizer to the base view on the view controller.
We can then create an @IBAction in our view controller and link this to the tap gesture. This
is really convenient when we have text fields and we want the user to be able to tap off the

141CHAPTER 7: iOS UI and Storyboards

field to close the keyboard. Figure 7-22 shows our view controller with a custom view and a
tap gesture added.

 That will do it for our custom views and gestures. They are really easy to use and can save

 Figure 7-22. Our Add Grocery List view controller with a custom view and a tap gesture

142 CHAPTER 7: iOS UI and Storyboards

so much time and effort. Next, we will discuss the code side of things with @IBDesignable/@
IBInspectable .

 Designables and Inspectables
 We are finally done with all the figures. Yay! There has been a lot in this chapter. We will be
focusing on code for this section, so let’s go to a new playground page and get started.
First, create a new subclass of UIButton called Button :

 import UIKit

 class Button: UIButton {

 }

 The next step is adding the @IBDesignable attribute to the front of our class declaration.
Now, UIButton should already be @IBDesignable , but it does not harm anything to add this
attribute. We are then going to add one property called cornerRadius to our Button class.
This property must then be marked with the @IBInspectable attribute. The following code
shows these actions:

 @IBDesignable class Button: UIButton {
 @IBInspectable var cornerRadius: CGFloat = 0.0
 }

 Adding these attributes to our class allows Interface Builder to interpret this class and add
these options in the Attributes Inspector. We can then configure our views and our custom
properties directly in Interface Builder. There is one last thing we need to cover here. This
property is currently not hooked up to anything. The next code block is the standard way to
hook up our new cornerRadius property:

 @IBDesignable class Button: UIButton {
 @IBInspectable var cornerRadius: CGFloat = 0.0

 override func prepareForInterfaceBuilder() {
 super.prepareForInterfaceBuilder()

 layer.cornerRadius = cornerRadius
 }
 }

 The prepareForInterfaceBuilder method is called when compiling the storyboard. We can
then link our cornerRadius property to the layer’s cornerRadius property. However, there is
an easier way we can set this up with the prepareForInterfaceBuilder .

 The following code is how we can avoid using the prepareForInterfaceBuilder method. I
have created a second class called Button2 to illustrate this code:

 @IBDesignable class Button2: UIButton {
 @IBInspectable var cornerRadius: CGFloat = 0.0 {
 didSet {

143CHAPTER 7: iOS UI and Storyboards

 layer.cornerRadius = cornerRadius
 }
 }
 }

 This uses Swift’s property observers to immediately set the layer’s cornerRadius property
once we set our cornerRadius property. And that’s it for this section. This has been a
simplistic example, but I have used the @IBDesignable / @IBInspectable extensively to solve
many problems and make my views configurable via the storyboard to save code.

 Wrap Up
 And that’s a wrap. This chapter has had an absurd amount of figures. My hope is that you
are more confident when building your interfaces with constraints now. I also hope you
have a good understanding of trait variations and how to create different constraints for
different layouts. We have also looked at some quick tips and tricks you can apply when
using storyboards. We should also now be capable of configuring our views and adding tap
gestures directly in Interface Builder.

 Articles
 1. Understanding Auto Layout

 https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/AutolayoutPG/index.html

 2. Making Apps Adaptive, Part 1

 https://developer.apple.com/videos/play/wwdc2016/222/

 3. Making Apps Adaptive, Part 2

 https://developer.apple.com/videos/play/wwdc2016/233/

 4. Adaptive Interfaces Part 1: How UITraitCollection Changed
Everything

 https://possiblemobile.com/2016/07/adaptive-interfaces-
uitraitcollection/

 5. Auto Layout 101

 www.weheartswift.com/auto-layout-101/

 6. Swift: Today’s Wow Moment. Adding Menus to Playgrounds

 http://ericasadun.com/2015/03/25/swift-todays-wow-moment-
adding-menus-to-playgrounds/

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://developer.apple.com/videos/play/wwdc2016/222/
https://developer.apple.com/videos/play/wwdc2016/233/
https://possiblemobile.com/2016/07/adaptive-interfaces-uitraitcollection/
https://possiblemobile.com/2016/07/adaptive-interfaces-uitraitcollection/
http://www.weheartswift.com/auto-layout-101/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/
http://ericasadun.com/2015/03/25/swift-todays-wow-moment-adding-menus-to-playgrounds/

145© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_8

 Chapter 8
 Testing
 This is the last chapter before we will start building our app. The goal of this chapter is to
take you through testing in iOS. We are going to examine the idea of mocking and creating
mocks. This will lead us into how to use Apple’s XCTest framework and the idea of DRY and
WET testing. Afterward, the section on the Swift Package Manager is going to expand on
the Logger package from Chapter 3 .

 We will discuss test-driven development (TDD) in this chapter, including the benefits and
the drawbacks. It is important to discuss TDD and other styles of testing because such
development can be difficult in Swift/iOS and we must have reasonable expectations. We
also want to test our code efficiently, without losing context; the last section in this chapter
will examine how to find the balance here. This chapter is going to be a little light in the
playground coding. We are going to add more to our playground in our first section, but the
others sections are just more overviews and discussions.

 What You’ll Learn
 This chapter is all about testing in Swift/iOS. In the first section, we are going to cover
mocking in Swift. This is critical to testing in Swift because there is no way to automatically
mock anything; it is all manual. We are going to build a simple mocking framework that we
are going to use in the next few chapters.

 We are then going to discuss Apple’s unit testing framework, XCTest . XCTest is Apple’s
testing framework that is included with every Xcode project. We are going to discuss the
API and what is available to you. After the introduction to XCTest, we are going to take a
step back from coding and look at the concept of DRY tests and WET tests . These stand for
 don’t repeat yourself and well-expressed tests .

 After the more conceptual and stylistic discussion, we can move on to testing our Logger
package from Chapter 3 . This section is going to pull in techniques from Chapter 5 so we can
actually test our package. This section will finish the discussion of the Swift Package Manager
and our Logger package. Finally, this chapter is going to finish with test-driven development
(TDD) . There are a lot of ideas, theories, and styles when it comes to TDD. We are going to
discuss the practice and what it offers us as Swift/iOS developers. Let’s get started with mocking!

http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_5

146 CHAPTER 8: Testing

 Mocks
 Mocking in Swift can be a real pain. Swift does not have any frameworks or any support
provided by Apple to allow tests to access code in automatic mockable ways. What does
this mean? In Java, there is a framework called Mockito . I do not fully understand how
this framework works, but essentially it does a lot of work behind the scenes allowing it to
intercept method invocations.

 Swift, at a language level, does not allow this on a universal scale. There is something called
 swizzle where you can swap method implementations. This process has a lot of restrictions
and we cannot use it reliably for testing purposes. Swizzling is also only possible where
we can access the Objective-C runtime, such as NSObject and other C classes. Pure Swift
objects and value types do not allow swizzling.

 Therefore, there are no mocking frameworks that work like Java’s Mockito. That does not
mean we cannot mock objects though. We can write manual mocks by subclassing our
objects in the test target. We then just need a way to record what happened when that
mock was called. A framework called MockFive is a good framework to look at. MockFive is
available on GitHub at https://github.com/DeliciousRaspberryPi/MockFive .

 This framework facilitates testing and manual mocking by recording method invocations and
the parameters that were passed into the mock. In this section, we are going to write our
own lightweight version of this framework. We will then use this code in our app when we
need to write mock objects. Open up your playground reference and let’s get coding. We will
start with a protocol :

 protocol Mockable {
 var mocked: Mocked { get }

 func record(method call: String, with parameters: Any...)
 func value<T>(for call: String) -> T?
 func set(value: Any?, for call: String)
 func invocations(for call: String) -> Int
 func parameters(for call: String) -> [MockParameter]
 }

 Yay, protocols! First, we have a property that is of type Mocked . This will be the class that
drives the data behind the mock. We then have a set of methods that will help facilitate our
mock object. We can record the method call, set and get mock return values for a particular
method, get the number of invocations of a particular method call, and finally get all of the
parameters that were recorded. The MockParameter is an object that just helps us get the
correct type out of the mock using generics. Let’s create the MockParameter class and the
stub for our Mocked class:

 class MockParameter {
 var param: Any

 init(value: Any) {
 param = value
 }

https://github.com/DeliciousRaspberryPi/MockFive

147CHAPTER 8: Testing

 func value<T>() -> T? {
 return param as? T
 }
 }

 class Mocked {

 }

 You can see that the MockParameter class just holds onto the parameter value and has a
generic method that will try to cast to our specific type. This is so we do not have to mess
around with casting in our tests and we can be a bit more concise.

 Next, let’s fill in our Mocked class with an implementation. In fact, this object is going to have
an almost identical API to our protocol. The Mocked object is also going to contain two arrays
to record the invocations and hold onto our return values. I have setup two typealiases,
 Invocation and ReturnValue , for clarity. Let’s see this class:

 class Mocked {
 typealias Invocation = (signature: String, parameters: [Any])
 typealias ReturnValue = (signature: String, value: Any)

 var calls: [Invocation]
 var returnValues: [ReturnValue]

 init() {
 calls = []
 returnValues = []
 }

 func record(method call: String, with parameters: [Any]) {

 }

 func value<T>(for call: String) -> T? {
 return nil
 }

 func set(value: Any, for call: String) {

 }

 func invocations(for call: String) -> Int {
 return 0
 }

 func parameters(for call: String) -> [MockParameter] {
 return []
 }
 }

148 CHAPTER 8: Testing

 I have added some default return values to get this class compiling. Other than that, we
have a blank slate. You can probably see where I am going with this class, so how about
you fill in the implementation and I’ll wait… Awesome. The next blocks of code are my
implementation:

 class Mocked {
 typealias Invocation = (signature: String, parameters: [Any])
 typealias ReturnValue = (signature: String, value: Any)

 var calls: [Invocation]
 var returnValues: [ReturnValue]

 init() {
 calls = []
 returnValues = []
 }

 func record(method call: String, with parameters: [Any]) {
 calls.append(Invocation(signature: call, parameters: parameters))
 }

 Here, we have our setup and record method. The record method here takes two
parameters, the method call as a string and the parameters for that method call. This is
slightly different than the protocols implementation, though. The parameters parameter was
variadic in our protocol. Here it is just an array. This is so we do not try to inject our variadic
array as one parameter, which is what would happen if this was also variadic. Next, we have
the implementation for the valueForCall method :

 class Mocked {

 // ...

 func value<T>(for call: String) -> T? {
 return returnValues.first {
 $0.signature == call
 }?.value as? T
 }

 This method is using a new Swift 3 Array API called first . This will select the first element
it finds that satisfies our closure. We then just cast the returned value to our generic type.
The last three methods of the Mocked class are setValueForCall , invocationsForCall , and
 parametersForCall . First let’s look at setValueForCall :

 class Mocked {

 // ...

 func set(value: Any, for call: String) {
 returnValues.append(ReturnValue(signature: call, value: value))
 }

 func invocations(for call: String) -> Int {

149CHAPTER 8: Testing

 return calls.filter {
 $0.signature == call
 }.count
 }

 These two methods just set up a new return value and then get the count for a particular
method call. The parametersForCall method is the most complicated because we are
returning an Array of our MockParameter object, not just the Array<Any> :

 class Mocked {

 // ...

 func parameters(for call: String) -> [MockParameter] {
 let invocation = calls.first {
 $0.signature == call
 }
 return invocation?.parameters.map {
 MockParameter(value: $0)
 } ?? []
 }
 }

 Look through this carefully. It gets the first class that matches the signature, then maps the
list of parameters to convert each one from an Any type to a MockParameter . Now, all that
is left is to implement our protocol extension . Since the API is the same, you can probably
guess the protocol methods are just a pass through to the Mocked property. Here is the code:

 extension Mockable {
 func record(method call: String, with parameters: Any...) {
 mocked.record(method: call, with: parameters)
 }

 func value<T>(for call: String) -> T? {
 return mocked.value(for: call)
 }

 func set(value: Any?, for call: String) {
 mocked.set(value: value, for: call)
 }

 func invocations(for call: String) -> Int {
 return mocked.invocations(for: call)
 }

 func parameters(for call: String) -> [MockParameter] {
 return mocked.parameters(for: call)
 }
 }

150 CHAPTER 8: Testing

 I don’t know about you guys, but I find this really cool. Now, any mock object we create in
tests can conform to this protocol and we can then use these methods to record method
invocations, set and get mocked return values for tests, and get the parameters and number
of invocations of a particular method.

 This code here is very simple, but it will serve our purposes well. We are going to use this
when testing our app in the second half of this book. If you need a mocking framework for
a project, I would look into MockFive on GitHub. It offers a lot more features. Well, that’s
the end of our playground reference. The rest of this chapter is going to be more of an
introduction/overview of XCTest and Swift Package Manager testing. Let’s now discuss
Apple’s testing framework XCTest.

 XCTest
 This section is all about unit tests; there are going to be no new playground additions in this
section, so sit back and relax. When you create a new Xcode project, you have the choice
to include a target for unit tests. Figure 8-1 shows these options on the Choose Options for
Your New Project screen.

 Figure 8-1. The Choose Projects for Your Ne Project screen where you have the choice to include Unit Tests/UI Tests

151CHAPTER 8: Testing

 If you select the Include Unit Tests option , the XCTest framework is then automatically
provided with a test target for the project. The following code block is what Apple provides
after creating a new test file:

 import XCTest
 @testable import Chapter8

 class Chapter8Tests: XCTestCase {

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the invocation of each test

method in the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests produce the correct

results.
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measure {
 // Put the code you want to measure the time of here.
 }
 }
 }

 The first thing to notice is the @testable attribute near the top of the file. In Chapter 3 , we
discussed the idea of Swift modules. Those modules can be imported into other Swift
modules. We have to import our module to allow the tests to access our code. The added @
testable attribute then gives our tests access to the internal members within our module.
Internal members are any class, struct, enum, or variable that is not marked with public or
 private keywords. However, we still cannot access the private members even with the @
testable attribute.

 Our Chapter8Tests class then inherits from XCTestCase , which is the base class for all
unit test classes. This class gives us a bunch of methods and functionality to help write
tests. The first three methods are all pretty standard, setUp , tearDown , and an example test
method. The last method is actually pretty cool. We can measure the performance of our
code. This can come in really handy when working on nonfunctional requirements, such as
performance and speed.

http://dx.doi.org/10.1007/978-1-4842-2280-5_3

152 CHAPTER 8: Testing

 The XCTest framework uses XCTest Assertions to provide test results. These assertions
range from equality tests to exception tests. A list of these assertions can be found at the
bottom of the article at the following link: https://developer.apple.com/library/mac/
documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_
tests.html . There is not much to talk about in XCTest. There is a lot to it, but most you can
learn by just writing tests. I do want to talk about expectations though.

 Expectations in XCTest are very important and allow you to test asynchronous code without any
weird dispatch async. If you write a test that actually makes a network call, whether that is good
practice or not, you cannot write a normal unit test because your networking code is probably
asynchronous (I hope it is!). This problem is solved by expectations , so let’s look at how to use
them. You can define an expectation with the expectationWithDescription method :

 let expect = self.expectation(withDescription: "My Expectation")

 Now, you need to set up a waitForExpectations . This method expects a timeout to be
passed in an optional closure. This closure is where you would place your XCTAsserts for the
test. If the waitForExpectations times out, it is automatically treated as a test failure:

 self.waitForExpectations(withTimeout: 5.0) { error in
 XCTAssertEqual(1, 1)
 }

 Now, this is not enough to test our code. The closure injected here on waitForExpectations
will not run unless our expectation object has been fulfilled. The expectation object has
the fulfill method on it and you can use this method when an asynchronous task has
completed. So, if we look at a network call, it might look something like this:

 let network = MyNetwork()

 network.makeRequest {
 expect.fulfill()
 }

 We have a networking class that performs an asynchronous network request, which is the
method under test, and that method takes a closure itself. This is a fairly common pattern
for this type of code. We can then fulfill our expectation in the completion block that we
pass in. This is what signals waitForExpectations . We then must put all of our XCTAssert
calls in the closure corresponding with the waitForExpectations . Let’s look at the full test:

 func testMyClassAsynchronous() {
 let expect = self.expectation(withDescription: "My Expectation")
 let subject = MyNetwork()

 subject.makeRequest {
 expect.fulfill()
 }

 self.waitForExpectations(withTimeout: 5.0) { error in
 XCTAssertEqual(1, 1)
 }
 }

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html

153CHAPTER 8: Testing

 You might be wondering why we cannot assert on our values within our asynchronous
method closure . We cannot do this because our tests end when they hit the last line of
the method scope. After the end of the scope, no test results are recorded. Therefore, any
asserts in our asynchronous closure would either not run or not be recorded. This can lead
to faulty tests as they might pass, but our assertions never actually ran.

 Now that we have gone through a quick introduction to testing in iOS, let’s get into a more
stylistic discussion. The next section is going to cover the concepts of DRY testing and WET
testing. Let’s jump back over to our playground and finish it with one last reference.

 DRY vs. WET Testing
 What are these two concepts? Well, DRY stands for don’t repeat yourself and WET stands
for well-expressed tests . These two concepts are the driving force behind a lot of different
styles of testing. This is where we start to get into the whole idea of balance and efficiency
in testing. I wanted to discuss these two concepts in this book because I believe by using
Swift, we have a unique opportunity to create well-balanced tests. More on that later; let’s
start with the problems with WET and DRY testing.

 WET Testing
 Well-expressed tests can be a good thing. It is the same idea as when you leave a codebase
for a couple of months and when you come back, you want to be able to understand the
code. When we look at tests for our codebase, we want to be able to understand the
concept behind the test and how it works. If tests are too DRY, we might not be able to fully
understand what the test is trying to accomplish.

 Let’s explore some code from Chapter 5 where we presented a UIAlertController . The
code I am referring to is from the playground page titled Ch05—Protocols in UIKit. This is
going to take some effort to set up, so bear with me. The following block is the code from
this page to refresh your memory:

 protocol canPresentViewControllers {
 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,
completion: (() -> Void)?)
 }

 //: #### Alert Displayer using struct and protocol

 struct AlertDisplayer {
 var canPresentControllers: canPresentViewControllers

 init(canPresentControllers: canPresentViewControllers) {
 self.canPresentControllers = canPresentControllers
 }

 func displayAlert(withTitle title: String?, andMessage message: String?) {
 // present UIAlertController
 }
 }

 extension UIViewController: canPresentViewControllers {}

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

154 CHAPTER 8: Testing

 This section is going to explore this code more and see how we would write tests for the
usage of this code. To properly test this code, we are going to need to write a bit more for
this alert displayer. Let’s start our new playground page and add the following code:

 import UIKit

 //: # DRY vs WET Testing with AlertDisplayer

 //: #### 1. Protocols from Ch05

 protocol canPresentViewControllers {
 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,

completion: (() -> Void)?)
 }

 //: #### 2. New Protocol for mocking purposes

 protocol AlertDisplayer {
 var canPresentControllers: canPresentViewControllers { get set }
 func displayAlert(withTitle title: String?, andMessage message: String?)
 }

 All right, so the first protocol is nothing new, but in step 2, we have a new protocol that
now represents the AlertDisplayer . In Chapter 5 , we discussed traits, abilities, and
interfaces. The protocol from step 1 is our trait, and we have now introduced an interface
for the AlertDisplayer . The next step is to create a new struct that conforms to this
 AlertDisplayer protocol :

 //: #### 3. New Struct to conform to protocol from step 2

 struct ErrorAlertDisplayer: AlertDisplayer {
 var canPresentControllers: canPresentViewControllers

 init(canPresentControllers: canPresentViewControllers) {
 self.canPresentControllers = canPresentControllers
 }

 func displayAlert(withTitle title: String?, andMessage message: String?) {
 let alert = UIAlertController(title: title, message: message, preferredStyle:
.alert)
 alert.addAction(UIAlertAction(title: "OK", style: .cancel, handler: nil))
 canPresentControllers.present(alert, animated: UIView.areAnimationsEnabled,

completion: nil)
 }
 }

 The ErrorAlertDisplayer is our new struct and it looks pretty similar to the previous
 AlertDisplayer struct. The big difference here is we have now opened ourselves up for
testing. Before, we just had a struct and structs cannot be subclassed. Testing the usage of

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

155CHAPTER 8: Testing

the previous struct would have been difficult because we would not have been able to mock
it. We now can with this new protocol . Before we get to the tests, let’s create one more
protocol:

 //: #### 4. New Protocol for composition

 protocol canDisplayErrors: class {
 var alertDisplayer: AlertDisplayer { get set }
 }

 This protocol illustrates composition over inheritance. This means you want to compose your
object of other objects to split out responsibilities instead of having one class that handles
everything. This makes a system very easy to test, because you can test the usage of that
object instead of the task the object accomplishes. The protocol from step 4 can be used on
view controllers to give them an AlertDisplayer property .

 This is where things get a little tricky. We are still in our playground, but tests cannot run in a
playground. We want to keep this reference code in our playground, but feel free to boot up
a new project and try this out for real. For the playground, I am just going to write functions
as if they were in an XCTestCase subclass . Let’s first start by creating a subject for our tests:

 //: #### 5. View Controller used for testing

 class MyViewController: UIViewController, canPresentViewControllers, canDisplayErrors {

 /// Lazily initialized AlertDisplayer so self can be injected
 lazy var alertDisplayer: AlertDisplayer = {
 return ErrorAlertDisplayer(canPresentControllers: self)
 }()

 override func viewDidLoad() {
 super.viewDidLoad()

 alertDisplayer.displayAlert(withTitle: "Title-1", andMessage: "Message-1")
 }
 }

 A lazy stored property is a property whose initial value is not calculated until
the first time it is used. You indicate a lazy stored property by writing the lazy
modifier before its declaration.

 —Apple Inc.

 So this code might look a little weird with the lazy keyword. I used a lazy variable so I can
inject self into the ErrorAlertDisplayer . This could have been accomplished by overriding
 init on the view controller and initializing alertDisplayer there. I then override the
 viewDidLoad method and call displayAlert there.

156 CHAPTER 8: Testing

 So what would the test for this look like? Let’s start with some setup. First we need a
 FakeDisplayer class :

 //: #### 6: Fake Displayer used for testing purposes

 class FakeDisplayer: AlertDisplayer {
 var title: String? = nil
 var message: String? = nil

 var canPresentControllers: canPresentViewControllers

 init(presentVC: canPresentViewControllers) {
 canPresentControllers = presentVC
 }
 func displayAlert(withTitle title: String?, andMessage message: String?) {
 self.title = title
 self.message = message
 }
 }

 There is nothing special here, so let’s move on to the actual test function:

 //: #### 7. Test function for MyViewController

 func testShouldCallDisplayAlertWET() {
 let subject = MyViewController()
 let fake = FakeDisplayer(presentVC: subject)
 subject.alertDisplayer = fake

 // Action
 subject.viewDidLoad()

 print(fake.title == "Title-1")
 print(fake.message == "Message-1")
 }

 testShouldCallDisplayAlert()

 Finally, we have our test. This is pretty cool and it tests our view controller subject perfectly.
In a real test, the prints at the end would be XCTAssertEquals . Now that we have seen
how we might test this sort of functionality, let’s get back to the point of this section: well-
expressed tests. It is clear from the previous code that we are testing the MyViewController
class , specifically the viewDidLoad method.

 Now, this by itself is not what this style of testing is about. Let’s say we implement more
on our view controller subject and we end up using the alert displayer in three or four more
places. The WET style of testing would say we have to make sure each test expresses
itself well. This might mean repeating the above code in all tests with different actions and
assertions. You can see how this might get a bit repetitive. Then, if other view controllers
adopt this protocol and need to present alerts, this gets even worse. Now, let’s see how a
DRY test might be written.

157CHAPTER 8: Testing

 DRY Testing
 This next part is going to require a bit of imagination. We are going to simulate an
 XCTestCase subclass for testing the MyViewController subject. To make our test more DRY,
we are going to need a subject and fakeDisplayer that live outside of the specific test. We
can then use these two variables in multiple tests. Here is the code for this style of testing:

 //: ## DRY

 //: #### 8. Set up all tests with the same subject and fake displayer

 var subject: MyViewController!
 var fakeDisplayer: FakeDisplayer!

 func setUp() {
 subject = MyViewController()
 fakeDisplayer = FakeDisplayer(presentVC: subject)
 subject.alertDisplayer = fakeDisplayer
 }

 func testShouldCallDisplayAlertDRY() {
 // Action
 subject.viewDidLoad()

 print(fakeDisplayer.title == "Title-1")
 print(fakeDisplayer.message == "Message-1")
 }

 setUp()
 testShouldCallDisplayAlertDRY()

 The setUp function here mimics the XCTestCase setUp and then we have our test. You can
see the test just calls the action and then asserts on the correct values. Now, if we have
multiple cases where we have to test this functionality, we are already covered. This is a
lightly version of DRY. Some might argue this is still not DRY enough, but the point here
is that we should keep repetitive code out of our tests. The issue here is that we can lose
context very easily. The tests are no longer self-contained and depend on setup and tear
down. Depending on how many tests we have, things can get lost.

 So, what is this all about? Why are we discussing this subject? Here’s where I hope
everything comes together. This entire book has been building toward the app we are going
to build. The purpose of the first eight chapters is meant to prepare you for the techniques
and concepts we are going to use in the app. I also said we are going to write tests for our
app. Chapters 1 through 7 have hopefully prepared you for the production code, but this
chapter is meant to prepare you for testing.

 Now, if you look back on the code from this section, you can see how we have used
protocol-oriented programming techniques and concepts explored in Chapter 4 with
architecture and single responsibility to write very testable code. Let’s now use these same
ideas to write code meant for testing to achieve balanced tests instead of strictly DRY or
WET tests.

http://dx.doi.org/10.1007/978-1-4842-2280-5_1
http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_4

158 CHAPTER 8: Testing

 Balanced Testing
 This section is going to explore how we can strike a balance between the ideas of DRY
and WET testing strategies. The purpose of this section is to present concepts that can
accomplish the goals of both the DRY and WET strategies. We want our tests to not be
dependent on external pieces, but we want very efficient and concise tests that are easy to
write. Using the concepts of this book, specifically protocol-oriented programming, I believe
we can achieve this in Swift in a clear and concise manner.

 Let’s start with a new playground page. We are going to need to copy steps 1 through 6
from the Ch08—DRY vs. WET Testing page into our new playground page. Once we have
the necessary code copied in, we can start with a new protocol:

 //: # Balanced Testing

 //: #### 1. New Protocol meant for subclasses of XCTestCase

 protocol AlertDisplayerTestBehavior {
 func assert<T: canDisplayErrors & canPresentViewControllers>(subject: T,
 displaysAlertWithTitle title: String?,
 andMessage message: String?,
 onAction action: (T) -> Void
)
 }

 This new protocol defines a trait for tests called AlertDisplayerTestBehavior . The whole
idea is that it describes the behavior of an AlertDisplayer . This protocol’s method has a lot
to it, so let’s break it down. First, it is a generic method where the generic type is a
combination of two protocols: canDisplayErrors and canPresentViewControllers .

 Then, the parameters are the subject , title , message , and action . The combination of all of
these pieces is what we are trying to test for the behavior in MyViewController . Now, since
we are creating a trait here, let’s write an extension. This extension is going to handle the
nitty-gritty of the test:

 extension AlertDisplayerTestBehavior {
 func assert<T: canDisplayErrors & canPresentViewControllers>(subject: T,
 displaysAlertWithTitle title: String?,
 andMessage message: String?,
 onAction action: (T) -> Void
) {

 Note This & symbol describes the new form of protocol composition in Swift 3.
Previously this code would have been written as protocol<canDisplayErrors,
canPresentViewControllers> .

159CHAPTER 8: Testing

 let fakeDisplayer = FakeDisplayer(presentVC: subject)
 subject.alertDisplayer = fakeDisplayer

 action(subject)

 print(fakeDisplayer.title == title)
 print(fakeDisplayer.message == message)
 }
 }

 This code looks almost identical to the code from step 7 on the Ch08—DRY vs. WET Testing
page. We create our fake displayer and set it up on the subject of the test. We then call the
 action passed in with the now setup subject . Then we can write the assertions (or in this
case, the prints) for the test. Now, let’s see how we would use this in a test. We will need an
actual class, so we can use our protocol:

 //: #### 2. Simulate Test with behavior protocol

 class Test: AlertDisplayerTestBehavior {

 func testShouldCallDisplayAlert() {
 let subject = MyViewController()

 assert(subject: subject, displaysAlertWithTitle: "Title-1", andMessage: "Message-1")
{
 $0.viewDidLoad()
 }
 }
 }

 let testInstance = Test()
 testInstance.testShouldCallDisplayAlert()

 And that’s our test. This protocol has allowed us to write the test so it can express itself very
well. We know what the subject is, what the action is, and the values we expect. However,
the test is completely ignorant of the fake displayer or the setup of the subject . It does not
need to know how to do this. Then, if we need to test multiple actions slightly differently, we
just reuse the protocol method and all of our tests are DRY, yet well expressed.

 Using this style works really well for repeated tasks. There are still plenty of cases where you
would need to test one-off actions that are not repeated. Those tests do not need a behavior
protocol defined with all of the setup. It would be overkill and inefficient. The takeaway for
this section is that we need to examine our tests and treat them more like production code
than just something we have to write with lots of repetition. If we can write our code to be
clear and concise, we need to write our tests in that same manner.

 This is the end of our playground reference. After this chapter, we will rely on the concepts
from our playground to build our app. The next section is going to expand on Chapter 3’s
Logger package and this section as well. We need to refactor our package to make it more
testable and we need to write balanced tests. Dust off the Logger package and let’s get
started.

160 CHAPTER 8: Testing

 Swift Package Manager Testing
 In this section, we are going to examine our Swift package from Chapter 3 and write unit
tests for it. Our Logger package from Chapter 3 is very simple and not very testable. We
have just used the global print function in our Logger struct. To refresh your memory, here is
the code we currently have in the Logger.swift file :

 public enum LogFilter {
 case Info
 case Severe
 }

 public struct Logger {

 public var severity: LogFilter

 public init() {
 severity = .Info
 }

 public func log(item: String?, withSeverity severity: LogFilter) {
 if self.severity == severity {
 print(item)
 }
 }
 }

 Also, since writing this code, we have not looked at the tests that were generated by swift
package init . This code actually breaks the original tests. Before, we can start writing
tests, we need to abstract some of the functionality out of this Logger struct because there
is no good way to test the print statement. I am also going to switch the Logger to a class
instead of a struct. Within the Logger.swift file, let’s create two new protocols and a new
struct:

 /// Interface to describe printing an Any type item
 public protocol Print {
 func customPrint(_ item: Any)
 }

 /// Trait for object composition
 public protocol canPrint {
 var printer: Print { get set }
 }

 /// Struct that conforms to the Print protocol to encapsulate global print function
 public struct Printer: Print {
 public func customPrint(_ item: Any) {
 print(item)
 }
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_3

161CHAPTER 8: Testing

 Now that we have our protocols and new struct in place, what does the Logger class now
look like? Well, it will conform to the new canPrint protocol for one. Then it will have access
to a type that can encapsulate the global print function, thereby making it testable:

 public class Logger: canPrint {

 public var severity: LogFilter
 public var printer: Print

 public init(severity: LogFilter = .Info, printer: Print = Printer()) {
 self.severity = severity
 self.printer = printer
 self.printer.customPrint("-- Starting Logger with severity: \(severity)")
 }

 public func log(item: String?, withSeverity severity: LogFilter) {
 if self.severity == severity, let i = item {
 printer.customPrint("-- \(i)")
 }
 }
 }

 The new Logger class is still very simple. We have not changed any of the logic, we’ve just
added a new dependency. On the note of dependencies, we are using dependency injection
here to give the Logger class an object that conforms to the Print protocol as well as the
 severity level instead of just defaulting to Info .

 We are then defaulting these parameters to be the Printer struct if the user of this class
does not want to provide one. Similarly, we still give the severity a default of Info if one is
not specified. Then, it just uses this new object and the custom print method instead of the
global print function. Now that we have all of the pieces, we can start to focus on tests. The
following block is what has been provided to us. We don’t want to remove all of this yet:

 import XCTest
 @testable import Logger

 class LoggerTests: XCTestCase {
 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests produce the correct
results.
 XCTAssertEqual(Logger().text, "Hello, World!")
 }

 static var allTests : [(String, (LoggerTests) -> () throws -> Void)] {
 return [
 ("testExample", testExample),
]
 }
 }

162 CHAPTER 8: Testing

 Currently, this does not compile because we removed the initial text property from Logger.
The important part we want to keep is the allTests property at the bottom of this class.
If we go to the Terminal app and look at the Tests directory, we will see a file that is not in
Xcode— LinuxMain. swift :

 Tests/
 ├── LinuxMain.swift
 └── LoggerTests
 └── LoggerTests.swift

 import XCTest
 @testable import LoggerTests

 XCTMain([
 testCase(LoggerTests.allTests),
])

 This work is what Xcode does for us in normal iOS projects. The allTests property and this
file are creating a manifest of all the tests that need to be run and the corresponding method
references to run. Working in Xcode, we do not need to worry about this, but we want to
make sure we add the appropriate references, so this can all still work from the command
line and on Linux machines. The first test we are going to write is going to verify that our
defaulted parameters are correct:

 class LoggerTests: XCTestCase {

 func testShouldDefaultTheSeverityAndPrinterProperties() {
 let subject = Logger()

 XCTAssertEqual(subject.severity, LogFilter.Info)
 XCTAssertTrue(subject.printer is Printer)
 }

 static var allTests : [(String, (LoggerTests) -> () throws -> Void)] {
 return [
 (
 "testShouldDefaultTheSeverityAndPrinterProperties",
 testShouldDefaultTheSeverityAndPrinterProperties
),
]
 }
 }

 You can see that we have added our new test to the allTests property. Before we go any
further, let’s bring in the concepts from the last section on balanced tests. We are setup
perfectly with our protocols. Now, it might seem like overkill right now, but if we want to add
any more logging methods, this will come in handy. In the LoggerTests.swift file, let’s create
a fake printer and a new test behavior protocol. This time, we can use real XCTAsserts in the
extension:

163CHAPTER 8: Testing

 class FakePrinter: Print {
 var printedItems: [Any] = []

 func customPrint(_ item: Any) {
 printedItems.append(item)
 }
 }

 protocol CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
)
 }

 The FakePrinter class is as simple as it gets. We just save off each item in an array.
Then CustomPrintTestBehavior has all of the items we need to test our functionality. The
interesting part about this behavior is that we have two generic types here T and U. T
is constrained to the canPrint protocol and U is constrained to the Equatable protocol.
 Equatable is a protocol that has been provided by Apple for comparing two objects. The
parameter for the custom print method is an Any type and this is not Equatable . To use
 XCTAssertEquals , we must use an Equatable type.

 The second important part to notice is that the subject type as been label as an inout
parameter. In the previous section, the protocol was a class protocol. This meant it was
a reference type and the internals could change with the assert method. However, in this
example, our canPrint protocol is not a class protocol. Therefore, we need to use the inout
keyword to tell the compiler we have the original type and not a copy, which would be
constant. Let’s now see how the extension looks:

 extension CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
) {
 let fakePrinter = FakePrinter()
 subject.printer = fakePrinter

 action(subject)

 XCTAssertEqual(item, fakePrinter.printedItems.last as? U)
 }
 }

 Just like the alert displayer test behavior, we create an instance of the FakePrinter and set
the printer property on subject . Then it calls action , injecting the subject , and finally it
asserts that the item is the last item on the fakePrinter . We should now be able to reuse
this method anywhere we want to test that an object that conforms to canPrint uses the
 FakePrinter . Now, we can finally write our test using this behavior:

 class LoggerTests: XCTestCase, CustomPrintTestBehavior {

 func testShouldDefaultTheSeverityAndPrinterProperties() {
 let subject = Logger()

164 CHAPTER 8: Testing

 XCTAssertEqual(subject.severity, LogFilter.Info)
 XCTAssertTrue(subject.printer is Printer)
 }

 func testShouldLogTheItemBasedOnMatchingSeverity() {
 var subject = Logger()
 subject.severity = .Severe

 assert(subject: &subject, callsCustomPrintWithItem: "Hello") {
 $0.log(item: "Hello", withSeverity: .Severe)
 }
 }

 static var allTests : [(String, (LoggerTests) -> () throws -> Void)] {...}
 }

 The test class now conforms to the test behavior protocol and in the second test method,
we use it to test the log method on Logger . Now, if you run the tests… they should fail.
The Logger class prefixes every log with two dashes. I did this intentionally, so you can see
that the test does not fail within the actual XCTestCase class . It fails in the method on our
extension. This works here, but if the extension was in a different file and it was used more
than once, it would be very difficult to discern which test failed.

 Let’s revisit our protocol and extension to fix this issue. We need to make sure the test fails
in the actual test method. To accomplish this, we need two more parameters on our protocol
method . Here is the updated signature:

 protocol CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(file: StaticString, line: UInt,
 subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
)
 }

 These two parameters are Swift debug identifiers . They represent the actual file and line that
this method will be called on. Next, we need to add these two parameters to the extension
with default values:

 extension CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(file: StaticString = #file, line: UInt = #line,
 subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
) {
 let fakePrinter = FakePrinter()
 subject.printer = fakePrinter

 action(subject)

 XCTAssertEqual(item, fakePrinter.printedItems.last as? U, file: file, line: line)
 }
 }

165CHAPTER 8: Testing

 The file and line parameters have the values #file and #line , respectively. These are
the actual debug identifiers and you’ll notice these two parameters are now being used on
the XCTAssertEqual call. This allows the test error to display on the line where this is called,
instead of the XCTAssertEqual call. Now, without changing any code in the LoggerTests
class , re-run the tests and it should fail on the correct line. Figure 8-2 shows how this should
look now.

 The last step is to make this test pass. To do so, we just need to change our assert to expect
 -- Hello instead of just Hello . The following code block has the entire Logger.swift file:

 Figure 8-2. The failing tests on the correct line instead of in our test behavior protocol

 import XCTest
 @testable import Logger

 class FakePrinter: Print {
 var printedItems: [Any] = []

 func customPrint(_ item: Any) {
 printedItems.append(item)
 }
 }

 protocol CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(file: StaticString, line: UInt,
 subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
)
 }

 extension CustomPrintTestBehavior {
 func assert<T: canPrint, U: Equatable>(file: StaticString = #file, line: UInt = #line,

166 CHAPTER 8: Testing

 subject: inout T,
 callsCustomPrintWithItem item: U,
 onAction action: (T) -> Void
) {
 let fakePrinter = FakePrinter()
 subject.printer = fakePrinter

 action(subject)

 XCTAssertEqual(item, fakePrinter.printedItems.last as? U, file: file, line: line)
 }
 }

 class LoggerTests: XCTestCase, CustomPrintTestBehavior {

 func testShouldDefaultTheSeverityAndPrinterProperties() {
 let subject = Logger()

 XCTAssertEqual(subject.severity, LogFilter.Info)
 XCTAssertTrue(subject.printer is Printer)
 }

 func testShouldLogTheItemBasedOnMatchingSeverity() {
 var subject = Logger()
 subject.severity = .Severe

 assert(subject: &subject, callsCustomPrintWithItem: "-- Hello") {
 $0.log(item: "Hello", withSeverity: .Severe)
 }
 }

 static var allTests : [(String, (LoggerTests) -> () throws -> Void)] {
 return [
 (
 "testShouldDefaultTheSeverityAndPrinterProperties",
 testShouldDefaultTheSeverityAndPrinterProperties
),
 (
 "testShouldLogTheItemBasedOnMatchingSeverity",
 testShouldLogTheItemBasedOnMatchingSeverity
)
]
 }
 }

 And that is it. We have successfully tested our Logger package. If you were to turn on
Xcode’s code coverage, you would see that we have successfully covered our Logger
class. We just wrote a lot of code. Hopefully, it reinforced the idea that was presented in
the balanced testing section, but I also hope you have learned a little more about the Swift
Package Manager and how to write tests using it. I think the last piece left to do is to run the
tests via the command line . When you use the following command:

167CHAPTER 8: Testing

 $ swift test

 you will get the following output:

 Compile Swift Module 'LoggerTests' (1 sources)
 Linking ./.build/debug/LoggerPackageTests.xctest/Contents/MacOS/LoggerPackageTests
 Test Suite 'All tests' started at 2016-09-25 15:53:36.589
 Test Suite 'LoggerPackageTests.xctest' started at 2016-09-25 15:53:36.590
 Test Suite 'LoggerTests' started at 2016-09-25 15:53:36.590
 Test Case '-[LoggerTests.LoggerTests testShouldDefaultTheSeverityAndPrinterProperties]'
started.
 -- Starting Logger with severity: Info
 Test Case '-[LoggerTests.LoggerTests testShouldDefaultTheSeverityAndPrinterProperties]'
passed (0.001 seconds).
 Test Case '-[LoggerTests.LoggerTests testShouldLogTheItemBasedOnMatchingSeverity]' started.
 -- Starting Logger with severity: Info
 Test Case '-[LoggerTests.LoggerTests testShouldLogTheItemBasedOnMatchingSeverity]' passed
(0.000 seconds).
 Test Suite 'LoggerTests' passed at 2016-09-25 15:53:36.591.
 Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.002) seconds
 Test Suite 'LoggerPackageTests.xctest' passed at 2016-09-25 15:53:36.592.
 Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.002) seconds
 Test Suite 'All tests' passed at 2016-09-25 15:53:36.592.
 Executed 2 tests, with 0 failures (0 unexpected) in 0.002 (0.003) seconds

 This is the end of our discussion on the Swift Package Manager. My hope is this tool is the
start of Swift code being developed and run anywhere. The next and last section will discuss
TDD in Swift/iOS and this whole idea of balance and efficiency.

 Test-Driven Development
 Let’s bring this chapter in for a landing . I have shown you multiple techniques for testing.
We have used concepts from throughout this book to create what I have called a balanced
testing strategy through the use of protocols. I stand by everything I have shown you, but
here is the tricky part. Every time we created a new protocol, we were abstracting out some
concept.

 Whether it was the composition of the object like the canPrint and canDisplayErrors
protocols, it was complexity that was not necessary to complete the production code. That
is not to say it might not come in handy later. However, as of right now, you can argue it is a
bit of overkill. That’s the complexity that comes with testing. So, how does all of this relate to
TDD?

 Using test-driven development , you are supposed to build up tests that create a
specification of your code. This means the tests are built first, and each describes
something the object does, eventually leading to the object you want. TDD can be a good
thing and it can be a good place to start, if you do not know how you production code is
going to end up.

168 CHAPTER 8: Testing

 However, the downside to this process is efficiency. In Chapter 1 , we discussed the new API
design guidelines. The driving force was clarity and conciseness. We want our code to be
as clear as it can be so when someone else starts to modify it, they will know exactly what
is going on. The more unnecessary abstractions we create, the more complexity we add.
As we add more complexity, we in turn make our code unclear. We then lose efficiency. One
big domino effect. This is where balance comes in again. Regardless of the testing strategy,
the key is to make sure we are not over-simplifying or over-engineering. This is a very tough
problem, which is why there are so many different schools of thought on the subject matter.

 So, how does this affect us? Well, in Swift, due to the limitations we discussed in the section
on mocking, we have to be very careful. In the second half of the book, while building our
app, we have to make sure our code is as clear as it can be. We want to add tests, but we
cannot lose sight of the bigger picture. When we build our app, there will be code that is
tested. There will also be code where we do not write any tests And we are going to flip
between writing tests first and writing tests after the code. We will not be using strict TDD
practices, but a mixture of different testing strategies.

 Wrap Up
 That’s a wrap for Chapter 8 and the first half of this book. Well, maybe a little more than half.
We have covered a lot of topics in this chapter and somehow, it’s all related to testing. We
first looked at mocking in Swift. The open-source framework MockFive on GitHub influenced
the mocking framework we built. This code is going to greatly simplify our mocks in the tests
for our app.

 Afterward, we went through an introduction to XCTest. We have only scratched the surface
of Apple’s testing framework here, but hopefully this has been enough to get you started.
This took us directly into our discussion about DRY vs. WET testing. Despite the differences,
the central goal of these two styles is properly testing our code and I believe this is
accomplished through the use of both strategies.

 We then finished our discussion of the official Swift Package Manager that was started
in Chapter 3 . We pulled in concepts from Chapters 4 , 5 , and 6 to write our tests for the
Logger package. Putting everything together, we were able to write clear, yet expressive
tests, properly validating our Logger code. And finally, we briefly discussed test-driven
development in Swift. We talked about the ideas of abstraction and complexity and how
they can make code testable, but also unclear. This is where we have to bring in all of
our concepts to make sure we are not creating unnecessary complexity and abstractions
without finding a balance to our tests and production code.

 I hope you have found this chapter helpful and that you use the discussions started here to
figure out your strategy for writing and testing Swift code. This is the end of the first half of
book, our playground reference, and the more conceptual chapters. Starting in Chapter 9 ,
we are going to build our Grocery List app!

http://dx.doi.org/10.1007/978-1-4842-2280-5_1
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_3
http://dx.doi.org/10.1007/978-1-4842-2280-5_4
http://dx.doi.org/10.1007/978-1-4842-2280-5_5
http://dx.doi.org/10.1007/978-1-4842-2280-5_6
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

169CHAPTER 8: Testing

 Articles
 1. Swift Package Manager

 https://swift.org/package-manager/

 2. Swift Evolution Proposal—SE-0019

 https://github.com/apple/swift-evolution/blob/master/
proposals/0019-package-manager-testing.md

 3. Example Package Playing Card

 https://github.com/apple/example-package-playingcard

 4. About Testing with Xcode

 https://developer.apple.com/library/mac/documentation/
DeveloperTools/Conceptual/testing_with_xcode/chapters/01-
introduction.html

 5. MockFive

 https://github.com/DeliciousRaspberryPi/MockFive

 6. Swift: The Only Modern Language Without Mocking Frameworks

 http://blog.pragmaticengineer.com/swift-the-only-modern-
language-with-no-mocking-framework/

 7. To Mock or Not to Mock

 http://clean-swift.com/to-mock-or-not-to-mock/

 Part II
 Building the Grocery App

173© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_9

 Chapter 9
 Grocery List App Interface
Builder
 You made it! Welcome to the second part of the book. Chapters 9 – 12 are going to walk you
through building a Grocery List app. It might not sound very exciting, but it will be. We are
going to use the knowledge we gained throughout the first section about API design, design
patterns, protocol-oriented programming, and testing to build a clean and concise app. This
chapter, along with Chapters 10 – 12 , will cover the design for the app or MVP (minimal viable
product).

 This is where the playground reference will be very important. We have explored concepts
and written code that we can use in our app. We are going to use protocols heavily and rely
on our protocol-oriented programming skills to build some of the core functionality for the
app. I believe protocol-oriented programming is the future of Swift development, so let’s get
with the times.

 Design patterns from Chapter 4 will also be stars in this app. We talked about the normal
iOS patterns like MVC and singleton, but we are going to try the MVVM pattern for this
app. This will present some unique opportunities to keep core data away from our view
controllers. Removing the idea of singletons will also force us to think about how data flows
through our app.

 And finally, as explained in Chapter 8 , we are going to write unit tests for our code. This
is where protocols and mocking will be used. TDD (test-driven development) was also
discussed in Chapter 8 and we are going to use a form of TDD while building our app.
However, I want us to try to keep our testing balanced, so if there is an opportunity to
refactor and clean up tests, we are going to take it.

 Before we get to any code though, there is Chapter 9 . This chapter is going to focus on
the interface for our grocery app. We are going to build the entire interface in this chapter;
however, there will be pieces that will need to be finished later. We are not going to create
any view controllers in code so we can hook up our @IBOutlets and @IBActions in future
chapters.

http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://dx.doi.org/10.1007/978-1-4842-2280-5_12
http://dx.doi.org/10.1007/978-1-4842-2280-5_10
http://dx.doi.org/10.1007/978-1-4842-2280-5_12
http://dx.doi.org/10.1007/978-1-4842-2280-5_4
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

174 CHAPTER 9: Grocery List App Interface Builder

 What You’ll Learn
 Even though this chapter will focus on building the interface for our app, I am also going to
explain concepts in Interface Builder like segues, presentation styles, and other interface-
related subject matter. If you have built iOS apps using storyboards before, this chapter
might be somewhat of a review for you. If this is the case, follow along, let’s get this interface
built and then we can move onto the code in the next chapter.

 Otherwise, if you are more familiar with Nib files or are just new to iOS in general, this should
be a good chapter. In fact, we are going to start off by talking about how to transition from
Nib files to storyboards. I know Nib files are getting a bit old, but they are still relevant, even
in today’s iOS development. First, let’s start with setting up our project.

 Project Setup
 Before we forge ahead, let’s discuss the purpose of our app. This app is going to hold onto
our grocery lists. When you go to the grocery store, you might have a list or several lists, and
we need to know what items to actually buy. Now, this app is not going to be flashy or have
many features. That is kind of the point. I want to present an MVP implementation of this
app and let you expand on it.

 This app is a simple CRUD app, minus the UD. There are other features that are missing as
well; for instance, it does not allow the user to check an item off the list. So now you might
be wondering what the app is going to do. Well, not much, but the architecture of our app
is going to be clean. We are going to write unit tests. We are going to build the base so this
app can expand and scale with new features. That is our goal. We need to lay out a solid
foundation.

 Now, first things first, we need a new Xcode project. (I am using Xcode 8 with Swift 3.0.)
Let’s open up Xcode and start a new project. Figure 9-1 shows the new project screen in
Xcode. Be sure to select the Single View Application template. I usually also start with the
single view, and leave the other templates alone.

175CHAPTER 9: Grocery List App Interface Builder

 Then you will be taken to the project configuration screen in Figure 9-2 . You do not need
to name your app GroceryApp, but it would make things easier. If you choose to name it
something else, just make sure you use that name when importing the module into tests.

 We also want to make sure we have the Use Core Data and Include Unit Tests options
turned on, as can be seen in Figure 9-2 . By default, Apple gives us code for accessing core
data when we turn this option on. We do not want to have to mess with this code ourselves.

 Figure 9-1. The new project template screen with the Single View Application template selected

176 CHAPTER 9: Grocery List App Interface Builder

 I have left my team and organization identifier out in Figure 9-2 , but you probably want to
configure your project so you can install it on a device. Now, we should have a blank project
all set up and ready to go.

 Before we start coding or building our interface, I wanted to talk about the formatting for
this and future chapters. In the previous chapters, where we added code to our playground
reference, I included the playground page name(s) for the section. The playground page
name was also included at the top of the formatted code block.

 Figure 9-2. The project configuration screen with Use Core Data and Include Unit Tests turned on

177CHAPTER 9: Grocery List App Interface Builder

 Since we are in an actual Xcode project now, I am not going to include any file name at
the beginning of any section. I am still going to include the file name at the top of the code
block, but our files are going to have much more code than our playground. Swift’s comment
 MARK: syntax will be used to differentiate sections of code. The code within the MARK: section
that is not relevant to the current task will be omitted. The following code block describes
this new style.

 class MyViewController: UIViewController {
 // MARK: - Properties

 //...

 // MARK: - Lifecycle
 override func viewDidLoad() {
 super.viewDidLoad()
 }
 }

 In the preceding example, all of the properties have been omitted because the Lifecycle
section is the focus. And as always, any code that is just for reference will not have a file
name at the top of the code block. All right, we have our project set up. Let’s talk a little
about Nib files and storyboards.

 Nib Files and Storyboards
 As, I stated earlier, this section might be more of a review for you if you are used to working
in storyboard files. You do not have to follow along with this section. This is just an overview.

 In the olden days of iOS development, Nib files were used to build interfaces and storyboard
files did not exist. You can still see this today in one of the initializers for UIViewController .
There is an init with a Nib name on UIViewController to instantiate a view controller from
a particular Nib file. Every time you wanted to transition to another view controller, you had
to manually instantiate the view controller and then present it. Using storyboards, this is no
longer necessary because of the segues .

 Segues
 One of the largest limitations of using Nib files is segues. They do not exist in Nib files
because these files describe singular views and view controllers instead of the multiple view
controllers like storyboards. Segues describe how a view controller transitions to the next
view controller and through what action. Figure 9-3 shows a segue in a storyboard between
two view controllers. The first view controller has a button on it called Next . When this button
is tapped, it will transition to the next view controller.

178 CHAPTER 9: Grocery List App Interface Builder

 To create this segue, you want to Ctrl-drag from the Next button to the other view controller.
This will bring up a menu that allows you to select the type of segue you want to use. This
can be seen in Figure 9-4 .

 Figure 9-4. The menu used to select a segue type

 Figure 9-3. Two view controllers that are linked via a segue from the Next button

179CHAPTER 9: Grocery List App Interface Builder

 This menu allows you to choose the basic transition between two view controllers. I do
not want to discuss the details of these options here. I would rather talk about them within
the context of our app, so we can save this discussion for later. The advantage of using
segues is we no longer have to worry about writing code to transition between two of our
view controllers. This is really powerful and can be helpful when you are rapid prototyping.
Without writing any code, you can lay out an entire app.

 When to Use Nib Files
 Even though we have storyboards and they can alleviate a lot of redundant coding, we
still want to use Nib files Say we have a complex view to build, but we want it to be highly
reusable. We do not want to put this on our storyboard because it needs to be duplicated
anywhere we need it. This is a perfect candidate for a Nib file.

 We can then manually use this Nib file in our code when we need to. Nib files have the
flexibility to describe entire view controllers or just plain old UIViews . This might seem like
a small use case, but it is important when we have a large app and we want to abstract out
view layers without going as far as storyboards.

 Sometimes, it might not even be possible to get the full power of storyboards for a highly
reused view. If we want a view whose purpose is to interrupt the current flow and it can
happen on any view, we do not want to have to hook up segues. That would create a
storyboard with segues that look tangled together. Using a Nib file in this instance can save
us time and make things easier on us.

 Storyboard Limitations
 The caveat to using storyboards is when we start to put everything in one storyboard file.
In Chapter 7 , we discussed the new Refactor to Storyboard feature. Splitting out view
controllers to their own storyboards can be a huge benefit, especially when you are working
with a team of people who are all responsible for editing the app’s interface. Now, with this
new feature, we do not have to bridge the gap between storyboards with code. Previously,
if we had defined a separate storyboard, it would require code to load the initial view
controller. Now, segues can cross storyboard boundaries, which can alleviate this pain, but it
is still possible to step on others’ toes with multiple people working on the same storyboard.

 With the new refactor feature, we can group features within each of our storyboards. If there
is a login process, that could be one storyboard, while another might be the profile section
for a user. The next limitation might not be seen as such, depending on your viewpoint.
Segues offer a lot of power since we do not need to handle any transitions or flow via code.
However, taking on this responsibility, we lose insight into where the current view controller
is transitioning.

 There is a method on UIViewControllers called prepareForSegue . This method allows us to
reference the next view controller through the segue object. So, instead of creating the new
view controller by hand, we have a catch all method for any new view controller. This might
not seem like a limitation, but it changes how we pass data through the view controllers of
our app. We will see this in the next chapter when we build our app.

http://dx.doi.org/10.1007/978-1-4842-2280-5_7

180 CHAPTER 9: Grocery List App Interface Builder

 I hope this quick section gave you some insight into the two worlds of building UI in
iOS. If you have never used one of these features, either Nib files or storyboards, I highly
recommend you check both out. Using one or the other might not be right for your project.
The more complex apps get, the more these two concepts have to live in harmony. All of this
being said, we are going to use storyboards exclusively in our app. Our app is very simple
and we can reasonable fit it on one storyboard. If you chose to expand on this app in the
future, you should re-evaluate then. All right, it is finally time to start building the Grocery App!

 Grocery Lists and Items
 This section is going to cover setting up two screens on our storyboard. These two screens
will be responsible for displaying the table of grocery lists and the table of grocery items
contained within specific lists. Figure 9-5 shows the result of the two screens we are going
to build here. The first screen is for our grocery lists and the second screen is for the items.

 Figure 9-5. The final result of the two screens we are going to build in this section

181CHAPTER 9: Grocery List App Interface Builder

 Figure 9-5 shows an actual grocery list and grocery item in our table, but this chapter will
just be over the interface. Adding lists and items will come later, but as you can see from
Figure 9-5 , we are going to have a navigation controller, a table view, and some buttons and
titles. Let’s go to our storyboard file and get started.

 Grocery Lists
 When you open your storyboard, you are going to see the blank initial view controller.
Figure 9-6 shows our storyboard with the new device configuration panel open. In the
figures for this chapter, I will be using the iPhone 4s portrait device configuration for better
figures. You can design your interface in any configuration you would like.

 We know we are going to need a navigation controller from Figure 9-5 . So, let’s add this
first. Figure 9-7 shows the menu option for embedding our view controller in a navigation
controller. Make sure you have the initial view controller selected and then go to Editor ➤
 Embed In ➤ Navigation Controller .

 Figure 9-6. Our storyboard file with the blank initial view controller and the new device configuration panel

182 CHAPTER 9: Grocery List App Interface Builder

 Embedding the initial view controller in a navigation controller is going to affect our entire
app. UINavigationControllers do exactly what their names suggest: control navigation.
A navigation controller is what gives apps the bar at the top of the screen. That is the
 UINavigationBar . The way this works is through the use of containers. This is a relatively
new feature and it allows view controllers to automatically embed another view controller.

 If this seems like a weird concept, think of it like this: the navigation controller is itself a
 UIViewController . It contains any view controller that is given to it and has a view of its own
that contains a UINavigationBar . It then controls the transitions from the root view controller
to all others keeping a stack of the view controllers it visits. This stack then allows it to go
back all the way to the root view controller.

 What this means for our app is that any view controller we present will have a couple of
choices, but let’s keep going before we talk about these options. Once the initial view
controller is embedded, let’s add a table view. If you navigate to the Utility Pane ➤ Object
Library, we can add our table view. Figure 9-8 shows the Table View in the Object Library.
We want to be sure to avoid the table view controller .

 Figure 9-7. The Editor menu and the Embed In ➤ Navigation Controller option. This will automatically link the selected
view controller with a navigation controller

183CHAPTER 9: Grocery List App Interface Builder

 Before we move on, let’s examine the navigation bar and the interaction with the table view.
Depending on your setup, you might notice the table view you just added looks a bit funny.
By default, the navigation controller’s navigation bar is set to translucent. This means the
table view is expecting to be underneath the navigation bar and is compensating for the
height difference. This might be what you want and it is what gives the table view the effect
of content scrolling underneath the navigation bar. For our app, I am going to turn this option
off. Now the top of the table view can be aligned to the bottom of the navigation bar.

 Once we have our table view aligned correctly, let’s add some constraints or, in fact, let’s
not. Remember way back in Chapter 2 when we discussed the new features in Xcode? We
can use the old Autoresizing Masks . Our table view should just follow the size of the view, so
this is a perfect candidate for using autoresizing instead of constraints. Figure 9-9 shows the
settings to allow autoresizing to handle the behavior of our table view.

 Figure 9-8. A table view in the Object Library in Xcode . Make sure you do not add the table view controller

 Figure 9-9. The autoresizing settings for our table view. These settings replace any constraints we would have added
to the table view and are far simpler

http://dx.doi.org/10.1007/978-1-4842-2280-5_2

184 CHAPTER 9: Grocery List App Interface Builder

 We want to turn on the springs and stick to edges options. This will force our table view to
expand and contract with the view and stick to the right, left, bottom, and top. Once you
configure these settings, change the device configuration panel to see how the table view
reacts. It should stick to the sides of the view and resize appropriately. This is pretty cool
since we have zero constraints on our table view. Let’s take a break for a second and look at
what we have so far. Figure 9-10 shows our current progress.

 All right, we have one last piece to add before we can move on to the second view controller.
We need to add the title and the + button that were on our navigation bar in Figure 9-5 . If
you reopen the Object Library and search for navigation item, drag the new item to our view
controller. It does not matter where you drop the navigation item. It should appear on top of
the navigation bar with a default title.

 The navigation item goes hand in hand with the navigation bar. It has a title and two areas on
either side for buttons and other content. This is where you will usually see actions that can
take place on the current view. In our case, this action is going to be adding more lists and
items. This is the navigation item for the grocery list view controller, so let’s configure this item.

 If you open up the Attributes Inspector there should be three options: Title , Prompt , and
 Back Button . We need to configure the title to be Grocery Lists and the back button to be
 Back . The Back Button setting is actually the text for the back button that shows on the view
controller directly after this one. In a navigation controller, the back button appears on the
left hand side of the following view controller. The title setting is meant to be the main title,
but the purpose of the prompt feature is to give the user additional information. We do not
need this, so let’s just ignore it. Figure 9-11 describes the settings for our navigation item on
this view controller.

 Figure 9-10. The interface so far. 1) We have embedded our view controller in a navigation controller. 2) We have added
a table view to the view controller. 3) We have set up the autoresizing mask for the table view

185CHAPTER 9: Grocery List App Interface Builder

 The last step is to add our + (plus) button. In the Object Library, let’s find a UIBarButtonItem
and drag this to the right side of our navigation item. It might seem a little weird, but
navigation items cannot contain UIButtons . Instead, we need to use the aforementioned
 UIBarButtonItem . We then want to configure the System Item to be Add . This will give
us iOS’s built-in plus symbol. This saves us from using an image or just typing in + . The
configuration for our bar button item can be seen in Figure 9-12 .

 Now, we should have our first view controller properly configured. Let’s recap: first, we
embedded our initial view controller in a navigation controller. We then added a table
view to the view and made sure to turn off the translucency of the navigation bar. Without
adding constraints, we made sure our table view resized and stuck to the edges all through

 Figure 9-12. The configuration in the Attributes Inspector for the UIBarButtonItem. We want the System Item attribute
to be Add

 Figure 9-11. The Attributes Inspector for our new navigation item with the appropriate configurations

186 CHAPTER 9: Grocery List App Interface Builder

autoresizing. Shout out to Chapter Two! Then finally, we added and configured a navigation
item. This navigation item has the title Grocery Lists and a + button on the right-hand side.
Figure 9-13 shows our storyboard with all of these features.

 Whew! It doesn’t seem like that much when you are building these things, but there were a
lot of steps there. We have our first view controller configured, so this next part should be
easier. We are going to create our next view controller. This view controller is meant to hold
the items in the selected grocery list. You can see on the right side of Figure 9-5 , it is almost
identical to the previous view controller.

 Grocery Items
 Let’s start in the Object Library. Let’s drag in a new view controller to our storyboard directly
to the right of our previous one. Just like our previous view controller, let’s add a table view.
Now, we do not have a navigation bar yet, so for now, let’s make sure our table view spans
the entire view of the new view controller. Figure 9-14 shows the new view controller with a
table view added.

 Figure 9-13. Our storyboard with the first view controller of our app. The view controller is embedded in a navigation
controller; it has a table view, and a navigation item

187CHAPTER 9: Grocery List App Interface Builder

 Now, if you have already added the autoresizing behavior to the table view, that was the
next step, so don’t steal my thunder.J The correct autoresizing settings can be seen in
Figure 9-9 . Once you verify your table view can resize and adapt correctly, we need to link
everything together. Let’s hop back over to the original table view, because there are a
couple of things left to do. First, if you were looking closely on Figure 9-3 where I showed
our two view controllers side by side, you will notice both table views are configured with a
grouped style instead of a plain one. Let’s tackle this first.

 On the Grocery List view controller , select the table view, go to the Attribute Inspector
and change the Style to Grouped instead of Plain . Figure 9-15 shows the settings for our
table view. The top two settings in Figure 9-15 are for the table view cells. The Dynamic
Prototypes setting is meant to control whether the content for the table is dynamic or static.

 Figure 9-14. The second view controller with a table view. As of right now, this view controller is not linked with any
other view controller

188 CHAPTER 9: Grocery List App Interface Builder

 The other option is Static Cells . With Static Cells , you configure a table view to have as many
cells as you want, and then you can give each cell labels and other content. With dynamic
prototypes, the cells will be reloaded with the delegate/datasource methods on your view
controller, but this is not the case for static cells. Static cells will not reload because they are
well, static. Then can be an easy way to create a settings page like in many apps. You can
get the nice look of a table view without the headache of dynamically generating your
content.

 Now, this next part is going to require a table view cell on our table view. If you saw it in the
Object Library, find it again and let’s add one to the table view we just configured. Figure 9-16
shows our table view with a group style and a table view cell added.

 Caution The only caveat to this approach is UITableViewController subclasses are the only types
of view controllers that can use static cells. We have only added a table view to our view controller
in our storyboard.

 Figure 9-15. The Attributes Inspector for the first view controller’s table view configured with a Grouped style

189CHAPTER 9: Grocery List App Interface Builder

 For this app, we are not going to create any custom table view cells. We are going to use
the stock Right Detail style cell. The Style setting is in the Attributes Inspector directly at the
top. There are two settings we need to configure for this cell. The first setting is the reuse
identifier. The reuse identifier is how we can identify table cells in code through the use
of the table view method: dequeueReusableCellWithIdentifier . We want to set the reuse
identifier (called Identifier in Figure 9.17) for our cell to be Cell .

 The second setting we want to configure is the cell’s Accessory . We want our Accessory to
be a Disclosure Indicator . This will put a little gray arrow on the right-hand side of the table
cell. This also indicates to users that there is more content available if you tap on this cell.
Figure 9-17 shows the settings for our table view cell.

 Figure 9-16. The configured table view with a table view cell

190 CHAPTER 9: Grocery List App Interface Builder

 The first view controller in our storyboard, the Grocery Lists view controller , should be completely
configured now. The only remaining work is on the second view controller. Now, before we go
configuring the second view controller, let’s create a segue between the Grocery Lists view controller
and the second view controller. To create this segue, we want to Ctrl-drag from the first table view cell
to our second view controller and select the Show option on the popup menu. Finally, this brings us to
the discussion I put off near the beginning of this chapter. In Figure 9-4 , which I’ve placed again here
so you do not have to flip all the way back to it, we have the segue type menu.

 Figure 9-4. The menu used to select a segue type

 Let’s take a break from our app for a second and talk about the options in this menu.
Selecting the Show option when creating the segue will use the current context to present
the linked view controller. Since our Grocery List view controller is in a navigation controller,
it will use a navigation push animation to present the second view controller.

 Figure 9-17. The settings for the table view cell on the Grocery Lists view controller. It is configured to be a Right Detail
cell with a reuse identifier of Cell

191CHAPTER 9: Grocery List App Interface Builder

 In other contexts, the show option might present a view controller in a Modal presentation
style. A modal is where the view controller presents on top of the presenting view controller.
This is useful where a view does not necessarily fit into a flow, but is more of an interruption.
You will also notice in Figure 9-4 there is a Present Modally option. This option forces the
presentation to be a modal style even if there is a navigation controller in play.

 The remaining options are Show Detail , Present as Popover , and Custom . We are not
going to use these options in our app, but a full description of their purpose can be
found in Apple’s documentation at https://developer.apple.com/library/content/
featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html .

 So, for the previous task, I said to use the Show option . This means based on our navigation
controller context, when the user taps on the table cell, the second view controller will be
presented via the navigation controller. Figure 9-18 shows our progress with the segue
highlighted. You will notice the table cell is also highlighted. This means we have correctly
configured our segue on the tap action for the table cell.

 Awesome! The only thing left to do is to finish up our second view controller. I am not
going to walk you through this one. You already know how to configure this view controller
properly. All it needs is a table view cell with the correct style/reuse identifier, and a
navigation item with a title (Grocery Items) and + button. Figure 9-19 shows both fully
configured view controllers. If you have any trouble configuring this view controller, go back
through this section because the steps are identical.

 Figure 9-18. The fully configured Grocery Lists view controller with a segue between the table view cell and the
second view controller

https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html

192 CHAPTER 9: Grocery List App Interface Builder

 All right, we have just finished this section and there was a lot here. We have finished two out
of the four view controllers that make up our app. You saw how to embed view controllers
in a navigation controller, how to add table views with table view cells, and how to add and
configure a navigation item. Up next, we are going to build the last two view controllers
in our app. The good news is that we have already built one of the screens in a previous
chapter.

 Adding Lists and Items

 Way back in Chapter 7 , we built the view from Figure 7-2. I have placed Figure 7-2 again here for your
convenience. This view has a label and text field, constrained to the top of the view. There are also two
buttons constrained to the bottom. The two buttons are also constrained to be the same width and
height.

 Figure 9-19. The Grocery List view controller and the Grocery Items view controller fully configured

http://dx.doi.org/10.1007/978-1-4842-2280-5_7

193CHAPTER 9: Grocery List App Interface Builder

 Figure 7-2. The interface for adding grocery lists

 Since we built this view previously, we are not going to walk through every step to building
this view. However, we do need to link this view in our storyboard, so this is what we are
going to cover in this section. The first step is to add a new view controller to our storyboard.
Let’s add this view controller directly below the Grocery List view controller. Figure 9-20
shows our storyboard with the new view controller.

194 CHAPTER 9: Grocery List App Interface Builder

 Now, we need a segue to this new view controller and we want it to show by tapping
the + button in the top right of the Grocery Lists view controller. Just like our table cell,
let’s Ctrl-drag from the + button to our new view controller. However, this time, instead of
selecting the Show option, let’s choose Present Modally . Selecting this option will allow our
view controller to present over top of the Grocery List view controller instead of using the
navigation controller to push onto the navigation stack.

 In Figure 9-21 , you can see the link between the Grocery List view controller and our new
view controller via our navigation item’s + button. There is not much storyboard work left. We
have already built the interface for our new view controller, so I am not going to cover the
specifics here. We only have one view left. Before we get ahead of ourselves, let’s finish this
out strong.

 Figure 9-20. Our new view controller for adding grocery lists directly below the Grocery List view controller

195CHAPTER 9: Grocery List App Interface Builder

 Next, I want you to try and build the new view controller. If you need to refer to Chapter 7 ,
that’s all right. Once you have it ready, try changing the device configuration and orientation
to make sure the interface works for all screens. Figure 9-22 shows my storyboard after
finishing the Add Grocery List view controller.

 Figure 9-21. Our new view controller linked via a segue to the Grocery List view controller

http://dx.doi.org/10.1007/978-1-4842-2280-5_7

196 CHAPTER 9: Grocery List App Interface Builder

 We are almost there. There is just one view controller left. This next view controller is going
to be almost identical to the previous view controller. The only difference is there will be
an extra text field. Figure 9-23 shows the last view controller we are going to build in this
chapter.

 Figure 9-22. My storyboard after finishing the Add Grocery List view controller

197CHAPTER 9: Grocery List App Interface Builder

 For this view controller, I want you to copy the previous view controller. It might be good
practice to rebuild it. Then place the copy underneath the Grocery Items view controller. Then,
just like in Figure 9-21 , let’s add a segue between the Grocery Items navigation item + button
and our last view controller. Once this is done, the flow of our app is complete. We only have
one last thing to do. Let’s add the new text field. You can either copy the text field that is
already on the view, or you can drag in a new one from the Object Library. Whichever method
you choose, the settings are going to be almost identical to the existing text field. The main
difference for this text field is going to be the keyboard type. This text field is so the user can
input the quantity of the grocery item. We do not want the user to be able to type words here,
so we want to make this a Number Pad Keyboard Type , which can be seen in Figure 9-24 .

 Figure 9-23. The last view controller we are going to build

198 CHAPTER 9: Grocery List App Interface Builder

 And finally, we need constraints. The constraints for this text field are going to be leading
and trailing constraints, with a top constraint to the first text field and a height constraint of
40. Figure 9-25 shows the Size Inspector with all of these constraints.

 Figure 9-24. The keyboard settings for the new text field. The keyboard type setting should be a number pad for this
text field

 Figure 9-25. The four constraints in the Size Inspector on the new text field

199CHAPTER 9: Grocery List App Interface Builder

 And we’re done! We just built the entire interface for our app. There was a lot to this chapter
and I hope you had fun building the view. If you are sick of Interface Builder, don’t worry,
because we only have minimal work left in Interface Builder for this app. Most of the work
in Chapters 10 – 12 will be coding. One last figure; Figure 9-26 shows the final storyboard
for our app. Make sure your storyboard looks like Figure 9-26 before moving on to the next
chapter, or make sure you understand the differences, if you deviated from the design.

 Wrap Up
 That’s a wrap for Chapter 9 . In this chapter, we saw how to build the interface for our app,
but we also took a larger look at storyboards in general. We started this chapter with a
discussion of the differences between Nib files and storyboards. Even though Nib files might
be considered the old way of developing interfaces in iOS, they are still very useful and
we should not discount them. We also have to understand the limitations in storyboards.
Collaboration on storyboards can be difficult.

 Figure 9-26. The final interface for the grocery app after following this chapter

http://dx.doi.org/10.1007/978-1-4842-2280-5_10
http://dx.doi.org/10.1007/978-1-4842-2280-5_12
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

200 CHAPTER 9: Grocery List App Interface Builder

 The main focus of this chapter was building the interface for our app. Usually, we would not
be able to knock it out all at once. Many times, I have just built sections of my app and then
started coding the view controllers and other pieces. However, our app was simple enough
that we could build this all in one go. On more complicated projects, it can be useful to flesh
out code before building the entire interface because the code can provide ideas of how to
structure your interface. I have also run into situations where my view influenced the code,
so just do what’s right for your project and have fun with it.

 The next chapter is what you have been waiting for. We are going to start coding! It’s time to
pull in all the concepts from this book and our playground reference to build our app. Let’s
get to it.

201© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_10

 Chapter 10
 Grocery App: MVVM
 We have finished the interface for our app! We have all of the views in place; we just need
the code behind them now. In Chapter 4 , we discussed design patterns; specifically MVVM,
which is the design pattern we use to build the Grocery App. We could use pure MVC with
this app, but I wanted to show you how we can achieve a very clean and concise app using
this pattern.

 There are other advantages to using MVVM as well, which we will explore in later chapters.
This chapter will also showcase our use of dependency injection . We will use dependency
injection extensively to make sure we are not coupling ourselves and to stay extensible.
This chapter is going to be light in the protocols, but we will explore more protocol-oriented
programming techniques in Chapter 12 . This is going to be a fun chapter, so let’s get started.

 What You’ll Learn
 This chapter is going to be all about the MVVM design pattern with a little MVC thrown
in. Since we are working in iOS, we cannot escape the MVC pattern. We are first going to
look at how we can start implementing this design pattern without real data behind our
app. Setting up Core Data can be a chapter by itself, so I wanted to avoid that somewhat
confusing process until we have the foundation of the app in place.

 The MVC part is referring to our view controllers. We need to implement the view controllers
that are going to control the two table views from the interface in Chapter 9 . These two view
controllers are going to challenge how data flows through our app. This is a very important
concept and as with everything, there are multiple ways we can accomplish this task. We are
going to discuss a few of our options and then make it so. This chapter is all about design
patterns, so by the end, you should feel comfortable selecting and implementing design
patterns for your future projects.

http://dx.doi.org/10.1007/978-1-4842-2280-5_4
http://dx.doi.org/10.1007/978-1-4842-2280-5_12
http://dx.doi.org/10.1007/978-1-4842-2280-5_9

202 CHAPTER 10: Grocery App: MVVM

 Grocery Lists
 Let’s go over the background for our app before we just jump right in. You have already
seen the interface for the Grocery App, but what exactly is each piece going to do? The
idea for the app is that users will be able to create and manage grocery lists for when they
go shopping. Each list will consist of a group of grocery items. Each item will have a name
and a quantity associated with it. That is the entire app and we are going to add all its
functionality in this chapter and in Chapters 11 and 12 .

 For now, we are going to focus on the functionality for our grocery lists. The grocery lists
are the first thing users see when they run our app. We are going to start this section with
the placeholder data. This fake data will allow us to build up the functionality free from Core
Data. Once we complete the fake data, we will integrate with the MVVM pattern, and finally,
we will finish this chapter by implementing our Grocery Lists view controller.

 Let’s start by closing our storyboards and opening the Project Navigator in Xcode. Unless
you changed the name of the file/class, you will most likely see a file called ViewController.
swift . Figure 10-1 shows the files in our project after setup with the Single View template.

 Figure 10-1. The Project Navigator in Xcode with the files created from the Single View template

http://dx.doi.org/10.1007/978-1-4842-2280-5_11
http://dx.doi.org/10.1007/978-1-4842-2280-5_12

203CHAPTER 10: Grocery App: MVVM

 We are starting fresh. Before we get to the view controller or even to our view model, we
need to discuss our placeholder data. This is going to be what we address first, and it will
kick start the MVVM pattern.

 Placeholder Data
 We are going to start this off by creating a new file and group, called Placeholder.swift and
Data , respectively. Figure 10-2 shows the Project Navigator after we’ve adding the new file
and group. If this is going a little slow for you, don’t worry, we are going to pick things up
soon.

 Figure 10-2. The Project Navigator with the new Placeholder.swift file and the new Data group

 Now, you might be asking yourself, wouldn’t it be easier in the long run to just integrate Core
Data now? Aren’t we going to need to refactor our app if we just use fake data? Well, no.J
The following code block should be placed at the top of the Placeholder.swift file:

 import Foundation

 // Typealiases that mimic future objects

204 CHAPTER 10: Grocery App: MVVM

 typealias GroceryList = (name: String?, items: NSSet?)
 typealias GroceryItem = (name: String?, quantity: Int16)

 These two typealiases are going to be our secret sauce. These two aliases just describe
tuples that have named values, which allows us to access these tuple elements without
having to use the usual .0 , .1 , .2 , and so on. We are also using an NSSet instead of an array
because Core Data represents lists as NSSet s, not arrays. The Int16 type is also just to
appease Core Data types. Using these tuples, we are going to pull the tablecloth out from
under the dishes, figuratively. We are going to reference these types throughout our app like
they are our real model classes. Then, when it comes time to integrate Core Data, we will not
have to refactor much code. This is why we have used Core Data types for the properties.
Pretty cool, huh? Before I get too ahead of myself, let’s finishing faking our data:

 class DataContainer {
 var data: [GroceryList] = [
 GroceryList(name: "List 1", items: NSSet(array: [
 GroceryItem(name: "Milk", quantity: 2),
 GroceryItem(name: "Eggs", quantity: 12),
 GroceryItem(name: "Cereal", quantity: 1)
])),
 GroceryList(name: "List 2", items: NSSet(array: [
 GroceryItem(name: "Cookies", quantity: 20),
 GroceryItem(name: "Bread", quantity: 1),
 GroceryItem(name: "Cheese", quantity: 2)
]))
]
 }

 This is just a simple DataContainer class that has an array of our GroceryList tuples. I find it
really cool that we can reference tuples like this. In the preceding code block, it looks like we
are instantiating new objects, but really, they are just tuples. Feel free to put in any data you
want. Okay, we have our fake data, but now what? Here’s where protocols come into play.
We need a protocol that can be swapped just like our type aliases. The following code block
describes this protocol:

 protocol PlaceholderDataContainer {
 var container: DataContainer { get set }
 }

 This protocol is pretty simple. It only requires a DataContainer property. Now, let’s conform
to this protocol in our AppDelegate class:

 import UIKit
 import CoreData

 @UIApplicationMain
 class AppDelegate: UIResponder, UIApplicationDelegate, PlaceholderDataContainer {

205CHAPTER 10: Grocery App: MVVM

 var window: UIWindow?
 var container: DataContainer = DataContainer()

 // ...
 }

 Now, our AppDelegate class conforms to our protocol and has a container of fake data. This
is the link that will make our entire app work later on. That’s it for our fake data. If it seems
confusing at this point, don’t worry, it’s about to clear up in the next section. We are going to
start implementing the MVVM pattern. Before we move on, here is the entire Placeholder.
swift file for reference:

 import Foundation

 // Typealiases that mimic future objects
 typealias GroceryList = (name: String?, items: NSSet?)
 typealias GroceryItem = (name: String?, quantity: Int16)

 class DataContainer {
 var data: [GroceryList] = [
 GroceryList(name: "List 1", items: NSSet(array: [
 GroceryItem(name: "Milk", quantity: 2),
 GroceryItem(name: "Eggs", quantity: 12),
 GroceryItem(name: "Cereal", quantity: 1)
])),
 GroceryList(name: "List 2", items: NSSet(array: [
 GroceryItem(name: "Cookies", quantity: 20),
 GroceryItem(name: "Bread", quantity: 1),
 GroceryItem(name: "Cheese", quantity: 2)
]))
]
 }

 protocol PlaceholderDataContainer {
 var container: DataContainer { get set }
 }

 View Model
 We just implemented our fake data; so let’s start using it. The purpose of the MVVM pattern
in iOS is to keep your model data away from the view controller. This means our view model
is going to hold onto the data, and in our case, the fake data. Let’s start this by creating
another group and file. The group should be called Objects and the file ViewModel.swift .
You can see our progress in the Project Navigator in Figure 10-3 .

206 CHAPTER 10: Grocery App: MVVM

 Now, in our ViewModel.swift file, let’s create a ViewModel class and a property that references
our PlaceholderDataContainer protocol. We also want a computed property to access the
protocol’s DataContainer property. This following code block implements this functionality:

 import Foundation

 class ViewModel {

 // MARK: - Properties

 var placeholderContainer: PlaceholderDataContainer?
 var dataContainer: DataContainer? {
 return placeholderContainer?.container
 }
 }

 Figure 10-3. The Project Navigator after creating our Objects group and ViewModel.swift file

207CHAPTER 10: Grocery App: MVVM

 So, we obviously need to get a reference to the PlaceholderDataContainer and currently the
only thing that conforms to this protocol is our AppDelegate . Let’s add an initializer to this
that uses the AppDelegate , but we want to make sure we use dependency injection:

 import Foundation
 import UIKit

 class ViewModel {

 // MARK: - Properties

 var placeholderContainer: PlaceholderDataContainer?
 var dataContainer: DataContainer? {
 return placeholderContainer?.container
 }

 // MARK: - Initializer

 init(placeholderContainer: PlaceholderDataContainer? = UIApplication.shared.delegate as?
AppDelegate) {
 self.placeholderContainer = placeholderContainer
 }
 }

 So what happened here? We created a new init method on our view model and we
allowed a PlaceholderDataContainer to be injected. We have also had this property
default to using the AppDelegate when nothing is injected. Technically, this code allows the
 PlaceholderDataContainer to come from anywhere in the app. For our purposes, this will
only ever be the AppDelegate , but it does not have to be.

 That is it for the base view model class. There is not much to it, but that’s okay. Before
we move on to the view controller layer, let’s build one more view model. Luckily the
next view model will be more fun. The next view model we are going to create will be the
 GroceryListsViewModel . As always, let’s create a new group called Grocery Lists and a new
file called GroceryListsViewModel.swift under the new group.

 This file is going to contain the GroceryListsViewModel class that inherits from our base
 ViewModel class. This class needs an array with type GroceryList . This property is going to
be a computed property that will use the data within our DataContainer class . This property
is optional and our array should not be, so let’s use the Nil Coalescing operator. This
operator saves us the trouble of an if statement by using the property if it is not nil or the
supplied non-optional property in the other case. Let’s see this new functionality:

 import Foundation

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 var groceryLists: [GroceryList] {
 return dataContainer?.data ?? []
 }

 }

208 CHAPTER 10: Grocery App: MVVM

 We have one last thing to add here. We need a method that can give us the data for a
specific index. We already know we are going to use tables, so let’s allows this API to use
the IndexPath object. We also want to consider the Swift 3 API design guidelines . This
method will not have any side effects, so we can use a noun here:

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 var groceryLists: [GroceryList] {
 return dataContainer?.data ?? []
 }

 // MARK: - Grocery List Data

 func groceryList(at indexPath: IndexPath) -> (name: String?, itemCount: Int) {
 let list: GroceryList? = groceryLists[indexPath.row]
 return (list?.name, list?.items?.count ?? 0)
 }
 }

 This method just uses the computed array property to access the appropriate grocery list
and returns the name and item count. We want to return a tuple with this data so our future
view controllers can stay ignorant of the data. They do not need to deal with parsing the
data off the object, just displaying it. Before we call it a day on this class, I have one last
thing to do. In Chapter 1 , I talked about accounting for optionals in our code. Now, we have
done a pretty good job so far. We have used optionals where appropriate and we have no
implicit unwrapping taking place. We did, however, access an index of the grocery lists array .

 It is not obvious from the previous code block, but there is a crash where we access the
grocery lists at the given indexPath . If you look at the documentation for the subscript
method, it says the following:

 The position of the element to access. position must be a valid index of the
collection that is not equal to the endIndex property.

 —Apple Subscript API Reference

 This is right from Apple’s documentation and you can see it only expects valid indices. If we
were to give this method an IndexPath object that is out of bounds, our app crashes. Now,
the odds of this are slim. But there is a little bit of work we can do to mitigate even this small
risk. We are going to implement an extension on the Array type. So, let’s create our new
group and new file called Extensions and Array+Extensions.swift , respectively. Let’s take a
look at our Project Navigator to see our progress in Figure 10-4 .

http://dx.doi.org/10.1007/978-1-4842-2280-5_1

209CHAPTER 10: Grocery App: MVVM

 This extension is going to be simple, so before we implement our code, let’s start writing
some tests. You knew it was coming, just not when. We have discussed testing and
test-driven development (TDD). This is a really good place to start with TDD to get some
experience. If you included a unit test target when you created your project, you should be
all ready to go. If you didn’t, let’s see how to do that here.

 Figure 10-4. Our progress in the Project Navigator after creating the Extensions group and Array+Extensions.swift file

210 CHAPTER 10: Grocery App: MVVM

 Navigate to the project settings where you will see Figure 10-5 . We have all of the different
targets for our app and their settings here.

 Looking at the bottom-left corner of Figure 10-5 , you will see a little + button. Clicking this
button will allow you to create a new target. Figure 10-6 shows the New Target menu. There
are a lot of options here, such as the new iMessage extension, but if you search for tests,
you will find the two options listed in Figure 10-6 .

 Figure 10-5. The settings for our app in Xcode including the app’s targets

211CHAPTER 10: Grocery App: MVVM

 Let’s select the iOS Unit Testing Bundle and click Next . Follow the next menu’s instructions
making sure you have the Project setting and the Target to Be Tested option set to
 GroceryApp . You can see the settings I chose in Figure 10-7 .

 Figure 10-6. The New Target menu after clicking the + button in the bottom-left corner of Figure 10-5

212 CHAPTER 10: Grocery App: MVVM

 Once everything looks right, click Finish and we will have our new testing target. So, now if
we look at the Project Navigator, we have a brand new group called GroceryAppTests with
a corresponding file info.plist . Let’s start by deleting the GroceryAppTests.swift file and
creating a new file called Array+ExtensionsTests.swift . Figure 10-8 shows the file dialog.
We want to make sure we have selected the GroceryAppTests for Target Membership of this
file. This means the file will be linked/compile with the settings of the GroceryAppTests target
instead of the GroceryApp target.

 Figure 10-7. The settings screen for creating new targets

213CHAPTER 10: Grocery App: MVVM

 All right, we have our testing target and we have our first test file. Let’s start writing our
array extensions tests. The first thing we need to do is make sure our test file looks like the
following:

 import XCTest
 @testable import GroceryApp

 class Array_ExtensionsTests: XCTestCase {

 override func setUp() {
 super.setUp()
 }

 }

 As discussed in Chapter 8 , we need to import the GroceryApp module, and the @testable
attribute allows the test to access the internal members. So, let’s go over the requirements
for our array extension. First, we do not want our app to crash if we try to access an element

 Figure 10-8. The file dialog screen with the target membership set to the GroceryAppTests

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

214 CHAPTER 10: Grocery App: MVVM

beyond the endIndex . We also do not want to crash if we try to access anything below zero,
and we need it work as normal if the index we use is valid. To me, this looks like three tests.
Let’s start with an easy one, the valid index test:

 class Array_ExtensionsTests: XCTestCase {

 var subject: [String]!

 override func setUp() {
 super.setUp()

 subject = ["A", "B", "C"]
 }

 func testShouldGetTheCorrectValue() {
 let index = 1

 let result = subject.value(at: index)

 XCTAssertEqual("B", result)
 }

 }

 First, we have a subject at the top of our test class. We then instantiate our subject in the
 setUp method. The test then just asks for a value at the specific index. You can see we are
adhering to the new API design guidelines as best we can. This test will not compile, so let’s
flip over to our Array+Extensions.swift file. Let’s just create the value(at:) method so it is
basically just the subscript method:

 import Foundation

 extension Array {
 func value(at index: Int) -> Element? {
 return self[index]
 }
 }

 This is basically the same thing we have in our GroceryListsViewModel . It is important to
notice we are using the Element type. Array is a generic struct where one of the types is
 Element . This allows us to have an array for any type. Now, our tests should compile and
run. They should also pass. You could say the tests drove the implementation. We’ll take
a break for TDD in a second, but let’s finish this extension first. Now, let’s go back to our
 Array+ExtensionsTests.swift file and write some more tests. We are going to start with the
test for the endIndex :

 class Array_ExtensionsTests: XCTestCase {

 var subject: [String]!

215CHAPTER 10: Grocery App: MVVM

 override func setUp() {
 super.setUp()

 subject = ["A", "B", "C"]
 }

 func testShouldGetTheCorrectValue() {
 let index = 1

 let result = subject.value(at: index)

 XCTAssertEqual("B", result)
 }

 func testShouldGetNilForAnIndexBeyondEndIndex() {
 let index = 10

 let result = subject.value(at: index)

 XCTAssertNil(result)
 }

 }

 The second test we have is expecting nil for an index of 10. If you build and run this test,
it’s going to crash. Now, before you get sea sick, let’s finish out the tests here before we go
implementing. The last test we need to write is to make sure we receive nil when we ask for
a negative index:

 class Array_ExtensionsTests: XCTestCase {

 var subject: [String]!

 override func setUp() {
 super.setUp()

 subject = ["A", "B", "C"]
 }

 func testShouldGetTheCorrectValue() {
 let index = 1

 let result = subject.value(at: index)

 XCTAssertEqual("B", result)
 }

 func testShouldGetNilForAnIndexBeyondEndIndex() {
 let index = 10

 let result = subject.value(at: index)

216 CHAPTER 10: Grocery App: MVVM

 XCTAssertNil(result)
 }

 func testShouldGetNilForAnIndexLessThanZero() {
 let index = -5

 let result = subject.value(at: index)

 XCTAssertNil(result)
 }

 }

 The previous code block is the entire Array+ExtensionsTests class. The last test here tries to
access an index of –5 and this will crash. Now, let’s go back to the Array+Extensions.swift
file and make these tests pass:

 extension Array {
 func value(at index: Int) -> Element? {
 guard index >= 0 && index < endIndex else { return nil }
 return self[index]
 }
 }

 Now, run your tests and see what happens. These should all pass. Let’s take a look at this.
We are using a guard statement to make sure the index we are injecting is in the correct
range. We just return nil otherwise. This was a very simple example, but this is TDD. We
also did not follow the practice perfectly. The practice would have had us implement the
logic after our second test to make it pass. We then would have written the third test and
then the last piece of our implementation. It makes me tired just explaining it. This is where
we can find the balance. We knew the requirements for this extension. There was nothing
stopping us from writing all three tests first. I wanted to give you guys a taste of TDD for the
app. We are going to be using a mixture of these techniques for the rest of this app.

 Our last task is to refactor the GroceryListsViewModel . We need to use this awesome new
extension we built. Here is the groceryList method for using our new extension:

 func groceryList(at indexPath: IndexPath) -> (name: String?, itemCount: Int) {
 let list: GroceryList? = groceryLists.value(at: indexPath.row)
 return (list?.name, list?.items?.count ?? 0)
 }

 Almost nothing has changed, but if you look really closely, you can see we are now using
the new array extension to safely access our groceryLists . Before we move onto the next
section, I just wanted to summarize what we have done here.

 This section was all about implementing our view model. We created our base view model
that allows a protocol type to be injected that can access our placeholder data. We then
implemented a grocery list’s view model that holds onto the GroceryLists type and gives us
a safe way to retrieve a specific grocery list. To make sure we can safely access elements
within an array, we created an array extension. While implementing this extension, we made
sure we were covered with tests. Now, in Figure 10-9 , you can see our progress in the
 Project Navigator ; afterward we can finally get to our view controller.

217CHAPTER 10: Grocery App: MVVM

 Grocery Lists View Controller
 We just finished our view model and the Grocery Lists view model. Let’s put these two
pieces to work and get our fake data displaying on the screen. First, we are going to need a
 GroceryListsViewController.swift file. Let’s put this file under the Grocery Lists group. You
can either create a brand-new file or reuse the template’s ViewController.swift file. Either
way, we want to create a GroceryListsViewController like the following:

 import UIKit

 class GroceryListsViewController: UIViewController, UITableViewDataSource,

 Figure 10-9. The progress of the Grocery App in the Project Navigator

218 CHAPTER 10: Grocery App: MVVM

UITableviewDelegate {

 }

 Let’s take a look at this class before we add more implementation. We want to make
sure our class inherits from the base UIViewController class and conforms to the
 UITableViewDataSource and UITableViewDelegate protocols. This will give us the methods to
connect with the table view on our storyboard. Before we link our table view up, let’s add a
table view @IBOutlet property:

 class GroceryListsViewController: UIViewController, UITableViewDataSource,
UITableviewDelegate {

 // MARK: - Properties

 @IBOutlet var groceryListTableView: UITableView?

 }

 Now, we can head into our storyboard and link up the dataSource , delegate , and our new @
IBOutlet properties. Figure 10-10 shows the interface for the view controller we are going to
focus on here.

 Figure 10-10. The Grocery Lists View Controller in our storyboard

219CHAPTER 10: Grocery App: MVVM

 To set up the table view dataSource and delegate, select the table view and control-drag to
the yellow icon at the top of the view controller. This will open up a menu where you select
 dataSource . Repeat this step for the delegate as well. Now, before you can hook up the
 groceryListsTableView property, we need to switch the identity of this view controller. In the
Utility Pane on the right side, open up the Identity Inspector and change the Class identity
to GroceryListsViewController instead of ViewController . Figure 10-11 shows the Identity
Inspector after changing this property.

 Now, we can control-drag from the yellow icon representing our view controller to the table
view. This lets us set up the groceryListsTableView outlet. Our storyboard should now be
fully configured for this view controller, so now we can get back to coding.

 If you were to try and compile the app now, it would not work. The view controller does not
conform to the table view protocols. Let’s start here. There are three methods that we want
to implement. The following code block has these three methods with hardcoded data:

 class GroceryListsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate {

 // MARK: - Properties

 @IBOutlet var groceryListTableView: UITableView?

 // MARK: - Table View

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return 0
 }

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {

 }

 Figure 10-11. The Identity Inspector for the Grocery Lists view controller

220 CHAPTER 10: Grocery App: MVVM

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return UITableViewCell()
 }
 }

 The three methods we want to implement are cellForRow , willDisplayCell , and
 numberOfRowsInSection . These three methods will control the cell that is displayed in our
table view, and how many are displayed. First, we are going to implement the cellForRow
method. This is where we will use the cell reuse identifier we talked about in Chapter 9 :

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)
 }

 In the preceding code we used the dequeueReusableCellWithIdentifier method to
instantiate the table cell from our storyboard at the given indexPath . Let’s next implement
the willDisplayCell method. But wait, we still need a view model for this view controller!
We could do this by adding a view model property and giving our view controller the
correct view model, but let’s create a protocol for this behavior called ViewModelContainer .
This should be a new file in a new group called ViewModelContainer.swift and Protocols,
respectively.

 This protocol comes from Chapter 6 where we discussed protocol associated types. This
protocol is going to need an associated type and a viewModel property. The following code
block is the implementation for the ViewModelContainer :

 protocol ViewModelContainer {
 associatedtype VM: ViewModel

 var viewModel: VM { get set }
 }

 Our associated type must inherit from the ViewModel class, and that is the only constraint.
Now, we can use this protocol on our view controller. So, switch gears, let’s add this
protocol to the GroceryListsViewController :

 class GroceryListsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryListsViewModel = GroceryListsViewModel()

 // ...
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_9
http://dx.doi.org/10.1007/978-1-4842-2280-5_6

221CHAPTER 10: Grocery App: MVVM

 Conforming to this protocol forces our view controller to have a viewModel property and we
want it to be of type GroceryListsViewModel . Now, we can get back to the willDisplayCell
method:

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {
 let list = viewModel.groceryList(at: indexPath)

 cell.textLabel?.text = list.name
 cell.detailTextLabel?.text = "\(list.itemCount) Items"
 }

 Thanks to our view model method groceryList(at:) , this method is really simple. We ask
for the Grocery List object at the specific indexPath and then set the cell’s main label and
detail label to the correct text. Also, because we handled the optionals in our view model, we
do not need to worry about string interpolation doing anything funny such as “Optional(10)
items”. One method left, numberOfRowsInSection . We want to use the count for the grocery
lists in our view model:

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return viewModel.groceryLists.count
 }

 The whole purpose of our grocery lists at the index path method and the view model
is to keep the data away from our view controller. This makes the previous code block
seem counterintuitive because we are directly accessing the grocery lists data in our view
controller. I am doing this so we can be as efficient as possible, but also, it recognizes that
iOS will always be MVC and accessing our data in the view controller is not necessarily
wrong. We could definitely create a list count method, but I did not want to go that far. If you
would like to create that method, go for it.

 That does it for this section. We did all of our work up front, so implementing the Grocery
Lists view controller was a piece of cake. Go ahead and run your app to see the results.
Figure 10-12 shows our app running for the first time. It also shows data! Okay, fake data,
but still, pretty cool.

222 CHAPTER 10: Grocery App: MVVM

 If you are not seeing this when you run your app, there are a few things you can try. First,
let’s talk about what you should do if you are seeing a black screen with no view. When
configuring your storyboard, you may have messed up the initial view controller setting. You
want the navigation controller in your storyboard to be the initial view controller. If you select
the navigation controller in the storyboard and navigate to the Attributes Inspector, there
should be a setting for Is Initial View Controller . You want to make sure this is checked on.
You can see this setting in Figure 10-13 .

 Figure 10-12. The Grocery Lists app running for the first time with fake data

223CHAPTER 10: Grocery App: MVVM

 That should do it. If you are still experiencing issues, I would recommend going back
through from the start. Make sure, everything is building and running smoothly before
moving on to the next section.

 Grocery Items
 There was a lot of setup in the previous section. In this section, we can use all that work
to move faster. Let’s quickly cover our current progress. First, we implemented a fake data
container that we put on our AppDelegate . We then built up a view model base class that
allows the type containing our fake data to be injected. We then implemented the view
model specific to our grocery list data. And finally, we finished the section by implementing
the view controller for the grocery lists, which allowed us to see our fake data running in our
app. This section is going to finish up the view controller work, and by the end, we should be
able to see our fake data grocery lists and the items associated with those lists. First, let’s
see our progress in the Project Navigator in Figure 10-14 .

 Figure 10-13. The Is Initial View Controller setting on the Attributes Inspector. Make sure this setting is turned on for
the Navigation Controller

224 CHAPTER 10: Grocery App: MVVM

 View Model
 We are going to jump right into this section by creating our new view model. This view model
is going to be responsible for the grocery items within a specific grocery list. That means this
view model is going to look almost identical to the previous GroceryListsViewModel . First,
create a new group and a new file called Grocery Items and GroceryItemsViewModel.swift :

 import Foundation

 class GroceryItemsViewModel: ViewModel {

 }

 Figure 10-14. The progress up until this point in Xcode’s Project Navigator

225CHAPTER 10: Grocery App: MVVM

 We have our new ViewModel subclass, so now we can add some functionality to it. Let’s start
with an array of grocery items:

 class GroceryItemsViewModel: ViewModel {

 // MARK: - Properties

 var groceryItems: [GroceryItem] {
 return []
 }
 }

 Just like our other view model, this array is a computed property, and I have just returned
a default empty array for now. Before we make this work, let’s write the grocery item data
method. This method will be another method that returns a tuple of data representing a
grocery item at a specific indexPath :

 // MARK: - Grocery Item Data

 func groceryItem(at indexPath: IndexPath) -> (name: String?, quantity: Int16) {
 let item: GroceryItem? = groceryItems.value(at: indexPath.row)
 return (item?.name, item?.quantity ?? 0)
 }

 See? Nothing to it. We are paying close attention to the Swift 3 guidelines, we are using our
array extension to make sure this method has no inherit crashes, and we just return the data
our view controller needs to display. Now, we need to refocus on the grocery items array. We
know our items come from grocery lists, so we are going to need a grocery list property to
make this work. Before we discuss how this data will be injected into our view model, let’s
just use it here. So in the Properties section of this view model, let’s add the following code:

 class GroceryItemsViewModel: ViewModel {

 // MARK: - Properties

 var groceryList: GroceryList?

 var groceryItems: [GroceryItem] {
 return []
 }

 // MARK: - Grocery Item Data

 // ...
 }

 We have our reference to a grocery list, so our computed property can now access the
correct data. This is going to be a bit tricky. Remember our grocery list’s items are an NSSet,
not an array. We are going to need to do a bit of conversion here:

 class GroceryItemsViewModel: ViewModel {

 // MARK: - Properties

226 CHAPTER 10: Grocery App: MVVM

 var groceryList: GroceryList?

 var groceryItems: [GroceryItem] {
 let result = groceryList?.items?.flatMap {
 $0 as? GroceryItem
 }
 return result ?? []
 }

 // MARK: - Grocery Item Data

 // ...
 }

 We are using one of the functional methods that sequence types have called flatMap.
flatMap uses a closure to iterate over a sequence and asks for a new type back to convert
the sequence. So, if we had an array of object A, we could use flatMap to covert the array of
object A to an array of object B. The difference between map and flatMap is that flatMap will
not allow the resulting type to be optional, whereas map does allow optionals to be returned.
So in the previous code block, if we used map , the result would be [GroceryItem?]? instead
of [GroceryItem]? .

 All right, we have our new view model class. It can parse grocery items from a grocery list
and it can give us displayable values of a grocery item at a specific indexPath . We can now
implement our Grocery Items view controller.

 Grocery Items View Controller
 Let’s create a new file called GroceryItemsViewController.swift , and we can put this file
directly next to the GroceryItemsViewModel.swift . Just like our previous view controller, this
 UIViewController subclass will need to conform to three protocols. These protocols are
 UITableViewDataSource , UITableViewDelegate , and ViewModelContainer :

 import UIKit

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 }

 Our new view controller will not compile until we have satisfied all of these protocols
requirements. Let’s start with out ViewModelContainer protocol:

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()
 }

227CHAPTER 10: Grocery App: MVVM

 We have added the viewModel property and made sure its type is a GroceryItemsViewModel .
The next step for the Properties section is going to be a @IBOutlet to our table view. Our
new outlet looks like the following:

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()

 @IBOutlet var groceryItemsTableView: UITableView?
 }

 The next step is to wire op our view controller in the storyboard. You have already performed
these steps in the previous section. First, we need to set up the identity of the view controller
properly. You can do this through the Identity Inspector in the storyboard. Figure 10-15
shows the identity inspector for our GroceryItemsViewController .

 Next, we need to hook up the table view’s dataSource , delegate , and @IBOutlet references
in the storyboard. Trying not to be too repetitive, we can control-drag from our table view to
the view controller reference (the little yellow icon), to set up the dataSource and delegate .
We then want to control-drag from the view controller reference to our table view for our @
IBOutlet . This should wire everything up correctly, and we should be ready to use the table
view now.

 Next, let’s implement the table view methods we need in our view controller. We are going
to use the same three methods our previous view controller used: numberOfRowsInSection ,
 willDisplayCell , and cellForRow . We can start by using hardcoded data:

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,

 Figure 10-15. The Identity Inspector for the Grocery Items view controller

228 CHAPTER 10: Grocery App: MVVM

UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()

 // MARK: - Table View

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return 0
 }

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {

 }

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return UITableViewCell()
 }
 }

 Now our code should compile, but we still need to fill in these methods correctly. Starting at
the bottom, let’s create our table view cell:

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)
 }

 Back in Chapter 9 , we made sure to configure both table view cells with the same reuse
identifier, so we can use the same code as the previous controller to dequeue our cell here
as well. Moving on, let’s use our groceryItem method from the view model to set up our
table view cell:

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {
 let item = viewModel.groceryItem(at: indexPath)

 cell.textLabel?.text = item.name
 cell.detailTextLabel?.text = "Quantity: \(item.quantity)"
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_9

229CHAPTER 10: Grocery App: MVVM

 We safely grab the grocery item and use it to display the correct text on our cell with the
name of the item as well as the item quantity. Lastly, we need to get the count of the items
to display. Just like before, we could create an item count method on the view model, or we
could directly access the array. Here, I am going to directly access the array:

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return viewModel.groceryItems.count
 }

 Now, for reference, here is the entire GroceryItemsViewController.swift file:

 import UIKit

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()

 @IBOutlet var groceryItemsTableView: UITableView?

 // MARK: - Table View

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return viewModel.groceryItems.count
 }

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {
 let item = viewModel.groceryItem(at: indexPath)

 cell.textLabel?.text = item.name
 cell.detailTextLabel?.text = "Quantity: \(item.quantity)"
 }

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)
 }
 }

 There is one last thing we need to do before we can move on. It might seem
small, but it could become unruly quickly. In our GroceryListViewController and
 GroceryItemsViewController , we are using the table view cell’s reuse identifier. We have
hardcoded this string in both places. It might not seem like a big deal, but the more
hardcoded strings we use, the more complicated our app becomes to refactor. So, let’s
takes a break for a minute to create a constants file. This will also help us out later on.

230 CHAPTER 10: Grocery App: MVVM

 I have called my constants file GAConstants.swift for grocery app constants. Let’s create
this new file at the top of our app above the AppDelegate.swift file. This file will contain a
struct for all the constant values for the Grocery App. This is not limited to strings; we could
also put colors here or other constants data. The following is how I have structured my
 GAConstants struct:

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our the grocery list and grocery item table views
 static let rightDetail = "Cell"
 }
 }

 We have our outer struct and I have also elected to use an inner struct, so this does not
become a mess of data all at the root of the GAConstants struct. We know our table view
cell has a right detail style, so I have named our constant rightDetail . Now, let’s go back
through our view controllers and use this constant instead of the hardcoded string starting
with grocery lists:

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: GAConstants.TableCell.rightDetail,
for: indexPath)
 }

 Now, grocery items:

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: GAConstants.TableCell.rightDetail,
for: indexPath)
 }

 Awesome! We have removed our magic strings and we can continue forging ahead. Building
and running our app now, we should still see our grocery lists, but we are not quite there yet
for the grocery items. This leads us to our last section, transferring data. Before we move on,
Figure 10-16 shows our progress in the Project Navigator.

231CHAPTER 10: Grocery App: MVVM

 Figure 10-16. Our progress in Xcode’s Project Navigator

232 CHAPTER 10: Grocery App: MVVM

 Transferring Data
 We have finally made it the last section for Chapter 10 ! The infrastructure for our app is
almost complete. We have implemented the MVVM pattern and we have wired up our initial
view controllers that display our fake data. It might not seem like much, but we have done a
lot of work. This section is going to focus on the problem we reached at the end of our last
section.

 If we run the app, our fake data displays for the grocery lists and not for the grocery items.
This is because we are depending on the GroceryItemsViewModel to have a reference to the
selected grocery list, but we have not set this up. To fix this problem, we are going to need a
few different pieces in place. Before we jump right in, let’s discuss the solution.

 We are going to need a protocol that can allow us to set a grocery list property no matter
what type we are dealing with. We can then use this protocol type to set the selected
grocery list, which will allow us to give the selected grocery list to the Grocery Items view
controller and its view model. Now, if we had used a singleton, in some form, we would not
have to worry about this problem. However, we would have different issues to deal with,
such as maintainability. Singletons can solve a lot of problems, but they must be treated with
care. All right, now that we have an idea of what to do, let’s start with our new protocol.

 In the Protocols group, let create a new file called SelectedGroceryListContainer.swift . If
you have not caught on by now, I like to name a lot of my protocols containers. I like naming
some protocols this way because I am trying to describe a trait. The purpose of this protocol
is to allow us to transfer data through the use of protocols instead of more concrete types.
Here is the implementation for this file:

 protocol SelectedGroceryListContainer {
 var selectedGroceryList: GroceryList? { get set }
 }

 It only requires a property for the selected grocery list. The next step is to conform to this
protocol on our GroceryItemsViewController :

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer, SelectedGroceryListContainer {

 // MARK: - Properties

 var selectedGroceryList: GroceryList? {
 get {

 }
 set {

 }
 }

 // ...
 }

http://dx.doi.org/10.1007/978-1-4842-2280-5_10

233CHAPTER 10: Grocery App: MVVM

 We have our new protocol and the new property. You can see I have used the Swift property
getter and setter syntax, but I don’t do anything with them yet. We do not want to run into
a situation in which the state of our app gets out of whack. So I am not going to save the
selected grocery list on this view controller just to transfer it to the view model. What I, later
on, we set it to something else without setting the view model’s property? This could wreak
havoc with the app, but what was wrong would not be obvious. So, let’s implement the get
and set to be a passthrough for the view model:

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer, SelectedGroceryListContainer {

 // MARK: - Properties

 var selectedGroceryList: GroceryList? {
 get {
 return viewModel.groceryList
 }
 set {
 viewModel.groceryList = newValue
 }
 }

 // ...
 }

 Pretty cool, now all that is left is to use this protocol and property to transfer the
selected grocery list. Let’s flip over to the GroceryListsViewController to accomplish
this. To intercept the view controller that will be presented, we are going to override the
 prepareForSegue method on the GroceryListsViewController :

 class GroceryListsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer {

 // MARK: - Properties

 // ...

 // MARK: - Segue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 super.prepare(for: segue, sender: sender)
 }

 // MARK: - Table View

 // ...
 }

234 CHAPTER 10: Grocery App: MVVM

 You might think we are going to ask the segue for the GroceryItemsViewController , but we
want to use our protocol to make this more generic. Let’s see if the destination on the segue
is our protocol type:

 // MARK: - Segue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 super.prepare(for: segue, sender: sender)

 if var groceryListContainer = segue.destination as? SelectedGroceryListContainer {
 // TODO: transfer grocery list
 }
 }

 We are only missing the last piece, which is the capability to transfer the selected grocery
list. This is where we want to give more responsibility to our view model. Our view model
holds our data; so let’s make it transfer it as well. So we will need to add a new method to
the GroceryListsViewModel . Keeping the API design guidelines in mind, we want this to
read as a verb phrase since there will be side effects. Let’s create our transfer method on
 GroceryListsViewModel :

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 // ...

 // MARK: - Transfering Data

 func transferGroceryList(at indexPath: IndexPath, to container: inout
SelectedGroceryListContainer) {
 container.selectedGroceryList = groceryLists.value(at: indexPath.row)
 }

 // MARK: - Grocery List Data

 // ...
 }

 This method reads as a verb phrase exactly as it should. We then expect an indexPath for
the selected grocery list and a container to transfer the grocery list to. I have also elected to
not make the SelectedGroceryListContainer protocol a class protocol. This way, we need
to explicitly say our property here is an inout property.

 The inout keyword allows us to transfer the property into the method so it can be modified.
The inout property is then transferred back to the caller with the potentially modified state.
Since protocols are seen as value types regardless of the underlying implementation, we
need this to set our property. If we go back to our GroceryListsViewController , let’s finish
this. So what’s left to do? We need to use our table view property to access the selected
index path, and we need to use our view model to transfer the selected grocery list. The
 prepareForSegue method should now look like the following code block:

235CHAPTER 10: Grocery App: MVVM

 Figure 10-17. The Grocery App running with fake data. The first two view controllers are set up to display fake data

 // MARK: - Segue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 super.prepare(for: segue, sender: sender)

 if var groceryListContainer = segue.destination as? SelectedGroceryListContainer,
 let indexPath = groceryListTableView?.indexPathForSelectedRow {

 viewModel.transferGroceryList(at: indexPath, to: &groceryListContainer)
 }
 }

 Now, drum roll please. If you run your app, you should still see the fake data on the first view
controller, but if you select one of those lists, what happens? It now displays the items within
the list! You should see the two screens from Figure 10-17 .

236 CHAPTER 10: Grocery App: MVVM

 That does it for this chapter. I know there was a lot here, but we got through it. There is a
lot to this simple app, especially with the architecture we have chosen, but I hope you can
see how clear and concise everything we have written is. There are clear responsibilities
for every piece, and there is no code in our app that was done without thought and reason.
Figure 10-18 shows the progress of our app in the Project Navigator.

 Figure 10-18. The progress of the Grocery App in Xcode’s Project Navigator

237CHAPTER 10: Grocery App: MVVM

 We are a little light in the tests and that is mainly due to our fake data. I did not want to
walk you through testing that would just have to be redone later. Don’t worry; we are going
to address this in the next chapter. Chapter 11 is going to be all about Core Data and
integrating real data with our app.

 Wrap Up
 Wow! This has been a huge chapter. A lot happened here and I would recommend running
the app a couple of times before moving on. You can throw some breakpoints in and walk
through the code if you want. So, let’s wrap this up. We started this chapter with almost a
blank slate. We had the interface built, but everything else was brand new. We saw how to
implement the MVVM pattern in a real-world scenario. This is one of the key points to this
chapter. We made sure to use dependency injection to allow our view models to access the
data for our app. By using dependency injection, we can, theoretically, use anything to hold
onto our data. We could use some other object, a singleton, or anything we wanted. We are
only restricted to the protocol we created.

 Another key point to this chapter is how we worked with optionals. If you go back through
our code, you can see how we are accounting for optionals in the appropriate locations.
Our view model holds onto the data through optional properties and then makes sure we
safely access that data. We then make sure the interface between the view model and
view controller is clean. The view controller can just use the APIs of the view model without
deciding what to do if something is optional. I cannot describe how important it is to
account for optionals properly. This does not mean everything should expect optionals, but
we should allow for optionals until it is absolutely necessary.

 Finally, we used protocols to keep concrete types, such as the
 SelectedGroceryListContainer protocol, out of the equation. If we add more view
controllers that conform to this protocol, we do not have to refactor our code to transfer the
selected grocery list. We have accomplished a lot, but there is still a ways to go. Let’s move
on to the next chapter where we will integrate Core Data.

http://dx.doi.org/10.1007/978-1-4842-2280-5_11

239© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_11

 Chapter 11
 Grocery App: Core Data
 In the previous chapter, we implemented the MVVM design pattern and saw our app
displaying fake data. This chapter is going to remove our fake data and integrate Core Data.
I wanted to handle this before the final chapter. Chapter 12 is going to finish the functionality
of our app by implementing the rest of the functionality, including creating grocery lists/
items, reloading the view, and displaying errors to the user.

 Through most of this chapter, our app is not going to be able to build. This will be due to
the switch we are going to pull between our fake data and Core Data. Don’t worry, though,
because once we are done, we will be able to see our app using real data and persisting
said data. Are you ready for the biggest switch since Raiders of the Lost Ark ? (Didn’t that
now work? J)

 What You’ll Learn
 This chapter is going to cover integrating Core Data. Core Data is Apple’s framework
for handling persistence within apps. Core Data is huge, so we are not going to discuss
everything it can do for us in this chapter. I am going to highlight key points, but as always, I
recommend you research Core Data more. We also have to think slightly differently because
we are using MVVM. Remember, Core Data and the entire iOS stack are built on the idea of
MVC. We have to consider compatibility with the features Apple gives us.

 After you are done with this chapter, you should feel comfortable with both using Core Data
in your applications and with your knowledge of how to set up and manage the Core Data
stack. Xcode has a great interface for managing the data model, but it might not seem
straightforward if this is your first experience with Core Data. After integrating Core Data, we
are going to add functionality to our view model layer. This functionality will come into play
in Chapter 12 . Finally, we will finish this chapter by writing tests for our core functionality. It’s
the penultimate chapter; let’s get to it.

http://dx.doi.org/10.1007/978-1-4842-2280-5_12
http://dx.doi.org/10.1007/978-1-4842-2280-5_12

240 CHAPTER 11: Grocery App: Core Data

 Persistent Container
 Before we build our data model, let’s make sure our app is set up to use Core Data. Way
back in Chapter 9 , during “Project Setup,” we made sure to turn on Core Data. Just like with
the unit tests, I elected to leave this setting turned off so I could show you how to integrate
Core Data fresh. If you forgot to check this option during project setup, then you can follow
along. Let’s open the AppDelegate.swift file and look at the bottom. You should see the
following code:

 // MARK: - Core Data stack

 lazy var persistentContainer: NSPersistentContainer = {
 let container = NSPersistentContainer(name: "GroceryApp")
 container.loadPersistentStores(completionHandler: { (storeDescription, error) in
 if let error = error as NSError? {
 fatalError("Unresolved error \(error), \(error.userInfo)")
 }
 })
 return container
 }()

 // MARK: - Core Data Saving support

 func saveContext () {
 let context = persistentContainer.viewContext
 if context.hasChanges {
 do {
 try context.save()
 } catch {
 let nserror = error as NSError
 fatalError("Unresolved error \(nserror), \(nserror.userInfo)")
 }
 }
 }

 If you chose Core Data, then your AppDelegate will have a lot of comments in this code. I
have omitted the comments for clarity. There are two pieces to this code; let’s go through
each. The first is this persistentContainer . It might look scary, but it is fairly simple. It is
a lazily initialized variable that, once accessed , creates the app’s persistent stores. Once
accessed, this will load the app’s data into memory. The second piece is this saveContext
method. Again, all this method does is write out the current context.

 You’ll notice this saveContext method does not have to deal with the specific changes to
save. One of the niceties of Core Data is that everything is managed through the idea of a

 Caution If you do not have this code at the bottom of your AppDelegate.swift file, make sure
to add it. Also be sure to import Core Data at the top of the file. This is what drives the Core Data
stack in our app, so we have to implement this code.

http://dx.doi.org/10.1007/978-1-4842-2280-5_9

241CHAPTER 11: Grocery App: Core Data

context. This context then just writes out the current context when instructed. That way,
there is no need to say, “Save this new grocery list I just added.” You can just say, “Save
whatever you got.”

 You might notice that there are fatalErrors in this code. This is what the Core Data template
provides us with, but the omitted comments say the error should be handled appropriately
and that it is not a fatal error. It even goes so far as to say the fatal errors should not be
included in a shipping application. We are not going to change this functionality for our app.
If you choose to continue development and eventually ship this app to the App Store, make
sure these fatal errors are resolved first.

 The last thing you should take notice of is the applicationWillTerminate method. If you
used the template, there should be a call to saveContext like the following:

 func applicationWillTerminate(_ application: UIApplication) {
 // Called when the application is about to terminate. Save data if appropriate. See also
applicationDidEnterBackground:.
 saveContext()
 }

 Every time we go to terminate the app, the current context will be written out. We are not
going to rely on this functionality. We are going to handle saving ourselves when we modify
or add new data, but this can stay here as a catch all just in case.

 All right, we now have the necessary code in our AppDelegate to move on to some new
code. To start integrating Core Data, we need to remove our placeholder data. This means
our app is not going to build for a little while. It is important to follow along closely, since we
will not be capable of running the app. Before we start this process, let’s create a new file
called PersistentContainer.swift and write a new protocol called PersistentContainer . Be
sure to put this file in the Protocols group . Let’s write a protocol that looks like the following
code block:

 import CoreData

 protocol PersistentContainer {
 var persistentContainer: NSPersistentContainer { get set }
 var managedObjectContext: NSManagedObjectContext { get }
 }

 This protocol is meant to replace the PlaceholderDataContainer protocol in the AppDelegate .
The persistentContainer property is already on the AppDelegate . The managedObjectContext
is the current context of the persistent store. Before we add this, let’s add an extension for
this protocol:

 extension PersistentContainer {
 var managedObjectContext: NSManagedObjectContext {
 return persistentContainer.viewContext
 }
 }

 This extension just gives us a little extra sugar for accessing the managed object context.
We do not actually need this property because the persistentContainer has a reference

242 CHAPTER 11: Grocery App: Core Data

called viewContext . We’re using this instead to save us from typing all that. Now, let’s start
the switch. Remember, this means our app is not going to compile for a while, but we will
work through it. The first step is to delete the Placeholder.swift file. Figure 11-1 shows the
Project Navigator after deleting this file.

 Figure 11-1. The app’s progress in Xcode’s Project Navigator after deleting the Placeholder.swift file

243CHAPTER 11: Grocery App: Core Data

 All right, now let’s remove our old PlaceholderDataContainer protocol from the AppDelegate .
We can also add our new PersistentContainer protocol at the same time. The previous
 AppDelegate looked like this:

 @UIApplicationMain
 class AppDelegate: UIResponder, UIApplicationDelegate, PlaceholderDataContainer {

 var window: UIWindow?
 var container: DataContainer = DataContainer()

 // ...
 }

 Now, our new AppDelegate should like the following:

 @UIApplicationMain
 class AppDelegate: UIResponder, UIApplicationDelegate, PersistentContainer {

 var window: UIWindow?

 // ...
 }

 We have removed our DataContainer property and the AppDelegate now conforms to our
new protocol. Since we already have a persistentContainer property on the AppDelegate ,
there should be no more work required. The next step is to use this new protocol in our
view model just like the PlaceholderDataContainer protocol was used. Navigate to the
 ViewModel.swift file. Here is our current implementation:

 class ViewModel {

 // MARK: - Properties

 var placeholderContainer: PlaceholderDataContainer?
 var dataContainer: DataContainer? {
 return placeholderContainer?.container
 }

 // MARK: - Initializer

 init(placeholderContainer: PlaceholderDataContainer? = UIApplication.shared.delegate as?
AppDelegate) {

 self.placeholderContainer = placeholderContainer
 }
 }

 This is basically all wrong now. Let’s make this work with our new protocol. There are three
pieces of functionality we need to add. First, we need to hold a reference to the object
conforming to the PersistentContainer protocol. Second, we need to allow the conforming
object to be injected using the AppDelegate as our default. Lastly, we need to add another
computed property for the managedObjectContext . This is just another convenience property
that is not required. Here is the entire ViewModel class after all of our updates:

244 CHAPTER 11: Grocery App: Core Data

 import UIKit
 import CoreData

 class ViewModel {

 // MARK: - Properties

 var persistentContainer: PersistentContainer?
 var managedObjectContext: NSManagedObjectContext? {
 return persistentContainer?.managedObjectContext
 }

 // MARK: - Initializer

 init(persistentContainer: PersistentContainer? = UIApplication.shared.delegate as?
AppDelegate) {

 self.persistentContainer = persistentContainer
 }
 }

 Not much has really changed. We are just using our new protocol the same way we used the old
protocol. We are still using the AppDelegate as our default. Let’s take a step back because I want
to discuss why we are injecting this instead of an initializer that looks like the following:

 // Do not implement this!
 init() {
 self.persistentContainer = UIApplication.shared.delegate as? AppDelegate
 }

 As I have stated previously, iOS is designed with MVC in mind. This means that the Core
Data stack is meant to be used in view controllers . However, as we discussed in Chapter
 4 , we do not want to bloat our view controllers with too much responsibility. Core Data is a
huge responsibility. On many occasions I myself have created singletons and other manager
type classes to hold the responsibility of Core Data so my view controller does not have to.

 However, right in Apple’s documentation, they discuss how managed object contexts
should be injected into view controllers. This documentation can be found at https://
developer.apple.com/library/content/documentation/DataManagement/Conceptual/
CoreDataSnippets/Articles/stack.html . It also states the AppDelegate should be
responsible for the first injection point, but after that, the managed object context should be
passed around from controller to controller.

 If we create a singleton or manager to hold on to this responsibility, we can miss out on this
functionality by having only one point for Core Data. We then tie our implementation to this
single context and single implementation of the Core Data stack. After reading through the
documentation, it also sounds like we have violated iOS patterns through our use of MVVM.
I don’t believe this is the case. iOS is allows going to be MVC by nature. We cannot avoid
this. However, I see the view model as an extension of the view controller.

 Caution Be sure to import CoreData at the top of the ViewModel.swift file.

http://dx.doi.org/10.1007/978-1-4842-2280-5_4
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/CoreDataSnippets/Articles/stack.html
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/CoreDataSnippets/Articles/stack.html
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/CoreDataSnippets/Articles/stack.html

245CHAPTER 11: Grocery App: Core Data

 In true MVVM, there is no idea of a controller. The view model actually takes the place of the
view controller. Since we cannot avoid the view controller in iOS, the view model is just half
of the view controller. The view model half is responsible for communicating with the data.
The view controller half is meant to communicate with the view. Putting these two pieces
together, we achieve the same result we would by having our view controller access Core
Data. Except with this separation, we have defined clear lines for injecting more functionality
and higher testability.

 The preceding theory is why I am okay allowing the view controller to access members such
as the grocery lists and the selected grocery list property. These two halves are separated
but cannot exist without each other. All right, that was a long explanation, so what was the
point? We want to use dependency injection when working with the Core Data stack so we
can allow for other contexts to be injected. This also makes our view model layer extensible
and testable. Our default is the AppDelegate , but we could just as easily inject another object
that gives us different data and a different context, but our view model layer, which work
exactly the same.

 So what have we done in this section? We have started the switch to Core Data from
our fake data. Our app is currently not compiling, but never fear—we are going to fix
this. We created a new protocol, the PersistentContainer protocol, to hold onto the
 NSPersistentContainer property and give us access to the managedObjectContext . We then
used dependency injection in our view model to inject this new protocol type with the default
set to our AppDelegate . Then finally, I hope I have cleared up any confusion you might have
about using the MVVM pattern since iOS is by nature MVC.

 XCDataModel
 We get to take a little break from coding in this section. We will set up our data model file
and create our two entities GroceryList and GroceryItem . We will then use Xcode’s Core
Data code generation to create our real models. Let’s start with the GroceryApp.xcdatamodel
file. Since I did not choose the Core Data option when I created my project, I do not have
this file. Let’s start here.

 If you do not have the data model file, go to File ➤ New ➤ File. This will open the new
file dialog, where we want to search for Data Model . Figure 11-2 shows the new file
chooser.

246 CHAPTER 11: Grocery App: Core Data

 Let’s call this new file GroceryApp and make sure its target membership is the GroceryApp
target and not our tests. Once you create this file, open it and you will see Figure 11-3 . This
is the default screen for a Core Data model file. It shows us a list of our entities.

 Figure 11-2. The new file chooser with a search for Data Model

 Figure 11-3. The GroceryApp.xcdatamodel file . This screen will contain all of the entities for our app.

247CHAPTER 11: Grocery App: Core Data

 Whether you just created this file or you already had it in your project, it’s time to get to
work. If you remember our placeholder data, we had those tuples representing our models.
We want to match those tuples’ properties and types. The following code block is our old
tuples for reference:

 typealias GroceryList = (name: String, items: NSSet)
 typealias GroceryItem = (name: String, quantity: Int16)

 Let’s create our first entity and call it GroceryList . This entity is going to contain one
attribute and one relationship. Let’s add the attribute to the GroceryList called name and
make it of type String . Figure 11-4 shows our new attribute along with its type.

 Figure 11-4. The name attribute on our GroceryList entity with a type of String

 Now before we add our relationship to property, let’s add our second entity, GroceryItem .
This entity is going to have two attributes, a name and a quantity, and a relationship property
called list . The name attribute should be a String type and the quantity attribute should
be an Int16 type. These attributes match our tuple from the previous code block. The
 Relationship property should have a destination of GroceryList and currently No Inverse .
Figure 11-5 shows the fully configured GroceryItem entity.

248 CHAPTER 11: Grocery App: Core Data

 Now, let’s get back to our GroceryList entity. We need a relationship property that points
to our GroceryItem entity. Let’s define a new relationship on the GroceryList entity called
 items . We want to configure our items relationship to have a Destination of GroceryItem and
an Inverse of list . You can see this configuration in Figure 11-6 .

 Figure 11-5. The GroceryItem entity with a name attribute, a quantity attribute, and a list relationship

 Figure 11-6. The new configuration for the items relationship on the GroceryList entity. The Destination should be
GroceryItem with an Inverse of list

249CHAPTER 11: Grocery App: Core Data

 The next step is to set up the type of relationship for the items on GroceryList . Open up
the Utility Pane on the right side of Xcode and navigate to the Data Model Inspector. You
will see multiple properties, but let’s focus on the Type . Right now, it is configured to be To
One . Let’s change this to be configured to be To Many . This configuration can be seen in
Figure 11-7 . By configuring the items to be To Many, we can have a set of items per grocery
list. The list relationship on GroceryItem should remain To One. That way, each grocery item
only corresponds with one grocery list.

 Figure 11-7. The Data Model Inspector for the items relationship property on GroceryList

 All right, we should now have a fully configured data model for our app. We have a
 GroceryList entity with a name attribute and a relationship property. This relationship
describes the connection with the GroceryItem entity. Each grocery item has a name
attribute and a quantity attribute. We also made sure these entities match our previously
defined tuples that acted as the fake data.

250 CHAPTER 11: Grocery App: Core Data

 We are now going to let Xcode generate our model files for these entities. To generate
your model, make sure you have the data model file selected, then go to Editor ➤
Create NSManagedObject Subclass. You can see this menu option in Figure 11-8 .

 This will open a menu to select the data model you want to manage. The only option here
should be our GroceryApp data model. Click Next and then we will see another menu for
selecting the individual entities to manage; this menu can be seen in Figure 11-9 . We want to
make sure we have both entities, GroceryList and GroceryItem , selected.

 Figure 11-8. The Editor menu and how to create NSManagedObject subclasses

251CHAPTER 11: Grocery App: Core Data

 After selecting Next in Figure 11-9 , you will have to choose where to save the new files and
Xcode will create four new files. Let’s move these files to our Data group. These are the four
files that should have been created:

 1. GroceryList + CoreDataClass.swift

 2. GroceryList + CoreDataProperties.swift

 3. GroceryItem + CoreDataClass.swift

 4. Groceryitem + CoreDataProperties.swift

 The following code block shows the code for the first two files. The Core Data class file
defines the actual class with no properties or methods:

 import Foundation
 import CoreData

 public class GroceryList: NSManagedObject {

 }

 Figure 11-9. The menu for selecting the entities to manage via NSManagedObject subclasses

252 CHAPTER 11: Grocery App: Core Data

 The properties file has two extensions describing the properties and the Core Data methods:

 import Foundation
 import CoreData

 extension GroceryList {

 @nonobjc public class func fetchRequest() -> NSFetchRequest<GroceryList> {
 return NSFetchRequest<GroceryList>(entityName: "GroceryList");
 }

 @NSManaged public var name: String?
 @NSManaged public var items: NSSet?

 }

 // MARK: Generated accessors for items
 extension GroceryList {

 @objc(addItemsObject:)
 @NSManaged public func addToItems(_ value: GroceryItem)

 @objc(removeItemsObject:)
 @NSManaged public func removeFromItems(_ value: GroceryItem)

 @objc(addItems:)
 @NSManaged public func addToItems(_ values: NSSet)

 @objc(removeItems:)
 @NSManaged public func removeFromItems(_ values: NSSet)

 }

 There is a lot of code here, so take a minute to look through it. We have our two attributes,
name and items, in the first extension. The second extension defines methods that allow us
to add and remove items from the grocery list. These methods look a bit weird since they
have no implementation, but they are marked with an @NSManaged . These methods work
because Core Data automatically generates the code for these actions and our extension
methods using Key-Value coding. These methods then use the underlying implementation
provided by Core Data. Let’s see the two files for the GroceryItem :

 import Foundation
 import CoreData

 public class GroceryItem: NSManagedObject {

 }

253CHAPTER 11: Grocery App: Core Data

 Then we have the extension for the GroceryItem class:

 import Foundation
 import CoreData

 extension GroceryItem {

 @nonobjc public class func fetchRequest() -> NSFetchRequest<GroceryItem> {
 return NSFetchRequest<GroceryItem>(entityName: "GroceryItem");
 }

 @NSManaged public var name: String?
 @NSManaged public var quantity: Int16
 @NSManaged public var list: GroceryList?

 }

 This is simpler than the previous implementation, but it uses the same @NSManaged attribute
to define the three attributes here. You also might have noticed the fetchRequest method on
both extensions. This is the method we are going to use to fetch the grocery lists from Core
Data. This will be in our next section.

 All right, our code still does not compile, but we are almost there. This section has set up
our data model for the Grocery App. We have created two entities representing a grocery
list and a grocery item. We then have Xcode generate our models for us, so we can access
Core Data through our model classes. The next section is going to expand on our base view
model for a more comprehensive Core Data API and fixing our build issues. Before we move
on, take a look at Figure 11-10 , which shows our progress in Xcode’s Project Navigator.

254 CHAPTER 11: Grocery App: Core Data

 Figure 11-10. Our progress in Xcode’s Project Navigator

255CHAPTER 11: Grocery App: Core Data

 View Model and Core Data
 We have our new data models, but our view GroceryListsViewModel is still using the old
 dataContainer property. Once we fix this issue, our app should start compiling again. The
following code block is the broken code:

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 var groceryLists: [GroceryList] {
 return dataContainer?.data ?? []
 }

 // MARK: - Transfering Data

 // ...

 // MARK: - Grocery List Data

 // ...
 }

 Let’s remove the reference to the dataContainer and allow our app to compile again. Make
sure the groceryLists computed property looks like the following:

 var groceryLists: [GroceryList] {
 return []
 }

 This is not what we want, but it will allow us to build the new Core Data APIs we need to
access our actual data. For now, we can leave this as an empty array.

 So, now that we are compiling again, let’s focus on the ViewModel base class. We need two
new methods to work with Core Data. Let’s start with the executeRequest method.

 In Chapter 6 , we discussed Swift generics. We need our executeRequest method to use the
 fetchRequest object returned by our data models to get our data from Core Data. However,
we have two different types; so let’s make this a generic method so it will work for any Core
Data model:

 func executeRequest<Type: NSManagedObject>() throws -> [Type]? {
 let request = Type.fetchRequest()
 return try request.execute() as? [Type]
 }

 We have our new method. It is generic and we constrain the Type , so it must inherit from
 NSManagedObject , like our GroceryList and GroceryItem . We then get the NSFetchRequest
and call execute . The execute method can throw an error, so we want to mark our method
as throws and allow the user of this method to determine how to handle the error.

http://dx.doi.org/10.1007/978-1-4842-2280-5_6

256 CHAPTER 11: Grocery App: Core Data

 There is one method left to implement. The NSFetchRequest object expects to be run within
a managed object context. That means the previous code block will not work just anywhere.
So, let’s create a new fetch method on our base ViewModel class. The signature of this
method should be identical to the executeRequest :

 func fetch<Type: NSManagedObject>() -> [Type]? {
 var result: [Type]? = nil

 managedObjectContext?.performAndWait { [weak self] in
 do {
 result = try self?.executeRequest()
 }
 catch {
 print(error)
 }
 }
 return result
 }

 We have our second generic method called fetch . This method uses the
 managedObjectContext on the ViewModel class and calls performAndWait . This method
synchronously executes the closure within the context of the managed object context. This
allows our NSFetchRequest to execute properly.

 You can see we have accounted for the error here with a do catch block. In our case, we
are ignoring the error. If this were a production app, however, it would probably be a good
idea to have this display something to the user. The last important piece to notice is that we
are capturing self as weak in our closure. In Chapter 2 , while discussing the Memory Graph
Debugger, we talked about the importance of using weak references with closures to make
sure we do not retain memory. Odds are, this would not leak memory, but it is still good
practice to use weak references. Here is the entire ViewModel base class for reference:

 class ViewModel {

 // MARK: - Properties

 var persistentContainer: PersistentContainer?
 var managedObjectContext: NSManagedObjectContext? {
 return persistentContainer?.managedObjectContext
 }

 // MARK: - Initializer

 init(persistentContainer: PersistentContainer? = UIApplication.shared.delegate as?
AppDelegate) {

 self.persistentContainer = persistentContainer
 }

 // MARK: - Core Data

 func fetch<Type: NSManagedObject>() -> [Type]? {

http://dx.doi.org/10.1007/978-1-4842-2280-5_2

257CHAPTER 11: Grocery App: Core Data

 var result: [Type]? = nil

 managedObjectContext?.performAndWait { [weak self] in
 do {
 result = try self?.executeRequest()
 }
 catch {
 print(error)
 }
 }
 return result
 }

 func executeRequest<Type: NSManagedObject>() throws -> [Type]? {
 let request = Type.fetchRequest()
 return try request.execute() as? [Type]
 }
 }

 Now, let’s flip back to our GroceryListsViewModel and fix the empty array. It should currently
look like the following code:

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 var groceryLists: [GroceryList] {
 return []
 }

 // ...
 }

 Now, we can call fetch and make sure we still return an empty array if the result is nil :

 class GroceryListsViewModel: ViewModel {

 // MARK: - Properties

 var groceryLists: [GroceryList] {
 return fetch() ?? []
 }

 // ...
 }

 This is the cool part about Swift generics. The value of our computed property is enough
information to tell the fetch method what type we are attempting to retrieve. This will use
the grocery list’s fetchRequest method on the Core Data class. Now, we can build and run
our app, but we won’t see anything. We have no data saved in Core Data to retrieve. Let’s
manually add a grocery list so we can see our app work with Core Data. The following code
block in the application did finish launching method on our AppDelegate :

258 CHAPTER 11: Grocery App: Core Data

 func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 if let entity = NSEntityDescription.entity(forEntityName: "GroceryList", in:
persistentContainer.viewContext) {

 let list = GroceryList(entity: entity, insertInto: persistentContainer.viewContext)
 list.name = "Real List #1"
 saveContext()
 }

 return true
 }

 Here we created a reference to the GroceryList entity and used the entity and the managed
object context on the persistentContainer to create a new GroceryList object. We then
set the name to Real List #1 and called saveContext . Now, when you build and run the
app, you should see Figure 11-11 . This confirms that our code is still working and we have
successfully integrated Core Data! Be sure to remove this code after running the app once.
If you rerun the app without this code, however, your list should still be there because it is
being persisted.

 Figure 11-11. Our app running after we configure Core Data correctly

259CHAPTER 11: Grocery App: Core Data

 We have successfully integrated Core Data and we have confirmed our app is running and
talking with Core Data correctly. In the next section, we are going to write tests for the code
in our base ViewModel class. The functionality we gave to our base view model is pretty core
to how we interact with Core Data, so we should make sure we have it covered in unit tests.

 View Model Tests
 This section is going to add unit tests for our base view model class. We are going to pull
concepts and code from Chapter 8 to get through this section. Currently the base view
model class consists of an initializer that allows a PersistentContainer to be injected and
two methods for executing an NSFetchRequest . Let’s start with our executeRequest method.
Here is the code for reference:

 func executeRequest<Type: NSManagedObject>() throws -> [Type]? {
 let request = Type.fetchRequest()
 return try request.execute() as? [Type]
 }

 This is a fairly simple method. It instantiates an NSFetchRequest and then calls the execute
method. The problem here is that the fetchRequest method on our Type is a class method.
We have no way to test this, or if we do, it will have to actually access Core Data, and this
would not be a good unit test. So, let’s not worry about this method and just make sure the
 fetch method is tested. I have provided the fetch method here for reference:

 func fetch<Type: NSManagedObject>() -> [Type]? {
 var result: [Type]? = nil

 managedObjectContext?.performAndWait { [weak self] in
 do {
 result = try self?.executeRequest()
 }
 catch {
 print(error)
 }
 }
 return result
 }

 Yep, this method, we can test. We can spy on executeRequest and mock that method. We
can then test to make sure performAndWait is called and we get the expected results. It
might not seem like much, but our foundation will be covered and we can build on this. First
things first, we need a couple new files under the GroceryAppTests group. These two files
should be called Mocks.swift and Mockable.swift . These files are going to contain the fake
objects from our app and the mock work we did from Chapter 8 , respectively. Figure 11-12
shows these new files in the Project Navigator.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

260 CHAPTER 11: Grocery App: Core Data

 Let’s start with the Mockable.swift file. We have already written the code for this in our
playground on page Ch08—Mocks . I have included the code from this section here. This
code is going to help us create mock objects for our tests:

 struct MockParameter {
 var param: Any

 init(value: Any) {
 param = value
 }

 func value<T>() -> T? {
 return param as? T
 }
 }

 class Mocked {
 typealias Invocation = (signature: String, parameters: [Any])
 typealias ReturnValue = (signature: String, value: Any)

 Figure 11-12. Xcode’s Project Navigator after creating two new files in for testing

 Note Be sure to add both of these files under the test target and not the app’s target.

261CHAPTER 11: Grocery App: Core Data

 var calls: [Invocation]
 var returnValues: [ReturnValue]

 init() {
 calls = []
 returnValues = []
 }

 func record(method call: String, with parameters: Any...) {
 calls.append(Invocation(signature: call, parameters: parameters))
 }

 func set(value: Any, for call: String) {
 returnValues.append(ReturnValue(signature: call, value: value))
 }

 func value<T>(for call: String) -> T? {
 return returnValues.first {
 $0.signature == call
 }?.value as? T
 }

 func invocations(for call: String) -> Int {
 return calls.filter {
 $0.signature == call
 }.count
 }

 func parameters(for call: String) -> [MockParameter] {
 let invocation = calls.first {
 $0.signature == call
 }
 return invocation?.parameters.flatMap {
 MockParameter(value: $0)
 } ?? []
 }
 }

 This is the class that drives the mocks, but we also implemented a protocol in Chapter 8 .
Here is the Mockable protocol and its extension:

 protocol Mockable {
 var mocked: Mocked { get set }

 func record(method call: String, with parameters: Any...)
 func set(value: Any?, for call: String)
 func value<T>(for call: String) -> T?
 func invocations(for call: String) -> Int
 func parameters(for call: String) -> [MockParameter]
 }

 extension Mockable {

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

262 CHAPTER 11: Grocery App: Core Data

 func record(method call: String, with parameters: Any...) {
 mocked.record(method: call, with: parameters)
 }

 func set(value: Any?, for call: String) {
 mocked.set(value: value, for: call)
 }

 func value<T>(for call: String) -> T? {
 return mocked.value(for: call)
 }

 func invocations(for call: String) -> Int {
 return mocked.invocations(for: call)
 }

 func parameters(for call: String) -> [MockParameter] {
 return mocked.parameters(for: call)
 }
 }

 All right, now we can start building the mock objects we need to test the view model’s fetch
functionality. First, we need a mock of NSManagedObjectContext . Let’s place the following
code in our Mocks.swift file:

 class MockManagedObjectContext: NSManagedObjectContext, Mockable {
 var mocked: Mocked = Mocked()

 override func performAndWait(_ block: @escaping () -> Void) {
 record(method: "performAndWait", with: block)
 block()
 }
 }

 This fake context conforms to our protocol Mockable , and we are able to fake the
 performAndWait method. We record the method with the block parameter and then we
execute the block. Executing the block closure allows the code within our closure to run.
Otherwise we would need to get the parameter and manually call the block. Now, we need
a fake object that conforms to our PersistentContainer protocol. We can then inject this
object into our view model under test so it will contain the mocked objects. Here is the code
for that object:

263CHAPTER 11: Grocery App: Core Data

 import CoreData
 @testable import GroceryApp

 class MockPersistantContainer: PersistentContainer {
 var persistentContainer: NSPersistentContainer
 var managedObjectContext: NSManagedObjectContext = MockManagedObjectContext(concurrencyT
ype: .mainQueueConcurrencyType)

 init() {
 persistentContainer = NSPersistentContainer(name: "fake", managedObjectModel:
NSManagedObjectModel(byMerging: [])!)
 }
 }

 This might look a little scary at first. We did not mock the NSPersistentContainer because I
found no way to mock it. If you look at our code, we only use NSPersistentContainer to get
a reference to the managed object context in our protocol extension. We are subverting this
and what really matters here is the mocked managed object context.

 Now, we are finally set up to write our view model test. Let’s create a new file called
 ViewModelTests.swift under the GroceryAppTests group. This file will need to import XCTest
and the GroceryApp using the @testable attribute. Here is the new test file setting up our
mock object:

 import XCTest
 import CoreData
 @testable import GroceryApp

 class ViewModelTests: XCTestCase {

 var mockPersistentContainer: MockPersistantContainer!

 override func setUp() {
 super.setUp()

 mockPersistentContainer = MockPersistantContainer()
 }

 }

264 CHAPTER 11: Grocery App: Core Data

 We cannot set up our subject yet because we need a view model that can spy on the
 executeRequest method . This will require a view model subclass, but instead of placing the
class in the Mocks.swift file , let’s create it right here in our test class:

 class ViewModelTests: XCTestCase {

 var mockPersistentContainer: MockPersistantContainer!

 override func setUp() {
 super.setUp()

 mockPersistentContainer = MockPersistantContainer()
 }

 class MockViewModel: ViewModel, Mockable {
 var mocked: Mocked = Mocked()

 override func executeRequest<Type : NSManagedObject>() throws -> [Type]? {
 record(method: "executeRequest")
 return value(for: "executeRequest")
 }
 }
 }

 Now, let’s write our test for the fetch method:

 func testFetchReturnsArrayOfManagedObjects() {
 let spy = MockViewModel(persistentContainer: mockPersistentContainer)
 let expected = [NSManagedObject()]
 spy.set(value: expected, for: "executeRequest")

 // Action
 let result: [NSManagedObject]? = spy.fetch()

 // Asserts
 let objectContext = mockPersistentContainer.managedObjectContext as?

MockManagedObjectContext
 XCTAssertEqual(1, objectContext?.invocations(for: "performAndWait"))
 XCTAssertEqual(1, spy.invocations(for: "executeRequest"))
 XCTAssertEqual(expected, result ?? [])
 }

 And that’s it. Now, before we go through this code, recall that there was a lot of setup to get
it to work right. This is where the discussion from Chapter 8 has to come into play. We have
to ask ourselves how much value this test is providing. I cannot answer this for you; I can
only show you how.

 So, let’s walk through the code. We first create our mock view model that can spy on the
 executeRequest method by injecting the mock persistent container. We then set up our
expected values for the aforementioned mock method and run our action fetch . We then
confirm that the performAndWait method on the mock managed object context was called
and everything is what we expected it to be. Run this test and let’s see what happens.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

265CHAPTER 11: Grocery App: Core Data

 It should pass and if you have code coverage turned on; you will see we have covered this
method in our view model. And that does it for this section. We have only scratched the
surface of the amount of testing we could apply to our app. Hopefully, this section has given
you some insight into using Chapter 8 ’s Mockable code and how you would mock these
objects to only test your code.

 Wrap Up
 That’s a wrap for the Core Data chapter, and I think we handled it better than Indiana Jones.
The last section was on testing, but Figure 11-11 proves our app works correctly with Core
Data, which is an awesome feat considering we started with completely fake data and
tuples. We could have used Core Data from the start, but I wanted us to switch between
the fake data and Core Data once we were ready because starting Core Data too soon can
make things complicated.

 I have developed apps with Core Data from the start and I usually end up changing my data
model a couple times throughout the process. There is nothing necessarily wrong with this,
but I find the process slow when I am trying to solidify my ideas. By using the tuples and the
fake data, we were able to get the core concepts of our app developed. Then once we knew
we were ready to use Core Data, there was hardly any work involved in switching the fake
data out. Once we had our protocol in place on the AppDelegate , the only thing we had to
change was the GroceryListsViewModel . It was trying to access the fake data container and
we switched it to call fetch . Everything else was net new code.

 Finally, we finished this chapter up on the subject of testing. We saw the lengths we were
required to go to to test the core functionality of our Core Data integration. Right or wrong,
this is what it took to test our code. Maybe it is worth it to you, maybe it isn’t. We are
almost done. The next chapter is our last chapter and all we have left is to complete the
functionality for the last two view controllers. Chapter 12 is going to bring this all together, so
let’s keep going.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_12

267© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5_12

 Chapter 12
 Grocery App: Finish Line
 Welcome to the last chapter! It’s been a long road getting here. In this chapter, we are going
to take our app, which has successfully integrated Core Data, and finish it. We are going
to finally implement our view controllers that are responsible for adding grocery lists and
items. We will also be implementing more protocols and more tests. We are going to pull
in code and tests from Chapter 8 . By the end of this chapter, our app should be capable of
displaying/adding grocery lists and grocery items and persisting the information.

 What You’ve Learned
 This chapter is going to use the knowledge you have learned throughout this book. We have
implemented protocol-oriented programming techniques. We have implemented complex
iOS architecture patterns to avoid common AntiPatterns. We have seen how to use generics
in Swift, how to build interfaces through storyboards, and the ins and outs of Xcode. And we
have also discussed how to test our code through the use of mocks and protocols. There is
nothing left to learn in this chapter. We are just going to bring this app across the finish the
line, so let’s talk about what’s left.

 We have two view controllers we need to finish, the AddGroceryListViewController and the
 AddGroceryItemViewController . These view controllers will be responsible for adding new
lists and new items. After we finish these, we then need a way to reload the UI once a user
has created a new list or item. We are also going to bring code in from Chapters 5 , 7, and 8.
This code will allow us to block the UI and display alerts to the user in the case of errors. We
still have a lot left to accomplish, so let’s get to it.

 Adding Grocery Lists
 This section is going to cover the first half of missing functionality. By the end of this section,
we should be able to add new grocery lists to our app and see the UI update. We are
going to work bottom up, so by the time we reach the view controller, we will be set up for
success. Let’s start with our data models.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_5

268 CHAPTER 12: Grocery App: Finish Line

 Core Data
 Let’s open our GroceryList+CoreDataClass.swift file. The following code block is the state
of this class:

 import Foundation
 import CoreData

 public class GroceryList: NSManagedObject {

 }

 Currently, all the functionality for this class is held within extensions. What we need to do
is add a convenience initializer. In Swift, there are two types of initializers, designated and
convenience. The designated initializer is meant to be the main source of initialization for the
object. A convenience initializer is meant to handle some specific case to make initialization
easier. The following code block is a reference for how we have to instantiate a GroceryList
object:

 let managedObjectContext = persistentContainer.viewContext

 if let entity = NSEntityDescription.entity(forEntityName: "GroceryList", in:
managedObjectContext) {
 let list = GroceryList(entity: entity, insertInto: managedObjectContext)
 }

 We need a reference to an NSEntityDescription object. We then use the entity description
and a managed object context to create the GroceryList object. The entityForEntityName
class method also returns an optional value and the GroceryList designated initializer does
not allow an optional value. Let’s encapsulate this logic in a convenience init on GroceryList .
Let’s also make this a failable initializer, so we do not need to use any implicit unwrapping.
Here is the new GroceryList+CoreDataClass.swift :

 import Foundation
 import CoreData

 public class GroceryList: NSManagedObject {

 convenience init?(managedObjectContext: NSManagedObjectContext?) {
 guard let mObjCtx = managedObjectContext,
 let entity = NSEntityDescription.entity(forEntityName: "GroceryList",
in: mObjCtx)
 else {
 return nil
 }
 self.init(entity: entity, insertInto: mObjCtx)
 }
 }

269CHAPTER 12: Grocery App: Finish Line

 By making this initializer failable, we can return nil if we cannot construct the necessary
pieces to create a GroceryList . We make this initializer failable by using the ? character
directly after the init keyword. To construct our GroceryList object, we need a non-optional
managed-object context and a non-optional entity. If either of these fail, then we return nil
and our GroceryList is not constructed. Otherwise, we call the designated initializer on self .

 Before we move on, let’s move the entity name to our GAConstants.swift file. Currently our
constants look like the following:

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our grocery list and grocery item table views
 static let rightDetail = "Cell"
 }
 }

 Let’s add another inner struct called Entities and add our GroceryList entity name:

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our grocery list and grocery item table views
 static let rightDetail = "Cell"
 }

 struct Entities {
 static let groceryList = "GroceryList"
 }
 }

 Now our initializer can use this constant:

 convenience init?(managedObjectContext: NSManagedObjectContext?) {
 guard let mObjCtx = managedObjectContext,
 let entity = NSEntityDescription.entity(forEntityName: GAConstants.Entities.

groceryList, in: mObjCtx)
 else {
 return nil
 }
 self.init(entity: entity, insertInto: mObjCtx)
 }

 All right, we have added a convenient way to construct our GroceryList object, so now we
need to use this functionality. Next, we need to give more functionality to our grocery lists
view model. Currently, the grocery lists view model holds onto the grocery list data, returns
the information for a specific grocery list, and can transfer a grocery list to the protocol type
 SelectedGroceryListContainer . We need a new method for creating grocery lists and making
sure they are persisted once they’re created. We are going to start with the base view model.

270 CHAPTER 12: Grocery App: Finish Line

 View Model
 Let’s add a new save method to our base view model class. This method is going to use the
managed object context we have and call save . The save method on the managed object
context can throw an error, so let’s make a higher method in the chain worry about the error.
Navigate to the ViewModel.swift file and let’s add the following functionality:

 func save() throws {
 try managedObjectContext?.save()
 }

 This gives our view models the ability to uniformly save the managed-object context. Let’s
move up the chain to the GroceryListsViewModel . We now need a way to create a new
grocery list object. Before we implement this functionality, let’s think about it for a second.
We already know this method will be capable of throwing errors since it will call the previous
 save method. Another thing we need to consider is the view controller side. The view has a
text field to allow the user to enter the list name. When we pull text from a text field, it is an
optional string, so let’s make sure we allow optional strings to make this easier on the view
controller.

 Also, constructing our GroceryList object could fail. There are a number of issues to deal
with here, so let’s start by creating our own Error . At the top of the GroceryListsViewModel.
swift I have created the following enum:

 enum GroceryDataError: Error {
 case Saving(String)
 }

 This enum conforms to the Error protocol . This was renamed in Swift 3 from ErrorType . We
have one case and it is the saving case that holds onto a string. This is called an associated
value and it allows the case to store a given value. You can see how useful this is for errors.
Not only can we have a save error, but it can store more information about the specific error
that occurred.

 All right, we know there is a bit of work to do, so let’s build this method up a piece at a time.
First, let’s start by creating a new list, setting the name of the list, and then calling save :

 func createGroceryList(with name: String?) throws {
 let newList = GroceryList(managedObjectContext: managedObjectContext)
 newList?.name = name
 try save()
 }

 Note I have omitted the rest of the ViewModel class due to code size. I have placed this method
directly under the // MARK: - Core Data .

271CHAPTER 12: Grocery App: Finish Line

 Cool, but there are a couple things that seem wrong with this implementation. First, if the
app fails to create a grocery list, we should probably not continue on as if nothing happened.
We do not want to crash, just account for this error. To account for this, let’s add a guard
statement for our newList property and then throw our new GroceryDataError .

 func createGroceryList(with name: String?) throws {
 guard let newList = GroceryList(managedObjectContext: managedObjectContext) else {
 throw GroceryDataError.Saving("There was an error creating new grocery list \
(name)")
 }
 newList.name = name
 try save()
 }

 Now the code will not continue unless it successfully creates a new grocery list object. I also
just noticed one last issue. What if the user accidentally taps the New List button before
entering a name? We need one more condition to our guard that keeps us from creating a
new grocery list if the name is empty. Let’s add this now:

 func createGroceryList(with name: String?) throws {
 guard name?.isEmpty == false,
 let newList = GroceryList(managedObjectContext: managedObjectContext) else {
 throw GroceryDataError.Saving("There was an error creating new grocery
list \(name)")
 }
 newList.name = name
 try save()
 }

 This will prevent us and users from making any mistakes while creating a new grocery list.
And that is all the functionality our grocery lists view model needs. Let’s use all of the work
we just did to complete the first view controller, the AddGroceryListViewController .

 View Controller
 We’ve made it to the view controller! This section is going to implement the
 AddGroceryListViewController . I have included Figure 7-2 again here; it shows the interface
for this view controller. Based on the interface, our view controller is going to have one @
IBOutlet for the text field. We are then going to have two @IBAction methods for the Cancel
button and the Add List button .

272 CHAPTER 12: Grocery App: Finish Line

 Interface for adding a grocery list in our future app

 First, we need to create a new file called AddGroceryListViewController.swift under the
Grocery Lists group. Figure 12-1 shows the Project Navigator after creating this new file.

273CHAPTER 12: Grocery App: Finish Line

 Figure 12-1. Xcode’s Project Navigator after creating the AddGroceryListViewController.swift file

274 CHAPTER 12: Grocery App: Finish Line

 Once we have the file created, let’s add our new class that inherits from UIViewController .
We also know it is going to need a view model, so let’s make it conform to our
 ViewModelContainer protocol and give it a new GroceryListsViewModel object:

 import UIKit

 class AddGroceryListViewController: UIViewController, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryListsViewModel = GroceryListsViewModel()
 }

 Let’s add the @IBOutlet for the text field:

 class AddGroceryListViewController: UIViewController, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryListsViewModel = GroceryListsViewModel()

 @IBOutlet var groceryListName: UITextField?
 }

 Let’s now add our first @IBAction . When the user taps Cancel , we want the view to dismiss.
We also want to reuse this functionality, so let’s name it dismiss instead of cancel :

 class AddGroceryListViewController: UIViewController, ViewModelContainer {

 // MARK: - Properties

 var viewModel: GroceryListsViewModel = GroceryListsViewModel()

 @IBOutlet var groceryListName: UITextField?

 // MARK: - Actions

 @IBAction func dismiss() {
 dismiss(animated: UIView.areAnimationsEnabled, completion: nil)
 }
 }

 We can now use this functionality when the user successfully creates a new grocery list. The
last @IBAction is going to be slightly more complex. The API for creating a new grocery list
can throw, so we are going to need a do catch block. We then just call createGroceryList
with the text field’s data and then call dismiss once it completes successfully. The following
is the entire AddGroceryListViewController class:

 class AddGroceryListViewController: UIViewController, ViewModelContainer {

 // MARK: - Properties

275CHAPTER 12: Grocery App: Finish Line

 var viewModel: GroceryListsViewModel = GroceryListsViewModel()

 @IBOutlet var groceryListName: UITextField?

 // MARK: - Actions

 @IBAction func dismiss() {
 dismiss(animated: UIView.areAnimationsEnabled, completion: nil)
 }

 @IBAction func addList() {
 do {
 try viewModel.createGroceryList(with: groceryListName?.text)

 dismiss()
 }
 catch {
 print(error)
 }
 }
 }

 All right, we have implemented our AddGroceryListViewController . We now need to hook
up our outlets and actions in the storyboard. First, we need to change the identity of the
view controller on the storyboard to match the correct one, so Figure 12-2 shows the Identity
Inspector for the Add Grocery List view controller.

 Figure 12-2. The Identity Inspector for the AddGroceryListViewController

 Let’s now set the outlet and actions on our view controller. Figure 12-3 shows the
Connections Inspector for the Add Grocery List view controller. You can see in Figure 12-3
we have one outlet connection for our text field and two actions: one for dismiss , one for
 addList .

276 CHAPTER 12: Grocery App: Finish Line

 We have set up our view controller with the storyboard. We have implemented the code
behind the AddGroceryListViewController . We have also implemented code for the
creation of grocery lists on our view model. If you build and run the app, we should be
able to navigate to the Add Grocery List view and cancel out of the view. Now, let’s try our
error-handling logic. Before typing anything into the text field, tap Add List . The app should
not do anything, but if you look in Xcode’s console, you should see the following error:
 Saving("There was an error creating new grocery list Optional(\"\")") . Our error handling is
working perfectly.

 Figure 12-3. Xcode’s Connections Inspector for the AddGroceryListViewController. The connections show an outlet to
the text field and two actions including dismiss and addList.

277CHAPTER 12: Grocery App: Finish Line

 Now, type something into the text field, tap Add List , and then the view should dismiss
and nothing happens. Before you start adding more lists, close the app and rerun it. After
restarting, you should be able to see your new list on the first screen. Nothing happened
after tapping Add List because we have not set up our app to reload. This is going to be the
focus of our next section.

 Refreshing the UI
 We just saw our app actually add a real grocery list! The problem was that nothing reloaded
once we added our list. We had to shut down the app and restart it to reload the data. This
is not how we want our app to work, and real users would see this as a horrible bug. Let’s
discuss why the table view did not reload its data.

 We are using a modal presentation style to display the AddGroceryListViewController .
When this controller is dismissed, the GroceryListsViewController runs the viewDidAppear
lifecycle method, but our table view is a subview of our view controller, so nothing tells it to
reload. The GroceryListsViewController does not do a full load like it does on app start.
We also have a brand new view model on the AddGroceryListViewController , so there is no
way to connect this back to the GroceryListsViewController .

 So, how can we solve this problem? On the GroceryListsViewController , we already have
an outlet to our Grocery Lists table view. We could override the viewDidAppear method like
the following code block. Do not implement the following code:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 groceryListTableView?.reloadData()
 }

 This will work and we could move on, except this is inefficient. Every time this view
controller’s view appears, it will reload the table view whether there was new data or not.
So how can we implement this efficiently? Let’s use something called an unwind segue .
The segues we have used up until now have taken us forward to a new view controller.
The purpose of an unwind segue, is to take us backward. These can be a bit difficult to
understand and set up for the first time, so let’s take it slow.

 Navigate to the GroceryListsViewController.swift file and let’s add a new @
IBAction method under the // MARK: - Segue section. Let’s call this new action
 unwindToGroceryLists . The following code block defines this method. I have omitted the rest
of the code from this view controller:

 @IBAction func unwindToGroceryLists(segue: UIStoryboardSegue) {
 groceryListTableView?.reloadData()
 }

 It is important to make sure we have a parameter called segue and that it is of type
 UIStoryboardSegue . Then the implementation of this method calls reloadData on the
 groceryListTableView . The unwind segue is difficult to explain and understand because we
have implemented this action on our GroceryListsViewController , but it is available to us
within our entire app. Let’s navigate back to our storyboard and use this unwind segue.

278 CHAPTER 12: Grocery App: Finish Line

 Figure 12-4 shows the Add Grocery List view controller on our storyboard. The Exit
icon is highlighted in Figure 12-4 . If you right click on the Exit icon, you should see our
 unwindToGroceryListsWithSegue action. The menu displaying our unwind action can be seen
in Figure 12-5 .

 Figure 12-5 shows the new manual segue created by using this unwind segue. To create
this manual segue, we need to control-drag from the yellow view controller icon to the
 Exit icon and select our unwind action. Once you have successfully created the manual
segue, a reference to it should show up in the left pane of our storyboard. This can be
seen in Figure 12-6 . Manual segues are no different than automatic segues, except
we have to manually add code in our view controller to invoke them. We can use the
 performSegueWithIdentifier method to execute the unwind segue.

 Figure 12-4. The AddGroceryListViewController in our storyboard. The Exit icon, that holds the unwind segue, is
 highlighted .

 Figure 12-5. The menu after right clicking on the Exit icon from Figure 12-4

279CHAPTER 12: Grocery App: Finish Line

 The last part of our storyboard we have to configure is the identifier for this manual unwind
segue. Figure 12-6 shows the two steps to configuring the identifier. In the left pane of our
storyboard, we must select the manual segue reference that was created and then we can
configure this segue in the Attributes Inspector.

 Whew! That was a lot of work for one segue. We still have one last step before this can work.
Navigate to the AddGroceryListViewController.swift file and let’s change one line of code.
Previously the addList method looked like the following:

 @IBAction func addList() {
 do {
 try viewModel.createGroceryList(with: groceryListName?.text)

 dismiss()
 }
 catch {
 print(error)
 }
 }

 To manually invoke our segue, let’s replace the call to the dismiss method with
 performSegueWithIdentifier :

 @IBAction func addList() {
 do {

 Figure 12-6. The two steps to configuring the segue identifier in our storyboard. The left-hand side displays the
hierarchy menu with the manual segue reference. The right-hand side displays the Attributes Inspector with the
configuration for the unwind segue .

280 CHAPTER 12: Grocery App: Finish Line

 try viewModel.createGroceryList(with: groceryListName?.text)

 performSegue(withIdentifier: "unwindToGroceryLists", sender: nil)
 }
 catch {
 print(error)
 }
 }

 Now, if we rerun our app and add a new list, the Add Grocery List view controller should
dismiss and our table view should have the new list! Before we move on, there is one last
thing left to do here. We want to refactor our previous code block to use our GAConstants
instead of a hardcoded string. Here is the GAConstants.swift file:

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our the grocery list and grocery item table views
 static let rightDetail = "Cell"
 }

 /// Constants for Core Data entities
 struct Entities {
 /// Entity Identifier for the GroceryList entity in Core Data
 static let groceryList = "GroceryList"
 }

 /// Constants for App Segues
 struct Segues {
 /// Unwind Segue Identifier
 static let unwindToGroceryLists = "unwindToGroceryLists"
 }
 }

 The previous code block has added a new inner struct called Segues , which contains
the identifier for our unwind segue. Our UI now refreshes without the need to restart
the app. What have we done in this section? We have seen how to hook up manual
segues and unwind segues. We then used the unwind segue functionality to dismiss the
 AddGroceryListViewController and reload our groceryListTableView at the same time. We
are also reloading our table view efficiently because we reload on demand instead of every
time we navigate to our Grocery List table view. The next section is going to cover alerting
the user on error and blocking the view.

 Alerts and Blocking
 We have already covered most of the code that we are going to write in this section. This
section is going to take protocols and functionality from Chapters 5 and 8 . We will also write
more tests in this section. In the “Balanced Testing” section from Chapter 8 , we looked at

http://dx.doi.org/10.1007/978-1-4842-2280-5_5
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

281CHAPTER 12: Grocery App: Finish Line

how we can use protocols in our tests to handle repeated test code. We are going to build
on this concept as well in this section. Let’s get started with a protocol. Figure 12-7 shows
the progression of our app in the Project Navigator . We are going to focus on the Protocols
group for now.

 Figure 12-7. The progress of the GroceryApp in the Project Navigator

282 CHAPTER 12: Grocery App: Finish Line

 Let’s create a new file called AlertProtocols.swift in the Protocols group. This file will hold
all of the protocols responsible for presenting alerts. The following code has been taken from
our playground on pages Ch05—Protocols in UIKit and Ch08—DRY vs WET Testing . The
following protocol defines the trait protocol for presenting view controllers:

 /// Trait Style Protocol for presentation of view controllers
 protocol canPresentViewControllers {
 func present(_ viewControllerToPresent: UIViewController, animated flag: Bool,

completion: (() -> Void)?)
 }

 The next code block then defines our interface protocol for the actual AlertDisplayer
functionality:

 /// Interface Style Protocol that represents the concept of an AlertDisplayer
 protocol AlertDisplayer {
 var viewControllerPresenter: canPresentViewControllers { get set }

 func displayAlert(withTitle title: String?, message: String?, withHandler handler: @
escaping (UIAlertAction) -> Void)

 }

 The previous interface style protocol has a property to present view controllers via the
protocol canPresentViewControllers . We defined our protocol to facilitate mocking in our
tests. The next protocol and extension defines the trait that allows other objects to use the
 AlertDisplayer :

 /// Trait Style Protocol for displaying alerts through the use of an AlertDisplayer
 protocol canDisplayAlerts {
 var alertDisplayer: AlertDisplayer { get set }
 func displayAlert(withTitle title: String?, message: String?, withHandler handler: @

escaping (UIAlertAction) -> Void)
 }

 /// Extension that allows any canDisplayAlerts to communicate with the AlertDisplayer via a
method mixed into the conforming object
 extension canDisplayAlerts {
 func displayAlert(withTitle title: String?, message: String?, withHandler handler: @

escaping (UIAlertAction) -> Void) {
 alertDisplayer.displayAlert(withTitle: title, message: message, withHandler:

handler)
 }
 }

283CHAPTER 12: Grocery App: Finish Line

 In Chapter 8 , we defined this protocol, so our use of the AlertDisplayer can be tested via
the canDisplayAlerts protocol. The other purpose of this protocol is to illustrate composition
over inheritance. Using this protocol, the conforming object, such as a view controller, is
forced to use this object to display alerts instead of holding all of that responsibility itself.
This makes our code much more scalable and testable. We have one final piece to our alert
functionality. We need to use retroactive modeling so all UIViewControllers conform to our
 canPresentViewControllers protocol:

 /// Retroactive Modeling: Any UIViewController has the traits
 /// - canPresentViewControllers
 extension UIViewController: canPresentViewControllers {}

 The previous code block allows any of our view controllers to be used with the
 AlertDisplayer . All right, let’s now create one more file under the Objects group called
 ErrorAlertDisplayer.swift . The following block is the code for the ErrorAlertDisplayer
from Chapter 8 :

 import UIKit

 /// Struct used to present UIAlertControllers using the canPresentViewControllers protocol
 struct ErrorAlertDisplayer: AlertDisplayer {
 var viewControllerPresenter: canPresentViewControllers

 init(viewControllerPresenter: canPresentViewControllers) {
 self.viewControllerPresenter = viewControllerPresenter
 }

 func displayAlert(withTitle title: String?, message: String?, withHandler handler: @
escaping (UIAlertAction) -> Void) {

 let alert = UIAlertController(title: title, message: message, preferredStyle:
.alert)

 alert.addAction(UIAlertAction(title: "OK", style: .cancel, handler: handler))

 viewControllerPresenter.present(alert, animated: UIView.areAnimationsEnabled,
completion: nil)

 }
 }

 This code might be slightly different than the code from Chapter 8 , so let’s step through this.
We still have our canPresentViewControllers property. The displayAlert method, however,
now has a handler , so the caller can supply a closure for the alert action.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

284 CHAPTER 12: Grocery App: Finish Line

 Since we are working in Swift 3, we must mark our closure as @escaping . This tells the
compiler the closure will be saved for execution later. This is the opposite of the @noescape
attribute in Swift 2. This attribute restricted the escaping behavior of closures so they could
not be saved for later. Essentially, Swift 3 has reversed the default behavior for closures in
parameters. This gives us greater safety, because we do not need to remember to mark a
closure as @noescape anymore. We are also forced to think about the behavior of our closure
since we need to mark escaping closures with @escaping .

 Awesome, we have just implemented our ErrorAlertDisplayer struct. This struct can be
used to present UIAlertControllers anywhere we conform to canPresentViewControllers ,
like our view controllers. Now, let’s navigate to our AddGroceryListViewController.swift
file. Previously, when we tried to add a new grocery list and an error occurred, we only
printed it out to the console. This is great for debugger, but horrible for users. Let’s use
our new alert displaying capabilities to give the user an idea of what happened. So in our
 AddGroceryListViewController class, let’s start by conforming to our protocols:

 class AddGroceryListViewController: UIViewController, ViewModelContainer, canDisplayAlerts {

 // MARK: - Properties

 lazy var alertDisplayer: AlertDisplayer = {
 ErrorAlertDisplayer(viewControllerPresenter: self)
 }()

 // ...
 }

 On the first line, we have the AddGroceryListViewController class conform to the
 canDisplayAlerts protocol. This will force us to have an alertDisplayer property. I have
then used the lazy keyword so our ErrorAlertDisplayer struct can be instantiated with a
reference to this view controller. Cool, now let’s use this in our addList method whenever an
error occurs:

 @IBAction func addList() {
 do {
 try viewModel.createGroceryList(with: groceryListName?.text)

 performSegue(withIdentifier: GAConstants.Segues.unwindToGroceryLists, sender: nil)
 }
 catch {
 alertDisplayer.displayAlert(withTitle: "Error", message: "\(error)", withHandler: {_
in })
 }
 }

 Now, the catch block uses the alertDisplayer object to display the error. Let’s run our app
and see what happens. Be sure to leave the grocery list text field blank as this will generate
an error. The result of this work can be seen in Figure 12-8 .

285CHAPTER 12: Grocery App: Finish Line

 Now, before we can move on to the view blocking functionality, we need to make sure
we have tested our previous functionality. This is where we can bring in our concepts
from Chapter 8 . Chapter 8 discussed WET vs. DRY testing as well as the idea of balance.
We want to use the balanced concept here because we are going to have very similar
functionality when we finish adding grocery items.

 We are not going to implement any tests for the actual ErrorAlertDisplayer code. This
section is going to cover how we can unit test our AddGroceryListViewController . Unit
testing view controllers can be a somewhat controversial topic. Some argue we should
write UI tests and not unit tests, whereas others are okay with unit tests for view controllers.
I leave this up to you and I will just show you what to consider when unit testing view
controllers.

 All right, so let’s start by creating two new files, one called
 AddGroceryListViewControllerTests.swift and the other called TestBehaviors.swift in our
GroceryAppTests group. Figure 12-9 shows the Project Navigator for the GroceryAppTests
group.

 Figure 12-8. The alert on the add grocery list view controller with our error

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

286 CHAPTER 12: Grocery App: Finish Line

 The test behaviors file is going to contain the protocols and extensions for our tests. Before
we start writing our tests, let’s pull in the code from Chapter 8 on the playground page,
 Ch08—Balanced Testing . The following code block first defines the FakeDisplayer class we
are going to need for tests. I have added this class to the Mocks.swift file:

 import UIKit

 /// Used for testing purposes only
 class FakeDisplayer: AlertDisplayer, Mockable {
 var mocked: Mocked = Mocked()

 static var displayAlert = "displayAlertWithTitleMessageWithHandler"

 var viewControllerPresenter: canPresentViewControllers

 Figure 12-9. The Project Navigator for the GroceryAppTests group

 Note Make sure to import UIKit in the Mocks.swift file. We need a reference to this framework
for the UIAlertAction type.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

287CHAPTER 12: Grocery App: Finish Line

 init(viewControllerPresenter: canPresentViewControllers) {
 self.viewControllerPresenter = viewControllerPresenter
 }

 func displayAlert(withTitle title: String?, message: String?, withHandler handler: @
escaping (UIAlertAction) -> Void) {
 record(method: FakeDisplayer.displayAlert, with: title, message)
 }
 }

 So, we now have our FakeDisplayer class that conforms to two protocols. The first protocol
is our AlertDisplayer and the second is the Mockable protocol. I have added a static
string variable here so we do not have to hardcode our string in test. I have used the same
initializer from the ErrorAlertDisplayer and we have the displayAlert method just record
the method call with the title and message . I have omitted the handler closure, as we
cannot assert closures.

 Cool, we have our mock object, so let’s flip back over to the TestBehaviors.swift file
and create our protocol. We are going to create one protocol for testing the use of the
 AlertDisplayer object:

 import UIKit
 import XCTest
 @testable import GroceryApp

 protocol AlertDisplayerTestBehavior {
 func assert<T: canDisplayAlerts & canPresentViewControllers>(
 file: StaticString, line: UInt,
 subject: inout T,
 displaysAlertWithTitle title: String?,
 andMessage message: String?,
 onAction action: (T) -> Void
)
 }

 There are a lot of parameters to this protocol’s method. Let’s go through each line.
First, we have declared a method called assert . This method is a generic method
with two constraints on our type T . We are using the new Swift 3 protocol composition
syntax here to make sure our type conforms to the canDisplayAlerts protocol and the
 canPresentViewControllers protocol. These are the protocols necessary for the subject of
the test.

 The first two parameters are for XCTest. As discussed in Chapter 8 , these two parameters
are the debug identifiers. They will allow our test to fail on the correct line instead of inside
our protocol extension method. The next parameter is the subject of the test and is the
generic type T . We also need to make sure this parameter is labeled inout . This will allow us
to modify the internal members of this type even if it is a value type.

 The next two parameters describe the values for our assertions. We want to make sure the
alert is displayed with the correct title and message. The last parameter is the closure that
represents the test action. Whew, let’s build the extension for this protocol now:

http://dx.doi.org/10.1007/978-1-4842-2280-5_8

288 CHAPTER 12: Grocery App: Finish Line

 extension AlertDisplayerTestBehavior {
 func assert<T: canDisplayAlerts & canPresentViewControllers>(
 file: StaticString = #file, line: UInt = #line,
 subject: inout T,
 displaysAlertWithTitle title: String?,
 andMessage message: String?,
 onAction action: (T) -> Void
) {

 let fakeDisplayer = FakeDisplayer(viewControllerPresenter: subject)
 subject.alertDisplayer = fakeDisplayer

 action(subject)

 let parameters = fakeDisplayer.parameters(for: FakeDisplayer.displayAlert)
 XCTAssertEqual(title, parameters.first?.value(), file: file, line: line)

 let messageParameter: String? = parameters.last?.value()
 XCTAssertEqual(true, messageParameter?.contains(message ?? ""), file: file, line:
line)
 }
 }

 This extension looks a little scary, but this is the meat of the work. After this, the tests are
going to be cake. So what does this extension do? It creates a FakeDisplayer object, sets
the alertDisplayer property on the subject, and then runs the action closure, injecting the
subject under test. Finally, we get the list of parameters from the fakeDisplayer object and
then assert that the title and message are the correct values. I have used string’s contains
method, so we do not have to include the entire message in our test. You will also notice we
have used the file and line parameters in our asserts. This is what allows the test to fail on
the correct line and file.

 We can finally implement the tests for our AddGroceryListViewController . Let’s navigate to
the AddGroceryListViewControllerTests.swift file. Let’s set up our test class:

 import XCTest
 @testable import GroceryApp

 class AddGroceryListViewControllerTests: XCTestCase, AlertDisplayerTestBehavior {

 }

 We have a subject and it is an AddGroceryListViewController type. The test class also
conforms to our AlertDisplayerTestBehavior protocol. Now, using the functionality the
protocol provides, let’s write a test for our view controller:

 Note Make sure the file and line parameters are defaulted to #file and #line respectively. This
will reference the correct file and line where this method is used.

289CHAPTER 12: Grocery App: Finish Line

 class AddGroceryListViewControllerTests: XCTestCase, AlertDisplayerTestBehavior {

 func testShouldDisplayError() {
 var subject = AddGroceryListViewController()

 assert(subject: &subject, displaysAlertWithTitle: "Error", andMessage: "There was an
error creating new grocery list nil") {

 $0.addList()
 }
 }
 }

 That’s very simple! We create a subject property and use our protocol assert method. We
pass in the subject, “Error” , and the partial message. Then the action closure just uses the
injected subject parameter to call the addList method. This is where view controller testing
can be a bit hairy. I have included the code for the addList method here for reference:

 @IBAction func addList() {
 do {
 try viewModel.createGroceryList(with: groceryListName?.text)

 performSegue(withIdentifier: GAConstants.Segues.unwindToGroceryLists, sender: nil)
 }
 catch {
 alertDisplayer.displayAlert(withTitle: "Error", message: "\(error)", withHandler: {_

in })
 }
 }

 There are a number of things going on here, but one of the more important things I would
like to point out is that this method uses the groceryListName text field property. It asks for
the text on the text field. Now, we made sure to make our @IBOutlet an optional property;
however, if it is implicitly unwrapped, our test would crash. This is why testing view
controllers can be awkward. We have to make sure the view controller object has everything
it expects, like @IBOutlets .

 Another important concept is that we have not written a unit test here. We have technically
written an integration test . We are using functionality of the view model, which will throw
an error to cause the alert displayer to get called. This is not what we want because we
are not isolating our view controller under test. If the behavior of the view model changes,
this test would break, even though nothing on the view controller changed. So, the next
step is to properly isolate our subject by creating a fake view model. At the bottom of the
 AddGroceryListViewControllerTests class, add the following code:

 private class FakeGroceryListsViewModel: GroceryListsViewModel {
 private override func createGroceryList(with name: String?) throws {
 throw GroceryDataError.Saving("An error occurred.")
 }
 }

290 CHAPTER 12: Grocery App: Finish Line

 We have overridden the GroceryListsViewModel class and the createGroceryList
method. We made this method just throw an error. Now, our view controller will be
properly isolated. If you add this fake view model object to your test and rerun the
test, it will fail because the error has changed. Let’s fix this issue. Here is the entire
 AddGroceryListViewControllerTests.swift file for reference :

 import XCTest
 @testable import GroceryApp

 class AddGroceryListViewControllerTests: XCTestCase, AlertDisplayerTestBehavior {

 func testShouldDisplayError() {
 var subject = AddGroceryListViewController()
 subject.viewModel = FakeGroceryListsViewModel()

 assert(subject: &subject, displaysAlertWithTitle: "Error", andMessage: "An error
occurred.") {

 $0.addList()
 }
 }

 private class FakeGroceryListsViewModel: GroceryListsViewModel {
 private override func createGroceryList(with name: String?) throws {
 throw GroceryDataError.Saving("An error occurred.")
 }
 }
 }

 Awesome! That was a lot of work, but it was definitely worth it. From now on, anywhere we
use alert displayers we can use this protocol to test the behavior. This is the last testing I
wanted us to do for the app. We would be here for days if I covered how to test all the pieces
of the app. This is where I want you to take these concepts and run with them. If you want to
add more tests, go for it; if not, that’s okay too. So, let’s wrap up testing for this book.

 In Chapter 8 , we explored the concept of testing. There are many aspects to this subject.
There are many schools of thought such as DRY vs. WET. We also looked at how we can
use Swift’s protocols to clean up tests and we implemented this protocol-oriented idea in
the tests for our app here. We finished Chapter 8 with a short discussion on TDD and iOS. I
have talked about the concept of balance when it comes to testing, but what does this mean
exactly? This concept boils down to do what’s right for you and your situation at the time. I
am not for or against practices such as DRY, WET, or TDD, but I want to use the appropriate
practice at the correct time. I believe this can be fluid based on the situation. That is what
balance is about and what I believe creates high-quality tests. Hopefully this has cleared up
the whole discussion on testing.

http://dx.doi.org/10.1007/978-1-4842-2280-5_8
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

291CHAPTER 12: Grocery App: Finish Line

 We are now only missing one piece of functionality—blocking the view. We discussed and
implemented this functionality in Chapters 5 and 7 . The purpose for this functionality is
to not allow the user to enter any more information or tap more buttons before we finish
processing our actions. So, in our case, this is not completely necessary because the action
is so fast the user has no opportunity to do anything else. However, if our data was stored
off of the device and we had to send a network request and wait for a response, there would
be enough time. In this case, we would want to block the view.

 So, I want you to implement this functionality. We have already covered it and you have the
knowledge. This work should include the code from the playground page: Ch07—Blocking
a View . It should entail the canBlockView protocol and an extension. Once you have this
protocol and extension implemented, the addList method can look like the following:

 @IBAction func addList() {
 block()
 do {
 try viewModel.createGroceryList(with: groceryListName?.text)

 performSegue(withIdentifier: GAConstants.Segues.unwindToGroceryLists, sender: nil)
 }
 catch {
 unblock()
 alertDisplayer.displayAlert(withTitle: "Error", message: "\(error)", withHandler: {_

in })
 }
 }

 We make sure to block the view before we start processing the data. We only have to
unblock the view if an error occurs. If this completes successfully, the view will disappear, so
we only have to unblock if we allow the user to try again. And that does it for this section.

 This has been a very big section, but we have seen how to display alerts via protocol-
oriented programming and how to test our view controller, and we have put the discussion
on testing started in Chapter 8 to bed. We finally wrapped this section up with blocking and
unblocking our view controller’s view when we need to process data. In the next section, we
will implement the same behavior from this section for grocery items. There is going to be
less explanation since we have already seen everything we will need to complete our app.
We are in the home stretch, so let’s finish strong.

 Adding Grocery Items
 This is the last major section of the book. We are going to finish implementing our Grocery
App with the functionality for adding grocery items. We are going to work the same way as
in the previous section, bottom up. This section is also going to have fewer explanations for
the code. You have followed along through the entire book and you know what to do. Before
we start implementing the rest of our app, Figure 12-10 shows our progress in Xcode’s
 Project Navigator .

http://dx.doi.org/10.1007/978-1-4842-2280-5_5
http://dx.doi.org/10.1007/978-1-4842-2280-5_7
http://dx.doi.org/10.1007/978-1-4842-2280-5_8

292 CHAPTER 12: Grocery App: Finish Line

 Figure 12-10. Xcode’s Project Navigator for our current progress on the Grocery App

293CHAPTER 12: Grocery App: Finish Line

 Core Data
 Let’s navigate to the GroceryItem+CoreDataClass.swift file and open it. The current state of
this file should be an empty class like the following code block:

 import Foundation
 import CoreData

 public class GroceryItem: NSManagedObject {

 }

 We are going to add another convenience initializer that has the optional-managed object
context as a parameter. Before we add this new initializer, let’s create a new constant string
in GAConstants.swift . Let’s put it under the Entities struct:

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our grocery list and grocery item table views
 static let rightDetail = "Cell"
 }

 /// Constants for Core Data entities
 struct Entities {
 /// Entity Identifier for the GroceryList entity in Core Data
 static let groceryList = "GroceryList"
 static let groceryItem = "GroceryItem"
 }

 /// Constants for App Segues
 struct Segues {
 /// Unwind Segue Identifier
 static let unwindToGroceryLists = "unwindToGroceryLists"
 }
 }

 Under the Entities struct, we have a new string property called groceryItem . This is the
reference to our Core Data entity. Next, let’s use this constant and implement our failable
convenience initialize r.

 public class GroceryItem: NSManagedObject {

 convenience init?(managedObjectContext: NSManagedObjectContext?) {
 guard let mObjCtx = managedObjectContext,
 let entity = NSEntityDescription.entity(forEntityName: GAConstants.
Entities.groceryItem, in: mObjCtx)
 else {
 return nil

294 CHAPTER 12: Grocery App: Finish Line

 }
 self.init(entity: entity, insertInto: mObjCtx)
 }
 }

 This failable convenience initializer unwraps the managed-object context and the entity
description for GroceryItem . It returns nil if either of these items are not there. Then, once
it has the correct information, it calls the designated initializer on self to create our grocery
item object. Now both of our data models are complete and GroceryItem is ready to use. We
will use this functionality in our GroceryItemsViewModel .

 View Model
 Just as was the case with our GroceryListsViewModel , we need a way to create new grocery
item objects. This functionality will be housed in our GroceryItemsViewModel . Let’s navigate
to the GroceryItemsViewModel.swift file and quickly cover the functionality we want to add.
The following code block is what our GroceryItemsViewModel class looks like currently:

 class GroceryItemsViewModel: ViewModel {

 // MARK: - Properties

 var groceryList: GroceryList?

 var groceryItems: [GroceryItem] {
 let result = groceryList?.items?.flatMap {
 $0 as? GroceryItem
 }
 return result ?? []
 }

 // MARK: - Grocery Item Data

 func groceryItem(at indexPath: IndexPath) -> (name: String?, quantity: Int16) {
 let item: GroceryItem? = groceryItems.value(at: indexPath.row)
 return (item?.name, item?.quantity ?? 0)
 }
 }

 We currently have a way to get specific grocery item objects based on their index, but that
is all the functionality we have. We want to add a new createGroceryItem method. This
method will work exactly like the createGroceryList method. We need to make sure the
data is consumable, instantiate our grocery item object, and then call save, or throw an error.
Easy peasy. Let’s start with the method and our check for bad data:

 func createGroceryItem(with name: String?, and quantity: Int?) throws {
 guard name?.isEmpty == false,
 let itemQuantity = quantity,
 let newItem = GroceryItem(managedObjectContext: managedObjectContext)
 else {

295CHAPTER 12: Grocery App: Finish Line

 throw GroceryDataError.Saving("There was an error creating new grocery item \(name)
with quantity: \(quantity)")
 }
 }

 All right, first we make sure the name for the item is not empty and then we unwrap two
values. We need to unwrap the quantity value. We are going to pull this value from a
text field, so it will have to come in as optional. We then create our new GroceryItem with
the managedObjectContext . If any of these steps fail, we just throw our GroceryDataError
again. Now, let’s finish the functionality for this method. We need to use the data we have
unwrapped and call save on view model:

 func createGroceryItem(with name: String?, and quantity: Int?) throws {
 guard name?.isEmpty == false,
 let itemQuantity = quantity,
 let newItem = GroceryItem(managedObjectContext: managedObjectContext)
 else {
 throw GroceryDataError.Saving("There was an error creating new grocery item \(name)
with quantity: \(quantity)")
 }
 newItem.name = name
 newItem.quantity = Int16(itemQuantity)
 try save()
 }

 There is one piece we are missing from the previous code block. We have not associated the
new grocery item with the selected grocery list. We have a reference to the selected grocery
list, so let’s use it. If you look at the GroceryList+CoreDataProperties.swift file, you will see
all the functionality Core Data gives us. One of those methods is the addToItems method.
Here is the code for the extension that defines this method:

 extension GroceryList {

 @objc(addItemsObject:)
 @NSManaged public func addToItems(_ value: GroceryItem)

 @objc(removeItemsObject:)
 @NSManaged public func removeFromItems(_ value: GroceryItem)

 @objc(addItems:)
 @NSManaged public func addToItems(_ values: NSSet)

 @objc(removeItems:)
 @NSManaged public func removeFromItems(_ values: NSSet)

 }

 We can use these methods to add our new grocery item to the selected grocery list. So, our
new createGroceryItem method will look like the following:

 func createGroceryItem(with name: String?, and quantity: Int?) throws {

296 CHAPTER 12: Grocery App: Finish Line

 guard name?.isEmpty == false,
 let itemQuantity = quantity,
 let newItem = GroceryItem(managedObjectContext: managedObjectContext)
 else {
 throw GroceryDataError.Saving("There was an error creating new grocery item \(name)
with quantity: \(quantity)")
 }
 newItem.name = name
 newItem.quantity = Int16(itemQuantity)
 groceryList?.addToItems(newItem)
 try save()
 }

 You will also notice we have the quantity come in as an Int? type instead of an Int16? .
The view controller does not need to convert the text field data to the specific Core Data
type. It should only need to know it is an Int type. And that does it for the Grocery Items
view model. I think it is important to take a step back for a second. I am discussing the new
functionality more quickly than I did in the previous section on grocery lists, but we have
done so much work and kept our code clear, so implementing the last of our behaviors is so
easy. I hope you can see the power of what we have built. The next section is going to start
bringing everything together and we are going to start creating grocery items.

 View Controller
 This section is going to use the new functionality of the Grocery Items view
model, along with the alert displayer and view blocking protocols, to create the
 AddGroceryItemViewController . We currently do not have this file, so let’s create it now. This
file should be under the Grocery Items group. There is going to be a bit more work here than
in the last couple of sections. We need to create our new view controller and we need to
hook up the outlets and actions in our storyboard. We then need to implement the code to
create new grocery items.

 Let’s start with our new view controller. Once you have the new
 AddGroceryItemViewController.swift file created, let’s add the following code:

 import UIKit

 class AddGroceryItemViewController: UIViewController {

 // MARK: - Properties

 @IBOutlet var groceryItemName: UITextField?
 @IBOutlet var groceryItemQuantity: UITextField?

 // MARK: - Actions

 @IBAction func dismiss() {
 dismiss(animated: UIView.areAnimationsEnabled, completion: nil)
 }

297CHAPTER 12: Grocery App: Finish Line

 @IBAction func addItem() {

 }
 }

 We have our new view controller class now and it contains the two @IBOutlets we need for
the two text fields on our storyboard. We have also defined the two actions for this view
controller, dismiss and addItem . Let’s hop on over to our storyboard and hook these items
up.

 First, we need to use the Identity Inspector to set the class identity of our view controller
to AddGroceryItemViewController . Figure 12-2 showed the Identity Inspector for the
 AddGroceryListViewController . We want to repeat this action here. Once we have set up
the identity for the AddGroceryItemViewController , we want to add the connections for
the outlets and the actions . Figure 12-11 shows the Connections Inspector for this view
controller.

 Figure 12-11. The Connections Inspector for the AddGroceryItemViewController

298 CHAPTER 12: Grocery App: Finish Line

 All right, we have the base for our view controller ready to go and we have configured our
storyboard correctly. If we run the app, we should be able to navigate to the Add Grocery
Items view controller, and tapping Cancel should dismiss our view controller. Tapping Add
Item should do nothing yet, so let’s implement this method. Just like our Add Grocery List
view controller, we need to block the UI; then we can try to create our grocery item, and if
anything bad happens, we’ll throw an alert onto the screen. Let’s start with the protocols we
are going to need. The updated class declaration for the AddGroceryItemViewController will
look like the following:

 class AddGroceryItemViewController: UIViewController, ViewModelContainer, canDisplayAlerts,
canBlockView {

 // ...

 }

 These protocols will then force us to have all the necessary components to finish this view
controller. Remember, we want to lazily initialize our alert displayer property , so we can inject
a reference to self . The updated AddGroceryItemViewController should now look like the
following:

 class AddGroceryItemViewController: UIViewController, ViewModelContainer, canDisplayAlerts,
canBlockView {

 // MARK: - Properties

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()

 lazy var alertDisplayer: AlertDisplayer = {
 ErrorAlertDisplayer(viewControllerPresenter: self)
 }()

 @IBOutlet var groceryItemName: UITextField?
 @IBOutlet var groceryItemQuantity: UITextField?

 // MARK: - Actions

 @IBAction func dismiss() {
 dismiss(animated: UIView.areAnimationsEnabled, completion: nil)
 }

 @IBAction func addItem() {

 }
 }

 Exactly what we expected, except there is a somewhat hidden problem with our
implementation. In the previous section, when we implemented the functionality for our
grocery items view model, we needed the selected grocery list. However, since we create a
new GroceryItemsViewModel here, it will not have a reference to the selected grocery list.

299CHAPTER 12: Grocery App: Finish Line

 To solve this, we need to implement a little more code on our GroceryItemsViewController .
First, let’s conform to the SelectedGroceryListContainer on our
 AddGroceryItemViewController . This will require a new property and the updated
implementation will be as follows:

 class AddGroceryItemViewController: UIViewController, ViewModelContainer, canDisplayAlerts,
canBlockView, SelectedGroceryListContainer {

 // MARK: - Properties

 var selectedGroceryList: GroceryList? {
 get {
 return viewModel.groceryList
 }
 set {
 viewModel.groceryList = newValue
 }
 }

 // ...
 }

 Now our AddGroceryItemViewController is set up exactly the same as our
 GroceryItemsViewController . Let’s navigate to the GroceryItemsViewController.swift file
and implement the functionality to transfer the selected grocery list. We are going to override
the prepare-for-segue method on the GroceryItemsViewController . We will then use the
segue reference to find the destination view controller and set the selected grocery list if it
conforms to our SelectedGroceryListContainer protocol:

 // MARK: - Segue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 super.prepare(for: segue, sender: sender)

 if var groceryListContainer = segue.destination as? SelectedGroceryListContainer {
 groceryListContainer.selectedGroceryList = selectedGroceryList
 }
 }

 Now both our GroceryItemsViewController and the AddGroceryItemViewController transfer
the selected grocery list object appropriately. There is only one piece left to this section. We
now need to use our UI blocking, view model, and the alert displayer to add new grocery
items. Let’s navigate back to the AddGroceryItemViewController.swift file and finish this
guy. Once we are on this file, let’s implement the addItem method as follows:

 @IBAction func addItem() {
 block()
 do {
 let quantity = Int(groceryItemQuantity?.text ?? "0")
 try viewModel.createGroceryItem(with: groceryItemName?.text, and: quantity)

300 CHAPTER 12: Grocery App: Finish Line

 // TODO: Unwind to the previous view controller
 }
 catch {
 unblock()
 alertDisplayer.displayAlert(withTitle: "Error", message: "\(error)", withHandler: {

_ in })
 }
 }

 There is not much to explain from the last code block. We have to create an Int
for the item quantity, but other than that, this is the same functionality as the
 AddGroceryListViewController . All right, a lot happened in this section and it
happened pretty quickly, so let’s recap before we move on. First, we created our new
 AddGroceryItemViewController class. This view controller is almost identical in code and
purpose to our AddGroceryListViewController .

 This section also modified the GroceryItemsViewController . We found that we needed to
transfer the selected grocery list to add our new grocery item. To accomplish this we used
the SelectedGroceryListContainer protocol and the prepare-for-segue method to transfer
the selected grocery. I think how we implemented this is worth talking about for a minute.
By using the SelectedGroceryListContainer protocol, we made this functionality generic
enough to expand if our app expands. Let’s say you take this app to the next level and
add more screens and a lot of new functionality. If you found you need a reference to the
selected grocery list, you can conform to the protocol and the code we put in place in this
section would automatically handle transferring this data.

 The last thing I want you to do is run your app. Navigate to the Add Grocery Item view
controller and create a new grocery item. Nothing should happen and you should be stuck
on a screen that is currently blocked. Quit the app and reopen it. You should be able to
see your new grocery item. We still need our UI to refresh, but first I wanted to discuss
architecture.

 In Chapter 4 , I introduced multiple design patterns including MVVM. This has been the
driving pattern behind our app. I chose this pattern because it creates a nice separation
between the data and the view. This separation has allowed us to write clear code for
each section. We then use protocol-oriented programming to bridge the gap. Had we
implemented the singleton pattern instead of MVVM, I believe we could have finished this
app sooner, but we would not have necessarily had the most clear and concise code. All of
our view controllers would access the same object and modify the state of that object. Then
our singleton would have to be responsible for grocery lists and grocery items. Based on the
single responsibility principle from Chapter 4 , this would not be a good idea.

 We have run into a few issues because we used MVVM. When our data is updated, we have
to use unwind segues to inform the view controllers containing the lists of data to reload. We
also have to transfer state back and forth. This is not a bad thing, but it is more code. The
last point I will leave you with on the subject of architecture is that I like to treat architecture
like the new API design guidelines. We want our app to be clear and concise, yet we do not
want to sacrifice clarity for brevity. The next section is going to cover the last functionality we
are missing. We need our UI to update when we add new grocery items.

http://dx.doi.org/10.1007/978-1-4842-2280-5_4
http://dx.doi.org/10.1007/978-1-4842-2280-5_4

301CHAPTER 12: Grocery App: Finish Line

 Refreshing the UI
 Welcome to the last section in this book. Here we are going to make sure our UI updates
correctly when we add new grocery items and grocery lists. All of the other functionality
for our app is complete. In this section, we are going to create an unwind segue for adding
grocery items. The last case we need to handle is when items are added, we need to also
update the table view on the first view controller. Let’s get started.

 First things first, we need to create a new unwind segue. Before we can add any connections
in our storyboard, we need a new unwind action in the GroceryItemsViewController .
Navigate to the GroceryItemsViewController.swift file and add the following functionality
under the // MARK: Segue section:

 @IBAction func unwindToGroceryItems(segue: UIStoryboardSegue) {
 groceryItemsTableView?.reloadData()
 }

 This new @IBAction should now be available in our storyboard. Let’s open up our storyboard
and configure this manual unwind segue. Navigate to the Add Grocery Item view controller
on the storyboard and control-drag from the yellow icon to the Exit icon. We should now see
two actions available to us. The two actions should be the unwindToGroceryListsWithSegue
and unwindToGroceryItemsWithSegue . We want to connect our Add Grocery Item view
controller to the unwindToGroceryItemsWithSegue . Once this connection shows up in the
left pane under the Add Grocery Item view controller, we need to set the segue identifier.
Figure 12-12 shows the Attributes Inspector for the unwind segue. We want to make sure
the identifier is unwindToGroceryItems .

 Figure 12-12. The Attributes Inspector for the unwindToGroceryItemsWithSegue action

302 CHAPTER 12: Grocery App: Finish Line

 All right, our unwind segue is configured in our storyboard and the action behind it reloads
our groceryItemsTableView . Let’s navigate to the AddGroceryItemViewController and
call this manual segue once we have successfully created the new grocery item. The final
implementation of the addItem method is as follows:

 @IBAction func addItem() {
 block()
 do {
 let quantity = Int(groceryItemQuantity?.text ?? "0")
 try viewModel.createGroceryItem(with: groceryItemName?.text, and: quantity)

 performSegue(withIdentifier: GAConstants.Segues.unwindToGroceryItems, sender: nil)
 }
 catch {
 unblock()
 alertDisplayer.displayAlert(withTitle: "Error", message: "\(error)", withHandler: {

_ in })
 }
 }

 We have removed the TODO from the last implementation and we are now calling
 performSegue with our unwindToGroceryItems segue identifier. Just like our last unwind
segue identifier, we want to have this string in our GAConstants.swift file. The GAConstants.
swift file should now look like the following :

 /// Grocery App Constants
 struct GAConstants {

 /// Constants for our table views
 struct TableCell {
 /// Cell Identifier for our the grocery list and grocery item table views
 static let rightDetail = "Cell"
 }

 /// Constants for Core Data entities
 struct Entities {
 /// Entity Identifier for the GroceryList entity in Core Data
 static let groceryList = "GroceryList"
 static let groceryItem = "GroceryItem"
 }

 /// Constants for App Segues
 struct Segues {
 /// Unwind Segue Identifier
 static let unwindToGroceryLists = "unwindToGroceryLists"
 static let unwindToGroceryItems = "unwindToGroceryItems"
 }
 }

303CHAPTER 12: Grocery App: Finish Line

 Now build and run your app. We should be able to add grocery lists. We should be able
to select grocery lists and add new items to the selected grocery list! And our UI should
update now when we create new lists and items. Well, almost. You will notice there is a gap
between the grocery list and grocery item. Once we create a new item, it will show up in the
 groceryItemsTableView , but the items label does not update on the groceryListsTableView .
This is the final puzzle piece before we can call our app complete.

 So how can we implement this? We want to keep our app reloading efficiently and there
would be no purpose to our unwind segues if we gave up on this now. I want you to think
about a solution for this for a minute. This one took me a second to figure out. In fact, I
could only think of one way to reload the data if a new item was created. We need to pass
a closure to the GroceryItemsViewController . This closure will then house the reload logic
for the first view controller. Up until now we have also been able to keep our view controllers
ignorant of each other. Let’s continue this by creating one more protocol.

 In the Protocols group, let’s create a new file called ReloadContainer.swift . In this file
we are going to create a protocol that will contain a single property. This property will be
a closure that we can execute every time the unwind segue for grocery items fires. The
implementation for this new protocol is as follows :

 protocol ReloadContainer {
 var reloadData: ((Void) -> Void)? { get set }
 }

 Let’s go back to our GroceryItemsViewController and conform to this protocol. Once we
conform to this protocol, we will have access to the closure and we can execute it in the
 unwindToGroceryItems method. The following code block is the unwindToGroceryItems
method:

 @IBAction func unwindToGroceryItems(segue: UIStoryboardSegue) {
 groceryItemsTableView?.reloadData()
 reloadData?() // Call the arbitrary closure from the ReloadContainer protocol
 }

 The following code block is the final implementation for the entire
 GroceryItemsViewController class:

 class GroceryItemsViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate, ViewModelContainer, SelectedGroceryListContainer, ReloadContainer {

 // MARK: - Properties

 var selectedGroceryList: GroceryList? {
 get {
 return viewModel.groceryList
 }
 set {
 viewModel.groceryList = newValue
 }
 }

304 CHAPTER 12: Grocery App: Finish Line

 var reloadData: ((Void) -> Void)? = nil

 var viewModel: GroceryItemsViewModel = GroceryItemsViewModel()

 @IBOutlet var groceryItemsTableView: UITableView?

 // MARK: - Segue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 super.prepare(for: segue, sender: sender)

 if var groceryListContainer = segue.destination as? SelectedGroceryListContainer {
 groceryListContainer.selectedGroceryList = selectedGroceryList
 }
 }

 @IBAction func unwindToGroceryItems(segue: UIStoryboardSegue) {
 groceryItemsTableView?.reloadData()
 reloadData?() // Call the arbitrary closure from the ReloadContainer protocol
 }

 // MARK: - Table View

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return viewModel.groceryItems.count
 }

 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt
indexPath: IndexPath) {
 let item = viewModel.groceryItem(at: indexPath)

 cell.textLabel?.text = item.name
 cell.detailTextLabel?.text = "Quantity: \(item.quantity)"
 }

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 return tableView.dequeueReusableCell(withIdentifier: GAConstants.TableCell.
rightDetail, for: indexPath)
 }
 }

 We now have one final piece. We need to give our reload functionality to the
 GroceryItemsViewController from the GroceryListsViewController . We are going to add
one more if block to our prepare-for segue-method on the GroceryListsViewController .
Since we want the closure to reload our groceryListTableView , let’s set the closure
equal to this method. The following code block is the prepare-for-segue method on
the GroceryListsViewController . We try to cast the destination view controller as
a ReloadContainer type. If this is successful, we set the reloadData closure to the
 groceryListTableView.reloadData method reference.

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

305CHAPTER 12: Grocery App: Finish Line

 super.prepare(for: segue, sender: sender)

 if var groceryListContainer = segue.destination as? SelectedGroceryListContainer,
 let indexPath = groceryListTableView?.indexPathForSelectedRow {

 viewModel.transferGroceryList(at: indexPath, to: &groceryListContainer)
 }

 if var reloadContainer = segue.destination as? ReloadContainer {
 reloadContainer.reloadData = groceryListTableView?.reloadData
 }
 }

 And that’s a wrap. If you build and run your app, you should be able to see your grocery lists
and add more. Once you select a grocery list, you will see the items held within the selected
list. You can then add more items to the selected grocery list and the entire UI reloads
appropriately at the correct time. Next, we have the final wrap up to discuss the ultimate
meaning and goals to take away from this book.

 Final Wrap Up
 Wow! This has been a long road getting here, for me too. I wanted to start this off by
thanking you! I really appreciate you following along and not throwing this book away. This
has been as much a learning experience for me as it has been for you. So what does this
book all mean? What do we want to take away?

 Throughout this entire book, I have started threads like architecture, protocol-oriented
programming, and testing. I have already wrapped up architecture and testing earlier in
this chapter. There is still one loose end, protocol-oriented programming. I think this is the
biggest topic of the book. The entire book has been a holistic look at Swift and iOS, but
one of the biggest paradigms in Swift is protocol-oriented programming. This paradigm
encompasses so much of what it means to develop Swift code. From the ground up, Swift
was meant to be safe and efficient. Protocol-oriented programming illustrates these ideas
perfectly. Protocols force us to think about the surface of our code. What should be public,
what should be optional, should it be restricted to class types or open to values types?

 A value type offers us a lot of safety and keeps our code lightweight. In multiple chapters
including this one, we saw how we can use value types in our apps. Through the use of
protocols, we were able to use a struct for displaying errors to the user and we were able to test
this functionality with ease. Another aspect of protocol-oriented programming is the abstraction
it offers us. In this last chapter, we were able to keep our view controllers from knowing anything
about each other. We used protocols to drive how our data flows and how our UI refreshes
without using any concrete types. I think this is a huge win for our app and allows it to scale.

 And finally, way back in Chapter 5 , I introduced the concept of traits and abilities and the
differences between these ideas and interfaces. I believe these distinctions in concepts can
help us decide if a protocol should be extended with functionality or not. I believe this is key
to understanding what protocol-oriented programming is at its core. Ultimately, I believe to
successfully employ protocol-oriented programming requires a shift in thinking. Here are my
final thoughts: I believe protocol-oriented programming is an architectural decision, I believe
it is a testing strategy, and that it encompasses all of Swift. Thank you for reading!

http://dx.doi.org/10.1007/978-1-4842-2280-5_5

307© Eric Downey 2016
E. Downey, Practical Swift, DOI 10.1007/978-1-4842-2280-5

 ■ A
 Access control model , 41
 AddGroceryItemViewController

 addItem method , 299
 alert displayer property , 298
 Connections Inspector , 297
 core data , 293
 Project Navigator , 291–292
 UI blocking , 301–305
 updated implementation , 299
 view model , 294–296

 Add Grocery List view , 138
 AddGroceryListViewController

 alerts and blocking
 addList method , 291
 assert , 287
 canBlockView , 291
 ErrorAlertDisplayer , 283–285, 287
 fakeDisplayer object , 288
 integration test , 289–290
 Project Navigator , 281

 Connections Inspector , 276
 core data , 268–269
 Identity Inspector , 275
 interface , 271–272
 Project Navigator , 273–274
 unwind segue , 277–280
 view model , 270–271

 Address sanitizer
 code block , 29
 console output , 30
 Int values , 29
 memory address , 30
 memory corruption , 29
 UnsafePointer , 29

 Alamofi re , 41–48

 AlertDisplayer , 92, 282–283
 AntiPatterns , 68, 75, 55
 AnyObject , 60, 61, 102
 AppDelegate , 244
 Array+ExtensionsTests.swift , 212, 214
 Auto Layout and constraints

 code, constraints
 assistant editor, timeline

selection , 124
 fi rstBaselineAnchor , 128
 greenButton’s trailingAnchor , 129
 live view, orangeButton , 127
 live view, UI elements , 130
 orangeButton , 126
 purpleView , 129–130
 UIButtons and UIView , 125
 view , 123
 view, new constraints , 129

 interface builder
 add missing constraints , 117
 constraints, text fi eld , 121
 constraints, title label , 119
 grocery list, interface , 113
 horizontal space constraint , 122
 pin menu , 118
 pin menu, text fi eld selection , 120
 size inspector, text fi eld , 116
 text fi eld and label , 113
 view controller , 114

 sample constraint equation. , 112
 view blocking

 blockUI running , 132
 canBlockView extension , 132
 playground page , 131
 UIActivityIndicatorView , 132

 Autoresizing Masks , 20, 36, 125, 183–184
 Autoresizing section , 21

 Index

308 Index

 ■ B
 Balanced testing , 158–159
 Blob/God Class , 69, 74
 Block syntax , 56
 Buildtime , 18

 ■ C
 canPresentViewControllers , 283
 Carthage

 Alamofi re , 46
 build phases , 47–48
 Build Settings and framework search

paths , 47
 Cartfi le , 46
 cocoapods-deintegrate , 46
 dependency graph , 46
 GitHub , 46
 Homebrew , 46
 Linked Frameworks and Libraries

section , 46–47
 Xcode confi guration , 46
 Xcode workspace , 48

 Ch05—Protocol-Oriented
Thinking Pt2 , 77, 82

 Closures , 4
 CocoaPods

 CocoapodsTest , 42–43
 CocoapodsTest.xcworkspace Project

Navigator , 44
 iOS code , 42
 pod , 42
 Podfi le , 42–43
 Ruby or RubyGems , 42
 terminal output , 43

 CocoaPods-Rome , 45
 CocoapodsTest , 43
 Cocoa Touch Dynamic Framework , 41
 Cocoa Touch Static Library , 40
 Code coverage , 24–26
 Concrete type , 104, 109, 232, 237, 305
 Constructor injection , 60
 Container class , 60
 Core Data, Grocery app

 persistent container
 AppDelegate , 241, 243
 AppDelegate.swift , 240

 applicationWillTerminate , 241
 fatalErrors , 241
 PlaceholderDataContainer , 243
 protocols group , 241
 view controllers , 244
 view model , 245
 ViewModel class , 243
 Xcode’s Project

Navigator , 242
 view model and core

data , 255–258
 XCDataModel , 245–252, 254

 Cyclomatic complexity , 6

 ■ D
 Data structures , 103, 105
 Dependency injection , 58, 61
 Design pattern , 53, 56, 58–59, 61, 63, 68,

70, 96, 173, 201, 239, 300
 Device Confi guration panel , 17, 20, 134,

181, 184
 DRY tests , 145, 153, 156–157, 285

 ■ E, F
 Equatable protocol , 106, 110, 163
 ErrorAlertDisplayer , 283–285, 287
 Exception-handling model , 7

 ■ G
 Game development , 71, 79, 84–85,

88, 93, 98
 Generic data structure , 105
 Generic members , 101, 108
 Generics

 Classes and Structs , 103
 double equals , 107
 Equatable protocol , 106
 fl atMap , 106
 functional paradigms , 105
 generic type constraints , 106
 item parameter , 103
 key value pair , 106
 map or fi lter methods , 106
 printSome function , 103
 Swift generics , 101
 variadic , 104

309Index

 Generic type constraints , 106
 Grocery app

 AddGroceryItemViewController , 267
 AddGroceryListViewController , 267
 interface , 199

 Grocery app , MVVM
 grocery items

 transferring data , 232–236
 view controller , 226–230
 view model , 224–226
 Xcode’s Project Navigator , 224

 grocery lists
 placeholder data , 203–204
 view controller , 217–223
 ViewController.swift , 202
 viewmodel (see View model,

Grocery app)
 GroceryApp.xcdatamodel fi le , 245–246
 Grocery items

 attributes inspector , 188
 confi gured table view , 189
 Disclosure Indicator , 189
 Dynamic Prototypes setting , 187–188
 menu, segue type , 190
 modal presentation style , 191
 number pad keyboard type , 197
 segue , 191
 show option , 191
 static cells , 188
 table view setting , 190
 view controller , 187, 192, 197

 GroceryItemsViewModel , 224–229, 232,
294, 298, 304

 Grocery Lists
 attributes inspector , 184
 autoresizing settings, table view , 183
 confi guration, UIBarButtonItem , 185
 interface, addition , 193
 interface progress , 184
 navigation controller , 181–182
 object library, Xcode , 183
 segue , 195
 size inspector , 198
 storyboard

 Add Grocery List view controller , 196
 device confi guration panel , 181

 table view controller , 182

 UINavigationControllers , 182
 view controller , 190
 view controller, adding grocery lists , 194

 GroceryListsViewController , 217–223
 GroceryListsViewModel , 207, 214
 GroceryListsViewModel.swift , 207

 ■ H
 Helper or utilit(y)(ies) , 69
 HTTPRequestSerializer , 40

 ■ I, J
 Idompotency , 67
 Inversion of Control (IoC) , 60
 iOS architecture

 AntiPatterns , 55–56
 callouts , 57
 constructor injection , 60
 controllers , 64
 dependency injection , 58
 design pattern , 58
 header , 56
 IoC container , 61
 Markup Syntax , 56
 MVC , 61
 MVVM , 62
 MyModel class , 63
 playground page link , 57
 presenter pattern , 64
 resources , 57
 Sample Header , 58
 setter injection , 60
 single- line comment , 56
 UIView , 65
 view controller , 62
 ViewModel class , 63
 Xcode Playgrounds , 55

 item parameter , 103

 ■ K
 KISS principle , 68

 ■ L
 Lazy stored property , 155
 LLDB command , 27, 28

310 Index

 ■ M
 Memory Graph Debugger , 18

 capture lists and strong references , 34
 closures , 34
 memory allocations and references , 33
 memory leaks , 33
 MyClass , 35
 SecondViewController , 35
 UI Debugger , 33
 ViewController class , 33
 viewDidAppear method , 34
 weak references , 35
 Xcode , 34
 Xcode 8 , 33

 MockFive , 146, 150, 168–169
 Mocking

 frameworks , 146
 Mocked class , 147–148
 MockFive , 146
 Mockito , 146
 MockParameter class , 147
 parametersForCall method , 149
 protocol , 146
 protocol extension , 149
 setup and record method. , 148
 setValueForCall , 148
 Swift 3 Array API , 148
 testing and manual , 146
 valueForCall method , 148

 Mockito , 146
 Multiple optional bindings , 3, 5–6
 Mutating keyword , 108

 ■ N
 Nib fi les

 segues , 177–178
 storyboard , 179

 ■ O
 Objected-oriented design (OOD) , 69
 Objective-C , 3–4, 7, 9, 11, 14–16, 28,

40–42, 48, 75, 98, 146
 Object-oriented programming

 alien model , 77
 Animal class , 76
 creatures , 76

 Creature class , 77
 data models , 76–77
 inheritance , 76, 78–79
 issues , 76
 Living protocol , 78
 Person class , 77
 properties , 77
 SpriteKit , 79
 traits , 78

 ■ P, Q
 PersistentContainer property , 241, 243
 PersistentContainer.swift , 241
 Placeholder.swift and Data , 203
 Playgrounds , 55, 56–57
 Poltergeist , 69
 Project Setup, Grocery list

 code block , 177
 Single View Application template. ,

174–175
 use core data and include unit tests , 176

 Protocol extension , 3, 5, 8–10, 79–82, 84,
86, 87, 98, 101, 110, 149, 241, 263,
287

 Protocol-oriented programming , 5
 abilities , 79–80
 abstraction , 72
 Animal class , 81
 APIs , 82
 Bicycle , 72
 bob, anteater and ET objects , 82–83
 constraints , 84
 defi nition , 72
 inheritance and polymorphism , 81
 interfaces , 72–73
 override keyword , 81
 protocol extensions , 81
 reference and value types , 71
 SpriteKit , 71
 SuperVision , 84
 testing

 AlertDisplayer , 93–95
 UIApplication , 95–98

 traits , 73–74
 traits and abilities , 71, 98
 UIApplication , 93
 unit testing , 93

311Index

 value and reference types
 change , 89
 multithreaded system , 90
 optionals , 90
 structs , 88
 Thing , 89

 Vision, CanSmellThings and
Evesdropper protocols , 80

 Protocol-oriented thinking , 74–76

 ■ R
 RegisterForRemoteNotifi cations , 95
 Resources , 47, 57
 Retroactive modeling , 92, 98
 Runtime , 18

 ■ S
 Sanitizers

 address sanitizer , 29–30
 thread sanitizer , 31–33

 SelectedGroceryListContainer , 234
 SelectedGroceryListContainer.swift , 232
 Self-documenting code , 13
 Setter injection , 60
 Single-responsibility principle , 69
 Singleton pattern , 66, 300
 SomeString variable , 102
 SomethingViewModel , 109
 SpriteKit game development

 coding , 85
 iOS , 84
 mechanisms , 85
 node hierarchy structure , 85
 protocol-oriented programming , 85, 88
 scroll and scrollForever method , 86
 Scrolling protocol , 86–87
 SKAction , 86–87
 SKNode , 85, 87
 SKSpriteNode , 87
 SKSpriteNode and Platform class , 85, 87
 trait , 88

 Standard Library , 14
 Static keyword , 67
 Static linking , 40
 Storyboards features

 custom views and gestures , 138–139, 141
 designables and inspectables , 142

 Subclass , 59
 Swift 1

 creation , 4
 Objective-C , 4
 Xcode 6 beta , 3

 Swift 2
 availability checking , 9–10
 defer , 6
 error handling , 7–8
 Foundation Framework , 5
 guard , 5
 protocol extensions , 9
 protocol-oriented programming , 5

 Swift 3
 animate and reload , 13
 API design guidelines , 11–13
 argument labels , 11
 failable initializer , 15
 HealthKit , 15
 SE-0005 , 15–16
 SE-0006 , 14
 SE-0033 , 14–15

 Swift Generics , 101
 Swift package managers

 .build directory , 52
 Carthage , 45–48
 CocoaPods , 39, 42–44
 CocoaPods-Rome , 45
 command , 49
 DeckOfPlayingCards , 50
 Dynamic Framework , 51
 dynamic frameworks and static libraries ,

39
 external dependencies , 39
 GitHub , 49
 iOS

 AFNetworking , 41
 dynamic framework , 41
 static library , 40

 iOS ecosystem , 48
 Logger.framework fi le , 52
 Logger package , 51
 Logger.swift fi le , 51
 PackageDescription , 50
 sources and tests , 50
 swift package init --type library , 50
 URL and majorVersion parameters , 51
 version/environment , 49

312 Index

 Swift package manager testing
 allTests property , 162
 code block, Logger.swift fi le , 166
 command line , 166
 CustomPrintTestBehavior , 163
 extension , 163
 failing tests, test behavior protocol , 165
 FakePrinter , 163
 FakePrinter class , 163
 fi le and line parameters , 165
 inout parameter. , 163
 Logger class , 161
 code block, Logger.swift fi le , 165
 Logger.swift fi le , 160
 LoggerTests class , 165
 LoggerTests.swift , 162
 parameters , 164
 printer property , 163
 protocol method , 164
 severity , 161
 Swift debug identifi ers , 164
 text property , 162
 Xcode—LinuxMain.swift , 162
 XCTAsserts , 162
 XCTestCase class , 164

 Swift protocols , 101
 Swift’s Foundation Framework , 105
 Swizzling , 146

 ■ T
 TDD . See Test-driven development (TDD)
 Test-driven development (TDD) , 145, 167
 Testing

 balanced , 158–159
 DRY testing , 157
 swift packagemanager (see Swift

Package Manager Testing)
 TDD , 167
 WET testing , 153–156
 XCTest , 150–153

 Thread Sanitizer , 18
 background threads , 31
 console output , 31
 data races , 31
 Issue Navigator , 32
 Model class , 31
 view controller , 31

 Trait variations
 abbreviated version , 135
 default installed property , 135
 Gamut setting , 135
 horizontal space constraint , 135
 portrait and landscape orientations view ,

134
 stack view , 135
 trait variation menu, font color , 135
 UIButton - Add , 137
 UIButton - Cancel , 137
 UIStackView , 136–137
 UITextView , 136
 view , 134–135

 ■ U
 UIAlertController , 65–66
 UIApplication , 66
 UIBarButtonItemstoryboard features , 186
 UI debugging , 26–28
 UIGestureRecognizers , 140
 UIKit

 AlertDisplayer , 92
 hasView, canPresentViewControllers and

canBlockView , 91
 interfaces , 93
 protocol-oriented programming , 90
 retroactive modeling , 92
 SpriteKit game , 93
 traits and abilities , 91, 93
 UIAlertControllers , 92
 UIViewController , 91–92
 view controllers , 93

 UITableViewController , 188
 UITableViewDataSource , 75
 UIView , 65

 ■ V
 ValueForCall method , 148
 Variadic , 104, 148
 ViewModel class , 63, 96, 97, 108, 206–207,

220, 243, 256, 259, 270
 ViewModelContainer , 109–110
 View model, Grocery app

 Array+Extensions.swift , 208, 214
 Array+ExtensionsTests.swift , 214
 DataContainer class , 207

313Index

 fi le dialog screen , 213
 grocery lists array , 208
 GroceryListsViewModel , 216
 GroceryListsViewModel.swift , 207
 New Target menu , 211
 PlaceholderDataContainer , 207
 project navigator , 206, 216
 settings , 210
 settings screen, new targets , 212
 Swift 3 API design guidelines , 208
 TDD , 209
 ViewModel class , 206

 View Model Tests
 executeRequest method , 264
 fetch method , 259
 mock objects, create , 260–262
 Mocks.swift fi le , 264
 Mocks.swift and Mockable.swift , 259
 NSPersistentContainer , 263
 PersistentContainer , 259
 Xcode’s Project Navigator , 260

 ■ W
 Well-expressed tests (WET)

 AlertDisplayer property , 155
 AlertDisplayer protocol , 154
 coding , 153
 ErrorAlertDisplayer , 154–155
 fakeDisplayer class , 156
 MyViewController class , 156

 protocol , 155
 tests , 145
 view controller , 156
 viewDidLoad method , 155
 XCTestCase subclass , 155

 ■ X, Y, Z
 Xcode

 automatic code signing , 19
 Buildtime and Runtime errors tab , 18
 code coverage , 17, 24–26
 color, image, and fi le literals , 18–19
 issue Navigator , 18
 Memory Graph Debugger , 33–36
 source editor extensions , 22–23
 storyboard Device Confi guration panel ,

17
 storyboards and auto layout , 20–22
 UI debugging , 17, 26–28

 XCTest , 145
 assertions , 152
 asynchronous method closure , 153
 choose options, project screen , 150
 code , 151
 expectationWithDescription

method , 152
 framework , 152
 Include Unit Tests option , 150–151
 networking class , 152
 waitForExpectations , 152

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Building the Reference Guide
	Chapter 1: Evolution of Swift
	What You’ll Learn
	Swift 1
	Transition from Objective-C to Swift
	Why Was Swift Created?

	Swift 2
	Guard and Defer
	Guard
	Defer

	Error Handling
	Protocol Extensions
	Availability Checking

	Swift 3
	Argument Labels
	API Design Guidelines

	Swift 3 Proposals
	SE-0006
	SE-0033
	SE-0005

	Wrap Up

	Chapter 2: Xcode
	What You’ll Learn
	What’s New
	Storyboards and Auto Layout
	Xcode Source Editor Extensions

	What’s Old
	Code Coverage
	UI Debugging

	Sanitizers
	Address Sanitizer
	Thread Sanitizer

	Memory Graph Debugger
	Wrap Up

	Chapter 3: Package Managers
	What You’ll Learn
	Packaging Code in iOS
	Static Library
	Dynamic Framework

	CocoaPods and CocoaPods-Rome
	CocoaPods
	CocoaPods-Rome

	Carthage
	Swift Package Manager
	Wrap Up

	Chapter 4: iOS Architecture
	What You’ll Learn
	Playgrounds and Markup Syntax
	Sample Header

	Design Patterns
	Dependency Injection
	MVC
	MVVM
	Presenter
	Singleton

	When Is It Too Much?
	AntiPatterns
	The God Class and the Blob
	Poltergeists

	Wrap Up
	Articles

	Chapter 5: Protocol-Oriented Programming
	What You’ll Learn
	What Are Protocols?
	Interfaces
	Traits
	Protocol-Oriented Thinking
	The Problem: Object-Oriented Programming
	Abilities
	Creatures, Animals, People, and Aliens
	SpriteKit Game Development
	Value and Reference Types
	Protocols in UIKit

	Testing with Protocols
	Testing AlertDisplayer
	Testing UIApplication

	Wrap Up
	Articles

	Chapter 6: Generics
	What You’ll Learn
	Swift Generics
	Classes and Structs
	Functional Paradigms with Generics
	Generic Type Constraints
	Protocol Associated Types
	Wrap Up
	Articles

	Chapter 7: iOS UI and Storyboards
	What You’ll Learn
	Auto Layout and Constraints
	Interface Builder
	Constraints in Code
	Blocking a View

	Trait Variations
	Storyboard Tips and Tricks
	Custom Views and Gestures
	Designables and Inspectables

	Wrap Up
	Articles

	Chapter 8: Testing
	What You’ll Learn
	Mocks
	XCTest
	DRY vs. WET Testing
	WET Testing
	DRY Testing

	Balanced Testing
	Swift Package Manager Testing
	Test-Driven Development
	Wrap Up
	Articles

	Part II: Building the Grocery App
	Chapter 9: Grocery List App Interface Builder
	What You’ll Learn
	Project Setup
	Nib Files and Storyboards
	Segues
	When to Use Nib Files
	Storyboard Limitations

	Grocery Lists and Items
	Grocery Lists
	Grocery Items

	Adding Lists and Items
	Wrap Up

	Chapter 10: Grocery App: MVVM
	What You’ll Learn
	Grocery Lists
	Placeholder Data
	View Model
	Grocery Lists View Controller

	Grocery Items
	View Model
	Grocery Items View Controller
	Transferring Data

	Wrap Up

	Chapter 11: Grocery App: Core Data
	What You’ll Learn
	Persistent Container
	XCDataModel
	View Model and Core Data
	View Model Tests
	Wrap Up

	Chapter 12: Grocery App: Finish Line
	What You’ve Learned
	Adding Grocery Lists
	Core Data
	View Model
	View Controller
	Refreshing the UI
	Alerts and Blocking

	Adding Grocery Items
	Core Data
	View Model
	View Controller
	Refreshing the UI

	Final Wrap Up

	Index

