
Pro
Angular

Learn to harness the power of
modern web browsers from within
your application’s code
—
Second Edition
—
Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro Angular
Second Edition

Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro Angular

Adam Freeman
MILTON KEYNES MK6 3PA, United Kingdom

ISBN-13 (pbk): 978-1-4842-2306-2 ISBN-13 (electronic): 978-1-4842-2307-9
DOI 10.1007/978-1-4842-2307-9

Library of Congress Control Number: 2017932375

Copyright © 2017 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Gwenan Spearing
Development Editor: Laura Berendson
Technical Reviewer: Fabio Claudio Ferracchiati
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at www.apress.com/9781484223062. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/
rights-permissions
http://www.apress.com/
rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484223062
http://www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my lovely wife, Jacqui Griffyth. And to Peanut,
who can also be lovely when she tries.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ���xxv

About the Technical Reviewer ���xxvii

 ■Chapter 1: Getting Ready ��� 1

 ■Chapter 2: Your First Angular App ��� 5

 ■Chapter 3: Putting Angular in Context ��� 33

 ■Chapter 4: An HTML and CSS Primer ��� 45

 ■Chapter 5: JavaScript and TypeScript: Part 1 �� 65

 ■Chapter 6: JavaScript and TypeScript: Part 2 �� 89

 ■Chapter 7: SportsStore: A Real Application ��� 109

 ■Chapter 8: SportsStore: Orders and Checkout ��� 141

 ■Chapter 9: SportsStore: Administration �� 169

 ■Chapter 10: SportsStore: Deployment ��� 195

 ■Chapter 11: Creating an Angular Project ��� 207

 ■Chapter 12: Using Data Bindings ��� 237

 ■Chapter 13: Using the Built-In in Directives �� 261

 ■Chapter 14: Using Events and Forms��� 289

 ■Chapter 15: Creating Attribute Directives ��� 337

 ■Chapter 16: Creating Structural Directives �� 363

 ■Chapter 17: Understanding Components ��� 399

 ■Chapter 18: Using and Creating Pipes ��� 433

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

 ■Chapter 19: Using Services ��� 465

 ■Chapter 20: Using Service Providers ��� 493

 ■Chapter 21: Using and Creating Modules �� 525

 ■Chapter 22: Creating the Example Project ��� 551

 ■Chapter 23: Using Reactive Extensions ��� 569

 ■Chapter 24: Making Asynchronous HTTP Requests ��� 593

 ■Chapter 25: Routing and Navigation: Part 1 �� 621

 ■Chapter 26: Routing and Navigation: Part 2 �� 655

 ■Chapter 27: Routing and Navigation: Part 3 �� 683

 ■Chapter 28: Using Animation ��� 721

 ■Chapter 29: Angular Unit Testing ��� 755

Index ��� 785

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ���xxv

About the Technical Reviewer ���xxvii

 ■Chapter 1: Getting Ready ��� 1

What Do You Need to Know? �� 1

What Is the Structure of This Book? ��� 1

Part 1: Getting Ready �� 2

Part 2: Working with Angular �� 2

Part 3: Advanced Angular Features ��� 2

Are There Lots of Examples? �� 2

Where Can You Get the Example Code? ��� 4

How Do You Set Up Your Development Environment? �� 4

Contacting the Author ��� 4

Summary �� 4

 ■Chapter 2: Your First Angular App ��� 5

Preparing the Development Environment ��� 5

Installing Node�js and NPM ��� 5

Installing an Editor �� 6

Installing a Browser �� 7

Creating and Preparing the Project �� 7

Creating the Package File ��� 7

Installing the NPM Packages �� 9

Configuring the TypeScript Compiler �� 9

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Creating the HTML File ��� 10

Starting the Server ��� 11

Replacing the HTML Content �� 11

Adding Angular to the Project ��� 14

Preparing the HTML File ��� 14

Creating a Data Model �� 15

Creating a Template �� 18

Creating a Component �� 18

Putting the Application Together ��� 20

Running the Application �� 22

Adding Features to the Example Application �� 23

Adding the To-Do Table ��� 23

Creating a Two-Way Data Binding �� 27

Adding To-Do Items �� 29

Summary �� 31

 ■Chapter 3: Putting Angular in Context ��� 33

Understanding Where Angular Excels �� 34

Understanding Round-Trip and Single-Page Applications �� 34

Understanding the MVC Pattern ��� 36

Understanding Models �� 38

Understanding Controllers/Components ��� 40

Understanding Views/Templates �� 41

Understanding RESTful Services �� 41

Common Design Pitfalls ��� 43

Putting the Logic in the Wrong Place �� 43

Adopting the Data Store Data Format ��� 44

Just Enough Knowledge to Cause Trouble �� 44

Summary �� 44

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

 ■Chapter 4: An HTML and CSS Primer ��� 45

Preparing the Example Project ��� 45

Understanding HTML �� 47

Understanding Void Elements ��� 48

Understanding Attributes �� 48

Applying Attributes Without Values ��� 48

Quoting Literal Values in Attributes �� 49

Understanding Element Content ��� 49

Understanding the Document Structure ��� 49

Understanding Bootstrap �� 51

Applying Basic Bootstrap Classes �� 52

Using Bootstrap to Style Tables �� 56

Using Bootstrap to Create Forms �� 57

Using Bootstrap to Create Grids ��� 59

Summary �� 64

 ■Chapter 5: JavaScript and TypeScript: Part 1 �� 65

Preparing the Example Project ��� 67

Creating the HTML and JavaScript Files ��� 67

Configuring the TypeScript Compiler �� 68

Running the Example Project ��� 68

Understanding the Script Element ��� 69

Using a JavaScript Module Loader ��� 70

Understanding the Basic Workflow ��� 71

Using Statements ��� 72

Defining and Using Functions��� 72

Defining Functions with Parameters �� 74

Defining Functions That Return Results ��� 75

Using Functions as Arguments to Other Functions ��� 76

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Using Variables and Types �� 77

Using the Primitive Types ��� 79

Using JavaScript Operators �� 81

Using Conditional Statements �� 81

The Equality Operator vs� the Identity Operator �� 82

Explicitly Converting Types ��� 83

Working with Arrays ��� 85

Using an Array Literal ��� 85

Reading and Modifying the Contents of an Array ��� 86

Enumerating the Contents of an Array �� 86

Using the Built-in Array Methods �� 87

Summary �� 88

 ■Chapter 6: JavaScript and TypeScript: Part 2 �� 89

Preparing the Example Project ��� 89

Working with Objects ��� 90

Using Object Literals ��� 91

Using Functions as Methods��� 91

Defining Classes ��� 92

Working with JavaScript Modules �� 96

Creating Modules �� 96

Importing from JavaScript Modules ��� 97

Useful TypeScript Features ��� 100

Using Type Annotations ��� 100

Using Tuples ��� 106

Using Indexable Types �� 106

Using Access Modifiers �� 107

Summary �� 108

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

 ■Chapter 7: SportsStore: A Real Application ��� 109

Preparing the Project ��� 110

Creating the Folder Structure ��� 110

Installing the NPM Packages �� 110

Preparing the RESTful Web Service �� 112

Configuring TypeScript�� 114

Configuring the Development HTTP Server �� 114

Configuring the JavaScript Module Loader �� 115

Creating the Reactive Extensions JavaScript Module �� 115

Creating the HTML File ��� 116

Running the Example Application ��� 117

Preparing the Angular Project Features ��� 118

Creating the Root Component ��� 118

Creating the Root Module ��� 119

Creating the Bootstrap File ��� 120

Adding the JavaScript Module Loader to the HTML Document �� 120

Starting the Data Model ��� 121

Creating the Model Classes �� 121

Creating the Dummy Data Source �� 122

Creating the Model Repository ��� 123

Creating the Feature Module �� 125

Starting the Store ��� 125

Creating the Store Component and Template ��� 126

Creating the Store Feature Module ��� 127

Updating the Root Component and Root Module �� 128

Adding Store Features the Product Details �� 129

Displaying the Product Details �� 129

Adding Category Selection ��� 131

Adding Product Pagination ��� 133

Creating a Custom Directive ��� 137

Summary �� 140

■ Contents

xii

 ■Chapter 8: SportsStore: Orders and Checkout ��� 141

Preparing the Example Application �� 141

Creating the Cart �� 141

Creating the Cart Model �� 141

Creating the Cart Summary Components ��� 143

Integrating the Cart into the Store �� 145

Adding URL Routing �� 148

Creating the Cart Detail and Checkout Components �� 148

Creating and Applying the Routing Configuration ��� 149

Navigating through the Application �� 151

Guarding the Routes ��� 154

Completing the Cart Detail Feature �� 157

Processing Orders �� 159

Extending the Model ��� 159

Collecting the Order Details �� 162

Using the RESTful Web Service �� 166

Applying the Data Source ��� 167

Summary �� 168

 ■Chapter 9: SportsStore: Administration �� 169

Preparing the Example Application �� 169

Creating the Module ��� 169

Configuring the URL Routing System �� 172

Navigating to the Administration URL ��� 173

Implementing Authentication ��� 175

Understanding the Authentication System ��� 175

Extending the Data Source ��� 176

Creating the Authentication Service ��� 177

Enabling Authentication �� 178

■ Contents

xiii

Extending the Data Source and Repositories ��� 181

Creating the Administration Feature Structure ��� 185

Creating the Placeholder Components ��� 185

Preparing the Common Content and the Feature Module �� 186

Implementing the Product Feature ��� 189

Implementing the Orders Feature ��� 192

Summary �� 194

 ■Chapter 10: SportsStore: Deployment ��� 195

Stopping the TypeScript Compiler �� 195

Working Around a Compiler Bug �� 195

Using the Ahead-of-Time Compiler �� 197

Installing and Configuring the AoT Compiler �� 198

Configuring the Application Bootstrap �� 200

Compiling the Application ��� 200

Shaking the Tree ��� 201

Testing the Application ��� 202

Containerizing the SportsStore Application �� 203

Installing Docker ��� 203

Preparing the Application ��� 203

Creating the Container �� 205

Running the Application �� 205

Summary �� 206

 ■Chapter 11: Creating an Angular Project ��� 207

Preparing a TypeScript Angular Development Project �� 207

Creating the Project Folder Structure ��� 208

Creating and Serving the HTML Document ��� 208

Preparing the Project Configuration ��� 209

Adding Packages �� 209

Starting the Watch Processes ��� 219

■ Contents

xiv

Starting Angular Development with TypeScript �� 219

Creating the Data Model ��� 223

Creating the Template and Root Component �� 226

Creating the Angular Module �� 227

Bootstrapping the Application �� 227

Configuring the JavaScript Module Loader �� 228

Updating the HTML Document �� 232

Running the Application �� 234

Summary �� 235

 ■Chapter 12: Using Data Bindings ��� 237

Preparing the Example Project ��� 238

Understanding One-Way Data Bindings ��� 239

Understanding the Binding Target �� 241

Understanding the Expression �� 242

Understanding the Brackets ��� 243

Understanding the Host Element �� 244

Using the Standard Property and Attribute Bindings �� 244

Using the Standard Property Binding ��� 244

Using the String Interpolation Binding �� 246

Using the Attribute Binding ��� 247

Setting Classes and Styles ��� 249

Using the Class Bindings �� 249

Using the Style Bindings ��� 254

Updating the Data in the Application �� 258

Summary �� 260

 ■Chapter 13: Using the Built-In in Directives �� 261

Preparing the Example Project ��� 262

Using the Built-in Directives ��� 263

Using the ngIf Directive �� 264

Using the ngSwitch Directive ��� 266

■ Contents

xv

Using the ngFor Directive ��� 269

Using the ngTemplateOutlet Directive �� 279

Understanding One-Way Data Binding Restrictions ��� 282

Using Idempotent Expressions ��� 282

Understanding the Expression Context ��� 285

Summary �� 288

 ■Chapter 14: Using Events and Forms��� 289

Preparing the Example Project ��� 290

Adding the Forms Module �� 290

Preparing the Component and Template �� 292

Using the Event Binding ��� 293

Understanding Dynamically Defined Properties ��� 295

Using Event Data �� 297

Using Template Reference Variables �� 299

Using Two-Way Data Bindings �� 301

Using the ngModel Directive ��� 303

Working with Forms ��� 305

Adding a Form to the Example Application ��� 305

Adding Form Data Validation �� 307

Validating the Entire Form �� 317

Using Model-Based Forms ��� 324

Enabling Model-Based Forms Feature ��� 324

Defining the Form Model Classes ��� 325

Using the Model for Validation �� 328

Generating the Elements from the Model ��� 332

Creating Custom Form Validators ��� 333

Applying a Custom Validator ��� 334

Summary �� 336

■ Contents

xvi

 ■Chapter 15: Creating Attribute Directives ��� 337

Preparing the Example Project ��� 338

Creating a Simple Attribute Directive ��� 340

Applying a Custom Directive ��� 341

Accessing Application Data in a Directive �� 343

Reading Host Element Attributes �� 343

Creating Data-Bound Input Properties �� 346

Responding to Input Property Changes �� 349

Creating Custom Events ��� 351

Binding to a Custom Event ��� 353

Creating Host Element Bindings ��� 354

Creating a Two-Way Binding on the Host Element ��� 355

Exporting a Directive for Use in a Template Variable �� 359

Summary �� 362

 ■Chapter 16: Creating Structural Directives �� 363

Preparing the Example Project ��� 364

Creating a Simple Structural Directive ��� 365

Implementing the Structural Directive Class �� 366

Enabling the Structural Directive �� 368

Using the Concise Structural Directive Syntax ��� 370

Creating Iterating Structural Directives �� 371

Providing Additional Context Data �� 374

Using the Concise Structure Syntax ��� 376

Dealing with Property-Level Data Changes �� 377

Dealing with Collection-Level Data Changes �� 379

Querying the Host Element Content ��� 390

Querying Multiple Content Children �� 394

Receiving Query Change Notifications ��� 396

Summary �� 397

■ Contents

xvii

 ■Chapter 17: Understanding Components ��� 399

Preparing the Example Project ��� 400

Structuring an Application with Components ��� 401

Creating New Components ��� 402

Defining Templates ��� 406

Completing the Component Restructure �� 417

Using Component Styles �� 417

Defining External Component Styles �� 419

Using Advanced Style Features �� 420

Querying Template Content �� 428

Summary �� 431

 ■Chapter 18: Using and Creating Pipes ��� 433

Preparing the Example Project ��� 434

Installing the Internationalization Polyfill ��� 436

Understanding Pipes �� 439

Creating a Custom Pipe �� 440

Registering a Custom Pipe ��� 441

Applying a Custom Pipe �� 442

Combining Pipes ��� 443

Creating Impure Pipes �� 444

Using the Built-in Pipes �� 448

Formatting Numbers ��� 449

Formatting Currency Values ��� 451

Formatting Percentages ��� 454

Formatting Dates �� 456

Changing String Case ��� 459

Serializing Data as JSON �� 460

Slicing Data Arrays ��� 461

Summary �� 463

■ Contents

xviii

 ■Chapter 19: Using Services ��� 465

Preparing the Example Project ��� 466

Understanding the Object Distribution Problem ��� 467

Demonstrating the Problem �� 467

Distributing Objects as Services Using Dependency Injection ��� 472

Declaring Dependencies in Other Building Blocks ��� 478

Understanding the Test Isolation Problem �� 484

Isolating Components Using Services and Dependency Injection �� 485

Completing the Adoption of Services ��� 488

Updating the Root Component and Template ��� 488

Updating the Child Components ��� 489

Summary �� 491

 ■Chapter 20: Using Service Providers ��� 493

Preparing the Example Project ��� 494

Using Service Providers ��� 496

Using the Class Provider ��� 498

Using the Value Provider ��� 506

Using the Factory Provider ��� 508

Using the Existing Service Provider �� 511

Using Local Providers ��� 512

Understanding the Limitations of Single Service Objects��� 513

Creating Local Providers in a Directive ��� 514

Creating Local Providers in a Component ��� 516

Controlling Dependency Resolution �� 521

Summary �� 523

 ■Chapter 21: Using and Creating Modules �� 525

Preparing the Example Project ��� 526

Understanding the Root Module ��� 528

Understanding the Imports Property �� 530

Understanding the Declarations Property ��� 530

■ Contents

xix

Understanding the Providers Property �� 531

Understanding the Bootstrap Property ��� 531

Creating Feature Modules �� 533

Creating a Model Module �� 535

Creating a Utility Feature Module ��� 539

Creating a Feature Module with Components �� 545

Summary �� 549

 ■Chapter 22: Creating the Example Project ��� 551

Starting the Example Project �� 551

Adding and Configuring the Packages ��� 552

Configuring TypeScript�� 553

Configuring the Development HTTP Server �� 553

Configuring the JavaScript Module Loader �� 554

Creating the Model Module �� 554

Creating the Product Data Type �� 554

Creating the Data Source and Repository ��� 555

Completing the Model Module �� 556

Creating the Core Module ��� 557

Creating the Shared State Service ��� 557

Creating the Table Component �� 557

Creating the Form Component �� 559

Completing the Core Module �� 561

Creating the Messages Module �� 562

Creating the Message Model and Service �� 562

Creating the Component and Template �� 563

Completing the Message Module ��� 563

Completing the Project ��� 564

Creating the Angular Bootstrap �� 564

Creating the Reactive Extensions Module �� 565

Creating the HTML Document ��� 565

■ Contents

xx

Running the Example Project ��� 566

Summary �� 567

 ■Chapter 23: Using Reactive Extensions ��� 569

Preparing the Example Project ��� 570

Understanding the Problem �� 571

Solving the Problem with Reactive Extensions �� 573

Understanding Observables �� 574

Understanding Observers ��� 576

Understanding Subjects ��� 577

Using the Async Pipe �� 578

Using the Async Pipe with Custom Pipes ��� 579

Scaling Up Application Feature Modules �� 581

Going Beyond the Basics �� 584

Filtering Events ��� 585

Transforming Events ��� 586

Receiving Only Distinct Events ��� 589

Taking and Skipping Events �� 591

Summary �� 592

 ■Chapter 24: Making Asynchronous HTTP Requests ��� 593

Preparing the Example Project ��� 594

Configuring the JavaScript Module Loader �� 595

Configuring the Model Feature Module �� 596

Updating the Form Component ��� 597

Running the Example Project ��� 597

Understanding RESTful Web Services �� 598

Replacing the Static Data Source ��� 599

Creating the New Data Source Service �� 600

Configuring the Data Source��� 602

Using the REST Data Source ��� 603

Saving and Deleting Data ��� 605

■ Contents

xxi

Consolidating HTTP Requests �� 608

Making Cross-Origin Requests ��� 610

Using JSONP Requests ��� 611

Configuring Request Headers ��� 613

Handling Errors �� 615

Generating User-Ready Messages �� 616

Handling the Errors ��� 618

Summary �� 620

 ■Chapter 25: Routing and Navigation: Part 1 �� 621

Preparing the Example Project ��� 622

Disabling the State Change Event Display �� 624

Getting Started with Routing �� 626

Creating a Routing Configuration�� 627

Creating the Routing Component �� 629

Updating the Root Module �� 629

Completing the Configuration ��� 630

Adding Navigation Links ��� 631

Understanding the Effect of Routing ��� 634

Completing the Routing Implementation �� 636

Handling Route Changes in Components ��� 636

Using Route Parameters ��� 639

Navigating in Code �� 645

Receiving Navigation Events �� 648

Removing the Event Bindings and Supporting Code �� 650

Summary �� 653

 ■Chapter 26: Routing and Navigation: Part 2 �� 655

Preparing the Example Project ��� 655

Adding Components to the Project ��� 658

Using Wildcards and Redirections �� 662

Using Wildcards in Routes �� 662

■ Contents

xxii

Using Redirections in Routes �� 665

Navigating Within a Component ��� 666

Responding to Ongoing Routing Changes �� 668

Styling Links for Active Routes ��� 670

Fixing the All Button�� 673

Creating Child Routes ��� 674

Creating the Child Route Outlet �� 676

Accessing Parameters from Child Routes �� 678

Summary �� 681

 ■Chapter 27: Routing and Navigation: Part 3 �� 683

Preparing the Example Project ��� 683

Guarding Routes ��� 685

Delaying Navigation with a Resolver �� 686

Preventing Navigation with Guards �� 693

Loading Feature Modules Dynamically �� 707

Creating a Simple Feature Module ��� 708

Loading the Module Dynamically �� 709

Guarding Dynamic Modules �� 712

Targeting Named Outlets �� 715

Creating Additional Outlet Elements ��� 716

Navigating When Using Multiple Outlets ��� 718

Summary �� 720

 ■Chapter 28: Using Animation ��� 721

Preparing the Example Project ��� 722

Adding the Animations Polyfill �� 722

Disabling the HTTP Delay�� 724

Simplifying the Table Template and Routing Configuration �� 725

Getting Started with Angular Animation ��� 727

Creating the Animation ��� 728

Applying the Animation ��� 731

■ Contents

xxiii

Testing the Animation Effect ��� 734

Understanding the Built-in Animation States ��� 736

Understanding Element Transitions �� 737

Creating Transitions for Built-in States ��� 737

Controlling Transition Animations ��� 739

Understanding Animation Style Groups �� 744

Defining Common Styles in Reusable Groups �� 745

Using Element Transformations �� 746

Applying CSS Framework Styles �� 748

Understanding Animation Trigger Events ��� 750

Summary �� 753

 ■Chapter 29: Angular Unit Testing ��� 755

Preparing the Example Project ��� 757

Adding the Testing Packages �� 758

Creating a Simple Unit Test��� 761

Starting the Tools �� 761

Working with Jasmine �� 763

Testing an Angular Component �� 765

Working with the TestBed Class ��� 765

Testing Data Bindings ��� 769

Testing a Component with an External Template �� 772

Testing Component Events ��� 774

Testing Output Properties ��� 776

Testing Input Properties �� 778

Testing with Asynchronous Operations ��� 780

Testing an Angular Directive ��� 782

Summary �� 784

Index ��� 785

xxv

About the Author

Adam Freeman is an experienced IT professional who has held senior positions in a range of companies,
most recently serving as chief technology officer and chief operating officer of a global bank. Now retired, he
spends his time writing and long-distance running.

xxvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

1© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_1

CHAPTER 1

Getting Ready

Angular taps into some of the best aspects of server-side development and uses them to enhance HTML
in the browser, creating a foundation that makes building rich applications simpler and easier. Angular
applications are built around a design pattern called Model-View-Controller (MVC), which places an
emphasis on creating applications that are

•	 Extendable: It is easy to figure out how even a complex Angular app works once you
understand the basics—and that means you can easily enhance applications to
create new and useful features for your users.

•	 Maintainable: Angular apps are easy to debug and fix, which means that long-term
maintenance is simplified.

•	 Testable: Angular has good support for unit and end-to-end testing, meaning that
you can find and fix defects before your users do.

•	 Standardized: Angular builds on the innate capabilities of the web browser without
getting in your way, allowing you to create standards-compliant web apps that
take advantage of the latest features (such as HTML5 APIs) and popular tools and
frameworks.

Angular is an open source JavaScript library that is sponsored and maintained by Google. It has been
used in some of the largest and most complex web apps around. In this book, I show you everything you
need to know to get the benefits of Angular in your own projects.

What Do You Need to Know?
Before reading this book, you should be familiar with the basics of web development, have an understanding
of how HTML and CSS work, and, ideally, have a working knowledge of JavaScript. If you are a little hazy on
some of these details, I provide refreshers for the HTML, CSS, and JavaScript I use in this book in Chapters 4, 5,
and 6. You won’t find a comprehensive reference for HTML elements and CSS properties, though. There just
isn’t the space in a book about Angular to cover all of HTML. If you need a complete reference for HTML and
CSS, then I suggest another of my books, The Definitive Guide to HTML5, also published by Apress.

What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

http://dx.doi.org/10.1007/978-1-4842-2307-9_4
http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://dx.doi.org/10.1007/978-1-4842-2307-9_6

Chapter 1 ■ GettinG ready

2

Part 1: Getting Ready
Part 1 of this book provides the information you need to get ready for the rest of the book. It includes this
chapter and primers/refreshers for key technologies, including HTML, CSS, and TypeScript, which is a
superset of JavaScript. I also show you how to build your first Angular application and take you through the
process of building a more realistic application, called SportsStore.

Part 2: Working with Angular
Part 2 of this book takes you through the building blocks provided by Angular for creating applications,
working through each of them in turn. Angular includes a lot of built-in functionality, which I describe in
depth, and provides endless customization options, all of which I demonstrate.

Part 3: Advanced Angular Features
Part 3 of this book explains how advanced features can be used to create more complex and scalable
applications. I introduce the Reactive Extensions package, which underpins a lot of the functionality
provided by Angular and is used directly by advanced features. I demonstrate how to make asynchronous
HTTP requests in an Angular application, how to use URL routing to navigate around an application, and
how to animate HTML elements when the state of the application changes.

Are There Lots of Examples?
There are loads of examples. The best way to learn Angular is by example, and I have packed as many of
them as I can into this book. To maximize the number of examples in this book, I have adopted a simple
convention to avoid listing the contents of files over and over again. The first time I use a file in a chapter, I’ll
list the complete contents, just as I have in Listing 1-1. I include the name of the file in the listing’s header
and the folder in which you should create it. When I make changes to the code, I show the altered statements
in bold.

Listing 1-1. A Complete Example Document

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective],
 bootstrap: [ProductComponent]
})
export class AppModule { }

This listing is taken from Chapter 15. Don’t worry about what it does; just be aware that the first time
I use a file in each chapter there will be complete listing, similar to the one shown in Listing 1-1. For the
second and subsequent examples, I just show you the elements that change, to create a partial listing. You
can spot a partial listing because it starts and ends with ellipsis (…), as shown in Listing 1-2.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 1 ■ GettinG ready

3

Listing 1-2. A Partial Listing

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
</table>
...

Listing 1-2 is a later listing from Chapter 15. You can see that just the body element, and its content,
is shown and that I have highlighted a number of statements. This is how I draw your attention to the part
of the example that shows the feature or technique I am describing. In a partial listing like this, only those
parts shown have changed from the full listing earlier in the chapter. In some cases, I need to make changes
to different parts of the same file, in which case I simply omit some elements or statements for brevity, as
shown in Listing 1-3.

Listing 1-3. Omitting Statements for Brevity

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
 form: ProductFormGroup = new ProductFormGroup();

 // ...other members omitted for brevity...

 showTable: boolean = true;
}

This convention lets me pack in more examples, but it does mean it can be hard to locate a specific
technique. To this end, all of the chapters in which I describe Angular features in Parts 2 and 3 begin with a
summary table that describes the techniques contained in the chapter and the listings that demonstrate how
they are used.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 1 ■ GettinG ready

4

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from www.apress.com. The
download is available without charge and includes all of the supporting resources that are required to
re-create the examples without having to type them in. You don’t have to download the code, but it is the
easiest way of experimenting with the examples and cutting and pasting it into your own projects.

How Do You Set Up Your Development Environment?
Chapter 2 introduces Angular by creating a simple application, and, as part of that process, I tell you how to
create a development environment for working with Angular.

Contacting the Author
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can email me at adam@adam-freeman.com and I will try my best to help.

Summary
In this chapter, I outlined the content and structure of this book. The best way to learn Angular development
is by example, so in the next chapter, I jump right in and show you how to set up your development
environment and use it to create your first Angular application.

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-2307-9_2

5© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_2

CHAPTER 2

Your First Angular App

The best way to get started with Angular is to dive in and create a web application. In this chapter, I show
you how to set up your development environment and take you through the process of creating a basic
application, starting with a static mock-up of the functionality and applying Angular features to create a
dynamic web application, albeit a simple one. In Chapters 7–10, I show you how to create a more complex
and realistic Angular application, but for now a simple example will suffice to demonstrate the major
components of an Angular app and set the scene for the other chapters in this part of the book.

Don’t worry if you don’t follow everything that happens in this chapter. Angular has a steep learning
curve, so the purpose of this chapter is just to introduce the basic flow of Angular development and give
you a sense of how things fit together. It won’t all make sense right now, but by the time you have finished
reading this book, you will understand every step I take in this chapter and much more besides.

Preparing the Development Environment
There is some preparation required for Angular development. In the sections that follow, I explain how to get
set up and ready to create your first project. There is wide support for Angular in popular development tools,
and you can pick your favorites.

Installing Node.js and NPM
Many of the tools used for Angular development rely on Node.js—also known as Node—which was created
in 2009 as a simple and efficient runtime for server-side applications written in JavaScript. Node.js is based
on the JavaScript engine used in the Chrome browser and provides an API for executing JavaScript code
outside of the browser environment.

Node.js has enjoyed success as an application server, but for this book it is interesting because it has
provided the foundation for a new generation of cross-platform development and build tools. Some smart
design decisions by the Node.js team and the cross-platform support provided by the Chrome JavaScript
runtime have created an opportunity that has been seized upon by enthusiastic tool writers. In short, Node.js
has become an essential tool for web application development.

It is important that you download the same version of Node.js that I use throughout this book. Although
Node.js is relatively stable, there are still breaking API changes from time to time that they may stop the
examples I include in the chapters from working.

The version I have used is the 6.9.1 release. You may prefer more recent releases for your own
projects, but you should stick with the 6.9.1 release for the rest of this book. A complete set of 6.9.1 releases,
with installers for Windows and Mac OS and binary packages for other platforms, is available at
https://nodejs.org/dist/v6.9.1.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_10
https://nodejs.org/dist/v6.9.1
http://www.allitebooks.org

Chapter 2 ■ Your First angular app

6

When you install Node.js, make sure you select the installer option to add the Node.js executables to the
path. When installation is complete, run the following command:

node -v

If the installation has gone as it should, then you will see the following version number displayed:

V6.9.1

Updating NPM
The success of Node.js has been helped by the Node Package Manager (NPM), which provides easy access
to an enormous catalog of development packages, including Angular. NPM takes care of downloading
packages and managing the dependencies between them. The extent to which NPM eases the process of
keeping a project up-to-date is hard to overstate. You will see NPM in action shortly, but part of the initial
process is updating the version of NPM that was installed with Node.js, which is done by running the
following command (you may need to perform this step with root or administrator privileges):

npm install -g npm@3.10.9

Installing an Editor
Angular development can be done with any programmer’s editor, from which there is an endless number
to choose from. Some editors have enhanced support for working with Angular, including highlighting
key terms and good tool integration. If you don’t already have a preferred editor for web application
development, then Table 2-1 describes some popular options for you to consider. I don’t rely on any specific
editor for this book, and you should use whichever editor you are comfortable working with.

Table 2-1. Popular Angular-Enabled Editors

Name Description

Sublime Text Sublime Text is a commercial cross-platform editor that has packages to
support most programming languages, frameworks, and platforms. See
www.sublimetext.com for details.

Atom Atom is a free, open source, cross-platform editor that has a particular emphasis
on customization and extensibility. See atom.io for details.

Brackets Brackets is a free open source editor developed by Adobe. See brackets.io
for details.

WebStorm WebStorm is a paid-for cross-platform editor that integrates many tools so
that you don’t have to use the command line during development. See www.
jetbrains.com/webstorm for details.

Visual Studio Code Visual Studio Code is a free, open source, cross-platform editor from Microsoft,
with an emphasis on extensibility. See code.visualstudio.com for details.

http://www.sublimetext.com/
http://www.jetbrains.com/webstorm
http://www.jetbrains.com/webstorm

Chapter 2 ■ Your First angular app

7

When choosing an editor, one of the most important considerations is the ability to filter the content of
the project so that you can focus on a subset of the files. There can be a lot of files in an Angular project and
many of the files have similar names, so being able to find and edit the right file is essential. Editors make
this focus possible in different ways, either by presenting a list of the files that are open for editing or by
providing the ability to exclude files with specific extensions.

Installing a Browser
The final choice to make is the browser that you will use to check your work during development. All the
current-generation browsers have good developer support and work well with Angular. I have used Google
Chrome throughout this book, and this is the browser I recommend you use as well.

Creating and Preparing the Project
Once you have Node.js, NPM, an editor, and a browser, you have enough of a foundation to start the
development process. The first step is to create the folder structure for the project. The example for this
chapter is a to-do application. Select the location that you will use for the examples in this book and create
a todo folder, which is where all the files for the project will be stored. Now create a todo/app folder; this is
where the Angular parts of the application will be stored.

Creating the Package File
NPM uses a file called package.json to get a list of the software packages that are required for a project.
I created a file called package.json in the todo folder and set the contents so they match Listing 2-1.

 ■ Caution By the time you read this, later versions of at least some of the packages shown in listing 2-1
will have been released. it is important that you use the specific versions shown in the listing to get the
expected results from the examples in this chapter and in the rest of the book. if you have problems with the
examples in this chapter or any subsequent chapter, then try using the source code that accompanies this book
that can be downloaded from apress.com. if you are really stuck, then e-mail me at adam@adam-freeman.com,
and i will try to help you.

Listing 2-1. The Contents of the package.json File in the todo Folder

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",

https://adam@adam-freeman.com

Chapter 2 ■ Your First angular app

8

 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.3",
 "typings": "1.4.0",
 "concurrently": "3.1.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings"
 }
}

The package.json file lists the packages required to get started with Angular development and some
commands to use them. I describe each configuration entry in Chapter 11, but for now, it is enough to
understand what each section of the package.json file is for, as described in Table 2-2.

Table 2-2. The package.json Sections

Name Description

dependencies This is a list of NPM packages that the web application relies on to run. Each
package is specified with a version number. The dependencies section in the
listing contains the core Angular packages, libraries that Angular depends on,
polyfill libraries that add modern features for old browsers, and the Bootstrap
CSS library that I use to style HTML content in this book.

devDependencies This is a list of NPM packages that are relied on for development but that are not
required by the application once it has been deployed. This section contains
packages that will compile TypeScript files, provide a development HTTP server,
and allow multiple commands to be run at the same time using NPM.

scripts This is a list of scripts that can be run from the command line. The scripts
section in the listing starts the TypeScript compiler and the development
HTTP server.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 2 ■ Your First angular app

9

Installing the NPM Packages
To process the package.json file to download and install the packages that it specifies, run the following
command inside the todo folder:

npm install

You will see some warnings as NPM grumbles about the packages it processes, but there should be no
errors reported. Once the installation process has completed, you will be left with a todo/node_modules
directory that contains all the packages specified in the package.json file, along with their dependencies.
There will be a lot of packages in the node_modules folder because the tendency in NPM development is to
build on existing functionality that other packages contain, which is good development practice but does
mean the initial download and installation can take a while.

Configuring the TypeScript Compiler
Angular applications are written in TypeScript, which is a superset of JavaScript. Working with TypeScript
provides some useful advantages, which I describe in Chapter 6, but requires that TypeScript files are
processed to generate backward-compatible JavaScript that can be used by browsers.

 ■ Note Don’t worry about the requirement to use typescript for the moment. as i explain in Chapter 6, it
simplifies working with angular and, with just a few exceptions, you can write angular applications using the
Javascript skills you already have.

The TypeScript compiler requires a configuration file to control the kind of JavaScript files that it
generates. I created a file called tsconfig.json in the todo folder and added the configuration statements
shown in Listing 2-2.

Listing 2-2. The Contents of the tsconfig.json File in the todo Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

I explain what each configuration setting does in Chapter 11, but for now, it is enough to just create
the file.

http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 2 ■ Your First angular app

10

Installing the TypeScript Type Information
The TypeScript compiler relies on descriptions of the standard JavaScript APIs, known as type definitions,
for the enhancements that TypeScript provides to the JavaScript language specification. I don’t use these
features in this chapter, but the descriptions are still required to prevent the compiler reporting errors.

Run the following commands in the todo folder:

npm run typings -- install dt ~ core-js --save –global
npm run typings -- install dt ~ node --save --global

Once the commands have completed, the todo folder will contain typings/globals/core-js and
typings/global/node folders that contain the type definitions and a typings.json file that contains
details of the type information that was downloaded, as shown in Listing 2-3. You may see different version
numbers in your typings.json file.

Listing 2-3. The Contents of the typings.json File in the todo Folder

{
 "globalDependencies": {
 "core-js": "registry:dt/core-js#0.0.0+20160914114559",
 "node": "registry:dt/node#6.0.0+20161110151007"
 }
}

Creating the HTML File
I am going to start with an HTML placeholder that contains static content, which I will later enhance using
Angular. I created an HTML file called index.html in the todo folder and added the markup shown in
Listing 2-4.

Listing 2-4. The Contents of the index.html File in the todo Folder

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body>
 <h1>Content will go here</h1>
</body>
</html>

This is a basic HTML document with a link element that tells the browser to load the Bootstrap
CSS stylesheet from the package installed in the node_modules folder, which was installed by NPM in the
previous chapter.

Chapter 2 ■ Your First angular app

11

Starting the Server
The project tools and basic structure are in place, so it is time to test that everything is working. Run the
following command from the todo folder:

npm start

This command tells npm to run the start script, which starts the TypeScript compiler and the light-weight
development HTTP server that I installed using the package.json file. After a few seconds, a new browser
window will start, and you will see the placeholder content from Listing 2-4, as shown in Figure 2-1.

Figure 2-1. The placeholder HTML content

Replacing the HTML Content
The final test of the development environment is to change the content in the index.html file, as shown in
Listing 2-5.

Listing 2-5. Changing the Contents of the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">

 <h3 class="bg-primary p-a-1">Adam's To Do List</h3>

 <div class="m-t-1 m-b-1">
 <input class="form-control" />
 <button class="btn btn-primary m-t-1">Add</button>
 </div>

Chapter 2 ■ Your First angular app

12

 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
 </table>
</body>
</html>

The lite-server package, which is the development HTTP server I am using, adds a fragment of
JavaScript to the HTML content it delivers to the browser. The JavaScript opens a connection back to the
server and waits for a signal to reload the page, which is sent when the server detects a change in any of the
files in the todo directory. As soon as you save the index.html file, lite-server will detect the change and
send the signal, and the browser will reload, reflecting the new content as shown in Figure 2-2.

 ■ Tip When you are making changes to a series of files, there may be times when the browser won’t be
able to load and execute the example application, especially in later chapters where the examples are more
complex. For the most part, the development http server will trigger a reload in the browser and everything will
be fine, but if it gets stuck, just click the browser’s reload button or navigate to http://localhost:3000 to get
going again.

Chapter 2 ■ Your First angular app

13

The HTML elements in the index.html file show how the simple Angular application I create in this
chapter will look. The key elements are a banner with the user’s name, an input element and an Add button
that add a new to-do item to the list, and a table that contains all the to-do items and indicates whether they
have been completed.

Throughout this book, I use the excellent Bootstrap CSS framework to style HTML content. Bootstrap is
applied by assigning elements to classes, like this:

...
<h3 class="bg-primary p-a-1">Adam's To Do List</h3>
...

This h3 element has been assigned to two classes. The bg-primary class sets the background color of
the element to the primary color of the current Bootstrap theme. I am using the default theme, for which the
primary color is dark blue and there are other themed colors available, including bg-secondary, bg-info,
and bg-danger. The p-a-1 class adds a fixed amount of padding to all edges of the element, ensuring that the
text has some space around it.

Figure 2-2. Editing the contents of the HTML file

Chapter 2 ■ Your First angular app

14

In the next section, I’ll remove the HTML from the file, cut it up into smaller pieces, and use it to create
a simple Angular application.

USING THE BOOTSTRAP PRE-RELEASE

throughout this book, i use a pre-release version of the Bootstrap Css framework. as i write this, the
Bootstrap team is in the process of developing Bootstrap version 4 and has made several early releases.
these releases have been labeled as “alpha,” but the quality is high and they are stable enough for use
in the examples in this book.

given the choice of writing this book using the soon-to-be-obsolete Bootstrap 3 and a pre-release
version of Bootstrap 4, i decided to use the new version even though some of the class names that are
used to style htMl elements are likely to change before the final release. this means you must use
the same version of Bootstrap to get the expected results from the examples, just like the rest of the
packages listed in the package.json file in listing 2-1.

Adding Angular to the Project
The static HTML in the index.html file acts as a placeholder for the basic application. The user should be
able to see the list of to-do items, check off items that are complete, and create new items. In the sections
that follow, I add Angular to the project and use some of its basic features to bring the to-do application to
life. To keep the application simple, I assume that there is only one user and that I don’t have to worry about
preserving the state of the data in the application, which means that changes to the to-do list will be lost if
the browser window is closed or reloaded. (Later examples, including the SportsStore application developed
in Chapters 7–10, demonstrate persistent data storage.)

Preparing the HTML File
The first step toward adding Angular to the application is to prepare the index.html file, as shown in
Listing 2-6. The new script elements add the JavaScript files for the Angular framework, and the third-party
JavaScript libraries and polyfill that provide compatibility for older browsers. These files are all from the
NPM packages added to the package.json file in Listing 2-1 and must be added in the order shown.

Listing 2-6. Preparing for Angular in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
</head>

http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 2 ■ Your First angular app

15

<body class="m-a-1">
 <todo-app>Angular placeholder</todo-app>
</body>
</html>

The script elements add the JavaScript files that Angular applications rely on. There are no entries for
Angular functionality or the application features yet; I’ll add them at the end of the process.

The second change in Listing 2-6 is to replace the content of the body element and replace it with a
todo-app element. There is no todo-app element in the HTML specification and the browser will ignore it
when parsing the HTML file, but this element will be the entry point into the world of Angular and will be
replaced with my application content. When you save the index.html file, the browser will reload the file
and show the placeholder message, as shown in Figure 2-3.

Figure 2-3. Preparing the HTML file

Creating a Data Model
When I created the static mock-up of the application, the data was distributed across all the HTML elements.
The user’s name is contained in the header, like this:

...
<h3 class="bg-primary p-a-1">Adam's To Do List</h3>
...

and the details of the to-do items are contained within td elements in the table, like this:

...
<tr><td>Buy Flowers</td><td>No</td></tr>
...

The next task is to pull all the data together to create a data model. Separating the data from the way it is
presented to the user is one of the key ideas in the MVC pattern, as I explain in Chapter 3.

 ■ Tip i am simplifying here. the model can also contain the logic required to create, load, store, and modify
data objects. in an angular app, this logic is often at the server and is accessed by a web service. see Chapter 3
for further details and Chapter 24 for examples.

http://dx.doi.org/10.1007/978-1-4842-2307-9_3
http://dx.doi.org/10.1007/978-1-4842-2307-9_3
http://dx.doi.org/10.1007/978-1-4842-2307-9_24

Chapter 2 ■ Your First angular app

16

Angular applications are typically written in TypeScript. I introduce TypeScript in Chapter 6 and explain
how it works and why it is useful. TypeScript is a superscript of JavaScript, but one of its main advantages
is that it lets you write code using the latest JavaScript language specification with features that are not yet
supported in all of the browsers that can run Angular applications. One of the packages added to the project
in the previous section was the TypeScript compiler, which I set up to generate browser-friendly JavaScript
files automatically when a change to a TypeScript file is detected. To create a data model for the application,
I added a file called model.ts to the todo/app folder (TypeScript files have the .ts extension) and added the
code shown in Listing 2-7.

Listing 2-7. The Contents of the model.ts File in the todo/app Folder

var model = {
 user: "Adam",
 items: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
};

One of the most important features of TypeScript is that you can just write “normal” JavaScript code as
though you were targeting the browser directly. In the listing, I used the JavaScript object literal syntax to
assign a value to a global variable called model. The data model object has a user property that provides the
name of the application’s user and an items property, which is set to an array of objects with action and
done properties, each of which represents a task in the to-do list.

When you save the changes to the file, the TypeScript compiler will detect the change and generate a file
called model.js, with the following contents:

var model = {
 user: "Adam",
 items: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
};

This is the most important aspect of using TypeScript: you don’t have to use the features it provides,
and you can write entire Angular applications using just the JavaScript features that are supported by all
browsers, like the code in Listing 2-7.

But part of the value of TypeScript is that it converts code that uses the latest JavaScript language
features into code that will run anywhere, even in browsers that don’t support those features. Listing 2-8
shows the data model rewritten to use JavaScript features that were added in the ECMAScript 6 standard
(known as ES6).

Listing 2-8. Using ES6 Features in the model.ts File

export class Model {
 user;
 items;

 constructor() {
 this.user = "Adam";
 this.items = [new TodoItem("Buy Flowers", false),

http://dx.doi.org/10.1007/978-1-4842-2307-9_6

Chapter 2 ■ Your First angular app

17

 new TodoItem("Get Shoes", false),
 new TodoItem("Collect Tickets", false),
 new TodoItem("Call Joe", false)]
 }
}

export class TodoItem {
 action;
 done;

 constructor(action, done) {
 this.action = action;
 this.done = done;
 }
}

This is still standard JavaScript code, but the class keyword was introduced in a later version of the
language than most web application developers are familiar with because it is not supported by older
browsers. The class keyword is used to define types that can be instantiated with the new keyword to create
objects that have well-defined data and behavior.

Many of the features added in recent versions of the JavaScript language are syntactic sugar to help
programmers avoid some of the most common JavaScript pitfalls, such as the unusual type system. The class
keyword doesn’t change the way that JavaScript handles types; it just makes it more familiar and easier to use
for programmers experienced in other languages, such as C# or Java. I like the JavaScript type system, which
is dynamic and expressive, but I find working with classes more predictable and less error-prone, and they
simplify working with Angular, which has been designed around the latest JavaScript features.

 ■ Tip Don’t worry if you are not familiar with the features that have been added in recent versions of the
Javascript specification. Chapters 5 and 6 provide a primer for writing Javascript using the features that make
angular easier to work with, and Chapter 6 also describes some useful typescript-specific features.

The export keyword relates to JavaScript modules. When using modules, each TypeScript or JavaScript
file is considered to be a self-contained unit of functionality, and the export keyword is used to identity
data or types that you want to use elsewhere in the application. JavaScript modules are used to manage the
dependencies that arise between files in a project and avoid having to manually manage a complex set of
script elements in the HTML file. See Chapter 7 for details of how modules work.

The TypeScript compiler processes the code in Listing 2-8 to generate JavaScript code that uses only
the subset of features that are widely supported by browsers. Even though I used the class and export
keywords, the model.js file generated by the TypeScript compiler produced JavaScript code that will work
in browsers that don’t implement that feature, like this:

"use strict";
var Model = (function () {
 function Model() {
 this.user = "Adam";
 this.items = [new TodoItem("Buy Flowers", false),
 new TodoItem("Get Shoes", false),
 new TodoItem("Collect Tickets", false),
 new TodoItem("Call Joe", false)];

http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_7

Chapter 2 ■ Your First angular app

18

 }
 return Model;
}());
exports.Model = Model;
var TodoItem = (function () {
 function TodoItem(action, done) {
 this.action = action;
 this.done = done;
 }
 return TodoItem;
}());
exports.TodoItem = TodoItem;

I won’t keep showing you the code that the TypeScript compiler produces. The important point to
remember is that the compilation process translates new JavaScript features that are not widely supported
by browsers into standard features that are supported.

Creating a Template
I need a way to display the data values in the model to the user. In Angular, this is done using a template,
which is a fragment of HTML that contains instructions that are performed by Angular.

I created an HTML file called app.component.html in the todo/app folder and added the markup shown
in Listing 2-9. The name of the file follows the standard Angular naming conventions, which I explain later.

Listing 2-9. The Contents of the app.component.html File in the todo/app Folder

<h3 class="bg-primary p-a-1">{{getName()}}'s To Do List</h3>

I’ll add more elements to this file shortly, but a single h3 element is enough to get started. Including a
data value in a template is done using double braces—{{ and }}—and Angular evaluates whatever you put
between the double braces to get the value to display.

The {{ and }} characters are an example of a data binding, which means that they create a relationship
between the template and a data value. Data bindings are an important Angular feature, and you will see
more examples of them in this chapter as I add features to the example application and as I describe them
in detail in Part 2. In this case, the data binding tells Angular to invoke a function called getName and use the
result as the contents of the h3 element. The getName function doesn’t exist anywhere in the application at
the moment, but I’ll create it in the next section.

Creating a Component
An Angular component is responsible for managing a template and providing it with the data and logic it
needs. If that seems like a broad statement, it is because components are the parts of an Angular application
that do most of the heavy lifting. As a consequence, they can be used for all sorts of tasks.

At the moment, I have a data model that contains a user property with the name to display, and I have
a template that displays the name by invoking a getName property. What I need is a component to act as the
bridge between them. I added a JavaScript file called app.component.ts to the todo/app folder and added
the code shown in Listing 2-10.

Chapter 2 ■ Your First angular app

19

Listing 2-10. The Contents of the app.component.ts File in the todo/app Folder

import { Component } from "@angular/core";
import { Model } from "./model";

@Component({
 selector: "todo-app",
 templateUrl: "app/app.component.html"
})
export class AppComponent {
 model = new Model();

 getName() {
 return this.model.user;
 }
}

This is still JavaScript, but it relies on features that you may not have encountered before but that
underpin Angular development. The code in the listing can be broken into three main sections, as described
in the following sections.

Understanding the Imports
The import keyword is the counterpart to the export keyword that I used in Listing 2-8 and is used to declare
a dependency on the contents of a JavaScript module. The import keyword is used twice in Listing 2-10, as
shown here:

...
import { Component } from "@angular/core";
import { Model } from "./model";
...

The first import statement is used in the listing to load the @angular/core module, which contains
the key Angular functionality, including support for components. When working with modules, the import
statement specifies the types that are imported between curly braces. In this case, the import statement is
used to load the Component type from the module. The @angular/core module contains many classes that
have been packaged together so that the browser can load them all in a single JavaScript file.

The second import statement is used to load the Model class from a file in the project. The target for this
kind of import starts with ./, which indicates that the module is defined relative to the current file.

Notice that neither import statement includes a file extension. This is because the relationship between
the target of an import statement and the file that is loaded by the browser is managed by a module loader,
which I configure in the “Putting the Application Together” section.

Understanding the Decorator
The oddest-looking part of the code in the listing is this:

...
@Component({
 selector: "todo-app",
 templateUrl: "app/app.component.html"
})
...

Chapter 2 ■ Your First angular app

20

This is an example of a decorator, which provides metadata about a class. This is the @Component
decorator, and, as its name suggests, it tells Angular that this is a component. The decorator provides
configuration information through its properties, which in the case of @Component includes properties called
selector and templateUrl.

The selector property specifies a CSS selector that matches the HTML element to which the
component will be applied: in this case, I have specified the todo-app element, which I added to the
index.html file in Listing 2-6. When an Angular application starts, Angular scans the HTML in the current
document and looks for elements that correspond to components. It will find the todo-app element and
know that it should be placed under the control of this component.

The templateUrl property is used to tell Angular how to find the component’s template, which is the
app.component.html file in the app folder for this component. In Part 2, I describe the other properties that
can be used with the @Component decorator and the other decorators that Angular supports.

Understanding the Class
The final part of the listing defines a class that Angular can instantiate to create the component.

...
export class AppComponent {
 model = new Model();

 getName() {
 return this.model.user;
 }
}
...

These statements define a class called AppComponent that has a model property and a getName function,
which provide the functionality required to support the data binding in the template from Listing 2-9.

When a new instance of the AppComponent class is created, the model property will be set to a new
instance of the Model class defined in Listing 2-8. The getName function returns the value of the user
property defined by the Model object.

Putting the Application Together
I have the three key pieces of functionality required to build a simple Angular application: a model, a
template, and a component. Now I need to bring them together to create the application.

The first step is to create an Angular module. Through an unfortunate naming choice, there are
two types of module used in Angular development. A JavaScript module is a file that contains JavaScript
functionality that is used through the import keyword. The other type of module is an Angular module,
which is used to describe an application or a group of related features. Every application has a root module,
which provides Angular with the information that it needs to start the application. I created a file called app.
module.ts, which is the conventional file name for the root module, in the todo/app folder and added the
code shown in Listing 2-11.

Listing 2-11. The Contents of the app.module.ts File in the todo/app Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { AppComponent } from "./app.component";

Chapter 2 ■ Your First angular app

21

@NgModule({
 imports: [BrowserModule, FormsModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

The purpose of the Angular module is to provide configuration information through the properties
defined by the @NgModule decorator. I explain how modules work in detail in Chapter 21, but for the
moment, it is enough to know that the decorator’s imports property tells Angular that the application
depends on features required to run an application in the browser and that the declarations and bootstrap
properties tell Angular about the components in the application and which one should be used to start the
application (there is only one component in this simple example application, which is why it is the only
value for both properties).

Angular applications also need a bootstrap file, which contains the code required to start the
application and load the Angular module. To create the bootstrap file, I added a file called main.ts to the
todo/app folder with the code shown in Listing 2-12.

Listing 2-12. The Contents of the main.ts File in the todo/app Folder

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

Although this book focuses on applications that run in a web browser, Angular is intended to work in
a range of environments. The code statements in the bootstrap file select the platform that will be used and
load the root module, which is the entry point into the application.

 ■ Tip Calling the platformBrowserDynamic().bootstrapModule method is for browser-based applications,
which is what i focus on in this book. if you are working on different platforms, such as the ionic mobile
development framework, then you will have to use a different bootstrap method specific to the platform you are
working with. the developers of each platform that supports angular provide details of their platform-specific
bootstrap method.

The final step is to update the HTML file so that the browser will load the application and the modules
that contain the Angular framework functionality, as shown in Listing 2-13.

Listing 2-13. Completing the HTML Document in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>

http://dx.doi.org/10.1007/978-1-4842-2307-9_21

Chapter 2 ■ Your First angular app

22

 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script>
 var paths = {
 "rxjs/*": "node_modules/rxjs/bundles/Rx.min.js",
 "@angular/*": "node_modules/@angular/*"
 }
 var packages = { "app": {} };
 var angularModules = ["common", "compiler", "core", "forms",
 "platform-browser", "platform-browser-dynamic"];
 angularModules.forEach(function (pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });
 System.config({ paths: paths, packages: packages });
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
</head>
<body class="m-a-1">
 <todo-app>Angular placeholder</todo-app>
</body>
</html>

When working with JavaScript modules, you don’t add script elements for all the files that are required
by the application. Instead, a module loader is provided with the application’s bootstrap file and with details
of how to load the modules that are specified by the import statements in the code. The module loader
ensures that all the required modules are loaded and processed before the JavaScript code they contain is
executed. The script element in the listing configures the module loader that I use in this book—called
SystemJS—so that it knows how to find the JavaScript modules that contain the Angular functionality and
the custom files in the project. I explain how the module loader is configured in Chapter 11, but for now, it
is enough to know that the Angular framework and the example application code will be loaded when the
browser processes the HTML file.

Running the Application
As soon as you save the changes to the index.html file, the browser should reload the page, and your first
Angular application will spring to life, as shown in Figure 2-4.

Figure 2-4. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 2 ■ Your First angular app

23

The browser executed the code in the bootstrap file, which fired up Angular, which in turn processed
the HTML document and discovered the todo-app element. The selector property used to define the
component matches the todo-app element, which allowed Angular to remove the placeholder content and
replace it with the component’s template, which was loaded automatically from the app.component.html
file. The template was parsed; the {{ and }} data binding was discovered, and the expression it contains was
evaluated, calling the getName and displaying the result.

It may not be that impressive, but it is a good start, and it provides a foundation on which to add more
features.

 ■ Tip in any angular project, there is a period where you have to define the main parts of the application and
plumb them together. During this period, it can feel like you are doing a lot of work for little return. this period
of initial investment will ultimately pay off, i promise. You will see a larger example of this in Chapter 7 when i
start to build a more complex and realistic angular application; there is a lot of initial setup and configuration
required, but then the features start to quickly snap into place.

Adding Features to the Example Application
Now that the basic structure of the application is in place, I can add the remaining features that I mocked up
with static HTML at the start of the chapter. In the sections that follow, I add the table containing the list of
to-do items and the input element and button for creating new items.

Adding the To-Do Table
Angular templates can do more than just display simple data values. I describe the full range of template
features in Part 2, but for the example application, I am going to use the feature that allows a set of HTML
elements to be added to the DOM for each object in an array. The array in this case is the set of to-do items
in the data model. To begin, Listing 2-14 adds a method to the component that provides the template with
the array of to-do items.

Listing 2-14. Adding a Method in the app.component.ts File

import { Component } from "@angular/core";
import { Model } from "./model";

@Component({
 selector: "todo-app",
 templateUrl: "app/app.component.html"
})
export class AppComponent {
 model = new Model();

 getName() {
 return this.model.user;
 }

 getTodoItems() {
 return this.model.items;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2307-9_7

Chapter 2 ■ Your First angular app

24

The getTodoItems method returns the value of the items property from the Model object. Listing 2-15
updates the component’s template to take advantage of the new method.

Listing 2-15. Displaying the To-Do Items in the app.component.html File

<h3 class="bg-primary p-a-1">{{getName()}}'s To Do List</h3>

<table class="table table-striped table-bordered">
 <thead>
 <tr><th></th><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getTodoItems(); let i = index">
 <td>{{ i + 1 }}</td>
 <td>{{ item.action }}</td>
 <td [ngSwitch]="item.done">
 Yes
 No
 </td>
 </tr>
 </tbody>
</table>

The additions to the template rely on several different Angular features. The first is the *ngFor
expression, which is used to repeat a region of content for each item in an array. This is an example of a
directive, which I describe in Chapters 12–16 (directives are a big part of Angular development). The *ngFor
expression is applied to an an attribute of an element, like this:

...
<tr *ngFor="let item of getTodoItems(); let i = index">
...

This expression tells Angular to treat the tr element to which it has been applied as a template that
should be repeated for every object returned by the component’s getTodoItems method. The let item part
of the expression specifies that each object should be assigned to a variable called item, so that it can be
referred to within the template.

The ngFor expression also keeps track of the index of the current object in the array that is being
processed, and this is assigned to a second variable called i:

...
<tr *ngFor="let item of getTodoItems(); let i = index">
...

The result is that the tr element and its contents will be duplicated and inserted into the HTML
document for each object returned by the getTodoItems method; for each iteration, the current to-do object
can be accessed through the variable called item, and the position of the object in the array can be accessed
through the variable called i.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 2 ■ Your First angular app

25

 ■ Tip it is important to remember the * character when using *ngFor. i explain what it means in Chapter 16.

Within the tr template, there are two data bindings, which can be recognized by the {{ and }}
characters, as follows:

...
<td>{{ i + 1 }}</td>
<td>{{ item.action }}</td>
...

These bindings refer to the variables that are created by the *ngFor expression. Bindings are not just
used to refer to property and method names; they can also be used to perform simple operations. You can
see an example of this in the first binding, where I sum the i variable and 1.

 ■ Tip For simple transformations, you can embed your Javascript expressions directly in bindings like this,
but for more complex operations, angular has a feature called pipes, which i describe in Chapter 18.

The remaining template expressions in the tr template demonstrate how content can be generated
selectively.

...
<td [ngSwitch]="item.done">
 Yes
 No
</td>
...

The [ngSwitch] expression is a conditional statement that is used to insert different sets of elements
into the document based on a specified value, which is the item.done property in this case. Nested within
the td element are two span elements that have been annotated with *ngSwitchCase and *ngSwitchDefault
and that are equivalent to the case and default keywords of a regular JavaScript switch block. I describe
ngSwitch in detail in Chapter 13 (and what the square brackets mean in Chapter 12), but the result is that
the first span element is added to the document when the value of the item.done property is true and the
second span element is added to the document when item.done is false. The result is that the true/false
value of the item.done property is transformed into span elements containing either Yes or No. When you
save the changes to the template, the browser will reload, and the table of to-do items will be displayed, as
shown in Figure 2-5.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2307-9_16
http://dx.doi.org/10.1007/978-1-4842-2307-9_18
http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://www.allitebooks.org

Chapter 2 ■ Your First angular app

26

If you use the browser’s F12 developer tools, you will be able to see the HTML content that the template
has generated. (You can’t do this looking at the page source, which just shows the HTML sent by the server
and not the changes made by Angular using the DOM API.)

You can see how each to-do object in the model has produced a row in the table that is populated with
the local item and i variables and how the switch expression shows Yes or No to indicate whether the task
has been completed.

...
<tr>
 <td>2</td>
 <td>Get Shoes</td>
 <td>No</td>
</tr>
<tr>
 <td>3</td>
 <td>Collect Tickets</td>
 <td>Yes</td>
</tr>
...

Figure 2-5. Displaying the table of to-do items

Chapter 2 ■ Your First angular app

27

Creating a Two-Way Data Binding
At the moment, the template contains only one-way data bindings, which means they are used to display a
data value but do nothing to change it. Angular also supports two-way data bindings, which can be used to
display a data value and update it, too. Two-way bindings are used with HTML form elements, and Listing 2-16
adds a checkbox input element to the template that will let users mark a to-do item as complete.

Listing 2-16. Adding a Two-Way Binding in the app.component.html File

<h3 class="bg-primary p-a-1">{{getName()}}'s To Do List</h3>

<table class="table table-striped table-bordered">
 <thead>
 <tr><th></th><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getTodoItems(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.action}}</td>
 <td><input type="checkbox" [(ngModel)]="item.done" /></td>
 <td [ngSwitch]="item.done">
 Yes
 No
 </td>
 </tr>
 </tbody>
</table>

The ngModel template expression creates a two-way binding between a data value (the item.done
property in this case) and a form element. When you save the changes to the template, you will see a new
column that contains checkboxes appear in the table. The initial value of the checkbox is set using the
item.done property, just like a regular one-way binding, but when the user toggles the checkbox, Angular
responds by updating the specified model property.

To demonstrate how this works, I have left the column that contains the Yes/No display of the done
property value generated using the ngSwitch expression in the template. When you toggle a checkbox, the
corresponding Yes/No value changes as well, as illustrated in Figure 2-6.

Figure 2-6. Changing a model value using a two-way data binding

Chapter 2 ■ Your First angular app

28

This reveals an important Angular feature, which is that the data model is live. This means that data
bindings—even one-way data bindings—are updated when the data model is changed. This simplifies web
application development because it means you don’t have to worry about ensuring that you display updates
when the application state changes.

Filtering To-Do Items
The checkboxes allow the data model to be updated, and the next step is to remove to-do items once they
have been marked as done. Listing 2-17 changes the component’s getTodoItems method so that it filters out
any items that have been completed.

Listing 2-17. Filtering To-Do Items in the app.component.ts File

import { Component } from "@angular/core";
import { Model } from "./model";

@Component({
 selector: "todo-app",
 templateUrl: "app/app.component.html"
})
export class AppComponent {
 model = new Model();

 getName() {
 return this.model.user;
 }

 getTodoItems() {
 return this.model.items.filter(item => !item.done);
 }
}

This is an example of a lambda function, also known as a fat arrow function, which is a more concise
way of expressing a standard JavaScript function. The arrow in the lambda expressions is read as “goes to”
such as “item goes to not item.done.” Lambda expressions are a recent addition to the JavaScript language
specification, and they provide an alternative to the conventional way of using functions as arguments like
this:

...
return this.model.items.filter(function (item) { return !item.done });
...

Whichever way you choose to define the expression passed to the filter method, the result is that only
incomplete to-do items are displayed. Since the data model is live and changes are reflected in data bindings
immediately, checking the checkbox for an item removes it from view, as shown in Figure 2-7.

Chapter 2 ■ Your First angular app

29

Adding To-Do Items
The next step is to build on the basic functionality to allow the user to create new to-do items and store them
in the data model. Listing 2-18 adds new elements to the component’s template.

Listing 2-18. Adding Elements in the app.component.html File

<h3 class="bg-primary p-a-1">{{getName()}}'s To Do List</h3>
<div class="m-t-1 m-b-1">
 <input class="form-control" #todoText />
 <button class="btn btn-primary m-t-1" (click)="addItem(todoText.value)">
 Add
 </button>
</div>
<table class="table table-striped table-bordered">
 <thead>
 <tr><th></th><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getTodoItems(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.action}}</td>
 <td><input type="checkbox" [(ngModel)]="item.done" /></td>
 <td [ngSwitch]="item.done">
 Yes
 No
 </td>
 </tr>
 </tbody>
</table>

Figure 2-7. Filtering the to-do items

Chapter 2 ■ Your First angular app

30

The input element has an attribute whose name starts with the # character, which is used to define a
variable to refer to the element in the template’s data bindings. The variable is called todoText, and it is used
by the binding that has been applied to the button element.

...
<button class="btn btn-primary m-t-1" (click)="addItem(todoText.value)">
...

This is an example of an event binding, and it tells Angular to invoke a component method called
addItem, using the value property of the input element as the method argument. Listing 2-19 implements
the addItem method in the component.

 ■ Tip Don’t worry about telling the bindings apart at the moment. i explain the different types of binding that
angular supports in part 2 and the meaning of the different types of brackets or parentheses that each requires.
they are not as complicated as they first appear, especially once you have seen how they fit into the rest of the
angular framework.

Listing 2-19. Adding a Method in the app.component.ts File

import { Component } from "@angular/core";
import { Model, TodoItem } from "./model";

@Component({
 selector: "todo-app",
 templateUrl: "app/app.component.html"
})
export class AppComponent {
 model = new Model();

 getName() {
 return this.model.user;
 }

 getTodoItems() {
 return this.model.items.filter(item => !item.done);
 }

 addItem(newItem) {
 if (newItem != "") {
 this.model.items.push(new TodoItem(newItem, false));
 }
 }
}

Chapter 2 ■ Your First angular app

31

The import keyword can be used to import multiple classes from a module, and one of the import
statements in the listing has been updated so that the TodoItem class can be used in the component.
Within the component class, the addItem method receives the text sent by the event binding in the
template and uses it to create a new TodoItem object and add it to the data model. The result of these
changes is that you can create new to-do items by entering text in the input element and clicking the Add
button, as shown in Figure 2-8.

Figure 2-8. Creating a to-do item

Summary
In this chapter, I showed you how to create your first simple Angular app, moving from an HTML mock-up
of the application to a dynamic app that lets the user create new to-do items and mark existing items as
complete.

Don’t worry if not everything in this chapter makes sense. What’s important to understand at this
stage is the general shape of an Angular application, which is built around a data model, components, and
templates. If you keep these three key building blocks in mind, then you will have a context for everything
that follows. In the next chapter, I put Angular in context.

33© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_3

CHAPTER 3

Putting Angular in Context

In this chapter, I put Angular in context within the world of web app development and set the foundation for
the chapters that follow. The goal of Angular is to bring the tools and capabilities that have been available
only for server-side development to the web client and, in doing so, make it easier to develop, test, and
maintain rich and complex web applications.

Angular works by allowing you to extend HTML, which can seem like an odd idea until you get used
to it. Angular applications express functionality through custom elements, and a complex application can
produce an HTML document that contains a mix of standard and custom markup.

The style of development that Angular supports is derived through the use of the Model-View-Controller
(MVC) pattern, although this is sometimes referred to as Model-View-Whatever, since there are countless
variations on this pattern that can be adhered to when using Angular. I am going to focus on the standard
MVC pattern in this book since it is the most established and widely used. In the sections that follow, I explain
the characteristics of projects where Angular can deliver significant benefit (and those where better
alternatives exist), describe the MVC pattern, and describe some common pitfalls.

THIS BOOK AND THE ANGULAR RELEASE SCHEDULE

Google has adopted an aggressive release schedule for Angular, starting with Angular 2.0. This means that
there will be an ongoing stream of minor releases and a major release every six months. Minor releases
should not break any existing features and should largely contain bug fixes. The major releases will contain
substantial changes and may not offer backward compatibility. This schedule means that Angular 2.0 was
released in September 2016 and will be followed by Angular 4.0 and Angular 5.0 in March and September
2017. (There will be no Angular 3.0 and Angular 2.0 will be followed directly by Anglar 4.0)

It doesn’t seem fair or reasonable to ask readers to buy a new edition of this book every six months,
especially since the majority of Angular features are unlikely to change even in a major release. Instead,
I am going to post updates following the major releases to the GitHub repository for this book, for which
there is a link on apress.com.

This is an experiment for me (and for Apress), and I don’t yet know what form those updates may
take—not least because I don’t know what the major releases of Angular will contain—but the goal is
to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how long I will
produce them before folding them into a new edition of this book. Please keep an open mind and check the
repository for this book when new Angular versions are released. If you have ideas about how the updates
could be improved as the experiment unfolds, then email me at adam@adam-freeman.com and let me know.

https://adam@adam-freeman.com

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

34

Understanding Where Angular Excels
Angular isn’t the solution to every problem, and it is important to know when you should use Angular and
when you should seek an alternative.

Angular delivers the kind of functionality that used to be available only to server-side developers, but
entirely in the browser. This means Angular has a lot of work to do each time an HTML document to which
Angular has been applied is loaded—the HTML elements have to be compiled, the data bindings have to be
evaluated, components and other building blocks need to be executed, and so on, building support for the
features I described in Chapter 2 and those that I describe later in this book.

This kind of work takes time to perform, and the amount of time depends on the complexity of the
HTML document, on the associated JavaScript code, and—critically—on quality of the browser and the
processing capability of the device. You won’t notice any delay when using the latest browsers on a capable
desktop machine, but old browsers on underpowered smartphones can really slow down the initial setup of
an Angular app.

The goal, therefore, is to perform this setup as infrequently as possible and deliver as much of the app as
possible to the user when it is performed. This means giving careful thought to the kind of web application
you build. In broad terms, there are two kinds of web application: round-trip and single-page.

Understanding Round-Trip and Single-Page Applications
For a long time, web apps were developed to follow a round-trip model. The browser requests an initial
HTML document from the server. User interactions—such as clicking a link or submitting a form—led the
browser to request and receive a completely new HTML document. In this kind of application, the browser
is essentially a rending engine for HTML content, and all of the application logic and data resides on the
server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML
documents dynamically.

A lot of current web development is still for round-trip applications, not least because they require little
from the browser, which ensures the widest possible client support. But there are some serious drawbacks to
round-trip applications: They make the user wait while the next HTML document is requested and loaded,
they require a large server-side infrastructure to process all the requests and manage all the application
state, and they require a lot of bandwidth because each HTML document has to be self-contained (leading
to a lot of the same content being included in each response from the server).

Single-page applications take a different approach. An initial HTML document is sent to the browser,
but user interactions lead to Ajax requests for small fragments of HTML or data inserted into the existing
set of elements being displayed to the user. The initial HTML document is never reloaded or replaced,
and the user can continue to interact with the existing HTML while the Ajax requests are being performed
asynchronously, even if that just means seeing a “data loading” message.

Most current apps fall somewhere between the extremes, tending to use the basic round-trip model
enhanced with JavaScript to reduce the number of complete page changes, although the emphasis is often
on reducing the number of form errors by performing client-side validation.

Angular gives the greatest return from its initial workload as an application gets closer to the single-page
model. That’s not to say you can’t use Angular with round-trip applications—you can, of course—but there
are other technologies that are simpler and better suit discrete HTML pages, either working directly with the
Document Object Model (DOM) API or using a library to simplify its use, such as jQuery. In Figure 3-1 you
can see the spectrum of web application types and where Angular delivers benefit.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

35

Angular excels in single-page applications and especially in complex round-trip applications. For
simpler projects, using the DOM API directly or a library like jQuery is generally a better choice, although
nothing prevents you from using Angular in all of your projects.

There is a gradual tendency for current web app projects to move toward the single-page application
model, and that’s the sweet spot for Angular, not just because of the initialization process but because the
benefits of using the MVC pattern (which I describe later in this chapter) really start to manifest themselves
in larger and more complex projects, which are the ones pushing toward the single-page model.

 ■ Tip This may seem like circular reasoning, but Angular and similar frameworks have arisen because
complex web applications are difficult to write and maintain. The problems these projects face led to the
development of industrial-strength tools like Angular, which then enable the next generation of complex
projects. Think of it less as circular reasoning and more of a virtuous circle.

ANGULAR AND JQUERY

Angular and jQuery take different approaches to web app development. jQuery is all about explicitly
manipulating the browser’s Document object Model (DoM) to create an application. The approach that
Angular takes is to co-opt the browser into being the foundation for application development.

jQuery is, without any doubt, a powerful tool—and one I love to use. jQuery is robust and reliable, and you
can get results pretty much immediately. I especially like the fluid API and the ease with which you can
extend the core jQuery library. If you want more information about jQuery, then see my book Pro jQuery,
which is published by Apress and provides detailed coverage of jQuery, jQuery uI, and jQuery Mobile.

Figure 3-1. Angular is well-suited to single-page web apps

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

36

But as much as I love jQuery, it isn’t the right tool for every job any more than Angular is. It can be hard
to write and manage large applications using jQuery, and thorough unit testing can be a challenge.

Angular also uses the DoM to present HTMl content to users but takes an entirely different path to
building applications, focusing more on the data in the application and associating it to HTMl elements
through dynamic data bindings.

The main drawback of Angular is that there is an up-front investment in development time before you
start to see results—something that is common in any MVC-based development. This initial investment
is worthwhile, however, for complex apps or those that are likely to require significant revision and
maintenance.

So, in short, use jQuery (or use the DoM API directly) for low-complexity web apps where unit testing
isn’t critical and you require immediate results. use Angular for single-page web apps, when you have
time for careful design and planning and when you can easily control the HTMl generated by the server.

Understanding the MVC Pattern
The term Model-View-Controller has been in use since the late 1970s and arose from the Smalltalk project at
Xerox PARC where it was conceived as a way to organize some early GUI applications. Some of the fine detail
of the original MVC pattern was tied to Smalltalk-specific concepts, such as screens and tools, but the broader
ideas are still applicable to applications, and they are especially well-suited to web applications.

The MVC pattern first took hold in the server-side end of web development, through toolkits like
Ruby on Rails and the ASP.NET MVC Framework. In recent years, the MVC pattern has been seen as a way
to manage the growing richness and complexity of client-side web development as well, and it is in this
environment that Angular has emerged.

The key to applying the MVC pattern is to implement the key premise of a separation of concerns, in
which the data model in the application is decoupled from the business and presentation logic. In client-
side web development, this means separating the data, the logic that operates on that data, and the HTML
elements used to display the data. The result is a client-side application that is easier to develop, maintain,
and test.

The three main building blocks are the model, the controller, and the view. In Figure 3-2, you can see the
traditional exposition of the MVC pattern as it applies to server-side development.

Figure 3-2. The server-side implementation of the MVC pattern

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

37

I took this figure from my Pro ASP.NET Core MVC book, which describes Microsoft’s server-side
implementation of the MVC pattern. You can see that the expectation is that the model is obtained from a
database and that the goal of the application is to service HTTP requests from the browser. This is the basis
for round-trip web apps, which I described earlier.

Of course, Angular exists in the browser, which leads to a twist on the MVC theme, as illustrated in
Figure 3-3.

Figure 3-3. A client-side implementation of the MVC pattern

Figure 3-4. The Angular implementation of the MVC pattern

The client-side implementation of the MVC pattern gets its data from server-side components, usually
via a RESTful web service, which I describe in Chapter 24. The goal of the controller and the view is to
operate on the data in the model in order to perform DOM manipulation so as to create and manage HTML
elements that the user can interact with. Those interactions are fed back to the controller, closing the loop to
form an interactive application.

Angular uses slightly different terminology for its building blocks, which means that the MVC model
implemented using Angular looks more like Figure 3-4.

The figure shows the basic mapping of Angular building blocks to the MVC pattern. To support the MVC
pattern, Angular provides a broad set of additional features, which I describe throughout the book.

 ■ Tip using a client-side framework like Angular doesn’t preclude using a server-side MVC framework, but
you’ll find that an Angular client takes on some of the complexity that would have otherwise existed at the
server. This is generally a good thing because it offloads work from the server to the client, and that allows for
more clients to be supported with less server capacity.

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

38

PATTERNS AND PATTERN ZEALOTS

A good pattern describes an approach to solving a problem that has worked for other people on other
projects. Patterns are recipes, rather than rules, and you will need to adapt any pattern to suit your
specific projects, just like a cook has to adapt a recipe to suit different ovens and ingredients.

The degree by which you depart from a pattern should be driven by need and experience. The time
you have spent applying a pattern to similar projects will inform your knowledge about what does and
doesn’t work for you. If you are new to a pattern or you are embarking on a new kind of project, then
you should stick as closely as possible to the pattern until you truly understand the benefits and pitfalls
that await you. Be careful not to reform your entire development effort around a pattern, however, since
wide-sweeping disruption usually causes productivity loses that undermine whatever outcome you were
hoping the pattern would give.

Patterns are flexible tools and not fixed rules, but not all developers understand the difference, and
some become pattern zealots. These are the people who spend more time talking about the pattern
than applying it to projects and consider any deviation from their interpretation of the pattern to be a
serious crime. My advice is to simply ignore this kind of person because any kind of engagement will
just suck the life out of you, and you’ll never be able to change their minds. Instead, just get on with
some work and demonstrate how a flexible application of a pattern can produce good results through
practical application and delivery.

With this in mind, you will see that I follow the broad concepts of the MVC pattern in the examples in
this book but that I adapt the pattern to demonstrate different features and techniques. And this is how
I work in my own projects—embracing the parts of patterns that provide value and setting aside those
that do not.

Understanding Models
Models—the M in MVC—contain the data that users work with. There are two broad types of model: view
models, which represent just data passed from the component to the template, and domain models, which
contain the data in a business domain, along with the operations, transformations, and rules for creating,
storing, and manipulating that data, collectively referred to as the model logic.

 ■ Tip Many developers new to the MVC pattern get confused with the idea of including logic in the data
model, believing that the goal of the MVC pattern is to separate data from logic. This is a misapprehension:
The goal of the MVC framework is to divide up an application into three functional areas, each of which may
contain both logic and data. The goal isn’t to eliminate logic from the model. rather, it is to ensure that the
model contains logic only for creating and managing the model data.

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

39

You can’t read a definition of the MVC pattern without tripping over the word business, which is
unfortunate because a lot of web development goes far beyond the line-of-business applications that led to
this kind of terminology. Business applications are still a big chunk of the development world, however, and
if you are writing, say, a sales accounting system, then your business domain would encompass the process
related to sales accounting and your domain model would contain the accounts data and the logic by which
accounts are created, stored, and managed. If you are creating a cat video web site, then you still have a
business domain; it is just that it might not fit within the structure of a corporation. Your domain model
would contain the cat videos and the logic that will create, store, and manipulate those videos.

Many Angular models will effectively push the logic to the server side and invoke it via a RESTful web
service because there is little support for data persistence within the browser and it is simply easier to get the
data you require over Ajax. I explain how Angular can be used with RESTful web services in Chapter 24.

 ■ Tip There are client-side persistence APIs defined as part of the HTMl5 standard effort. The quality of
these standards is currently mixed, and the implementations vary in quality. The main problem, however, is that
most users still rely on browsers that don’t implement the new APIs, and this is especially true in corporate
environments, where older versions of Internet explorer are still widely used because of problems migrating
line-of-business applications to standard versions of HTMl. If you are interested in client-side persistence, then
the best place to start is the IndexedDB specification, which can be found at https://www.w3.org/TR/IndexedDB.

For each element in the MVC pattern, I’ll describe what should and should not be included. The model
in an application built using the MVC pattern should

•	 Contain the domain data

•	 Contain the logic for creating, managing, and modifying the domain data (even if
that means executing remote logic via web services)

•	 Provide a clean API that exposes the model data and operations on it

The model should not

•	 Expose details of how the model data is obtained or managed (in other words, details
of the data storage mechanism or the remote web service should not be exposed to
controllers and views)

•	 Contain logic that transforms the model based on user interaction (because this is
the component’s job)

•	 Contain logic for displaying data to the user (this is the template’s job)

The benefits of ensuring that the model is isolated from the controller and views are that you can test
your logic more easily (I describe Angular unit testing in Chapter 29) and that enhancing and maintaining
the overall application is simpler and easier.

The best domain models contain the logic for getting and storing data persistently and the logic for
create, read, update, and delete operations (known collectively as CRUD) or separate models for querying
and modifying data, known as the Command and Query Responsibility Segregation (CQRS) pattern.

This can mean the model contains the logic directly, but more often the model will contain the logic for
calling RESTful web services to invoke server-side database operations (which I demonstrate in Chapter 8
when I build a realistic Angular application and which I describe in detail in Chapter 24).

http://dx.doi.org/10.1007/978-1-4842-2307-9_24
https://www.w3.org/TR/IndexedDB
http://dx.doi.org/10.1007/978-1-4842-2307-9_29
http://dx.doi.org/10.1007/978-1-4842-2307-9_8
http://dx.doi.org/10.1007/978-1-4842-2307-9_24

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

40

ANGULAR VS ANGULARJS

Angular—also known as Angular 2—is the second major release of the framework originally known
as AngularJS. The original AngularJS has been widely popular but was awkward to use and required
developers to deal with some arcane and oddly implemented features that made web application
development more complex than it needed to be.

Angular, which is the topic of this book, is a complete rewrite that is easier to learn, is easier to work
with, and is much more consistent. It is still a complex framework, as the size of this book shows, but
creating web applications with Angular is a more pleasant experience than with AngularJS.

The differences between AngularJS and Angular are so profound that I have not included any migration
details in this book. If you have an AngularJS application that you want to upgrade to Angular, then
you can use the upgrade adapter, which allows code from both versions of the framework to coexist in
the same application. See https://angular.io/docs/ts/latest/guide/upgrade.html for details.
This can ease the transition, although AngularJS and Angular are so different that my advice is to
make a clean start and switch to Angular for a ground-up rewrite. This isn’t always possible, of course,
especially for complex applications, but the process of migrating while also managing coexistence is a
difficult one to master and can lead to problems that are hard to track down and correct.

Understanding Controllers/Components
Controllers, which are known as components in Angular, are the connective tissue in an Angular web app,
acting as conduits between the data model and views. Components add business domain logic required
to present some aspect of the model and perform operations on it. A component that follows the MVC
pattern should

•	 Contain the logic required to set up the initial state of the template

•	 Contain the logic/behaviors required by the template to present data from the model

•	 Contain the logic/behaviors required to update the model based on user interaction

A component should not

•	 Contain logic that manipulates the DOM (that is the job of the template)

•	 Contain logic that manages the persistence of data (that is the job of the model)

Understanding View Data
The domain model isn’t the only data in an Angular application. Components can create view data
(also known as view model data or view models) to simplify templates and their interactions with
the component.

https://angular.io/docs/ts/latest/guide/upgrade.html

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

41

Understanding Views/Templates
Views, which are known as templates in Angular, are defined using HTML elements that are enhanced by
data bindings. It is the data bindings that make Angular so flexible, and they transform HTML elements into
the foundation for dynamic web applications. I explain the different types of data bindings that Angular
provides in detail in Part 2. Templates should

•	 Contain the logic and markup required to present data to the user

Templates should not

•	 Contain complex logic (this is better placed in a component or one of the other
Angular building blocks, such as directives, services, or pipes)

•	 Contain logic that creates, stores, or manipulates the domain model

Templates can contain logic, but it should be simple and used sparingly. Putting anything but the
simplest method calls or expressions in a template makes the overall application harder to test and maintain.

Understanding RESTful Services
The logic for domain models in Angular apps is often split between the client and the server. The server
contains the persistent store, typically a database, and contains the logic for managing it. In the case of a
SQL database, for example, the required logic would include opening connections to the database server,
executing SQL queries, and processing the results so they can be sent to the client.

You don’t want the client-side code accessing the data store directly—doing so would create a tight
coupling between the client and the data store that would complicate unit testing and make it difficult to
change the data store without also making changes to the client code as well.

By using the server to mediate access to the data store, you prevent tight coupling. The logic on the
client is responsible for getting the data to and from the server and is unaware of the details of how that data
is stored or accessed behind the scenes.

There are lots of ways of passing data between the client and the server. One of the most common is
to use Asynchronous JavaScript and XML (Ajax) requests to call server-side code, getting the server to send
JSON and making changes to data using HTML forms.

This approach can work well and is the foundation of RESTful web services, which use the nature of
HTTP requests to perform CRUD operations on data.

 ■ Note reST is a style of API rather than a well-defined specification, and there is disagreement about what
exactly makes a web service reSTful. one point of contention is that purists do not consider web services
that return JSon to be reSTful. like any disagreement about an architectural pattern, the reasons for the
disagreement are arbitrary and dull and not at all worth worrying about. As far as I am concerned, JSon
services are reSTful, and I treat them as such in this book.

In a RESTful web service, the operation that is being requested is expressed through a combination of
the HTTP method and the URL. So, for example, imagine a URL like this one:

http://myserver.mydomain.com/people/bob

http://myserver.mydomain.com/people/bob

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

42

There is no standard URL specification for a RESTful web service, but the idea is to make the URL self-
explanatory, such that it is obvious what the URL refers to. In this case, it is obvious that there is a collection
of data objects called people and that the URL refers to the specific object within that collection whose
identity is bob.

 ■ Tip It isn’t always possible to create such self-evident urls in a real project, but you should make a
serious effort to keep things simple and not expose the internal structure of the data store through the url
(because this is just another kind of coupling between components). Keep your urls as simple and clear as
possible, and keep the mappings between the url format and the data store structure within the server.

The URL identifies the data object that I want to operate on, and the HTTP method specifies what
operation I want performed, as described in Table 3-1.

Table 3-1. The Operations Commonly Performed in Response to HTTP Methods

Method Description

GET Retrieves the data object specified by the URL

PUT Updates the data object specified by the URL

POST Creates a new data object, typically using form data values as the data fields

DELETE Deletes the data object specified by the URL

You don’t have to use the HTTP methods to perform the operations I describe in the table. A common
variation is that the POST method is often used to serve double duty and will update an object if one exists
and create one if not, meaning that the PUT method isn’t used. I describe the support that Angular provides
for Ajax and for easily working with RESTful services in Chapter 24.

IDEMPOTENT HTTP METHODS

You can implement any mapping between HTTP methods and operations on the data store, although
I recommend you stick as closely as possible to the convention I describe in the table.

If you depart from the normal approach, make sure you honor the nature of the HTTP methods as
defined in the HTTP specification. The GeT method is nullipotent, which means that the operations
you perform in response to this method should only retrieve data and not modify it. A browser (or any
intermediate device, such as a proxy) expects to be able to repeatedly make a GeT request without
altering the state of the server (although this doesn’t mean the state of the server won’t change
between identical GeT requests because of requests from other clients).

The PuT and DeleTe methods are idempotent, which means that multiple identical requests should have
the same effect as a single request. So, for example, using the DeleTe method with the /people/bob
url should delete the bob object from the people collection for the first request and then do nothing for
subsequent requests. (Again, of course, this won’t be true if another client re-creates the bob object.)

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

43

The PoST method is neither nullipotent nor idempotent, which is why a common reSTful optimization is
to handle object creation and updates. If there is no bob object, using the PoST method will create one,
and subsequent PoST requests to the same url will update the object that was created.

All of this is important only if you are implementing your own reSTful web service. If you are writing
a client that consumes a reSTful service, then you just need to know what data operation each HTTP
method corresponds to. I demonstrate consuming such a service in Chapter 8 and describe the Angular
features for HTTP requests in more detail in Chapter 24.

Common Design Pitfalls
In this section, I describe the three most common design pitfalls that I encounter in Angular projects. These
are not coding errors but rather problems with the overall shape of the web app that prevent the project
team from getting the benefits that Angular and the MVC pattern can provide.

Putting the Logic in the Wrong Place
The most common problem is logic put into the wrong component such that it undermines the MVC
separation of concerns. Here are the three most common varieties of this problem:

•	 Putting business logic in templates, rather than in components

•	 Putting domain logic in components, rather than in the model

•	 Putting data store logic in the client model when using a RESTful service

These are tricky issues because they take a while to manifest themselves as problems. The application
still runs, but it will become harder to enhance and maintain over time. In the case of the third variety, the
problem will become apparent only when the data store is changed (which rarely happens until a project is
mature and has grown beyond its initial user projections).

 ■ Tip Getting a feel for where logic should go takes some experience, but you’ll spot problems earlier if you
are using unit testing because the tests you have to write to cover the logic won’t fit nicely into the MVC pattern.
I describe the Angular support for unit testing in Chapter 29.

Knowing where to put logic becomes second nature as you get more experience in Angular
development, but here are the three rules:

•	 Template logic should prepare data only for display and never modify the model.

•	 Component logic should never directly create, update, or delete data from the
model.

•	 The templates and components should never directly access the data store.

If you keep these in mind as you develop, you’ll head off the most common problems.

http://dx.doi.org/10.1007/978-1-4842-2307-9_8
http://dx.doi.org/10.1007/978-1-4842-2307-9_24
http://dx.doi.org/10.1007/978-1-4842-2307-9_29

CHAPTer 3 ■ PuTTInG AnGulAr In ConTexT

44

Adopting the Data Store Data Format
The next problem arises when the development team builds an application that depends on the quirks of
the server-side data store. I recently worked with a project team that had built their client so that it honored
the data format quirks of their SQL database server. The problem they ran into—and the reason why I was
involved—was they needed to upgrade to a more robust database, which used different representations for
key data types.

In a well-designed Angular application that gets its data from a RESTful service, it is the job of the server
to hide the data store implementation details and present the client with data in a suitable data format that
favors simplicity in the client. Decide how the client needs to represent dates, for example, and then ensure
you use that format within the data store—and if the data store can’t support that format natively, then it is
the job of the server to perform the translation.

Just Enough Knowledge to Cause Trouble
Angular is a complex framework that can be bewildering until you get used it. There are lots of different
building blocks available, and they can be combined in different ways to achieve the similar results. This
makes Angular development flexible and means you will develop your own style of problem-solving by
creating combinations of features that suit your project and working style.

The problem this presents, however, is that becoming proficient in Angular takes time. The temptation
is to jump into creating your own projects before understanding how the different parts of Angular fit
together. You might produce something that works without really understanding why it works, and that’s a
recipe for disaster when you need to make changes. My advice is to go slow and take the time to understand
all the features that Angular provides. By all means start creating projects early, but make sure you really
understand how they work and be prepared to make changes as you find better ways of achieving the results
you require.

Summary
In this chapter, I provided some context for Angular. I described the kinds of project where it makes
sense to use Angular (and where it doesn’t), I explained how Angular supports the MVC pattern for app
development, and I gave a brief overview of REST and how it is used to express data operations over HTTP
requests. I finished the chapter by describing the three most common design problems in Angular projects.
In the next chapter, I provide a quick primer for HTML and the Bootstrap CSS framework that I use for
examples throughout this book.

45© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_4

CHAPTER 4

An HTML and CSS Primer

Developers come to the world of web app development via many paths and are not always grounded in the
basic technologies that web apps rely on. In this chapter, I provide a brief primer for HTML and introduce
the Bootstrap CSS library, which I use to style the examples in this book. In Chapters 5 and 6, I introduce the
basics of JavaScript and TypeScript and give you the information you need to understand the examples in
the rest of the book. If you are an experienced developer, you can skip these primer chapters and jump right
to Chapter 7, where I use Angular to create a more complex and realistic application.

Preparing the Example Project
For this chapter, I need only a simple example project. I started by creating a folder called HtmlCssPrimer,
created a file called package.json within it, and added the content shown in Listing 4-1.

Listing 4-1. The Contents of the package.json File in the HtmlCssPrimer Folder

{
 "dependencies": {
 "bootstrap": "4.0.0-alpha.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2"
 },

 "scripts": {
 "start": "npm run lite",
 "lite": "lite-server"
 }
}

Run the following command within the HtmlCssPrimer folder to download and install the NPM
packages specified in the package.json file:

npm install

Next, I created a file called index.html in the HtmlCssPrimer folder and added the content shown in
Listing 4-2.

http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_7

Chapter 4 ■ an htML and CSS priMer

46

Listing 4-2. The Contents of the index.html File in the HtmlCssPrimer Folder

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">

 <h3 class="bg-primary p-a-1">Adam's To Do List</h3>

 <div class="m-t-1 m-b-1">
 <input class="form-control" />
 <button class="btn btn-primary m-t-1">Add</button>
 </div>

 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
 </table>
</body>
</html>

This is the HTML content I used in Chapter 2 to mock up the appearance of the example application.
Run the following command in the HtmlCssPrimer folder to start the development HTTP server:

npm start

A new browser tab or window will open and show the content in Figure 4-1.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

Chapter 4 ■ an htML and CSS priMer

47

Understanding HTML
At the heart of HTML is the element, which tells the browser what kind of content each part of an HTML
document represents. Here is an element from the example HTML document:

...
<td>Buy Flowers</td>
...

As illustrated by Figure 4-2, this element has three parts: the start tag, the end tag, and the content.

Figure 4-1. Running the example application

Chapter 4 ■ an htML and CSS priMer

48

The name of this element (also referred to as the tag name or just the tag) is td, and it tells the browser
that the content between the tags should be treated as a table cell. You start an element by placing the tag
name in angle brackets (the < and > characters) and end an element by using the tag in a similar way, except
that you also add a / character after the left-angle bracket (<). Whatever appears between the tags is the
element’s content, which can be text (such as Buy Flowers in this case) or other HTML elements.

Understanding Void Elements
The HTML specification includes elements that may not contain content. These are called void or self-closing
elements, and they are written without a separate end tag, like this:

...
<input />
...

A void element is defined in a single tag, and you add a / character before the last angle bracket
(the > character).

Understanding Attributes
You can provide additional information to the browser by adding attributes to your elements. Here is an
element with an attribute from the example document:

...
<link href="node_modules/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
...

This is a link element, and it imports content into the document. There are two attributes, which I have
emphasized so they are easier to see. Attributes are always defined as part of the start tag and have a name
and a value.

The names of the two attributes in this example are href and rel. For the link element, the href
attribute specifies the content to import, and the rel attribute tells the browser what kind of content it is. The
attributes on this link element tell the browser to import the bootstrap.min.css file and to treat it as a style
sheet, which is a file that contains CSS styles.

Applying Attributes Without Values
Not all attributes require a value; just defining them sends a signal to the browser that you want a certain
kind of behavior associated with the element. Here is an example of an element with such an attribute (not
from the example document; I just made up this example element):

Figure 4-2. The anatomy of a simple HTML element

Chapter 4 ■ an htML and CSS priMer

49

...
<input class="form-control" required />
...

This element has two attributes. The first is class, which is assigned a value just like the previous example.
The other attribute is just the word required. This is an example of an attribute that doesn’t need a value.

Quoting Literal Values in Attributes
Angular relies on HTML element attributes to apply a lot of its functionality. Most of the time, the values of
attributes are evaluated as JavaScript expressions, such as with this element, taken from Chapter 2:

...
<td [ngSwitch]="item.done">
...

The attribute applied to the td element tells Angular to read the value of a property called done on an
object that has been assigned to a variable called item. There will be occasions when you need to provide
a specific value rather than have Angular read a value from the data model, and this requires additional
quoting to tell Angular that it is dealing with a literal value, like this:

...
<td [ngSwitch]="'Apples'">
...

The attribute value contains the string Apples, which is quoted in both single and double quotes. When
Angular evaluates the attribute value, it will see the single quotes and process the value as a literal string.

Understanding Element Content
Elements can contain text, but they can also contain other elements, like this:

...
<thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
</thead>
...

The elements in an HTML document form a natural hierarchy. The html element contains the body
element, which contains content elements, each of which can contain other elements, and so on. In the
listing, the thead element contains tr elements that, in turn, contain th elements. Nesting elements like this
is a key concept in HTML because it imparts the significance of the outer element to those contained within.

Understanding the Document Structure
There are some key elements that define the basic structure of any HTML document: the DOCTYPE, html, head,
and body elements. Here is the relationship between these elements with the rest of the content removed:

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

Chapter 4 ■ an htML and CSS priMer

50

<!DOCTYPE html>
<html>
<head>
 ...head content...
</head>
<body>
 ...body content...
</body>
</html>

Each of these elements has a specific role to play in an HTML document. The DOCTYPE element tells
the browser that this is an HTML document and, more specifically, that this is an HTML5 document. Earlier
versions of HTML required additional information. For example, here is the DOCTYPE element for an HTML4
document:

...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
...

The html element denotes the region of the document that contains the HTML content. This element
always contains the other two key structural elements: head and body. As I explained at the start of the
chapter, I am not going to cover the individual HTML elements. There are too many of them, and describing
HTML5 completely took me more than 1,000 pages in my HTML book. That said, Table 4-1 provides
brief descriptions of the elements I used in the index.html file in Listing 4-2 to help you understand how
elements tell the browser what kind of content they represent.

UNDERSTANDING THE DOCUMENT OBJECT MODEL

When the browser loads and processes an htML document, it creates the Document Object Model
(dOM). the dOM is a model in which JavaScript objects are used to represent each element in the
document, and the dOM is the mechanism by which you can programmatically engage with the content
of an htML document.

You rarely work directly with the dOM in angular, but it is important to understand that the browser
maintains a live model of the htML document represented by JavaScript objects. When angular
modifies these objects, the browser updates the content it displays to reflect the modifications. this is
one of the key foundations of web applications. if we were not able to modify the dOM, we would not be
able to create client-side web apps.

Chapter 4 ■ an htML and CSS priMer

51

Understanding Bootstrap
HTML elements tell the browser what kind of content they represent, but they don’t provide any information
about how that content should be displayed. The information about how to display elements is provided
using Cascading Style Sheets (CSS). CSS consists of a comprehensive set of properties that can be used to
configure every aspect of an element’s appearance and a set of selectors that allow those properties to be
applied.

One of the main problems with CSS is that some browsers interpret properties slightly differently, which
can lead to variations in the way that HTML content is displayed on different devices. It can be difficult to
track down and correct these problems, and CSS frameworks have emerged to help web app developers style
their HTML content in a simple and consistent way.

One CSS framework that has gained a lot of popularity is Bootstrap, which was originally developed at
Twitter but has become a widely used open source project. Bootstrap consists of a set of CSS classes that
can be applied to elements to style them consistently and some JavaScript code that performs additional
enhancement. I use Bootstrap frequently in my own projects; it works well across browsers, and it is simple
to use. I use the Bootstrap CSS styles in this book because they let me style my examples without having to
define and then list my own custom CSS in each chapter. Bootstrap provides a lot more features than the
ones I use and describe in this book; see http://getbootstrap.com for full details.

Table 4-1. HTML Elements Used in the Example Document

Element Description

DOCTYPE Indicates the type of content in the document

body Denotes the region of the document that contains content elements

button Denotes a button; often used to submit a form to the server

div A generic element; often used to add structure to a document for presentation
purposes

h3 Denotes a header

head Denotes the region of the document that contains metadata

html Denotes the region of the document that contains HTML (which is usually the entire
document)

input Denotes a field used to gather a single data item from the user

link Imports content into the HTML document

meta Provides descriptive data about the document, such as the character encoding

table Denotes a table, used to organize content into rows and columns

tbody Denotes the body of the table (as opposed to the header or footer)

td Denotes a content cell in a table row

th Denotes a header cell in a table row

thead Denotes the header of a table

title Denotes the title of the document; used by the browser to set the title of the window
or tab

tr Denotes a row in a table

http://getbootstrap.com/

Chapter 4 ■ an htML and CSS priMer

52

USING THE BOOTSTRAP PRE-RELEASE

as i mentioned in Chapter 2, i use a pre-release version of the Bootstrap CSS framework throughout this
book. Given the choice of writing this book using the soon-to-be-obsolete Bootstrap 3 and a pre-release
version of Bootstrap 4, i decided to use the new version, even though some of the class names that are
used to style htML elements are likely to change before the final release. this means you must use the
same version of Bootstrap to get the expected results from the examples.

I don’t want to get into too much detail about Bootstrap because it isn’t the topic of this book, but I do
want to give you enough information so you can tell which parts of an example are Angular features and
which are Bootstrap styling.

Applying Basic Bootstrap Classes
Bootstrap styles are applied via the class attribute, which is used to group together related elements. The
class attribute isn’t just used to apply CSS styles, but it is the most common use, and it underpins the way
that Bootstrap and similar frameworks operate. Here is an HTML element with a class attribute, taken from
the index.html file:

...
<button class="btn btn-primary m-t-1">Add</button>
...

The class attribute assigns the button element to three classes, whose names are separated by spaces:
btn, btn-primary, and m-t-1. These classes correspond to collections of styles defined by Bootstrap, as
described in Table 4-2.

Using Contextual Classes
One of the main advantages of using a CSS framework like Bootstrap is to simplify the process of creating a
consistent theme throughout an application. Bootstrap defines a set of style contexts that are used to style
related elements consistently. These contexts, which are described in Table 4-3, are used in the names of the
classes that apply Bootstrap styles to elements.

Table 4-2. The Three Button Element Classes

Name Description

btn This class applies the basic styling for a button. It can be applied to button or a
elements to provide a consistent appearance.

btn-primary This class applies a style context to provide a visual cue about the purpose of the
button. See the “Using Contextual Classes” section.

m-t-1 This class adds a gap between the top of the element and the content that surrounds it.
See the “Using Margin and Padding” section.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

Chapter 4 ■ an htML and CSS priMer

53

Bootstrap provides classes that allow the style contexts to be applied to different types of elements. Here
is the primary context applied to the h3 element, taken from the index.html file created at the start of the
chapter:

...
<h3 class="bg-primary p-a-1">Adam's To Do List</h3>
...

One of the classes that the element has been assigned to is bg-primary, which styles the background
color of an element using the style context’s color. Here is the same style context applied to a button
element:

...
<button class="btn btn-primary m-t-1">Add</button>
...

The btn-primary class styles a button or anchor element using the style context’s colors. Using the same
context to style different elements will ensure their appearance is consistent and complementary, as shown
in Figure 4-3, which highlights the elements to which the style context has been applied.

Table 4-3. The Bootstrap Style Contexts

Name Description

primary This context is used to indicate the main action or area of content.

success This context is used to indicate a successful outcome.

info This context is used to present additional information.

warning This context is used to present warnings.

danger This context is used to present serious warnings.

muted This context is used to de-emphasize content.

Chapter 4 ■ an htML and CSS priMer

54

Using Margin and Padding
Bootstrap includes a set of utility classes that are used to add padding, which is space between an element’s
edge and its content, and margin, which is space between an element’s edge and the surrounding elements.
The benefit of using these classes is that they apply a consistent amount of spacing throughout the
application.

The names of these classes follow a well-defined pattern. Here is the body element from the index.html
file created at the start of the chapter, to which margin has been applied:

...
<body class="m-a-1">
...

The classes that apply margin and padding to elements follow a well-defined naming schema: first,
the letter m (for margin) or p (for padding), followed by a hyphen, followed by a letter selecting some or all
element edges (a for all edges, t for top, b for bottom, l for left, or r for right), then a hyphen, and, finally,
a number indicating how much space should be applied (0 for no spacing, or 1, 2, or 3 for increasing
amounts). To help put this scheme in context, Table 4-4 lists the combinations used in the index.html file.

Figure 4-3. Using style contexts for consistency

Chapter 4 ■ an htML and CSS priMer

55

Changing Element Sizes
You can change the way that some elements are styled by using a size modification class. These are specified
by combining a basic class name, a hyphen, and lg or sm. In Listing 4-3, I have added button elements to the
index.html file, using the size modification classes that Bootstrap provides for buttons.

Listing 4-3. Using Button Size Modification Classes in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">

 <h3 class="bg-primary p-a-1">Adam's To Do List</h3>

 <div class="m-t-1 m-b-1">
 <input class="form-control" />
 <button class="btn btn-lg btn-primary m-t-1">Add</button>
 <button class="btn btn-primary m-t-1">Add</button>
 <button class="btn btn-sm btn-primary m-t-1">Add</button>
 </div>

 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
 </table>
</body>
</html>

Table 4-4. Sample Bootstrap Margin and Padding Classes

Name Description

p-a-1 This class applies padding to all edges of an element.

m-a-1 This class applies margin to all edges of an element.

m-t-1 This class applies margin to the top edge of an element.

m-b-1 This class applies margin to the bottom edge of an element.

Chapter 4 ■ an htML and CSS priMer

56

The btn-lg class creates a large button, and the btn-sm class creates a small button. Omitting a size
class uses the default size for the element. Notice that I am able to combine a context class and a size class.
Bootstrap class modifications work together to give you complete control over how elements are styled,
creating the effect shown in Figure 4-4.

Using Bootstrap to Style Tables
Bootstrap includes support for styling table elements and their contents, which is a feature I use throughout
this book. Table 4-5 lists the key Bootstrap classes for working with tables.

All these classes are applied directly to the table element, as shown in Listing 4-4, which highlights the
Bootstrap classes applied to the table in the index.html file.

Table 4-5. The Bootstrap CSS Classes for Tables

Name Description

table Applies general styling to a table elements and its rows

table-striped Applies alternate-row striping to the rows in the table body

table-inverse Applies inverted colors to the table and its rows

table-bordered Applies borders to all rows and columns

table-hover Displays a different style when the mouse hovers over a row in the table

table-sm Reduces the spacing in the table to create a more compact layout

Figure 4-4. Changing element size

Chapter 4 ■ an htML and CSS priMer

57

Listing 4-4. Using Bootstrap to Style Tables

...
<table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
</table>
...

 ■ Tip notice that i have used the thead element when defining the tables in Listing 4-4. Browsers will
automatically add any tr elements that are direct descendants of table elements to a tbody element if one
has not been used. You will get odd results if you rely on this behavior when working with Bootstrap because
most of the CSS classes that are applied to the table element cause styles to be added to the descendants of
the tbody element.

Using Bootstrap to Create Forms
Bootstrap includes styling for form elements, allowing them to be styled consistently with other elements
in the application. In Listing 4-5, I have expanded the form elements in the index.html file and temporarily
removed the table.

Listing 4-5. Defining Additional Form Elements in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <h3 class="bg-primary p-a-1">Adam's To Do List</h3>
 <form>
 <div class="form-group">
 <label>Task</label>
 <input class="form-control" />
 </div>

Chapter 4 ■ an htML and CSS priMer

58

 <div class="form-group">
 <label>Location</label>
 <input class="form-control" />
 </div>
 <div class="form-group">
 <input type="checkbox" />
 <label>Done</label>
 </div>
 <button class="btn btn-primary">Add</button>
 </form>
</body>
</html>

The basic styling for forms is achieved by applying the form-group class to a div element that contains
a label and an input element, where the input element is assigned to the form-control class. Bootstrap
styles the elements so that the label is shown above the input element and the input element occupies 100
percent of the available horizontal space, as shown in Figure 4-5.

Figure 4-5. Styling form elements

Chapter 4 ■ an htML and CSS priMer

59

Using Bootstrap to Create Grids
Bootstrap provides style classes that can be used to create different kinds of grid layout, ranging from one to
twelve columns and with support for responsive layouts, where the layout of the grid changes based on the
width of the screen. Listing 4-6 replaces the content of the example HTML file to demonstrate the grid feature.

Listing 4-6. Using a Bootstrap Grid in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <style>
 #gridContainer {padding: 20px;}
 .row > div { border: 1px solid lightgrey; padding: 10px;
 background-color: aliceblue; margin: 5px 0; }
 </style>
</head>
<body class="m-a-1">
 <h3 class="panel-header">
 Grid Layout
 </h3>

 <div id="gridContainer">

 <div class="row">
 <div class="col-xs-1">1</div>
 <div class="col-xs-1">1</div>
 <div class="col-xs-2">2</div>
 <div class="col-xs-2">2</div>
 <div class="col-xs-6">6</div>
 </div>

 <div class="row">
 <div class="col-xs-3">3</div>
 <div class="col-xs-4">4</div>
 <div class="col-xs-5">5</div>
 </div>

 <div class="row">
 <div class="col-xs-6">6</div>
 <div class="col-xs-6">6</div>
 </div>

 <div class="row">
 <div class="col-xs-11">11</div>
 <div class="col-xs-1">1</div>
 </div>

Chapter 4 ■ an htML and CSS priMer

60

 <div class="row">
 <div class="col-xs-12">12</div>
 </div>
 </div>
</body>
</html>

The Bootstrap grid layout system is simple to use. You specify a column by applying the row class to a
div element, which has the effect of setting up the grid layout for the content that the div element contains.

Each row defines 12 columns, and you specify how many columns each child element will occupy by
assigning a class whose name is col-xs followed by the number of columns. For example, the class col-xs-1
specifies that an element occupies one column, col-xs-2 specifies two columns, and so on, right through
to col-xs-12, which specifies that an element fills the entire row. In the listing, I have created a series of div
elements with the row class, each of which contains further div elements to which I have applied col-xs-*
classes. You can see the effect in the browser in Figure 4-6.

 ■ Tip Bootstrap doesn’t apply any styling to the elements within a row, which i why i have used a style
element to create a custom CSS style that sets a background color, sets up some spacing between rows, and
adds a border.

Figure 4-6. Creating a Bootstrap grid layout

Chapter 4 ■ an htML and CSS priMer

61

Creating Responsive Grids
Responsive grids adapt their layout based on the size of the browser window. The main use for responsive
grids is to allow mobile devices and desktops to display the same content, taking advantage of whatever
screen space is available. To create a responsive grid, replace the col-* class on individual cells with one of
the classes shown in Table 4-6.

When the width of the screen is less than the class supports, the cells in the grid row are stacked
vertically rather than horizontally. Listing 4-7 demonstrates a responsive grid in the index.html file.

Listing 4-7. Creating a Responsive Grid in the bootstrap.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <style>
 #gridContainer {padding: 20px;}
 .row > div { border: 1px solid lightgrey; padding: 10px;
 background-color: aliceblue; margin: 5px 0; }
 </style>

</head>
<body class="m-a-1">

 <h3 class="panel-header">
 Grid Layout
 </h3>
 <div id="gridContainer">
 <div class="row">
 <div class="col-sm-3">3</div>
 <div class="col-sm-4">4</div>
 <div class="col-sm-5">5</div>
 </div>

 <div class="row">
 <div class="col-sm-6">6</div>
 <div class="col-sm-6">6</div>
 </div>

Table 4-6. The Bootstrap CSS Classes for Responsive Grids

Bootstrap Class Description

col-sm-* Grid cells are displayed horizontally when the screen width is greater than 768 pixels.

col-md-* Grid cells are displayed horizontally when the screen width is greater than 940 pixels.

col-lg-* Grid cells are displayed horizontally when the screen width is greater than 1170
pixels.

Chapter 4 ■ an htML and CSS priMer

62

 <div class="row">
 <div class="col-sm-11">11</div>
 <div class="col-sm-1">1</div>
 </div>
 </div>
</body>
</html>

I removed some grid rows from the previous example and replaced the col-xs* classes with col-sm-*.
The effect is that the cells in the row will be stacked horizontally when the browser window is greater than
768 pixels wide and stacked horizontally when it is smaller, as shown in Figure 4-7.

Creating a Simplified Grid Layout
For most of the examples in this book that rely on the Bootstrap grid, I use a simplified approach that displays
content in a single row and requires only the number of columns to be specified, as shown in Listing 4-8.

Listing 4-8. Using a Simplified Grid Layout in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />

Figure 4-7. Creating a responsive grid layout

Chapter 4 ■ an htML and CSS priMer

63

</head>
<body class="m-a-1">
 <h3 class="bg-primary p-a-1">Adam's To Do List</h3>

 <div class="col-xs-4">
 <form>
 <div class="form-group">
 <label>Task</label>
 <input class="form-control" />
 </div>
 <div class="form-group">
 <label>Location</label>
 <input class="form-control" />
 </div>
 <div class="form-group">
 <input type="checkbox" />
 <label>Done</label>
 </div>
 <button class="btn btn-primary">Add</button>
 </form>
 </div>
 <div class="col-xs-8">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

This listing uses the col-xs-4 and col-xs-8 classes to display two div elements side-by-side, allowing
the form and the table that displays the to-do items to be displayed horizontally, as illustrated in Figure 4-8.

Chapter 4 ■ an htML and CSS priMer

64

Summary
In this chapter, I provided a brief overview of HTML and the Bootstrap CSS framework. You need to have
a good grasp of HTML and CSS to be truly effective in web application development, but the best way to
learn is by firsthand experience, and the descriptions and examples in this chapter will be enough to get
you started and provide just enough background information for the examples ahead. In the next chapter, I
continue the primer theme and introduce the basic features of JavaScript that I use in this book.

Figure 4-8. Using a simplified grid layout

65© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_5

CHAPTER 5

JavaScript and TypeScript: Part 1

In this chapter I provide a quick tour of the most important basic features of the JavaScript language as they
apply to Angular development. I don’t have the space to describe JavaScript completely, so I have focused
on the essentials that you’ll need to get up to speed and follow the examples in this book. In Chapter 6,
I describe some of the more advanced JavaScript features that you will need and some of the additional
features provided by TypeScript.

The JavaScript language is managed through a standard process that defines new features. Modern
browsers have started to implement features from the ECMAScript 6 standard (also known as ES6), and the
process for defining ECMAScript 7 (ES7) is underway as I write this. The new standards broaden the features
available to JavaScript developers and make using JavaScript more consistent with more conventional
languages such as C# or Java.

Modern browsers update themselves, which means that a Google Chrome user, for example, is likely
to have a recent release of the browser that implements at least some of the most recent JavaScript features.
Sadly, older browsers that don’t update themselves are still in widespread use, which means you can’t rely
on modern features being available for use in your application.

There are two ways to approach this problem. The first is to use only the core JavaScript features that
you can rely on being present in the browsers that your application targets. The second is to use a compiler
that processes your JavaScript files and converts them into code that can run on older browsers. It is the
second approach that Angular takes and that I describe in this chapter. Table 5-1 summarizes this chapter.

http://dx.doi.org/10.1007/978-1-4842-2307-9_6

Chapter 5 ■ JavaSCript and typeSCript: part 1

66

USING “CLASSIC” JAVASCRIPT FOR ANGULAR

you can write angular applications using just the JavaScript features that work in older browsers,
without needing to add the additional step of using the typeScript compiler to process files.

the problem with this approach is that it results in code that is difficult to read and difficult to manage.
there are some recent JavaScript features that simplify the way that angular features are defined and
applied and one feature, called decorators, that is essential for effective angular development but that is
only a proposal for the JavaScript standardization process and isn’t supported by any browser.

My advice is to embrace the complete angular experience, even though it can take some time and effort
to master the new JavaScript features. the result will be a better development experience, containing
code that is more concise, easier to read, and simpler to maintain. this is the approach i have taken in
this book, and every example assumes that this is the path you are following.

this book doesn’t explain how to create angular applications using just classic JavaScript features.
if this is the path that you want to follow, then the best place to start is the JavaScript section of the
angular website, https://angular.io/docs/js/latest, which contains basic information to help you
get started.

Table 5-1. Chapter Summary

Problem Solution Listing

Add JavaScript to an HTML
document

Use the script element or a JavaScript
module loader

1–6

Create JavaScript functionality Use JavaScript statements 7

Create groups of statements that are
executed on command

Use functions 8, 9, 12–14

Define functions that can handle
more or fewer arguments that
parameters

Use default or rest parameters 10–11

Express functions more concisely Use arrow functions 15

Store values and objects for later use Declare variables using the let or var
keywords

16–17

Store basic data values Use the JavaScript primitive types 18–21

Control the flow of JavaScript code Use conditional statements 22

Determine whether two objects or
values are the same

Use the quality and identity operators 23–24

Explicitly convert types Use the to<type > methods 25–27

Store related objects or values
together in sequence

Use an array 28–33

https://angular.io/docs/js/latest

Chapter 5 ■ JavaSCript and typeSCript: part 1

67

Preparing the Example Project
To prepare for this chapter, I started a new project by creating a folder called JavaScriptPrimer. I added a file
called package.json within the JavaScriptPrimer folder and added the configuration shown in Listing 5-1.

Listing 5-1. The Contents of the package.json File in the JavaScriptPrimer Folder

{
 "dependencies": {
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.3",
 "typings": "1.4.0",
 "concurrently": "3.1.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings"
 }
}

The packages that are specified in the package.json file include polyfill libraries that add support
for essential features to older JavaScript browsers, a JavaScript module loader, and the Bootstrap CSS
framework. The tools required to use TypeScript to generate JavaScript files are also included. Run the
following command in the JavaScriptPrimer folder to download and install the packages:

npm install

Creating the HTML and JavaScript Files
I created a file called primer.ts in the JavaScriptPrimer folder and added the code shown in Listing 5-2.
This is just a placeholder to get the project started.

 ■ Tip pay attention to the extension of the file. even though this chapter uses only JavaScript features, it
relies on the typeScript compiler to convert them into code that will run in any browser. that means the .ts file
must be used, which then allows the typeScript compiler to create the corresponding .js file that will be used
by the browser.

Chapter 5 ■ JavaSCript and typeSCript: part 1

68

Listing 5-2. The Contents of the primer.ts File in the JavaScriptPrimer Folder

console.log("Hello");

I also added a file called index.html to the JavaScriptPrimer folder and added the HTML elements
shown in Listing 5-3.

Listing 5-3. The Contents of the index.html File in the JavaScriptPrimer Folder

<!DOCTYPE html>
<html>
<head>
 <title>Primer</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <script src="primer.js"></script>
</head>
<body class="m-a-1">
 <h3>JavaScript Primer</h3>
</body>
</html>

The HTML file includes a script element that loads a file called primer.js. This file doesn’t exist yet,
but the TypeScript compiler will generate it when it processes the primer.ts file.

Configuring the TypeScript Compiler
The TypeScript compiler requires a configuration file that specifies how it should generate JavaScript files. I
created a file called tsconfig.json in the JavaScriptPrimer folder and added the configuration shown in
Listing 5-4.

Listing 5-4. The Contents of the tsconfig.json File in the JavaScriptPrimer Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

I explain what each configuration setting does in Chapter 11, but for now, it is enough to just create the file.

Running the Example Project
Once you have created all the required files, run the following command to start the TypeScript compiler
and the development HTTP server:

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 5 ■ JavaSCript and typeSCript: part 1

69

npm start

A new browser tab or window will open and display the contents of the index.html file, as shown in
Figure 5-1.

Open the browser’s F12 developer tools (so called because they are typically opened by pressing the F12
key) and look at the JavaScript console, which is shown in Figure 5-2.

The JavaScript console shows the result of the call to the console.log function from Listing 5-3. Rather
than show a screenshot of the browser’s JavaScript console for each example, I’ll just show the result text,
like this:

Hello

Understanding the Script Element
JavaScript code is added to an HTML document using the script element. The src attribute is used to
specify which JavaScript file should be loaded. Here is the script element from Listing 5-3:

Figure 5-1. Running the example application

Figure 5-2. The Google Chrome JavaScript console

Chapter 5 ■ JavaSCript and typeSCript: part 1

70

...
<script src="primer.js"></script>
...

The name of the file loaded by this element is primer.js. When using the TypeScript compiler, there is
an indirection relationship between the files that contain the JavaScript code that you write and the files that
are loaded by the browser.

This can be an awkward transition to make if you are used to writing JavaScript files directly, but it
allows the TypeScript compiler to translate the most recent features from the JavaScript specification into
code that will run on older browsers.

Using a JavaScript Module Loader
Manually keeping track of two sets of files and making sure that the HTML file contains the correct set of
script elements is an error-prone process. You are likely to add a script element that includes a file with
the .ts extension rather than its .js counterpart or forget to add a script element for a new file. It is also
hard to correctly order the script elements. Browsers execute the content of JavaScript files in the order
defined by the script elements in the HTML document, and it is easy to create a situation where code in
the file loaded by one script element depends on functionality loaded by another script element that the
browser has yet to load.

Managing the JavaScript content in an application can be simplified by using a module loader, which
takes responsibility for detecting and resolving dependencies between JavaScript files, loading them, and
ensuring their contents are executed in the right order. The package.json file I created at the start of the
chapter included the SystemJS module loader, and Listing 5-5 shows how it can be applied to the HTML
document to manage the JavaScript files.

Listing 5-5. Using a JavaScript Module Loader in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>Primer</title>
 <meta charset="utf-8" />
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script>
 System.config({ packages: {"": {}}});
 System.import("primer").catch(function(err){ console.error(err); });
 </script>
</head>
<body class="m-a-1">
 <h3>JavaScript Primer</h3>
</body>
</html>

I explain how to create JavaScript modules in Chapter 6 and how the SystemJS module loader is used in
more detail in Chapter 11, where I also use it to load Angular and some of the libraries it depends on. In this
listing, there is a script element that loads the SystemJS module loader and another that configures and
applies it. The most important change in the listing is this statement:

http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 5 ■ JavaSCript and typeSCript: part 1

71

...
System.import("primer").catch(function(err){ console.error(err); });
...

This statement tells the module loader to load a module called primer, which is translated into a
request for the primer.js file. One benefit of using the module loader is that you don’t have to pay attention
to the file extensions in individual script elements.

Understanding the Basic Workflow
To understand the way that the different workflow steps relate to one another, add a statement to the
primer.ts file, as shown in Listing 5-6.

Listing 5-6. Adding a Statement in the primer.ts File

console.log("Hello");
console.log("Apples");

When you save the change to the primer.ts file, the following process will occur:

 1. The TypeScript compiler will detect the change to the primer.ts file and compile
it to generate a new primer.js file that can run in any browser.

 2. The development HTTP server detects the change to the primer.js file and
signals the browser to reload the HTML document.

 3. The browser reloads the HTML document and starts processing the elements
it contains. It loads the JavaScript files specified by the script elements in the
HTML document, including those for the JavaScript module loader.

 4. The JavaScript module loader processes its configuration and asynchronously
requests the primer.js file from the HTTP server.

 5. The JavaScript module loader asks the browser to execute the code in the
primer.js file, which writes out two messages to the browser’s JavaScript
console.

The overall result is that you will see the following messages displayed:

Hello
Apples

This may seem like a large number of steps for a simple application, but this is an approach that scales
up to handle complex projects and allows recent JavaScript features to be used.

Getting used to the extra steps required in Angular development can take a while and the development
workflow can feel indirect and cumbersome, but it does eventually become second nature, especially when
the changes to the code files lead to the browser being automatically reloaded.

Chapter 5 ■ JavaSCript and typeSCript: part 1

72

Using Statements
The basic JavaScript building block is the statement. Each statement represents a single command, and
statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes your
code easier to read and allows for multiple statements on a single line. In Listing 5-7, I have added a pair of
statements to the JavaScript file.

Listing 5-7. Adding JavaScript Statements in the primer.ts File

console.log("Hello");
console.log("Apples");
console.log("This is a statement");
console.log("This is also a statement");

The browser executes each statement in turn. In this example, all the statements simply write messages
to the console. The results are as follows:

Hello
Apples
This is a statement
This is also a statement

Defining and Using Functions
When the browser receives JavaScript code, either directly through a script element or indirectly through
the module loader, it executes the statements it contains in the order in which they have been defined. This
is what happened in the previous example. The module loader loaded the primer.js file, and the statements
it contains were executed one by one, all of which wrote a message to the console.

You can also package statements into a function, which won’t be executed until the browser encounters
a statement that invokes the function, as shown in Listing 5-8.

Listing 5-8. Defining a JavaScript Function in the primer.ts File

let myFunc = function () {
 console.log("This is a statement");
};

myFunc();

Defining a function simple: use the let keyword followed by the name you want to give the function,
followed by the equal sign (=) and the function keyword, followed by parentheses (the (and) characters).
The statements you want the function to contain are enclosed between braces (the { and } characters).

In the listing I used the name myFunc, and the function contains a single statement that writes a message
to the JavaScript console. The statement in the function won’t be executed until the browser reaches another
statement that calls the myFunc function, like this:

...
myFunc();
...

Chapter 5 ■ JavaSCript and typeSCript: part 1

73

Executing the statement in the function produces the following output:

This is a statement

Other than demonstrating how functions are defined, this example isn’t especially useful because the
function is invoked immediately after it has been defined. Functions are much more useful when they are
invoked in response to some kind of change or event, such as user interaction.

THE OTHER WAY TO DEFINE FUNCTIONS

there are two ways in which you can define functions in JavaScript. the approach i used in Listing 5-8
is known as a function expression. the same function can also be defined like this:

...
function myFunc() {
 console.log("This is a statement");
}
...

this is known as a function declaration. the result is the same: a function called myFunc that writes
a message to the console. the difference is how the functions are processed by the browser when a
JavaScript file is loaded. Function declarations are processed before the code in a JavaScript file is
executed, which means you can use a statement that calls a function before it is defined, like this:

...
myFunc();

function myFunc() {
 console.log("This is a statement");
}
...

this works because the browser finds the function declaration when it parses the JavaScript file and sets
up the function before the remaining statements are executed, a process known as function hoisting.
Function expressions, however, are not subject to hoisting, which means that this code will not work:

...
myFunc();

let myFunc = function() {
 console.log("This is a statement");
};
...

Chapter 5 ■ JavaSCript and typeSCript: part 1

74

this code will generate an error reporting that myFunc is not a function. developers who are new
to JavaScript tend to prefer using function declarations because the syntax is more consistent with
languages like C# or Java. the technique you use is entirely up to you, although you should aim to be
consistent throughout your project to make your code easier to understand.

Defining Functions with Parameters
JavaScript allows you to define parameters for functions, as shown in Listing 5-9.

Listing 5-9. Defining Functions with Parameters in the primer.ts File

let myFunc = function(name, weather) {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today");
};

myFunc("Adam", "sunny");

I added two parameters to the myFunc function, called name and weather. JavaScript is a dynamically
typed language, which means you don’t have to declare the data type of the parameters when you define the
function. I’ll come back to dynamic typing later in the chapter when I cover JavaScript variables. To invoke a
function with parameters, you provide values as arguments when you invoke the function, like this:

...
myFunc("Adam", "sunny");
...

The results from this listing are as follows:

Hello Adam.
It is sunny today

Using Default and Rest Parameters
The number of arguments you provide when you invoke a function doesn’t need to match the number of
parameters in the function. If you call the function with fewer arguments than it has parameters, then the value
of any parameters you have not supplied values for is undefined, which is a special JavaScript value. If you call
the function with more arguments than there are parameters, then the additional arguments are ignored.

The consequence of this is that you can’t create two functions with the same name and different
parameters and expect JavaScript to differentiate between them based on the arguments you provide when
invoking the function. This is called polymorphism, and although it is supported in languages such as Java
and C#, it isn’t available in JavaScript. Instead, if you define two functions with the same name, then the
second definition replaces the first.

There are two ways that you can modify a function to respond to a mismatch between the number
of parameters it defines and the number of arguments used to invoke it. Default parameters deal with the
situation where there are fewer arguments than parameters and allow you to provide a default value for the
parameters for which there are no arguments, as shown in Listing 5-10.

Chapter 5 ■ JavaSCript and typeSCript: part 1

75

Listing 5-10. Using a Default Parameter in the primer.ts File

let myFunc = function (name, weather = "raining") {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today");
};

myFunc("Adam");

The weather parameter in the function has been assigned a default value of raining, which will be used
if the function is invoked with only one argument, producing the following results:

Hello Adam.
It is raining today

Rest parameters are used to capture any additional arguments when a function is invoked with
additional arguments, as shown in Listing 5-11.

Listing 5-11. Using a Rest Parameter in the primer.ts File

let myFunc = function (name, weather, ...extraArgs) {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today");
 for (let i = 0; i < extraArgs.length; i++) {
 console.log("Extra Arg: " + extraArgs[i]);
 }
};

myFunc("Adam", "sunny", "one", "two", "three");

The rest parameter must be the last parameter defined by the function, and its name is prefixed with an
ellipsis (three periods, ...). The rest parameter is an array to which any extra arguments will be assigned. In
the listing, the function prints out each extra argument to the console, producing the following results:

Hello Adam.
It is sunny today
Extra Arg: one
Extra Arg: two
Extra Arg: three

Defining Functions That Return Results
You can return results from functions using the return keyword. Listing 5-12 shows a function that returns a
result.

Chapter 5 ■ JavaSCript and typeSCript: part 1

76

Listing 5-12. Returning a Result from a Function in the primer.ts File

let myFunc = function(name) {
 return ("Hello " + name + ".");
};

console.log(myFunc("Adam"));

This function defines one parameter and uses it to produce a result. I invoke the function and pass the
result as the argument to the console.log function, like this:

...
console.log(myFunc("Adam"));
...

Notice that you don’t have to declare that the function will return a result or denote the data type of the
result. The result from this listing is as follows:

Hello Adam.

Using Functions as Arguments to Other Functions
JavaScript functions can be passed around as objects, which means you can use one function as the
argument to another, as demonstrated in Listing 5-13.

Listing 5-13. Using a Function as an Arguments to Another Function in the primer.ts File

let myFunc = function (nameFunction) {
 return ("Hello " + nameFunction() + ".");
};

console.log(myFunc(function () {
 return "Adam";
}));

The myFunc function defines a parameter called nameFunction that it invokes to get the value to insert
into the string that it returns. I pass a function that returns Adam as the argument to myFunc, which produces
the following output:

Hello Adam.

Functions can be chained together, building up more complex functionality from small and easily
tested pieces of code, as shown in Listing 5-14.

Listing 5-14. Chaining Functions Calls in the primer.ts File

let myFunc = function (nameFunction) {
 return ("Hello " + nameFunction() + ".");
};

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ JavaSCript and typeSCript: part 1

77

let printName = function (nameFunction, printFunction) {
 printFunction(myFunc(nameFunction));
}

printName(function () { return "Adam" }, console.log);

This example produces the same result as Listing 5-13.

Using Arrow Functions
Arrow functions—also known as fat arrow functions or lambda expressions—are an alternative way of
defining functions and are often used to define functions that are used only as arguments to other functions.
Listing 5-15 replaces the functions from the previous example with arrow functions.

Listing 5-15. Using Arrow Functions in the primer.ts File

let myFunc = (nameFunction) => ("Hello " + nameFunction() + ".");

let printName = (nameFunction, printFunction) => printFunction(myFunc(nameFunction));

printName(function () { return "Adam" }, console.log);

These functions perform the same work as the ones in Listing 5-14. There are three parts to an arrow
function: the input parameters, then an equal sign and a greater-than sign (the “arrow”), and finally the
function result. The return keyword and curly braces are required only if the arrow function needs to
execute more than one statement. There are more examples of arrow functions later in this chapter.

Using Variables and Types
The let keyword is used to declare variables and, optionally, assign a value to the variable in a single
statement. Variables declared with let are scoped to the region of code in which they are defined, as shown
in Listing 5-16.

Listing 5-16. Using let to Declare Variables in the primer.ts File

let messageFunction = function (name, weather) {
 let message = "Hello, Adam";
 if (weather == "sunny") {
 let message = "It is a nice day";
 console.log(message);
 } else {
 let message = "It is " + weather + " today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

Chapter 5 ■ JavaSCript and typeSCript: part 1

78

In this example, there are three statements that use the let keyword to define a variable called message.
The scope of each variable is limited to the region of code that it is defined in, producing the following results:

It is raining today
Hello, Adam

This may seem like an odd example, but there is another keyword that can be used to declare variables:
var. The let keyword is a relatively new addition to the JavaScript specification that is intended to address some
oddities in the way var behaves. Listing 5-17 takes the example from Listing 5-16 and replaces let with var.

Listing 5-17. Using var to Declare Variables in the primer.ts File

let messageFunction = function (name, weather) {
 var message = "Hello, Adam";
 if (weather == "sunny") {
 var message = "It is a nice day";
 console.log(message);
 } else {
 var message = "It is " + weather + " today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

When you save the changes in the listing, you will see the following results:

It is raining today
It is raining today

The problem is that the var keyword creates variables whose scope is the containing function, which
means that all the references to message are referring to the same variable. This can cause unexpected results
for even experienced JavaScript developers and is the reason that the more conventional let keyword was
introduced. You are free to use let or var in Angular development; I have used let throughout this book.

USING VARIABLE CLOSURE

if you define a function inside another function—creating inner and outer functions—then the inner
function is able to access the outer functions variables, using a feature called closure, like this:

let myGlobalVar = "apples";

let myFunc = function(name) {
 let myLocalVar = "sunny";
 let innerFunction = function () {
 return ("Hello " + name + ". Today is " + myLocalVar + ".");
 }

Chapter 5 ■ JavaSCript and typeSCript: part 1

79

 return innerFunction();

};
console.log(myFunc("Adam"));

the inner function in this example is able to access the local variables of the outer function, including its
parameter. this is a powerful feature that means you don’t have to define parameters on inner functions
to pass around data values, but caution is required because it is easy to get unexpected results when
using common variable names like counter or index, where you may not realize that you are reusing a
variable name from the outer function.

Using the Primitive Types
JavaScript defines a basic set of primitive types: string, number, and boolean. This may seem like a short list,
but JavaScript manages to fit a lot of flexibility into these three types.

Working with Booleans
The boolean type has two values: true and false. Listing 5-18 shows both values being used, but this type is
most useful when used in conditional statements, such as an if statement. There is no console output from
this listing.

Listing 5-18. Defining boolean Values in the primer.ts File

let firstBool = true;
let secondBool = false;

Working with Strings
You define string values using either the double quote or single quote characters, as shown in Listing 5-19.

Listing 5-19. Defining string Variables in the primer.ts File

let firstString = "This is a string";
let secondString = 'And so is this';

The quote characters you use must match. You can’t start a string with a single quote and finish with
a double quote, for example. There is no console output for this listing. JavaScript provides string objects
with a basic set of properties and methods, the most useful of which are described in Table 5-2.

Chapter 5 ■ JavaSCript and typeSCript: part 1

80

Using Template Strings

A common programming task is to combine static content with data values to produce a string that can be
presented to the user. The traditional way to do this is through string concatenation, which is the approach I
have been using in the examples so far in this chapter, as follows:

...
let message = "It is " + weather + " today";
...

JavaScript also now supports template strings, which allow data values to be specified inline, which
can help reduce errors and result in a more natural development experience. Listing 5-20 shows the use of a
template string.

Listing 5-20. Using a Template String in the primer.js File

let messageFunction = function (weather) {
 let message = `It is ${weather} today`;
 console.log(message);
}

messageFunction("raining");

Template strings begin and end with backticks (the ` character), and data values are denoted by curly
braces preceded by a dollar sign. This string, for example, incorporates the value of the weather variable into
the template string:

Table 5-2. Useful string Properties and Methods

Name Description

length This property returns the number of characters in the string.

charAt(index) This method returns a string containing the character at the
specified index.

concat(string) This method returns a new string that concatenates together the
string on which the method is called and the string provided as an
argument.

indexOf(term, start) This method returns the first index at which term appears in the
string or -1 if there is no match. The optional start argument
specifies the start index for the search.

replace(term, newTerm) This method returns a new string in which all instances of term are
replaced with newTerm.

slice(start, end) This method returns a substring containing the characters between
the start and end indices.

split(term) This method splits up a string into an array of values that were
separated by term.

toUpperCase() toLowerCase() These methods return new strings in which all the characters are
uppercase or lowercase.

trim() This method returns a new string from which all the leading and
trailing whitespace characters have been removed.

Chapter 5 ■ JavaSCript and typeSCript: part 1

81

...
let message = `It is ${weather} today`;
...

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real numbers).
Listing 5-21 provides a demonstration.

Listing 5-21. Defining number Values in the primer.ts File

let daysInWeek = 7;
let pi = 3.14;
let hexValue = 0xFFFF;

You don’t have to specify which kind of number you are using. You just express the value you require,
and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point
value, and prefixed a value with 0x to denote a hexadecimal value.

Using JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful in Table 5-3.

Using Conditional Statements
Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend to
use the if/else and switch statements. Listing 5-22 shows the use of both, which will be familiar if you have
worked with pretty much any programming language.

Table 5-3. Useful JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+, -, *, /, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

==, != Equality and inequality tests

===, !== Identity and nonidentity tests

&&, || Logical AND and OR (|| is used to coalesce null values)

= Assignment

+ String concatenation

?: Three operand conditional statement

Chapter 5 ■ JavaSCript and typeSCript: part 1

82

Listing 5-22. Using the if/else and switch Conditional Statements in the primer.ts File

let name = "Adam";

if (name == "Adam") {
 console.log("Name is Adam");
} else if (name == "Jacqui") {
 console.log("Name is Jacqui");
} else {
 console.log("Name is neither Adam or Jacqui");
}

switch (name) {
 case "Adam":
 console.log("Name is Adam");
 break;
 case "Jacqui":
 console.log("Name is Jacqui");
 break;
 default:
 console.log("Name is neither Adam or Jacqui");
 break;
}

The results from the listing are as follows:

Name is Adam
Name is Adam

The Equality Operator vs. the Identity Operator
The equality and identity operators are of particular note. The equality operator will attempt to coerce
(convert) operands to the same type in order to assess equality. This is a handy feature, as long as you are
aware it is happening. Listing 5-23 shows the equality operator in action.

Listing 5-23. Using the Equality Operator in the primer.ts File

let firstVal = 5;
let secondVal = "5";

if (firstVal == secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

The output from this script is as follows:

They are the same

Chapter 5 ■ JavaSCript and typeSCript: part 1

83

JavaScript is converting the two operands into the same type and comparing them. In essence, the
equality operator tests that values are the same irrespective of their type. If you want to test to ensure that the
values and the types are the same, then you need to use the identity operator (===, three equal signs, rather
than the two of the equality operator), as shown in Listing 5-24.

Listing 5-24. Using the Identity Operator in the primer.ts File

let firstVal = 5;
let secondVal = "5";

if (firstVal === secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

In this example, the identity operator will consider the two variables to be different. This operator
doesn’t coerce types. The result from this script is as follows:

They are NOT the same

Explicitly Converting Types
The string concatenation operator (+) has a higher precedence than the addition operator (also +), which
means that JavaScript will concatenate variables in preference to adding. This can cause confusion because
JavaScript will also convert types freely to produce a result—and not always the result that is expected, as
shown in Listing 5-25.

Listing 5-25. String Concatentation Operator Precedence in the primer.ts File

let myData1 = 5 + 5;
let myData2 = 5 + "5";

console.log("Result 1: " + myData1);
console.log("Result 2: " + myData2);

The result from this script is as follows:

Result 1: 10
Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition
operation is interpreted as string concatenation through a combination of operator precedence and over-
eager type conversion. To avoid this, you can explicitly convert the types of values to ensure you perform the
right kind of operation, as described in the following sections.

Converting Numbers to Strings
If you are working with multiple number variables and want to concatenate them as strings, then you can
convert the numbers to strings with the toString method, as shown in Listing 5-26.

Chapter 5 ■ JavaSCript and typeSCript: part 1

84

Listing 5-26. Using the number.toString Method in the primer.ts File

let myData1 = (5).toString() + String(5);
console.log("Result: " + myData1);

Notice that I placed the numeric value in parentheses, and then I called the toString method. This
is because you have to allow JavaScript to convert the literal value into a number before you can call the
methods that the number type defines. I have also shown an alternative approach to achieve the same effect,
which is to call the String function and pass in the numeric value as an argument. Both of these techniques
have the same effect, which is to convert a number to a string, meaning that the + operator is used for string
concatenation and not addition. The output from this script is as follows:

Result: 55

There are some other methods that allow you to exert more control over how a number is represented
as a string. I briefly describe these methods in Table 5-4. All of the methods shown in the table are defined by
the number type.

Converting Strings to Numbers
The complementary technique is to convert strings to numbers so that you can perform addition rather than
concatenation. You can do this with the Number function, as shown in Listing 5-27.

Listing 5-27. Converting Strings to Numbers in the primer.ts File

let firstVal = "5";
let secondVal = "5";

let result = Number(firstVal) + Number(secondVal);
console.log("Result: " + result);

Table 5-4. Useful Number-to-String Methods

Method Description

toString() This method returns a string that represents a number in
base 10.

toString(2) toString(8) toString(16) This method returns a string that represents a number in
binary, octal, or hexadecimal notation.

toFixed(n) This method returns a string representing a real number
with the n digits after the decimal point.

toExponential(n) This method returns a string that represents a number
using exponential notation with one digit before the
decimal point and n digits after.

toPrecision(n) This method returns a string that represents a number
with n significant digits, using exponential notation if
required.

Chapter 5 ■ JavaSCript and typeSCript: part 1

85

The output from this script is as follows:

Result: 10

The Number function is strict in the way that is parses string values, but there are two other functions you
can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt
and parseFloat. I have described all three methods in Table 5-5.

Working with Arrays
JavaScript arrays work like arrays in most other programming languages. Listing 5-28 shows how you can
create and populate an array.

Listing 5-28. Creating and Populating an Array in the primer.ts File

let myArray = new Array();
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

I have created a new array by calling new Array(). This creates an empty array, which I assign to the
variable myArray. In the subsequent statements, I assign values to various index positions in the array.
(There is no console output from this listing.)

There are a couple of things to note in this example. First, I didn’t need to declare the number of items in
the array when I created it. JavaScript arrays will resize themselves to hold any number of items. The second
point is that I didn’t have to declare the data types that the array will hold. Any JavaScript array can hold any
mix of data types. In the example, I have assigned three items to the array: a number, a string, and a boolean.

Using an Array Literal
The array literal style lets you create and populate an array in a single statement, as shown in Listing 5-29.

Listing 5-29. Using the Array Literal Style in the primer.ts File

let myArray = [100, "Adam", true];

In this example, I specified that the myArray variable should be assigned a new array by specifying the
items I wanted in the array between square brackets ([and]). (There is no console output from this listing.)

Table 5-5. Useful String to Number Methods

Method Description

Number(str) This method parses the specified string to create an integer or real value.

parseInt(str) This method parses the specified string to create an integer value.

parseFloat(str) This method parses the specified string to create an integer or real value.

Chapter 5 ■ JavaSCript and typeSCript: part 1

86

Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between the
braces, as shown in Listing 5-30.

Listing 5-30. Reading the Data from an Array Index in the primer.ts File

let myArray = [100, "Adam", true];
console.log("Index 0: " + myArray[0]);

You can modify the data held in any position in a JavaScript array simply by assigning a new value to
the index. Just as with regular variables, you can switch the data type at an index without any problems. The
output from the listing is as follows:

Index 0: 100

Listing 5-31 demonstrates modifying the contents of an array.

Listing 5-31. Modifying the Contents of an Array in the primer.ts File

let myArray = [100, "Adam", true];
myArray[0] = "Tuesday";
console.log("Index 0: " + myArray[0]);

In this example, I have assigned a string to position 0 in the array, a position that was previously held
by a number and produces this output:

Index 0: Tuesday

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop or using the forEach method, which receives a
function that is called to process each element in the array. Both approaches are shown in Listing 5-32.

Listing 5-32. Enumerating the Contents of an Array in the primer.ts File

let myArray = [100, "Adam", true];

for (let i = 0; i < myArray.length; i++) {
 console.log("Index " + i + ": " + myArray[i]);
}

console.log("---");

myArray.forEach((value, index) => console.log("Index " + index + ": " + value));

The JavaScript for loop works just the same way as loops in many other languages. You determine how
many elements there are in the array by using the length property.

Chapter 5 ■ JavaSCript and typeSCript: part 1

87

The function passed to the forEach method is given two arguments: the value of the current item
to be processed and the position of that item in the array. In this listing, I have used an arrow function as
the argument to the forEach method and is the kind of use for which they excel (and you will see used
throughout this book). The output from the listing is as follows:

Index 0: 100
Index 1: Adam
Index 2: true

Index 0: 100
Index 1: Adam
Index 2: true

Using the Built-in Array Methods
The JavaScript Array object defines a number of methods that you can use to work with arrays, the most
useful of which are described in Table 5-6.

Table 5-6. Useful Array Methods

Method Description

concat(otherArray) This method returns a new array that concatenates the array on which it has
been called with the array specified as the argument. Multiple arrays can be
specified.

join(separator) This method joins all the elements in the array to form a string. The
argument specifies the character used to delimit the items.

pop() This method removes and returns the last item in the array.

shift() This method removes and returns the first element in the array.

push(item) This method appends the specified item to the end of the array.

unshift(item) This method inserts a new item at the start of the array.

reverse() This method returns a new array that contains the items in reverse order.

slice(start,end) This method returns a section of the array.

sort() This method sorts the array. An optional comparison function can be used
to perform custom comparisons.

splice(index, count) This method removes count items from the array, starting at the specified
index. The removed items are returned as the result of the method.

unshift(item) This method inserts a new item at the start of the array.

every(test) This method calls the test function for each item in the array and returns
true if the function returns true for all of them and false otherwise.

some(test) This method returns true if calling the test function for each item in the
array returns true at least once.

(continued)

Chapter 5 ■ JavaSCript and typeSCript: part 1

88

Since many of the methods in Table 5-6 return a new array, these methods can be chained together to
process a data array, as shown in Listing 5-33.

Listing 5-33. Processing a Data Array in the primer.ts File

let products = [
 { name: "Hat", price: 24.5, stock: 10 },
 { name: "Kayak", price: 289.99, stock: 1 },
 { name: "Soccer Ball", price: 10, stock: 0 },
 { name: "Running Shoes", price: 116.50, stock: 20 }
];

let totalValue = products
 .filter(item => item.stock > 0)
 .reduce((prev, item) => prev + (item.price * item.stock), 0);

console.log("Total value: $" + totalValue.toFixed(2));

I use the filter method to select the items in the array whose stock value is greater than zero and use
the reduce method to determine the total value of those items, producing the following output:

Total value: $2864.99

Summary
In this chapter I provided a brief primer on the JavaScript, focusing on the core functionality that will get you
started with the language. Some of the features that I described in this chapter are recent additions to the
JavaScript specification and require the TypeScript compiler to convert them to code that can run in older
browsers. I continue this theme in the next chapter and introduce some of the more advanced JavaScript
features that are used in Angular development.

Table 5-6. (continued)

Method Description

filter(test) This method returns a new array containing the items for which the test
function returns true.

find(test) This method returns first item in the array for which the test function
returns true.

findIndex(test) This method returns the index of the first item in the array for which the
test function returns true.

foreach(callback) This method invokes the callback function for each item in the array, as
described in the previous section.

includes(value) This method returns true if the array contains the specified value.

map(callback) This method returns a new array containing the result of invoking the
callback function for every item in the array.

reduce(callback) This method returns the accumulated value produced by invoking the
callback function for every item in the array.

89© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_6

CHAPTER 6

JavaScript and TypeScript: Part 2

In this chapter, I describe some of the more advanced JavaScript features that are useful for Angular
development. I explain how JavaScript deals with objects, including support for classes, and I explain
how JavaScript functionality is packaged into JavaScript modules. I also introduce some of the features
that TypeScript provides that are not part of the JavaScript specification and that I rely on for some of the
examples later in the book. Table 6-1 summarizes the chapter.

Preparing the Example Project
For this chapter, I continue using the JavaScriptPrimer project from Chapter 5. No changes are required to
prepare for this chapter, and running the following command in the JavaScriptPrimer folder will start the
TypeScript compiler and the development HTTP server:

npm start

A new browser window will open and show the content in Figure 6-1.

Table 6-1. Chapter Summary

Problem Solution Listing

Create an object by specifying
properties and values

Use the new keyword or use an object
literal

1–3

Create an object using a template Define a class 4, 5

Inherit behavior from another class Use the extends keyword 6

Package JavaScript features together Create a JavaScript module 7

Declare a dependency on a module Use the import keyword 8–12

Declare the types used by properties,
parameters, and variables

Use TypeScript type annotations 13–18

Specify multiple types Use union types 19–21

Create ad hoc groups of types Use tuples 22

Group values together by key Use indexable types 23

Control access to the methods and
properties in a class

Use the access control modifiers 24

http://dx.doi.org/10.1007/978-1-4842-2307-9_5

Chapter 6 ■ JavaSCript and typeSCript: part 2

90

The examples in this chapter rely on the browser’s JavaScript console to display messages. If you look at
the console, you will see the following result:

Total value: $2864.99

Working with Objects
There are several ways to create objects in JavaScript. Listing 6-1 gives a simple example to get started.

 ■ Note Some of the examples in this chapter cause the typeScript compiler to report errors. the examples
still work, and you can ignore these messages, which arise because typeScript provides some extra features
that i don’t describe until later in this chapter.

Listing 6-1. Creating an Object in the primer.ts File

let myData = new Object();
myData.name = "Adam";
myData.weather = "sunny";

console.log("Hello " + myData.name + ".");
console.log("Today is " + myData.weather + ".");

I create an object by calling new Object(), and I assign the result (the newly created object) to a
variable called myData. Once the object is created, I can define properties on the object just by assigning
values, like this:

...
myData.name = "Adam";
...

Figure 6-1. Running the example application

Chapter 6 ■ JavaSCript and typeSCript: part 2

91

Prior to this statement, my object doesn’t have a property called name. When the statement has
executed, the property does exist, and it has been assigned the value Adam. You can read the value of a
property by combining the variable name and the property name with a period, like this:

...
console.log("Hello " + myData.name + ".");
...

The result from the listing is as follows:

Hello Adam.
Today is sunny.

Using Object Literals
You can define an object and its properties in a single step using the object literal format, as shown in
Listing 6-2.

Listing 6-2. Using the Object Literal Format in the primer.ts File

let myData = {
 name: "Adam",
 weather: "sunny"
};

console.log("Hello " + myData.name + ". ");
console.log("Today is " + myData.weather + ".");

Each property that you want to define is separated from its value using a colon (:), and properties are
separated using a comma (,). The effect is the same as in the previous example, and the result from the
listing is as follows:

Hello Adam.
Today is sunny.

Using Functions as Methods
One of the features that I like most about JavaScript is the way you can add functions to objects. A function
defined on an object is called a method. Listing 6-3 shows how you can add methods in this manner.

Listing 6-3. Adding Methods to an Object in the primer.ts File

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function () {

Chapter 6 ■ JavaSCript and typeSCript: part 2

92

 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
 }
};
myData.printMessages();

In this example, I have used a function to create a method called printMessages. Notice that to refer to
the properties defined by the object, I have to use the this keyword. When a function is used as a method,
the function is implicitly passed the object on which the method has been called as an argument through the
special variable this. The output from the listing is as follows:

Hello Adam.
Today is sunny.

Defining Classes
Classes are templates that are used to create objects that have identical functionality. Support for classes is a
recent addition to the JavaScript specification intended to make working with JavaScript more consistent with
other mainstream programming languages, and they are used throughout Angular development. Listing 6-4
shows how the functionality defined by the object in the previous section can be expressed using a class.

Listing 6-4. Defining a Class in the primer.ts File

class MyClass {

 constructor(name, weather) {
 this.name = name;
 this.weather = weather;
 }

 printMessages() {
 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
 }
}

let myData = new MyClass("Adam", "sunny");
myData.printMessages();

JavaScript classes will be familiar if you have used another mainstream language such as Java or C#. The
class keyword is used to declare a class, followed by the name of the class, which is MyClass in this case.

The constructor function is invoked when a new object is created using the class, and it provides
an opportunity to receive data values and do any initial setup that the class requires. In the example, the
constructor defines name and weather parameters that are used to create variables with the same names.
Variables defined like this are known as properties.

Classes can have methods, which defined as functions, albeit without needing to use the function
keyword. There is one method in the example, called printMessages, and it uses the values of the name and
weather properties to write messages to the browser’s JavaScript console.

Chapter 6 ■ JavaSCript and typeSCript: part 2

93

 ■ Tip Classes can also have static methods, denoted by the static keyword. Static methods belong to the
class rather than the objects they create. i have included an example of a static method in Listing 6-14.

The new keyword is used to create an object from a class, like this:

...
let myData = new MyClass("Adam", "sunny");
...

This statement creates a new object using the MyClass class as its template. MyClass is used like a
function in this situation, and the arguments passed to it will be received by the constructor function
defined by the class. The result of this expression is a new object that is assigned to a variable called myData.
Once you have created an object, you can access its properties and methods through the variable to which it
has been assigned, like this:

...
myData.printMessages();
...

This example produces the following results in the browser’s JavaScript console:

Hello Adam.
Today is sunny.

JAVASCRIPT CLASSES VS PROTOTYPES

the class feature doesn’t change the underlying way that JavaScript handles types. instead, it simply
provides a way to use them that is more familiar to the majority of programmers. Behind the scenes,
JavaScript still uses its traditional type system, which is based on prototypes. as an example, the code
in Listing 6-4 can also be written like this:

var MyClass = function MyClass(name, weather) {
 this.name = name;
 this.weather = weather;
}

MyClass.prototype.printMessages = function () {
 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
};

var myData = new MyClass("Adam", "sunny");
myData.printMessages();

Chapter 6 ■ JavaSCript and typeSCript: part 2

94

angular development is easier when using classes, which is the approach that i have taken throughout
this book. a lot of the features introduced in eS6 are classified as syntactic sugar, which means that
they make aspects of JavaScript easier to understand and use. the term syntactic sugar may seem
pejorative, but JavaScript has some odd quirks, and many of these features help developers avoid
common pitfalls.

Defining Class Getter and Setter Properties
JavaScript classes can define properties in their constructor, resulting in a variable that can be read and
modified elsewhere in the application. Getters and setters appear as regular properties outside of the class,
but they allow the introduction of additional logic, which is useful for validating or transforming new values
or generating values programmatically, as shown in Listing 6-5.

Listing 6-5. Using Getters and Setters in the primer.ts File

class MyClass {
 constructor(name, weather) {
 this.name = name;
 this._weather = weather;
 }

 set weather(value) {
 this._weather = value;
 }

 get weather() {
 return `Today is ${this._weather}`;
 }

 printMessages() {
 console.log("Hello " + this.name + ". ");
 console.log(this.weather);
 }
}

let myData = new MyClass("Adam", "sunny");
myData.printMessages();

The getter and setter are implemented as functions preceded by the get or set keyword. There is no
notion of access control in JavaScript classes, and the convention is to prefix the names of internal properties
with an underscore (the _ character). In the listing, the weather property is implemented with a setter that
updates a property called _weather and a getter that incorporates the _weather value in a template string.
This example produces the following results in the browser’s JavaScript console:

Hello Adam.
Today is sunny

Chapter 6 ■ JavaSCript and typeSCript: part 2

95

Using Class Inheritance
Classes can inherit behavior from other classes using the extends keyword, as shown in Listing 6-6.

Listing 6-6. Using Class Inheritance in the primer.ts File

class MyClass {
 constructor(name, weather) {
 this.name = name;
 this._weather = weather;
 }

 set weather(value) {
 this._weather = value;
 }

 get weather() {
 return `Today is ${this._weather}`;
 }

 printMessages() {
 console.log("Hello " + this.name + ". ");
 console.log(this.weather);
 }
}

class MySubClass extends MyClass {

 constructor(name, weather, city) {
 super(name, weather);
 this.city = city;
 }

 printMessages() {
 super.printMessages();
 console.log(`You are in ${this.city}`);
 }
}

let myData = new MySubClass("Adam", "sunny", "London");
myData.printMessages();

The extends keyword is used to declare the class that will be inherited from, known as the super class
or base class. In the listing, the MySubClass inherits from MyClass. The super keyword is used to invoke the
super class’s constructor and methods. The MySubClass builds on the MyClass functionality to add support
for a city, producing the following results in the browser’s JavaScript console:

Hello Adam.
Today is sunny
You are in London

Chapter 6 ■ JavaSCript and typeSCript: part 2

96

Working with JavaScript Modules
JavaScript modules are used to manage the dependencies in a web application, which means you don’t
need to manage a set of script elements in the HTML document. Instead, a module loader is responsible
for figuring out which files are required to run an application, loading those files and executing them in the
right order. In a complex application, this is a difficult task to perform manually, and it is something that is
well-suited to automation.

Creating Modules
Creating modules is simple and is performed automatically when TypeScript compiles a file, because each
file is treated as a module. The export keyword is used to denote variables and classes that can be used
outside of the file, which means that any other variables or classes can be used only within the file. To
demonstrate how modules work, I created a folder called modules in the JavaScriptPrimer folder, added to
it a file called NameAndWeather.ts, and used it to define the classes shown in Listing 6-7.

 ■ Tip angular has a convention of defining one class per file, which means that every class in an angular
project is contained in a separate module, and you will see the export keyword used throughout the examples
in this book.

Listing 6-7. The Contents of the NameAndWeather.ts File in the JavaScriptPrimer/modules Folder

export class Name {
 constructor(first, second) {
 this.first = first;
 this.second = second;
 }

 get nameMessage() {
 return `Hello ${this.first} ${this.second}`;
 }
}

export class WeatherLocation {
 constructor(weather, city) {
 this.weather = weather;
 this.city = city;
 }

 get weatherMessage() {
 return `It is ${this.weather} in ${this.city}`;
 }
}

The export keyword has been applied to each of the classes in the new file, which means they can be
used elsewhere in the application.

Chapter 6 ■ JavaSCript and typeSCript: part 2

97

DIFFERENT MODULE FORMATS

there are different types of JavaScript module, each of which is supported by a different set of module
loaders. the typeScript compiler can be configured to produce the most popular formats, specified
through the module property in the tsconfig.json file. the commonjs format is used for angular
development, which can be seen in the tsconfig.json file created in Chapter 5.

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

this format can be handled by the SystemJS module loader that i used for the examples in this book
and that i describe in Chapter 11.

Importing from JavaScript Modules
The import keyword is used to declare dependencies on the contents of a module. There are different ways
to use the import keyword, as described in the following sections.

Importing Specific Types
The conventional way to use the import keyword is to declare dependencies on specific types, as shown in
Listing 6-8. This has the advantage of minimizing the dependencies in the application, which can be used to
optimize the application for deployment, as described in Chapter 10.

Listing 6-8. Importing Specific Types in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");

console.log(name.nameMessage);
console.log(loc.weatherMessage);

This is the way that I have used the import keyword in most of the examples in this book. The keyword
is followed by curly braces that contain a comma-separated list of the classes that the code in the current
files depends on, followed by the from keyword, followed by the module name. In this case, I have imported
the Name and WeatherLocation classes from the NameAndWeather module in the modules folder. Notice that
the file extension is not included when specifying the module.

http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 6 ■ JavaSCript and typeSCript: part 2

98

 ■ Tip notice that i didn’t have to make any changes to the project to start using the NameAndWeather
module. the import statement in the primer.ts file declares a dependency on the module, which the module
loader resolves automatically.

The example in Listing 6-8 produces the following messages in the browser’s JavaScript console:

Hello Adam Freeman
It is raining in London

UNDERSTANDING MODULE RESOLUTION

you will see two different ways of specifying modules in the import statements in this book. the first is a
relative module, in which the name of the module is prefixed with ./, like this example from Listing 6-8:

...
import { Name, WeatherLocation } from "./modules/NameAndWeather";
...

this kind of import tells the typeScript compiler that the module is located relative to the file that contains
the import statement. in this case, the NameAndWeather.ts file is in the modules directory, which is in
the same directory as the primer.ts file. the other type of import is nonrelative. here is an example of a
nonrelative import from Chapter 2 and one that you will see in just about every chapter in this book:

...
import { Component } from "@angular/core";
...

this import statement doesn’t begin with ./ and so the typeScript compiler resolves it using the npM
packages in the node_modules folder.

the JavaScript module loader must also be configured so that it knows how to resolve both relative and
nonrelative modules using http requests. i describe this process in detail in Chapter 11.

Renaming Imports
In complex projects that have lots of dependencies, it is possible that you will need to use two classes with
the same name from different modules. To re-create this problem, I created a file called DuplicateName.ts
in the JavaScriptPrimer/modules folder and defined the class shown in Listing 6-9.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 6 ■ JavaSCript and typeSCript: part 2

99

Listing 6-9. The Contents of the DuplicateName.ts File in the JavaScriptPrimer/modules Folder

export class Name {

 get message() {
 return "Other Name";
 }
}

This class doesn’t do anything useful, but it is called Name, which means that importing it using the
approach in Listing 6-8 will cause a conflict because the compiler won’t be able to differentiate between
the classes. The solution is to use the as keyword, which allows an alias to be created for a class when it is
important from a module, as shown in Listing 6-10.

Listing 6-10. Using a Module Alias in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");
let other = new OtherName();

console.log(name.nameMessage);
console.log(loc.weatherMessage);
console.log(other.message);

The Name class in the DupliateName module is imported as OtherName, which allows it to be used
without conflicting with the Name class in the NameAndWeather module. This example produces the following
output:

Hello Adam Freeman
It is raining in London
Other Name

Importing All of the Types in a Module
An alternative approach is to import the module as an object that has properties for each of the types it
contains, as shown in Listing 6-11.

Listing 6-11. Importing a Module as an Object in the primer.ts File

import * as NameAndWeatherLocation from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";

let name = new NameAndWeatherLocation.Name("Adam", "Freeman");
let loc = new NameAndWeatherLocation.WeatherLocation("raining", "London");
let other = new OtherName();

Chapter 6 ■ JavaSCript and typeSCript: part 2

100

console.log(name.nameMessage);
console.log(loc.weatherMessage);
console.log(other.message);

The import statement in this example imports the contents of the NameAndWeather module and creates
an object called NameAndWeatherLocation. This object has Name and Weather properties that correspond to
the classes defined in the module. This example produces the same output as Listing 6-10.

 ■ Tip not all modules export types, which means you can’t specify the names that you want to import.
in this situation, you can use an import statement that specifies the JavaScript file name, without the file
extension. there are some examples in this that use this technique, which is why you will see statements such
as import "rxjs/add/operator/map" used in the SportsStore application in Chapter 8. this statement causes
the module loader to execute the contents of the rxjs/add/operator/map.js file, which adds a method used
to process data received from an http request.

Useful TypeScript Features
TypeScript is a superset of JavaScript, which means it isn’t just a compiler for working with the latest
JavaScript features. In the sections that follow, I demonstrate the most useful TypeScript features for Angular
development, many of which I have used in the examples in this book.

You don’t have to use any of the features that I describe in this section. All of these features are optional
for Angular development, and you can create complex and fully functioning applications with just the
JavaScript features described in Chapter 5 and the previous sections of this chapter. But these TypeScript
features can make some Angular features easier to use, as I explain in later chapters.

 ■ Tip typeScript supports more features than i describe in this chapter. i introduce some additional features as i
use them in later chapters, but for a full reference, see the typeScript homepage at www.typescriptlang.org.

Using Type Annotations
The flexibility of the JavaScript type system tends to polarize developers. For some developers, the fluidity
of JavaScript types is powerful, expressive, and dynamic. For others, it is a recipe for chaos, to the extent that
many developers are left with the impression that JavaScript doesn’t have a type system at all.

The headline TypeScript feature is support for type annotations, which can help reduce common
JavaScript errors by applying type checking when the code is compiled, in a way that is reminiscent of
languages like C# or Java. If you have struggled to come to terms with the JavaScript type system (or didn’t
even realize that there was one), then type annotations can go a long way to preventing the most common
errors. (On the other hand, if you like the freedom of regular JavaScript types, you may find TypeScript type
annotations restrictive and annoying.)

To show the kind of problem that type annotations solve, I created a file called tempConverter.ts in the
JavaScriptPrimer folder and added the code in Listing 6-12.

http://dx.doi.org/10.1007/978-1-4842-2307-9_8
http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://www.typescriptlang.org/

Chapter 6 ■ JavaSCript and typeSCript: part 2

101

Listing 6-12. The Contents of the tempConverter.ts in the JavaScriptPrimer Folder

export class TempConverter {

 static convertFtoC(temp) {
 return ((parseFloat(temp.toPrecision(2)) - 32) / 1.8).toFixed(1);
 }
}

The TempConverter class contains a simple static method called convertFtoC that accepts a
temperature value expressed in degrees Fahrenheit and returns the same temperature expressed in degrees
Celsius.

The problem is that there are some assumptions in this code that are not explicit. The convertFtoC
method expected to receive a number value, on which the toPrecision method is called to set the number
of floating-point digits. The method returns a string, although that is difficult to tell without inspecting the
code carefully (the result of the toFixed method is a string).

These implicit assumptions lead to problems, especially when one developer is using JavaScript code
written by another developer. In Listing 6-13, I have deliberately created an error by passing the temperature
as a string value, instead of the number that the method expects.

Listing 6-13. Using the Wrong Type in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";
import { TempConverter } from "./tempConverter";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");
let other = new OtherName();

let cTemp = TempConverter.convertFtoC("38");

console.log(name.nameMessage);
console.log(loc.weatherMessage);
console.log(`The temp is ${cTemp}C`);

When the code is executed by the browser, you will see the following message in the browser’s
JavaScript console (the exact working may differ based on the browser you are using):

temp.toPrecision is not a function

This kind of issue can be fixed without using TypeScript, of course, but it does mean that a substantial
amount of the code in any JavaScript application is given over to checking the types that are being used. The
TypeScript solution is to make type enforcement the job of the compiler, using type annotations that are
added to the JavaScript code. In Listing 6-14, I have added type annotations to the TempConverter class.

Listing 6-14. Adding Type Annotations in the tempConverter.ts File

export class TempConverter {

 static convertFtoC(temp: number) : string {

Chapter 6 ■ JavaSCript and typeSCript: part 2

102

 return ((parseFloat(temp.toPrecision(2)) - 32) / 1.8).toFixed(1);
 }
}

Type annotations are expressed using a colon (the : character) followed by the type. There are two
annotations in the example. The first specifies that the parameter to the convertFtoC method should be a
number.

...
static convertFtoC(temp: number) : string {
...

The other annotation specifies that the result of the method is a string.

...
static convertFtoC(temp: number) : string {
...

When you save the changes to the file, the TypeScript compiler will run. Among the errors that are
reported will be this one:

primer.ts(8,39): error TS2345: Argument of type 'string' is not assignable to parameter of
type 'number'.

The TypeScript compiler has examined that the type of the value passed to the convertFtoC method
in the primer.ts file doesn’t match the type annotation and has reported an error. This is the core of the
TypeScript type system; it means you don’t have to write additional code in your classes to check that you
have received the expected types, and it also makes it easy to determine the type of a method result. To
resolve the error reported to the compiler, Listing 6-15 updates the statement that invokes the convertFtoC
method so that it uses a number.

Listing 6-15. Using a Number Argument in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";
import { TempConverter } from "./tempConverter";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");
let other = new OtherName();

let cTemp = TempConverter.convertFtoC(38);

console.log(name.nameMessage);
console.log(loc.weatherMessage);
console.log(other.message);
console.log(`The temp is ${cTemp}C`);

When you save the changes, you will see the following messages displayed in the browser’s JavaScript
console:

Chapter 6 ■ JavaSCript and typeSCript: part 2

103

Hello Adam Freeman
It is raining in London
Other Name
The temp is 3.3C

Type Annotating Properties and Variables
It isn’t just methods that type annotations can be applied to. They can also be applied to properties and
variables, ensuring that all of the types used in an application can be verified by the compiler. In Listing 6-16,
I have added type annotations to the classes in the NameAndWeather module.

TYPE DEFINITION FOR JAVASCRIPT LIBRARIES

typeScript works best when it has type information for all the packages that you are working with,
including the ones from third parties. Some of the packages required for angular (including the angular
framework itself) include the information that typeScript needs. For other packages, type information
must be downloaded and added to the package.

this is done using the typings tool, which you can see used in Chapter 7 and is explained in more
detail in Chapter 11.

Listing 6-16. Applying Type Annotations in the NameAndWeather.ts File

export class Name {
 first: string;
 second: string;

 constructor(first: string, second: string) {
 this.first = first;
 this.second = second;
 }

 get nameMessage() : string {
 return `Hello ${this.first} ${this.second}`;
 }
}

export class WeatherLocation {
 weather: string;
 city: string;

 constructor(weather: string, city: string) {
 this.weather = weather;
 this.city = city;
 }

http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 6 ■ JavaSCript and typeSCript: part 2

104

 get weatherMessage() : string {
 return `It is ${this.weather} in ${this.city}`;
 }
}

Properties are declared with a type annotation, following the same pattern as for parameter and result
annotations. The changes in Listing 6-17 resolve the remaining errors reported by the TypeScript compiler,
which was complaining because it didn’t know what the types were for the properties created in the
constructors.

The pattern of receiving constructor parameters and assigning their values to variables is so common
that TypeScript includes an optimization, as shown in Listing 6-17.

Listing 6-17. Creating Properties from Constructor Parameters in the NameAndWeather.ts File

export class Name {
 constructor(private first: string, private second: string) {}

 get nameMessage() : string {
 return `Hello ${this.first} ${this.second}`;
 }
}

export class WeatherLocation {

 constructor(private weather: string, private city: string) {}

 get weatherMessage() : string {
 return `It is ${this.weather} in ${this.city}`;
 }
}

The keyword private is an example of an access control modifier, which I describe in the “Using Access
Modifiers” section. Applying the keyword to the constructor parameter has the effect of automatically
defining the class property and assigning it the parameter value. The code in Listing 6-17 has the same effect
as Listing 6-16 but is more concise.

Specifying Multiple Types or Any Type
TypeScript allows multiple types to be specified, separated using a bar (the | character). This can be useful
when a method can accept or return multiple types or when a variable can be assigned values of different
types. Listing 6-18 modifies the convertFtoC method so that it will accept number or string values.

Listing 6-18. Accepting Multiple Values in the tempConverter.ts File

export class TempConverter {

 static convertFtoC(temp: number | string): string {
 let value: number = (<number>temp).toPrecision
 ? <number>temp : parseFloat(<string>temp);
 return ((parseFloat(value.toPrecision(2)) - 32) / 1.8).toFixed(1);
 }
}

Chapter 6 ■ JavaSCript and typeSCript: part 2

105

The type declaration for the temp parameter has changes to number | string, which means that the
method can accept either value. This is called a union type. Within the method, a type assertion is used to
work out which type has been received. This is a slightly awkward process, but the parameter value is cast to
a number value in order to check is there is a toPrecision method defined on the result, like this:

...
(<number>temp).toPrecision
...

The angle brackets (the < and > characters) are to declare a type assertion, which will attempt to convert
an object to the specified type. You can also achieve the same result using the as keyword, as shown in
Listing 6-19.

Listing 6-19. Using the as Keyword in the tempConverter.ts File

export class TempConverter {

 static convertFtoC(temp: number | string): string {
 let value: number = (temp as number).toPrecision
 ? temp as number : parseFloat(<string>temp);
 return ((parseFloat(value.toPrecision(2)) - 32) / 1.8).toFixed(1);
 }
}

An alternative to specifying a union type is to use the any keyword, which allows any type to be assigned
to a variable, used as an argument, or returned from a method. Listing 6-20 replaces the union type in the
convertFtoC method with the any keyword.

 ■ Tip the typeScript compiler will implicitly apply the any keyword when you omit a type annotation.

Listing 6-20. Specifying Any Type in the tempConverter.ts File

export class TempConverter {

 static convertFtoC(temp: any): string {
 let value: number;
 if ((temp as number).toPrecision) {
 value = temp;
 } else if ((temp as string).indexOf) {
 value = parseFloat(<string>temp);
 } else {
 value = 0;
 }
 return ((parseFloat(value.toPrecision(2)) - 32) / 1.8).toFixed(1);
 }
}

Chapter 6 ■ JavaSCript and typeSCript: part 2

106

 ■ Tip at the opposite end of the spectrum is void, which is used to indicate that a method returns no result.
you don’t have to use void, but it makes the fact that there is no result obvious.

Using Tuples
Tuples are fixed-length arrays, where each item in the array is of a specified type. This is a vague-sounding
description because tuples are so flexible. As an example, Listing 6-21 uses a tuple to represent a city and its
current weather and temperature.

Listing 6-21. Using a Tuple in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";
import { TempConverter } from "./tempConverter";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");
let other = new OtherName();

let cTemp = TempConverter.convertFtoC("38");

let tuple: [string, string, string];
tuple = ["London", "raining", TempConverter.convertFtoC("38")]

console.log(`It is ${tuple[2]} degrees C and ${tuple[1]} in ${tuple[0]}`);

Tuples are defined as an array of types, and individual elements are accessed using array indexers. This
example produces the following message in the browser’s JavaScript console:

It is 3.3 degrees C and raining in London

Using Indexable Types
Indexable types associate a key with a value, creating a map-like collection that can be used to gather related
data items together. In Listing 6-22, I have used an indexable type to collect together information about
multiple cities.

Listing 6-22. Using Indexable Types in the primer.ts File

import { Name, WeatherLocation } from "./modules/NameAndWeather";
import { Name as OtherName } from "./modules/DuplicateName";
import { TempConverter } from "./tempConverter";

let cities: { [index: string]: [string, string] } = {};

cities["London"] = ["raining", TempConverter.convertFtoC("38")];
cities["Paris"] = ["sunny", TempConverter.convertFtoC("52")];

Chapter 6 ■ JavaSCript and typeSCript: part 2

107

cities["Berlin"] = ["snowing", TempConverter.convertFtoC("23")];

for (let key in cities) {
 console.log(`${key}: ${cities[key][0]}, ${cities[key][1]}`);
}

The cities variable is defined as an indexable type, with the key as a string and the data
value a [string, string] tuple. Values are assigned and read using array-style indexers, such as
cities["London"]. The collection of keys in an indexable type can be accessed using a for...in loop, as
shown in the example, which produces the following output in the browser’s JavaScript console:

London: raining, 3.3
Paris: sunny, 11.1
Berlin: snowing, -5.0

Only number and string values can be used as the keys for indexable types, but this is a helpful feature
that I use in examples in later chapters.

Using Access Modifiers
JavaScript doesn’t support access protection, which means that classes, their properties, and their methods
can all be accessed from any part of the application. There is a convention of prefixing the name of
implementation members with an underscore (the _ character), but this is just a warning to other developers
and is not enforced.

TypeScript provides three keywords that are used to manage access and that are enforced by the
compiler. Table 6-2 describes the keywords.

 ■ Caution during development, these keywords have limited effect in angular applications because a lot
of functionality is delivered through properties and methods that are specified in fragments of code embedded
in data binding expressions. these expressions are evaluated at runtime in the browser, where there is no
enforcement of typeScript features. they become more important when you come to deploy the application,
and it is important to ensure that any property or method that is accessed in a data binding expression is
marked as public or has no access modified (which has the same effect as using the public keyword).

Table 6-2. The TypeScript Access Modifier Keywords

Keyword Description

public This keyword is used to denote a property or method that can be accessed anywhere.
This is the default access protection if no keyword is used.

private This keyword is used to denote a property or method that can be accessed only within the
class that defines it.

protected This keyword is used to denote a property or method that can be accessed only within the
class that defines it or by classes that extend that class.

Chapter 6 ■ JavaSCript and typeSCript: part 2

108

Listing 6-23 adds a private method to the TempConverter class.

Listing 6-23. Using an Access Modifier in the tempConverter.ts File

export class TempConverter {

 static convertFtoC(temp: any): string {
 let value: number;
 if ((temp as number).toPrecision) {
 value = temp;
 } else if ((temp as string).indexOf) {
 value = parseFloat(<string>temp);
 } else {
 value = 0;
 }
 return TempConverter.performCalculation(value).toFixed(1);
 }

 private static performCalculation(value: number): number {
 return (parseFloat(value.toPrecision(2)) - 32) / 1.8;
 }
}

The performCalculation method is marked as private, which means that the TypeScript compiler will
report an error code if any other part of the application tries to invoke the method.

Summary
In this chapter, I described the way that JavaScript supports working with objects and classes, explained how
JavaScript modules work, and introduced the TypeScript features that are useful for Angular development.
In the next chapter, I start the process of creating a realistic project that provides an overview of how different
Angular features work together to create applications before digging into individual details in Part 2 of this
book.

109© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_7

CHAPTER 7

SportsStore: A Real Application

In Chapter 2, I built a quick and simple Angular application. Small and focused examples allow me to
demonstrate specific Angular features, but they can lack context. To help overcome this problem, I am going
to create a simple but realistic e-commerce application.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere.
I will create an online product catalog that customers can browse by category and page, a shopping cart
where users can add and remove products, and a checkout where customers can enter their shipping details
and place their orders. I will also create an administration area that includes create, read, update, and delete
(CRUD) facilities for managing the catalog—and I will protect it so that only logged-in administrators can
make changes. Finally, I show you how to prepare and deploy an Angular application.

My goal in this chapter and those that follow is to give you a sense of what real Angular development
is like by creating as realistic an example as possible. I want to focus on Angular, of course, and so I have
simplified the integration with external systems, such as the data store, and omitted others entirely, such as
payment processing.

The SportsStore example is one that I use in a few of my books, not least because it demonstrates
the ways in which different frameworks, languages, and development styles can be used to achieve the
same result. You don’t need to have read any of my other books to follow this chapter, but you will find the
contrasts interesting if you already own my Pro ASP.NET Core MVC book, for example.

The Angular features that I use in the SportsStore application are covered in-depth in later chapters.
Rather than duplicate everything here, I tell you just enough to make sense for the example application and
refer you to other chapters for in-depth information. You can either read the SportsStore chapters end-to-
end and get a sense of how Angular works or jump to and from the detail chapters to get into the depth.
Either way, don’t expect to understand everything right away—Angular has a lot of moving parts, and the
SportsStore application is intended to show you how they fit together without diving too deeply into the
details that I spend the rest of the book covering.

UNIT TESTING

Angular provides some excellent support for unit testing, but I don’t describe it until the final chapter
in the book. That’s because you really need to understand how Angular works before you can write
comprehensive unit tests, and I don’t want to include all of the required information and then duplicate
it throughout the rest of the book.

That’s not to say that unit testing with Angular is difficult or that you need to be an expert in Angular
to write a unit test. Rather, the features that make unit testing simple depend on some key concepts
that I don’t describe until Parts 2 and 3. You can skip ahead to Chapter 29 now if you want to get an
early start on unit testing, but my advice is to read the book in sequence so that you understand the
foundation on which the unit test features are built.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2
http://dx.doi.org/10.1007/978-1-4842-2307-9_29

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

110

Preparing the Project
There is a degree of preparation required for all Angular projects. For the SportsStore application, that
includes setting up the development tools that will be used to create the Angular client side of the
application and preparing the back-end services that will support Angular by providing storing application
data, responding to HTTP requests, and authenticating users. In the sections that follow, I get everything I
need to create the SportsStore application in place and ready to use.

Creating the Folder Structure
The starting point for any Angular application is to create the folder structure. Select a location for
developing the project and create the folders shown in Table 7-1.

Installing the NPM Packages
Angular development relies on a number of packages, including the Angular framework, libraries that it
depends on, polyfill libraries to support essential features on older browsers, and the tools required to
compile TypeScript files and handle HTTP requests. The simplest way to manage these packages is to use
the NPM tool. I created a file called package.json in the SportsStore folder and added the configuration
shown in Listing 7-1.

 ■ Caution For all the examples in this book, it is important that you use the exact package versions that are
shown in the listing in order to ensure that the examples produce the expected results. If you have problems,
try using the project for this chapter that is included in the source code download that accompanies this book
and that contains additional configuration information for nPM that specifies the version of every package and
its dependencies. If all else fails, you can email me at adam@adam-freeman.com and I will try to help figure out
what’s causing the problem.

Listing 7-1. The Contents of the package.json File in the SportsStore Folder

{
 "dependencies": {
 "@angular/common": "2.2.0",

Table 7-1. The Types of Web Forms Code Nuggets

Folder Description

SportsStore This is the main folder for the project and contains the
development packages, the configuration files, and the HTML
file that will be loaded by the browser to start the project.

SportsStore/app This is the folder that will contain the application’s code.

SportsStore/app/model This folder will contain the code for the data model.

SportsStore/app/store This folder will contain the functionality for basic shopping.

SportsStore/app/admin This folder will contain the functionality for administration.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

111

 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/http": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/router": "3.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "font-awesome": "4.7.0",
 "intl": "1.2.5",
 "html5-history-api": "4.2.7"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21",
 "jsonwebtoken": "7.1.9"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server data.js -p 3500 -m authMiddleware.js",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

Save the package.json file and run the following command in the SportsStore folder to download and
install the packages required for the project:

npm install

NPM will display a list of packages once they have all been installed. There are usually some noncritical
warnings during the installation process, which can be ignored.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

112

Preparing the RESTful Web Service
The SportsStore application will use asynchronous HTTP requests to get model data provided by a RESTful
web service. As I describe in Chapter 24, REST is an approach to designing web services that uses the HTTP
method or verb to specify an operation and the URL to select the data objects that the operation applies to.

I included json-server in the project’s package.json file, which is an excellent package for quickly
creating web services from JSON data or JavaScript code. To ensure that there is a fixed state that the project
can be reset to, I am going to take advantage of the feature that allows the RESTful web service to be provided
with data using JavaScript code, which means that restarting the web service will reset the application data. I
created a file called data.js in the SportsStore folder and added the code shown in Listing 7-2.

 ■ Tip It is important to pay attention to the file names when creating the configuration files. Some have the
.json extension, which means they contain static data formatted as JSon. other files have the .js extension,
which means they contain JavaScript code. each tool required for Angular development has expectations about
its configuration file.

Listing 7-2. The Contents of the data.js File in the SportsStore Folder

module.exports = function () {
 return {
 products: [
 { id: 1, name: "Kayak", category: "Watersports",
 description: "A boat for one person", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports",
 description: "Protective and fashionable", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer",
 description: "FIFA-approved size and weight", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer",
 description: "Give your playing field a professional touch",
 price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer",
 description: "Flat-packed 35,000-seat stadium", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess",
 description: "Improve brain efficiency by 75%", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess",
 description: "Secretly give your opponent a disadvantage",
 price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess",
 description: "A fun game for the family", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess",
 description: "Gold-plated, diamond-studded King", price: 1200 }
],
 orders: []
 }
}

This code defines two data collections that will be presented by the RESTful web service. The products
collection contains the products for sale to the customer, while the orders collection will contain the orders
that customers have placed (but which is currently empty).

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

113

The data stored by the RESTful web service needs to be protected so that ordinary users can’t modify
the products or change the status or orders. The json-server package doesn’t include any built-in
authentication features, so I created a file called authMiddleware.js in the SportsStore folder and added
the code shown in Listing 7-3.

Listing 7-3. The Contents of the authMiddleware.js File in the SportsStore Folder

const jwt = require("jsonwebtoken");

const APP_SECRET = "myappsecret";
const USERNAME = "admin";
const PASSWORD = "secret";

module.exports = function (req, res, next) {
 if (req.url == "/login" && req.method == "POST") {
 if (req.body != null && req.body.name == USERNAME
 && req.body.password == PASSWORD) {
 let token = jwt.sign({ data: USERNAME, expiresIn: "1h" }, APP_SECRET);
 res.json({ success: true, token: token });
 } else {
 res.json({ success: false });
 }
 res.end();
 return;
 } else if ((req.url.startsWith("/products") && req.method != "GET")
 || (req.url.startsWith("/orders") && req.method != "POST")) {
 let token = req.headers["authorization"];
 if (token != null && token.startsWith("Bearer<")) {
 token = token.substring(7, token.length - 1);
 try {
 jwt.verify(token, APP_SECRET);
 next();
 return;
 } catch (err) {}
 }
 res.statusCode = 401;
 res.end();
 return;
 }
 next();
}

This code inspects HTTP requests sent to the RESTful web service and implements some basic security
features. This is server-side code that is not directly related to Angular development, so don’t worry if its
purpose isn’t immediately obvious. I explain the authentication and authorization process in Chapter 9,
including how to authenticate users with Angular.

 ■ Caution Don’t use the code in listing 7-3 other than for the SportsStore application. It contains weak
passwords that are hardwired into the code. This is fine for the SportsStore project because the emphasis is on
the development client side with Angular, but this is not suitable for real projects.

http://dx.doi.org/10.1007/978-1-4842-2307-9_9

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

114

Configuring TypeScript
I will be using the TypeScript compiler to generate the JavaScript files that will be executed by the browser, as
explained in Chapters 5 and 6. I will use type annotations throughout the SportsStore project because they
help make the code easier to understand and make some Angular features easier to use.

The TypeScript compiler relies on type definition files to provide it with type information for JavaScript
libraries that are not written in TypeScript. Run the following commands in the SportsStore folder to
download and install the type definition files required for this project:

npm run typings -- install dt~core-js --save –global
npm run typings -- install dt~node --save --global

The typings package will get the latest type information for the Core-JS and Node packages and save
them in a folder called typings. It will also generate a file called typings.json in the SportsStore folder
that will contain references to the packages, as follows:

{
 "globalDependencies": {
 "core-js": "registry:dt/core-js#0.0.0+20160914114559",
 "node": "registry:dt/node#6.0.0+20161110151007"
 }
}

TypeScript also requires a configuration for its compiler so that it will generate JavaScript code that
works in Angular applications. I created a file called tsconfig.json in the SportsStore folder and added
the configuration properties shown in Listing 7-4. I explain the configuration properties for the compiler in
Chapter 11.

Listing 7-4. The Contents of the tsconfig.json File in the SportsStore Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

Configuring the Development HTTP Server
The lite-server package that I am using as a development HTTP server builds on the BrowserSync package.
To configure the way that the browser is updated when a change to a project file is detected, I created a
file called bs-config.js in the SportsStore folder and added the configuration shown in Listing 7-5. The
configuration properties are described in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-2307-9_5
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

115

Listing 7-5. The Contents of the bs-config.js File in the SportsStore Folder

module.exports = {
 ghostMode: false,
 reloadDelay: 1000,
 reloadDebounce: 1000,
 injectChanges: false,
 minify: false
}

Configuring the JavaScript Module Loader
To prepare the SystemJS module loader, I added a file called systemjs.config.js in the SportsStore folder
and used it to define the configuration shown in Listing 7-6.

Listing 7-6. The Contents of the systemjs.config.js File in the SportsStore Folder

(function (global) {

 var paths = {
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic",
 "forms", "http", "router"];

 angularModules.forEach(function (pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });
})(this);

This configuration will allow the module loader to handle the Angular packages and the custom
application code. I explain the process for configuring the JavaScript module loader in Chapter 11.

Creating the Reactive Extensions JavaScript Module
Angular depends on Reactive Extensions, which is a package for managing events and change notifications.
Some Angular features require you to work directly with Reactive Extensions, but the NPM package doesn’t
contain the information that the SystemJS JavaScript module loader requires to load a module and resolve
its dependencies. That means I need to create my own JavaScript module containing the Reactive Extensions
code. The systemjs-builder package that I added to the project in Listing 7-1 is used to build modules,
and to configure it, I added a file called rxModuleBuilder.js to the SportsStore folder and added the code
shown in Listing 7-7.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

116

 ■ Tip I describe the functionality provided by Reactive extensions in Chapter 23.

Listing 7-7. The Contents of the rxModuleBuilder.js File in the SportsStore Folder

var Builder = require("systemjs-builder");

var builder = new Builder("./");
builder.config({
 paths: {
 "rxjs/*": "node_modules/rxjs/*.js"
 },
 map: {
 "rxjs": "node_modules/rxjs"
 },
 packages: {
 "rxjs": { main: "Rx.js", defaultExtension: "js" }
 }
});
builder.bundle("rxjs", "rxjs.module.min.js", {
 normalize: true,
 runtime: false,
 minify: true,
 mangle: false
});

This configuration creates a module containing all of the Reactive Extensions functionality, along with
the additional information that SystemJS needs to resolve dependencies. Run the following command in the
SportsStore folder:

node ./rxModuleBuilder.js

It can take a few minutes to process the package, but when the command finishes, you will see a file
called rxjs.module.min.js in the SportsStore folder. This is the file that will be used in the project to
provide access to the Reactive Extensions package.

Creating the HTML File
Every Angular web application relies on an HTML file that is loaded by the browser and that loads and starts
the application. I created a file called index.html in the SportsStore folder and added the elements shown
in Listing 7-8.

http://dx.doi.org/10.1007/978-1-4842-2307-9_23

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

117

Listing 7-8. The Contents of the index.html File in the SportsStore Folder

<!DOCTYPE html>
<html>
<head>
 <base href="/" />
 <title>SportsStore</title>
 <meta charset="utf-8" />
 <script src="node_modules/html5-history-api/history.min.js"></script>
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="rxjs.module.min.js"></script>
 <script src="systemjs.config.js"></script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <link href="node_modules/font-awesome/css/font-awesome.min.css"
 rel="stylesheet"/>
</head>
<body class="m-a-1">
 <app>SportsStore Will Go Here</app>
</body>
</html>

The HTML document includes script elements for the polyfill libraries required to support older
browsers, a link element to load the Bootstrap stylesheet, and an app element, which is the placeholder for
the SportsStore functionality.

 ■ Tip The hTMl document includes a base element, which is required by the Angular URl routing features,
which I add to the SportsStore project in Chapter 8.

Running the Example Application
Make sure that all the files have been saved, and run the following command in the SportsStore folder:

npm start

This command will start the TypeScript compiler, the development HTTP server, and the RESTful web
service. A new browser window will open and show the content illustrated by Figure 7-1.

http://dx.doi.org/10.1007/978-1-4842-2307-9_8

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

118

The development web server will start on port 3000, so the URL for the application will be http://
localhost:3000. You don’t have to include the name of the HTML document because index.html is the
default name that the server responds with.

The RESTful web service is configured to run on port 3500. To test the web service request, use
the browser to request the URL http://localhost:3500/products/1. The browser will display a JSON
representation of one of the products defined in Listing 7-2, as follows:

{
 "id": 1,
 "name": "Kayak",
 "category": "Watersports",
 "description": "A boat for one person",
 "price": 275
}

Preparing the Angular Project Features
Every Angular project requires some basic preparation, just to get to the point where the application can
be loaded and started by the browser. In the sections that follow, I build the foundation on which the
SportsStore application will be created.

Creating the Root Component
I started with the root component, which is the Angular building block that will manage the contents of the
app element in the HTML document. An application can contain many components, but there is always a
root component that takes responsibility for the top-level content presented to the user.

I created a file called app.component.ts in the SportsStore/app folder and added the code shown in
Listing 7-9.

Listing 7-9. The Contents of the app.component.ts File in the SportsStore/app Folder

import { Component } from "@angular/core";

@Component({
 selector: "app",

Figure 7-1. Running the example application

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

119

 template: `<div class="bg-success p-a-1 text-xs-center">
 This is SportsStore
 </div>`
})
export class AppComponent { }

The @Component decorator tells Angular that the AppComponent class is a component and its properties
configure how the component is applied. The complete set of component properties are described in
Chapter 17, but the three properties shown in the listing are the most basic and most frequently used. The
selector property tells Angular how to apply the component in the HTML document, and the template
property defines the content that the component will display. Components can define inline templates, like
this one, or use external HTML files, which can make managing complex content easier.

There is no code in the AppComponent class because the root component in an Angular project exists just
to manage the content shown to the user. Initially, I’ll manage the content displayed by the root component
manually, but in Chapter 8, I use a feature called URL routing to adapt the content automatically based on
user actions.

Creating the Root Module
There are two types of Angular module: feature modules and the root module. Features modules are used to
group related application functionality to make the application easier to manage. I create feature modules
for each major functional area of the application, including the data model, the store interface presented to
users, and the administration interface.

The root module is used to describe the application to Angular. The description includes which feature
modules are required to run the application, which custom features should be loaded, and the name of the
root component. The conventional name of the root component file is app.module.ts, and I created a file
with this name in the SportsStore/app folder and added the code shown in Listing 7-10.

Listing 7-10. The Contents of the app.module.ts File in the SportsStore/app Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

Similar to the root component, there is no code in the root module’s class. That’s because the root
module only really exists to provide information through the @NgModule decorator. The imports property
tells Angular that it should load the BrowserModule feature module, which contains all the core Angular
features required for a web application.

The declarations property tells Angular that it should load the root component, and the bootstrap
property tells Angular that the root component is the AppModule class. I’ll add information to this decorator’s
properties as I add features to the SportsStore application, but this basic configuration will be enough to start
the application.

http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_8

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

120

Creating the Bootstrap File
The next piece of plumbing is the bootstrap file, which starts the application. This book is focused on using
Angular to create applications that work in web browsers, but the Angular platform can be ported to different
environments. The bootstrap file uses the Angular browser platform to load the root module and start the
application. I created a file called main.ts, which is the conventional name for the bootstrap file, in the
SportsStore/app folder and added the code shown in Listing 7-11.

Listing 7-11. The Contents of the main.ts File in the SportsStore/app Folder

import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";
import { AppModule } from "./app.module";

platformBrowserDynamic().bootstrapModule(AppModule);

Adding the JavaScript Module Loader to the HTML Document
The final Angular preparation is to update the HTML document so that the JavaScript module loader will
load the bootstrap file and execute it to start Angular and the SportsStore application. The changes to the
index.html file are shown in Listing 7-12.

Listing 7-12. Configuring the JavaScript Module Loader in the index.html File

<!DOCTYPE html>
<html>
<head>
 <base href="/" />
 <title>SportsStore</title>
 <meta charset="utf-8" />
 <script src="node_modules/html5-history-api/history.min.js"></script>
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="rxjs.module.min.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <link href="node_modules/font-awesome/css/font-awesome.min.css"
 rel="stylesheet"/>
</head>
<body class="m-a-1">
 <app>SportsStore Will Go Here</app>
</body>
</html>

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

121

The TypeScript compiler will generate JavaScript files each time that it detects a change, and, in turn,
this will trigger an update from the development HTTP server that will refresh the browser. When all the
changes have been saved, you should see the content in Figure 7-2, which demonstrates that the browser has
executed the bootstrap file, which has loaded the root module, which has loaded the root component and,
finally, displayed the placeholder content.

If you examine the browser’s Document Object Model, you will see that Angular has inserted the
placeholder content from the root component’s template within the start and end tags of the app element,
like this:

<body class="m-a-1">
 <app>
 <div class="bg-success p-a-1 text-xs-center">
 This is SportsStore
 </div>
 </app>
</body>

Starting the Data Model
The best place to start any new project is with the data model. I want to get to the point where you can see
some Angular features at work, so rather than define the data model end-to-end, I am going to put some
basic functionality in place using dummy data. I’ll then start using this data to create user-facing features,
returning to the data model to wire it up to the RESTful web service in Chapter 8.

Creating the Model Classes
Every data model needs classes that describe the types of data that will be contained in the data model. For
the SportsStore application, this means classes that describe the products sold in the store and the orders
that are received from customers.

Figure 7-2. Starting the SportsStore application

http://dx.doi.org/10.1007/978-1-4842-2307-9_8

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

122

Being able to describe products will be enough to get started with the SportsStore application, and I’ll
create other model classes to support features as I implement them. I created a file called product.model.ts
in the SportsStore/app/model folder and added the code shown in Listing 7-13.

Listing 7-13. The Contents of the product.model.ts File in the SportsStore/app/model Folder

export class Product {

 constructor(
 public id?: number,
 public name?: string,
 public category?: string,
 public description?: string,
 public price?: number) { }
}

The Product class defines a constructor that accepts id, name, category, description, and price
properties, which correspond to the structure of the data used to populate the RESTful web service in
Listing 7-13. The question marks (the ? characters) that follow the parameter names indicate that these are
optional parameters that can be omitted when creating new objects using the Product class, which can be
useful when writing applications where model object properties will be populated using HTML forms.

Creating the Dummy Data Source
To prepare for the transition from dummy to real data, I am going to feed the application data using a data
source. The rest of the application won’t know where the data is coming from, which will make the switch to
getting data using HTTP requests seamless.

I added a file called static.datasource.ts to the SportsStore/app/model folder and defined the class
shown in Listing 7-14.

Listing 7-14. The Contents of the static.datasource.ts in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/from";

@Injectable()
export class StaticDataSource {
 private products: Product[] = [
 new Product(1, "Product 1", "Category 1", "Product 1 (Category 1)", 100),
 new Product(2, "Product 2", "Category 1", "Product 2 (Category 1)", 100),
 new Product(3, "Product 3", "Category 1", "Product 3 (Category 1)", 100),
 new Product(4, "Product 4", "Category 1", "Product 4 (Category 1)", 100),
 new Product(5, "Product 5", "Category 1", "Product 5 (Category 1)", 100),
 new Product(6, "Product 6", "Category 2", "Product 6 (Category 2)", 100),
 new Product(7, "Product 7", "Category 2", "Product 7 (Category 2)", 100),
 new Product(8, "Product 8", "Category 2", "Product 8 (Category 2)", 100),
 new Product(9, "Product 9", "Category 2", "Product 9 (Category 2)", 100),
 new Product(10, "Product 10", "Category 2", "Product 10 (Category 2)", 100),
 new Product(11, "Product 11", "Category 3", "Product 11 (Category 3)", 100),
 new Product(12, "Product 12", "Category 3", "Product 12 (Category 3)", 100),

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

123

 new Product(13, "Product 13", "Category 3", "Product 13 (Category 3)", 100),
 new Product(14, "Product 14", "Category 3", "Product 14 (Category 3)", 100),
 new Product(15, "Product 15", "Category 3", "Product 15 (Category 3)", 100),
];

 getProducts(): Observable<Product[]> {
 return Observable.from([this.products]);
 }
}

The StaticDataSource class defines a method called getProducts, which returns the dummy data.
The result of calling the getProducts method is an Observable<Product[]>, which is an Observable that
produces arrays of Product objects.

The Observable class is provided by the Reactive Extensions package, which is used by Angular to
handle state changes in applications. I describe the Observable class in Chapter 23 but for this chapter, it is
enough to know that an Observable object is like a JavaScript Promise, in that it represents an asynchronous
task that will produce a result at some point in the future. Angular exposes its use of Observable objects
for some features, including making HTTP requests, and this is why the getProducts method returns an
Observable<Product[] > rather than simply returning the data synchronously or using a Promise.

The @Injectable decorator has been applied to the StaticDataSource class. This decorator is used
to tell Angular that this class will be used as a service, which allows other classes to access its functionality
through a feature called dependency injection, which is described in Chapters 19 and 20. You’ll see how
services work as the application takes shape.

 ■ Tip notice that I have to import the Injectable from the @angular/core JavaScript module so that I can
apply the @Injectable decorator. I won’t highlight the all the different Angular classes that I import for the
SportsStore example, but you can get full details in the chapters that describe the features they relate to.

Creating the Model Repository
The data source is responsible for providing the application with the data it requires, but access to that data
is typically mediated by a repository, which is responsible for distributing that data to individual application
building blocks so that the details of how the data has been obtained are kept hidden. I added a file called
product.repository.ts in the SportsStore/app/model folder and defined the class shown in Listing 7-15.

Listing 7-15. The Contents of the product.repository.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class ProductRepository {
 private products: Product[] = [];
 private categories: string[] = [];

 constructor(private dataSource: StaticDataSource) {
 dataSource.getProducts().subscribe(data => {

http://dx.doi.org/10.1007/978-1-4842-2307-9_23
http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

124

 this.products = data;
 this.categories = data.map(p => p.category)
 .filter((c, index, array) => array.indexOf(c) == index).sort();
 });
 }

 getProducts(category: string = null): Product[] {
 return this.products
 .filter(p => category == null || category == p.category);
 }

 getProduct(id: number): Product {
 return this.products.find(p => p.id == id);
 }

 getCategories(): string[] {
 return this.categories;
 }
}

When Angular needs to create a new instance of the repository, it will inspect the class and see that it needs
a StaticDataSource object in order to invoke the ProductRepository constructor and create a new object.

The repository constructor calls the data source’s getProducts method and then uses the subscribe
method on the Observable object that is returned to receive the product data. See Chapter 23 for details of
how Observable objects work.

USING SIMPLE DATA STRUCTURES

I have used an array to store the model data because, as a general rule, the simplest possible data
structures produce the best results in Angular applications. Angular evaluates the expressions in data
bindings repeatedly as it generates content in the hTMl element, and this means that more complex
structures such as the Map class, which provides a key/value collection in JavaScript eS6, have to
transform their contents over and over again as the state of the Angular application stabilizes. So, the
simpler the data structure, the less work required to provide Angular with the data it needs.

Another reason to use simple data structures is because there are limits to the way that new JavaScript
features can be supported in older browsers. In the case of the Map class, for example, TypeScript
restricts the way that the contents of maps can used when the compiler is being used to produce
JavaScript code that will run in older browsers.

As a consequence, I tend to use simple data structures, especially arrays, and end up writing
more complex classes to manage the data in the array. You will see an example of this when I add
functionality to the product repository class for the administration features in Chapter 9, where the
new features will have to search through the array to find the objects they need to operate on. This is
inefficient, but these operations are performed less often when compared to the frequency that Angular
will evaluate a data binding expression.

http://dx.doi.org/10.1007/978-1-4842-2307-9_23
http://dx.doi.org/10.1007/978-1-4842-2307-9_9

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

125

Creating the Feature Module
I am going to define an Angular feature model that will allow the data model functionality to be easily used
elsewhere in the application. I added a file called model.module.ts in the SportsStore/app/model folder
and defined the class shown in Listing 7-16.

 ■ Tip Don’t worry if all the file names seem similar and confusing. You will get used to the way that Angular
applications are structured as you work through the other chapters in the book, and you will soon be able to
look at the files in an Angular project and know what they are all intended to do.

Listing 7-16. The Contents of the model.module.ts File in the SportsStore/app/model Folder

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";

@NgModule({
 providers: [ProductRepository, StaticDataSource]
})
export class ModelModule { }

The @NgModule decorator is used to create feature modules, and its properties tell Angular how the
module should be used. There is only one property in this module, providers, and it tells Angular which
classes should be used as services for the dependency injection feature, which is described in Chapters 19
and 20. Features modules—and the @NgModule decorator—are described in Chapter 21.

Starting the Store
Now that the data model is in place, I can start to build out the store functionality, which will let the user
see the products for sale and place orders for them. The basic structure of the store will be a two-column
layout, with category buttons that allow the list of products to be filtered and a table that contains the list of
products, as illustrated by Figure 7-3.

Figure 7-3. The basic structure of the store

http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_20
http://dx.doi.org/10.1007/978-1-4842-2307-9_21

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

126

In the sections that follow, I’ll use Angular features and the data in the model to create the layout shown
in the figure.

Creating the Store Component and Template
As you become familiar with Angular, you will learn that features can be combined to solve the same
problem in different ways. I try to introduce some variety into the SportsStore project to showcase some
important Angular features, but I am going to keep things simple for the moment in the interest of being able
to get the project started quickly.

With this in mind, the starting point for the store functionality will be a new component, which is a
class that provides data and logic to an HTML template, which contains data bindings that generate content
dynamically. I created a file called store.component.ts in the SportsStore/app/store folder and defined
the class shown in Listing 7-17.

Listing 7-17. The Contents of the store.component.ts File in the SportsStore/app/store Folder

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})
export class StoreComponent {

 constructor(private repository: ProductRepository) { }

 get products(): Product[] {
 return this.repository.getProducts();
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }
}

The @Component decorator has been applied to the StoreComponent class, which tells Angular that it is a
component. The decorator’s properties tell Angular how to apply the component to HTML content (using an
element called store) and how to find the component’s template (in a file called store.component.html).

The StoreComponent class provides the logic that will support the template content.
The class constructor receives a ProductRepository object as an argument, provided through the

dependency injection feature described in Chapters 20 and 21. The component defines products and
categories properties that will be used to generate HTML content in the template, using data obtained from
the repository.

To provide the component with its template, I created a file called store.component.html in the
SportsStore/app/store folder and added the HTML content shown in Listing 7-18.

http://dx.doi.org/10.1007/978-1-4842-2307-9_20
http://dx.doi.org/10.1007/978-1-4842-2307-9_21

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

127

Listing 7-18. The Contents of the store.component.html File in the SportsStore/app/store Folder

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div class="col-xs-3 bg-info p-a-1">
 {{categories.length}} Categories
</div>
<div class="col-xs-9 bg-success p-a-1">
 {{products.length}} Products
</div>

The template is simple, just to get started. Most of the elements provide the structure for the store layout
and apply some Bootstrap CSS classes. There are only two Angular data bindings at the moment, which
are denoted by the {{ and }} characters. These are string interpolation bindings, and they tell Angular to
evaluate the binding expression and insert the result into the element. The expressions in these bindings
display the number of products and categories provided by the store component.

Creating the Store Feature Module
There isn’t much store functionality in place at the moment, but even so, some additional work is required
to wire it up to the rest of the application. To create the Angular feature module for the store functionality, I
created a file called store.module.ts in the SportsStore/app/store folder and added the code shown in
Listing 7-19.

Listing 7-19. The Contents of the store.module.ts File in the SportsStore/app/store Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent],
 exports: [StoreComponent]
})
export class StoreModule { }

The @NgModule decorator configures the module, using the imports property to tell Angular that the
store module depends on the model module as well as BrowserModule and FormsModule, which contain the
standard Angular features for web applications and working with HTML form elements. The decorator uses
the declarations property to tell Angular about the StoreComponent class, which the exports property tells
Angular can be also used in other parts of the application, which is important because it will be used by the
root module.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

128

Updating the Root Component and Root Module
Applying the basic model and store functionality requires updating the application’s root module to import
the two feature modules and also requires updating the root module’s template to add the HTML element
to which the component in the store module will be applied. Listing 7-20 shows the change to the root
component’s template.

Listing 7-20. Adding an Element in the app.component.ts File

import { Component } from "@angular/core";

@Component({
 selector: "app",
 template: "<store></store>"
})
export class AppComponent { }

The store element replaces the previous content in the root component’s template and corresponds
to the value of the selector property of the @Component decorator in Listing 7-17. Listing 7-21 shows
the change required to the root module so that Angular loads the feature module that contains the store
functionality.

Listing 7-21. Importing Feature Modules in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";
import { StoreModule } from "./store/store.module";

@NgModule({
 imports: [BrowserModule, StoreModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

When you save the changes to the root module, Angular will have all the details it needs to load the
application and display the content from the store module, as shown in Figure 7-4.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

129

All the building blocks created in the previous section work together to display the—admittedly
simple—content, which shows how many products there are and how many categories they fit in to.

Adding Store Features the Product Details
The nature of Angular development begins with a slow start as the foundation of the project is put in place
and the basic building blocks are created. But once that’s done, new features can be created relatively easily.
In the sections that follow, I add features to the store so that the user can see the products on offer.

Displaying the Product Details
The obvious place to start is to display details for the products so that the customer can see what’s on offer.
Listing 7-22 adds HTML elements to the store component’s template with data bindings that generate
content for each product provided by the component.

Listing 7-22. Adding Elements in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div class="col-xs-3 bg-info p-a-1">
 {{categories.length}} Categories
</div>

Figure 7-4. Basic features in the SportsStore application

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

130

<div class="col-xs-9 p-a-1">
 <div *ngFor="let product of products" class="card card-outline-primary">
 <h4 class="card-header">
 {{product.name}}

 {{ product.price | currency:"USD":true:"2.2-2" }}

 </h4>
 <div class="card-text p-a-1">{{product.description}}</div>
 </div>
</div>

Most of the elements control the layout and appearance of the content. The most important change is
the addition of an Angular data binding expression.

...
<div *ngFor="let product of products" class="card card-outline-primary">
...

This is an example of a directive, which transforms the HTML element it is applied to. This specific
directive is called ngFor, and it transforms the div element by duplicating it for each object returned by
the component’s products property. Angular includes a range of built-in directives that perform the most
commonly required tasks, as described in Chapter 13.

As it duplicates the div element, the current object is assigned to a variable called product, which
allows it to be easily referred to in other data bindings, such as this one, which inserts the value of the
current product’s name description property as the content of the div element:

...
<div class="card-text p-a-1">{{product.description}}</div>
...

Not all data in an application’s data model can be displayed directly to the user. Angular includes a
feature called pipes, which are classes used to transform or prepare a data value for its use in a data binding.
There are several built-in pipes included with Angular, including the currency pipe, which formats number
values as currencies, like this:

...
{{ product.price | currency:"USD":true:"2.2-2" }}
...

The syntax for applying pipes can be a little awkward, but the expression in this binding tells Angular
to format the price property of the current product using the currency pipe, with the currency conventions
from the United States. Save the changes to the template and you will see a list of the products in the data
model displayed as a long list, as illustrated by Figure 7-5.

http://dx.doi.org/10.1007/978-1-4842-2307-9_13

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

131

Adding Category Selection
Adding support for filtering the list of products by category requires preparing the store component so that it
keeps track of which category the user wants to display and requires changing the way that data is retrieved
to use that category, as shown in Listing 7-23.

Listing 7-23. Adding Category Filtering in the store.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})

Figure 7-5. Displaying product information

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

132

export class StoreComponent {
 public selectedCategory = null;

 constructor(private repository: ProductRepository) {}

 get products(): Product[] {
 return this.repository.getProducts(this.selectedCategory);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }
}

The changes are simple because they build on the foundation that took so long to create at the start of
the chapter. The selectedCategory property is assigned the user’s choice of category (where null means all
categories) and is used in the updateData method as an argument to the getProducts method, delegating
the filtering to the data source. The changeCategory method brings these two members together in a
method that can be invoked when the user makes a category selection.

Listing 7-24 shows the corresponding changes to the component’s template to provide the user with the
set of buttons that change the selected category and show which category has been picked.

Listing 7-24. Adding Category Buttons in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div class="col-xs-3 p-a-1">
 <button class="btn btn-block btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories" class="btn btn-outline-primary btn-block"
 [class.active]="cat == selectedCategory" (click)="changeCategory(cat)">
 {{cat}}
 </button>
</div>
<div class="col-xs-9 p-a-1">
 <div *ngFor="let product of products" class="card card-outline-primary">
 <h4 class="card-header">
 {{product.name}}

 {{ product.price | currency:"USD":true:"2.2-2" }}

 </h4>
 <div class="card-text p-a-1">{{product.description}}</div>
 </div>
</div>

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

133

There are two new button elements in the template. The first is a Home button, and it has an event
binding that invokes the component’s changeCategory method when the button is clicked. No argument is
provided to the method, which has the effect of setting the category to null and selecting all the products.

The ngFor binding has been applied to the other button element, with an expression that will repeat
the element for each value in the array returned by the component’s categories property. The button has
a click event binding whose expression calls the changeCategory method to select the current category,
which will filter the products displayed to the user. There is also a class binding, which adds the button
element to the active class when the category associated with the button is the selected category. This
provides the user with visual feedback when the categories are filtered, as shown in Figure 7-6.

Adding Product Pagination
Filtering the products by category has helped make the product list more manageable, but a more typical
approach is to break the list into smaller sections and present each of them as a page, along with navigation
buttons that move between the pages.

Listing 7-25 enhances the store component so that it keeps track of the current page and the number of
items on a page.

Listing 7-25. Adding Pagination Support in the store.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})
export class StoreComponent {
 public selectedCategory = null;
 public productsPerPage = 4;
 public selectedPage = 1;

Figure 7-6. Selecting product categories

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

134

 constructor(private repository: ProductRepository) {}

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageNumbers(): number[] {
 return Array(Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage))
 .fill(0).map((x, i) => i + 1);
 }
}

There are two new features in this listing. The first is the ability to get a page of products, and the second
is to change the size of the pages, allowing the number of products that each page contains to be altered.

There is an oddity that the component has to work around. There is a limitation in the built-in ngFor
directive that Angular provides, which can generate content only for the objects in an array or a collection,
rather than using a counter. Since I need to generate numbered page navigation buttons, this means I need
to create an array that contains the numbers I need, like this:

...
return Array(Math.ceil(this.repository.getProducts(this.selectedCategory).length
 / this.productsPerPage)).fill(0).map((x, i) => i + 1);
...

This statement creates a new array, fills it with the value 0, and then uses the map method to generate a
new array with the number sequence. This works well enough to implement the pagination feature, but it
feels awkward, and I demonstrate a better approach in the next section. Listing 7-26 shows the changes to
the store component’s template to implement the pagination feature.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

135

Listing 7-26. Adding Pagination in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div class="col-xs-3 p-a-1">
 <button class="btn btn-block btn-outline-primary"
 (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
</div>
<div class="col-xs-9 p-a-1">
 <div *ngFor="let product of products" class="card card-outline-primary">
 <h4 class="card-header">
 {{product.name}}

 {{ product.price | currency:"USD":true:"2.2-2" }}

 </h4>
 <div class="card-text p-a-1">{{product.description}}</div>
 </div>
 <div class="form-inline pull-xs-left m-r-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($event.target.value)">
 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>

 <div class="btn-group pull-xs-right">
 <button *ngFor="let page of pageNumbers" (click)="changePage(page)"
 class="btn btn-outline-primary" [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
</div>

The new elements add a select element that allows the size of the page to be changed and a set of
buttons that navigate through the product pages. The new elements have data bindings to wire them up to
the properties and methods provided by the component. The result is more manageable set of products, as
shown in Figure 7-7.

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

136

 ■ Tip The select element in listing 7-26 is populated with option elements that are statically defined,
rather than created using data from the component. one impact of this is that when the selected value is
passed to the changePageSize method, it will be a string value, which is why the argument is parsed to a
number before being used to set the page size in listing 7-25. Care must be taken when receiving data values
from hTMl elements to ensure they are of the expected type. TypeScript type annotations don’t help in this
situation because the data binding expression is evaluated at runtime, long after the TypeScript compiler has
generated JavaScript code that doesn’t contain the extra type information.

Figure 7-7. Pagination for products

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

137

Creating a Custom Directive
In this section, I am going to create a custom directive so that I don’t have to generate an array full of
numbers to create the page navigation buttons. Angular provides a good range of built-in directives, but it
is a simple process to create your own directives to solve problems that are specific to your application or to
support features that the built-in directives don’t have. I added a file called counter.directive.ts in the
SportsStore/app/store folder and used it to define the class shown in Listing 7-27.

Listing 7-27. The Contents of the counter.directive.ts File in the SportsStore/app/store Folder

import {
 Directive, ViewContainerRef, TemplateRef, Input, Attribute, SimpleChanges
} from "@angular/core";

@Directive({
 selector: "[counterOf]"
})
export class CounterDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {
 }

 @Input("counterOf")
 counter: number;

 ngOnChanges(changes: SimpleChanges) {
 this.container.clear();
 for (let i = 0; i < this.counter; i++) {
 this.container.createEmbeddedView(this.template,
 new CounterDirectiveContext(i + 1));
 }
 }
}

class CounterDirectiveContext {
 constructor(public $implicit: any) { }
}

This is an example of a structural directive, which is described in detail in Chapter 16. This directive is
applied to elements through a counter property and relies on special features that Angular provides for creating
content repeatedly, just like the built-in ngFor directive. In this case, rather than yield each object in a collection,
the custom directive yields a series of numbers that can be used to create the page navigation buttons.

 ■ Tip This directive deletes all the content it has created and starts again when the number of pages
changes. This can be an expensive process in more complex directives, and I explain how to improve
performance in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

138

To use the directive, it must be added to the declarations property of its feature module, as shown in
Listing 7-28.

Listing 7-28. Registering the Custom Directive in the store.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective],
 exports: [StoreComponent]
})
export class StoreModule { }

Now that the directive has been registered, it can be used in the store component’s template to replace
the ngFor directive, as shown in Listing 7-29.

Listing 7-29. Replacing the Built-in Directive in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div class="col-xs-3 p-a-1">
 <button class="btn btn-block btn-outline-primary"
 (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
</div>
<div class="col-xs-9 p-a-1">
 <div *ngFor="let product of products" class="card card-outline-primary">
 <h4 class="card-header">
 {{product.name}}

 {{ product.price | currency:"USD":true:"2.2-2" }}

 </h4>
 <div class="card-text p-a-1">{{product.description}}</div>
 </div>
 <div class="form-inline pull-xs-left m-r-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($event.target.value)">

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

139

 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>

 <div class="btn-group pull-xs-right">
 <button *counter="let page of pageCount" (click)="changePage(page)"
 class="btn btn-outline-primary" [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
</div>

The new data binding relies on a property called pageCount to configure the custom directive. In
Listing 7-30, I have replaced the array of numbers with a simple number that provides the expression value.

Listing 7-30. Supporting the Custom Directive in the store.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})
export class StoreComponent {
 public selectedCategory = null;
 public productsPerPage = 4;
 public selectedPage = 1;

 constructor(private repository: ProductRepository) {}

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

ChAPTeR 7 ■ SPoRTSSToRe: A ReAl APPlICATIon

140

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }

 //get pageNumbers(): number[] {
 // return Array(Math.ceil(this.repository
 // .getProducts(this.selectedCategory).length / this.productsPerPage))
 // .fill(0).map((x, i) => i + 1);
 //}
}

There is no visual change to the SportsStore application, but this section has demonstrated this it is
possible to supplement the built-in Angular functionality with custom code that is tailored to the needs of a
specific project.

Summary
In this chapter, I started the SportsStore project. The early part of the chapter was spent creating the
foundation for the project, including installing and configuring the development tools, creating the root
building blocks for the application, and starting work on the feature modules. Once the foundation was in
place, I was able to rapidly add features to display the dummy model data to the user, add pagination, and
filter the products by category. I finished the chapter by creating a custom directive to demonstrate how the
built-in features provided by Angular can be supplemented by custom code. In the next chapter, I continue
to build the SportsStore application.

141© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_8

CHAPTER 8

SportsStore: Orders and Checkout

In this chapter, I continue adding features to the SportsStore application that I created in Chapter 7. I add
support for a shopping cart and a checkout process and replace the dummy data with the data from the
RESTful web service.

Preparing the Example Application
No preparation is required for this chapter, which continues using the SportsStore project from Chapter 7.
Run the following command in the SportsStore folder to start the TypeScript compiler, the RESTful web
service, and the development HTTP server:

npm start

 ■ Tip The free source code download from apress.com that accompanies this book contains the SportsStore
project from each individual chapter if you don’t want to have to start with Chapter 7.

Creating the Cart
The user needs a cart in which products can be placed and that can then be used to start the checkout
process. In the sections that follow, I’ll add a cart to the application and integrate it into the store so that the
user can select the products they want.

Creating the Cart Model
The starting point for the cart feature is a new model class, which will be used to gather together the
products that the user has selected. I added a file called cart.model.ts in the SportsStore/app/model
folder and used it to define the class shown in Listing 8-1.

http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_7

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

142

Listing 8-1. The Contents of the cart.model.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class Cart {
 public lines: CartLine[] = [];
 public itemCount: number = 0;
 public cartPrice: number = 0;

 addLine(product: Product, quantity: number = 1) {
 let line = this.lines.find(line => line.product.id == product.id);
 if (line != undefined) {
 line.quantity += quantity;
 } else {
 this.lines.push(new CartLine(product, quantity));
 }
 this.recalculate();
 }

 updateQuantity(product: Product, quantity: number) {
 let line = this.lines.find(line => line.product.id == product.id);
 if (line != undefined) {
 line.quantity = Number(quantity);
 }
 this.recalculate();
 }

 removeLine(id: number) {
 let index = this.lines.findIndex(line => line.product.id == id);
 this.lines.splice(index);
 this.recalculate();
 }

 clear() {
 this.lines = [];
 this.itemCount = 0;
 this.cartPrice = 0;
 }

 private recalculate() {
 this.itemCount = 0;
 this.cartPrice = 0;
 this.lines.forEach(l => {
 this.itemCount += l.quantity;
 this.cartPrice += (l.quantity * l.product.price);
 })

 }
}

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

143

export class CartLine {

 constructor(public product: Product,
 public quantity: number) {}

 get lineTotal() {
 return this.quantity * this.product.price;
 }
}

Individual product selections are represented as an array of CartLine objects, each of which contains
a Product object and a quantity. The Cart class keeps track of the total number of items that have been
selected and the total cost of them, which will be presented to the user while shopping.

There should be a single Cart object used throughout the entire application, ensuring that any part
of the application can access the user’s product selections. To achieve this, I am going to make the Cart a
service, which means that Angular will take responsibility for creating an instance of the Cart class and will
use it when it needs to create a component that has a Cart constructor argument. This is another use of the
Angular dependency injection feature, which can be used to share objects throughout an application and
which is described in detail in Chapters 19 and 20. The @Injectable decorator, which has been applied to
the Cart class in the listing, indicates that this class will be used as a service. (Strictly speaking, the
@Injectable decorator is required only when a class has its own constructor arguments to resolve, but it
is a good idea to apply it anyway because it serves as a signal that the class is intended for use as a service.)
Listing 8-2 registers the Cart class as a service in the providers property of the model feature module class.

Listing 8-2. Registering the Cart as a Service in the model.module.ts File

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";

@NgModule({
 providers: [ProductRepository, StaticDataSource, Cart]
})
export class ModelModule { }

Creating the Cart Summary Components
Components are the essential building blocks for Angular applications because they allow discrete units
of code and content to be easily created. The SportsStore application will show users a summary of their
product selections in the title area of the page, which I am going to implement by creating a component. I
added a file called cartSummary.component.ts in the SportsStore/app/store folder and used it to define
the component shown in Listing 8-3.

http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

144

Listing 8-3. The Contents of the cartSummary.component.ts File in the SportsStore/app/store Folder

import { Component } from "@angular/core";
import { Cart } from "../model/cart.model";

@Component({
 selector: "cart-summary",
 moduleId: module.id,
 templateUrl: "cartSummary.component.html"
})
export class CartSummaryComponent {

 constructor(public cart: Cart) { }
}

When Angular needs to create an instance of this component, it will have to provide a Cart object as a
constructor argument, using the service that I configured in the previous section by adding the Cart class
to the feature module’s providers property. The default behavior for services means that a single Cart
object will be created and shared throughout the application, although there are different service behaviors
available (as described in Chapter 20).

To provide the component with a template, I created an HTML file called cartSummary.component.html
in the same folder as the component class file and added the markup shown in Listing 8-4.

Listing 8-4. The Contents of the cartSummary.component.html File in the SportsStore/app/store Folder

<div class="pull-xs-right">
 <small>
 Your cart:
 0">
 {{ cart.itemCount }} item(s)
 {{ cart.cartPrice | currency:"USD":true:"2.2-2" }}

 (empty)

 </small>
 <button class="btn btn-sm bg-inverse" [disabled]="cart.itemCount == 0">
 <i class="fa fa-shopping-cart"></i>
 </button>
</div>

This template uses the Cart object provided by its component to display the number of items in the cart
and the total cost. There is also a button that will start the checkout process when I add it to the application
later in the chapter.

 ■ Tip The button element in Listing 8-4 is styled using classes defined by Font awesome, which is one
of the packages in the package.json file from Chapter 7. This open source package provides excellent
support for icons in web applications, including the shopping cart I need for the SportsStore application.
See http://fontawesome.io for details.

http://dx.doi.org/10.1007/978-1-4842-2307-9_20
http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://fontawesome.io/

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

145

Listing 8-5 registers the new component with the store feature module, in preparation for using it in the
next section.

Listing 8-5. Registering the Component in the store.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartsummary.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent],
 exports: [StoreComponent]
})
export class StoreModule { }

Integrating the Cart into the Store
The store component is the key to integrating the cart and the cart widget into the application. Listing 8-6
updates the store component so that its constructor has a Cart parameter and defines a method that will
add a product to the cart.

Listing 8-6. Adding Cart Support in the store.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";
import { Cart } from "../model/cart.model";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})
export class StoreComponent {
 public selectedCategory = null;
 public productsPerPage = 4;
 public selectedPage = 1;

 constructor(private repository: ProductRepository,
 private cart: Cart) { }

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

146

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }

 addProductToCart(product: Product) {
 this.cart.addLine(product);
 }
}

To complete the integration of the cart into the store component, Listing 8-7 adds the element that will
apply the cart summary component to the store component’s template and adds a button to each product
description with the event binding that calls the addProductToCart method.

Listing 8-7. Applying the Component in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
 <cart-summary></cart-summary>
</div>
<div class="col-xs-3 p-a-1">
 <button class="btn btn-block btn-outline-primary"
 (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
</div>
<div class="col-xs-9 p-a-1">
 <div *ngFor="let product of products" class="card card-outline-primary">
 <h4 class="card-header">
 {{product.name}}

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

147

 {{ product.price | currency:"USD":true:"2.2-2" }}

 </h4>
 <div class="card-text p-a-1">
 {{product.description}}
 <button class="btn btn-success btn-sm pull-xs-right"
 (click)="addProductToCart(product)">
 Add To Cart
 </button>
 </div>
 </div>
 <div class="form-inline pull-xs-left m-r-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($event.target.value)">
 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>
 <div class="btn-group pull-xs-right">
 <button *counter="let page of pageCount" (click)="changePage(page)"
 class="btn btn-outline-primary" [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
</div>

The result is a button for each product that adds it to the cart, as shown in Figure 8-1. The full cart process
isn’t complete yet, but you can see the effect of each addition in the cart summary at the top of the page.

Figure 8-1. Adding cart support to the SportsStore application

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

148

Notice how clicking one of the Add To Cart buttons updates the summary component’s content
automatically. This happens because there is a single Cart object being shared between two components
and changes made by one component are reflected when Angular evaluates the data binding expressions in
the other component.

Adding URL Routing
Most applications need to show different content to the user at different times. In the case of the SportsStore
application, when the user clicks one of the Add To Cart buttons, they should be shown a detailed view of
their selected products and given the change to start the checkout process.

Angular supports a feature called URL routing, which uses the current URL displayed by the browser
to select the components that are displayed to the user. This is an approach that makes it easy to create
applications whose components are loosely coupled and easy to change without needing corresponding
modifications elsewhere in the applications. URL routing also makes it easy to change the path that a user
follows through an application.

For the SportsStore application, I am going to add support for three different URLs, which are described
in Table 8-1. This is a simple configuration, but the routing system has a lot of features, which are described
in detail in Chapters 25 to 27.

Table 8-1. The URLs Supported by the SportsStore Application

URL Description

/store This URL will display the list of products.

/cart This URL will display the user’s cart in detail.

/checkout This URL will display the checkout process.

In the sections that follow, I create placeholder components for the SportsStore cart and order checkout
stages and then integrate them into the application using URL routing. Once the URLs are implemented, I
will return to the components and add more useful features.

Creating the Cart Detail and Checkout Components
Before adding URL routing to the application, I need to create the components that will be displayed by
the /cart and /checkout URLs. I only need some basic placeholder content to get started at the moment,
just so that it is obvious which component is being displayed. I started by adding a file called cartDetail.
component.ts in the SportsStore/app/store folder and defined the component shown in Listing 8-8.

Listing 8-8. The Content of the cartDetail.component.ts File in the SportsStore/app/store Folder

import { Component } from "@angular/core";

@Component({
 template: `<div><h3 class="bg-info p-a-1">Cart Detail Component</h3></div>`
})
export class CartDetailComponent {}

http://dx.doi.org/10.1007/978-1-4842-2307-9_25
http://dx.doi.org/10.1007/978-1-4842-2307-9_27

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

149

Next, I added a file called checkout.component.ts in the SportsStore/app/store folder and defined
the component shown in Listing 8-9.

Listing 8-9. The Contents of the checkout.component.ts File in the SportsStore/app/store Folder

import { Component } from "@angular/core";

@Component({
 template: `<div><h3 class="bg-info p-a-1">Checkout Component</h3></div>`
})
export class CheckoutComponent { }

This component follows the same pattern as the cart component and displays a placeholder message
that makes it obvious which component is being displayed. Listing 8-10 registers the components in the
store feature module and adds them to the exports property, which means they can be used elsewhere in
the application.

Listing 8-10. Registering Components in the store.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartsummary.component";
import { CartDetailComponent } from "./cartDetail.component";
import { CheckoutComponent } from "./checkout.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent,
 CartDetailComponent, CheckoutComponent],
 exports: [StoreComponent, CartDetailComponent, CheckoutComponent]
})
export class StoreModule { }

Creating and Applying the Routing Configuration
Now that I have a range of components to display, the next step is to create the routing configuration, which
will tell Angular how to map URLs into components. Each mapping of a URL to a component is known as a
URL route, or just a route. In Part 3, where I create more complex routing configurations, I define the routes
in a separate, file but for this project, I am going to follow the alternate approach, which is to define the
routes within the @NgModule decorator of the application’s root module, as shown in Listing 8-11.

 ■ Tip The angular routing feature requires a base element in the hTML document, which provides the base
urL against which routes are applied. I added this element in Chapter 7 when I started the SportsStore project.
If you omit the element, angular will report an error and be unable to apply the routes.

http://dx.doi.org/10.1007/978-1-4842-2307-9_7

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

150

Listing 8-11. Creating the Routing Configuration in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 { path: "store", component: StoreComponent },
 { path: "cart", component: CartDetailComponent },
 { path: "checkout", component: CheckoutComponent },
 { path: "**", redirectTo: "/store" }
])],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

The RouterModule.forRoot method is passed a set of routes, each of which maps a URL to a
component. The first three routes in the listing match the URLs from Table 8-1. The final route is a wildcard
that redirects any other URL to /store, which will display StoreComponent.

When the routing feature is used, Angular looks for the router-outlet element, which defines the
location in which the component that corresponds to the current URL should be displayed. Listing 8-12
replaces the store element in the root component’s template with the router-outlet element.

Listing 8-12. Defining the Routing Target in the app.component.ts File

import { Component } from "@angular/core";

@Component({
 selector: "app",
 template: "<router-outlet></router-outlet>"
})
export class AppComponent { }

Angular will apply the routing configuration when you save the changes and the browser reloads the HTML
document. The content displayed in the browser window hasn’t changed, but if you examine the browser’s URL
bar, you will be able to see that the routing configuration has been applied, as shown in Figure 8-2.

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

151

Navigating through the Application
With the routing configuration in place, it is time to add support for navigating between components by
changing the browser’s URL. The URL routing feature relies on a JavaScript API provided by the browser,
which means the user can’t simply type the target URL into the browser’s URL bar. Instead, the navigation
has to be performed by the application, either by using JavaScript code in a component or other building
block or by adding attributes to HTML elements in the template.

When the user clicks one of the Add To Cart buttons, the cart detail component should be shown, which
means that the application should navigate to the /cart URL. Listing 8-13 adds navigation to the component
method that is invoked when the user clicks the button.

Listing 8-13. Navigating Using JavaScript in the store.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";
import { Cart } from "../model/cart.model";
import { Router } from "@angular/router";

@Component({
 selector: "store",
 moduleId: module.id,
 templateUrl: "store.component.html"
})
export class StoreComponent {
 public selectedCategory = null;
 public productsPerPage = 4;
 public selectedPage = 1;

 constructor(private repository: ProductRepository,
 private cart: Cart,
 private router: Router) { }

Figure 8-2. The effect of URL routing

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

152

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }

 addProductToCart(product: Product) {
 this.cart.addLine(product);
 this.router.navigateByUrl("/cart");
 }
}

The constructor has a Router parameter, which is provided by Angular through the dependency
injection feature when a new instance of the component is created. In the addProductToCart method, the
Router.navigateByUrl method is used to navigate to the /cart URL.

Navigation can also be done by adding the routerLink attribute to elements in the template. In Listing 8-14,
the routerLink attribute has been applied to the cart button in the cart summary component’s template.

Listing 8-14. Adding a Navigation Attribute in the cartSummary.component.html File

<div class="pull-xs-right">
 <small>
 Your cart:
 0">
 {{ cart.itemCount }} item(s)
 {{ cart.cartPrice | currency:"USD":true:"2.2-2" }}

 (empty)

 </small>

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

153

 <button class="btn btn-sm bg-inverse" [disabled]="cart.itemCount == 0"
 routerLink="/cart">
 <i class="fa fa-shopping-cart"></i>
 </button>
</div>

The value specified by the routerLink attribute is the URL that the application will navigate to when the
button is clicked. This particular button is disabled when the cart is empty, so it will perform the navigation
only when the user has added a product to the cart.

To add support for the routerLink attribute, the RouterModule module must be imported into the
feature module, as shown in Listing 8-15.

Listing 8-15. Importing the Router Module in the store.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartsummary.component";
import { CartDetailComponent } from "./cartDetail.component";
import { CheckoutComponent } from "./checkout.component";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule, RouterModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent,
 CartDetailComponent, CheckoutComponent],
 exports: [StoreComponent, CartDetailComponent, CheckoutComponent]
})
export class StoreModule { }

To see the effect of the navigation, save the changes of the files and, once the browser has reloaded
the HTML document, click one of the Add To Cart buttons. The browser will navigate to the /cart URL, as
shown in Figure 8-3.

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

154

Guarding the Routes
Remember that navigation can be performed only by the application. If you change the URL directly in
the browser’s URL bar, the browser will request the URL you enter from the web server. The lite-server
package that is responding to HTTP requests will respond to any URL that doesn’t correspond to a file by
returning the contents of index.html. This is generally a useful behavior because it means you won’t receive
an HTTP error when the browser reload button is clicked.

But it can also cause problems if the application expects the user to navigate through the application
following a specific path. As an example, if you click one of the Add To Cart buttons and then click the
browser’s reload button, the HTTP server will return the contents of the index.html file, and Angular will
immediately jump to the cart detail component, skipping over the part of the application that allows the user
to select products.

For some applications, being able to start using different URLs makes sense, but if that’s not the case,
then Angular supports route guards, which are used to govern the routing system.

To prevent the application from starting with the /cart or /order URL, I added a file called
storeFirst.guard.ts in the SportsStore/app folder and defined the class shown in Listing 8-16.

Figure 8-3. Using URL routing

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

155

Listing 8-16. The Contents of the storeFirst.guard.ts File in the SportsStore/app Folder

import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { StoreComponent } from "./store/store.component";

@Injectable()
export class StoreFirstGuard {
 private firstNavigation = true;

 constructor(private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): boolean {
 if (this.firstNavigation) {
 this.firstNavigation = false;
 if (route.component != StoreComponent) {
 this.router.navigateByUrl("/");
 return false;
 }
 }
 return true;
 }
}

There are different ways to guard routes, as described in Chapter 27, and this is an example of a guard
that prevents a route from being activated, which is implemented as a class that defines a canActivate
method. The implementation of this method uses the context objects that Angular provides that describe the
route that is about to be navigated to and checks to see whether the target component is a StoreComponent.
If this is the first time that the canActivate method has been called and a different component is about to be
used, then the Router.navigateByUrl method is used to navigate to the root URL.

The @Injectable decorator has been applied in the listing because route guards are services. Listing 8-17
registers the guard as a service using the root module’s providers property and guards each route using the
canActivate property.

Listing 8-17. Guarding Routes in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";
import { StoreFirstGuard } from "./storeFirst.guard";

http://dx.doi.org/10.1007/978-1-4842-2307-9_27

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

156

@NgModule({
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 {
 path: "store", component: StoreComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "cart", component: CartDetailComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "checkout", component: CheckoutComponent,
 canActivate: [StoreFirstGuard]
 },
 { path: "**", redirectTo: "/store" }
])],
 providers: [StoreFirstGuard],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

If you reload the browser after clicking one of the Add To Cart buttons now, then you will see the
browser is automatically directed back to safety, as shown in Figure 8-4.

Figure 8-4. Guarding routes

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

157

Completing the Cart Detail Feature
The natural flow of development with Angular moves between setting up infrastructure, such as URL routing,
and implementing features that are visible to the user. Now that the application has navigation support, it is
time to complete the view that details the contents of the user’s cart. Listing 8-18 removes the inline template
from the cart detail component, specifies an external template in the same directory, and adds a Cart
parameter to the constructor, which will be accessible in the template through a property called cart.

Listing 8-18. Changing the Template in the cartDetail.component.ts File

import { Component } from "@angular/core";
import { Cart } from "../model/cart.model";

@Component({
 moduleId: module.id,
 templateUrl: "cartDetail.component.html"
})
export class CartDetailComponent {

 constructor(public cart: Cart) { }
}

To complete the cart detail feature, I created an HTML file called cartDetail.component.html in the
SportsStore/app/store folder and added the content shown in Listing 8-19.

Listing 8-19. The Contents of the cartDetail.component.html File in the SportsStore/app/store Folder

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>

<div class="m-a-1">
 <h2 class="text-xs-center">Your Cart</h2>
 <table class="table table-bordered table-striped p-a-1">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Product</th>
 <th class="text-xs-right">Price</th>
 <th class="text-xs-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngIf="cart.lines.length == 0">
 <td colspan="4" class="text-xs-center">
 Your cart is empty
 </td>
 </tr>
 <tr *ngFor="let line of cart.lines">

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

158

 <td>
 <input type="number" class="form-control-sm"
 style="width:5em"
 [value]="line.quantity"
 (change)="cart.updateQuantity(line.product,
 $event.target.value)"/>
 </td>
 <td>{{line.product.name}}</td>
 <td class="text-xs-right">
 {{line.product.price | currency:"USD":true:"2.2-2"}}
 </td>
 <td class="text-xs-right">
 {{(line.lineTotal) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-sm btn-danger"
 (click)="cart.removeLine(line.product.id)">
 Remove
 </button>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-xs-right">Total:</td>
 <td class="text-xs-right">
 {{cart.cartPrice | currency:"USD":true:"2.2-2"}}
 </td>
 </tr>
 </tfoot>
 </table>
</div>
<div class="text-xs-center">
 <button class="btn btn-primary" routerLink="/store">Continue Shopping</button>
 <button class="btn btn-secondary" routerLink="/checkout"
 [disabled]="cart.lines.length == 0">
 Checkout
 </button>
</div>

This template displays a table showing the user’s product selections. For each product, there is an input
element that can be used to change the quantity and a Remove button that deletes it from the cart. There are also
two navigation buttons that allow the user to return to the list of products or continue to the checkout process,
as shown in Figure 8-5. The combination of the Angular data bindings and the shared Cart object means that any
changes made to the cart take immediate effect, recalculating the prices; and if you click the Continue Shopping
button, the changes are reflected in the cart summary component shown above the list of products.

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

159

Processing Orders
Being able to receive orders from customers is the most important aspect of an online store. In the sections
that follow, I build on the application to add support for receiving the final details from the user and
checking them out. To keep the process simple, I am going to avoid dealing with payment platforms, which
are generally back-end services that are not specific to Angular applications.

Extending the Model
To describe orders placed by users, I added a file called order.model.ts in the SportsStore/app/model
folder and defined the code shown in Listing 8-20.

Figure 8-5. Completing the cart detail feature

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

160

Listing 8-20. The Contents of the order.model.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Cart } from "./cart.model";

@Injectable()
export class Order {
 public id: number;
 public name: string;
 public address: string;
 public city: string;
 public state: string;
 public zip: string;
 public country: string;
 public shipped: boolean = false;

 constructor(public cart: Cart) { }

 clear() {
 this.id = null;
 this.name = this.address = this.city = null;
 this.state = this.zip = this.country = null;
 this.shipped = false;
 this.cart.clear();
 }
}

The Order class will be another service, which means that there will be one instance shared throughout
the application. When Angular creates the Order object, it will detect the Cart constructor parameter and
provide the same Cart object that is used elsewhere in the application.

Updating the Repository and Data Source
To handle orders in the application, I need to extend the repository and the data source so they can receive
Order objects. Listing 8-21 adds a method to the data source that receives an order. Since this is still the
dummy data source, the method simply produces a JSON string from the order and writes it to the JavaScript
console. I’ll do something more useful with the objects in the next section, when I create a data source that
uses HTTP requests to communicate with the RESTful web service.

Listing 8-21. Handling Orders in the static.datasource.ts File

import { Injectable } from "@angular/core";
import { Product} from "./product.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/from";
import { Order } from "./order.model";

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

161

@Injectable()
export class StaticDataSource {
 private products: Product[] = [

 // ...statements omitted for brevity...

];

 getProducts(): Observable<Product[]> {
 return Observable.from([this.products]);
 }

 saveOrder(order: Order): Observable<Order> {
 console.log(JSON.stringify(order));
 return Observable.from([order]);
 }
}

To manage orders, I added a file called order.repository.ts to the SportsStore/app/model folder
and used it to define the class shown in Listing 8-22. There is only one method in the order repository at the
moment, but I will add more functionality in Chapter 9 when I create the administration features.

 ■ Tip You don’t have to use different repositories for each model type in the application, but I often do so
because a single class responsible for multiple model types can become complex and difficult to maintain.

Listing 8-22. The Contents of the order.repository.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Observable } from "rxjs/Observable";
import { Order } from "./order.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class OrderRepository {
 private orders: Order[] = [];

 constructor(private dataSource: StaticDataSource) {}

 getOrders(): Order[] {
 return this.orders;
 }

 saveOrder(order: Order): Observable<Order> {
 return this.dataSource.saveOrder(order);
 }
}

http://dx.doi.org/10.1007/978-1-4842-2307-9_9

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

162

Updating the Feature Module
Listing 8-23 registers the Order class and the new repository as services using the providers property of the
model feature module.

Listing 8-23. Registering Services in the model.module.ts File

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";

@NgModule({
 providers: [ProductRepository, StaticDataSource, Cart,
 Order, OrderRepository]
})
export class ModelModule { }

Collecting the Order Details
The next step is to gather the details from the user required to complete the order. Angular includes built-in
directives for working with HTML forms and validating their contents. Listing 8-24 prepares the checkout
component, switching to an external template, receiving the Order object as a constructor parameter, and
providing some additional support to help the template.

Listing 8-24. Preparing for a Form in the checkout.component.ts File

import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { OrderRepository } from "../model/order.repository";
import { Order } from "../model/order.model";

@Component({
 moduleId: module.id,
 templateUrl: "checkout.component.html",
 styleUrls: ["checkout.component.css"]
})
export class CheckoutComponent {
 orderSent: boolean = false;
 submitted: boolean = false;

 constructor(public repository: OrderRepository,
 public order: Order) {}

 submitOrder(form: NgForm) {
 this.submitted = true;
 if (form.valid) {
 this.repository.saveOrder(this.order).subscribe(order => {
 this.order.clear();

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

163

 this.orderSent = true;
 this.submitted = false;
 });
 }
 }
}

The submitOrder method will be invoked when the user submits a form, which is represented by
an NgForm object. If the data that the form contains is valid, then the Order object will be passed to the
repository’s saveOrder method and the data in the cart and the order will be reset.

The @Component decorator’s styleUrls property is used to specify one or more CSS stylesheets that
should be applied to the content in the component’s template. To provide validation feedback for the values
that the user enters into the HTML form elements, I created a file called checkout.component.css in the
SportsStore/app/store folder and defined the styles shown in Listing 8-25.

Listing 8-25. The Contents of the checkout.component.css File in the SportsStore/app/store Folder

input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Angular adds elements to the ng-dirty, ng-valid, and ng-valid classes to indicate their validation
status. The full set of validation classes is described in Chapter 14, but the effect of the styles in Listing 8-25 is
to add a green border around input elements that are valid and a red border around those that are invalid.

The final piece of the puzzle is the template for the component, which presents the user with the form
fields required to populate the properties of an Order object, as shown in Listing 8-26.

Listing 8-26. The Contents of the checkout.component.html File in the SportsStore/app/store Folder

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
</div>
<div *ngIf="orderSent" class="m-a-1 text-xs-center">
 <h2>Thanks!</h2>
 <p>Thanks for placing your order.</p>
 <p>We'll ship your goods as soon as possible.</p>
 <button class="btn btn-primary" routerLink="/store">Return to Store</button>
</div>
<form *ngIf="!orderSent" #form="ngForm" novalidate
 (ngSubmit)="submitOrder(form)" class="m-a-1">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" #name="ngModel" name="name"
 [(ngModel)]="order.name" required />

 Please enter your name

 </div>
 <div class="form-group">
 <label>Address</label>
 <input class="form-control" #address="ngModel" name="address"
 [(ngModel)]="order.address" required />

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

164

 Please enter your address

 </div>
 <div class="form-group">
 <label>City</label>
 <input class="form-control" #city="ngModel" name="city"
 [(ngModel)]="order.city" required />

 Please enter your city

 </div>
 <div class="form-group">
 <label>State</label>
 <input class="form-control" #state="ngModel" name="state"
 [(ngModel)]="order.state" required />

 Please enter your state

 </div>
 <div class="form-group">
 <label>Zip/Postal Code</label>
 <input class="form-control" #zip="ngModel" name="zip"
 [(ngModel)]="order.zip" required />

 Please enter your zip/postal code

 </div>
 <div class="form-group">
 <label>Country</label>
 <input class="form-control" #country="ngModel" name="country"
 [(ngModel)]="order.country" required />

 Please enter your country

 </div>
 <div class="text-xs-center">
 <button class="btn btn-secondary" routerLink="/cart">Back</button>
 <button class="btn btn-primary" type="submit">Complete Order</button>
 </div>
</form>

The form and input elements in this template use Angular features to ensure that the user provides
values for each field, and they provide visual feedback if the user clicks the Complete Order button without
completing the form. Part of this feedback comes from applying the styles that were defined in Listing 8-25,
and part comes from span elements that remain hidden until the user tries to submit an invalid form.

 ■ Tip requiring values is only one of the ways that angular can validate form fields, and as I explained in
Chapter 14, you can easily add your own custom validation as well.

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

165

To see the process, start with the list of products and click one of the Add To Cart buttons to add
a product to the cart. Click the Checkout button and you will see the HTML form shown in Figure 8-6.
Click the Complete Order button without entering text into any of the input elements and you will see
the validation feedback messages. Fill out the form and click the Complete Order button; you will see the
confirmation message shown in the figure.

If you look in the browser’s JavaScript console, you will see a JSON representation of the order like this:

{"cart":
 {"lines":[
 {"product":{"id":1,"name":"Product 1","category":"Category 1",
 "description":"Product 1 (Category 1)","price":100},"quantity":1}],
 "itemCount":1,"cartPrice":100},
 "shipped":false,
 "name":"Joe Smith","address":"123 Main Street",
 "city":"Smallville","state":"NY","zip":"10036","country":"USA"
}

Figure 8-6. Completing an order

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

166

Using the RESTful Web Service
Now that the basic SportsStore functionality is in place, it is time to replace the dummy data source with one
that gets its data from the RESTful web service that was created during the project set up in Chapter 9.

To create the data source, I added a file called rest.datasource.ts in the SportsStore/app/model
folder and added the code shown in Listing 8-27.

Listing 8-27. The Contents of the rest.datasource.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Http, Request, RequestMethod } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import "rxjs/add/operator/map";

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;

 constructor(private http: Http) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 getProducts(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, "products");
 }

 saveOrder(order: Order): Observable<Order> {
 return this.sendRequest(RequestMethod.Post, "orders", order);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product | Order): Observable<Product | Order> {
 return this.http.request(new Request({
 method: verb,
 url: this.baseUrl + url,
 body: body
 })).map(response => response.json());
 }
}

Angular provides a built-in service called Http that is used to make HTTP requests. The RestDataSource
constructor receives the Http service and uses the global location object provided by the browser to
determine the URL that the requests will be sent to, which is port 3500 on the same host that the application
has been loaded from.

http://dx.doi.org/10.1007/978-1-4842-2307-9_9

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

167

The methods defined by the RestDataSource class correspond to the ones defined by the static data
source and are implemented by calling the sendRequest method, which uses the Http service, described in
Chapter 24.

 ■ Tip When obtaining data via hTTp, it is possible that network congestion or server load will delay the
request and leave the user looking at an application that has no data. In Chapter 27, I explain how to configure
the routing system to prevent this problem.

Applying the Data Source
To complete this chapter, I am going to apply the RESTful data source by reconfiguring the application so
that the switch from the dummy data to the REST data is done with changes to a single file. Listing 8-28
changes the behavior of the data source service in the model feature module.

Listing 8-28. Changing the Service Configuration in the model.module.ts File

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";
import { RestDataSource } from "./rest.datasource";
import { HttpModule } from "@angular/http";

@NgModule({
 imports: [HttpModule],
 providers: [ProductRepository, Cart, Order, OrderRepository,
 { provide: StaticDataSource, useClass: RestDataSource }]
})
export class ModelModule { }

The imports property is used to declare a dependency on HttpModule feature module, which provides
the Http service used in Listing 8-27. The change to the providers property tells Angular that when it
needs to create an instance of a class with a StaticDataSource constructor parameter, it should use a
RestDataSource instead. Since both objects define the same methods, the dynamic JavaScript type system
means that the substitution is seamless. When all the changes have been saved and the browser reloads the
application, you will see the dummy data has been replaced with the data obtained via HTTP, as shown in
Figure 8-7.

http://dx.doi.org/10.1007/978-1-4842-2307-9_24
http://dx.doi.org/10.1007/978-1-4842-2307-9_27

ChapTer 8 ■ SporTSSTore: orderS and CheCkouT

168

If you go through the process of selecting products and checking out, you can see that the data source
has written the order to the web service by navigating to this URL:

http://localhost:3500/db

This will display the full contents of the database, including the collection of orders. You won’t be able
to request the /orders URL because it requires authentication, which I set up in the next chapter.

 ■ Tip remember that the data provided by the reSTful web service is reset if you restart npm, resetting to the
data defined in Chapter 7.

Summary
In this chapter, I continued adding features to the SportsStore application, adding support for a
shopping cart into which the user can place products and a checkout process that completes the
shopping process. To complete the chapter, I replaced the dummy data source with one that sends
HTTP requests to the RESTful web service. In the next chapter, I create the administration features that
allow the SportsStore data to be managed.

Figure 8-7. Using the RESTful web service

http://dx.doi.org/10.1007/978-1-4842-2307-9_7

169© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_9

CHAPTER 9

SportsStore: Administration

In this chapter, I continue building the SportsStore application by adding administration features. Relatively
few users will need to access the administration features, so it would be wasteful to force all users to
download the administration code and content when it is unlikely to be used. Instead, I am going to put the
administration features in a feature module that will be loaded only when administration is required. In this
section, I prepare the application by creating the feature module, adding some initial content, and setting up
the rest of the application so that the module can be loaded dynamically.

Preparing the Example Application
No preparation is required for this chapter, which continues using the SportsStore project from Chapter 8.
Run the following command in the SportsStore folder to start the TypeScript compiler, the RESTful web
service, and the development HTTP server:

npm start

 ■ Tip The free source code download from apress.com that accompanies this book contains the SportsStore
project from each individual chapter if you don’t want to have to start with the earlier chapters.

Creating the Module
The process for creating the feature module follows the same pattern for the rest of the application, except it
is important that no other part of the application has dependencies on the module or the classes it contains,
which would undermine the dynamic loading of the module and cause the JavaScript module to load the
administration code, even if it is not used.

The starting point for the administration features will be to authenticate, so I created a file called auth.
component.ts in the SportsStore/app/admin folder and used it to define the component shown in Listing 9-1.

Listing 9-1. The Content of the auth.component.ts File in the SportsStore/app/admin Folder

import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Router } from "@angular/router";

http://dx.doi.org/10.1007/978-1-4842-2307-9_8

ChapTer 9 ■ SporTSSTore: adminiSTraTion

170

@Component({
 moduleId: module.id,
 templateUrl: "auth.component.html"
})
export class AuthComponent {
 public username: string;
 public password: string;
 public errorMessage: string;

 constructor(private router: Router) {}

 authenticate(form: NgForm) {
 if (form.valid) {
 // perform authentication
 this.router.navigateByUrl("/admin/main");
 } else {
 this.errorMessage = "Form Data Invalid";
 }
 }
}

The component defines properties for the username and password that will be used to authenticate the
user, an errorMessage property that will be used to display messages to the user when there are problems,
and an authenticate method that will perform the authentication process (but that does nothing at the
moment).

To provide the component with a template, I created a file called auth.component.html in the
SportsStore/app/admin folder and added the content shown in Listing 9-2.

Listing 9-2. The Content of the auth.component.html File in the SportsStore/app/admin Folder

<div class="bg-info p-a-1 text-xs-center">
 <h3>SportsStore Admin</h3>
</div>
<div class="bg-danger m-t-1 p-a-1 text-xs-center"
 *ngIf="errorMessage != null">
 {{errorMessage}}
</div>
<div class="p-a-1">
 <form novalidate #form="ngForm" (ngSubmit)="authenticate(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="username"
 [(ngModel)]="username" required />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input class="form-control" type="password" name="password"
 [(ngModel)]="password" required />
 </div>
 <div class="text-xs-center">
 <button class="btn btn-secondary" routerLink="/">Go back</button>

ChapTer 9 ■ SporTSSTore: adminiSTraTion

171

 <button class="btn btn-primary" type="submit">Log In</button>
 </div>
 </form>
</div>

The template contains an HTML form that uses two-way data binding expressions for the component’s
properties. There is a button that will submit the form, a button that navigates back to the root URL, and a
div element that is visible only when there is an error message to display.

To create a placeholder for the administration features, I added a file called admin.component.ts in the
SportsStore/app/admin folder and defined the component shown in Listing 9-3.

Listing 9-3. The Contents of the admin.component.ts File in the SportsStore/app/admin Folder

import { Component } from "@angular/core";

@Component({
 moduleId: module.id,
 templateUrl: "admin.component.html"
})
export class AdminComponent {}

The component doesn’t contain any functionality at the moment. To provide a template for the
component, I added a file called admin.component.html to the SportsStore/app/admin folder and the
placeholder content shown in Listing 9-4.

Listing 9-4. The Contents of the admin.component.html File in the SportsStore/app/admin Folder

<div class="bg-info p-a-1">
 <h3>Placeholder for Admin Features</h3>
</div>

To define the feature module, I added a file called admin.module.ts in the SportsStore/app/admin
folder and added the code shown in Listing 9-5.

Listing 9-5. The Contents of the admin.module.ts File in the SportsStore/app/admin Folder

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 { path: "main", component: AdminComponent },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 declarations: [AuthComponent, AdminComponent]
})
export class AdminModule { }

ChapTer 9 ■ SporTSSTore: adminiSTraTion

172

The main difference when creating a dynamically loaded module is that the feature module must be
self-contained and include all the information that Angular requires, including the routing URLs that are
supported and the components they display.

The RouterModule.forChild method is used to define the routing configuration for the feature module,
which is then included in the module’s imports property.

The prohibition on exporting classes from a dynamically loaded module doesn’t apply to imports. This
module relies on the functionality in the model feature module, which has been added to the module’s
imports so that components can access the model classes and the repositories.

Configuring the URL Routing System
Dynamically loaded modules are managed through the routing configuration, which triggers the loading
process when the application navigates to a specific URL. Listing 9-6 extends the routing configuration of the
application so that the /admin URL will load the administration feature module.

Listing 9-6. Configuring a Dynamically Loaded Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";
import { StoreFirstGuard } from "./storeFirst.guard";

@NgModule({
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 {
 path: "store", component: StoreComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "cart", component: CartDetailComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "checkout", component: CheckoutComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "admin",
 loadChildren: "app/admin/admin.module#AdminModule",
 canActivate: [StoreFirstGuard]
 },
 { path: "**", redirectTo: "/store" }
])],

ChapTer 9 ■ SporTSSTore: adminiSTraTion

173

 providers: [StoreFirstGuard],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

The new route tells Angular that when the application navigates to the /admin URL, it should load a
feature module defined by a class called AdminModule from the /app/admin/admin.module.ts file. When
Angular processes the admin module, it will incorporate the routing information it contains into the overall
set of routes and complete the navigation.

Navigating to the Administration URL
The final preparatory step is to provide the user with the ability to navigate to the /admin URL so that the
administration feature module will be loaded and its component displayed to the user. Listing 9-7 adds a
button to the store component’s template that will perform the navigation.

Listing 9-7. Adding a Navigation Button in the store.component.html File

<div class="navbar navbar-inverse bg-inverse">
 SPORTS STORE
 <cart-summary></cart-summary>
</div>
<div class="col-xs-3 p-a-1">
 <button class="btn btn-block btn-outline-primary"
 (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 <button class="btn btn-block btn-danger m-t-3" routerLink="/admin">
 Admin
 </button>
</div>
<div class="col-xs-9 p-a-1">

 <!-- ...elements omitted for brevity... -->

</div>

To see the result, use the browser’s F12 developer tools to see the network requests made by the browser
as the application is loaded. The files for the administration module will not be loaded until you click the
Admin button, at which point Angular will request the files and display the login page shown in Figure 9-1.

ChapTer 9 ■ SporTSSTore: adminiSTraTion

174

Enter any name and password into the form fields and click the Log In button to see the placeholder
content, as shown in Figure 9-2. If you leave either of the form fields empty, a warning message will be displayed.

Figure 9-1. Using a dynamically loaded module

Figure 9-2. The placeholder administration features

ChapTer 9 ■ SporTSSTore: adminiSTraTion

175

Implementing Authentication
The RESTful web service has been configured so that it requires authentication for the requests that
the administration feature will require. In the sections that follow, I extend the data model to support
authenticated HTTP requests and integrate them into the administration module.

Understanding the Authentication System
The result of authentication with the RESTful web service is a JSON Web Token (JWT), which is returned
by the server and must be included in any subsequent requests to show that the application is authorized
to perform protected operations. You can read the JWT specification at https://tools.ietf.org/
html/rfc7519, but for the purposes of the SportsStore application it is enough to know that the Angular
application can authenticate the user by sending a POST request to the /login URL, including a JSON-
formatted object in the request body that contains name and password properties. There is only one set of
valid credentials in the authentication code used in Chapter 7, which is shown in Table 9-1.

Table 9-1. The Authentication Credentials Supported by the RESTful Web Service

Username Password

admin secret

As I noted in Chapter 7, you should not hard-code credentials in real projects, but this is the username
and password that you will need for the SportsStore application.

If the correct credentials are sent to the /login URL, then the response from the RESTful web service
will contain a JSON object like this:

{
 "success": true,
 "token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLCJleHBpcmVz
 SW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtdWrz0312p_DG5tKypGv6cA
 NgOyzlg8"
}

The success property describes the outcome of the authentication operation, and the token property
contains the JWT, which should be included in subsequent requests using the Authorization HTTP header
in this format:

Authorization: Bearer<eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLC
 JleHBpcmVzSW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtd
 Wrz0312p_DG5tKypGv6cANgOyzlg8>

I configured the JWT tokens returned by the server so they expire after one hour.
If the wrong credentials are sent to the server, then the JSON object returned in the response will just

contain a success property set to false, like this:

{
 "success": false
}

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_7

ChapTer 9 ■ SporTSSTore: adminiSTraTion

176

Extending the Data Source
The RESTful data source is the class that will do most of the work because it is responsible for sending
the authentication request to the /login URL and including the JWT in later requests. Listing 9-8 adds
authentication to the RestDataSource class and extends the sendRequest method so that it can include the
JWT in requests.

Listing 9-8. Adding Authentication in the rest.datasource.ts File

import { Injectable } from "@angular/core";
import { Http, Request, RequestMethod } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import "rxjs/add/operator/map";

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;
 auth_token: string;

 constructor(private http: Http) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 authenticate(user: string, pass: string): Observable<boolean> {
 return this.http.request(new Request({
 method: RequestMethod.Post,
 url: this.baseUrl + "login",
 body: { name: user, password: pass }
 })).map(response => {
 let r = response.json();
 this.auth_token = r.success ? r.token : null;
 return r.success;
 });
 }

 getProducts(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, "products");
 }

 saveOrder(order: Order): Observable<Order> {
 return this.sendRequest(RequestMethod.Post,
 "orders", order);
 }

ChapTer 9 ■ SporTSSTore: adminiSTraTion

177

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product | Order, auth: boolean = false)
 : Observable<Product | Product[] | Order | Order[]> {

 let request = new Request({
 method: verb,
 url: this.baseUrl + url,
 body: body
 });
 if (auth && this.auth_token != null) {
 request.headers.set("Authorization", `Bearer<${this.auth_token}>`);
 }
 return this.http.request(request).map(response => response.json());
 }
}

Creating the Authentication Service
Rather than expose the data source directly to the rest of the application, I am going to create a service that
can be used to perform authentication and determine whether the application has been authenticated.
I added a file called auth.service.ts in the SportsStore/app/model folder and defined the class shown in
Listing 9-9.

Listing 9-9. The Contents of the auth.service.ts File in the SportsStore/app/model Folder

import { Injectable } from "@angular/core";
import { Observable } from "rxjs/Observable";
import { RestDataSource } from "./rest.datasource";
import "rxjs/add/operator/map";

@Injectable()
export class AuthService {

 constructor(private datasource: RestDataSource) {}

 authenticate(username: string, password: string): Observable<boolean> {
 return this.datasource.authenticate(username, password);
 }

 get authenticated(): boolean {
 return this.datasource.auth_token != null;
 }

 clear() {
 this.datasource.auth_token = null;
 }
}

ChapTer 9 ■ SporTSSTore: adminiSTraTion

178

The authenticate method receives the user’s credentials and passes them on to the data source
authenticate method, returning an Observable that will yield true if the authentication process has
succeeded and false otherwise. The authenticated property is a getter-only property that returns true if
the data source has obtained an authentication token. The clear method removes the token from the data
source.

Listing 9-10 registers the new service with the model feature module. It also adds a providers entry for
the RestDataSource class, which has been used only as a substitute for the StaticDataSource class in earlier
chapters. Since the AuthService class has a RestDataSource constructor parameter, it needs its own entry in
the module.

Listing 9-10. Configuring the Services in the model.module.ts File

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";
import { RestDataSource } from "./rest.datasource";
import { HttpModule } from "@angular/http";
import { AuthService } from "./auth.service";

@NgModule({
 imports: [HttpModule],
 providers: [ProductRepository, Cart, Order, OrderRepository,
 { provide: StaticDataSource, useClass: RestDataSource },
 RestDataSource, AuthService]
})
export class ModelModule { }

Enabling Authentication
The next step is to wire up the component that obtains the credentials from the user so that it will perform
authentication through the new service, as shown in Listing 9-11.

Listing 9-11. Enabling Authentication in the auth.component.ts File

import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Component({
 moduleId: module.id,
 templateUrl: "auth.component.html"
})
export class AuthComponent {
 public username: string;
 public password: string;
 public errorMessage: string;

ChapTer 9 ■ SporTSSTore: adminiSTraTion

179

 constructor(private router: Router,
 private auth: AuthService) { }

 authenticate(form: NgForm) {
 if (form.valid) {
 this.auth.authenticate(this.username, this.password)
 .subscribe(response => {
 if (response) {
 this.router.navigateByUrl("/admin/main");
 }
 this.errorMessage = "Authentication Failed";
 })
 } else {
 this.errorMessage = "Form Data Invalid";
 }
 }
}

To prevent the application from navigating directly to the administration features, which will lead to
HTTP requests being sent without a token, I added a file called auth.guard.ts in the SportsStore/app/
admin folder and defined the route guard shown in Listing 9-12.

Listing 9-12. The Contents of the auth.guard.ts File in the SportsStore/app/admin Folder

import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot,
 Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Injectable()
export class AuthGuard {

 constructor(private router: Router,
 private auth: AuthService) { }

 canActivate(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): boolean {

 if (!this.auth.authenticated) {
 this.router.navigateByUrl("/admin/auth");
 return false;
 }
 return true;
 }
}

ChapTer 9 ■ SporTSSTore: adminiSTraTion

180

Listing 9-13 applies the route guard to one of the routes defined by the administration feature module.

Listing 9-13. Guarding a Route in the admin.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 { path: "main", component: AdminComponent, canActivate: [AuthGuard] },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 providers: [AuthGuard],
 declarations: [AuthComponent, AdminComponent]
})
export class AdminModule {}

To test the authentication system, click the Admin button, enter some credentials, and click the
Log In button. If the credentials are the ones from Table 9-1, then you will see the placeholder for the
administration features. If you enter other credentials, you will see an error message. Both outcomes are
illustrated in Figure 9-3.

 ■ Tip The token isn’t stored persistently, so if you can, reload the application in the browser to start again
and try a different set of credentials.

Figure 9-3. Testing the authentication feature

ChapTer 9 ■ SporTSSTore: adminiSTraTion

181

Extending the Data Source and Repositories
With the authentication system in place, the next step is to extend the data source so that it can send
authenticated requests and to expose those features through the order and product repository classes.
Listing 9-14 adds methods to the data source that include the authentication token.

Listing 9-14. Adding New Operations in the rest.datasource.ts File

import { Injectable } from "@angular/core";
import { Http, Request, RequestMethod } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import "rxjs/add/operator/map";

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;
 auth_token: string;

 constructor(private http: Http) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 authenticate(user: string, pass: string): Observable<boolean> {
 return this.http.request(new Request({
 method: RequestMethod.Post,
 url: this.baseUrl + "login",
 body: { name: user, password: pass }
 })).map(response => {
 let r = response.json();
 this.auth_token = r.success ? r.token : null;
 return r.success;
 });
 }

 getProducts(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, "products");
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Post, "products",
 product, true);
 }

ChapTer 9 ■ SporTSSTore: adminiSTraTion

182

 updateProduct(product): Observable<Product> {
 return this.sendRequest(RequestMethod.Put,
 `products/${product.id}`, product, true);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest(RequestMethod.Delete,
 `products/${id}`, null, true);
 }

 getOrders(): Observable<Order[]> {
 return this.sendRequest(RequestMethod.Get,
 "orders", null, true);
 }

 deleteOrder(id: number): Observable<Order> {
 return this.sendRequest(RequestMethod.Delete,
 `orders/${id}`, null, true);
 }

 updateOrder(order: Order): Observable<Order> {
 return this.sendRequest(RequestMethod.Put,
 `orders/${order.id}`, order, true);
 }

 saveOrder(order: Order): Observable<Order> {
 return this.sendRequest(RequestMethod.Post,
 "orders", order);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product | Order, auth: boolean = false)
 : Observable<Product | Product[] | Order | Order[]> {

 let request = new Request({
 method: verb,
 url: this.baseUrl + url,
 body: body
 });
 if (auth && this.auth_token != null) {
 request.headers.set("Authorization", `Bearer<${this.auth_token}>`);
 }
 return this.http.request(request).map(response => response.json());
 }
}

Listing 9-15 adds new methods to the product repository class that allow products to be created,
updated, or deleted. The saveProduct method is responsible for creating and updating products, which
is an approach that works well when using a single object managed by a component, which you will
see demonstrated later in this chapter. The listing also changes the type of the constructor argument to
RestDataSource.

ChapTer 9 ■ SporTSSTore: adminiSTraTion

183

Listing 9-15. Adding New Operations in the product.repository.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class ProductRepository {
 private products: Product[] = [];
 private categories: string[] = [];

 constructor(private dataSource: RestDataSource) {
 dataSource.getProducts().subscribe(data => {
 this.products = data;
 this.categories = data.map(p => p.category)
 .filter((c, index, array) => array.indexOf(c) == index).sort();
 });
 }

 getProducts(category: string = null): Product[] {
 return this.products
 .filter(p => category == null || category == p.category);
 }

 getProduct(id: number): Product {
 return this.products.find(p => p.id == id);
 }

 getCategories(): string[] {
 return this.categories;
 }

 saveProduct(product: Product) {
 if (product.id == null || product.id == 0) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product)
 .subscribe(p => {
 this.products.splice(this.products.
 findIndex(p => p.id == product.id), 1, product);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(p => {
 this.products.splice(this.products.
 findIndex(p => p.id == id), 1);
 })
 }
}

ChapTer 9 ■ SporTSSTore: adminiSTraTion

184

Listing 9-16 makes the corresponding changes to the order repository, adding methods that allow
orders to be modified and deleted.

Listing 9-16. Adding New Operations in the order.repository.ts File

import { Injectable } from "@angular/core";
import { Observable } from "rxjs/Observable";
import { Order } from "./order.model";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class OrderRepository {
 private orders: Order[] = [];
 private loaded: boolean = false;

 constructor(private dataSource: RestDataSource) {}

 loadOrders() {
 this.loaded = true;
 this.dataSource.getOrders()
 .subscribe(orders => this.orders = orders);
 }

 getOrders(): Order[] {
 if (!this.loaded) {
 this.loadOrders();
 }
 return this.orders;
 }

 saveOrder(order: Order): Observable<Order> {
 return this.dataSource.saveOrder(order);
 }

 updateOrder(order: Order) {
 this.dataSource.updateOrder(order).subscribe(order => {
 this.orders.splice(this.orders.
 findIndex(o => o.id == order.id), 1, order);
 });
 }

 deleteOrder(id: number) {
 this.dataSource.deleteOrder(id).subscribe(order => {
 this.orders.splice(this.orders.findIndex(o => id == o.id));
 });
 }
}

The order repository defines a loadOrders method that gets the orders from the repository and that
is used to ensure that the request isn’t sent to the RESTful web service until authentication has been
performed.

ChapTer 9 ■ SporTSSTore: adminiSTraTion

185

Creating the Administration Feature Structure
Now that the authentication system is in place and the repositories provide the full range of operations,
I can create the structure that will display the administration features, which I am going to create by building
on the existing URL routing configuration. Table 9-2 lists the URLs that I am going to support and the
functionality that each will present to the user.

Table 9-2. The URLs for Administration Features

Name Description

/admin/main/products Navigating to this URL will display all the products in a table, along
with buttons that allow an existing product to be edited or deleted
and a new product to be created.

/admin/main/products/create Navigating to this URL will present the user with an empty editor
for creating a new product.

/admin/main/products/edit/1 Navigating to this URL will present the user with a populated editor
for editing an existing product.

/admin/main/orders Navigating to this URL will present the user with all the orders in a
table, along with buttons to mark an order shipped and to cancel
an order by deleting it.

Creating the Placeholder Components
I find that the easiest way to add features to an Angular project is to define components that have
placeholder content and build the structure of the application around them. Once the structure is in place,
then I return to the components and implement the features in detail. For the administration features,
I started by adding a file called productTable.component.ts to the SportsStore/app/admin folder and
defined the component shown in Listing 9-17. This component will be responsible for showing a list of
products, along with buttons required to edit and delete them or to create a new product.

Listing 9-17. The Contents of the productTable.component.ts File in the SportsStore/app/admin Folder

import { Component } from "@angular/core";

@Component({
 template: `<div class="bg-info p-a-1">
 <h3>Product Table Placeholder</h3>
 </div>`
})
export class ProductTableComponent {}

I added a file called productEditor.component.ts in the SportsStore/app/admin folder and used
it to define the component shown in Listing 9-18, which will be used to allow the user to enter the details
required to create or edit a component.

ChapTer 9 ■ SporTSSTore: adminiSTraTion

186

Listing 9-18. The Contents of the productEditor.component.ts File in the SportsStore/app/admin Folder

import { Component } from "@angular/core";

@Component({
 template: `<div class="bg-warning p-a-1">
 <h3>Product Editor Placeholder</h3>
 </div>`
})
export class ProductEditorComponent { }

To create the component that will be responsible for managing customer orders, I added a file called
orderTable.component.ts to the SportsStore/app/admin folder and added the code shown in Listing 9-19.

Listing 9-19. The Contents of the orderTable.component.ts File in the SportsStore/app/admin Folder

import { Component } from "@angular/core";

@Component({
 template: `<div class="bg-primary p-a-1">
 <h3>Order Table Placeholder</h3>
 </div>`
})
export class OrderTableComponent { }

Preparing the Common Content and the Feature Module
The components created in the previous section will be responsible for specific features. To bring those
features together and allow the user to navigate between them, I need to modify the template of the
placeholder component that I have been using to demonstrate the result of a successful authentication
attempt. I replaced the placeholder content with the elements shown in Listing 9-20.

Listing 9-20. Replacing the Content in the admin.component.html File

<div class="navbar navbar-inverse bg-info">
 SPORTS STORE Admin
</div>
<div class="m-t-1">
 <div class="col-xs-3">
 <button class="btn btn-outline-info btn-block"
 routerLink="/admin/main/products"
 routerLinkActive="active">
 Products
 </button>
 <button class="btn btn-outline-info btn-block"
 routerLink="/admin/main/orders"
 routerLinkActive="active">
 Orders
 </button>
 <button class="btn btn-outline-danger btn-block" (click)="logout()">
 Logout
 </button>

ChapTer 9 ■ SporTSSTore: adminiSTraTion

187

 </div>
 <div class="col-xs-9">
 <router-outlet></router-outlet>
 </div>
</div>

This template contains a router-outlet element that will be used to display the components from the
previous section. There are also buttons that will navigate the application to the /admin/main/products
and /admin/main/orders URLs, which will select the products or orders features. These buttons use the
routerLinkActive attribute, which is used to add the element to a CSS class when the route specified by the
routerLink attribute is active.

The template also contains a Logout button that has an event binding that targets a method called
logout. Listing 9-21 adds this method to the component, which uses the authentication service to remove
the bearer token and navigates the application to the default URL.

Listing 9-21. Implementing the Logout Method in the admin.component.ts File

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Component({
 moduleId: module.id,
 templateUrl: "admin.component.html"
})
export class AdminComponent {

 constructor(private auth: AuthService,
 private router: Router) { }

 logout() {
 this.auth.clear();
 this.router.navigateByUrl("/");
 }
}

Listing 9-22 enables the placeholder components that will be used for each administration feature and
extends the URL routing configuration to implement the URLs from Table 9-2.

Listing 9-22. Configuring the Feature Module in the admin.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";
import { ProductTableComponent } from "./productTable.component";
import { ProductEditorComponent } from "./productEditor.component";
import { OrderTableComponent } from "./orderTable.component";

ChapTer 9 ■ SporTSSTore: adminiSTraTion

188

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 {
 path: "main", component: AdminComponent, canActivate: [AuthGuard],
 children: [
 { path: "products/:mode/:id", component: ProductEditorComponent },
 { path: "products/:mode", component: ProductEditorComponent },
 { path: "products", component: ProductTableComponent },
 { path: "orders", component: OrderTableComponent },
 { path: "**", redirectTo: "products" }
]
 },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 providers: [AuthGuard],
 declarations: [AuthComponent, AdminComponent,
 ProductTableComponent, ProductEditorComponent, OrderTableComponent]
})
export class AdminModule {}

Individual routes can be extended using the children property, which is used to define routes that will
target a nested router-outlet element, which I describe in Chapter 25. As you will see shortly, components
can get details of the active route from Angular so they can adapt their behavior. Routes can include route
parameters, such as :mode or :id, that match any URL segment and that can be used to provide information
to components that can be used to change their behavior.

When all the changes have been saved, click the Admin button and authenticate as admin with the
password secret. You will see the new layout, as shown in Figure 9-4. Clicking the Products and Orders
buttons will change the component displayed by the router-outlet element from Listing 9-20, and clicking
the Logout button will exit the administration area.

Figure 9-4. The administration layout structure

http://dx.doi.org/10.1007/978-1-4842-2307-9_25

ChapTer 9 ■ SporTSSTore: adminiSTraTion

189

Implementing the Product Feature
The initial administration feature presented to the user will be a list of products, with the ability to create
a new product and delete or edit an existing one. Listing 9-23 removes the placeholder content from the
product table component and adds the logic required to implement this feature.

Listing 9-23. Replacing the Placeholder Content in the productTable.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 moduleId: module.id,
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 constructor(private repository: ProductRepository) { }

 getProducts(): Product[] {
 return this.repository.getProducts();
 }

 deleteProduct(id: number) {
 this.repository.deleteProduct(id);
 }
}

The component methods provide access to the products in the repository and allow products to be
deleted. The other operations will be handled by the editor component, which will be activated using
routing URLs in the component’s template. To provide the template, I added a file called productTable.
component.html in the SportsStore/app/admin folder and added the markup shown in Listing 9-24.

Listing 9-24. The productTable.component.html File in the SportsStore/app/admin Folder

<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let p of getProducts()">
 <td>{{p.id}}</td>
 <td>{{p.name}}</td>
 <td>{{p.category}}</td>
 <td>{{p.price | currency:"USD":true:"2.2-2"}}</td>
 <td>
 <button class="btn btn-sm btn-warning"
 [routerLink]="['/admin/main/products/edit', p.id]">

ChapTer 9 ■ SporTSSTore: adminiSTraTion

190

 Edit
 </button>
 <button class="btn btn-sm btn-danger" (click)="deleteProduct(p.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary" routerLink="/admin/main/products/create">
 Create New Product
</button>

The template contains a table that uses the ngFor directive to generate a row for each product returned
by the component’s getProducts method. Each row contains a Delete button that invokes the component’s
delete method and an Edit button that navigates to a URL that targets the editor component. The editor
component is also the target of the Create New Product, although a different URL is used.

Implementing the Product Editor
Components can receive information about the current routing URL and adapt their behavior accordingly.
The editor component needs to use this feature to differentiate between requests to create a new component
and edit an existing one. Listing 9-25 adds the functionality to the editor component required to create or
edit products.

Listing 9-25. Adding Functionality in the productEditor.component.ts File

import { Component } from "@angular/core";
import { Router, ActivatedRoute } from "@angular/router";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 moduleId: module.id,
 templateUrl: "productEditor.component.html"
})
export class ProductEditorComponent {
 editing: boolean = false;
 product: Product = new Product();

 constructor(private repository: ProductRepository,
 private router: Router,
 activeRoute: ActivatedRoute) {

 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 if (this.editing) {
 Object.assign(this.product,
 repository.getProduct(activeRoute.snapshot.params["id"]));
 }
 }

ChapTer 9 ■ SporTSSTore: adminiSTraTion

191

 save(form: NgForm) {
 this.repository.saveProduct(this.product);
 this.router.navigateByUrl("/admin/main/products");
 }
}

Angular will provide an ActivatedRoute object as a constructor argument when it creates a new
instance of the component class and that can be used to inspect the activated route. In this case, the
component works out whether it should be editing or creating a product and, if editing, retrieves the current
details from the repository. There is also a save method, which uses the repository to save changes that the
user has made.

To provide the component with a template, I added a file called productEditor.component.html in the
SportsStore/app/admin folder and added the markup shown in Listing 9-26.

Listing 9-26. The productEditor.component.html File in the SportsStore/app/admin Folder

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
</div>
<form novalidate #form="ngForm" (ngSubmit)="save(form)" >
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [(ngModel)]="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category" [(ngModel)]="product.category" />
 </div>
 <div class="form-group">
 <label>Description</label>
 <textarea class="form-control" name="description"
 [(ngModel)]="product.description">
 </textarea>
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price" [(ngModel)]="product.price" />
 </div>
 <button type="submit" class="btn btn-primary" [class.btn-warning]="editing">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary" routerLink="/admin/main/products">
 Cancel
 </button>
</form>

The template contains a form with fields for the properties defined by the Product model class, with the
exception of the id property, which is assigned automatically by the RESTful web service.

The elements in the form adapt their appearance to differentiate between the editing and creating
features. To see how the component works, authenticate to access the Admin features and click the Create
New Product button that appears under the table of products. Fill out the form, click the Create button,
and the new product will be sent to the RESTful web service where it will be assigned an ID property and
displayed in the product table, as shown in Figure 9-5.

ChapTer 9 ■ SporTSSTore: adminiSTraTion

192

The editing process works in a similar way. Click one of the Edit buttons to see the current details, edit
them using the form fields, and click the Save button to save the changes, as shown in Figure 9-6.

Figure 9-6. Editing an existing product

Figure 9-5. Creating a new product

Implementing the Orders Feature
The order management feature is nice and simple. It requires a table that lists the set of orders, along with
buttons that will set the shipped property to true or delete an order entirely. Listing 9-27 replaces the
placeholder content in the component with the logic required to support these operations.

Listing 9-27. Adding Operations in the orderTable.component.ts File

import { Component } from "@angular/core";
import { Order } from "../model/order.model";
import { OrderRepository } from "../model/order.repository";

ChapTer 9 ■ SporTSSTore: adminiSTraTion

193

@Component({
 moduleId: module.id,
 templateUrl: "orderTable.component.html"
})
export class OrderTableComponent {
 includeShipped = false;

 constructor(private repository: OrderRepository) {}

 getOrders(): Order[] {
 return this.repository.getOrders()
 .filter(o => this.includeShipped || !o.shipped);
 }

 markShipped(order: Order) {
 order.shipped = true;
 this.repository.updateOrder(order);
 }

 delete(id: number) {
 this.repository.deleteOrder(id);
 }
}

In addition to providing methods for marking orders as shipped and deleting orders, the component
defines a getOrders method that allows shipped orders to be included or excluded based on the value of a
property called includeShipped. This property is used in the template, which I created by adding a file called
orderTable.component.html to the SportsStore/app/admin folder with the markup shown in Listing 9-28.

Listing 9-28. The Contents of the orderTable.component.html in the SportsStore/app/admin Folder

<div class="form-check">
 <label class="form-check-label">
 <input type="checkbox" class="form-check-input" [(ngModel)]="includeShipped"/>
 Display Shipped Orders
 </label>
</div>
<table class="table table-sm">
 <thead>
 <tr><th>Name</th><th>Zip</th><th colspan="2">Cart</th><th></th></tr>
 </thead>
 <tbody>
 <tr *ngIf="getOrders().length == 0">
 <td colspan="5">There are no orders</td>
 </tr>
 <template ngFor let-o [ngForOf]="getOrders()">
 <tr>
 <td>{{o.name}}</td><td>{{o.zip}}</td>
 <th>Product</th><th>Quantity</th>
 <td>
 <button class="btn btn-warning" (click)="markShipped(o)">
 Ship
 </button>

ChapTer 9 ■ SporTSSTore: adminiSTraTion

194

 <button class="btn btn-danger" (click)="delete(o.id)">
 Delete
 </button>
 </td>
 </tr>
 <tr *ngFor="let line of o.cart.lines">
 <td colspan="2"></td>
 <td>{{line.product.name}}</td>
 <td>{{line.quantity}}</td>
 </tr>
 </template>
 </tbody>
</table>

Remember that the data presented by the RESTful web service is reset each time the process is started,
which means you will have to use the shopping cart and checkout to create orders. Once that’s done, you can
inspect and manage them using the Orders section of the administration tool, as shown in Figure 9-7.

Figure 9-7. Managing orders

Summary
In this chapter, I created a dynamically loaded Angular feature module that contains the administration tools
required to manage the catalog of products and process orders. In the next chapter, I prepare the SportsStore
application for deployment into production.

195© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_10

CHAPTER 10

SportsStore: Deployment

In this chapter, I prepare the SportsStore application for deployment by incorporating all of the application
content and the Angular framework into a single file and “containerizing” the application using Docker.

Stopping the TypeScript Compiler
For this chapter, it is important that you stop the TypeScript compiler, which is started with the npm start
command. The TypeScript compiler conflicts with the special compiler that is used to prepare Angular
applications for deployment.

Working Around a Compiler Bug
The process that I follow to prepare SportsStore for deployment packages all of the resources required by the
application into a single file. This process relies on a special compiler provided by the Angular team that has,
at least at the time of writing, a problem dealing with dynamically loaded modules.

This is a problem that I expect to be fixed in later releases of Angular, but at the time of writing, the only
options are to remove the administration module from the application or to change the module so that it
isn’t loaded dynamically. I want to deploy all of the SportsStore functionality, so I am going to include the
administration module in the deployed application, even though it is the kind of functionality that won’t be
required by most users.

 ■ Note I expect this problem to be a temporary one, and later versions of Angular should allow dynamically
loaded modules to be deployed in the same way that I deploy the application in this chapter.

In Listing 10-1, I have updated the application’s root module so that it imports the administration
modules and includes the administration routes.

Listing 10-1. Integrating the Administration Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { AppComponent } from "./app.component";
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";

ChApter 10 ■ SportSStore: Deployment

196

import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";
import { StoreFirstGuard } from "./storeFirst.guard";
import { AdminModule } from "./admin/admin.module";
import { AuthComponent } from "./admin/auth.component";
import { AdminComponent } from "./admin/admin.component";
import { AuthGuard } from "./admin/auth.guard";
import { ProductTableComponent } from "./admin/productTable.component";
import { ProductEditorComponent } from "./admin/productEditor.component";
import { OrderTableComponent } from "./admin/orderTable.component";

@NgModule({
 imports: [BrowserModule, StoreModule, AdminModule,
 RouterModule.forRoot([
 {
 path: "store", component: StoreComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "cart", component: CartDetailComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "checkout", component: CheckoutComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "admin",
 children: [
 { path: "auth", component: AuthComponent },
 {
 path: "main", component: AdminComponent,
 canActivate: [AuthGuard],
 children: [
 { path: "products/:mode/:id",
 component: ProductEditorComponent },
 { path: "products/:mode",
 component: ProductEditorComponent },
 { path: "products", component: ProductTableComponent },
 { path: "orders", component: OrderTableComponent },
 { path: "**", redirectTo: "products" }
]
 },
 { path: "**", redirectTo: "auth" }
],
 //loadChildren: "app/admin/admin.module#AdminModule",
 canActivate: [StoreFirstGuard]
 },
 { path: "**", redirectTo: "/store" }
])],
 providers: [StoreFirstGuard],

ChApter 10 ■ SportSStore: Deployment

197

 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 10-2 shows the corresponding changes to the administration feature module.

Listing 10-2. Removing Routes from the admin.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";
import { ProductTableComponent } from "./productTable.component";
import { ProductEditorComponent } from "./productEditor.component";
import { OrderTableComponent } from "./orderTable.component";

//let routing = RouterModule.forChild([
// { path: "auth", component: AuthComponent },
// {
// path: "main", component: AdminComponent, canActivate: [AuthGuard],
// children: [
// { path: "products/:mode/:id", component: ProductEditorComponent },
// { path: "products/:mode", component: ProductEditorComponent },
// { path: "products", component: ProductTableComponent },
// { path: "orders", component: OrderTableComponent },
// { path: "**", redirectTo: "products" }
//]
// },
// { path: "**", redirectTo: "auth" }
//]);

@NgModule({
 imports: [CommonModule, FormsModule, RouterModule],
 providers: [AuthGuard],
 declarations: [AuthComponent, AdminComponent,
 ProductTableComponent, ProductEditorComponent, OrderTableComponent]
})
export class AdminModule { }

Using the Ahead-of-Time Compiler
The first step to prepare the application is to use the Ahead-of-Time (AoT) compiler. At the moment, the
SportsStore project relies on the Angular Just-In-Time compiler, which is loaded by the browser as part of
the Angular modules and is used to compile the building blocks of the application, such as components and
directives. This compilation step is in addition to the process of converting TypeScript to JavaScript and is
required to create factory classes that combine the application’s code and its templates and CSS stylesheets.

ChApter 10 ■ SportSStore: Deployment

198

The AoT compiler creates the factory classes so that the browser doesn’t have to perform this step,
which can reduce the amount of time it takes for a browser to display the application.

Installing and Configuring the AoT Compiler
The AoT compiler is provided in an NPM package. In Listing 10-3, I added the package to the
devDependencies section of the package.json file.

Listing 10-3. Configuring the Application in the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/http": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/router": "3.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "font-awesome": "4.7.0",
 "intl": "1.2.5",
 "html5-history-api": "4.2.7"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21",
 "jsonwebtoken": "7.1.9",
 "@angular/compiler-cli": "2.2.0",
 "rollup": "0.36.3",
 "rollup-plugin-node-resolve": "2.0.0",
 "rollup-plugin-commonjs": "5.0.5",
 "rollup-plugin-uglify": "1.0.1",
 "rollup-plugin-alias": "1.2.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",

ChApter 10 ■ SportSStore: Deployment

199

 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server data.js -p 3500 -m authMiddleware.js",
 "typings": "typings",
 "postinstall": "typings install",
 "ngc": "ngc -p tsconfig-aot.json",
 "roll": "rollup -c rollup-config.js",
 "startbundle": "concurrently \"npm run lite\" \"npm run json\" "
 }
}

One of the additions in the devDependencies section is the @angular/compiler-cli package, which
installs the ngc tool that does the AoT compilation. The scripts section defines an ngc entry that will be
used to run the compiler and that specifies a configuration file with the compiler settings.

The AoT compiler requires its own configuration file, separate from the one used for regular TypeScript
compilation. I created a file called tsconfig-aot.json in the SportsStore folder and added the configuration
properties shown in Listing 10-4. The name of the file corresponds to the ngc entry in the scripts section of
package.json.

 ■ Tip the Aot compiler is a wrapper around the standard typeScript compiler and supports the same
configuration options.

Listing 10-4. The Contents of the tsconfig-aot.json File in the SportsStore Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "es2015",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "files": [
 "app/app.module.ts",
 "app/main.ts"
],
 "angularCompilerOptions": {
 "genDir": "aot",
 "skipMetadataEmit": true
 }
}

The listing highlights the differences from the original tsconfig.json file that I created in Chapter 7.
While most of the configuration settings are the same, the value of the module property has been changed to
es2015, which will allow me to use a package recommended by Google to prepare the application for its final
deployment, as described in the “Shaking the Tree” section.

http://dx.doi.org/10.1007/978-1-4842-2307-9_7

ChApter 10 ■ SportSStore: Deployment

200

Run the following command in the SportsStore folder to download and install the AoT compiler
package:

npm install

Configuring the Application Bootstrap
The SportsStore bootstrap file must be changed so that it no longer uses the dynamic compiler. In Listing 10-5,
I have commented out the statement that has been responsible for starting the application during development
and replaced it with one that will use the files generated by the AoT compiler.

Listing 10-5. Configuring the Application Startup in the main.ts File

///<reference path="../typings/globals/core-js/index.d.ts"/>
///<reference path="../typings/globals/node/index.d.ts"/>

//import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";
//import { AppModule } from "./app.module";
import { platformBrowser } from "@angular/platform-browser";
import { enableProdMode } from "@angular/core";
import { AppModuleNgFactory } from "../aot/app/app.module.ngfactory";

enableProdMode();

//platformBrowserDynamic().bootstrapModule(AppModule);
platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);

The first two statements add references to the TypeScript type information that was downloaded and
installed when the SportsStore project was created in Chapter 7 and that prevent the AoT compiler from
reporting type annotation errors.

The platformBrowser method replaces platformBrowserDynamic when starting the application, and
its bootstrapModuleFactory is passed the AppModuleNgFactory class, which has been generated by the npm
compiler in the aot/app folder. Using the bootstrapModuleFactory method tells Angular that it is dealing
with compiled files.

The listing also calls the enableProdMode function, which is used to disable the development mode and
disable some checks that Angular performs to make sure that there are no side effects in data bindings (as
described in Chapter 13).

Compiling the Application
The next step is to compile the application using the AoT compiler. Run the following command in the
SportsStore folder:

npm run ngc

The compiler can take a while to run. When it has finished, there will be a SportsStore/aot folder
that contains the compiled files. For each module, component, and directive in the app folder, there will
be corresponding files in the aot folder, with names that include factory and that contain any template
content compiled into the JavaScript code.

http://dx.doi.org/10.1007/978-1-4842-2307-9_7
http://dx.doi.org/10.1007/978-1-4842-2307-9_13

ChApter 10 ■ SportSStore: Deployment

201

Don’t edit any of the files in the aot folder because changes are lost the next time you run the ngc
compiler and a new set of AoT files are generated.

 ■ Tip you may see warning messages about inaccessible properties and methods. this is caused by
templates that rely on component properties and methods to which the private keyword has been applied.
this doesn’t cause a problem during development because the browser processes the template using the
JavaScript files, which have no concept of access controls, but it causes problems when using the Aot compiler
because the template is processed using typeScript. to correct the problem, remove the private keyword or
replace it with public (which has the same effect).

Shaking the Tree
The phrase shaking the tree refers to the process of inspecting all the dependencies in an application in order
to ensure that only the files that are required to run the application are sent to the browser. In this section, I
use a package called rollup, which is well-suited to working with Angular applications. (There are plenty of
alternatives if you don’t like rollup, including the popular webpack.)

The result of this process will be a single file that contains all the code required to run the application,
including the parts of the Angular and RxJS packages that the application depends on. To configure the
process of creating the file, known as the bundle, I added a file called rollup-config.js to the SportsStore
folder and added the configuration settings shown in Listing 10-6.

Listing 10-6. The Contents of the rollup-config.js File in the SportsStore Folder

import rollup from "rollup";
import nodeResolve from "rollup-plugin-node-resolve";
import commonjs from "rollup-plugin-commonjs";
import uglify from "rollup-plugin-uglify";
import alias from 'rollup-plugin-alias';

export default {
 entry: "app/main.js",
 dest: "sportsstore.min.js",
 sourceMap: false,
 format: "umd",
 plugins: [
 nodeResolve({jsnext: true, module: true}),
 commonjs({
 include: "node_modules/rxjs/**",
 }),
 uglify()]
}

To shake the tree and generate the bundle, run the following command in the SportsStore folder:

npm run roll

ChApter 10 ■ SportSStore: Deployment

202

You will see a lot of warnings about the this keyword, which can be ignored. When the rollup process
has completed, there will be a file called sportsstore.min.js in the SportsStore folder, which contains all of
the code required by the SportsStore application.

Testing the Application
Now that the application has been bundled into a single file, some changes are required to the index.html
file, as shown in Listing 10-7.

Listing 10-7. Using a Single Application Bundle in the index.html File

<!DOCTYPE html>
<html>
<head>
 <base href="/" />
 <title>SportsStore</title>
 <meta charset="utf-8" />
 <script src="node_modules/html5-history-api/history.min.js"></script>
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script>window.module = "";</script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
 <link href="node_modules/font-awesome/css/font-awesome.min.css"
 rel="stylesheet"/>
</head>
<body class="m-a-1">
 <app>SportsStore Will Go Here</app>
 <script src="sportsstore.min.js"></script>
</body>
</html>

This listing removes the script elements for the reflect-metadata and SystemJS packages, which are
not required when using a single application bundle. The bundle file is loaded using a script element that
must appear after the element in which the application will be displayed, which is the app element for the
SportsStore application and is the reason that the script element for the sportsstore.min.js file appears
at the end of the body section of the HTML document.

The final change is a fragment of JavaScript code that defines a global module property and assigns it
the value aot. This is a workaround to support relative paths for templates and CSS files when using the @
Component directive. It doesn’t matter what value is assigned to window.module, just as long as it is defined.

To test the application, run the following command from the SportsStore folder:

npm run startbundle

I added the startbundle command to the package.json file in Listing 10-3, and it starts the RESTful
web server and the development HTTP server. It does not start the TypeScript compiler, which is no longer
required since changes to the TypeScript files have no impact on the content of the application bundle.

ChApter 10 ■ SportSStore: Deployment

203

A new browser window or tab will open, and the SportsStore application will load. If you use the browser’s
F12 development tools, you will see that most of the individual HTTP requests for JavaScript files have been
replaced by a single request for the sportsstore.min.js file.

Containerizing the SportsStore Application
To complete this chapter, I am going to create a container for the SportsStore application that replaces the
development tools I have been using in previous chapters and shows the transition from development
to deployment. In the sections that follow, I will create a Docker container. At the time of writing, Docker
is the most popular way to create containers, which is a pared-down version of Linux with just enough
functionality to run the application. Most cloud platforms or hosting engines have support for Docker, and
its tools run on the most popular operating systems.

Installing Docker
The first step is to download and install the Docker tools on your development machine, which is available
from www.docker.com/products/docker. There are versions for macOS, Windows, and Linux, and there are
some specialized versions to work with the Amazon and Microsoft cloud platforms.

 ■ Caution one drawback of using Docker is that the company that produces the software has gained
a reputation for making breaking changes. this may mean that the example that follows may not work as
intended with later versions. the version I used for the examples in this chapter is 1.12.3. If you have problems,
check the repository for this book for updates (details are on the apress.com page for this book) or contact me
at adam@adam-freeman.com.

Preparing the Application
The first step is to create a staging directory that will contain the files required to configure and run the
application. I created a folder called deploy within the SportsStore folder and added a package.json file
with the content shown in Listing 10-8.

Listing 10-8. The Contents of the package.json File in the SportsStore/deploy Folder

{
 "dependencies": {
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "bootstrap": "4.0.0-alpha.4",
 "font-awesome": "4.7.0",
 "intl": "1.2.5",
 "html5-history-api": "4.2.7"
 },

 "devDependencies": {
 "express": "4.14.0",

http://www.docker.com/products/docker

ChApter 10 ■ SportSStore: Deployment

204

 "concurrently": "2.2.0",
 "json-server": "0.8.21",
 "jsonwebtoken": "7.1.9"
 },

 "scripts": {
 "start": "concurrently \"npm run express\" \"npm run json\" ",
 "express": "node server.js",
 "json": "json-server data.js -m authMiddleware.js -p 3500"
 }
}

The dependencies section omits the Angular and RxJS libraries, which have been included in the
bundle file. The remaining packages are polyfills to support older browsers and the Bootstrap and Font
Awesome packages used to style content.

The devDependencies and scripts sections include a different set of tools from the ones used in
development, as described in the sections that follow.

Configuring the HTTP Server
One of the packages in Listing 10-8 is express, which is the package that the development HTTP server and
the RESTful web server packages rely on. I don’t want BrowserSync to add JavaScript code to every response
when the application is in production, so I am using express directly in this part of the chapter.

 ■ Note the express package is an excellent server (and provides many more features than I am using
here), but there are plenty of other choices, and any web server will do. I chose express because it is so similar
to the development tools used in earlier chapters and because it is easy to use in a Docker container.

To configure express to run the application, I created a file called server.js in the SportsStore/deploy
folder and added the code shown in Listing 10-9.

Listing 10-9. The Contents of the server.js File in the SportsStore/deploy Folder

var express = require("express");

var app = express();

app.use("/node_modules",
 express.static("/usr/src/sportsstore/node_modules"));
app.use("/", express.static("/usr/src/sportsstore/app"));

app.listen(3000, function () {
 console.log("HTTP Server running on port 3000");
});

The name of the file corresponds to the express command in the scripts section of the package.json
file in Listing 10-8. The code creates an HTTP server on port 3000, serving the files in a folder called app, as
well as the node_modules folder.

ChApter 10 ■ SportSStore: Deployment

205

Creating the Container
To create the container, I added a file called Dockerfile (with no extension) to the SportsStore/deploy
folder and added the comments shown in Listing 10-10.

Listing 10-10. The Contents of the Dockerfile File in the SportsStore/deploy Folder

FROM node:6.9.1

RUN mkdir -p /usr/src/sportsstore/app
WORKDIR /usr/src/sportsstore

COPY sportsstore.min.js /usr/src/sportsstore/app/
COPY index.html /usr/src/sportsstore/app/
COPY authMiddleware.js /usr/src/sportsstore/
COPY data.js /usr/src/sportsstore/
COPY deploy/server.js /usr/src/sportsstore/

COPY deploy/package.json /usr/src/sportsstore/
RUN npm install

EXPOSE 3000
EXPOSE 3500

CMD ["npm", "start"]

The contents of the Dockerfile use a base image that has been configured with Node.js and copies the
files required to run the application, including the bundle file containing the application and the package.
json file that will be used to install the packages required to run the application in deployment.

To build the Docker container, run the following command in the SportsStore folder (and not the
deploy folder):

docker build -t sportsstore . -f .\deploy\Dockerfile

Docker will download and install the packages required for the container, which can take a while.

Running the Application
Once the container has been created, start it using the following command:

docker run -p 3000:3000 -p3500:3500 sportsstore

You can test the application by opening http://localhost:3000 in the browser, which will display the
response provided by the web server running in the container, as shown in Figure 10-1.

ChApter 10 ■ SportSStore: Deployment

206

To stop the container, run the following command:

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID IMAGE COMMAND CREATED
ecc84f7245d6 sportsstore "npm start" 33 seconds ago

Using the container ID, run the following command:

docker stop ecc84f7245d6

Summary
This chapter completes the SportsStore application, showing how an Angular application can be prepared
for deployment and how easy it is to put an Angular application into a container such as Docker.

That’s the end of this part of the book. In Part 2, I begin the process of digging into the details and show
you how the features I used to create the SportsStore application work in depth.

Figure 10-1. Running the containerized SportsStore application

207© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_11

CHAPTER 11

Creating an Angular Project

In this chapter, I explain the process of starting a new Angular project and creating an application in detail.
I explain the purpose of every software package, every configuration file, and every code file that is created.
The result is a simple Angular application that, admittedly, does little. However, by the end of the chapter,
you will understand how the parts of a project fit together and have a foundation on which to apply the more
advanced features that are described in the chapters that follow. Table 11-1 summarizes the chapter.

Preparing a TypeScript Angular Development Project
Beginning a new Angular project starts with setting up the development process. In previous chapters, I just
told you to add files with specific content, but in this chapter, I am going to walk through the process step-
by-step and explain what is required in detail.

Before you start, you need to have selected a code editor, installed a recent browser, and have a recent
version of Node.js installed. See Chapter 2 for setup instructions if you have not yet performed these tasks.

Table 11-1. Chapter Summary

Problem Solution Listing

Prepare an HTML document for an Angular
application

Add a custom element, conventionally called
app

1

Add the packages required by the application
and the development process

Create a package.json file and use the npm
install command

2, 3

Provide the TypeScript compiler with type
annotations

Use the typings command to download and
install the type data

4

Configure the TypeScript compiler Create a filed called tsconfig.json 5–7

Ensure that the browser reloads the HTML
document when there is a change to the
project

Use a package such as lite-server as the
development HTTP server

8, 9

Create a simple Angular application Create a data model, a root component, a
root module and a bootstrap file

10–16

Ensure that the module dependencies in the
application can be resolved

Configure the JavaScript module loader 17, 18

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

Chapter 11 ■ Creating an angular projeCt

208

 ■ Tip You don’t have to follow every step in this chapter just to create the example project. the free source
code download that accompanies this book at apress.com contains a complete project for every chapter and
includes the project that i create in this chapter.

Creating the Project Folder Structure
The simplest structure for an Angular project consists of two folders. The top-level folder contains all the
project files, as well as an app folder that contains the Angular code files. For this chapter, I created a folder
called example as the top-level folder and created the app folder within it. For quick reference, these folders
are described in Table 11-2.

Creating and Serving the HTML Document
Angular relies on an HTML document that provides the browser with the JavaScript files needed to load and
start the application. When you begin a new Angular project, one of the first steps is to create the HTML file
and set up a mechanism for delivering it to the browser, which means installing a web server.

The default name for the HTML document is index.html, and it is created in the root folder of the
project. I created the HTML file and added the content shown in Listing 11-1.

Listing 11-1. The Contents of the index.html File in the example Folder

<!DOCTYPE html>
<html>
<head>
 <title>Angular</title>
 <meta charset="utf-8" />
</head>
<body>
 <app>This is static content</app>
</body>
</html>

Once all the application building blocks and development tools are in place, the app element will be
used to display dynamic content. But, for the moment, there is only a static placeholder.

Table 11-2. The Folders Required for the Example Project

Name Description

example This is the root folder, and it contains all the project files, including static content (such
as HTML files and images) and the configuration files that are described later in this
chapter.

example/app This folder contains the Angular code files.

Chapter 11 ■ Creating an angular projeCt

209

Preparing the Project Configuration
Angular projects rely on a number of software packages, and the easiest way to download and install them is
to use the Node Package Manager (NPM) , which is described in Chapter 2. In preparation for the packages
that I add later in the chapter, I created a file called package.json in the example folder and added the
content shown in Listing 11-2.

Listing 11-2. The Contents of the package.json File in the example Folder

{
 "dependencies": {
 },

 "devDependencies": {
 },

 "scripts": {
 }
}

The name package.json is used by NPM for its configuration file. There are three sections to the file
shown in Listing 11-2, which will be populated as the project is set up and configured. Each of the sections is
described in Table 11-3.

Adding Packages
The next step is to add the packages that are required to support development and run the application, as
shown in Listing 11-3. The name of each package is specified, along with the version that is required.

 ■ Caution it is important that you use the exact version numbers shown in the listing (and throughout the
book) in order to get the right results from the examples. even if you are using later releases for your own
projects, you should still use the packages specified in listing 11-3 for the book examples.

Table 11-3. The Sections in the package.json File

Name Description

dependencies This section is used to specify the packages that the application relies on,
including Angular itself.

devDependencies This section is used to specify the packages that are used in development, such
compilers and test frameworks.

scripts This section is used to define commands that are used to compile, test, or run the
application.

http://dx.doi.org/10.1007/978-1-4842-2307-9_2

Chapter 11 ■ Creating an angular projeCt

210

Listing 11-3. Adding Packages to the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

The individual packages are described in the following sections, but they provide the core functionality
required to get started in an Angular development project. Once you have edited the package.json file, run
the following command in the example folder:

npm install

NPM will download the packages specified in Listing 11-3 and install them in a folder called node_
modules. This process can take a while because each of the packages depends on other packages, many of
which have their own dependencies. When the process is finished, NPM will display a list of the packages that
have been installed. You will see some error messages and warnings during the installation process, in part
because NPM is a verbose tool and in part because the configuration in Listing 11-3 relies on some features
that I set up later in this chapter. As long as you see the lengthy list of installed packages, you will be fine.

Chapter 11 ■ Creating an angular projeCt

211

WHY USE NPM

i use npM because it is the standard mechanism for managing javaScript packages. the world of
javaScript development has fragmented into an incredible number of small and focused packages that
are woven together to create rich and fluid functionality. Manually downloading the packages required
for a project means working through a long list of dependencies, each of which has to be downloaded,
installed, and inspected for its own dependencies. even a simple configuration like the one in listing
11-3 results in a dependency graph of more than 400 packages. Managing the packages by hand is a
difficult process and makes npM a worthwhile tool.

the main problem with npM is that it exposes your project to a large set of dependencies.
Dependencies between packages can be specified loosely, allowing npM some flexibility in the version
it selects. this can cause problems when package creators publish updated packages that contain
bugs. When you update your installed packages or move a project to a new machine, you receive a
slightly different set of packages, which can break your application. this happened to me while writing
this book—what appeared to be a sudden break in one of the example applications was really caused
by an update to a package buried deep in the dependency tree. package developers fix these problems
pretty quickly, but it can still disrupt the development process (and be difficult to figure out).

if you have problems with the examples, try using the projects in the free apress.com source code
download that accompanies this book. i have used the npm shrinkwrap command to generate a file
that lists all the versions of the packages that i used to write this book, which means you should get the
same versions when you download the projects and run the npm install command.

Understanding the Dependencies Packages
The entries in the dependencies section in Listing 11-3 add Angular to the project, along with the packages
it depends on and some additional packages that are useful in most web applications, as described in
Table 11-4.

 ■ Tip Some of the packages used in this book are in a pre-release state. in most cases, such as the rxjs
package, this is because the pre-release version is specified by the angular team and has been used for their
pre-release testing. the exception is the bootstrap package, which i have selected to style the content in the
application. as noted in the previous section, you should use the same pre-release versions in order to get the
expected results from the examples, even if you choose to use subsequent releases in your own projects.

Chapter 11 ■ Creating an angular projeCt

212

Understanding the Development Dependencies Packages
The packages in the devDependencies section are the development tools that will be used to create Angular
applications, as described in Table 11-5. Most of these packages require configuration files, which I describe
in the sections that follow the table.

Table 11-4. The dependencies Packages

Name Description

@angular/* These packages provide the Angular functionality, which is split into separate
modules. Each module provides a different set of features, and the modules
in Listnig 11-3 are a good foundation for new web applications. I add other
modules in later chapters to support specific features, such as working with
HTML forms.

reflect-metadata This package implements a reflection API that is used to inspect decorators on
classes.

rxjs This is the Reactive Extensions package, which is used to implement the
Angular change-detection system that is used in data bindings, as described
in Chapters 12–17, and used directly for some Angular features, as described
in Chapter 23–27.

zone.js This is the Zone.js package, which provides an execution context for
asynchronous tasks and is used to evaluate template expressions.

core-js The Core-JS package provides support for new JavaScript features for
browsers that don’t implement them. See https://github.com/zloirock/
core-js for details.

classlist.js This package provides missing features required for IE9.

systemjs This package is the module loader, which is described in the “Configuring the
JavaScript Module Loader” section.

bootstrap Bootstrap is the CSS framework that I use to style HTML content throughout
this book. See http://getbootstrap.com for details.

Table 11-5. The devDependencies Packages

Name Description

lite-server This is the package that provides the development HTTP server used
throughout this book. See the “Configuring the Development HTTP Server”
section for details.

typescript This is the package that provides TypeScript language support, including the
compiler. See the “Setting Up TypeScript” section for details.

typings This is the package that provides type information for popular JavaScript
packages so they can be used more conveniently with TypeScript. See the
“Setting Up TypeScript” section for details.

concurrently This package allows multiple commands to be run by npm at the same time.
See the “Starting the Watch Processes” section for details.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_23
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
https://github.com/zloirock/core-js
https://github.com/zloirock/core-js
http://getbootstrap.com/

Chapter 11 ■ Creating an angular projeCt

213

Setting Up TypeScript
TypeScript uses type definition files to make it easier to work with JavaScript libraries that have been
written in plain JavaScript. The type definitions are collected at http://definitelytyped.org and are
managed using the typings package that I added to the package.json file in Listing 11-3. Run the following
commands in the example folder to download and install the typing definitions that will be required for this
part of the book:

npm run typings -- install dt~core-js --save --global
npm run typings -- install dt~node --save --global

These commands correspond to the typings entry in the scripts section of the package.json file
and use the typings package to get the type definitions from the Definitively Typed repository (http://
definitelytyped.org) for the core-js and node packages. The --global argument tells the typings tool that
the type definitions apply to the entire project, and the --save argument creates a configuration file that can
be used to easily install the type information again, which is useful when a new developer checks the project
out of version control. Once the command has completed, the example folder will contain the typings/
globals/core-js and typings/global/node folders that contain the type definitions and a typings.json
file that contains details of the type information that was downloaded, as shown in Listing 11-4. You may see
different version numbers in your typings.json file.

Listing 11-4. The Contents of the typings.json File in the example Folder

{
 "globalDependencies": {
 "core-js": "registry:dt/core-js#0.0.0+20160914114559",
 "node": "registry:dt/node#6.0.0+20161110151007"
 }
}

WORKING WITH TYPE DEFINITIONS

if you need a type definition for a package, you can take a look at the list available at
definitelytyped.org or use the typings tool to see what is available. as an example, the following
command searches for a type definition for the core-js package:

npm run typings -- search core-js

the two hyphens (--) tell npm to pass on any following arguments to the typings tool. the search
argument tells typings that you are looking for type information, and the core-js argument specifies
the name of the package. this command produces a result like this one:

NAME SOURCE HOMEPAGE DESCRIPTION VERSIONS
core-js dt https://github.com/zloirock/core-js/ 1

http://definitelytyped.org/
http://definitelytyped.org/
http://definitelytyped.org/

Chapter 11 ■ Creating an angular projeCt

214

to download and install a type definition, the SOURCE value is combined with the NAME, separated with a
tilde (the ~ character), like this:

npm run typings -- install dt~core-js --save --global

the --save argument creates a typings.json file that allows type information, which means you can
download and install the same type definition in the future using the following command:

npm run typings install

the postinstall entry in the scripts section of the package.json file ensures that the type
information specified in the typings.json file is downloaded and installed after the npm install
command is run.

Configuring the TypeScript Compiler

The TypeScript compiler requires a configuration file to prepare it for use in an Angular project. I created a
file called tsconfig.json in the example folder and added the content shown in Listing 11-5.

Listing 11-5. The Contents of the tsconfig.json File in the example Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

There are many configuration options available to control the way that TypeScript code is compiled,
and the ones show in the listing are the basic set required for an Angular application, as described in
Table 11-6.

Chapter 11 ■ Creating an angular projeCt

215

To test the compiler, I added a file called compilertest.ts to the example folder and added the code
shown in Listing 11-6.

Listing 11-6. The Contents of the compilertest.ts File in the example Folder

export class Test {

 constructor(public message: string) {}
}

This listing defines a simple class with a single constructor-defined property, which is called message.
To test the compiler, run the following command in the example folder:

npm run tsc

This command corresponds to the tsc entry in the scripts section. The compiler will locate all the
TypeScript files in the project and compile them and, if required, report any errors it encounters. In this case,
the test class should compile without problems and produce a file called compilertest.js in the example
folder, with the content shown in Listing 11-7.

Table 11-6. The TypeScript Compiler Options for Angular Applications

Name Description

target This setting specifies the JavaScript version that the compiler will target.
The compiler will translate TypeScript features into plain JavaScript
code uses only the features of the specified version. The es5 setting
corresponds to the ES5 standard, which is supported by most browsers,
including legacy versions, and covers most of the browsers supported by
Angular.

module This setting specifies the format used to create JavaScript modules, and it
should correspond to the loader used for the project. The listing specified
commonjs, which creates modules that can be used with a wide range of
JavaScript module loaders, including SystemJS, which is introduced in
the “Configuring the JavaScript Module Loader” section.

moduleResolution This setting specifies how the compiler deals with import statements. The
node value looks for package in the node_modules folder, which is where
they are placed by NPM.

emitDecoratorMetadata When true, the compiler includes information about the decorator that
can be accessed using the reflect-metadata package. This is required
for Angular applications.

experimentalDecorators This setting is required by the emitDecoratorMetadata setting.

exclude This setting tells the compiler which directories should be ignored.

Chapter 11 ■ Creating an angular projeCt

216

Listing 11-7. The Contents of the compilertest.js File in the example Folder

"use strict";
var Test = (function () {
 function Test(message) {
 this.message = message;
 }
 return Test;
}());
exports.Test = Test;

TypeScript has converted the class into plain JavaScript and packaged it in the module format specified
by the module configuration settings from Listing 11-5.

Configuring the Development HTTP Server
Angular applications are delivered to the browser by a web server. The server package that I use throughout
this book is called lite-server, which is based on the popular BrowserSync package and provides a simple
HTTP server that incorporates file change detection and browser reloading.

 ■ Caution Do not use lite-server in production. there are many web servers suitable for production
environments, including the express server that lite-server is based on and that i used in Chapter 10 to prepare
the SportsStore application for deployment. See en.wikipedia.org/wiki/Web_server#Market_share for the
most popular options.

Start the HTTP server by running the following command in the example folder:

npm run lite

This command uses the lite entry defined in the scripts section in Listing 11-3, which starts the
HTTP server. A new browser window or tab will open, as shown in Figure 11-1, and connect to
http://localhost:3000, which is the default URL.

Figure 11-1. The initial project contents

http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 11 ■ Creating an angular projeCt

217

If you right-click in the browser window and select View Source or View HTML, you will see that a
script element has been added to the HTML document, like this:

<!DOCTYPE html>
<html>
<head>
 <title>Angular</title>
 <meta charset="utf-8" />
</head>
<body>
 <script id="__bs_script__">//<![CDATA[
 document.write("<script async src='/browser-sync/browser-sync-
 client.2.16.0.js'><\/script>".replace("HOST", location.hostname));//]]>
 </script>
 <app>This is static content</app>
</body>
</html>

The script element is added by the BrowserSync package, and it keeps a connection open to the server.
When there is a change to any of the files in the project, the server sends a signal that causes the browser to
reload. To see the effect, make the changes to the index.html file shown in Listing 11-8.

Listing 11-8. Adding Content to the index.html File

<!DOCTYPE html>
<html>
<head>
 <title>Angular</title>
 <meta charset="utf-8" />
</head>
<body>
 <app>
 This is static content
 <input />
 </app>
</body>
</html>

The browser will reload the HTML document as soon as you save the changes. BrowserSync doesn’t
just reload the content when it changes; it also keeps multiple browsers synchronized so that scrolling the
document or clicking a control in one browser causes the same action to be applied to any other browser
displaying the same document.

To see how this works, open another browser window or start another browser and navigate to
http://localhost:3000, which is the default URL. Any text you type into the textbox in one browser is also
shown in the second browser, as illustrated by Figure 11-2.

Chapter 11 ■ Creating an angular projeCt

218

This feature is clever, but it can cause problems with Angular applications, which don’t always respond
as expected when BrowserSync generates events to represent user interaction from other windows.
To change the configuration, I created a file called bs-config.js in the example folder and added the
configuration statements shown in Listing 11-9.

Listing 11-9. The Contents of the bs-config.js File in the example Folder

module.exports = {
 ghostMode: false,
 reloadDelay: 1000,
 reloadDebounce: 1000,
 injectChanges: false,
 minify: false
}

Table 11-7 describes these configuration properties.

 ■ Tip BrowserSync has a wide range of features that can be configured and tweaked in the bs-config.js
file. See https://www.browsersync.io/docs/options for details.

Figure 11-2. Synchronizing multiple browser windows

https://www.browsersync.io/docs/options

Chapter 11 ■ Creating an angular projeCt

219

Starting the Watch Processes
The reason I added the concurrently package to the project is so that NPM can run multiple tools at the
same time. To create a smooth workflow, I want the TypeScript compiler to detect changes to the code files
and compile and then the development server to detect the new JavaScript files and reload the browser. This
is the purpose of the start entry in the scripts section of the package.json file. Terminate any running
processes from earlier sections and run the following command in the example folder:

npm start

The TypeScript compiler is started in watch mode so that it will compile any new or changed TypeScript
files. The files that it generates will trigger the BrowserSync change detection and cause the browser to
reload the HTML file.

 ■ Tip although it is convenient to have both the typeScript compiler and the http server running in a single
process, it does mean that typeScript compiler errors can be hard to spot among the stream of file request
messages from the http server. You can also open two command prompts and run these tools separately,
using the npm run tscwatch command in one terminal to run the compiler and the npm run lite command in
the other terminal for the web server.

Starting Angular Development with TypeScript
The structure of an Angular application can be confusing, especially when you are first starting out. To help
illustrate how everything fits together, Figure 11-3 shows the building blocks that you will find in an Angular
application.

Table 11-7. The BrowserSync Configuration Options for Angular Applications

Name Description

ghostMode This option controls the event synchronization between browsers shown in
Figure 11-2 The value false disables this feature.

reloadDelay This option delays the update message being sent to browsers after a file change is
detected. This is useful to prevent repeated reloads when the TypeScript compiler
writes multiple JavaScript files.

reloadDebounce This option prevents BrowserSync from sending reload messages to the browsers
until after the specified period has passed.

injectChanges Setting this option to false prevents BrowserSync from trying to inject some changes
into the existing document rather than performing a reload.

minify Setting this option to false prevents BrowserSync from minifying JavaScript files.

Chapter 11 ■ Creating an angular projeCt

220

The number of building blocks might be alarming at first, but you will soon understand what each of
them does and how they fit together. In the sections that follow, I add some of the fundamental building
blocks to the project and explain what they are and what they do. In the chapters that follow, I dig into the
detail as well as cover the building blocks that are not used to get the project started. To help provide some
context, Table 11-8 briefly describes each of the building blocks in Figure 11-3.

 ■ Tip Don’t worry if the descriptions in the table don’t make sense right away, because understanding the
role and interaction between these building blocks is a big part of learning angular. You will have a general
sense of how angular applications fit together by the end of this chapter and understand the detail behind how
everything works by the end of the book.

Figure 11-3. The building blocks in a basic Angular application

Chapter 11 ■ Creating an angular projeCt

221

Table 11-8. The Building Blocks in an Angular Application

Name Description

HTML Document This is the HTML document that is requested by the browser and that contains
all the content required to load and start the Angular application. I created the
HTML document for the project in Listing 11-1.

JavaScript Files These are regular JavaScript files that are added to the HTML document using
script elements. The JavaScript files are used to add missing features required
by Angular that are not supported by the browser and for the JavaScript module
loader. See the “Updating the HTML Document” section for the list of JavaScript
files that are required.

Module Loader This is a JavaScript component that is responsible for loading the Angular
modules and the other application building blocks. See the “Configuring the
JavaScript Module Loader” and “Applying the JavaScript Module Loader”
sections for more details.

JavaScript Modules These are JavaScript files that are packaged into a specific format that allows
dependencies between packages to be managed by the module loader to ensure
that the JavaScript code in the application is loaded correctly and executed in the
right order. The Angular framework is delivered as a set of JavaScript modules, as
are some of the required support libraries.

Angular Bootstrap This is a TypeScript file that configures Angular and specifies the Angular
module, which is loaded to start the application. See the “Bootstrapping the
Application” section for details.

Angular Module All Angular projects have a root module that describes the application and can
contain additional modules to group related features together and make the
project more manageable. See the “Creating the Angular Module” section for the
basic module used in the chapter and Chapter 21 for full details of how modules
work.

Data Model The model provides the data in the application and the logic required to access
it. See the “Creating the Model” section for details.

Root Component The root component is the entry point into the application and is responsible for
generating the dynamic content that is displayed to the user. See the “Creating
the Template and Root Component” section for details. Components are
described in depth in Chapter 17.

Template The template is the HTML content that is displayed by the root component. See
the “Creating the Template and Root Component” section for details.

Data Bindings Data bindings are annotations in the template that tell Angular how to insert
dynamic content, such as data values, and how to respond to user interactions.
Data bindings are described in Chapter 12.

Directives Directives are classes that transform HTML elements to generate dynamic
content. See Chapter 13 for details.

Components Components add content to the application to provide application features, as
described in Chapter 17.

Pipes Pipes are classes that are used to format data values for display to the user, as
described in Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-2307-9_21
http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_18

Chapter 11 ■ Creating an angular projeCt

222

It can be hard to keep track of the files in an Angular project, so Table 11-9 lists the files and folders that
will be created in the sections that follow and explains which of the building blocks from Table 11-8 they
relate to. I add further files in the chapters that follow to demonstrate how each of the building blocks works
in details.

Table 11-9. The Files and Folders in the Example Project

Name Description

example/app/main.ts This file contains the bootstrap code, which provides Angular
with the name of the Angular module. See the “Bootstrapping the
Application” section.

example/app/app.module.ts This file contains the Angular module, which provides the name
of the root component. See the “Creating the Angular Module”
section.

example/app/product.model.ts This file is part of the data model. See the “Creating the Data
Model” section.

example/app/datasource.model.ts This file is part of the data model. See the “Creating the Data
Model” section.

example/app/repository.model.ts This file is part of the data model. See the “Creating the Data
Model” section.

example/app/template.html This file contains the template, which is a mix of HTML elements
and dynamic content. See the “Creating the Template and Root
Component” section.

example/app/component.ts This file contains the root—and only—component, which provides
data and logic to support the template. See the “Creating the
Template and Root Component” section.

example/index.html This file contains the HTML document. See the “Updating the
HTML Document” section.

example/package.json This file contains a list of the packages that are used by the
application and that support the development process. It also
contains the commands that can be run from the command line.

example/typings.json This file provides the list of typing information that will be added
to the project for the TypeScript compiler. See the “Setting Up
TypeScript” section.

example/tsconfig.json This file provides the configuration for the TypeScript compiler.
See the “Setting Up TypeScript” section.

example/bs-config.js This file contains the configuration for the development HTTP
server. See the “Configuring the Development HTTP Server”
section.

example/systemjs.config.js This file contains the configuration for the JavaScript module
loader. See the “Configuring the JavaScript Module Loader”
section.

example/typings This folder contains the type information for the TypeScript
compiler.

example/node_modules This folder is where the packages specified in the package.json
file are stored.

Chapter 11 ■ Creating an angular projeCt

223

Creating the Data Model
The data model in an Angular application provides access to the data in the application and the means to
manipulate it. Of all the building blocks in an application, the model is the one for which Angular is the
least prescriptive. Elsewhere in the application, Angular requires specific decorators to be applied or parts
of the API to be used, but the only requirement for the model is that it provides access to the data that the
application requires; the details of how this is done and what that data looks like is left to the developer.

This can feel a little odd, and it can be difficult to know how to begin, but, at its heart, the model can be
broken into three different parts.

 – A class that describes the data in the model
 – A data source that loads and saves data, typically to a server
 – A repository that allows the data in the model to be manipulated

In the following sections, I create a simple model, which provides the functionality that I need to
describe Angular features in the chapters that follow.

Creating the Descriptive Model Class
Descriptive classes, as the name suggests, describe the data in the application. In a real project, there will
generally be a lot of classes to fully describe the data that the application operates on, but to get started for
this chapter, I am going to create a single, simple class. I added a file called product.model.ts to the app
folder and defined the class shown in Listing 11-10.

Listing 11-10. The Contents of the product.model.ts File in the app Folder

export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number) {}
}

The Product class defines properties for a product identifier, the name of the product, the category, and
its price. The properties are defined as optional constructor arguments, which will be useful when it comes
to creating a Product object using an HTML form, which I demonstrate in Chapter 14.

Creating the Data Source
The data source provides the application with the data. The most common type of data source uses HTTP
to request data from a server, which I describe in Chapter 24. For this chapter, I need something simpler
and something that will reset to a known state each time the application starts to ensure that you get the
expected result in the examples. I added a file called datasource.model.ts to the app folder and added the
code shown in Listing 11-11.

Listing 11-11. The Contents of the datasource.model.ts file in the example app Folder

import {Product} from "./product.model";

export class SimpleDataSource {
 private data:Product[];

http://dx.doi.org/10.1007/978-1-4842-2307-9_14
http://dx.doi.org/10.1007/978-1-4842-2307-9_24

Chapter 11 ■ Creating an angular projeCt

224

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

The data in this class is hardwired, which means that any changes that are made in the application
will be lost when the browser is reloaded. This is far from useful in a real application, but it is ideal for book
examples.

Creating the Model Repository
The final step to complete the simple model is to define a repository that will provide access to the data from
the data source and allow it to be manipulated in the application. I added a file called repository.model.ts
in the app folder and defined the class shown in Listing 11-12.

Listing 11-12. The Contents of the repository.model.ts File in the app Folder

import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";

export class Model {
 private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p:Product, id:number) => p.id == id;

 constructor() {
 this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number) : Product {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();

Chapter 11 ■ Creating an angular projeCt

225

 this.products.push(product);
 } else {
 let index = this.products
 .findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

The Model class defines a constructor that gets the initial data from the data source class and provides
access to it through a set of methods. These methods are typical of those defined by a repository and are
described in Table 11-10.

The implementation of the repository may seem odd because the data objects are stored in a standard
JavaScript array but the methods defined by the Model class present the data as though it were a collection of
Product objects indexed by the id property. There are two main considerations when writing a repository for
model data. The first is that is should present the data that will be displayed as efficiently as possible. For the
example application, this means presenting all of the data in the model in a form that can be iterated, such
as an array. This is important because the iteration can happen often, as explained in Chapter 16. The other
operations of the Model class are inefficient, but they will be used less often.

The second consideration is being able to present unchanged data for Angular to work with. I explain
why this is important in Chapter 13, but in terms of implementing the repository, it means that the
getProducts method should return the same object when it is called multiple times, unless one of the other
methods or another part of the application has made a change to the data that the getProducts method
provides. If a method returns a different object each time it is returned, even if they are different arrays
containing the same objects, then Angular will report an error. This can cause some unexpected problems.

Table 11-10. The Types of Web Forms Code Nuggets

Name Description

getProducts This method returns an array containing all of the Product objects in the model.

getProduct This method returns a single Product object based on its ID.

saveProduct This method updates an existing Product object or adds a new one to the model.

deleteProduct This method removes a Product object from the model based on its ID.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16
http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 11 ■ Creating an angular projeCt

226

As an example, the ES6 specification includes a Map class that allows objects to be stored by key and that
would make the implantation of the getProduct, saveProduct, and deleteProduct methods more efficient
than the code in Listing 11-12, but it generates a new sequence of objects when it is asked for its contents,
which causes problems for Angular. Taking both of these points into account means that the best way to
implement the repository is to store the data in an array and accept the inefficiencies that creates for some
operations.

Creating the Template and Root Component
A template is a fragment of HTML that will be displayed to the user. Templates can range from the simple
to the complex, covering everything from a single HTML element through to a complex block of content.
To create the template, I added a file called template.html to the app folder and added the HTML elements
shown in Listing 11-13.

Listing 11-13. The Contents of the template.html File in the app Folder

<div class="bg-info p-a-1">
 There are {{model.getProducts().length}} products in the model
</div>

Most of this template is standard HTML, but the part between the double brace characters (the {{ and
}} in the div element) is an example of a data binding. When the template is displayed, Angular will process
the content it contains and discover the binding. Bindings contain expressions that are evaluated and whose
results are displayed in the HTML document.

The logic and data required to support the template is provided by its component, which is a TypeScript class
to which the @Component decorator has been applied. To provide a component for the template in Listing 11-13,
I added a file called component.ts to the app folder and defined the class shown in Listing 11-14.

Listing 11-14. The Contents of the component.ts File in the app Folder

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
}

The @Component decorator configures the component. The selector property specifies the HTML
element that the directive will be applied to, which corresponds to the app element in the HTML document,
created in Listing 11-1 (and modified in Listing 11-8).

...
<body>
 <app>This is static content <input /></app>
</body>
...

Chapter 11 ■ Creating an angular projeCt

227

The templateUrl property in the @Component directive specifies the content that will be used to replace
the app element, and, for this example, this property specifies the template.html file.

The component class, which is called ProductComponent for this example, is responsible for providing
the template with the data and logic that is needed for its bindings. In this case, the ProductComponent class
defines a single property, called model, which provides access to a Model object.

Creating the Angular Module
Every project has a root module, which is responsible for describing the application to Angular. I added a
file called app.module.ts, which is the conventional name to use for the root module, in the app folder and
added the code shown in Listing 11-15.

Listing 11-15. The Contents of the app.module.ts File in the app Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";

@NgModule({
 imports: [BrowserModule],
 declarations: [ProductComponent],
 bootstrap: [ProductComponent]
})
export class AppModule {}

It is the metadata expressed in the @NgModule decorator that describes the application and provides
some essential application features. The imports property is used to specify the dependencies the
application has and the BrowserModule specified in Listing 11-15 sets up the built-in template features, such
as the {{ and }} sequences that I included in the template.html file and that you will see working later in
this chapter.

The declarations property describes the features that the application exposes publicly. This is a
useful feature when creating libraries of Angular functionality for use in other applications—as described
in Chapter 21—but for simpler applications the declaration property is used only to register the root
component, such as the ProductComponent class from Listing 11-14.

The bootstrap property tells Angular that the ProductComponent class is the entry point into the
application. When the application starts, Angular will use the metadata from the @Component decorator
applied to the ProductComponent class to start the application off, as described in the “Running the
Application” section later in this chapter.

Bootstrapping the Application
The bootstrap process tells Angular about the component created in the previous section and creates
the bridge between the functionality provided by the Angular framework and the custom code in the
application. Bootstrapping is done by defining a TypeScript class, which I have done in a file called main.ts
in the app folder, as shown in Listing 11-16.

Listing 11-16. The Contents of the main.ts File in the app Folder

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

http://dx.doi.org/10.1007/978-1-4842-2307-9_21

Chapter 11 ■ Creating an angular projeCt

228

Angular is capable of running applications on a range of different platforms, each of which provides a
runtime environment for loading and running applications. The platformBrowserDynamic class provides
the runtime for browsers, and the bootstrapModule method is used to tell Angular which module describes
the application.

 ■ Tip notice that the argument to the bootstrapModule method is the name of the class and not
a new instance of that class. or, put another way, you call bootstrapModule(AppModule) and not
bootstrapModule(new AppModule()) or bootstrapModule("AppModule").

The platformBrowserDynamic class enables the Angular Just-in-Time compiler, which means that the
browser has to process the JavaScript files it receives each time the application is loaded. In Chapter 10, I
demonstrated the use of the Ahead-of-Time compiler, which performs this step before an application is
deployed and which requires changes to the bootstrap file so that a different platform is used to start the
application.

Configuring the JavaScript Module Loader
The term module is shorthand for referring to two different things in an Angular application. An Angular
module is a TypeScript class whose metadata describes an application.

As described in Chapter 6, a JavaScript module is a file that contains JavaScript code. JavaScript
modules range from small files that contain a single class, such as the ones created so far in the example
project, right through to large files containing lots of classes that have been bundled together (using the kind
of process that I demonstrated in Chapter 10 to prepare the SportsStore application for production).

The JavaScript module loader is responsible for loading all of the JavaScript module files that the
browser needs to run an application and executing them in the right order. This may seem like a trivial
task, but loading JavaScript files correctly can be a difficult job, because the dependencies can be complex,
especially in a large Angular application.

The TypeScript compiler comes with built-in support for working with JavaScript module loaders.
When you use an import statement in a TypeScript file, the compiler declares a dependency in the plain
JavaScript file that tells the module loader that the applicaion relies on another JavaScript module. Here are
the import statements from the component.ts file:

...
import { Component } from "@angular/core";
import { Model } from "./repository.model";
...

When the TypeScript compiler processes the component.ts file, it uses the import statements to provide
the module loader with information about the dependencies, which are then included in the plain JavaScript
file, like this:

...
var core_1 = require("@angular/core");
var repository_model_1 = require("./repository.model");
...

http://dx.doi.org/10.1007/978-1-4842-2307-9_10
http://dx.doi.org/10.1007/978-1-4842-2307-9_6
http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 11 ■ Creating an angular projeCt

229

The TypeScript compiler has used the require method to resolve the dependencies because I specified
commonjs for the module property in the tsconfig.json file in Listing 11-5. There are different module
formats available, but using commonjs makes it possible to take advantage of a useful Angular feature for
components, which I describe in Chapter 21.

 ■ Note it is important that the value of the module setting in the tsconfig.json file matches the module
loader you are using. i specified commonjs, which means that typeScript will generate javaScript code in
modules that work with a wide range of module loaders, including the SystemjS package. if you switch to a
different module loader, then you must ensure that the typeScript creates javaScript modules that match.

Module loaders have to be configured so they can resolve the dependencies that are declared in the
files they load. To configure SystemJS, I created a file called systemjs.config.js in the example folder and
added the code shown in Listing 11-17.

Listing 11-17. The Contents of the systemjs.config.js File in the example Folder

(function(global) {

 var paths = {
 "rxjs/*": "node_modules/rxjs/bundles/Rx.min.js",
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic"];

 angularModules.forEach(function(pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });

})(this);

This configuration file is written in JavaScript code (as opposed to being just static JSON data) and
contains three different ways of resolving JavaScript module dependencies, which are applied to three
different parts of the application, as described in the sections that follow. This kind of approach is typical of
most complex applications, regardless of whether they are written in Angular, because important JavaScript
packages are delivered in a range of ways that have to be handled differently.

Resolving the RxJS Modules
The first package that is configured in 17 is rxjs, which was added to the package.json file in Listing 11-3.
This is the Reactive Extensions (RxJS) package development by Microsoft that is used by Angular to distribute
notifications throughout an application when the data model changes.

http://dx.doi.org/10.1007/978-1-4842-2307-9_21

Chapter 11 ■ Creating an angular projeCt

230

The Reactive Extensions package is delivered as a file called Rx.min.js, within a folder called node_
modules/rxjs/bundles. This file contains multiple modules, and in order to resolve all dependencies for all
of them in a single file, I have used the SystemJS paths feature, like this:

...
var paths = {
 "rxjs/*": "node_modules/rxjs/bundles/Rx.min.js",
 "@angular/*": "node_modules/@angular/*"
}
...

Whenever the module loader encounters a dependency on a module that starts with rxjs/, such as
rxjs/Subject, it will be resolved using the code in the Rx.min.js file.

 ■ Tip if you are working directly with rxjS features, which you will need to do in more complex applications,
then you will have to create a custom rxjS module for your project. i demonstrate this process in Chapter 22.

Resolving the Custom Application Modules
The TypeScript compiler creates a new module for every TypeScript file it processes, which means that there
are modules for each of the model classes and the component in the example application.

The module loader is configured to resolve dependencies on the custom modules in the app folder, like
this:

...
var packages = { "app": {} };
...

The packages object is used to register the packages whose modules the loader will handle. The reason
for defining this setting is to take advantage of the defaults that SystemJS uses so that dependencies on
modules such as app/component will be resolved by loading the app/component.js file from the server.

Resolving the Angular Modules
The Angular framework is distributed as a set of JavaScript modules. When there is a dependency on a
module such as @angular/core, it must be handled by loading a file such as node_modules/@angular/core/
bundles/core.umd.min.js. The paths feature that I used to deal with the RxJS package can’t be used on
its own in this situation because the name of the module appears twice in the path name, which the paths
feature doesn’t support.

Two different configuration steps are required to configure the module loader to handle the Angular
JavaScript modules. The first step is to tell the module loader about each of the Angular modules that the
application requires.

...
var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic"];

http://dx.doi.org/10.1007/978-1-4842-2307-9_22

Chapter 11 ■ Creating an angular projeCt

231

angularModules.forEach(function(pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
});
...

I have started with five modules, which are the ones that are required for a basic Angular application.
(I add others in later chapters.) For each of the Angular JavaScript modules, a new property is defined on the
packages object that looks like this:

packages["@angular/core"] = {main: "/bundles/core.umd.min.js"}

The main property that is defined is used to specify a file in a package that should be used by default. In
this case, when there is a dependency on the @angular/core module, the loader will resolve it by loading the
@angular/core/bundles/core.umd.min.js file.

The second step is to configure a path setting that correctly targets the files in the node_modules folder,
like this:

...
var paths = {
 "rxjs/*": "node_modules/rxjs/bundles/Rx.umd.min.js",
 "@angular/*": "node_modules/@angular/*"
}
...

Combined with the packages setting, the module loader will correctly handle dependencies on an
Angular module.

Applying the Configuration Options
The final step is to pass both the paths and packages objects to the System.config method, which provides
the module loader with its configuration details.

...
System.config({ paths: paths, packages: packages });
...

TRIAL AND ERROR: CONFIGURING THE MODULE LOADER

Working out the required configuration can require some trial and error, using the browser’s F12
developer tools to see what files are requested and then adjusting the module loader’s settings so it
knows how to find those files in the project. not all packages are as awkward to deal with as angular,
but many have quirks in the way they are packaged or distributed. the popular module loaders provide
configuration options that are flexible enough to deal with most packages. i used two of the features
offered by SystemjS in this section, and you can see the full range of options at http://github.com/
systemjs/systemjs.

http://github.com/systemjs/systemjs
http://github.com/systemjs/systemjs

Chapter 11 ■ Creating an angular projeCt

232

it is important to check to see which files are being requested whenever you add a new package to
a project because it is easy to end up with a production application that requests more files than it
requires or that requests the uncompressed versions that are intended for debugging.

Updating the HTML Document
The final step is to update the HTML document so that it includes the packages that are not delivered
as modules and the module loader. Listing 11-18 shows the changes that are required for the example
application.

Listing 11-18. Adding JavaScript Packages and the Module Loader in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <app></app>
</body>
</html>

Not all of the JavaScript packages required by Angular are delivered or loaded as JavaScript modules.
The first four script elements in the listing are for the classList.js, Core-JS, Zone.js, and Reflect-Metadata
packages, which the browser will load and execute in order.

 ■ Tip the most reliable way to find out which file should be loaded from a package is to look at the project’s
homepage. For example, the homepage for Core-jS is https://github.com/zloirock/core-js, and it
describes the different ways that the package can be used, including using the client/shim.min.js file.

Applying the JavaScript Module Loader
The SystemJS module loader requires three separate script elements. The first script element loads the
SystemJS library.

https://github.com/zloirock/core-js

Chapter 11 ■ Creating an angular projeCt

233

...
<script src="node_modules/systemjs/dist/system.src.js"></script>
...

The next step is to load the configuration file. Since this file is JavaScript—rather than JSON—it can be
loaded and executed using a script element.

...
<script src="systemjs.config.js"></script>
...

The final script element loads the plain JavaScript file that the TypeScript compiler created from the
Angular bootstrap file, which was shown in Listing 11-18.

...
<script>
 System.import("app/main").catch(function(err){ console.error(err); });
</script>
...

The System.import method loads the file and starts the process of resolving its dependencies. In the
listing, the argument to the import method is app/main, which the configuration in the systemjs.config.js
file maps to the app/main.js file. Any errors will be written to the browser’s JavaScript console.

Styling the Content
The link element in Listing 11-18 loads the Bootstrap CSS package, which I use throughout this book to
style the HTML content in the examples. Bootstrap is not directly related to Angular but can be used to style
both the static content in the HTML document and the dynamic content created from templates. The HTML
document contains a simple Bootstrap style, applied to the body element.

...
<body class="m-a-1">
...

Assigning an element to the m-a-1 class adds a margin to all four edges, creating space between the
element and the content that surrounds it. There are also Bootstrap styles in the template.html file shown
in Listing 11-13, applied to a div element.

...
<div class="bg-info p-a-1">
...

Assigning an element to the bg-info class applies a background color to the element, where info refers
to one of a set of standardized colors (info, danger, success, and so on). Assigning an element to the p-a-1
class adds padding to all four edges of an element, creating space between its content and the element’s
edges.

Chapter 11 ■ Creating an angular projeCt

234

Running the Application
When you save the changes to the index.html file in Listing 11-18, all of the building blocks are in place and
the application can run. The browser loads the HTML document and processes its contents, including the
script elements for the module loader.

The module loader loads the app/main.js file and starts resolving its dependencies, which are the
root module for the application and one of the Angular framework’s JavaScript modules files. Each of these
has its own dependencies, and the module loader works its way through the entire chain, loading the
corresponding files from the server using the settings in its configuration files.

Once all the files have been loaded, the module loader executes the main.js file, which bootstraps
the Angular application. The bootstrap file tells Angular that the root module for the application is
the AppModule class, and the properties in its @NgModule decorator specify that the root component
for the application is the ProductComponent class. Angular inspects the @Component decorator of the
ProductComponent class and looks for the element in the HTML document that corresponds to the
component’s selector configuration property. It inserts the content specified by its templateUrl property,
which is contained in the app/template.html file, into the HTML document as the content of the selector
element. As the template is processed, Angular encounters the {{ and }} characters that denote a data
binding and evaluate the expression they contain.

...
<div class="bg-info p-a-1">
 There are {{model.getProducts().length}} products in the model
</div>
...

The value of the model property is provided by the component, which created a new Model object.
Angular calls the getProducts method on the Model object and inserts the value of the length property of
the result into the HTML document, producing the result shown in Figure 11-4.

Right-click the content in the browser’s window and select Inspect or Inspect Element from the pop-up
menu (the exact working differs between browsers and may not be shown until the F12 Developer Tools
window is open). If you examine the browser’s Document Object Model (DOM), which is the dynamic
representation of the HTML document, you will see how the building blocks in the application have come
together, like this:

Figure 11-4. Running the example application

Chapter 11 ■ Creating an angular projeCt

235

<html>
<head>
 <title></title>
 <meta charset="utf-8">
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body class="m-a-1"><script id="__bs_script__">//<![CDATA[
 document.write("<script async src='/browser-sync/browser-sync-
 client.js?v=2.16.0'><\/script>".replace("HOST", location.hostname));
 //]]></script><script async="" src="/browser-sync/browser-sync-
 client.js?v=2.16.0"></script>

 <app>
 <div class="bg-info p-a-1">
 There are 5 products in the model
 </div>
 </app>
</body>
</html>

The bootloader, the Angular module, the root component, the template, the data binding, the data
model, and the Angular framework itself have all worked together to generate the content shown in the
browser window. That may not seem like such an impressive feat since it has led to such a simple outcome,
but creating the project has laid the foundation for the more advanced—and interesting—features that are
described in the chapters that follow.

Summary
In this chapter, I created an Angular development project and used it to introduce some of the building
blocks for a simple application and the process by which they are created, compiled, and delivered to the
client. In the next chapter, I start digging into the detail, starting with Angular data bindings.

237© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_12

CHAPTER 12

Using Data Bindings

The example application in the previous chapter contains a simple template that was displayed to the user
and that contained a data binding that showed how many objects were in the data model. In this chapter, I
describe the basic data bindings that Angular provides and demonstrate how they can be used to produce
dynamic content. In later chapters, I describe more advanced data bindings and explain how to extend the
Angular binding system with custom features. Table 12-1 puts data bindings in context.

Table 12-2 summarizes the chapter.

Table 12-1. Putting Data Bindings in Context

Question Answer

What are they? Data bindings are expressions embedded into templates and are
evaluated to produce dynamic content in the HTML document.

Why are they useful? Data bindings provide the link between the HTML elements in the
HTML document and in template files with the data and code in
the application.

How are they used? Data bindings are applied as attributes on HTML elements or as
special sequences of characters in strings.

Are there any pitfalls or limitations? Data bindings contain simple JavaScript expressions that are
evaluated to generate content. The main pitfall is including
too much logic in a binding because such logic cannot be
properly tested or used elsewhere in the application. Data
binding expressions should be as simple as possible and rely on
components (and other Angular features such pipes) to provide
complex application logic.

Are there any alternatives? No. Data bindings are an essential part of Angular development.

Chapter 12 ■ Using Data BinDings

238

Preparing the Example Project
For this chapter, I continue using the example project from Chapter 11. To prepare for this chapter, I added a
method to the component class, as shown in Listing 12-1.

 ■ Note You can download the example projects for this book from apress.com if you don’t want to create
the project from scratch.

Listing 12-1. Adding a Method in the component.ts File

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(): string {
 return this.model.getProducts().length == 5 ? "bg-success" : "bg-warning";
 }
}

You can start the development HTTP server by running the following command in the example folder:

npm start

A new browser window will open, and the content shown in Figure 12-1 will be displayed.

Table 12-2. Chapter Summary

Problem Solution Listing

Display data dynamically in the HTML
document

Define a data binding 1–4

Configure an HTML element Use a standard property or attribute
binding

5, 8

Set the contents of an element Use a string interpolation binding 6, 7

Configure the classes to which an
element is assigned

Use a class binding 9–13

Configure the individual styles applied
to an element

Use a style binding 14–17

Manually trigger a data model update Use the browser’s JavaScript console 18, 19

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 12 ■ Using Data BinDings

239

Understanding One-Way Data Bindings
One-way data bindings are used to generate content for the user and are the basic building block for Angular
templates. The term one-way refers to the fact that the data flows in one direction, which, in the case of the
bindings that I describe in this chapter, means that data flows from the data model to the component and,
finally, into the data binding so that it can be displayed in a template.

There are other types of Angular data binding, which I describe in later chapters. Event bindings flow
in the other direction, from the elements in the template into the rest of the application, and allow user
interaction. Two-way bindings allow data to flow in both directions and are most commonly used in forms.
See Chapters 13 and 14 for details of other bindings.

To get started with one-way data bindings, I have replaced the content of the template, as shown in
Listing 12-2.

Listing 12-2. The Contents of the template.html File

<div [ngClass]="getClasses()" >
 Hello, World.
</div>

When you save the changes to the template, the development server will trigger a browser reload and
display the output shown in Figure 12-2.

Figure 12-1. Running the example application

Figure 12-2. Using a one-way data binding

http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 12 ■ Using Data BinDings

240

This is a simple example, but it shows the basic structure of a data binding, which is illustrated in
Figure 12-3.

A data binding has these four parts:

•	 The host element is the HTML element that the binding will affect, by changing its
appearance, content, or behavior.

•	 The square brackets tell Angular that this is a one-way data binding. When Angular
sees square brackets in a data binding, it will evaluate the expression and pass the
result to the binding’s target so that it can modify the host element.

•	 The target specifies what the binding will do. There are two different types of target: a
directive or a property binding.

•	 The expression is a fragment of JavaScript that is evaluated using the template’s
component to provide context, meaning that the component’s property and methods
can be included in the expression, like the getClasses method in the example
binding.

Looking at the binding in Listing 12-2, you can see that the host element is a div element, meaning
that’s the element that the binding is intended to modify. The expression invokes the component’s
getClasses method, which was defined at the start of the chapter. This method returns a string containing a
Bootstrap CSS class based on the number of objects in the data model.

...
getClasses(): string {
 return this.model.getProducts().length == 5 ? "bg-success" : "bg-warning";
}
...

If there are five objects in the data model, then the method returns bg-success, which is a Bootstrap
class that applies a green background. Otherwise, the method returns bg-warning, which is a Bootstrap class
that applies an amber background.

The target for the data binding in Listing 12-2 is a directive, which is a class that is specifically written
to support a data binding. Angular comes with some useful built-in directives, and you can create your own
to provide custom functionality. The names of the built-in directives start with ng, which tells you that the
ngClass target is one of the built-in directives. The target usually gives an indication of what the directive
does, and, as its name suggests, the ngClass directive will add or remove the host element from the class or
classes whose names are returned when the expression is evaluated.

Figure 12-3. The anatomy of a data binding

Chapter 12 ■ Using Data BinDings

241

Putting it all together, the data binding in Listing 12-2 will add the div element to the bg-success or bg-
warning classes based on the number of items in the data model.

Since there are five objects in the model when the application starts (because the initial data is hard-
coded into the SimpleDataSource class created in Chapter 12), the getClasses method returns bg-success
and produces the result shown in Figure 12-3, adding a green background to the div element.

Understanding the Binding Target
When Angular processes the target of a data binding, it starts by checking to see whether it matches a
directive. Most applications will rely on a mix of the built-in directives provided by Angular and custom
directives that provide application-specific features. You can usually tell when a directive is the target of a
data binding because the name will be distinctive and give some indication of what the directive is for. The
built-in directives can be recognized by the ng prefix. The binding in Listing 12-2 gives you a hint that the
target is a built-in directive that is related to the class membership of the host element. For quick reference,
Table 12-3 describes the basic built-in Angular directives and where they are described in this book. (There
are other directives described in later chapters, but these are the simplest and most commonly used.)

Understanding Property Bindings
If the binding target doesn’t correspond to a directive, then Angular checks to see whether the target can
be used to create a property binding. There are five different types of property binding, which are listed in
Table 12-4, along with the details of where they are described in detail.

Table 12-3. The Basic Built-in Angular Directives

Name Description

ngClass This directive is used to assign host elements to classes, as
described in the “Setting Classes and Styles” section.

ngStyle This directive is used to set individual styles, as described
in the “Setting Classes and Styles” section.

ngIf This directive is used to insert content in the HTML
document when its expression evaluates as true, as
described in Chapter 13.

ngFor This directive inserts the same content into the HTML
document for each item in a data source, as described in
Chapter 13.

ngSwitch ngSwitchCase ngSwitchDefault These directives are used to choose between blocks of
content to insert into the HTML document based on the
value of the expression, as described in Chapter 13.

ngTemplateOutlet This directive is used to repeat a block of content, as
described in Chapter 13.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 12 ■ Using Data BinDings

242

Understanding the Expression
The expression in a data binding is a fragment of JavaScript code that is evaluated to provide a data value
to the target. The expression has access to the properties and methods defined by the component, which is
how the binding in Listing 12-2 is able to invoke the getClasses method to provide the ngClass directive
with the name of the class that the host element should be added to.

Expressions are not restricted to just calling methods or reading properties from the component; they
can also be used to perform most standard JavaScript operations. As an example, Listing 12-3 shows an
expression that has a literal string value being concatenated with the result of the getClasses method.

Listing 12-3. Performing a JavaScript Operation in an Expression in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()" >
 Hello, World.
</div>

The expression is enclosed in double quotes, which means that the string literal has to be defined using
single quotes. The JavaScript concatenation operator is the + character, and the result from the expression
will be the combination of both strings, like this:

p-a-1 bg-success

The effect is that the ngClass directive will add the host element to two classes: p-a-1, which Bootstrap
uses to add padding around an element’s content, and bg-success, which sets the background color.
Figure 12-4 shows the combination of these two classes.

Table 12-4. The Angular Property Bindings

Name Description

[property] This is the standard property binding, which is used to set a property on the
JavaScript object that represents the host element in the Document Object Model
(DOM), as described in the “Using the Standard Property and Attribute Bindings”
section.

[attr.name] This is the attribute binding, which is used to set the value of attributes on the
host HTML element for which there are no DOM properties, as described in the
“Using the Attribute Binding” section.

[class.name] This is the special class property binding, which is used to configure class
membership of the host element, as described in the “Using the Class Bindings”
section.

[style.name] This is the special style property binding, which is used to configure style settings
of the host element, as described in the “Using the Style Bindings” section.

Chapter 12 ■ Using Data BinDings

243

It is easy to get carried away when writing expressions and include complex logic in the template. This
can cause problems because the expressions are not checked by the TypeScript compiler nor can they be
easily unit tested, which means that bugs are more likely to remain undetected until the application has
been deployed. To avoid this issue, expressions should be as simple as possible and, ideally, used only to
retrieve data from the component and format it for display. All the complex retrieval and processing logic
should be defined in the component or the model, where it can be compiled and tested.

Understanding the Brackets
The square brackets (the [and] characters) tell Angular that this is a one-way data binding that has an
expression that should be evaluated. Angular will still process the binding if you omit the brackets and the
target is a directive, but the expression won’t be evaluated and the content between the quote characters will
be passed to the directive as a literal value. Listing 12-4 adds an element to the template with a binding that
doesn’t have square brackets.

Listing 12-4. Omitting the Brackets in a Data Binding in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()" >
 Hello, World.
</div>
<div ngClass="'p-a-1 ' + getClasses()" >
 Hello, World.
</div>

If you examine the HTML element in the browser’s DOM viewer (by right-clicking in the browser
window and selecting Inspect or Inspect Element from the pop-up menu), you will see that its class
attribute has been set to the literal string, like this:

<div class="'p-a-1 ' + getClasses()">

The browser will try to process the classes to which the host element has been assigned, but the
element’s appearance won’t be as expected since they don’t correspond to the class names used by
Bootstrap. This is a common mistake to make, so it is the first thing to check if a binding doesn’t have the
effect you expected.

Figure 12-4. Combining classes in a JavaScript expression

Chapter 12 ■ Using Data BinDings

244

The square brackets are not the only ones that Angular uses in data bindings. For quick reference,
Table 12-5 provides the complete set of brackets, the meaning of each, and where they are described in detail.

Understanding the Host Element
The host element is the simplest part of a data binding. Data bindings can be applied to any HTML element
in a template, and an element can have multiple bindings, each of which can manage a different aspect of
the element’s appearance or behavior. You will see elements with multiple bindings in later examples.

Using the Standard Property and Attribute Bindings
If the target of a binding doesn’t match a directive, Angular will try to apply a property binding. The sections
that follow describe the most common property bindings: the standard property binding and the attribute
binding.

Using the Standard Property Binding
The browser uses the Document Object Model (DOM) to represent the HTML document. Each element in
the HTML document, including the host element, is represented using a JavaScript object in the DOM. Like
all JavaScript objects, the ones used to represent HTML elements have properties. These properties are used
to manage the state of the element so that the value property, for example, is used to set the contents of
an input element. When the browser parses an HTML document, it encounters each new HTML element,
creates an object in the DOM to represent it, and uses the element’s attributes to set the initial values for the
object’s properties.

The standard property binding lets you set the value of a property for the object that represents the host
element, using the result of an expression. For example, setting the target of a binding to value will set the
content of an input element, as shown in Listing 12-5.

Listing 12-5. Using the Standard Property Binding in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()" >
 Hello, World.
</div>

Table 12-5. The Angular Brackets

Name Description

[target]="expr" The square brackets indicate a one-way data binding where data flows from
the expression to the target. The different forms of this type of binding are the
topic of this chapter.

{{expression}} This is the string interpolation binding, which is described in the “Using the
String Interpolation Binding” section.

(target) ="expr" The round brackets indicate a one-way binding where the data flows from the
target to the destination specified by the expression. This is the binding used
to handle events, as described in Chapter 14.

[(target)] ="expr" This combination of brackets—known as the banana-in-a-box—indicates a
two-way binding, where data flows in both directions between the target and
the destination specified by the expression, as described in Chapter 14.

http://dx.doi.org/10.1007/978-1-4842-2307-9_14
http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 12 ■ Using Data BinDings

245

<div class="form-group m-t-1">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />
</div>

The new binding in this example specifies that the value property should be bound to the result of an
expression that calls a method on the data model to retrieve a data object from the repository by specifying
a key. It is possible that there is no data object with that key, in which case the repository method will return
null.

To guard against using null for the host element’s value property, the binding uses the template null
conditional operator (the ? character) to safely navigate the result returned by the method, like this:

...
<input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />
The first product is {{getProduct(1)?.name || 'None'}}.
...

If the result from the getProduct method isn’t null, then the expression will read the value of the name
property and use it as the result. But if the result from the method is null, then the name property won’t be
read, and the null coalescing operator (the || characters) will set the result to None instead.

GETTING TO KNOW THE HTML ELEMENT PROPERTIES

Using property bindings can require some work figuring out which property you need to set. there is
some inconsistency in the htML specification. the name of most properties matches the name of the
attribute that sets their initial value, so that if you are used to setting the value attribute on an input
element, for example, then you can achieve the same effect by setting the value property. some
property names don’t match their attribute names, and some properties are not configured by attributes
at all.

the Mozilla Foundation provides a useful reference for all the objects that are used to represent
htML elements in the DOM at developer.mozilla.org/en-US/docs/Web/API. For each element,
Mozilla provides a summary of the properties that are available and what each is used for. start with
HTMLElement (developer.mozilla.org/en-US/docs/Web/API/HTMLElement), which provides the
functionality common to all elements. You can then branch out into the objects that are for specific
elements, such as HTMLInputElement, which is used to represent input elements.

When you save the changes to the template, the browser will reload and display an input element
whose content is the name property of the data object with the key of 1 in the model repository, as shown in
Figure 12-5.

Chapter 12 ■ Using Data BinDings

246

Using the String Interpolation Binding
Angular provides a special version of the standard property binding, known as the string interpolation
binding, that is used to include expression results in the text content of host elements. To understand why
this special binding is useful, it helps to look at what binding is required when the standard property binding
is used.

The textContent property is used to set the content of HTML elements, which means that the content
of an element can be set using a data binding like the one shown in Listing 12-6.

Listing 12-6. Setting an Element’s Content in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()"
 [textContent]="'Name: ' + (model.getProduct(1)?.name || 'None')" >
</div>
<div class="form-group m-t-1">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />
</div>

The expression in the new binding concatenates a literal string with the results of a method call in order
to set the content of the div element.

The expression in this example is awkward to write, requiring careful attention to quotes, spaces, and
brackets to ensure that the expected result is displayed in the output. The problem becomes worse for more
complex bindings, where multiple dynamic values are interspersed among blocks of static content.

The string interpolation binding simplified this process by allowing fragments of expressions to be
defined within the content of an element, as shown in Listing 12-7.

Listing 12-7. Using the String Interpolation Binding in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()">
 Name: {{model.getProduct(1)?.name || 'None'}}

Figure 12-5. Using the standard property binding

Chapter 12 ■ Using Data BinDings

247

</div>
<div class="form-group m-t-1">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />
</div>

The string interpolation binding is denoted using pairs of curly brackets ({{ and }}). A single element
can contain multiple string interpolation bindings.

Angular combines the content of the HTML element with the contents of the brackets in order to create
a binding for the textContent property. The result is the same as Listing 12-6, which is shown in Figure 12-6,
but the process of writing the binding is simpler and less error-prone.

Using the Attribute Binding
here are some oddities in the HTML and DOM specifications that mean that not all HTML element
attributes have equivalent properties in the DOM API, which means that there are aspects of the host
element that cannot be set using the standard property binding.

For these situations, Angular provides the attribute binding, which is used to set an attribute on the host
element rather than setting the value of the JavaScript object that represents it in the DOM.

The most commonly encountered attribute without a corresponding property is colspan, which is used
to set the number of columns that a td element will occupy in a table. Listing 12-8 shows using the attribute
binding to set the colspan element based on the number of objects in the data model.

Listing 12-8. Using an Attribute Binding in the template.html File

<div [ngClass]="'p-a-1 ' + getClasses()">
 Name: {{model.getProduct(1)?.name || 'None'}}
</div>
<div class="form-group m-t-1">
 <label>Name:</label>

Figure 12-6. Using the string interpolation binding

Chapter 12 ■ Using Data BinDings

248

 <input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />
</div>
<table class="table table-sm table-bordered table-striped m-t-1">
 <tr>
 <th>1</th><th>2</th><th>3</th><th>4</th><th>5</th>
 </tr>
 <tr>
 <td [attr.colspan]="model.getProducts().length">
 {{model.getProduct(1)?.name || 'None'}}
 </td>
 </tr>
</table>

The attribute binding is applied by defining a target that prefixes the name of the attribute with attr.
(the term attr, followed by a period). In the listing, I have used the attribute binding to set the value of the
colspan element on one of the td elements in the table, like this:

...
<td [attr.colspan]="model.getProducts().length">
...

Angular will evaluate the expression and set the value of the colspan attribute to the result. Since the
data model is hardwired to start with five data objects, the effect is that the colspan attribute creates a table
cell that spans five columns, as shown in Figure 12-7.

Figure 12-7. Using an attribute binding

Chapter 12 ■ Using Data BinDings

249

Setting Classes and Styles
Angular provides special support in property bindings for assigning the host element to classes and for
configuring individual style properties. I describe these bindings in the sections that follow, along with
details of the ngClass and ngStyle directives, which provide closely related features.

Using the Class Bindings
There are three different ways in which you can use data bindings to manage the class memberships of an
element: the standard property binding, the special class binding, and the ngClass directive. All three are
described in Table 12-6, and each works in a slightly different way and is useful in different circumstances, as
described in the sections that follow.

Setting All of an Element’s Classes with the Standard Binding
The standard property binding can be used to set all of an element’s classes in a single step, which is useful
when you have a method or property in the component that returns all of the classes that an element
should belong to in a single string, with the names separated by spaces. Listing 12-9 shows the revision of
the getClasses method in the component that returns a different string of class names based on the price
property of a Product object.

Listing 12-9. Providing All Classes in a Single String in the component.ts File

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-a-1 " + (product.price < 50 ? "bg-info" : "bg-warning");
 }
}

Table 12-6. The Angular Class Bindings

Example Description

<div [class]="expr"></div> This binding evaluates the expression and uses the result to
replace any existing class memberships.

<div [class.myClass]="expr"></div> This binding evaluates the expression and uses the result to set
the element’s membership of myClass.

<div [ngClass]="map"></div> This binding sets class membership of multiple classes using
the data in a map object.

Chapter 12 ■ Using Data BinDings

250

The result from the getClasses method will include the p-a-1 class, which adds padding around the
host element’s content, for all Product objects. If the value of the price property is less than 50, the bg-info
class will be included in the result, and if the value is 50 or more, the bg-warning class will be included
(these classes set different background colors).

 ■ Tip You must ensure that the names of the classes are separated by spaces.

Listing 12-10 shows the standard property binding being used in the template to set the class property
of host elements using the component’s getClasses method.

Listing 12-10. Setting Class Memberships Using the Standard Property Binding in the template.html File

<div [class]="getClasses(1)">
 The first product is {{model.getProduct(1).name}}.
</div>
<div [class]="getClasses(2)">
 The second product is {{model.getProduct(2).name}}
</div>

When the standard property binding is used to set the class property, the result of the expression
replaces any previous classes that an element belonged to, which means that it can be used only when the
binding expression returns all the classes that are required, as in this example, producing the result shown in
Figure 12-8.

Setting Individual Classes Using the Special Class Binding
The special class binding provides finer-grained control than the standard property binding and allows the
membership of a single class to be managed using an expression. This is useful if you want to build on the
existing class memberships of an element, rather than replace them entirely. Listing 12-11 shows the use of
the special class binding.

Figure 12-8. Setting class memberships

Chapter 12 ■ Using Data BinDings

251

Listing 12-11. Using the Special Class Binding in the template.html File

<div [class]="getClasses(1)">
 The first product is {{model.getProduct(1).name}}.
</div>
<div class="p-a-1"
 [class.bg-success]="model.getProduct(2).price < 50"
 [class.bg-info]="model.getProduct(2).price >= 50">
 The second product is {{model.getProduct(2).name}}
</div>

The special class binding is specified with a target that combines the term class, followed by a period,
followed by the name of the class whose membership is being managed. In the listing, there are two special
class bindings, which manage the membership of the bg-success and bg-info classes.

The special class binding will add the host element to the specified class if the result of the expression is
truthy (as described in the “Understanding Truthy and Falsy” sidebar). In this case, the host element will be
a member of the bg-success class if the price property is less than 50 and a member of the bg-info class if
the price property is 50 or more.

These bindings act independently from one another and do not interfere with any existing classes that
an element belongs to, such as the p-a-1 class, which Bootstrap uses to add padding around an element’s
content.

UNDERSTANDING TRUTHY AND FALSY

Javascript has an odd feature, where the result of an expression can be truthy or falsy, providing a
pitfall for the unwary. the following results are always falsy:

 – the false (boolean) value

 – the 0 (number) value

 – the empty string ("")

 – null

 – undefined

 – NaN (a special number value)

all other values are truthy, which can be confusing. For example, "false" (a string whose content is the
word false) is truthy. the best way to avoid confusion is to only use expressions that evaluate to the
boolean values true and false.

Setting Classes Using the ngClass Directive
The ngClass directive is a more flexible alternative to the standard and special property bindings and
behaves differently based on the type of data that is returned by the expression, as described in Table 12-7.

Chapter 12 ■ Using Data BinDings

252

The string and array features are useful, but it is the ability to use an object (known as a map) to create
complex class membership policies that makes the ngClass directive especially useful. Listing 12-12 shows
the addition of a component method that returns a map object.

Listing 12-12. Returning a Class Map Object in the component.ts File

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-a-1 " + (product.price < 50 ? "bg-info" : "bg-warning");
 }

 getClassMap(key: number): Object {
 let product = this.model.getProduct(key);
 return {
 "text-xs-center bg-danger": product.name == "Kayak",
 "bg-info": product.price < 50
 };
 }
}

The getClassMap method returns an object with properties whose values are one or more class names,
with values based on the property values of the Product object whose key is specified as the method
argument. As an example, when the key is 1, the method returns this object:

{
 "text-xs-center bg-danger":true,
 "bg-info":false
}

Table 12-7. The Expression Result Types Supported by the ngClass Directive

Name Description

String The host element is added to the classes specified by the string. Multiple classes are
separated by spaces.

Array Each object in the array is the name of a class that the host element will be added to.

Object Each property on the object is the name of one or more classes, separated by spaces. The
host element will be added to the class if the value of the property is truthy.

Chapter 12 ■ Using Data BinDings

253

The first property will assign the host element to the text-xs-center class (which Bootstrap uses to
center the text horizontally) and the bg-danger class (which sets the element’s background color). The
second property evaluates to false, which means that the host element will not be added to the bg-info
class. It may seem odd to specify a property that doesn’t result in an element being added to a class, but, as
you will see shortly, the value of expressions is automatically updated to reflect changes in the application,
and being able to define a map object that specifies memberships this way can be useful.

Listing 12-13 shows the getClassMap and the map objects it returns used as the expression for data
bindings that target the ngClass directive.

Listing 12-13. Using the ngClass Directive in the template.html File

<div class="p-a-1" [ngClass]="getClassMap(1)">
 The first product is {{model.getProduct(1).name}}.
</div>
<div class="p-a-1" [ngClass]="getClassMap(2)">
 The second product is {{model.getProduct(2).name}}.
</div>
<div class="p-a-1" [ngClass]="{'bg-success': model.getProduct(3).price < 50,
 'bg-info': model.getProduct(3).price >= 50}">
 The third product is {{model.getProduct(3).name}}
</div>

The first two div elements have bindings that use the getClassMap method. The third div element
shows an alternative approach, which is to define the map in the template. For this element, membership of
the bg-info and bg-warning classes is tied to the value of the price property of a Product object, as shown in
Figure 12-9. Care should be taken with this technique because the expression contains JavaScript logic that
cannot be readily tested.

Figure 12-9. Using the ngClass directive

Chapter 12 ■ Using Data BinDings

254

Using the Style Bindings
There are three different ways in which you can use data bindings to set style properties of the host element:
the standard property binding, the special style binding, and the ngStyle directive. All three are described in
Table 12-8 and demonstrated in the sections that follow.

Setting a Single Style Property
The standard property binding and the special style bindings are used to set the value of a single style
property. The difference between these bindings is that the standard property binding must include the
units required for the style, while the special binding allows for the units to be included in the binding target.

To demonstrate the difference, Listing 12-14 adds two new properties to the component.

Listing 12-14. Adding Properties in the component.ts File

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-a-1 " + (product.price < 50 ? "bg-info" : "bg-warning");
 }

 getClassMap(key: number): Object {
 let product = this.model.getProduct(key);
 return {
 "text-xs-center bg-danger": product.name == "Kayak",
 "bg-info": product.price < 50
 };
 }

 fontSizeWithUnits: string = "30px";
 fontSizeWithoutUnits: string= "30";
}

Table 12-8. The Angular Style Bindings

Example Description

<div [style.myStyle]="expr"></div> This is the standard property binding, which is used to
set a single style property to the result of the expression.

<div [style.myStyle.units]="expr"></div> This is the special style binding, which allows the units
for the style value to be specified as part of the target.

<div [ngStyle]="map"></div> This binding sets multiple style properties using the data
in a map object.

Chapter 12 ■ Using Data BinDings

255

The fontSizeWithUnits property returns a value that includes a quantity and the units that quantity
is expressed in: 30 pixels. The fontSizeWithoutUnits property returns just the quantity, without any unit
information. Listing 12-15 shows how these properties can be used with the standard and special bindings.

 ■ Caution Do not try to use the standard property binding to target the style property in order to set
multiple style values. the object returned by the style property of the Javascript object that represents the
host element in the DOM is read-only. some browsers will ignore this and allow changes to be made, but the
results are unpredictable and cannot be relied on. if you want to set multiple style properties, then create a
binding for each of them, or use the ngStyle directive.

Listing 12-15. Using Style Bindings in the template.html File

<div class="p-a-1 bg-warning">
 The first
 product is {{model.getProduct(1).name}}.
</div>
<div class="p-a-1 bg-info">
 The second
 product is {{model.getProduct(2).name}}
</div>

The target for the binding is style.fontSize, which sets the size of the font used for the host element’s
content. The expression for this binding uses the fontSizeWithUnits property, whose value includes the
units, px for pixels, required to set the font size.

The target for the special binding is style.fontSize.px, which tells Angular that the value
of the expression specifies the number in pixels. This allows the binding to use the component’s
fontSizeWithoutUnits property, which doesn’t include units.

 ■ Tip You can specify style properties using the Javascript property name format ([style.fontSize]) or
using the Css property name format ([style.font-size]).

The result of both bindings is the same, which is to set the font size of the span elements to 30 pixels,
producing the result shown in Figure 12-10.

Chapter 12 ■ Using Data BinDings

256

Setting Styles Using the ngStyle Directive
The ngStyle directive allows multiple style properties to be set using a map object, similar to the way that
the ngClass directive works. Listing 12-16 shows the addition of a component method that returns a map
containing style settings.

Listing 12-16. Creating a Style Map Object in the component.ts File

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-a-1 " + (product.price < 50 ? "bg-info" : "bg-warning");
 }

 getStyles(key: number) {
 let product = this.model.getProduct(key);
 return {
 fontSize: "30px",
 "margin.px": 100,
 color: product.price > 50 ? "red" : "green"
 };

Figure 12-10. Setting individual style properties

Chapter 12 ■ Using Data BinDings

257

 }
}

The map object returned by the getStyle method shows that the ngStyle directive is able to support
both of the formats that can be used with property bindings, either including the units in the value or the
property name. Here is the map object that the getStyles method produces when the value of the key
argument is 1:

{
 "fontSize":"30px",
 "margin.px":100,
 "color":"red"
}

Listing 12-17 shows data bindings in the template that use the ngStyle directive and whose expressions
call the getStyles method.

Listing 12-17. Using the ngStyle Directive in the template.html File

<div class="p-a-1 bg-warning">
 The first
 product is {{model.getProduct(1).name}}.
</div>
<div class="p-a-1 bg-info">
 The second
 product is {{model.getProduct(2).name}}
</div>

The result is that each span element receives a tailored set of styles, based on the argument passed to
the getStyles method, as shown in Figure 12-11.

Figure 12-11. Using the ngStyle directive

Chapter 12 ■ Using Data BinDings

258

Updating the Data in the Application
When you start out with Angular, it can seem like a lot of effort to deal with the data bindings, remembering
which binding is required in different situations. You might be wondering if it is worth the effort.

Bindings are definitively worth understanding, and the reason is that bindings’ expressions are
reevaluated when the data they depend on changes. As an example, if you are using a string interpolation
binding to display the value of a property, then the binding will automatically update when the value of the
property is changed.

To provide a demonstration, I am going to jump ahead and show you how to take manual control of the
updating process. This is not a technique that is required in normal Angular development, but it provides a
solid demonstration of why bindings are so important. Listing 12-18 shows some changes to the component
that enable the demonstration.

Listing 12-18. Preparing the Component in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 constructor(ref: ApplicationRef) {
 (<any>window).appRef = ref;
 (<any>window).model = this.model;
 }

 getProductByPosition(position: number): Product {
 return this.model.getProducts()[position];
 }

 getClassesByPosition(position: number): string {
 let product = this.getProductByPosition(position);
 return "p-a-1 " + (product.price < 50 ? "bg-info" : "bg-warning");
 }
}

I have imported the ApplicationRef type from the @angular/core module. When Angular performs the
bootstrapping process, it creates an ApplicationRef object to represent the application. Listing 12-18 adds
a constructor to the component that receives an ApplicationRef object as an argument, using the Angular
dependency injection feature, which I describe in Chapter 19. Without going into detail now, declaring a
constructor argument like this tells Angular that the component wants to receive the ApplicationRef object
when a new instance is created.

Within the constructor, there are two statements that make a demonstration possible but would
undermine many of the benefits of using TypeScript and Angular if used in a real project.

http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 12 ■ Using Data BinDings

259

...
(<any>window).appRef = ref;
(<any>window).model = this.model;
...

These statements define variables in the global namespace and assign the ApplicationRef and Model
objects to them. It is good practice to keep the global namespace as clear as possible, but exposing these
objects allows them to be manipulated through the browser’s JavaScript console, which is important for this
example.

The other methods added to the constructor allow a Product object to be retrieved from the repository
based on its position, rather than by its key, and to generate a class map that differs based on the value of the
price property.

Listing 12-19 shows the corresponding changes to the template, which uses the ngClass directive to set
class memberships and the string interpolation binding to display the value of the Product.name property.

Listing 12-19. Preparing for Changes in the template.html File

<div [ngClass]="getClassesByPosition(0)">
 The first product is {{getProductByPosition(0).name}}.
</div>
<div [ngClass]="getClassesByPosition(1)">
 The second product is {{getProductByPosition(1).name}}
</div>

Save the changes to the component and template. Once the browser has reloaded the page, enter the
following statement into the browser’s JavaScript console and press Return:

model.products.shift()

This statement calls the shift method on the array of Product objects in the model, which removes the
first item from the array and returns it. You won’t see any changes yet because Angular doesn’t know that
the model has been modified. To tell Angular to check for changes, enter the following statement into the
browser’s JavaScript console and press Return:

appRef.tick()

The tick method starts the Angular change detection process, where Angular looks at the data in the
application and the expressions in the data binding and processes any changes. The data bindings in the
template use specific array indexes to display data, and now that an object has been removed from the
model, the bindings will be updated to display new values, as shown in Figure 12-12.

Chapter 12 ■ Using Data BinDings

260

It is worth taking a moment to think about what happened when the change detection process ran.
Angular reevaluated the expressions on the bindings in the template and updated their values. In turn, the
ngClass directive and the string interpolation binding reconfigured their host elements by changing their
class memberships and displaying new content.

The happens because Angular data bindings are live, meaning that the relationship between the
expression, the target, and the host element continues to exist after the initial content is displayed to the
user and dynamically reflects changes to the application state. This effect is, I admit, much more impressive
when you don’t have to make changes using the JavaScript console. I explain how Angular allows the user to
trigger changes using events and forms in Chapter 14.

Summary
In this chapter, I described the structure of Angular data bindings and showed you how they are used to
create relationships between the data in the application and the HTML elements that are displayed to the
user. I introduced the property bindings and described how two of the built-in directives—ngClass and
ngStyle—are used. In the next chapter, I explain how the rest of the built-in directives work.

Figure 12-12. Manually updating the application model

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

261© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_13

CHAPTER 13

Using the Built-In in Directives

In this chapter, I describe the built-in directives that are responsible for some of the most commonly
required functionality for creating web applications: selectively including content, choosing between
different fragments of content, and repeating content. I also describe some limitations that Angular puts on
the expressions that are used for one-way data bindings and the directives that provide them. Table 13-1 puts
the built-in template directives in context.

Table 13-2 summarizes the chapter.

Table 13-1. Putting the Built-in Directives in Context

Question Answer

What are they? The built-in directives described in this chapter are responsible
for selectively including content, selecting between fragments
of content, and repeating content for each item in an array.
There are also directives for setting an element’s styles and class
memberships, as described in Chapter 13.

Why are they useful? The tasks that can be performed with these directives are the most
common and fundamental in web application development, and
they provide the foundation for adapting the content shown to the
user based on the data in the application.

How are they used? The directives are applied to HTML elements in templates. There
are examples throughout this chapter (and in the rest of the book).

Are there any pitfalls or limitations? The syntax for using the built-in template directives requires you
to remember that some of them (including ngIf and ngFor) must
be prefixed with an asterisk, while others (including ngClass,
ngStyle, and ngSwitch) must be enclosed in square brackets.
I explain why this is required in the “Understanding Micro-
Template Directives” sidebar, but it is easy to forget and get an
unexpected result.

Are there any alternatives? You could write your own custom directives—a process that I
described in Chapters 15 and 16—but the built-in directives are
well-written and comprehensively tested. For most applications,
using the built-in directives is preferable, unless they cannot
provide exactly the functionality that is required.

http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_15
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 13 ■ Using the BUilt-in in DireCtives

262

Preparing the Example Project
This chapter relies on the example project that was created in Chapter 11 and modified in Chapter 12. To
prepare for the topic of this chapter, Listing 13-1 shows changes to the component class that remove features
that are no longer required and adds new methods and a property.

Listing 13-1. Changes in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 constructor(ref: ApplicationRef) {
 (<any>window).appRef = ref;
 (<any>window).model = this.model;
 }

 getProductByPosition(position: number): Product {
 return this.model.getProducts()[position];
 }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

Table 13-2. Chapter Summary

Problem Solution Listing

Conditionally display content based
on a data binding expression

Use the ngIf directive 1–3

Choose between different content
based on the value of a data binding
expression

Use the ngSwitch directive 4, 5

Generate section of content for each
object produced by a data binding
expression

Use the ngFor directive 6–12

Repeat a block of content Use the ngTemplateOutlet directive 13–14

Prevent template errors Avoid modifying the application state as a
side effect of a data binding expression

15–19

Avoid context errors Ensure that data binding expressions use only
the properties and methods provided by the
template’s component

20–22

http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_12

Chapter 13 ■ Using the BUilt-in in DireCtives

263

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 getProductCount(): number {
 return this.getProducts().length;
 }

 targetName: string = "Kayak";
}

Listing 13-2 shows the contents of the template file, which displays the number of products in the data
model by calling the component’s new getProductCount method.

Listing 13-2. The Contents of the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

Run the following command from the command line in the example folder to start the TypeScript
compiler and the development HTTP server:

npm start

A new browser window will open and load the index.html file from the example folder, displaying the
content shown in Figure 13-1.

Using the Built-in Directives
Angular comes with a set of built-in directives that provide features that are commonly required in web
applications so that you don’t have to reinvent the wheel in your own projects. Table 13-3 describes the
directives that are available, which I demonstrate in the sections that follow (except for the ngClass and
ngStyle directives, which are covered in Chapter 12).

Figure 13-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2307-9_12

Chapter 13 ■ Using the BUilt-in in DireCtives

264

Using the ngIf Directive
The ngIf is the simplest of the built-in directives and is used to include a fragment of HTML in the document
when an expression evaluates as true, as shown in Listing 13-3.

Listing 13-3. Using the ngIf Directive in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<div *ngIf="getProductCount() > 4" class="bg-info p-a-1 m-t-1">
 There are more than 4 products in the model
</div>

Table 13-3. The Built-in Directives

Example Description

<div *ngIf="expr"></div> The ngIf directive is used to include an element and
its content in the HTML document if the expression
evaluates as true. The asterisk before the directive
name indicates that this is a micro-template directive,
as described in the “Understanding Micro-Template
Directives” sidebar.

<div [ngSwitch]="expr"> <span
*ngSwitchCase="expr"> <span
*ngSwitchDefault> </div>

The ngSwitch directive is used to choose between
multiple elements to include in the HTML document
based on the result of an expression, which is then
compared to the result of the individual expressions
defined using ngSwitchCase directives. If none of the
ngSwitchCase values matches, then the element to
which the ngSwitchDefault directive has been applied
will be used. The asterisks before the ngSwitchCase
and ngSwitchDefault directives indicate they are
micro-template directives, as described in the
“Understanding Micro-Template Directives” sidebar.

<div *ngFor="#item of expr"></div> The ngFor directive is used to generate the same set
of elements for each object in an array. The asterisk
before the directive name indicates that this is a micro-
template directive, as described in the “Understanding
Micro-Template Directives” sidebar.

<template [ngTemplateOutlet]="myTempl"> </
template>

The ngTemplateOutlet directive is used to repeat a
block of content in a template.

<div ngClass="expr"></div> The ngClass directive is used to manage class
membership, as described in Chapter 12.

<div ngStyle="expr"></div> The ngStyle directive is used to manage styles applied
directly to elements (as opposed to applying styles
through classes), as described in Chapter 12.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_12

Chapter 13 ■ Using the BUilt-in in DireCtives

265

<div *ngIf="getProductByPosition(0).name != 'Kayak'" class="bg-info p-a-1 m-t-1">
 The first product isn't a Kayak
</div>

The ngIf directive has been applied to two div elements, with expressions that check the number of
Product objects in the model and whether the name of the first Product is Kayak.

The first expression evaluates as true, which means that div element and its content will be included in
the HTML document; the second expression evaluates as false, which means that the second div element
will be excluded. Figure 13-2 shows the result.

 ■ Note the ngIf directive adds and removes elements from the htMl document, rather than just showing
or hiding them. Use the property or style bindings, described in Chapter 12, if you want to leave elements in
place and control their visibility, either by setting the hidden element property to true or setting the display
style property to none.

UNDERSTANDING MICRO-TEMPLATE DIRECTIVES

some directives, such as ngFor, ngIf, and the nested directives used with ngSwitch are prefixed with
an asterisk, as in *ngFor, *ngIf, and *ngSwitch. the asterisk is shorthand for using directives that rely
on content provided as part of the template, known as a micro-template. Directives that use micro-
templates are known as structural directives, a description that i revisit in Chapter 16, when i show you
how to create them.

listing 13-3 applied the ngIf directive to div elements, which tells the directive to use the div element
and its content as the micro-template for each of the objects that it processes. Behind the scenes,
angular expands the micro-template and the directive like this:

Figure 13-2. Using the ngIf directive

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 13 ■ Using the BUilt-in in DireCtives

266

...
<template ngIf="model.getProductCount() > 4">
 <div class="bg-info p-a-1 m-t-1">
 There are more than 4 products in the model
 </div>
</template>
...

You can use either syntax in your templates, but if you use the compact syntax, then you must
remember to use the asterisk. i explain how to create your own micro-template directives in Chapter 14.

Like all directives, the expression used for ngIf will be reevaluated to reflect changes in the data model.
Run the following statements in the browser’s JavaScript console to remove the first data object and to run
the change detection process:

model.products.shift()
appRef.tick()

The effect of modifying the model is to remove the first div element, because there are too few Product
objects now, and to add the second div element, because the name property of the first Product in the array
is no longer Kayak. Figure 13-3 shows the change.

Using the ngSwitch Directive
The ngSwitch directive selects one of several elements based on the expression result, similar to a JavaScript
switch statement. Listing 13-4 shows the ngSwitch directive being used to choose an element based on the
number of objects in the model.

Figure 13-3. The effect of reevaluating directive expressions

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 13 ■ Using the BUilt-in in DireCtives

267

Listing 13-4. Using the ngSwitch Directive in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<div class="bg-info p-a-1 m-t-1" [ngSwitch]="getProductCount()">
 There are two products
 There are five products
 This is the default
</div>

The ngSwitch directive syntax can be confusing to use. The element that the ngSwitch directive is
applied to is always included in the HTML document, and the directive name isn’t prefixed with an asterisk.
It must be specified within square brackets, like this:

...
<div class="bg-info p-a-1 m-t-1" [ngSwitch]="getProductCount()">
...

Each of the inner elements, which are span elements in this example, is a micro-template, and the
directives that specify the target expression result are prefixed with an asterisk, like this:

...
There are five products
...

The ngSwitchCase directive is used to specify a particular expression result. If the ngSwitch expression
evaluates to the specified result, then that element and its contents will be included in the HTML document.
If the expression doesn’t evaluate to the specified result, then the element and its contents will be excluded
from the HTML document.

The ngSwitchDefault directive is applied to a fallback element—equivalent to the default label in
a JavaScript switch statement—which is included in the HTML document if the expression result doesn’t
match any of the results specified by the ngSwitchCase directives.

For the initial data in the application, the directives in Listing 13-4 produce the following HTML:

<div class="bg-info p-a-1 m-t-1" ng-reflect-ng-switch="5">
 There are five products
</div>

The div element, to which the ngSwitch directive has been applied, is always included in the HTML
document. For the initial data in the model, the span element whose ngSwitchCase directive has a result of 5
is also included, producing the result shown on the left of Figure 13-4.

Chapter 13 ■ Using the BUilt-in in DireCtives

268

The ngSwitch binding responds to changes in the data model, which you can test by executing the
following statements in the browser’s JavaScript console:

model.products.shift()
appRef.tick()

These statements remove the first item from the model and force Angular to run the change
detection process. Neither of the results for the two ngSwitchCase directives matches the result from the
getProductCount expression, so the ngSwitchDefault element is included in the HTML document, as
shown on the right of Figure 13-4.

Avoiding Literal Value Problems
A common problem arises when using the ngSwitchCase directive to specify literal string values, and care
must be taken to get the right effect, as shown in Listing 13-5.

Listing 13-5. Switching on Component and String Literal Values in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<div class="bg-info p-a-1 m-t-1" [ngSwitch]="getProduct(1).name">
 Kayak
 Lifejacket
 Other Product
</div>

The values assigned to the ngSwitchCase directives are also expressions, which means that you can
invoke methods, perform simple inline operations, and read property values, just as you would for the basic
data bindings.

Figure 13-4. Using the ngSwitch directive

Chapter 13 ■ Using the BUilt-in in DireCtives

269

As an example, this expression tells Angular to include the span element to which the directive has been
applied when the result of evaluating the ngSwitch expression matches the value of the targetName property
defined by the component:

...
Kayak
...

If you want to compare a result to a specific string, then you must double quote it, like this:

...
Lifejacket
...

This expression tells Angular to include the span element when the value of the ngSwitch expression is
equal to the literal string value Lifejacket, producing the result shown in Figure 13-5.

Using the ngFor Directive
The ngFor directive repeats a section of content for each object in a sequence of objects, providing the
template equivalent of a foreach loop and providing the ability to enumerate a collection of objects. In
Listing 13-6, I have used the ngFor directive to populate a table by generating a row for each Product object
in the model.

Listing 13-6. Using the ngFor Directive in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<table class="table table-sm table-bordered m-t-1">

Figure 13-5. Using expressions and literal values with the ngSwitch directive

Chapter 13 ■ Using the BUilt-in in DireCtives

270

 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

The expression used with the ngFor directive is more complex than for the other built-in directives, but
it will start to make sense when you see how the different parts fit together. Here is the directive that I used in
the example:

...
<tr *ngFor="let item of getProducts()">
...

The asterisk before the name is required because the directive is using a micro-template, as described
in the “Understanding Micro-Template Directives” sidebar. This will make more sense as you become
familiar with Angular, but at first you just have to remember that this directive requires an asterisk to use (or,
as I often do, forget until you see an error displayed in the browser’s JavaScript console and then remember).

For the expression itself, there are two distinct parts, joined together with the of keyword. The right-
hand part of the expression provides the data source that will be enumerated.

...
<tr *ngFor="let item of getProducts()">
...

This example specifies the component’s getProducts method as the source of data, which allows
content to be for each of the Product objects in the model. The right-hand side is an expression in its own
right, which means you can prepare data or perform simple manipulation operations within the template.

The left-hand side of the ngFor expression defines a template variable, denoted by the let keyword,
which is how data is passed between elements within an Angular template.

...
<tr *ngFor="let item of getProducts()">
...

The ngFor directive assigns the variable to each object in the data source so that it is available for use by
the nested elements. The local template variable in the example is called item, and it is used to access the
Product object’s properties for the td elements, like this:

...
<td>{{item.name}}</td>
...

Put together, the directive in the example tells Angular to enumerate the objects returned by the
component’s getProducts method, assign each of them to a variable called item, and then generate a tr
element and its td children, evaluating the template expressions they contain.

For the example in Listing 13-6, the result is a table where the ngFor directive is used to generate table
rows for each of the Product objects in the model and where each table row contains td elements that
display the value of the Product object’s name, category, and price properties, as shown in Figure 13-6.

Chapter 13 ■ Using the BUilt-in in DireCtives

271

Using Other Template Variables
The most important template variable is the one that refers to the data object being processed, which was
item in the previous example. The ngFor directive supports a range of other values that can be assigned
to variables and then referred to within the nested HTML elements, as described in Table 13-4 and
demonstrated in the sections that follow.

Figure 13-6. Using the ngFor directive to create table rows

Table 13-4. The ngFor Local Template Values

Name Description

index This number value is assigned to the position of the current object.

odd This boolean value returns true if the current object has an odd-numbered position in
the data source.

even This boolean value returns true if the current object has an even-numbered position in
the data source.

first This boolean value returns true if the current object is the first one in the data source.

last This boolean value returns true if the current object is the last one in the data source.

Chapter 13 ■ Using the BUilt-in in DireCtives

272

Using the Index Value

The index value is set to the position of the current data object and is incremented for each object in the
data source. In Listing 13-7, I have defined a table that is populated using the ngFor directive and that
assigns the index value to a local template variable called i, which is then used in a string interpolation
binding.

Listing 13-7. Using the Index Value in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i +1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

A new term is added to the ngFor expression, separated from the existing one using a semicolon (the ;
character). The new expression uses the let keyword to assign the index value to a local template variable
called i, like this:

...
<tr *ngFor="let item of getProducts(); let i = index">
...

This allows the value to be accessed within the nested elements using a binding, like this:

...
<td>{{i + 1}}</td>
...

The index value is zero-based, and adding 1 to the value creates a simple counter, producing the result
shown in Figure 13-7.

Chapter 13 ■ Using the BUilt-in in DireCtives

273

Using the Odd and Even Values

The odd value is true when the index value for a data item is odd. Conversely, the even value is true when
the index value for a data item is even. In general, you only need to use either the odd or even values, since
they are boolean values where odd is true when even is false, and vice versa. In Listing 13-8, the odd value is
used to manage the class membership of the tr elements in the table.

Listing 13-8. Using the Odd Value in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index; let odd = odd"
 [class.bg-primary]="odd" [class.bg-info]="!odd">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

Figure 13-7. Using the index value

Chapter 13 ■ Using the BUilt-in in DireCtives

274

I have used a semicolon and added another term to the ngFor expression that assigns the odd value to a
local template variable that is also called odd.

...
<tr *ngFor="let item of getProducts(); let i = index; let odd = odd"
 [class.bg-primary]="odd" [class.bg-info]="!odd">
...

This may seem redundant, but you cannot access the ngFor values directly and must use a local variable
even if it has the same name. I used the class binding to assign alternate rows to the bg-primary and bg-info
classes, which are Bootstrap background color classes that stripe the table rows, as shown in Figure 13-8.

EXPANDING THE *NGFOR DIRECTIVE

notice that in listing 13-8, i am able to use the template variable in expressions applied to the same tr
element that defines it. this is possible because ngFor is a micro-template directive—denoted by the *
that precedes the name—and so angular expands the htMl so that it looks like this:

...
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>

Figure 13-8. Using the odd value

Chapter 13 ■ Using the BUilt-in in DireCtives

275

 <template ngFor let-item [ngForOf]="getProducts()"
 let-i="index" let-odd="odd">
 <tr [class.bg-primary]="odd" [class.bg-info]="!odd">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </template>
</table>
...

You can see that the template element defines the variables, using the somewhat awkward let-
<name > attributes, which are then accessed by the tr and td elements within it. as with so much in
angular, what appears to happen by magic turns out to be straightforward once you understand what is
going on behind the scenes, and i explain these features in detail in Chapter 16. a good reason to use
the *ngFor syntax is that it provides a more elegant way to express the directive expression, especially
when there are multiple template variables.

Using the First and Last Values

The first value is true only for the first object in the sequence provided by the data source and is false for
all other objects. Conversely, the last value is true only for the last object in the sequence. Listing 13-9 uses
these values to treat the first and last objects differently from the others in the sequence.

Listing 13-9. Using the first and last Values in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index; let odd = odd;
 let first = first; let last = last"
 [class.bg-primary]="odd" [class.bg-info]="!odd"
 [class.bg-warning]="first || last">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td *ngIf="!last">{{item.price}}</td>
 </tr>
</table>

The new terms in the ngFor expression assign the first and last values to template variables called
first and last. These variables are then used by a class binding on the tr element, which assigns the
element to the bg-warning class when either is true, and used by the ngIf directive on one of the td
elements, which will exclude the element for the last item in the data source, producing the effect shown in
Figure 13-9.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 13 ■ Using the BUilt-in in DireCtives

276

Minimizing Element Operations
When there is a change to the data model, the ngFor directive evaluates its expression and updates the
elements that represent its data objects. The update process can be expensive, especially if the data source is
replaced with one that contains different objects representing the same data. Replacing the data source may
seem like an odd thing to do, but it happens often in web applications, especially when the data is retrieved
from a web service, like the ones I describe in Chapter 24. The same data values are represented by new
objects, which present an efficiency problem for Angular. To demonstrate the problem, I added a method to
the component that replaces one of the Product objects in the data model, as shown in Listing 13-10.

Listing 13-10. Replacing an Object in the repository.model.ts File

import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";

export class Model {
 private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p:Product, id:number) => p.id == id;

 constructor() {
 this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

Figure 13-9. Using the first and last values

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

Chapter 13 ■ Using the BUilt-in in DireCtives

277

 // ...other methods omitted for brevity...

 swapProduct() {
 let p = this.products.shift();
 this.products.push(new Product(p.id, p.name, p.category, p.price));
 }
}

The swapProduct method removes the first object from the array and adds a new object that has the
same values for the id, name, category, and price properties. This is an example of data values being
represented by a new object.

Run the following statements using the browser’s JavaScript console to modify the data model and run
the change-detection process:

model.swapProduct()
appRef.tick()

When the ngFor directive examines its data source, it sees that it has two operations to perform to reflect
the change to the data. The first operation is to destroy the HTML elements that represent the first object in
the array. The second operation is to create a new set of HTML elements to represent the new object at the
end of the array.

Angular has no way of knowing that the data objects it is dealing with have the same values and that it
could perform its work more efficiently by simply moving the existing elements within the HTML document.

This problem affects only two elements in this example, but the problem is much more severe when
the data in the application is refreshed from an external data source using Ajax, where all of the data model
objects can be replaced. Since it is not aware that there have been few real changes, the ngFor directive has
to destroy all of its HTML elements and re-create them, which can be an expensive and time-consuming
operation.

To improve the efficiency of an update, you can define a component method that will help Angular
determine when two different objects represent the same data, as shown in Listing 13-11.

Listing 13-11. Adding the Object Comparison Method in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...constructor and methods omitted for brevity...

 getKey(index: number, product: Product) {
 return product.id;
 }
}

Chapter 13 ■ Using the BUilt-in in DireCtives

278

The method has to define two parameters: the position of the object in the data source and the data
object. The result of the method uniquely identifies an object, and two objects are considered to be equal if
they produce the same result.

Two Product objects will be considered equal if they have the same id value. Telling the ngFor
expression to use the comparison method is done by adding a trackBy term to the expression, as shown in
Listing 13-12.

Listing 13-12. Providing an Equality Method in the template.html File

<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index; let odd = odd;
 let first = first; let last = last; trackBy:getKey"
 [class.bg-primary]="odd" [class.bg-info]="!odd"
 [class.bg-warning]="first || last">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td *ngIf="!last">{{item.price}}</td>
 </tr>
</table>

With this change, the ngFor directive will know that the Product that is removed from the array using
the swapProduct method defined in Listing 13-12 is equivalent to the one that is added to the array, even
though they are different objects. Rather than delete and create elements, the existing elements can be
moved, which is a much simpler and quicker task to perform.

Changes can still be made to the elements—such as by the ngIf directive, which will remove one of
the td elements because the new object will be the last item in the data source, but even this is faster than
treating the objects separately.

TESTING THE EQUALITY METHOD

Checking whether the equality method has an effect is a little tricky. the best way that i have found
requires using the browser’s F12 developer tools, in this case using the Chrome browser.

Once the application has loaded, right-click the td element that contains the word Kayak in the browser
window and select inspect from the pop-up menu. this will open the Developer tools window and show
the elements panel.

Click the ellipsis button (marked ...) in the left margin and select add attribute from the menu. add an
id attribute with the value old. this will result in an element that looks like this:

<td id="old">Kayak</td>

adding an id attribute makes it possible to access the object that represents the htMl element using
the Javascript console. switch to the Console panel and enter the following statement:

Chapter 13 ■ Using the BUilt-in in DireCtives

279

window.old

When you hit return, the browser will locate the element by its id attribute value and display the
following result:

<td id="old">Kayak</td>

now execute the following statements in the Javascript console, hitting return after each one:

model.swapProduct()
appRef.tick()

Once the change to the data model has been processed, executing the following statement in the
Javascript console will determine whether the td element to which the id attribute was added has
been moved or destroyed:

window.old

if the element has been moved, then you will see the element shown in the console, like this:

<td id="old">Kayak</td>

if the element has been destroyed, then there won’t be an element whose id attribute is old, and the
browser will display the word undefined.

Using the ngTemplateOutlet Directive
The ngTemplateOutlet directive is used to repeat a block of content at a specified location, which can be
useful when you need to generate the same content in different places and want to avoid duplication. Listing
13-13 shows the directive being used.

Listing 13-13. Using the ngTemplateOutlet Directive in the template.html File

<template #titleTemplate>
 <h4 class="p-a-1 bg-success">Repeated Content</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"></template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"></template>

Chapter 13 ■ Using the BUilt-in in DireCtives

280

The first step is to define the template that contains the content that you want to repeat using the
directive. This is done using the template element and assigning it a name using a reference variable, like this:

...
<template #titleTemplate let-title="title">
 <h4 class="p-a-1 bg-success">{{title}}</h4>
</template>
...

When Angular encounters a reference variable, it sets its value to the element to which it has been
defined, which is the template element in this case.

The second step is to insert the content into the HTML document, using the ngTemplateOutlet
directive, like this:

...
<template [ngTemplateOutlet]="titleTemplate"></template>
...

The expression is the name of the reference variable that was assigned to the content that should be
inserted. The directive replaces the host element with the contents of the specified template element.
Neither the template element that contains the repeated content nor the one that is the host element for
the binding is included in the HTML document. Figure 13-10 shows how the directive has used the repeated
content.

Figure 13-10. Using the ngTemplateOutlet directive

Chapter 13 ■ Using the BUilt-in in DireCtives

281

Providing Context Data
The ngTemplateOutlet directive can be used to provide the repeated content with a context object that can
be used in data bindings defined within the template element, as shown in Listing 13-14.

Listing 13-14. Providing Context Data in the template.html File

<template #titleTemplate let-text="title">
 <h4 class="p-a-1 bg-success">{{text}}</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Header'}">
</template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>

To receive the context data, the template element that contains the repeated content defines a let-
attribute that specifies the name of a variable, similar to the expanded syntax used for the ngFor directive.
The value of the expression assigns the let- variable a value, like this:

...
<template #titleTemplate let-text="title">
...

The let- attribute in this case creates a variable called text, which is assigned a value by evaluating the
expression title. To provide the data against which the expression is evaluated, the template element to
which the ngTemplateOutlet directive has been applied provides a map object, like this:

...
<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>
...

The target of this new binding is ngOutletContext, which looks like another directive but is actually an
example of an input property, which some directives use to receive data values and that I describe in detail
in Chapter 15. The expression for the binding is a map object whose property name corresponds to the
let- attribute on the other template element. The result is that the repeated content can be tailored using
bindings, as shown in Figure 13-11.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 13 ■ Using the BUilt-in in DireCtives

282

USING THE CONCISE SYNTAX

the ngTemplateOutlet directive can be used in a more concise syntax, like this:

...
<div *ngTemplateOutlet="titleTemplate" [ngOutletContext]="{title: 'Footer'}">
</div>
...

there is little advantage to applying the directive this way because it removes the host element from the
htMl document and replaces it with the content of the template element, which means that it doesn’t
really matter which element the directive is applied to.

Understanding One-Way Data Binding Restrictions
Although the expressions used in one-way data binding and directives look like JavaScript code, you can’t
use all the JavaScript—or TypeScript—language features. I explain the restrictions and the reasons for them
in the sections that follow.

Using Idempotent Expressions
One-way data bindings must be idempotent, meaning that they can be evaluated repeatedly without
changing the state of the application. To demonstrate why, I added a debugging statement to the
component’s getProductCount method, as shown in Listing 13-15.

Figure 13-11. Providing context data for repeated content

Chapter 13 ■ Using the BUilt-in in DireCtives

283

 ■ Note angular does support modifying the application state, but it must be done using the techniques i
describe in Chapter 14.

Listing 13-15. Adding a Statement in the component.ts File

...
getProductCount(): number {
 console.log("getProductCount invoked");
 return this.getProducts().length;
}
...

When the changes are saved and the browser reloads the page, you will see a long series of messages
like these in the browser’s JavaScript console:

...
getProductCount invoked
getProductCount invoked
getProductCount invoked
getProductCount invoked
...

As the messages show, Angular evaluates the binding expression several times before displaying the
content in the browser. If an expression modifies the state of an application, such as removing an object from
a queue, you won’t get the results you expect by the time the template is displayed to the user. To avoid this
problem, Angular restricts the way that expressions can be used. In Listing 13-16, I added a counter property
to the component to help demonstrate.

Listing 13-16. Adding a Property in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...constructor and methods omitted for brevity...

 targetName: string = "Kayak";

 counter: number = 1;
}

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 13 ■ Using the BUilt-in in DireCtives

284

In Listing 13-17, I added a binding whose expression increments the counter when it is evaluated.

Listing 13-17. Adding a Binding in the template.html File

<template #titleTemplate let-text="title">
 <h4 class="p-a-1 bg-success">{{text}}</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Header'}">
</template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>

<div class='bg-info p-a-1'>
 Counter: {{counter = counter + 1}}
</div>

When the browser loads the page, you will see an error in the JavaScript console, like this:

EXCEPTION: Template parse errors:
Parser Error: Bindings cannot contain assignments at column 11 in [
 Counter: {{counter = counter + 1}}
] in Products@17:27

Angular will report an error if a data binding expression contains an operator that can be used to a data,
such as =, +=, -+, ++, and --.

In addition, when Angular is running in development mode, it performs an additional check to
make sure that one-way data bindings have not been modified after their expressions are evaluated. To
demonstrate, Listing 13-18 adds a property to the component that removes and returns a Product object
from the model array.

 ■ Tip i demonstrated how to switch between development mode (which is the default) and production mode
in Chapter 10.

Listing 13-18. Modifying Data in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({

http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 13 ■ Using the BUilt-in in DireCtives

285

 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...constructor and methods omitted for brevity...

 counter: number = 1;

 get nextProduct(): Product {
 return this.model.getProducts().shift();
 }
}

In Listing 13-19, you can see the data binding that I used to read the nextProduct property.

Listing 13-19. Binding to a Property in the template.html File

<template #titleTemplate let-text="title">
 <h4 class="p-a-1 bg-success">{{text}}</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Header'}">
</template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>

<div class='bg-info p-a-1'>
 Next Product is {{nextProduct.name}}
</div>

When you save the changes and Angular processes the template, you will see that the attempt to change
the application data in the data binding produces the following error in the JavaScript console:

ORIGINAL EXCEPTION: Expression has changed after it was checked.
Previous value: 'There are 5 products.'.
Current value: 'There are 4 products.'

Understanding the Expression Context
When Angular evaluates an expression, it does so in the context of the template’s component, which is how
the template is able to access methods and properties without any kind of prefix, like this:

Chapter 13 ■ Using the BUilt-in in DireCtives

286

...
<div class="bg-info p-a-1">
 There are {{getProductCount()}} products.
</div>
...

When Angular processes these expressions, the component provides the getProductCount method,
which Angular invokes with the specified arguments and then incorporates the result into the HTML
document. The component is said to provide the template’s expression context.

The expression context means you can’t access objects defined outside of the template’s component
and, in particular, templates can’t access the global namespace. The global namespace is used to define
common utilities, such as the console object, which defines the log method I have been using to write out
debugging information to the browser’s JavaScript console. The global namespace also includes the Math
object, which provides access to some useful arithmetical methods, such as min and max.

To demonstrate this restriction, Listing 13-20 adds a string interpolation binding to the template that
relies on the Math.floor method to round down a number value to the nearest integer.

Listing 13-20. Accessing the Global Namespace in the template.html File

<template #titleTemplate let-text="title">
 <h4 class="p-a-1 bg-success">{{text}}</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Header'}">
</template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>

<div class='bg-info p-a-1'>
 The rounded price is {{Math.floor(getProduct(1).price)}}
</div>

When Angular processes the template, it will produce the following error in the browser’s JavaScript
console:

EXCEPTION: TypeError: Cannot read property 'floor' of undefined

The error message doesn’t specifically mention the global namespace. Instead, Angular has tried to
evaluate the expression using the component as the context and failed to find a Math property.

If you want to access functionality in the global namespace, then it must be provided by the component,
acting as on behalf of the template. In the case of the example, the component could just define a Math
property that is assigned to the global object, but template expressions should be as clear and simple as
possible, so a better approach is to define a method that provides the template with the specific functionality
it requires, as shown in Listing 13-21.

Chapter 13 ■ Using the BUilt-in in DireCtives

287

Listing 13-21. Defining a Method in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...constructor and methods omitted for brevity...

 counter: number = 1;

 get nextProduct(): Product {
 return this.model.getProducts().shift();
 }

 getProductPrice(index: number): number {
 return Math.floor(this.getProduct(index).price);
 }
}

In Listing 13-22, I have changed the data binding in the template to use the newly defined method.

Listing 13-22. Access Global Namespace Functionality in the template.html File

<template #titleTemplate let-text="title">
 <h4 class="p-a-1 bg-success">{{text}}</h4>
</template>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Header'}">
</template>

<div class="bg-info p-a-1 m-a-1">
 There are {{getProductCount()}} products.
</div>

<template [ngTemplateOutlet]="titleTemplate"
 [ngOutletContext]="{title: 'Footer'}">
</template>

<div class='bg-info p-a-1'>
 The rounded price is {{getProductPrice(1)}}
</div>

When Angular processes the template, it will call the getProductPrice method and indirectly take
advantage of the Math object in the global namespace, producing the result shown in Figure 13-12.

Chapter 13 ■ Using the BUilt-in in DireCtives

288

Summary
In this chapter, I explained how to use the built-in template directives. I showed you how to select content
with the ngIf and ngSwitch directives and how to repeat content using the ngFor directive. I explained why
some directive names are prefixed with an asterisk and described the limitations that are placed on template
expressions used with these directives and with one-way data bindings in general. In the next chapter, I
describe how data bindings are used for events and form elements.

Figure 13-12. Accessing global namespace functionality

289© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_14

CHAPTER 14

Using Events and Forms

In this chapter, I continue describing the basic Angular functionality, focusing on features that respond to
user interaction. I explain how to create event bindings and how to use two-way bindings to manage the flow
of data between the model and the template. One of the main forms of user interaction in a web application
is the use of HTML forms, and I explain how event and two-way data bindings are used to support them and
validate the content that the user provides. Table 14-1 puts events and forms in context.

Table 14-1. Putting Event Bindings and Forms in Context

Question Answer

What are they? Event bindings evaluate an expression when an event is
triggered, such as a user pressing a key, moving the mouse, or
submitting a form. The broader form-related features build on
this foundation to create forms that are automatically validated
to ensure that the user provides useful data.

Why are they useful? These features allow the user to change the state of the
application, changing or adding to the data in the model.

How are they used? Each feature is used in a different way. See the examples for
details.

Are there any pitfalls or limitations? In common with all Angular bindings, the main pitfall is
using the wrong kind of bracket to denote a binding. Pay close
attention to the examples in this chapter and check the way you
have applied bindings when you don’t get the results you expect.

Are there any alternatives? No. These features are a core part of Angular.

Table 14-2 summarizes the chapter.

Chapter 14 ■ Using events and Forms

290

Table 14-2. Chapter Summary

Problem Solution Listing

Enable forms support Add the @angular/forms module to
the application

1–3

Respond to an event Use an event binding 6–8

Get details of an event Use the $event object 9

Refer to elements in the template Define template variables 10

Enable the flow of data in both directions between
the element and the component

Use a two-way data binding 11, 12

Capture user input Use an HTML form 13, 14

Validate the data provided by the user Perform form validation 15–24

Define validation information using JavaScript code Use a model-based form 25–30

Extend the built-in form validation features Define a custom form validation class 31–32

Preparing the Example Project
For this chapter, I will continue using the example project that I created in Chapter 11 and have been
modifying in the chapters since.

Adding the Forms Module
The features demonstrated in this chapter rely on the Angular forms module, which must be added to the
application. The first step is to add the forms package to the application, starting with a new entry to the
dependencies section of the package.json file, as shown in Listing 14-1.

Listing 14-1. Adding the Forms Package in the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4"
 },

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 14 ■ Using events and Forms

291

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

Run the following command in the example folder to download and install the forms package:

npm install

The next step is to update the configuration for the SystemJS package so that it knows how to find the
forms package when the application is loaded, as shown in Listing 14-2.

Listing 14-2. Adding the Forms Module in the systemjs.config.js File

(function(global) {

 var paths = {
 "rxjs/*": "node_modules/rxjs/bundles/Rx.min.js",
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic",
 "forms"];

 angularModules.forEach(function(pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });

})(this);

Chapter 14 ■ Using events and Forms

292

The Angular module must be updated in order to declare that the application relies on the forms
module, as shown in Listing 14-3.

Listing 14-3. Declaring a Dependency in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule} from "@angular/forms";

@NgModule({
 imports: [BrowserModule, FormsModule],
 declarations: [ProductComponent],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The imports property of the NgModule decorator specifies the dependencies of the application. Adding
FormsModule to the list of dependencies enables the form features and makes them available for use
throughout the application.

Preparing the Component and Template
Listing 14-4 removes the constructor and some of the methods from the component class in order to keep
the code as simple as possible.

Listing 14-4. Simplifying the Component in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }
}

Listing 14-5 simplifies the component’s template, leaving just a table that is populated using the ngFor
directive.

Chapter 14 ■ Using events and Forms

293

Listing 14-5. Simplifying the Template in the template.html File

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

To start the development server, open a command prompt, navigate to the example folder, and run the
following command:

npm start

A new browser window or tab will open and display the table shown in Figure 14-1.

Figure 14-1. Running the example application

Using the Event Binding
The event binding is used to respond to the events sent by the host element. Listing 14-6 demonstrates the
event binding, which allows a user to interact with an Angular application.

Listing 14-6. Using the Event Binding in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">

Chapter 14 ■ Using events and Forms

294

 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

When you save the changes to the template, you can test the binding by moving the mouse pointer over
the first column, which displays a series of numbers. As the mouse moves from row to row, the name of the
product displayed in that row is displayed at the top of the page, as shown in Figure 14-2.

Figure 14-2. Using an event binding

Figure 14-3. The anatomy of an event binding

This is a simple example, but it shows the structure of an event binding, which is illustrated in Figure 14-3.

Chapter 14 ■ Using events and Forms

295

An event binding has these four parts:

•	 The host element is the source of events for the binding.

•	 The round brackets tell Angular that this is an event binding, which is a form of one-
way binding where data flows from the element to the rest of the application.

•	 The event specifies which event the binding is for.

•	 The expression is evaluated when the event is triggered.

Looking at the binding in Listing 14-6, you can see that the host element is a td element, meaning that
this is the element that will be the source of events. The binding specifies the mouseover event, which is
triggered when the mouse pointer moves over the part of the screen occupied by the host element.

Unlike one-way bindings, the expressions in event bindings are allowed to make changes to the state
of the application and can contain assignment operators, such as =. The expression for the binding assigns
a variable called selectedProduct a value of item.name. The selectedProduct variable is used in a string
interpolation binding at the top of the template, like this:

...
<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>
...

Notice that the string interpolation binding is updated when the value of the selectedProduct variable
is changed by the event binding. Manually starting the change detection process using the ApplicationRef.
tick method is no longer required because the bindings and directives in this chapter take care of the
process automatically.

WORKING WITH DOM EVENTS

if you are unfamiliar with the events that an htmL element can send, then there is a good summary
available at developer.mozilla.org/en-US/docs/Web/Events. there are a lot of events, however, and
not all of them are supported widely or consistently in all browsers. a good place to start is the “dom
events” and “htmL dom events” sections of the mozilla.org page, which define the basic interactions
that a user has with an element (clicking, moving the pointer, submitting forms, and so on) and that can
be relied on to work in most browsers.

if you use the less common events, then you should make sure they are available and work as expected
in your target browsers. the excellent http://caniuse.com provides details of which features are
implemented by different browsers, but you should also perform thorough testing.

Understanding Dynamically Defined Properties
You may be wondering where the selectedProduct variable appeared from in Listing 14-6, because it is
used in the template without being first defined in the component. In fact, it was created the first time the
event binding was triggered, because JavaScript allows properties to be defined on objects dynamically.

http://caniuse.com/

Chapter 14 ■ Using events and Forms

296

The object in this case is the component, and this example is a useful reminder that while TypeScript
adds structure when you are writing code, the Angular application is plain JavaScript at runtime. This means
you can take advantage of JavaScript’s dynamic features when it is useful to do so. It also means you can
create unexpected results if you are not paying attention, so care is required.

Although you can define properties dynamically, a safer approach is to define all the properties that a
template uses in the component, and this is something that you will have to do if you write other methods
and properties that depend on them; otherwise, the TypeScript compiler will report errors. In Listing 14-7,
the component has been updated to keep track of the selected product, which means defining the
selectedProduct property that was previously created dynamically.

Listing 14-7. Enhancing the Component in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 selectedProduct: string;

 getSelected(product: Product): boolean {
 return product.name == this.selectedProduct;
 }
}

In addition to the selectedProduct property, there is a new method called getSelected that accepts a
Product object and compares its name to the selectedProduct property. In Listing 14-8, the getSelected
method is used by a class binding to control membership of the bg-info class, which is a Bootstrap class that
assigns a background color to an element.

Listing 14-8. Setting Class Membership in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">

Chapter 14 ■ Using events and Forms

297

 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

The result is that tr elements are added to the bg-info class when the selectedProduct property value
matches the name property of the Product object used to create them, which is changed by the event binding
when the mouseover event is triggered, as shown in Figure 14-4.

Figure 14-4. Highlighting table rows through an event binding

This example shows how user interaction drives new data into the application and starts the change-
detection process, causing Angular to reevaluate the expressions used by the string interpolation and class
bindings. This flow of data is what brings Angular applications to life: the bindings and directives described
in Chapters 12 and 13 respond dynamically to changes in the application state, creating content generated
and managed entirely within the browser.

Using Event Data
The previous example used the event directive to connect together two pieces of data provided by the
component: when the mouseevent is triggered, the binding sets the component’s selectedProduct property
using a data value that was provided to the ngfor directive from the component’s getProducts method.

The event binding can also be used to introduce new data into the application from the event itself.
Listing 14-9 adds an input element to the template and uses the event binding to listen for the input event,
which is triggered when the content of the input element changes.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 14 ■ Using events and Forms

298

Listing 14-9. Using an Event Object in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>
<div class="form-group">
 <label>Product Name</label>
 <input class="form-control" (input)="selectedProduct=$event.target.value" />
</div>

When the browser triggers an event, it provides an object that describes it. There are different types of
event object for different categories of event (mouse events, keyboard events, form events, and so on), but all
events share the three properties described in Table 14-3.

Table 14-3. The Properties Common to All DOM Event Objects

Name Description

type This property returns a string that identifies the type of event that has been triggered.

target This property returns the object that triggered the event, which will generally be the
object that represents the HTML element in the DOM.

timeStamp This property returns a number that contains the time that the event was triggered,
expressed as milliseconds since January 1, 1970.

The event object is assigned to a template variable called $event, and the new binding expression in
Listing 14-9 uses this variable to access the event object’s target property.

The input element is represented in the DOM by an HTMLInputElement object, which defines a value
property that can be used to get and set the contents of the input element.

The binding expression responds to the input event by setting the value of the component’s
selectedProduct property to the value of the input element’s value property, like this:

...
<input class="form-control" (input)="selectedProduct=$event.target.value" />
...

The input event is triggered when the user edits the contents of the input element, so the component’s
selectedProduct property is updated with the contents of the input element after each keystroke. As the
user types into the input element, the text that has been entered is displayed at the top of the browser
window using the string interpolation binding.

Chapter 14 ■ Using events and Forms

299

The ngClass binding applied to the tr elements sets the background color of the table rows when the
selectedProduct property matches the name of the product they represent. And, now that the value of the
selectedProduct property is driven by the contents of the input element, typing the name of a product will
cause the appropriate row to be highlighted, as shown in Figure 14-5.

Figure 14-5. Using event data

Using different bindings to work together is at the heart of effective Angular development and makes it
possible to create applications that respond immediately to user interaction and to changes in the data model.

Using Template Reference Variables
In Chapter 13, I explained how template variables are used to pass data around within a template, such as
defining a variable for the current object when using the ngFor directive. Template reference variables are a
form of template variable that can be used to refer to elements within the template, as shown in Listing 14-10.

Listing 14-10. Using a Template Variable in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{product.value || '(None)'}}
</div>
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"

http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 14 ■ Using events and Forms

300

 (mouseover)="product.value=item.name"
 [class.bg-info]="product.value==item.name">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>
<div class="form-group">
 <label>Product Name</label>
 <input #product class="form-control" (input)="false" />
</div>

Reference variables are defined using the # character, followed by the variable name. In the listing,
I defined a variable called product like this:

...
<input #product class="form-control" (input)="false" />
...

When Angular encounters a reference variable in a template, it sets its value to the element to which it
has been applied. For this example, the product reference variable is assigned the object that represents the
input element in the DOM, the HTMLInputElement object. Reference variables can be used by other bindings
in the same template. This is demonstrated by the string interpolation binding, which also uses product
variable, like this:

...
Selected Product: {{product.value || '(None)'}}
...

This binding displays the value property defined by the HTMLInputElement that has been assigned to
the product variable or the string (None) if the value property returns null. Template variables can also be
used to change the state of the element, as shown in this binding:

...
<tr *ngFor="let item of getProducts(); let i = index"
 (mouseover)="product.value=item.name"
 [class.bg-info]="product.value==item.name">
...

The event binding responds the mouseover event by setting the value property on the
HTMLInputElement that has been assigned to the product variable. The result is that moving the mouse over
one of the tr elements will update the contents of the input element.

There is one slightly awkward aspect to this example, which is the binding for the input event on the
input element.

...
<input #product class="form-control" (input)="false" />
...

Chapter 14 ■ Using events and Forms

301

Angular won’t update the data bindings in the template when the user edits the contents of the input
element unless there is an event binding on that element. Setting the binding to false gives Angular
something to evaluate just so the update process will begin and distribute the current contents of the input
element throughout the template. This is a quirk of stretching the role of a template reference variable a little
too far and isn’t something you will need to do in most real projects. As you will see in later examples—and
later chapters—most data bindings rely on variables defined by the template’s component.

FILTERING KEY EVENTS

the input event is triggered every time the content in the input element is changed. this provides
an immediate and responsive set of changes, but it isn’t what every application requires, especially if
updating the application state involves expensive operations.

the event binding has built-in support to be more selective when binding to keyboard events, which
means that updates will be performed only when a specific key is pressed. here is a binding that
responds to every keystroke:

...
<input #product class="form-control" (keyup)="selectedProduct=product.value" />
...

the keyup event is a standard dom event, and the result is that application is updated as the user
releases each key while typing in the input element. i can be more specific about which key i am
interested in by specifying its name as part of the event binding, like this:

...
<input #product class="form-control" (keyup.enter)="selectedProduct=product.value" />
...

the key that the binding will respond to is specified by appending a period after the dom event name,
followed by the name of the key. this binding is for the enter key, and the result is that the changes in
the input element won’t be pushed into the rest of the application until that key is pressed.

Using Two-Way Data Bindings
Bindings can be combined to create a two-way flow of data for a single element, allowing the HTML
document to respond when the application model changes and allowing the application to respond when
the element sends an event, as shown in Listing 14-11.

Chapter 14 ■ Using events and Forms

302

Listing 14-11. Creating a Two-Way Binding in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>
<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

<div class="form-group">
 <label>Product Name</label>
 <input class="form-control" (input)="selectedProduct=$event.target.value"
 [value]="selectedProduct || ''" />
</div>

<div class="form-group">
 <label>Product Name</label>
 <input class="form-control" (input)="selectedProduct=$event.target.value"
 [value]="selectedProduct || ''" />
</div>

Each of the input elements has two bindings: an event binding and a property binding. The event
binding responds to the input event by updating the component’s selectedProduct property. The property
binding ties the value of the selectedProduct property to the element’s value property.

The result is that the contents of the two input elements are synchronized, and editing one causes
the other to be updated as well. And, since there are other bindings in the template that depend on the
selectedProduct property, editing the contents of an input element also changes the data displayed by
string interpolation binding and changes the highlighted table row, as shown in Figure 14-6.

Chapter 14 ■ Using events and Forms

303

This is an example that makes most sense when you experiment with it in the browser. Enter some
text into one of the input elements and you will see the same text displayed in the other input element
and in the div element whose content is managed by the string interpolation binding. If you enter the
name of a product into one of the input elements, such as Kayak or Lifejacket, then you will also see the
corresponding row in the table highlighted.

The event binding for the mouseover event still takes effect, which means as you move the mouse
pointer over the first row in the table, the changes to the selectedProduct value will cause the input
elements to display the product name.

Using the ngModel Directive
The ngModel directive is used to simplify two-way bindings so that you don’t have to apply both an event and
a property binding to the same element. Listing 14-12 shows how to replace the separate bindings with the
ngModel directive.

Listing 14-12. Using the ngModel Directive in the template.html File

<div class="bg-info p-a-1">
 Selected Product: {{selectedProduct || '(None)'}}
</div>

Figure 14-6. Creating a two-way data binding

Chapter 14 ■ Using events and Forms

304

<table class="table table-sm table-bordered m-t-1">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

<div class="form-group">
 <label>Product Name</label>
 <input class="form-control" [(ngModel)]="selectedProduct" />
</div>

<div class="form-group">
 <label>Product Name</label>
 <input class="form-control" [(ngModel)]="selectedProduct" />
</div>

Using the ngModel directive requires combining the syntax of the property and event bindings, as
illustrated in Figure 14-7.

Figure 14-7. The anatomy of a two-way data binding

A combination of square and round brackets is used to denote a two-way data binding, with the round
brackets placed inside the square ones: [(and)]. The Angular development team refers to this as the
“banana in a box” binding because that’s what the brackets and parentheses look like when placed like this
[()]. Well, sort of.

The target for the binding is the ngModel directive, which is included in Angular to simplify creating
two-way data bindings on form elements, such as the input elements used in the example.

The expression for a two-way data binding is the name of a property, which is used to set up the
individual bindings behind the scenes. When the contents of the input element change, the new content
will be used to update the value of the selectedProduct property. Equally, when the value of the
selectedProduct value changes, it will be used to update the contents of the element.

The ngModel directive knows the combination of events and properties that the standard HTML
elements define. Behind the scenes, an event binding is applied to the input event, and a property binding is
applied to the value property.

Chapter 14 ■ Using events and Forms

305

 ■ Tip it is important that you remember to use both brackets and parentheses with the ngModel binding. if
you use just parentheses—(ngModel)—then you are setting an event binding for an event called ngModel,
which doesn’t exist. the result is an element that won’t be updated or won’t update the rest of the application.
You can use the ngModel directive with just square brackets—[ngModel]—and angular will set the initial value
of the element but won’t listen for events, which means that changes made by the user won’t be automatically
reflected in the application model.

Working with Forms
Most web applications rely on forms for receiving data from users. The two-way ngModel binding described
in the previous section provides the foundation for creating basic forms, to which more advanced features
will be applied. In this section, I create a form that allows new products to be created and added to the
application’s data model and then describe some of the more advanced form features that Angular provides.

Adding a Form to the Example Application
Listing 14-13 shows some enhancements to the component that will be used when the form is created and
removes some features that are no longer required.

Listing 14-13. Enhancing the Component in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 get jsonProduct() {
 return JSON.stringify(this.newProduct);
 }

 addProduct(p: Product) {
 console.log("New Product: " + this.jsonProduct);
 }
}

Chapter 14 ■ Using events and Forms

306

The listing adds a new property called newProduct, which will be used to store the data entered into the
form by the user. There is also a jsonProduct property with a getter that returns a JSON representation of
the newProduct property and that will be used in the template to show the effect of the two-way bindings.
(I can’t create a JSON representation of an object directly in the template because the JSON object is defined
in the global namespace, which, as I explained in Chapter 13, cannot be accessed directly from template
expressions.)

The final addition is an addProduct method that writes out the value of the jsonProduct method to the
console; this will let me demonstrate some basic form-related features before adding support for updating
the data model later in the chapter.

In Listing 14-14, the existing template content has been replaced with a series of input elements for
each of the properties defined by the Product class.

Listing 14-14. Adding Input Elements in the template.html File

<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>

<div class="form-group">
 <label>Name</label>
 <input class="form-control" [(ngModel)]="newProduct.name" />
</div>
<div class="form-group">
 <label>Category</label>
 <input class="form-control" [(ngModel)]="newProduct.category" />
</div>
<div class="form-group">
 <label>Price</label>
 <input class="form-control" [(ngModel)]="newProduct.price" />
</div>
<button class="btn btn-primary" (click)="addProduct(newProduct)">Create</button>

Each input element is grouped together with a label and contained in a div element, which is styled
using the Bootstrap form-group class. Individual input elements are assigned to the Bootstrap form-
control class to manage the layout and style.

The ngModel binding has been applied to each input element to create a two-way binding with the
corresponding property on the component’s newProduct object, like this:

...
<input class="form-control" [(ngModel)]="newProduct.name" />
...

There is also a button element, which has a binding for the click event that calls the component’s
addProduct method, passing in the newProduct value as an argument.

...
<button class="btn btn-primary" (click)="addProduct(newProduct)">Create</button>
...

Finally, a string interpolation binding is used to display a JSON representation of the component’s
newProduct property at the top of the template, like this:

...
<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>
...

http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 14 ■ Using events and Forms

307

Figure 14-8. Using the form elements to create a new object in the data model

The overall result, illustrated in Figure 14-8, is a set of input elements that update the properties of a
Product object managed by the component, which are reflected immediately in the JSON data.

When the Create button is clicked, the JSON representation of the component’s newProduct property is
written to the browser’s JavaScript console, producing a result like this:

New Product: {"name":"Running Shoes","category":"Running","price":"120.23"}

Adding Form Data Validation
At the moment, any data can be entered into the input elements in the form. Data validation is essential in
web applications because users will enter a surprising array of data values, either in error or because they
want to get to the end of the process as quickly as possible and enter garbage values to proceed.

Angular provides an extensible system for validating the content of form elements, based on the
approach used by the HTML5 standard. There are four attributes that you can add to input elements, each
of which defines a validation rule, as described in Table 14-4.

Chapter 14 ■ Using events and Forms

308

You may be familiar with these attributes because they are part of the HTML specification, but Angular
builds on these properties with some additional features. Listing 14-15 removes all but one of the input
elements to demonstrate the process of adding validation to the form as simply as possible. (I restore the
missing elements later in the chapter.)

Listing 14-15. Adding Form Validation in the template.html File

<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>

<form novalidate (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

Angular requires elements that are being validated to define the name attribute, which is used to identify
the element in the validation system. Since this input element is being used to capture the value of the
Product.name property, the name attribute on the element has been set to name.

This listing also adds three of the four validation attributes to the input element. The required attribute
specifies that the user must provide a value, the minlength attribute specifies that there should be at least
three characters, and the pattern attribute specifies that only alphabetic characters and spaces are allowed.

The validation attributes that Angular uses are the same ones used by the HTML 5 specification, so
I have added the novalidate attribute to the form element, which tells the browser not to use its native
validation features, which are inconsistently implemented by different browsers and generally get in the
way. Since Angular will be providing the validation, the browser’s own implementation of these features is
not required.

Table 14-4. The Built-in Angular Validation Attributes

Attribute Description

required This attribute is used to specify a value that must be provided.

minlength This attribute is used to specify a minimum number of characters.

maxlength This attribute is used to specify a maximum number of characters. This
type of validation cannot be applied directly to form elements because
it conflicts with the HTML5 attribute of the same name. It can be used
with model-based forms, which are described later in the chapter.

pattern This attribute is used to specify a regular expression that the value
provided by the user must match.

Chapter 14 ■ Using events and Forms

309

Finally, notice that a form element has been added to the template. Although you can use input elements
independently, the Angular validation features work only when there is a form element present, and Angular
will report an error if you add the ngControl directive to an element that is not contained in a form.

When using a form element, the convention is to use an event binding for a special event called
ngSubmit like this:

...
<form novalidate (ngSubmit)="addProduct(newProduct)">
...

The ngSubmit binding handles the form element’s submit event. You can achieve the same effect
binding to the click event on individual button elements within the form if you prefer.

Styling Elements Using Validation Classes
Once you have saved the template changes in Listing 14-15 and the browser has reloaded the HTML, right-
click the input element in the browser window and select Inspect or Inspect Element from the pop-up
window. The browser will display the HTML representation of the element in the Developer Tools window,
and you will see that the input element has been added to three classes, like this:

...
<input class="form-control ng-pristine ng-invalid ng-touched" minlength="5"
 name="name" pattern="^[A-Za-z]+$" required="" ng-reflect-name="name">
...

The classes to which an input element is assigned provide details of its validation state. There are
three pairs of validation classes, which are described in Table 14-5. Elements will always be members of
one class from each pair, for a total of three classes. The same classes are applied to the form element to
show the overall validation status of all the elements it contains. As the status of the input element changes,
the ngControl directive switches the classes automatically for both the individual elements and the form
element.

Table 14-5. The Angular Form Validation Classes

Name Description

ng-untouched ng-touched An element is assigned to the ng-untouched class if it has not been visited
by the user, which is typically done by tabbing through the form fields.
Once the user has visited an element, it is added to the ng-touched class.

ng-pristine ng-dirty An element is assigned to the ng-pristine class if its contents have not
been changed by the user and to the ng-dirty class otherwise. Once the
contents have been edited, an element remains in the ng-dirty class,
even if the user then returns to the previous contents.

ng-valid ng-invalid An element is assigned to the ng-valid class if its contents meet the
criteria defined by the validation rules that have been applied to it and to
the ng-invalid class otherwise.

Chapter 14 ■ Using events and Forms

310

These classes can be used to style form elements to provide the user with validation feedback.
Listing 14-16 adds a style element to the template and defines styles that indicate when the user has
entered invalid or valid data.

 ■ Tip in real applications, styles should be defined in separate stylesheets and included in the application
through the index.html file or using a component’s decorator settings (which i describe in Chapter 17). i have
included the styles directly in the template for simplicity, but this makes real applications harder to maintain
because it makes it difficult to figure out where styles are coming from when there are multiple templates in use.

Listing 14-16. Providing Validation Feedback in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>

<form novalidate (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

These styles set green and red borders for input elements whose content has been edited and is valid
(and so belong to both the ng-dirty and ng-valid classes) and whose content is invalid (and so belong to
the ng-dirty and ng-invalid classes). Using the ng-dirty class means that the appearance of the elements
won’t be changed until after the user has entered some content.

Angular validates the contents and changes the class memberships of the input elements after
each keystroke or focus change. The browser detects the changes to the elements and applies the styles
dynamically, which provides users with validation feedback as they enter data into the form, as shown in
Figure 14-9.

http://dx.doi.org/10.1007/978-1-4842-2307-9_17

Chapter 14 ■ Using events and Forms

311

Figure 14-9. Providing validation feedback

As I start to type, the input element is shown as invalid because there are not enough characters to
satisfy the minlength attribute. Once there are five characters, the border is green, indicating that the data
is valid. When I type the character 2, the border turns red again because the pattern attribute is set to allow
only letters and spaces.

 ■ Tip if you look at the Json data at the top of the page in Figure 14-9, you will see that the data bindings
are still being updated, even when the data values are not valid. validation runs alongside data bindings, and
you should not act on form data without checking that the overall form is valid, as described in the “validating
the entire Form” section.

Displaying Field-Level Validation Messages
Using colors to provide validation feedback tells the user that something is wrong but doesn’t provide any
indication of what the user should do about it. The ngModel directive provides access to the validation status
of the elements it is applied to, which can be used to display guidance to the user when there is a problem.
Listing 14-17 adds validation messages for each of the attributes applied to the input element using the
support provided by the ngModel directive.

Listing 14-17. Adding Validation Messages in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>

<form novalidate (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"

Chapter 14 ■ Using events and Forms

312

 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 <ul class="text-danger list-unstyled" *ngIf="name.dirty && name.invalid">
 <li *ngIf="name.errors.required">
 You must enter a product name

 <li *ngIf="name.errors.pattern">
 Product names can only contain letters and spaces

 <li *ngIf="name.errors.minlength">
 Product names must be at least
 {{name.errors.minlength.requiredLength}} characters

 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

To get validation working, I have to create a template reference variable to access the validation state in
expressions, which I do like this:

...
<input class="form-control" name="name" [(ngModel)]="newProduct.name"
 #name="ngModel" required minlength="5" pattern="^[A-Za-z]+$"/>
...

I create a template reference variable called name and set its value to ngModel. This use of ngModel value
is a little confusing: it is a feature provided by the ngModel directive to give access to the validation status.
This will make more sense once you have read Chapters 15 and 16, in which I explain how to create custom
directives and you see how they provide access to their features. For this chapter, it is enough to know that in
order to display validation messages, you need to create a template reference variable and assign it ngModel
in order to access the validation data for the input element. The object that is assigned to the template
reference variable defines the properties that are described in Table 14-6.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 14 ■ Using events and Forms

313

Table 14-6. The Validation Object Properties

Name Description

path This property returns the name of the element.

valid This property returns true if the element’s contents are valid and false otherwise.

invalid This property returns true if the element’s contents are invalid and false otherwise.

pristine This property returns true if the element’s contents have not been changed.

dirty This property returns true if the element’s contents have been changed.

touched This property returns true if the user has visited the element.

untouched This property returns true if the user has not visited the element.

errors This property returns an object whose properties correspond to each attribute for
which there is a validation error.

value This property returns the value of the element, which is used when defining custom
validation rules, as described in the “Creating Custom Form Validators” section.

Listing 14-17 displays the validation messages in a list. The list should be shown only if there is at least
one validation error, so I applied the ngIf directive to the ul element, with an expression that uses the dirty
and invalid properties, like this:

...
<ul class="text-danger list-unstyled" *ngIf="name.dirty && name.invalid">
...

Within the ul element, there is an li element that corresponds to each validation error that can occur.
Each li element has an ngIf directive that uses the errors property described in Table 14-6, like this:

...
<li *ngIf="name.errors.required">You must enter a product name
...

The errors.required property will be defined only if the element’s contents have failed the required
validation check, which ties the visibility of the li element to the outcome of that particular validation
check.

USING THE SAFE NAVIGATION PROPERTY WITH FORMS

the errors property is created only when there are validation errors, which is why i check the
value of the invalid property in the expression on the ul element. an alternative approach is to use
the safe navigation property, which is used in templates to navigate through a series of properties
without generating an error if one of them returns null. here is an alternative approach to defining
the template in Listing 14-17 that doesn’t check the valid property and relies on the safe navigation
property instead:

Chapter 14 ■ Using events and Forms

314

...
<ul class="text-danger list-unstyled" *ngIf="name.dirty">
 <li *ngIf="name.errors?.required">
 You must enter a product name

 <li *ngIf="name.errors?.pattern">
 Product names can only contain letters and spaces

 <li *ngIf="name.errors?.minlength">
 Product names must be at least
 {{name.errors.minlength.requiredLength}} characters

...

appending a ? character after a property name tells angular not to try to access any subsequent
properties or methods if the property is null or undefined. in this example, i have applied the ?
character after the errors property, which means angular won’t try to read the required, pattern, or
minlength properties if the error property hasn’t been defined.

Each property defined by the errors object returns an object whose properties provide details of
why the content has failed the validation check for its attribute, which can be used to make the validation
messages more helpful to the user. Table 14-7 describes the error properties provided for each attribute.

Table 14-7. The Angular Form Validation Error Description Properties

Name Description

required This property returns true if the required attribute has been applied
to the input element. This is not especially useful because this can be
deduced from the fact that the required property exists.

minlength.requiredLength This property returns the number of characters required to satisfy the
minlength attribute.

minlength.actualLength This property returns the number of characters entered by the user.

pattern.requiredPattern This property returns the regular expression that has been specified
using the pattern attribute.

pattern.actualValue This property returns the contents of the element.

These properties are not useful for displaying directly to the user, who is unlikely to understand an error
message that includes a regular expression, although they can be useful during development to figure out
validation problems. The exception is the minlength.requiredLength property, which can be useful for
avoiding duplicating the value assigned to the minlength attribute on the element, like this:

...
<li *ngIf="name.errors.minlength">
 Product names must be at least {{name.errors.minlength.requiredLength}} characters

...

Chapter 14 ■ Using events and Forms

315

Using the Component to Display Validation Messages
Including separate elements for all possible validation errors quickly becomes verbose in complex forms.
A better approach is to add some logic to the component to prepare the validation messages in a method,
which can then be displayed to the user through the ngFor directive in the template. Listing 14-18 shows the
addition of a component method that accepts the validation state for an input element and produces an
array of validation messages.

Listing 14-18. Generating Validation Messages in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

Figure 14-10. Displaying validation messages

The overall result is a set of validation messages that are shown as soon as the user starts editing the
input element and that change to reflect each new keystroke, as illustrated in Figure 14-10.

Chapter 14 ■ Using events and Forms

316

 newProduct: Product = new Product();

 get jsonProduct() {
 return JSON.stringify(this.newProduct);
 }

 addProduct(p: Product) {
 console.log("New Product: " + this.jsonProduct);
 }

 getValidationMessages(state: any, thingName?: string) {
 let thing: string = state.path || thingName;
 let messages: string[] = [];
 if (state.errors) {
 for (let errorName in state.errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${thing}`);
 break;
 case "minlength":
 messages.push(`A ${thing} must be at least
 ${state.errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${thing} contains
 illegal characters`);
 break;
 }
 }
 }
 return messages;
 }
}

The getValidationMessages method uses the properties described in Table 14-6 to produce validation
messages for each error, returning them in a string array. To make this code as widely applicable as possible,
the method accepts a value that describes the data item that an input element is intended to collect from the
user, which is then used to generate error messages, like this:

...
messages.push(`You must enter a ${thing}`);
...

This is an example of the JavaScript/ES6 string interpolation feature, which allows strings to be defined
like templates, without having to use the + operator to include data values. Template strings are part of the
JavaScript/ES6 standard, but the TypeScript compiler converts them to older-style JavaScript strings so they
work with older browsers. Note that the template string is denoted with backtick characters (the ` character
and not the regular JavaScript ' character).

The getValidationMessages method defaults to using the path property as the descriptive string if an
argument isn’t received when the method is invoked, like this:

Chapter 14 ■ Using events and Forms

317

...
let thing: string = state.path || thingName;
...

Listing 14-19 shows how the getValidationMessages can be used in the template to generate validation
error messages for the user without needing to define separate elements and bindings for each one.

Listing 14-19. Getting Validation Messages from the Component in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<div class="bg-info p-a-1 m-b-1">Model Data: {{jsonProduct}}</div>

<form novalidate (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" [(ngModel)]="newProduct.name"
 name="name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 <ul class="text-danger list-unstyled" *ngIf="name.dirty && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

There is no visual change, but the same method can be used to produce validation messages for
multiple elements, which results in a simpler template that is easier to read and maintain.

Validating the Entire Form
Displaying validation error messages for individual fields is useful because it helps emphasize where
problems need to be fixed. But it can also be useful to validate the entire form. Care must be taken not to
overwhelm the user with error messages until they try to submit the form, at which point a summary of any
problems can be useful. In preparation, Listing 14-20 adds two new members to the component.

Chapter 14 ■ Using events and Forms

318

Listing 14-20. Enhancing the Component in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...other methods omitted for brevity...

 formSubmitted: boolean = false;

 submitForm(form: NgForm) {
 this.formSubmitted = true;
 if (form.valid) {
 this.addProduct(this.newProduct);
 this.newProduct = new Product();
 form.reset();
 this.formSubmitted = false;
 }
 }
}

The formSubmitted property will be used to indicate whether the form has been submitted and will be
used to prevent validation of the entire form until the user has tried to submit.

The submitForm method will be invoked when the user submits the form and receives an NgForm object
as its argument. This object represents the form and defines the set of validation properties, which are used
to describe the overall validation status of the form so that, for example, the invalid property will be true
if there are validation errors on any of the elements contained by the form. In addition to the validation
property, NgForm provides the reset method, which resets the validation status of the form and returns it to
its original and pristine state.

The effect is that the whole form will be validated when the user performs a submit and, if there are no
validation errors, a new object will be added to the data model before the form is reset so that it can be used
again.

Listing 14-21 shows the changes required to the template to take advantage of these new features and
implement form-wide validation.

Listing 14-21. Performing Form-Wide Validation in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">

Chapter 14 ■ Using events and Forms

319

 <div class="bg-danger p-a-1 m-b-1"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form
 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

The form element now defines a reference variable called form, which has been assigned to ngForm.
This is how the ngForm directive provides access to its functionality, through a process that I describe in
Chapter 15. For now, however, it is important to know that the validation information for the entire form can
be accessed through the form reference variable.

The listing also changes the expression for the ngSubmit binding so that it calls the submitForm method
defined by the controller, passing in the template variable, like this:

...
<form novalidate ngForm="productForm" #form="ngForm" (ngSubmit)="submitForm(form)">
...

It is this object that is received as the argument of the submitForm method and that is used to check the
validation status of the form and to reset the form so that it can be used again.

Listing 14-21 also adds a div element that uses the formSubmitted property from the component along
with the valid property (provided by the form template variable) to show a warning message when the form
contains invalid data, but only after the form has been submitted.

In addition, the ngIf binding has been updated to display the field-level validation messages so that
they will be shown when the form has been submitted, even if the element itself hasn’t been edited. The
result is a validation summary that is shown only when the user submits the form with invalid data, as
illustrated by Figure 14-11.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 14 ■ Using events and Forms

320

Displaying Summary Validation Messages
In a complex form it can be helpful to provide the user with a summary of all the validation errors that have
to be resolved.

The NgForm object assigned to the form template reference variable provides access to the individual
elements through a property named controls. This property returns an object that has properties for each
of the individual elements in the form. For example, there is a name property that represents the input
element in the example, which is assigned an object that represents that element and defines the same
validation properties that are available for individual elements. In Listing 14-22, I have added a method to
the component that receives the object assigned to the form element’s template reference variables and uses
its controls property to generate a list of errors messages for the entire form.

Listing 14-22. Generating Form-Wide Validation Messages in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...other methods omitted for brevity...

 getFormValidationMessages(form: NgForm): string[] {
 let messages: string[] = [];
 Object.keys(form.controls).forEach(k => {
 this.getValidationMessages(form.controls[k], k)
 .forEach(m => messages.push(m));
 });
 return messages;
 }
}

Figure 14-11. Displaying a validation summary message

Chapter 14 ■ Using events and Forms

321

The getFormValidationMessages method builds its list of messages by calling the
getValidationMessages method defined in Listing 14-18 for each control in the form. The Object.keys
method creates an array from the properties defined by the object returned by the controls property, which
is enumerated using the forEach method.

 ■ Tip i have to provide the getValidationMessages method with a name to use in the validation messages
because the path property isn’t set on the objects i get from the controls property.

In Listing 14-23, I have used this method to include the individual messages at the top of the form,
which will be visible once the user clicks the Create button.

Listing 14-23. Displaying Form-Wide Validation Messages in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger p-a-1 m-b-1"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of getFormValidationMessages(form)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit">
 Create
 </button>
</form>

Chapter 14 ■ Using events and Forms

322

The result is that validation messages are displayed alongside the input element and collected together
at the top of the form once it has been submitted, as shown in Figure 14-12.

Figure 14-12. Displaying an overall validation summary

Disabling the Submit Button
The final adjustment in this section is to disable the button once the user has submitted the form, preventing
the user from clicking it again until all the validation errors have been resolved. This is a commonly used
technique even though it has little bearing on the application, which won’t accept the data from the form
while it contains invalid values, but which provides useful reinforcement to the user that they cannot
proceed until the validation problems have been resolved.

In Listing 14-24, I have used the property binding on the button element and added an input element
for the price property to show how the approach scales up with multiple elements in the form.

Listing 14-24. Disabling the Button and Adding an Input Element in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger p-a-1 m-b-1"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form

Chapter 14 ■ Using events and Forms

323

 <li *ngFor="let error of getFormValidationMessages(form)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$"/>
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price" [(ngModel)]="newProduct.price"
 #price="ngModel" required pattern="^[0-9\.]+$"/>
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || price.dirty) && price.invalid">
 <li *ngFor="let error of getValidationMessages(price)">
 {{error}}

 </div>

 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && form.invalid"
 [class.btn-secondary]="formSubmitted && form.invalid">
 Create
 </button>
</form>

For extra emphasis, I used the class binding to add the button element to the btn-secondary class
when the form has been submitted and has invalid data. This class applies a Bootstrap CSS style, as shown in
Figure 14-13.

Chapter 14 ■ Using events and Forms

324

Using Model-Based Forms
The form in the previous section relies on HTML elements and attributes to define the fields that make up
the form and also to apply the validation constraints. The advantage of this approach is that it is familiar
and simple. The disadvantage is that large forms become complex and difficult to maintain, with each field
demanding its own block of content to manage its layout and its validation requirements and to display any
validation messages.

Angular provides another approach, known as model-based forms, in which the details of the form and
its validation are defined in code rather in a template. This approach scales up better, but it requires some
up-front effort, and the results are not as natural as defining everything in the template. In the sections that
follow, I set up and apply a model that describes the form and the validation it requires.

Enabling Model-Based Forms Feature
The support for model-based forms requires a new dependency to be declared in the application’s Angular
module, as shown in Listing 14-25.

Listing 14-25. Enabling Model-Based Forms in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";

Figure 14-13. Disabling the submit button

Chapter 14 ■ Using events and Forms

325

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent],
 bootstrap: [ProductComponent]
})
export class AppModule {}

The model-based forms feature is defined in a module called ReactiveFormsModule, which is defined in
the @angular/forms JavaScript module, which was added to the project at the start of the chapter.

Defining the Form Model Classes
I am going to start by defining classes that will describe the form so that I can keep the template as simple as
possible. You don’t have to follow this approach completely, but if you are going to adopt model-based form,
it makes sense to handle as much of the form as possible in the model and minimize the complexity of the
template. I added a file called form.model.ts to the app folder and added the code shown in Listing 14-26.

Listing 14-26. The Contents of the form.model.ts File in the app Folder

import { FormControl, FormGroup, Validators } from "@angular/forms";

export class ProductFormControl extends FormControl {
 label: string;
 modelProperty: string;

 constructor(label:string, property:string, value: any, validator: any) {
 super(value, validator);
 this.label = label;
 this.modelProperty = property;
 }
}

export class ProductFormGroup extends FormGroup {

 constructor() {
 super({
 name: new ProductFormControl("Name", "name", "", Validators.required),

 category: new ProductFormControl("Category", "category", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[A-Za-z]+$"),
 Validators.minLength(3),
 Validators.maxLength(10)])),

 price: new ProductFormControl("Price", "price", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[0-9\.]+$")]))
 });
 }

Chapter 14 ■ Using events and Forms

326

 get productControls(): ProductFormControl[] {
 return Object.keys(this.controls)
 .map(k => this.controls[k] as ProductFormControl);
 }
}

The two classes defined in the listing extend the ones that Angular uses to manage forms and their
contents behind the scenes. The FormControl class is used to represent a single element in a form, such as
input element, and the FormGroup class is used to manage a form element and its contents.

The new subclasses add features that will make it easier to generate the HTML form programmatically.
The ProductFormControl class extends the FormControl class with properties that specify the text for the
label element associated with an input element and the name of the Product class property that the input
element will represent. The ProductControlGroup class extends FormGroup with a property that presents
an array of the ProductFormControl objects that have been defined in the form and that will be used in the
template to generate content using the ngFor directive.

The important part of this class is the constructor for the ProductFormGroup class, which is responsible
for setting up the model that will be used to create and validate the form. The constructor for the FormGroup
class, which is the superclass for ProductFormGroup, accepts an object whose property names correspond
to the names of the input elements in the template, each of which is assigned a ProductFormControl object
that will represent it and that specifies the validation checks that are required. The first property in the object
passed to the super constructor is the simplest:

...
name: new ProductFormControl("Name", "name", "", Validators.required),
...

The property is called name, which tells Angular that it corresponds to an input element called name
in the template. The arguments for the ProductFormControl constructor specify the content for the label
element that will be associated with the input element (Name), the name of the Product class property that
the input element will be bound to (name), the initial value for the data binding (the empty string), and
the validation checks that are required. Angular defines a class called Validators in the @angular/forms
module that has properties for each of the built-in validation checks, as described in Table 14-8.

Table 14-8. The Validator Properties

Name Description

Validators.required This property corresponds to the required attribute and ensures that a
value is entered.

Validators.minLength This property corresponds to the minlength attribute and ensures a
minimum number of characters.

Validators.maxLength This property corresponds to the maxlength attribute and ensures a
maximum number of characters.

Validators.pattern This property corresponds to the pattern attribute and matches a regular
expression.

Chapter 14 ■ Using events and Forms

327

Validators can be combined using the Validators.compose method so that several checks are
performed on a single element, like this:

...
category: new ProductFormControl("Category", "category", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[A-Za-z]+$"),
 Validators.minLength(3),
 Validators.maxLength(10)])),
...

The Validators.compose method accepts an array of validators. The constructor arguments defined
by the pattern, minLength, and maxLength validators correspond to the attribute values. The overall effect
for this element is that values are required, must contain only alphabet characters and spaces, and must be
between 3 and 10 characters.

The next step is to move the methods that generate validation error messages from the component
into the new form model classes, as shown in Listing 14-27. This keeps all the form-related code together
and helps keep the component as simple as possible. (I have also added validation message support for the
maxLength validator in the ProductFormControl class’s getValidationMessages method.)

Listing 14-27. Moving the Validation Message Methods in the form.model.ts File

import { FormControl, FormGroup, Validators } from "@angular/forms";

export class ProductFormControl extends FormControl {
 label: string;
 modelProperty: string;

 constructor(label:string, property:string, value: any, validator: any) {
 super(value, validator);
 this.label = label;
 this.modelProperty = property;
 }

 getValidationMessages() {
 let messages: string[] = [];
 if (this.errors) {
 for (let errorName in this.errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${this.label}`);
 break;
 case "minlength":
 messages.push(`A ${this.label} must be at least
 ${this.errors['minlength'].requiredLength}
 characters`);
 break;
 case "maxlength":
 messages.push(`A ${this.label} must be no more than
 ${this.errors['maxlength'].requiredLength}
 characters`);

Chapter 14 ■ Using events and Forms

328

 break;
 case "pattern":
 messages.push(`The ${this.label} contains
 illegal characters`);
 break;
 }
 }
 }
 return messages;
 }
}

export class ProductFormGroup extends FormGroup {

 constructor() {
 super({
 name: new ProductFormControl("Name", "name", "", Validators.required),

 category: new ProductFormControl("Category", "category", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[A-Za-z]+$"),
 Validators.minLength(3),
 Validators.maxLength(10)])),

 price: new ProductFormControl("Price", "price", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[0-9\.]+$")]))
 });
 }

 get productControls(): ProductFormControl[] {
 return Object.keys(this.controls)
 .map(k => this.controls[k] as ProductFormControl);
 }

 getFormValidationMessages(form: any) : string[] {
 let messages: string[] = [];
 this.productControls.forEach(c => c.getValidationMessages()
 .forEach(m => messages.push(m)));
 return messages;
 }
}

The validation messages are generated in the same way as they were previously, with minor
adjustments to reflect the fact that the code is now part of the form model rather than the component.

Using the Model for Validation
Now that I have a form model, I can use it to validate the form. Listing 14-28 shows how the component
class has been updated to enable model-based forms and to make the form model classes available to the
template. It also removes the methods that generate the validation error messages, which were moved into
the form model classes in Listing 14-27.

Chapter 14 ■ Using events and Forms

329

Listing 14-28. Using a Form Model in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
 form: ProductFormGroup = new ProductFormGroup();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 get jsonProduct() {
 return JSON.stringify(this.newProduct);
 }

 addProduct(p: Product) {
 console.log("New Product: " + this.jsonProduct);
 }

 formSubmitted: boolean = false;

 submitForm(form: NgForm) {
 this.formSubmitted = true;
 if (form.valid) {
 this.addProduct(this.newProduct);
 this.newProduct = new Product();
 form.reset();
 this.formSubmitted = false;
 }
 }
}

The listing imports the ProductFormGroup class from the form.model module and uses it to define a
property called form, which makes the custom form model class available for use in the template.

Listing 14-29 updates the template to use the model-based features to handle validation, replacing the
attribute-based validation configuration defined in the template.

Chapter 14 ■ Using events and Forms

330

Listing 14-29. Using a Form Model in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">

 <div class="bg-danger p-a-1 m-b-1" *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of form.getFormValidationMessages()">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [(ngModel)]="newProduct.name"
 formControlName="name" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || form.controls['name'].dirty) &&
 form.controls['name'].invalid">
 <li *ngFor="let error of form.controls['name'].getValidationMessages()">
 {{error}}

 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="name" [(ngModel)]="newProduct.category"
 formControlName="category" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || form.controls['category'].dirty) &&
 form.controls['category'].invalid">
 <li *ngFor="let error of form.controls['category']
 .getValidationMessages()">
 {{error}}

 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price" [(ngModel)]="newProduct.price"
 formControlName="price" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || form.controls['price'].dirty) &&
 form.controls['price'].invalid">

Chapter 14 ■ Using events and Forms

331

 <li *ngFor="let error of form.controls['price'].getValidationMessages()">
 {{error}}

 </div>

 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && form.invalid"
 [class.btn-secondary]="formSubmitted && form.invalid">
 Create
 </button>
</form>

The first changes are to the form element. Using model-based validation requires the formGroup
directive, like this:

...
<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
...

The value assigned to the formGroup directive is the component’s form property, which returns the
ProductFormGroup object, which is the source of validation information about the form.

The next changes are to the input elements. The individual validation attributes and the template
variable that was assigned the special ngForm value have been removed. A new forControlName attribute has
been added, which identifies the input element to the model-based form system, using the name used in
the ProductFormGroup in Listing 14-26.

...
<input class="form-control" name="name" [(ngModel)]="newProduct.name"
 formControlName="name" />
...

This attribute also allows Angular to add and remove the validation classes for the input element. In
this case, the formControlName attribute has been set to name, which tells Angular that this element should
be validated using specific validators.

...
name: new ProductFormControl("Name", "name", "", Validators.required),
...

The component’s form property provides access to the validation information for each element, like
this:

...
<li *ngFor="let error of form.controls['name'].getValidationMessages()"> {{error}}
...

The FormGroup class provides a controls property that returns a collection of the FormControl objects
that it is managing, indexed by name. Individual FormControl objects can be retrieved from the collection
and either inspected to get the validation state or used to generate validation messages.

Chapter 14 ■ Using events and Forms

332

As part of the changed in Listing 14-29, I have added all three input elements required to get the data to
create new Product objects, each of which is checked using the validation model, as shown in Figure 14-14.

Figure 14-14. Using model-based form validation

Generating the Elements from the Model
There is a lot of duplication in Listing 14-29. The validation attributes have been moved into code, but
each input element still requires a supporting framework of content to handle its layout and to display its
validation messages to the user.

The next step is to simplify the template by using the form model to generate the elements in the form
and not just validate them. Listing 14-30 shows how the standard Angular directives can be combined with
the form model to generate the form programmatically.

Listing 14-30. Using the Model to Generate the Form in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">

Chapter 14 ■ Using events and Forms

333

 <div class="bg-danger p-a-1 m-b-1" *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of form.getFormValidationMessages()">
 {{error}}

 </div>

 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && control.invalid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>

 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && form.invalid"
 [class.btn-secondary]="formSubmitted && form.invalid">
 Create
 </button>
</form>

This listing uses the ngFor directive to create form elements using the description provided by the
ProductFormControl and ProductFormGroup model classes. Each element is configured with the same
attributes as in Listing 14-29, but their values are taken from the model descriptions, which allows the
template to be simplified and rely on the model for both the definition of the form elements and their
validation.

Once you have a basic form model in place, you can expand it and extend it to reflect the needs of the
application. For example, you can add new elements; extend the FormControl subclass to contain additional
information, such as values for the type attribute of the input element; generate select elements for some
fields; and provide placeholder values to help guide the user.

Creating Custom Form Validators
Angular supports custom form validators, which can be used to enforce a validation policy that is specified
to the application, rather than the general-purpose validation that the built-in validators provide. To
demonstrate, I added a file called limit.formvalidator.ts to the app folder and used it to define the class
shown in Listing 14-31.

Chapter 14 ■ Using events and Forms

334

Listing 14-31. The Contents of the limit.formvalidator.ts File in the app Folder

import { FormControl } from "@angular/forms";

export class LimitValidator {

 static Limit(limit:number) {
 return (control:FormControl) : {[key: string]: any} => {
 let val = Number(control.value);
 if (val != NaN && val > limit) {
 return {"limit": {"limit": limit, "actualValue": val}};
 } else {
 return null;
 }
 }
 }
}

Custom validators are factories that create functions used to perform validation. In this case, the
LimitValidator class defines the Limit method, which is static and is the factory that returns the
validation function. The argument to the Limit method is the largest value that should be allowed to pass
validation.

When Angular invokes the validation function returned by the Limit method, it provides a FormControl
method as the argument. The custom validation function in the listing uses the value property to get the
value entered by the user, convert it to a number, and compare it to the allowed limit.

Validation functions return null for valid values and return an object that contains details of the error
for invalid values. To describe a validation error, the object defines a property that specifies which validation
rule has failed, which is limit in this case, and assigns the property another object that provides details.
The limit property returns an object that has a limit property that is set to the validation limit and an
actualValue property that is set to the value entered by the user.

Applying a Custom Validator
Listing 14-32 shows how the form model has been extended to support the new custom validator class and
apply it to the input element for the product’s price property.

Listing 14-32. Applying a Custom Validator in the form.model.ts File

import { FormControl, FormGroup, Validators } from "@angular/forms";
import { LimitValidator } from "./limit.formvalidator";

export class ProductFormControl extends FormControl {
 label: string;
 modelProperty: string;

 constructor(label:string, property:string, value: any, validator: any) {
 super(value, validator);
 this.label = label;
 this.modelProperty = property;
 }

Chapter 14 ■ Using events and Forms

335

 getValidationMessages() {
 let messages: string[] = [];
 if (this.errors) {
 for (let errorName in this.errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${this.label}`);
 break;
 case "minlength":
 messages.push(`A ${this.label} must be at least
 ${this.errors['minlength'].requiredLength}
 characters`);
 break;
 case "maxlength":
 messages.push(`A ${this.label} must be no more than
 ${this.errors['maxlength'].requiredLength}
 characters`);
 break;
 case "limit":
 messages.push(`A ${this.label} cannot be more
 than ${this.errors['limit'].limit}`);
 break;
 case "pattern":
 messages.push(`The ${this.label} contains
 illegal characters`);
 break;
 }
 }
 }
 return messages;
 }
}

export class ProductFormGroup extends FormGroup {

 constructor() {
 super({
 name: new ProductFormControl("Name", "name", "", Validators.required),
 category: new ProductFormControl("Category", "category", "",
 Validators.compose([Validators.required,
 Validators.pattern("^[A-Za-z]+$"),
 Validators.minLength(3),
 Validators.maxLength(10)])),
 price: new ProductFormControl("Price", "price", "",
 Validators.compose([Validators.required,
 LimitValidator.Limit(100),
 Validators.pattern("^[0-9\.]+$")]))
 });
 }

Chapter 14 ■ Using events and Forms

336

Summary
In this chapter, I introduced the way that Angular supports user interaction using events and forms. I
explained how to create event bindings, how to create two-way bindings, and how they can be simplified
using the ngModel directive. I also described the support that Angular provides for managing and validating
HTML forms. In the next chapter, I explain how to create custom directives.

 get productControls(): ProductFormControl[] {
 return Object.keys(this.controls)
 .map(k => this.controls[k] as ProductFormControl);
 }

 getFormValidationMessages(form: any) : string[] {
 let messages: string[] = [];
 this.productControls.forEach(c => c.getValidationMessages()
 .forEach(m => messages.push(m)));
 return messages;
 }
}

The result is that the value entered into the Price field has a limit of 100, and larger values display the
validation error message shown in Figure 14-15.

Figure 14-15. A custom validation message

337© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_15

CHAPTER 15

Creating Attribute Directives

In this chapter, I describe how custom directives can be used to supplement the functionality provided by
the built-in ones provided by Angular. The focus of this chapter is attribute directives, which are the simplest
type that can be created and that change the appearance or behavior of a single element. In Chapter 16,
I explain how to create structural directives, which are used to change the layout of the HTML document.
Components are also a type of directive, and I explain how they work in Chapter 17.

Throughout these chapters, I describe how custom directives work by re-creating the features provided
by some of the built-in directives. This isn’t something you would typically do in a real project, but it
provides a useful baseline against which the process can be explained. Table 15-1 puts attribute directives
into context.

Table 15-1. Putting Attribute Directives in Context

Question Answer

What are they? Attribute directives are classes that are able to modify the behavior
or appearance of the element they are applied to. The style and
class bindings described in Chapter 12 are examples of attribute
directives.

Why are they useful? The built-in directives cover the most common tasks required in
web application development but don’t deal with every situation.
Custom directives allow application-specific features to be
defined.

How are they used? Attribute directives are classes to which the @Directive decorator
has been applied. They are enabled in the directives property
of the component responsible for a template and applied using a
CSS selector.

Are there any pitfalls or limitations? The main pitfall when creating a custom directive is the
temptation to write code to perform tasks that can be better
handled using directive features such as input and output
properties and host element bindings.

Are there any alternatives? Angular supports two other types of directive—structural
directives and components—that may be more suitable for a
given task. You can sometimes combine the built-in directives to
create a specific effect If you prefer to avoid writing custom code,
although the result can be brittle and leads to complex HTML that
is hard to read and maintain.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16
http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_12

Chapter 15 ■ Creating attribute DireCtives

338

Table 15-2 summarizes the chapter.

Table 15-2. Chapter Summary

Problem Solution Listing

Create an attribute directive Apply the @Directive to a class 1–5

Access host element attribute values Apply the @Attribute decorator to a constructor
parameter

6–9

Create a data-bound input property Apply the @Input decorator to a class property 10–11

Receive a notification when a data-
bound input property value changes

Implement the ngOnChanges method 12

Define an event Apply the @Output decorator 13, 14

Create a property binding or event
binding on the host element

Apply the @HostBinding or @HostListener
decorators

15–19

Export a directive’s functionality for
use in the template

Use the exportAs property of the @Directive
decorator

20, 21

Preparing the Example Project
As I have been doing throughout this part of the book, I will continue using the example project from the
previous chapter. To prepare for this chapter, I have added a table to the template that displays the products
in the data model and removed the form-level validation messages, as shown in Listing 15-1.

Listing 15-1. Preparing the Template in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<div class="col-xs-6">
 <form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && control.invalid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && form.invalid">

Chapter 15 ■ Creating attribute DireCtives

339

 Create
 </button>
 </form>
</div>

<div class="col-xs-6">
 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
</div>

This listing uses the Bootstrap grid layout to position the form and the table side by side. Listing 15-2
removes the jsonProperty property and updates the component’s addProduct method so that it adds a new
object to the data model.

Listing 15-2. Modifying the Data Model in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
 form: ProductFormGroup = new ProductFormGroup();

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

Chapter 15 ■ Creating attribute DireCtives

340

 formSubmitted: boolean = false;

 submitForm(form: NgForm) {
 this.formSubmitted = true;
 if (form.valid) {
 this.addProduct(this.newProduct);
 this.newProduct = new Product();
 form.reset();
 this.formSubmitted = false;
 }
 }
}

To start the application, navigate to the project folder and run the following command:

npm start

The development web server will start and open a new browser window that will show the form
in Figure 15-1. When you submit the form, the data will be validated, and either error messages will be
displayed or a new item will be added to the data model and displayed in the table.

Figure 15-1. Running the example application

Creating a Simple Attribute Directive
The best place to start is to jump in and create a directive to see how they work. I added a file called attr.
directive.ts to the app folder with the code shown in Listing 15-3. The name of the file indicates that
it contains a directive. I set the first part of the file name to attr to indicate that this is an example of an
attribute directive.

Chapter 15 ■ Creating attribute DireCtives

341

Listing 15-3. The Contents of the attr.directive.ts File in the app Folder

import { Directive, ElementRef } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef) {
 element.nativeElement.classList.add("bg-success");
 }
}

Directives are classes to which the @Directive decorator has been applied. The decorator requires
the selector property, which is used to specify how the directive is applied to elements, expressed using
a standard CSS style selector. The selector I used is [pa-attr], which will match any element that has an
attribute called pa-attr, regardless of the element type or the value assigned to the attribute.

Custom directives are given a distinctive prefix so they can be easily recognized. The prefix can be
anything that is meaningful to your application. I have chosen the prefix Pa for my directive, reflecting the
title of this book, and this prefix is used in the attribute specified by the selector decorator property and
the name of the attribute class. The case of the prefix is changed to reflect its use so that an initial lowercase
character is used for the selector attribute name (pa-attr) and an initial uppercase character is used in the
name of the directive class (PaAttrDirective).

 ■ Note the prefix Ng/ng is reserved for use for built-in angular features and should not be used.

The directive constructor defines a single ElementRef parameter, which Angular provides when it
creates a new instance of the directive and which represents the host element.

The ElementRef class defines a single property, nativeElement, which returns the object used by the
browser to represent the element in the Domain Object Model. This object provides access to the methods
and properties that manipulate the element and its contents, including the classList property, which can
be used to manage the class membership of the element, like this:

...
element.nativeElement.classList.add("bg-success");
...

To summarize, the PaAttrDirective class is a directive that is applied to elements that have a pa-attr
attribute, and adds those elements to the bg-success class, which the Bootstrap CSS library uses to assign a
background color to elements.

Applying a Custom Directive
There are two steps to apply a custom directive. The first is to update the template so that there are one or
more elements that match the selector that the directive uses. In the case of the example directive, this
means adding the pa-attr attribute to an element, as shown in Listing 15-4.

Chapter 15 ■ Creating attribute DireCtives

342

Listing 15-4. Adding a Directive Attribute in the template.html File

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index" pa-attr>
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>
...

The directive’s selector matches any element with the attribute, regardless of whether a value has been
assigned to it or what that value is.

The second step to applying a directive is to change the configuration of the Angular module, as shown
in Listing 15-5.

Listing 15-5. Configuring the Component in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The declarations property of the NgModule decorator declares the directives and components that the
application will use. Don’t worry if the relationship and differences between directives and components
seem muddled at the moment; it will become clear in Chapter 17.

Once both steps have been completed, the effect is that the pa-attr attribute applied to the tr element
in the template will trigger the custom directive, which uses the DOM API to add the element to the bg-
success class. Since the tr element is part of the micro-template used by the ngFor directive, all the rows in
the table are affected, as shown in Figure 15-2.

http://dx.doi.org/10.1007/978-1-4842-2307-9_17

Chapter 15 ■ Creating attribute DireCtives

343

Accessing Application Data in a Directive
The example in the previous section shows the basic structure of a directive, but it doesn’t do anything that
couldn’t be performed just by using a class property binding on the tr element. Directives become useful
when they can interact with the host element and with the rest of the application.

Reading Host Element Attributes
The simplest way to make a directive more useful is to configure it using attributes applied to the host
element, which allows each instance of the directive to be provided with its own configuration information
and to adapt its behavior accordingly.

As an example, Listing 15-6 applies the directive to some of the td elements in the template table and
adds an attribute that specifies the class that the host element should be added to. The directive’s selector
means that it will match any element that has the pa-attr attribute, regardless of the tag type, and will work
as well on td elements as it does on tr elements.

Listing 15-6. Adding Attributes in the template.html File

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index" pa-attr>
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>

Figure 15-2. Applying a custom directive

Chapter 15 ■ Creating attribute DireCtives

344

 <td pa-attr pa-attr-class="bg-warning">{{item.category}}</td>
 <td pa-attr pa-attr-class="bg-info">{{item.price}}</td>
 </tr>
</table>
...

The pa-attr attribute has been applied to two of the td elements, along with a new attribute called
pa-attr-class, which has been used to specify the class to which the directive should add the host element.
Listing 15-7 shows the changes required to the directive to get the value of the pa-attr-class attribute and
use it to change the element.

Listing 15-7. Reading an Attribute in the attr.directive.ts File

import { Directive, ElementRef, Attribute } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef, @Attribute("pa-attr-class") bgClass: string) {
 element.nativeElement.classList.add(bgClass || "bg-success");
 }
}

To receive the value of the pa-attr-class attribute, I added a new constructor parameter called
bgClass, to which the @Attribute decorator has been applied. This decorator is defined in the @angular/
core module, and it specifies the name of the attribute that should be used to provide a value for the
constructor parameter when a new instance of the directive class is created. Angular creates a new instance
of the decorator for each element that matches the selector and uses that element’s attributes to provide the
values for the directive constructor arguments that have been decorated with @Attribute.

Within the constructor, the value of the attribute is passed to the classList.add method, with a default
value that allows the directive to be applied to elements that have the pa-attr attribute but not the pa-attr-
class attribute.

The result is that the class to which elements are added can now be specified using an attribute,
producing the result shown in Figure 15-3.

Chapter 15 ■ Creating attribute DireCtives

345

Using a Single Host Element Attribute
Using one attribute to apply a directive and another to configure it is redundant, and it makes more sense to
make a single attribute do double duty, as shown in Listing 15-8.

Listing 15-8. Reusing an Attribute in the attr.directive.ts File

import { Directive, ElementRef, Attribute } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef, @Attribute("pa-attr") bgClass: string) {
 element.nativeElement.classList.add(bgClass || "bg-success");
 }
}

The @Attribute decorator now specifies the pa-attr attribute as the source of the bgClass parameter
value. In Listing 15-9, I have updated the template to reflect the dual-purpose attribute.

Figure 15-3. Configuring a directive using a host element attribute

Chapter 15 ■ Creating attribute DireCtives

346

Listing 15-9. Applying a Directive in the template.html File

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index" pa-attr>
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td pa-attr="bg-warning">{{item.category}}</td>
 <td pa-attr="bg-info">{{item.price}}</td>
 </tr>
</table>
...

There is no visual change in the result produced by this example, but it has simplified the way that the
directive is applied in the HTML template.

Creating Data-Bound Input Properties
The main limitation of reading attributes with @Attribute is that the values are static. The real power
in Angular directives comes through support for expressions that are updated to reflect changes in the
application state and that can respond by changing the host element.

Directives receive expressions using data-bound input properties, also known as input properties or,
simply, inputs. Listing 15-10 changes the application’s template so that the pa-attr attributes applied to the
tr and td elements contain expressions, rather than just static class names.

Listing 15-10. Using Expressions in the template.html File

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
</table>
...

There are three expressions in the listing. The first, which is applied to the tr element, uses the number
of objects returned by the component’s getProducts method to select a class.

...
<tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'">
...

Chapter 15 ■ Creating attribute DireCtives

347

The second expression, which is applied to the td element for the Category column, specifies the
bg-info class for Product objects whose Category property returns Soccer and null for all other values.

...
<td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
...

The third and final expression returns a fixed string value, which I have enclosed in single quotes, since
this is an expression and not a static attribute value.

...
<td [pa-attr]="'bg-info'">{{item.price}}</td>
...

Notice that the attribute name is enclosed in square brackets. That’s because the way to receive an
expression in a directive is to create a data binding, just like the built-in directives that are described in
Chapters 13 and 14.

 ■ Tip Forgetting to use the square brackets is a common mistake. Without them, angular will just pass the
raw text of the expression to the directive without evaluating it. this is the first thing to check if you encounter
an error when applying a custom directive.

Implementing the other side of the data binding means creating an input property in the directive class
and telling Angular how to manage its value, as shown in Listing 15-11.

Listing 15-11. Defining an Input Property in the attr.directive.ts File

import { Directive, ElementRef, Attribute, Input } from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {}

 @Input("pa-attr")
 bgClass: string;

 ngOnInit() {
 this.element.nativeElement.classList.add(this.bgClass || "bg-success");
 }
}

Input properties are defined by applying the @Input decorator to a property and using it to specify the
name of the attribute that contains the expression. This listing defines a single input property, which tells
Angular to set the value of the directive’s bgClass property to the value of the expression contained in the
pa-attr attribute.

http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 15 ■ Creating attribute DireCtives

348

 ■ Tip You don’t need to provide an argument to the @Input decorator if the name of the property corresponds
to the name of the attribute on the host element. so, if you apply @Input() to a property called myVal, then
angular will look for a myVal attribute on the host element.

The role of the constructor has changed in this example. When Angular creates a new instance of a
directive class, the constructor is invoked to create a new directive object and only then is the value of the
input property set. This means that the constructor cannot access the input property value because its value
will not be set by Angular until after the constructor has completed and the new directive object has been
produced. To address this, directives can implement lifecycle hook methods, which Angular uses to provide
directives with useful information after they have been created and while the application is running, as
described in Table 15-3.

Table 15-3. The Directive Lifecycle Hook Methods

Name Description

ngOnInit This method is called after Angular has set the initial value for all the input
properties that the directive has declared.

ngOnChanges This method is called when the value of an input property has changed and
also just before the ngOnInit method is called.

ngDoCheck This method is called when Angular runs its change detection process so that
directives have an opportunity to update any state that isn’t directly associated
with an input property.

ngAfterContentInit This method is called when the directive’s content has been initialized. See the
“Receiving Query Change Notifications” section in Chapter 16 for an example
that uses this method.

ngAfterContentChecked This method is called after the directive’s content has been inspected as part of
the change detection process.

ngOnDestroy This method is called immediately before Angular destroys a directive.

To set the class on the host element, the directive in Listing 15-11 implements the ngOnInit method,
which is called after Angular has set the value of the bgClass property. The constructor is still needed to
receive the ElementRef object that provides access to the host element, which is assigned to a property
called element.

The result is that Angular will create a directive object for each tr element, evaluate the expressions
specified in the pa-attr attribute, use the results to set the value of the input properties, and then call the
ngOnInit methods, which allows the directives to respond to the new input property values.

To see the effect, use the form to add a new product to the example application. Since there are initially
five items in the model, the expression for the tr element will select the bg-success class. When you add a
new item, Angular will create another instance of the directive class and evaluate the expression to set the
value of the input property; since there are now six items in the model, the expression will select the
bg-warning class, which provides the new row with a different background color, as shown in Figure 15-4.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 15 ■ Creating attribute DireCtives

349

Responding to Input Property Changes
Something odd happened in the previous example: adding a new item affected the appearance of the new
elements only and not the existing elements. Behind the scenes, Angular has updated the value of the bgClass
property for each of the directives that it created—one for each td element in the table column—but the
directives didn’t notice because changing a property value doesn’t automatically cause directives to respond.

To handle changes, a directive must implement the ngOnChanges method to receive notifications when
the value of an input property changes, as shown in Listing 15-12.

Listing 15-12. Receiving Change Notifications in the attr.directive.ts File

import { Directive, ElementRef, Attribute, Input,
 SimpleChange } from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {}

 @Input("pa-attr")
 bgClass: string;

 ngOnChanges(changes: {[property: string]: SimpleChange }) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;

Figure 15-4. Using an input property in a custom directive

Chapter 15 ■ Creating attribute DireCtives

350

 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

The ngOnChanges method is called once before the ngOnInit method and then called again each time
there are changes to any of a directive’s input properties. The ngOnChanges parameter is an object whose
property names refer to each changed input property and whose values are SimpleChange objects, which are
defined in the @angular/core module. TypeScript represents this data structure as follows:

...
ngOnChanges(changes: {[property: string]: SimpleChange }) {
...

The SimpleChange class defines the members shown in Table 15-4.

Table 15-4. The Properties and Method of the SimpleChange Class

Name Description

previousValue This property returns the previous value of the input property.

currentValue This property returns the current value of the input property

isFirstChange() This method returns true if this is the call to the ngOnChanges method that occurs
before the ngOnInit method.

The easiest way to understand the way that changes are presented to the ngOnChanges method is to
serialize the object as JSON and look at it then.

...
{
 "target": {
 "previousValue":"bg-success",
 "currentValue":"bg-warning"
 }
}
...

This strips out the isFirstChange method, but it does help show the way that each property in the
argument object is used to indicate a change to an input property.

When responding to changes to the input property value, a directive has to make sure to undo the
effect of previous updates. In the case of the example directive, this means removing the element from the
previousValue class and adding it to the currentValue class instead.

It is important to use the isFirstChange method so that you don’t undo a value that hasn’t actually
been applied, since the ngOnChanges method is called the first time a value is assigned to the input property.

Chapter 15 ■ Creating attribute DireCtives

351

The result of handling these change notifications is that the directive responds when Angular
reevaluates the expressions and updates the input properties. Now when you add a new product to the
application, the background colors for all the tr elements are updated, as shown in Figure 15-5.

Figure 15-5. Responding to input property changes

Creating Custom Events
Output properties are the Angular feature that allows directives to add custom events to their host elements,
through which details of important changes can be sent to the rest of the application. Output properties are
defined using the @Output decorator, which is defined in the @angular/core module, as shown in Listing 15-13.

Listing 15-13. Defining an Output Property in the attr.directive.ts File

import { Directive, ElementRef, Attribute, Input,
 SimpleChange, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {
 this.element.nativeElement.addEventListener("click", e => {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 });
 }

Chapter 15 ■ Creating attribute DireCtives

352

 @Input("pa-attr")
 bgClass: string;

 @Input("pa-product")
 product: Product;

 @Output("pa-category")
 click = new EventEmitter<string>();

 ngOnChanges(changes: {[property: string]: SimpleChange }) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;
 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

The EventEmitter class provides the event mechanism for Angular directives. The listing creates an
EventEmitter object and assigns it to a variable called click, like this:

...
@Output("pa-category")
click = new EventEmitter<string>();
...

The string type parameter indicates that listeners to the event will receive a string when the event is
triggered. Directives can provide any type of object to their event listeners, but common choices are string
and number values, data model objects, and JavaScript Event objects.

The custom event in the listing is triggered when the mouse button is clicked on the host element, and
the event provides its listeners with the category of the Product object that was used to create the table row
using the ngFor directive. The effect is that the directive is responding to a DOM event on the host element
and generating its own custom event in response. The listener for the DOM event is set up in the directive
class constructor using the browser’s standard addEventListener method, like this:

...
constructor(private element: ElementRef) {
 this.element.nativeElement.addEventListener("click", e => {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 });
}
...

The directive defines an input property to receive the Product object whose category will be sent in
the event. (The directive is able to refer to the value of the input property value in the constructor because
Angular will have set the property value before the function assigned to handle the DOM event is invoked.)

Chapter 15 ■ Creating attribute DireCtives

353

The most important statement in the listing is the one that uses the EventEmitter object to send the
event, which is done using the EventEmitter.emit method, which is described in Table 15-5 for quick
reference. The argument to the emit method is the value that you want the event listeners to receive, which
is the value of the category property for this example.

Table 15-5. The EventEmitter Method

Name Description

emit(value) This method triggers the custom event associated with the EventEmitter, providing the
listeners with the object or value received as the method argument.

Tying everything together is the @Output decorator, which creates a mapping between the directive class
EventEmitter property and the name that will be used to bind to the event in the template, like this:

...
@Output("pa-category")
click = new EventEmitter<string>();
...

The argument to the decorator specifies the attribute name that will be used in event bindings applied
to the host element. You can omit the argument if the TypeScript property name is also the name you want
for the custom event. I have specified pa-category in the listing, which allows me to refer to the event as
click within the directive class but require a more meaningful name externally.

Binding to a Custom Event
Angular makes it easy to bind to custom events in templates by using the same binding syntax that is used
for built-in events, which was described in Chapter 14. Listing 15-14 adds the pa-product attribute to the
tr element in the template to provide the directive with its Product object and adds a binding for the pa-
category event.

Listing 15-14. Binding to a Custom Event in the template.html File

...
<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
</table>
...

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 15 ■ Creating attribute DireCtives

354

The term $event is used to access the value the directive passed to the EventEmitter.emit method.
That means $event will be a string value containing the product category in this example. The value
received from the event is assigned to the component’s newProduct.category property, which causes the
data binding for one of the input elements to be updated, meaning that clicking a row in the table displays
the product’s category in the form, as shown in Figure 15-6.

Figure 15-6. Defining and receiving a custom event using an output property

Creating Host Element Bindings
The example directive relies on the browser’s DOM API to manipulate its host element, both to add and
remove class memberships and to receive the click event. Working with the DOM API in an Angular
application is a useful technique, but it does mean that your directive can be used only in applications that
are run in a web browser. Angular is intended to be run in a range of different execution environments, and
not all of them can be assumed to provide the DOM API.

Even if you are sure that a directive will have access to the DOM, the same results can be achieved in a
more elegant way using standard Angular directive features: property and event bindings. Rather than use
the DOM to add and remove classes, a class binding can be used on the host element. And rather than use
the addEventListener method, an event binding can be used to deal with the mouse click.

Behind the scenes, Angular implements these features using the DOM API when the directive is used in
a web browser—or some equivalent mechanism when the directive is used in a different environment.

Bindings on the host element are defined using two decorators, @HostBinding and @HostListener, both
of which are defined in the @angular/core module, as shown in Listing 15-15.

Listing 15-15. Creating Host Bindings in the attr.directive.ts File

import { Directive, ElementRef, Attribute, Input,
 SimpleChange, Output, EventEmitter, HostListener, HostBinding }
 from "@angular/core";
 import { Product } from "./product.model";

Chapter 15 ■ Creating attribute DireCtives

355

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 @Input("pa-attr")
 @HostBinding("class")
 bgClass: string;

 @Input("pa-product")
 product: Product;

 @Output("pa-category")
 click = new EventEmitter<string>();

 @HostListener("click")
 triggerCustomEvent() {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 }
}

The @HostBinding decorator is used to set up a property binding on the host element and is applied to
a directive property. The listing sets up a binding between the class property on the host element and the
decorator’s bgClass property.

 ■ Tip if you want to manage the contents of an element, you can use the @HostBinding decorator to bind to
the textContent property. see Chapter 19 for an example.

The @HostListener decorator is used to set up an event binding on the host element and is applied to
a method. The listing creates an event binding for the click event that invokes the triggerCustomEvent
method when the mouse button is pressed and released. As its name suggests, the triggerCustomEvent
method uses the EventEmitter.emit method to dispatch the custom event through the output property.

Using the host element bindings means that the directive constructor can be removed since there is
no longer any need to access the HTML element via the ElementRef object. Instead, Angular takes care of
setting up the event listener and setting the element’s class membership through the property binding.

Although the directive code is much simpler, the effect of the directive is the same: clicking a table row
sets the value of one of the input elements, and adding a new item using the form triggers a change in the
background color of the table cells for products that are not part of the Soccer category.

Creating a Two-Way Binding on the Host Element
Angular provides special support for creating directives that support two-way bindings so they can be
used with the banana-in-a-box bracket style that ngModel uses and can bind to a model property in both
directions.

The two-way binding feature relies on a naming convention. To demonstrate how it works, Listing 15-16
adds some new elements and bindings to the template.html file.

http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 15 ■ Creating attribute DireCtives

356

Listing 15-16. Applying a Directive in the template.html File

...
<div class="col-xs-6">

 <div class="form-group bg-info p-a-1">
 <label>Name:</label>
 <input class="bg-primary" [paModel]="newProduct.name"
 (paModelChange)="newProduct.name=$event" />
 </div>

 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
 </table>
</div>
...

I am going to create a directive that supports two one-way bindings. The binding whose target is
paModel will be updated when the value of the newProduct.name property changes, which provides a flow of
data from the application to the directive and will be used to update the contents of the input element. The
custom event, paModelChange, will be triggered when the user changes the contents of the input element
and will provide a flow of data from the directive to the rest of the application.

To implement the directive, I added a file called twoway.directive.ts to the app folder and used it to
define the directive shown in Listing 15-17.

Listing 15-17. The Contents of the twoway.directive.ts File in the app Folder

import { Input, Output, EventEmitter, Directive,
 HostBinding, HostListener, SimpleChange } from "@angular/core";

@Directive({
 selector: "input[paModel]"
})
export class PaModel {

 @Input("paModel")
 modelProperty: string;

 @HostBinding("value")
 fieldValue: string = "";

Chapter 15 ■ Creating attribute DireCtives

357

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["modelProperty"];
 if (change.currentValue != this.fieldValue) {
 this.fieldValue = changes["modelProperty"].currentValue || "";
 }
 }

 @Output("paModelChange")
 update = new EventEmitter<string>();

 @HostListener("input", ["$event.target.value"])
 updateValue(newValue: string) {
 this.fieldValue = newValue;
 this.update.emit(newValue);
 }
}

This directive uses features that have been described previously. The selector property for this
directive specifies that it will match input elements that have a paModel attribute. The built-in ngModel
two-way directive has support for a range of form elements and knows which events and properties each
of them uses, but I want to keep this example simple, so I am going to support just input elements, which
define a value property that gets and sets the element content.

The paModel binding is implemented using an input property and the ngOnChanges method, which
responds to changes in the expression value by updating the contents of the input element through a host
binding on the input element’s value property.

The paModelChange event is implemented using a host listener on the input event, which then sends an
update through an output property. Notice that the method invoked by the event is able to receive the event
object by specifying an additional argument to the @HostListener decorator, like this:

...
@HostListener("input", ["$event.target.value"])
updateValue(newValue: string) {
...

The first argument to the @HostListener decorator specifies the name of the event that will be handled
by the listener. The second argument is an array that will be used to provide the decorated methods with
arguments. In this example, the input event will be handled by the listener, and when the updateValue
method is invoked, its newValue argument will be set to the target.value property of the Event object,
which is referred to using $event.

To enable the directive, I added it to the Angular module, as shown in Listing 15-18.

Listing 15-18. Registering the Directive in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";

Chapter 15 ■ Creating attribute DireCtives

358

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel],
 bootstrap: [ProductComponent]
})
export class AppModule { }

When you save the changes and the browser has reloaded, you will see a new input element that
responds to changes to a model property and updates the model property if its host element’s content is
changed. The expressions in the bindings specify the same model property used by the Name field in the form
on the left side of the HTML document, which provides a convenient way to test the relationship between
them, as shown in Figure 15-7.

Figure 15-7. Testing the two-way flow of data

The final step is to simplify the bindings and apply the banana-in-a-box style of brackets, as shown in
Listing 15-19.

Listing 15-19. Simplifying the Bindings in the template.html File

...
<div class="col-xs-6">

 <div class="form-group bg-info p-a-1">
 <label>Name:</label>
 <input class="bg-primary" [(paModel)]="newProduct.name" />
 </div>

 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>

Chapter 15 ■ Creating attribute DireCtives

359

 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
 </table>
</div>
...

When Angular encounters the [()] brackets, it expands the binding to match the format used in
Listing 15-16, targeting the paModel input property and setting up the paModelChange event. As long as
a directive exposes these to Angular, it can be targeted using the banana-in-a-box brackets, producing a
simpler template syntax.

Exporting a Directive for Use in a Template Variable
In earlier chapters, I used template variables to access functionality provided by built-in directives, such as
ngForm. As an example, here is an element from Chapter 14:

...
<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">
...

The form template variable is assigned ngForm, which is then used to access validation information for
the HTML form. This is an example of how a directive can provide access to its properties and methods so
they can be used in data bindings and expressions.

Listing 15-20 modifies the directive from the previous section so that it provides details of whether it has
expanded the text in its host element.

Listing 15-20. Exporting a Directive in the twoway.directive.ts File

import { Input, Output, EventEmitter, Directive,
 HostBinding, HostListener, SimpleChange } from "@angular/core";

@Directive({
 selector: "input[paModel]",
 exportAs: "paModel"
})
export class PaModel {

 direction: string = "None";

 @Input("paModel")
 modelProperty: string;

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 15 ■ Creating attribute DireCtives

360

 @HostBinding("value")
 fieldValue: string = "";

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["modelProperty"];
 if (change.currentValue != this.fieldValue) {
 this.fieldValue = changes["modelProperty"].currentValue || "";
 this.direction = "Model";
 }
 }

 @Output("paModelChange")
 update = new EventEmitter<string>();

 @HostListener("input", ["$event.target.value"])
 updateValue(newValue: string) {
 this.fieldValue = newValue;
 this.update.emit(newValue);
 this.direction = "Element";
 }
}

The exportAs property of the @Directive decorator specifies a name that will be used to refer to the
directive in template variables. This example uses paModel as the value for the exportAs property, and you
should try to use names that make it clear which directive is providing the functionality.

The listing adds a property called direction to the directive, which used to indicate when data is
flowing from the model to the element or from the element to the model.

When you use the exportAs decorator, you are providing access to all the methods and properties
defined by the directive to be used in template expressions and data bindings. Some developers prefix the
names of the methods and properties that are not for use outside of the directive with an underscore
(the _ character) or to apply the private keyword. This is an indication to other developers that some
methods and properties should not be used but isn’t enforced by Angular.

Listing 15-21 creates a template variable for the directive’s exported functionality and uses it in a style
binding.

Listing 15-21. Using Exported Directive Functionality in the template.html File

...
<div class="col-xs-6">

 <div class="form-group bg-info p-a-1">
 <label>Name:</label>
 <input class="bg-primary" [(paModel)]="newProduct.name" #paModel="paModel" />
 <div class="bg-primary">Direction: {{paModel.direction}}</div>
 </div>

 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>

Chapter 15 ■ Creating attribute DireCtives

361

 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
 </table>
</div>
...

The template variable is called paModel, and its value is the name used in the directive’s exportAs
property.

...
#paModel="paModel"
...

 ■ Tip You don’t have to use the same names for the variable and the directive, but it does help to make the
source of the functionality clear.

Once the template variable has been defined, it can be used in interpolation bindings or as part of
a binding expression. I opted for a string interpolation binding whose expression uses the value of the
directive’s direction property.

...
<div class="bg-primary">Direction: {{paModel.direction}}</div>
...

The result is that you can see the effect of typing text into the two input elements that are bound to
the newProduct.name model property. When you type into the one that uses the ngModel directive, then
the string interpolation binding will display Model. When you type into the element that uses the paModel
directive, the string interpolation binding will display Element, as shown in Figure 15-8.

Figure 15-8. Exporting functionality from a directive

Chapter 15 ■ Creating attribute DireCtives

362

Summary
In this chapter, I described how to define and use attribute directives, including the use of input and output
properties and host bindings. In the next chapter, I explain how structural directives work and how they can
be used to change the layout or structure of the HTML document.

363© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_16

CHAPTER 16

Creating Structural Directives

Structural directives change the layout of the HTML document by adding and removing elements. They
build on the core features available for attribute directives, described in Chapter 15, with additional
support for micro-templates, which are small fragments of contents defined within the templates used by
components. You can recognize when a structural directive is being used because its name will be prefixed
with an asterisk, such as *ngIf and *ngFor. In this chapter, I explain how structural directives are defined
and applied, how they work, and how they respond to changes in the data model. Table 16-1 puts structural
directives in context.

Table 16-1. Putting Structural Directives in Context

Question Answer

What are they? Structural directives use micro-templates to add content to the
HTML document.

Why are they useful? Structural directives allow content to be added conditionally
based on the result of an expression or for the same content to be
repeated for each object in a data source, such as an array.

How are they used? Structural directives are applied to a template element, which
contains the content and bindings that comprise its micro-
template. The template class uses objects provided by Angular to
control the inclusion of the content or to repeat the content.

Are there any pitfalls or limitations? Unless care is taken, structural directives can make a lot of
unnecessary changes to the HTML document, which can ruin the
performance of a web application. It is important only to make
changes when they are required, as explained in the “Dealing with
Collection-Level Data Changes” section later in the chapter.

Are there any alternatives? You can use the built-in directives for common tasks, but writing
custom structural directives provides the ability to tailor behavior
to your application.

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 16 ■ Creating StruCtural DireCtiveS

364

Table 16-2 summarizes the chapter.

Table 16-2. Chapter Summary

Problem Solution Listing

Create a structural directive Apply the @Directive decorator to a class
that receives view container and template
constructor parameters

1–6

Create an iterating structural directive Define a ForOf input property in a structural
directive class and iterate over its value

7–12

Handle data changes in a structural
directive

Use a differ to detect changes in the ngDoCheck
method

13–19

Query the content of the host element
to which a structural directive has been
applied

Use the @ContentChild or @ContentChildren
decorators

20–25

Preparing the Example Project
In this chapter, I continue working with the example project that I created in Chapter 11 and have been using
ever since. To prepare for this chapter, I have simplified the template to remove the form, leaving only the
table shown in Listing 16-1. (I’ll add the form back in later in the chapter.)

Listing 16-1. Simplifying the Template in the template.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
</table>

Run the following command in the example folder to start the development server and the TypeScript
compiler and to load the Angular application in the browser:

npm start

Figure 16-1 shows the initial content displayed in the browser.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 16 ■ Creating StruCtural DireCtiveS

365

Creating a Simple Structural Directive
A good place to start with structural directives is to re-create the functionality provided by the ngIf directive,
which is relatively simple, is easy to understand, and provides a good foundation for explaining how
structural directives work.

The best way to start is by making changes to the template and working back to write the code that
supports it. Listing 16-2 shows the template changes.

Listing 16-2. Applying a Structural Directive in the template.html File

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
</div>

<template [paIf]="showTable">
 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>

Figure 16-1. Running the example application

Chapter 16 ■ Creating StruCtural DireCtiveS

366

 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
 </table>
</template>

This listing uses the full template syntax, in which the directive is applied to a template element, which
contains the content that will be used by the directive. In this case, the template element contains the table
element and all its contents, including bindings, directives, and expressions. There is also a concise syntax,
which I use later in the chapter.

The template element has a standard one-way data binding, which targets a directive called paIf, like this:

...
<template [paIf]="showTable">
...

The expression for this binding uses the value of a property called showTable. This is the same property
that is used in the other new binding in the template, which has been applied to a checkbox, as follows:

...
<input type="checkbox" checked="true" [(ngModel)]="showTable" />
...

The objectives in this section are to create a structural directive that will add the contents of the
template element to the HTML document when the showTable property is true, which will happen when
the checkbox is checked, and to remove the contents of the template element when the showTable property
is false, which will happen when the checkbox is unchecked.

Implementing the Structural Directive Class
You know from the template what the directive should do. To implement the directive, I added a file called
paif.directive.ts in the app folder and added the code shown in Listing 16-3.

Listing 16-3. The Contents of the structure.directive.ts File in the app Folder

import {
 Directive, SimpleChange, ViewContainerRef, TemplateRef, Input
} from "@angular/core";

@Directive({
 selector: "[paIf]"
})
export class PaStructureDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("paIf")
 expressionResult: boolean;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["expressionResult"];

Chapter 16 ■ Creating StruCtural DireCtiveS

367

 if (!change.isFirstChange() && !change.currentValue) {
 this.container.clear();
 } else if (change.currentValue) {
 this.container.createEmbeddedView(this.template);
 }
 }
}

The selector property of the @Directive decorator is used to match host elements that have the paIf
attribute, corresponding to the template additions that I made in Listing 16-1.

There is an input property called expressionResult, which the directive uses to receive the results of
the expression from the template. The directive implements the ngOnChanges method to receive change
notifications so that it can respond to changes in the data model.

The first indication that this is a structural directive comes from the constructor, which asks Angular to
provide parameters using some new types.

...
constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}
...

The ViewContainerRef object is used to manage the contents of the view container, which is the part of
the HTML document where the template element appears and for which the directive is responsible.

As its name suggests, the view container is responsible for managing a collection of views. A view is
a region of HTML elements that contains directives, bindings, and expressions, and they are created and
managed using the methods and properties provided by the ViewContainerRef class, the most useful of
which are described in Table 16-3.

Table 16-3. Useful ViewContainerRef Methods and Properties

Name Description

element This property returns an ElementRef object that represents the
container element.

createEmbeddedView(template) This method uses a template to create a new view. See the text after
the table for details. This method also accepts optional arguments
for context data (as described in the “Creating Iterating Structural
Directives” section) and an index position that specifies where the view
should be inserted. The result is a ViewRef object that can be used with
the other methods in this table.

clear() This method removes all the views from the container.

length This property returns the number of views in the container.

get(index) This method returns the ViewRef object representing the view at the
specified index.

indexOf(view) This method returns the index of the specified ViewRef object.

insert(view, index) This method inserts a view at the specified index.

remove(Index) This method removes and destroys the view at the specified index.

detach(index) This method detaches the view from the specified index without
destroying it so that it can be repositioned with the insert method.

Chapter 16 ■ Creating StruCtural DireCtiveS

368

Two of the methods from Table 16-3 are required to re-create the ngIf directive’s functionality:
createEmbeddedView to show the template element’s content to the user and clear to remove it again.

The createEmbeddedView method adds a view to the view container. This method’s argument is a
TemplateRef object, which represents the content of the template element.

The directive receives the TemplateRef object as one of its constructor arguments, for which Angular
will provide a value automatically when creating a new instance of the directive class.

Putting everything together makes it easy to understand how the directive works. When Angular
processes the template.html file, it discovers the template element and its binding and determines
that it needs to create a new instance of the PaStructureDirective class. Angular examines the
PaStructureDirective constructor and can see that it needs to provide it with ViewContainerRef and
TemplateRef objects.

...
constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}
...

The ViewContainerRef represents the place in the HTML document occupied by the template element,
and the TemplateRef represents the template element’s contents. Angular passes these objects to the
constructor and creates a new instance of the directive class.

Angular then starts processing the expressions and data bindings. As described in Chapter 15, Angular
invokes the ngOnChanges method during initialization (just before the ngOnInit method is invoked) and
again whenever the value of the directive’s expression changes.

The PaStructureDirective class’s implementation of the ngOnChanges method uses the SimpleChange
object that it receives to show or hide the contents of the template element based on the current value of the
expression. When the expression is true, the directive displays the template element’s content by adding
them to the container view.

...
this.container.createEmbeddedView(this.template);
...

When the result of the expression is false, the directive clears the view container, which removes the
elements from the HTML document.

...
this.container.clear();
...

The directive doesn’t have any insight into the contents of the template element and is responsible only
for managing its visibility.

Enabling the Structural Directive
The directive must be enabled in the Angular module before it can be used, as shown in Listing 16-4.

Listing 16-4. Enabling the Directive in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 16 ■ Creating StruCtural DireCtiveS

369

import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel, PaStructureDirective],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Structural directives are enabled in the same way as attribute directives and are specified in the
module’s declarations array.

Once you save the changes, the browser will reload the HTML document, and you can see the effect of
the new directive: the table element, which is the content of the template element, will be shown only when
the checkbox is checked, as shown in Figure 16-2.

Figure 16-2. Creating a structural directive

 ■ Note the contents of the template element are being destroyed and re-created, not simply hidden and
revealed. if you want to show or hide content without removing it from the htMl document, then you can use a
style binding to set the display or visibility property.

Chapter 16 ■ Creating StruCtural DireCtiveS

370

Setting the Initial Expression Value
The contents of the template element are not shown initially because the directive’s expression relies on a
variable that has not been previously defined.

...
<template [paIf]="showTable">
...

The variable showTable won’t be defined until the user checks the checkbox element, at which point it
will be created with a value of true. This is an example of how templates can dynamically create JavaScript
variables described in Chapter 14. I mention it again here because it is easy to get confused about where the
variable is created. If you want to define an initial value for the showTable variable, then you must do so in
the component, as shown in Listing 16-5, and not in the structural directive.

Listing 16-5. Defining a Variable in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
 form: ProductFormGroup = new ProductFormGroup();

 // ...other members omitted for brevity...

 showTable: boolean = true;
}

The structural directive receives the value of its expression through its input property and has no insight
into what the expression is, and the component provides the context for Angular to evaluate the expression.
The change in Listing 16-5 gives an initial true value to the showTable property, which means that the
template element’s content is visible when the application first starts.

Using the Concise Structural Directive Syntax
The use of the template element helps illustrate the role of the view container in structural directives. The
concise syntax does away with the template element and applies the directive and its expression to the
outermost element that it would contain, as shown in Listing 16-6.

 ■ Tip the concise structural directive syntax is intended to be easier to use and read, but it is just a matter
of preference as to which syntax you use.

http://dx.doi.org/10.1007/978-1-4842-2307-9_14

Chapter 16 ■ Creating StruCtural DireCtiveS

371

Listing 16-6. Using the Concise Structural Directive Syntax in the template.html File

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
</div>

<table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'bg-success' : 'bg-warning'"
 [pa-product]="item" (pa-category)="newProduct.category=$event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'bg-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'bg-info'">{{item.price}}</td>
 </tr>
</table>

The template element has been removed, and the directive has been applied to the table element, like
this:

...
<table *paIf="showTable" class="table table-sm table-bordered table-striped">
...

The directive’s name is prefixed with an asterisk (the * character) to tell Angular that this is a structural
directive that uses the concise syntax. When Angular parses the template.html file, it discovers the directive
and the asterisk and handles the elements as though there were a template element in the document. No
changes are required to the directive class to support the concise syntax.

Creating Iterating Structural Directives
Angular provides special support for directives that need to iterate over a data source. The best way to
demonstrate this is to re-create another of the built-in directives: ngFor.

To prepare for the new directive, I have removed the ngFor directive from the template.html file,
inserted a template element, and applied a new directive attribute and expression, as shown in Listing 16-7.

Listing 16-7. Preparing for a New Structural Directive in the template.html File

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
</div>

Chapter 16 ■ Creating StruCtural DireCtiveS

372

<table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <template [paForOf]="getProducts()" let-item>
 <tr><td colspan="4">{{item.name}}</td></tr>
 </template>
</table>

The full syntax for iterating structural directives is a little odd. In the listing, the template element has
two attributes that are used to apply the directive. The first is a standard binding whose expression obtains
the data required by the directive, bound to an attribute called paForOf.

...
<template [paForOf]="getProducts()" let-item>
...

The name of this attribute is important. When using a template element, the name of the data source
attribute must end with Of in order to support the concise syntax, which I will introduce shortly.

The second attribute is used to define the implicit value, which allows the currently processed object
to be referred to within the template element as the directive iterates through the data source. Unlike other
template variables, the implicit variable isn’t assigned a value and its purpose is only to define the variable
name.

...
<template [paForOf]="getProducts()" let-item>
...

In this example, I have used let-item to tell Angular that I want the implicit value to be assigned to a
variable called item, which is then used within a string interpolation binding to display the name property of
the current data item.

...
<td colspan="4">{{item.name}}</td>
...

Looking at the template element, you can see that the purpose of the new directive is to iterate through
the component’s getProducts method and generate a table row for each of them that displays the name
property. To implement this functionality, I created a file called iterator.directive.ts in the app folder
and defined the directive shown in Listing 16-8.

Listing 16-8. The Contents of the iterator.directive.ts File in the app Folder

import { Directive, ViewContainerRef, TemplateRef,
 Input, SimpleChange } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}

Chapter 16 ■ Creating StruCtural DireCtiveS

373

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i]));
 }
 }
}

class PaIteratorContext {
 constructor(public $implicit: any) {}
}

The selector property in the @Directive decorator matches elements with the paForOf attribute,
which is also the source of the data for the dataSource input property and which provides the source of
objects that will be iterated.

The ngOnInit method will be called once the value of the input property has been set, and the
directive empties the view container using the clear method and adds a new view for each object using the
createEmbeddedView method.

When calling the createEmbeddedView method, the directive provides two arguments: the TemplateRef
object received through the constructor and a context object. The TemplateRef provides the content to insert
into the container, and the context object provides the data for the implicit value, which is specified using a
property called $implicit. It is this object, with its $implicit property, that is assigned to the item template
variable and that is referred to in the string interpolation binding. To provide templates with the context object
in a type-safe way, I defined a class called PaIteratorContext, whose only property is called $implicit.

The ngOnInit method reveals some important aspects of working with view containers. First, a view
container can be populated with multiple views—in this case, one view per object in the data source. The
ViewContainerRef class provides the functionality required to manage these views once they have been
created, as you will see in the sections that follow.

Second, a template can be reused to create multiple views. In this example, the contents of the template
element will be used to create identical tr and td elements for each object in the data source. The td
element contains a data binding, which is processed by Angular when each view is created and is used to
tailor the content to its data object.

Third, the directive has no special knowledge about the data it is working with and no knowledge of the
content that is being generated. Angular takes care of providing the directive with the context it needs from
the rest of the application, providing the data source through the input property and providing the content
for each view through the TemplateRef object.

Enabling the directive requires an addition to the Angular module, as shown in Listing 16-9.

Listing 16-9. Adding a Custom Directive in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";

Chapter 16 ■ Creating StruCtural DireCtiveS

374

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The result is that the directive iterates through the objects in its data source and uses the template
element’s content to create a view for each of them, providing rows for the table, as shown in Figure 16-3.

Figure 16-3. Creating an iterating structural directive

Providing Additional Context Data
Structural directives can provide templates with additional values to be assigned to template variables and
used in bindings. For example, the ngFor directive provides odd, even, first, and last values. Context
values are provided through the same object that defines the $implicit property, and in Listing 16-10, I
have re-created the same set of values that ngFor provides.

Listing 16-10. Providing Context Data in the iterator.directive.ts File

import { Directive, ViewContainerRef, TemplateRef,
 Input, SimpleChange } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})

Chapter 16 ■ Creating StruCtural DireCtiveS

375

export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i],
 i, this.dataSource.length));
 }
 }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

This listing defines additional properties in the PaIteratorContext class and expands its constructor so
that it receives additional parameters, which are used to set the produce the property values.

The effect of these additions is that context object properties can be used to create template variables,
which can then be referred to in binding expressions, as shown in Listing 16-11.

Listing 16-11. Using Structural Directive Context Data in the template.html File

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
</div>

<table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <template [paForOf]="getProducts()" let-item let-i="index"
 let-odd="odd" let-even="even">
 <tr [class.bg-info]="odd" [class.bg-warning]="even">

Chapter 16 ■ Creating StruCtural DireCtiveS

376

 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </template>
</table>

Template variables are created using the let-<name > attribute syntax and assigned one of the context
data values. In this listing, I used the odd and even context values to create template variables of the same
name, which are then incorporated into class bindings on the tr element, resulting in striped table rows, as
shown in Figure 16-4. The listing also adds additional table cells to display all the Product properties.

Figure 16-4. Using directive context data

Using the Concise Structure Syntax
Iterating structural directives support the concise syntax and omit the template element, as shown in
Listing 16-12.

Listing 16-12. Using the Concise Syntax in the template.html File

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
</div>

Chapter 16 ■ Creating StruCtural DireCtiveS

377

<table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
</table>

This is a more substantial change than the one required for attribute directives. The biggest change
is in the attribute used to apply the directive. When using the full syntax, the directive was applied to the
template element using the attribute specified by its selector, like this:

...
<template [paForOf]="getProducts()" let-item let-i="index" let-odd="odd"
 let-even="even">
...

When using the concise syntax, the Of part of the attribute is omitted, the name is prefixed with an
asterisk, and the brackets are omitted.

...
<tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
...

The other change is to incorporate all the context values into the directive’s expression, replacing the
individual let- attributes. The main data value becomes part of the initial expression, with additional
context values separated by semicolons.

No changes are required to the directive to support the concise syntax, whose selector and input
property still specify an attribute called paForOf. Angular takes care of expanding the concise syntax, and the
directive doesn’t know or care whether a template element has been used.

Dealing with Property-Level Data Changes
There are two kinds of changes that can occur in the data sources used by iterating structural directives. The
first kind happens when the properties of an individual object change. This has a knock-on effect on the
data bindings contained within the template element, either directly through a change in the implicit value
or indirectly through the additional context values provided by the directive. Angular takes care of these
changes automatically, reflecting any changes in the context data in the bindings that depend on them.

To demonstrate, in Listing 16-13 I have added a call to the standard JavaScript setInterval function in
the constructor of the context class. The function passed to setInterval alters the odd and even properties
and changes the value of the price property of the Product object that is used as the implicit value.

Chapter 16 ■ Creating StruCtural DireCtiveS

378

Listing 16-13. Modifying Individual Objects in the iterator.directive.ts File

...
class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;

 setInterval(() => {
 this.odd = !this.odd; this.even = !this.even;
 this.$implicit.price++;
 }, 2000);
 }
}
...

Once every two seconds, the values of the odd and even properties are inverted, and the price value is
incremented. When you save the changes, you will see that the colors of the table rows change and the prices
slowly increase, as illustrated in Figure 16-5.

Figure 16-5. Automatic change detection for individual data source objects

Chapter 16 ■ Creating StruCtural DireCtiveS

379

Dealing with Collection-Level Data Changes
The second type of change occurs when the objects within the collection are added, removed, or replaced.
Angular doesn’t detect this kind of change automatically, which means the iterating directive’s ngOnChanges
method won’t be invoked.

Receiving notifications about collection-level changes is done by implementing the ngDoCheck
method, which is called whenever a data change is detected in the application, regardless of where that
change occurs or what kind of change it is. The ngDoCheck method allows a directive to respond to changes
even when they are not automatically detected by Angular. Implementing the ngDoCheck method requires
caution, however, because it represents a pitfall that can destroy the performance of a web application. To
demonstrate the problem, Listing 16-14 implements the ngDoCheck method so that the directive updates the
content it displays when there is a change.

Listing 16-14. Implementing the ngDoCheck Methods in the iterator.directive.ts File

import { Directive, ViewContainerRef, TemplateRef,
 Input, SimpleChange } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.updateContent();
 }

 ngDoCheck() {
 console.log("ngDoCheck Called");
 this.updateContent();
 }

 private updateContent() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i],
 i, this.dataSource.length));
 }
 }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

Chapter 16 ■ Creating StruCtural DireCtiveS

380

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;

 // setInterval(() => {
 // this.odd = !this.odd; this.even = !this.even;
 // this.$implicit.price++;
 // }, 2000);
 }
}

The ngOnInit and ngDoCheck methods both call a new updateContent method that clears the contents
of the view container and generates new template content for each object in the data source. I have also
commented out the call to the setInterval function in the PaIteratorContext class.

To understand the problem with collection-level changes and the ngDoCheck method, I need to restore
the form to the component’s template, as shown in Listing 16-15.

Listing 16-15. Restoring the HTML Form in the template.html File

<style>
 input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
 input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
</style>

<div class="col-xs-4">
 <form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && !control.valid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && !form.valid">
 Create
 </button>
 </form>
</div>

Chapter 16 ■ Creating StruCtural DireCtiveS

381

<div class="col-xs-8">
 <div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
 </div>

 <table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
</div>

When you save the changes to the template, the HTML form will be displayed alongside the table of
products, as shown in Figure 16-6.

Figure 16-6. Restoring the table in the template

The problem with the ngDoCheck method is that it is invoked every time Angular detects a change
anywhere in the application—and those changes happen more often than you might expect.

To demonstrate how often changes occur, I added a call to the console.log method within the
directive’s ngDoCheck method in Listing 16-14, so that a message will be displayed in the browser’s JavaScript
console each time the ngDoCheck method is called.

Chapter 16 ■ Creating StruCtural DireCtiveS

382

Now, use the HTML form to create a new product and see how many messages are written out to the
browser’s JavaScript console, each of which represents a change detected by Angular and which results in a
call to the ngDoCheck method.

A new message is displayed each time an input element gets the focus, each time a key event is triggered,
each time a validation check is performed, and so on. A quick test adding a Running Shoes product in the
Running category with a price of 100 generates 29 messages on my system, although the exact number will
vary based on how you navigate between elements, whether you need to correct typos, and so on.

For each of those 29 times, the structural directive destroys and re-creates its content, which means
producing new tr and td elements, with new directive and binding objects.

There are only a few rows of data in the example application, but these are expensive operations, and in
a real application, the performance of the application can grind to a halt as content is repeatedly destroyed
and re-created. The worst part of this problem is that all the changes except one were unnecessary because
the content in the table didn’t need to be updated until the new Product object was added to the data model.
For the other 28 times, the directive destroyed its content and created an identical replacement.

Fortunately, Angular provides some tools for managing updates more efficiently and updating content
only when it is required. The ngDoCheck method will still be called for all changes in the application, but the
directive can inspect its data to see whether any changes that require new content have occurred, as shown
in Listing 16-16.

Listing 16-16. Minimizing Content Changes in the iterator.directive.ts File

import { Directive, ViewContainerRef, TemplateRef,
 Input, SimpleChange, IterableDiffer, IterableDiffers,
 ChangeDetectorRef, CollectionChangeRecord } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {
 private differ: IterableDiffer;

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>,
 private differs: IterableDiffers,
 private changeDetector: ChangeDetectorRef) {
 }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.differ = this.differs.find(this.dataSource).create(this.changeDetector);
 }

 ngDoCheck() {
 let changes = this.differ.diff(this.dataSource);
 if (changes != null) {
 console.log("ngDoCheck called, changes detected");
 changes.forEachAddedItem(addition => {

Chapter 16 ■ Creating StruCtural DireCtiveS

383

 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(addition.item,
 addition.currentIndex, changes.length));
 });
 }
 }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

The idea is to work out whether there have been objects added, removed, or moved from the collection.
This means the directive has to do some work every time the ngDoCheck method is called in order to avoid
unnecessary and expensive DOM operations when there are no collection changes to process.

The process starts in the constructor, which receives two new arguments whose values will be
provided by Angular when a new instance of the directive class is created. The IterableDiffers and
ChangeDetectorRef objects are used to set up change detection on the data source collection in the
ngOnInit method, like this:

...
ngOnInit() {
 this.differ = this.differs.find(this.dataSource).create(this.changeDetector);
}
...

Angular includes built-in classes, known as differs, that can detect changes in different types of objects.
The IterableDiffers.find method accepts an object and returns an IterableDifferFactory object
that is capable of creating a differ class for that object. The IterableDifferFactory class defines a create
method that returns an IterableDiffer object that will perform the actual change detection, using the
ChangeDetectorRef object that was received in the constructor.

 ■ Tip the IterableDifferFactory.create method accepts an optional argument that specifies a tracking
function, which is how the ngFor directive implements its trackBy feature, as described in Chapter 13.

The important part of this incantation is the IterableDiffer object, which was assigned to a property
called differ so that it can be used when the ngDoCheck method is called.

http://dx.doi.org/10.1007/978-1-4842-2307-9_13

Chapter 16 ■ Creating StruCtural DireCtiveS

384

...
ngDoCheck() {
 let changes = this.differ.diff(this.dataSource);
 if (changes != null) {
 console.log("ngDoCheck called, changes detected");
 changes.forEachAddedItem(addition => {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(addition.item,
 addition.currentIndex, changes.length));
 });
 }
}
...

The IterableDiffer.diff method accepts an object for comparison and returns a list of the changes
or null if there have been no changes. Checking for the null result allows the directive to avoid unnecessary
work when the ngDoCheck method is called for changes elsewhere in the application. The object returned
by the IterableDiffer.diff method provides the properties and methods described in Table 16-4 for
processing changes.

Table 16-4. The IterableDiffer.Diff Results Methods and Properties

Name Description

collection This property returns the collection of objects that has been inspected
for changes.

length This property returns the number of objects in the collection.

forEachItem(func) This method invokes the specified function for each object in the
collection.

forEachPreviousItem(func) This method invokes the specified function for each object in the
previous version of the collection.

forEachAddedItem(func) This method invokes the specified function for each new object in the
collection.

forEachMovedItem(func) This method invokes the specified function for each object whose
position has changed.

forEachRemovedItem(func) This method invokes the specified function for each object that was
removed from the collection.

forEachIdentityChange(func) This method invokes the specified function for each object whose
identity has changed.

The functions that are passed to the methods described in Table 16-4 will receive a
CollectionChangeRecord object that describes an item and how it has changed, using the properties shown
in Table 16-5.

Chapter 16 ■ Creating StruCtural DireCtiveS

385

The code in Listing 16-16 only needs to deal with new objects in the data source, since that is the only
change that the rest of the application can perform. If the result of the IterableDiffer.diff method isn’t
null, then I use the forEachAddedItem method to invoke a fat arrow function for each new object that has
been detected. The function is called once for each new object and uses the properties in Table 16-5 to
create new views in the view container.

The changes in Listing 16-16 included a new console message that is written to the browser’s JavaScript
console only when there has been a data change detected by the directive. If you repeat the process of
adding a new product, you will see that the message is displayed only when the application first starts and
when the Create button is clicked. The ngDoCheck method is still being called, and the directive has to check
for data changes every time, so there is still unnecessary work going on. But these operations are much less
expensive and time-consuming than destroying and then re-creating HTML elements.

 ■ Tip angular also provides change tracking for key/value pairs, which makes it possible to monitor Map
objects and objects that use properties as map keys. See Chapter 19 for an example.

Keeping Track of Views
Handling change detection is simple when you are handling the creation of new data items. Other
operations—such as dealing with deletions or modifications—are more complex and require the directive to
keep track of which view is associated with which data object.

To demonstrate, I am going to add support for deleting a Product object from the data model. First,
Listing 16-17 adds a method to the component to delete a product using its key. This isn’t a requirement
because the template could access the repository through the component’s model property, but it can help
make applications easier to understand, when all of the data is accessed and used in the same way.

Listing 16-17. Adding a Delete Method in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();
 form: ProductFormGroup = new ProductFormGroup();

Table 16-5. The CollectionChangeRecord Properties

Name Description

item This property returns the data item.

trackById This property returns the identity value if a trackBy function is used.

currentIndex This property returns the current index of the item in the collection.

previousIndex This property returns the previous index of the item in the collection.

http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 16 ■ Creating StruCtural DireCtiveS

386

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 formSubmitted: boolean = false;

 submitForm(form: NgForm) {
 this.formSubmitted = true;
 if (form.valid) {
 this.addProduct(this.newProduct);
 this.newProduct = new Product();
 form.reset();
 this.formSubmitted = false;
 }
 }

 showTable: boolean = true;
}

Listing 16-18 updates the template so that the content generated by the structural directive contains a
column of button elements that will delete the data object associated with the row that contains it.

Listing 16-18. Adding a Delete Button in the template.html File

...
<table *paIf="showTable"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">{{item.price}}</td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>

Chapter 16 ■ Creating StruCtural DireCtiveS

387

 </td>
 </tr>
</table>
...

The button elements have click event bindings that call the component’s deleteProduct method. I
also set the value of the CSS style property vertical-align on the existing td elements so the text in the
table is aligned with the button text. The final step is to process the data changes in the structural directive so
that it responds when an object is removed from the data source, as shown in Listing 16-19.

Listing 16-19. Responding to a Removed Item in the iterator.directive.ts File

import { Directive, ViewContainerRef, TemplateRef,
 Input, SimpleChange, IterableDiffer, IterableDiffers,
 ChangeDetectorRef, CollectionChangeRecord, ViewRef } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {
 private differ: IterableDiffer;
 private views: Map<any, PaIteratorContext> = new Map<any, PaIteratorContext>();

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>,
 private differs: IterableDiffers,
 private changeDetector: ChangeDetectorRef) {
 }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.differ = this.differs.find(this.dataSource).create(this.changeDetector);
 }

 ngDoCheck() {
 let changes = this.differ.diff(this.dataSource);
 if (changes != null) {
 changes.forEachAddedItem(addition => {
 let context = new PaIteratorContext(addition.item,
 addition.currentIndex, changes.length);
 context.view = this.container.createEmbeddedView(this.template,
 context);
 this.views.set(addition.trackById, context);
 });
 let removals = false;
 changes.forEachRemovedItem(removal => {
 removals = true;
 let context = this.views.get(removal.trackById);
 if (context != null) {
 this.container.remove(this.container.indexOf(context.view));

Chapter 16 ■ Creating StruCtural DireCtiveS

388

 this.views.delete(removal.trackById);
 }
 });
 if (removals) {
 let index = 0;
 this.views.forEach(context =>
 context.setData(index++, this.views.size));
 }
 }
 }
}

class PaIteratorContext {
 index: number;
 odd: boolean; even: boolean;
 first: boolean; last: boolean;
 view: ViewRef;

 constructor(public $implicit: any,
 public position: number, total: number) {
 this.setData(position, total);
 }

 setData(index: number, total: number) {
 this.index = index;
 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

Two tasks are required to handle removed objects. The first task is updating the set of views by removing
the ones that correspond to the items provided by the forEachRemovedItem method. This means keeping
track of the mapping between the data objects and the views that represent them, which I have done by
adding a ViewRef property to the PaIteratorContext class and using a Map to collect them, indexed by the
value of the CollectionChangeRecord.trackById property.

WORKING WITH MAPS

the Map class is a collection that stores key/value pairs and is defined as part of the eS6 specification.
typeScript has built-in support for managing key/value pairs if the key is a string or a number, which
isn’t useful for this example. When using a Map, you can provide typeScript type annotations for the key
and value types, like this:

...
private views: Map<any, PaIteratorContext> = new Map<any, PaIteratorContext>();
...

Chapter 16 ■ Creating StruCtural DireCtiveS

389

this example uses any to specify that the key can be any JavaScript object, which allows item tracking
iDs to be used to store context objects in the Map. Setting a key/value pair is done through the set
method, like this:

...
this.views.set(addition.trackById, context);
...

items are retrieved through the get method and removed from the Map using the delete method.

...
let context = this.views.get(removal.trackById);
...
this.views.delete(removal.trackById);
...

the contents of the Map can be processed using the forEach method, which invokes a callback function
for each key/value pair. as explained in the SportsStore chapters, the Map doesn’t work well as a source
of data for data bindings.

the full set of Map features is described at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Map. Older browsers don’t have built-in support for the Map
class and must use a compatibility library, such as core-js, as described in Chapter 11.

When processing the collection changes, the directive handles each removed object by retrieving
the corresponding PaIteratorContext object from the Map, getting its ViewRef object and passing it to
the ViewContainerRef.remove element to remove the content associated with the object from the view
container.

The second task is to update the context data for those objects that remain so that the bindings that rely
on a views position in the view container are updated correctly. The directive calls the PaIteratorContext.
setData method for each context object left in the Map to update the view’s position in the container and
update the total number of views that are in use. Without these changes, the properties provided by the
context object wouldn’t accurately reflect the data model, which means that the background colors for the
rows wouldn’t be striped and the Delete buttons wouldn’t target the right objects.

The effect of these changes is that each table row contains a Delete button that removes the
corresponding object from the data model, which in turn triggers an update of the table, as shown in
Figure 16-7.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 16 ■ Creating StruCtural DireCtiveS

390

Querying the Host Element Content
Directives can query the contents of their host element to access the directives it contains, known as the
content children, which allows directives to coordinate themselves to work together.

 ■ Tip Directives can also work together by sharing services, which i describe in Chapter 19.

To demonstrate how content can be queried, I added a file called cellColor.directive.ts to the app
folder and used it to define the directive shown in Listing 16-20.

Listing 16-20. The Contents of the cellColor.directive.ts File in the app Folder

import { Directive, HostBinding } from "@angular/core";

@Directive({
 selector: "td"
})
export class PaCellColor {

 @HostBinding("class")
 bgClass: string = "";

 setColor(dark: Boolean) {
 this.bgClass = dark ? "bg-inverse" : "";
 }
}

The PaCellColor class defines a simple attribute directive that operates on td elements and that binds
to the class property of the host element. The setColor method accepts a Boolean parameter that, when
the value is true, sets the class property to bg-inverse, which is the Bootstrap class for inverted colors
(a dark background with light text).

Figure 16-7. Removing objects from the data model

http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 16 ■ Creating StruCtural DireCtiveS

391

The PaCellColor class will be the directive that is embedded in the host element’s content in this
example. The goal is to write another directive that will query its host element to locate the embedded
directive and invoke its setColor method. To that end, I added a file called cellColorSwitcher.directive.
ts to the app folder and used it to define the directive shown in Listing 16-21.

Listing 16-21. The Contents of the cellColorSwitcher.directive.ts File in the app Folder

import { Directive, Input, Output, EventEmitter,
 SimpleChange, ContentChild } from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean;

 @ContentChild(PaCellColor)
 contentChild: PaCellColor;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 if (this.contentChild != null) {
 this.contentChild.setColor(changes["modelProperty"].currentValue);
 }
 }
}

The PaCellColorSwitcher class defines a directive that operates on table elements and that defines an
input property called paCellDarkColor. The important part of this directive is the contentChild property.

...
@ContentChild(PaCellColor)
contentChild: PaCellColor;
...

The @ContentChild decorator tells Angular that the directive needs to query the host element’s content
and assign the first result of the query to the property. The argument to the @ContentChild director is one
or more directive classes. In this case, the argument to the @ContentChild decorator is PaCellColor, which
tells Angular to locate the first PaCellColor object contained within the host element’s content and assign it
to the decorated property.

 ■ Tip You can also query using template variable names, such that @ContentChild("myVariable") will find
the first directive that has been assigned to myVariable.

The query result provides the PaCellColorSwitcher directive with access to the child component and
allows it to call the setColor method in response to changes to the input property.

Chapter 16 ■ Creating StruCtural DireCtiveS

392

 ■ Tip if you want to include the descendants of children in the results, then you can configure the query, like
this: @ContentChild(PaCellColor, { descendants: true}).

In Listing 16-22, I added a checkbox to the template that uses the ngModel directive to set a variable that
is bound to the PaCellColorSwitcher directive’s input property.

Listing 16-22. Applying the Directives in the template.html File

...
<div class="col-xs-8">
 <div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
 </div>

 <div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="darkColor" />
 Dark Cell Color
 </label>
 </div>

 <table *paIf="showTable" [paCellDarkColor]="darkColor"
 class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">{{item.price}}</td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(i)">
 Delete
 </button>
 </td>
 </tr>
 </table>
</div>
...

The final step is to register the new directives with the Angular module’s declarations property, as
shown in Listing 16-23.

Chapter 16 ■ Creating StruCtural DireCtiveS

393

Listing 16-23. Registering New Directives in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher],
 bootstrap: [ProductComponent]
})
export class AppModule { }

When you save the changes, you will see a new checkbox above the table. When you check the box,
the ngModel directive will cause the PaCellColorSwitcher directive’s input property to be updated, which
will call the setColor method of the PaCellColor directive object that was found using the @ContentChild
decorator. The visual effect is small because only the first PaCellColor directive is affected, which is the cell
that displays the number 1, at the top-left corner of the table, as shown in Figure 16-8.

Figure 16-8. Operating on a content child

Chapter 16 ■ Creating StruCtural DireCtiveS

394

Querying Multiple Content Children
The @ContentChild decorator finds the first directive object that matches the argument and assigns it to the
decorated property. If you want to receive all the directive objects that match the argument, then you can
use the @ContentChildren decorator instead, as shown in Listing 16-24.

Listing 16-24. Querying Multiple Content Children in the cellColorSwitcher.directive.ts File

import { Directive, Input, Output, EventEmitter,
 SimpleChange, ContentChildren, QueryList } from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean;

 @ContentChildren(PaCellColor)
 contentChildren: QueryList<PaCellColor>;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 this.updateContentChildren(changes["modelProperty"].currentValue);
 }

 private updateContentChildren(dark: Boolean) {
 if (this.contentChildren != null && dark != undefined) {
 this.contentChildren.forEach((child, index) => {
 child.setColor(index % 2 ? dark : !dark);
 });
 }
 }
}

When you use the @ContentChildren decorator, the results of the query are provided through a
QueryList, which provides access to the directive objects using the methods and properties described in
Table 16-6.

Chapter 16 ■ Creating StruCtural DireCtiveS

395

In the listing, the directive responds to changes in the input property value by calling the
updateContentChildren method, which in turns uses the forEach method on the QueryList and invokes
the setColor method on every second directive that has matched the query. Figure 16-9 shows the effect
when the checkbox is selected.

Figure 16-9. Operating on multiple content children

Table 16-6. The QueryList Members

Name Description

length This property returns the number of matched directive objects.

first This property returns the first matched directive object.

last This property returns the last matched directive object.

map(function) This method calls a function for each matched directive object in order to create a
new array, equivalent to the Array.map method.

filter(function) This method calls a function for each matched directive object in order to create an
array containing the objects for which the function returns true, equivalent to the
Array.filter method.

reduce(function) This method calls a function for each matched directive object in order to create a
single value, equivalent to the Array.reduce method.

forEach(function) This method calls a function for each matched directive object, equivalent to the
Array.forEach method.

some(function) This method calls a function for each matched directive object and returns true if
the function returns true at least once, equivalent to the Array.some method.

changes This property is used to monitor the results for changes, as described in the
upcoming “Receiving Query Change Notifications” section.

Chapter 16 ■ Creating StruCtural DireCtiveS

396

Receiving Query Change Notifications
The results of content queries are live, meaning that they are automatically updated to reflect additions,
changes, or deletions in the host element’s content. Receiving a notification when there is a change in the
query results requires using the Observable interface, which is provided by the Reactive Extensions package
added to the project in Chapter 11. The Reactive Extensions package provides features for distributing
change events through a JavaScript application. I explain how Observable objects work in more detail in
Chapter 23, but for now, it is enough to know that they are used internally by Angular to manage changes.

In Listing 16-25, I have updated the PaCellColorSwitcher directive so that it receives notifications
when the set of content children in the QueryList changes.

Listing 16-25. Receiving Change Notifications in the cellColorSwitcher.directive.ts File

import { Directive, Input, Output, EventEmitter,
 SimpleChange, ContentChildren, QueryList } from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean;

 @ContentChildren(PaCellColor)
 contentChildren: QueryList<PaCellColor>;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 this.updateContentChildren(changes["modelProperty"].currentValue);
 }

 ngAfterContentInit() {
 this.contentChildren.changes.subscribe(() => {
 setTimeout(() => this.updateContentChildren(this.modelProperty), 0);
 });
 }

 private updateContentChildren(dark: Boolean) {
 if (this.contentChildren != null && dark != undefined) {
 this.contentChildren.forEach((child, index) => {
 child.setColor(index % 2 ? dark : !dark);
 });
 }
 }
}

The value of a content child query property isn’t set until the ngAfterContentInit lifecycle method
is invoked, so I use this method to set up the change notification. The QueryList class defines a changes
method that returns a Reactive Extensions Observable object, which defines a subscribe method. This
method accepts a function that is called when the contents of the QueryList change, meaning that there
is some change in the set of directives matched by the argument to the @ContentChildren decorator. The

http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_23

Chapter 16 ■ Creating StruCtural DireCtiveS

397

function that I passed to the subscribe method calls the updateContentChildren method to set the colors,
but it does so within a call to the setTimeout function, which delays the execution of the method call until
after the subscribe callback function has completed. Without the call to setTimeout, Angular will report
an error because the directive tries to start a new content update before the existing one has been fully
processed. The result of these changes is that the dark coloring is automatically applied to new table cells
that are created when the HTML form is used, as shown in Figure 16-10.

Figure 16-10. Acting on content query change notifications

Summary
In this chapter, I explained how structural directives work by re-creating the functionality of the built-in ngIf
and ngFor directives. I explained the use of view containers and templates, described the full and concise
syntax for applying structural directives, and showed you how to create a directive that iterates over a
collection of data objects and how directives can query the content of their host element. In the next chapter,
I introduce components and explain how they differ from directives.

399© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_17

CHAPTER 17

Understanding Components

Components are directives that have their own templates, rather than relying on content provided from
elsewhere. Components have access to all the directive features described in earlier chapters and still have a
host element, can still define input and output properties, and so on. But they also define their own content.

It can be easy to underestimate the importance of the template, but attribute and structural directives
have limitations. Directives can do useful and powerful work, but they don’t have much insight into the
elements they are applied to. Directives are at their most useful when they are general-purpose tools, such
the ngModel directive, which can be applied to any data model property and any form element, without
regard to what the data or the element is being used for.

Components, by contrast, are closely tied to the contents of their templates. Components provide
the data and logic that will be used by the data bindings that are applied to the HTML elements in the
template, which provide the context used to evaluate data binding expressions and act as the glue between
the directives and the rest of the application. Components are also a useful tool in allowing large Angular
projects to be broken up into manageable chunks.

In this chapter, I explain how components work and explain how to restructure an application by
introducing some additional components. Table 17-1 puts components in context.

Table 17-1. Putting Components in Context

Question Answer

What are they? Components are directives that define their own HTML content
and, optionally, CSS styles.

Why are they useful? Components make it possible to define self-contained blocks of
functionality, which makes projects more manageable and allows
for functionality to be more readily reused.

How are they used? The @Component decorator is applied to a class, which is registered
in the application’s Angular module.

Are there any pitfalls or limitations? No. Components provide all the functionality of directives, with the
addition of providing their own templates.

Are there any alternatives? An Angular application must contain at least one component, which
is used in the bootstrap process. Aside from this, you don’t have
to add additional components, although the resulting application
becomes unwieldy and difficult to manage.

Chapter 17 ■ Understanding Components

400

Table 17-2 summarizes the chapter.

Table 17-2. Chapter Summary

Problem Solution Listing

Create a component Apply the @Component directive to a class 1–5

Define the content displayed by a component Create an inline or external template 6–8

Include data in a template Use a data binding in the component’s
template

9

Coordinate between components Use input or output properties 10–16

Display content in an element to which a
component has been applied

Project the host element’s content 17–21

Style component content Create component styles 22–30

Query the content in the component’s template Use the @ViewChildren decorator 31

Preparing the Example Project
In this chapter, I continue using the example project that I created in Chapter 11 and have been modifying
since. No changes are required to prepare for this chapter.

 ■ Tip You can get the project as part of the free source code download that accompanies this book and that
is available at apress.com.

To start the TypeScript compiler and the development HTTP server, run the following command in the
example folder:

npm start

The development HTTP server will open a new browser window showing the content in Figure 17-1.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 17 ■ Understanding Components

401

Structuring an Application with Components
At the moment, the example project contains only one component and one template. Angular applications
require at least one component, known as the root component, which is the entry point specified in the
Angular module.

The problem with having only one component is that it ends up containing the logic required for all the
application’s features, with its template containing all the markup required to expose those features to the
user. The result is that a single component and its template are responsible for handling a lot of tasks. The
component in the example application is responsible for the following:

•	 Providing Angular with an entry point into the application, as the root component

•	 Providing access to the application’s data model so that it can be used in data
bindings

•	 Defining the HTML form used to create new products

•	 Defining the HTML table used to display products

•	 Defining the layout that contains the form and the table

•	 Checking that the form data is valid when a new product is created

•	 Maintaining state information used to prevent invalid data being used to create data

•	 Maintaining state information about whether the table should be displayed

There is a lot going on for such a simple application, and not all of these tasks are related. This effect
tends to creep up gradually as development proceeds, but it means that the application is harder to test
because individual features can’t be isolated effectively and is harder to enhance and maintain because the
code and markup become increasingly complex.

Figure 17-1. Running the example project

Chapter 17 ■ Understanding Components

402

Adding components to the application allows features to be teased apart into building blocks that can
be used repeatedly in different parts of the application. In the sections that follow, I will create components
that break up the functionality contained in the example application into manageable, reusable, and
self-contained units. Along the way, I’ll explain the different features that components provide above
and beyond those available to directives. To prepare for these changes, I have simplified the existing
component’s template, as shown in Listing 17-1.

Listing 17-1. Simplifying the Content of the template.html File

<div class="col-xs-4 p-a-1 bg-success">
 Form will go here
</div>
<div class="col-xs-8 p-a-1 bg-primary">
 Table will go here
</div>

When you save the changes to the template, you will see the content in Figure 17-2. The placeholders
will be replaced with application functionality as I develop the new components and add them to the
application.

Figure 17-2. Simplifying the existing template

Creating New Components
To create a new component, I added a file called productTable.component.ts to the app folder and used it
to define the component shown in Listing 17-2.

Listing 17-2. The Contents of the productTable.component.ts File in the app Folder

import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 template: "<div>This is the table component</div>"
})
export class ProductTableComponent {

}

Chapter 17 ■ Understanding Components

403

A component is a class to which the @Component decorator has been applied. This is as simple as a
component can get, and it provides just enough functionality to count as a component, without yet doing
anything useful.

The naming convention for the files that define components is to use a descriptive name that suggests
the purpose of the component, followed by a period and then component.ts. For this component, which will
be used to generate the table of products, the file name is productTable.component.ts. The name of the
class should be equally descriptive. This component’s class is named ProductTableComponent.

The @Component decorator describes and configures the component. The most useful decorator
properties are described by Table 17-3, which also includes details of where they are described (not all of
them are covered in this chapter).

Table 17-3. The Component Decorator Properties

Name Description

animations This property is used to configuration animations, as described in Chapter 28.

encapsulation This property is used to change the view encapsulation settings, which control how
component styles are isolated from the rest of the HTML document. See the “Setting
View Encapsulation” section for details.

moduleId This property is used to specify the module that the component is defined within and is
used in conjunction with the templateUrl property, as described in Chapter 12.

selector This property is used to specify the CSS selector used to match host elements, as
described after the table.

styles This property is used to define CSS styles that are applied only to the component’s
template. The styles are defined inline, as part of the TypeScript file. See the “Using
Component Styles” section for details.

styleUrls This property is used to define CSS styles that are applied only to the component’s
template. The styles are defined in separate CSS files. See the “Using Component Styles”
section for details.

template This property is used to specify an inline template, as described in the “Defining
Templates” section.

templateUrl This property is used to specify an external template, as described in the “Defining
Templates” section.

providers This property is used to create local providers for services, as described in Chapter 19.

viewProviders This property is used to create local providers for services that are available only to view
children, as described in Chapter 20.

For the second component, I created a file called productForm.component.ts in the app folder and
added the code shown in Listing 17-3.

http://dx.doi.org/10.1007/978-1-4842-2307-9_28
http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 17 ■ Understanding Components

404

Listing 17-3. The Contents of the productForm.component.ts File in the app Folder

import { Component } from "@angular/core";

@Component({
 selector: "paProductForm",
 template: "<div>This is the form component</div>"
})
export class ProductFormComponent {

}

This component is equally simple and is just a placeholder for the moment. Later in the chapter, I’ll add
some more useful features. To enable the components, they must be declared in the application’s Angular
module, as shown in Listing 17-4.

Listing 17-4. Enabling New Components in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The component class is brought into scope using an import statement and added to the NgModule
decorator’s declarations array.

The final step is to add an HTML element that matches the component’s selector property, as shown in
Listing 17-5, which will provide the component with its host element.

Listing 17-5. Adding a Host Element in the template.html File

<div class="col-xs-4 p-a-1 bg-success">
 <paProductForm></paProductForm>
</div>
<div class="col-xs-8 p-a-1 bg-primary">
 <paProductTable></paProductTable>
</div>

Chapter 17 ■ Understanding Components

405

When all the changes have been saved, the browser will display the content shown in Figure 17-3, which
shows that parts of the HTML document are now under the management of the new components.

Figure 17-3. Adding new components

Figure 17-4. The new application structure

Understanding the New Application Structure
The new components have changed the structure of the application. Previously, the root component
was responsible for all the HTML content displayed by the application. Now, however, there are three
components, and responsibility for some of the HTML content has been delegated to the new additions, as
illustrated by Figure 17-4.

When the browser loads the index.html file, the Angular bootstrap process starts, and Angular
processes the application’s module, which provides a list of the components that the application requires.
Angular inspects the decorator for each component in its configuration, including the value of the selector
property, which is used to identify which elements will be hosts.

Chapter 17 ■ Understanding Components

406

Angular then begins processing the body of the index.html file and finds the app element, which
is specified by the selector property of the ProductComponent component. Angular populates the app
element with the component’s template, which is contained in the template.html file. Angular inspects
the contents of the template.html file and finds the paProductForm and paProductTable elements, which
match the selector properties of the newly added components. Angular populates these elements with each
component’s template, producing the placeholder content shown in Figure 17-3.

There are some important new relationships to understand. First, the HTML content that is displayed
in the browser window is now composed of several templates, each of which is managed by a component.
Second, the ProductComponent is now the parent component to the ProductFormComponent and
ProductTableComponent objects, a relationship that is formed by the fact that the host elements for the new
components are defined in the template.html file, which is the ProductComponent template. Equally, the
new components are children of the ProductComponent. The parent/child relationship is an important one
when it comes to Angular components, as you will see as I describe how components work in later sections.

Defining Templates
Although there are new components in the application, they don’t have much impact at the moment
because they display only placeholder content. Each component has its own template, which defines the
content that will be used to replace its host element in the HTML document. There are two different ways to
define templates: inline within the @Component decorator or externally in an HTML file.

The new components that I added templates, where a fragment of HTML is assigned to the template
property of the @Component decorator, like this:

...
template: "<div>This is the form component</div>"
...

The advantage of this approach is simplicity: the component and the template are defined in a single
file, and there is no way that the relationship between them can be confused. The drawback of inline
templates is that they can get out of control and be hard to read if they contain more than a few HTML
elements.

Another problem is that editors that highlight syntax errors as you type usually rely on the file extension
to figure out what type of checking should be performed and won’t realize that the value of the template
property is HTML and will simply treat it as a string.

If you are using TypeScript, then you can use multiline strings to make inline templates more readable.
Multiline strings are denoted with the backtick character (the ` character, which is also known as the grave
accent), and they allow strings to spread over multiple lines, as shown in Listing 17-6.

Listing 17-6. Using a Multiline String for an Inline Template in the productTable.component.ts File

import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 template: `<div class='bg-info p-a-1'>
 This is a multiline template
 </div>`
})
export class ProductTableComponent {

}

Chapter 17 ■ Understanding Components

407

Multiline strings allow the structure of the HTML elements in a template to be preserved, which make it
easier to read and increase the size of template that can be practically included inline before it becomes too
unwieldly to manage. Figure 17-5 shows the effect of the template in Listing 17-6.

Figure 17-5. Using a multiline inline template

 ■ Tip my advice is to use external templates (explained in the next section) for any template that contains
more than two or three simple elements, largely to take advantage of the htmL editing and syntax highlighting
features that modern editors provide, which can go a long way to reduce the number of errors you discover
when running the application.

Defining External Templates
External templates are defined in a different file from the rest of the component. The advantage of this
approach is that the code and HTML are not mixed together, which makes both easier to read and unit test,
and it also means that code editors will know they are working with HTML content when you are working on
a template file, which can help reduce coding-time errors by highlighting errors.

The drawback of external templates is that you have to manage more files in the project and ensure
that each component is associated with the correct template file. The best way to do this is to follow a
consistent file naming strategy so that it is immediately obvious that a file contains a template for a given
component. The convention for Angular is to create pairs of files using the convention < componentname>.
component.<type > so that when you see a file called productTable.component.ts, you know it contains a
component called Products written in TypeScript, and when you see a file called productTable.component.
html, you know that it contains an external template for the Products component.

 ■ Tip the syntax and features for both types of template are the same, and the only difference is where the
content is stored, either in the same file as the component code or in a separate file.

Chapter 17 ■ Understanding Components

408

To define an external template using the naming convention, I created a file called productTable.
component.html in the app folder and added the markup shown in Listing 17-7.

Listing 17-7. The Contents of the productTable.component.html File in the app Folder

<div class="bg-info p-a-1">
 This is an external template
</div>

This is the kind of template that I have been using for the root component since Chapter 11. To specify an
external template, the templateURL property is used in the @Component decorator, as shown in Listing 17-8.

Listing 17-8. Using an External Template in the productTable.component.html File

import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

}

Notice that different properties are used: template is for inline templates, and templateUrl is for
external templates. Figure 17-6 shows the effect of using an external template.

Figure 17-6. Using an external template

Using Data Bindings in Component Templates
A component’s template can contain the full range of data bindings and target any of the built-in directives
or custom directives that have been registered in the application’s Angular module. Each component
class provides the context for evaluating the data binding expressions in its template, and, by default,
each component is isolated from the others. This means that the component doesn’t have to worry about

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 17 ■ Understanding Components

409

using the same property and method names that other components use and can rely on Angular to keep
everything separate. As an example, Listing 17-9 shows the addition of a property called model to the form
child component, which would conflict with the property of the same name in the root component were
they not kept separate.

Listing 17-9. Adding a Property and a Model Binding Expression in the productForm.component.ts File

import { Component } from "@angular/core";

@Component({
 selector: "paProductForm",
 template: "<div>{{model}}</div>"
})
export class ProductFormComponent {

 model: string = "This is the model";
}

The component class uses the model property to store a message that is displayed in the template using
a string interpolation binding. Figure 17-7 shows the result.

Figure 17-7. Using a data binding in a child component

Using Input Properties to Coordinate Between Components
Few components exist in isolation and need to share data with other parts of the application. Components
can define input properties to receive the value of data binding expressions on their host elements. The
expression will be evaluated in the context of the parent component, but the result will be passed to the child
component’s property.

To demonstrate, Listing 17-10 adds an input property to the table component, which it will use to
receive the model data that it should display.

Listing 17-10. Defining an Input Property in the productTable.component.ts File

import { Component, Input } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

Chapter 17 ■ Understanding Components

410

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model;

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }

 showTable: boolean = true;
}

The component now defines an input property that will be assigned the value expression assigned to
the model attribute on the host element. The getProduct, getProducts, and deleteProduct methods use
the input property to provide access to the data model to bindings in the component’s template, which is
modified in Listing 17-11. The showTable property is used when I enhance the template in Listing 17-14 later
in the chapter.

Listing 17-11. Adding a Data Binding in the productTable.component.html File

There are {{getProducts().length}} items in the model

To provide the child component with the data that it requires means adding a binding to its host
element, which is defined in the template of the parent component, as shown in Listing 17-12.

Listing 17-12. Adding a Data Binding in the template.html File

<div class="col-xs-4 p-a-1 bg-success">
 <paProductForm></paProductForm>
</div>
<div class="col-xs-8 p-a-1 bg-primary">
 <paProductTable [model]="model"></paProductTable>
</div>

The effect of this binding is to provide the child component with access to the parent component’s
model property. This can be a confusing feature because it relies on the fact that the host element is defined
in the parent component’s template but that the input property is defined by the child component, as
illustrated by Figure 17-8.

Chapter 17 ■ Understanding Components

411

The child component’s host element acts as the bridge between the parent and child components, and
the input property allows the component to provide the child with the data it needs, producing the result
shown in Figure 17-9.

Figure 17-8. Sharing data between parent and child components

Figure 17-9. Sharing data from a parent to a child component

Using Directives in a Child Component Template

Once the input property has been defined, the child component can use the full range of data bindings
and directives, either by using the data provided through the parent component or by defining its own. In
Listing 17-13, I have restored the original table functionality from earlier chapters that displays a list of the
Product objects in the data model, along with a checkbox that determines whether the table is displayed.
This was functionality that was previously managed by the root component and its template.

Chapter 17 ■ Understanding Components

412

Listing 17-13. Restoring the Table Functionality in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">{{item.price}}</td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

The same HTML elements, data bindings, and directives (including custom directives like paIf and
paFor) are used, producing the result shown in Figure 17-10. The key difference is not in the appearance of
the table but in the way that it is now managed by a dedicated component.

Figure 17-10. Restoring the table display

Using Output Properties to Coordinate Between Components
Child components can use output properties that define custom events that signal important changes and
that allow the parent component to respond when they occur. Listing 17-14 shows the addition of an output
property to the form component, which will be triggered when the user creates a new Product object.

Chapter 17 ■ Understanding Components

413

Listing 17-14. Defining an Output Property in the productForm.component.ts File

import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html"
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

The output property is called newProductEvent, and the component triggers it when the submitForm
method is called. Aside from the output property, the additions in the listing are based on the logic in the
root controller, which previously managed the form. I also removed the inline template and created a file
called productForm.component.html in the app folder, into which I restored the HTML form, as shown in
Listing 17-15.

Listing 17-15. The Contents of the productForm.component.html File in the app Folder

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && !control.valid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>

Chapter 17 ■ Understanding Components

414

 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && !form.valid">
 Create
 </button>
</form>

No changes are need to the markup used to define the form. As with the input property, the child
component’s host element acts as the bridge to the parent component, which can register interest in the
custom event, as shown in Listing 17-16.

Listing 17-16. Registering for the Custom Event in the template.html File

<div class="col-xs-4 p-a-1">
 <paProductForm (paNewProduct)="addProduct($event)"></paProductForm>
</div>
<div class="col-xs-8 p-a-1">
 <paProductTable [model]="model"></paProductTable>
</div>

The new binding handles the custom event by passing the event object to the addProduct method. The
child component is responsible for managing the form elements and validating their contents. When the
data passes validation, the custom event is triggered, and the data binding expression is evaluated in the
context of the parent component, whose addProduct method adds the new object to the model. Since the
model has been shared with the table child component through its input property, the new data is displayed
to the user, as shown in Figure 17-11.

Figure 17-11. Using a custom event in a child component

Projecting Host Element Content
If the host element for a component contains content, it can be included in the template using the special
ng-content element. This is known as content projection, and it allows components to be created that combine
the content in their template with the content in the host element. To demonstrate, I added a file called
toggleView.component.ts to the app folder and used it to define the component shown in Listing 17-17.

Chapter 17 ■ Understanding Components

415

Listing 17-17. The Contents of the toggleView.component.ts File in the app Folder

import { Component } from "@angular/core";

@Component({
 selector: "paToggleView",
 templateUrl: "app/toggleView.component.html"
})
export class PaToggleView {

 showContent: boolean = true;
}

This component defines a showContent property that will be used to determine whether the host
element’s content will be displayed within the template. To provide the template, I added a file called
toggleView.component.html to the app folder and added the elements shown in Listing 17-18.

Listing 17-18. The Contents of the toggleView.component.html File in the app Folder

<div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showContent" />
 Show Content
 </label>
</div>
<ng-content *ngIf="showContent"></ng-content>

The important element is ng-content, which Angular will replace with the content of the host element.
The ngIf directive has been applied to the ng-content element so that it will be visible only if the checkbox
in the template is checked. Listing 17-19 registers the component with the Angular module.

Listing 17-19. Registering the Component in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,

Chapter 17 ■ Understanding Components

416

 ProductFormComponent, PaToggleView],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The final step is to apply the new component to a host element that contains content, as shown in
Listing 17-20.

Listing 17-20. Adding a Host Element with Content in the template.html File

<div class="col-xs-4 p-a-1">
 <paProductForm (paNewProduct)="addProduct($event)"></paProductForm>
</div>
<div class="col-xs-8 p-a-1">
 <paToggleView>
 <paProductTable [model]="model"></paProductTable>
 </paToggleView>
</div>

The paToggleView element is the host for the new component, and it contains the paProductTable
element, which applies the component that creates the product table. The result is that there is a checkbox
that controls visibility of the table, as shown in Figure 17-12. The new component has no knowledge of
the content of its host element, and its inclusion in the template is possible only through the ng-content
element.

Figure 17-12. Including host element content in the template

Chapter 17 ■ Understanding Components

417

Completing the Component Restructure
The functionality that was previously contained in the root component has been distributed to the new child
components. All that remains is to tidy up the root component to remove the code that is no longer required,
as shown in Listing 17-21.

Listing 17-21. Removing Obsolete Code in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

Many of the responsibilities of the root component have been moved elsewhere in the application.
Of the original list from the start of the chapter, only the following remain the responsibility of the root
component:

•	 Providing Angular with an entry point into the application, as the root component

•	 Providing access to the application’s data model so that it can be used in data
bindings

The child components have assumed the rest of the responsibilities, providing self-contained blocks of
functionality that are simpler, easier to develop, and easier to maintain and that can be reused as required.

Using Component Styles
Components can define styles that apply only to the content in their templates, which allows content to be
styled by a component without it being affected by the styles defined by its parents or other antecedents and
without affecting the content in its child and other descendant components. Styles can be defined inline
using the styles property of the @Component decorator, as shown in Listing 17-22.

Listing 17-22. Defining Inline Styles in the productForm.component.ts File

import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",

Chapter 17 ■ Understanding Components

418

 styles: ["div { background-color: lightgreen"]
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

The styles property is set to an array, where each item contains a CSS selector and one or more
properties. In the listing I have specified styles that set the background color of div elements to lightgreen.
Even though there are div elements throughout the combined HTML document, this style will affect only
the elements in the template of the component that defines them, which is the form component in this case,
as shown in Figure 17-13.

Figure 17-13. Defining inline component styles

Chapter 17 ■ Understanding Components

419

 ■ Tip the styles defined in the head section of the htmL document still apply to all elements, even when a
component defines its own. this is why the content is still styled using Bootstrap.

Defining External Component Styles
Inline styles offer the same benefits and drawbacks as inline templates: they are simple and keep everything
in one file, but they can be hard to read, can be hard to manage, and can confuse code editors.

The alternative is to define styles in a separate file and associate them with a component using the
styleUrls property in its decorator. External style files follow the same naming convention as templates and
code files. I added a file called productForm.component.css to the app folder and used it to define the styles
shown in Listing 17-23.

Listing 17-23. The Contents of the productForm.component.css File in the app Folder

div {
 background-color: lightcoral;
}

This is the same style that was defined inline but with a different color value to confirm that this is the
CSS being used by the component. In Listing 17-24, the component’s decorator has been updated to specify
the styles file.

Listing 17-24. Using External Component Styles in the productForm.component.ts File

import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 styleUrls: ["app/productForm.component.css"]
})
export class ProductFormComponent {

 // ...class members omitted for brevity...

}

The styleUrls property is set to an array of strings, each of which specifies a CSS file. Figure 17-14
shows the effect of adding the external styles file.

Chapter 17 ■ Understanding Components

420

Using Advanced Style Features
Defining styles in components is a useful feature, but you won’t always get the results you expect. Some
advanced features allow you to take control of how component styles work.

Setting View Encapsulation
By default, component-specific styles are implemented by writing the CSS that has been applied to the
component so that it targets special attributes, which Angular then adds to all of the top-level elements
contained in the component’s template. If you inspect the DOM using the browser’s F12 developer tools, you
will see that the contents of the external CSS file in Listing 17-23 have been added to the head element of the
HTML document and have been rewritten like this:

...
<style>
div[_ngcontent-qsg-2] {
 background-color: lightcoral;
}
</style>
...

The selector has been modified so that it matches div elements with an attribute called _ngcontent-
qsg-2, although you may see a different name in your browser since the name of the attribute is generated
dynamically by Angular.

Figure 17-14. Defining external component styles

Chapter 17 ■ Understanding Components

421

To ensure that the CSS in the style element affects only the HTML elements managed by the
component, the elements in the template are modified so they have the same dynamically generated
attribute, like this:

...
<div _ngcontent-qsg-2="" class="form-group">
 <label _ngcontent-qsg-2="">Name</label>
 <input _ngcontent-qsg-2="" class="form-control ng-untouched ng-pristine
 ng-invalid" ng-reflect-name="name" name="name">
</div>
...

This is known as the component’s view encapsulation behavior, and what Angular is doing is emulating
a feature known as the shadow DOM, which allows sections of the Domain Object Model to be isolated
so they have their own scope, meaning that JavaScript, styles, and templates can be applied to part of the
HTML document. The reason that Angular emulates this behavior is that it is implemented by only a small
number of browsers (at the time of writing, only Google Chrome and the latest versions of Safari and Opera
support the shadow DOM feature), but there are two other encapsulation options, which are set using the
encapsulation property in the @Component decorator.

 ■ Tip You can learn more about the shadow dom at http://developer.mozilla.org/en-US/docs/Web/
Web_Components/Shadow_DOM. You can see which browsers support the shadow dom feature at
http://caniuse.com/#feat=shadowdom.

The encapsulation property is assigned a value from the ViewEncapsulation enumeration, which is
defined in the @angular/core module, and it defines the values described in Table 17-4.

Table 17-4. The ViewEncapsulation Values

Name Description

Emulated When this value is specified, Angular emulates the shadow DOM by writing content
and styles to add attributes, as described earlier. This is the default behavior if no
encapsulation value is specified in the @Component decorator.

Native When this value is specified, Angular uses the browser’s shadow DOM feature. This will
work only if the browser implements the shadow DOM or if you are using a polyfill.

None When this value is specified, Angular simply adds the unmodified CSS styles to the head
section of the HTML document and lets the browser figure out how to apply the styles using
the normal CSS precedence rules.

The Native and None values should be used with caution. Browser support for the shadow DOM feature
is so limited that using the Native option is sensible only if you are using a polyfill library that provides
compatibility for other browsers. There are polyfill libraries available (such as the one at http://github.
com/webcomponents/webcomponentsjs), but they produce inconsistent results and do not work with all the
browsers that Angular supports.

http://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM
http://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM
http://caniuse.com/#feat=shadowdom
http://github.com/webcomponents/webcomponentsjs
http://github.com/webcomponents/webcomponentsjs

Chapter 17 ■ Understanding Components

422

The None option adds all the styles defined by components to the head section of the HTML document
and lets the browser figure out how to apply them. This has the benefit of working in all browsers, but the
results are unpredictable, and there is no isolation between the styles defined by different components.

For completeness, Listing 17-25 shows the encapsulation property being set to Emulated, which is the
default value and which works in all the browsers that Angular supports, without the need for polyfills.

Listing 17-25. Setting View Encapsulation in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 styleUrls: ["app/productForm.component.css"],
 encapsulation: ViewEncapsulation.Emulated
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

Using the Shadow DOM CSS Selectors
Using the shadow DOM means that there are boundaries that regular CSS selectors do not operate across.
To help address this, here are a number of special CSS selectors that are useful when using styles that rely
on the shadow DOM (even when it is being emulated), as described in Table 17-5 and demonstrated in the
sections that follow.

Chapter 17 ■ Understanding Components

423

Selecting the Host Element

A component’s host element appears outside of its template, which means that the selectors in its styles
apply only to elements that the host element contains and not the element itself. This can be addressed by
using the :host selector, which matches the host element. Listing 17-26 defines a style that is applied only
when the mouse pointer is hovering over the host element, which is specified by combining the :host and
:hover selectors.

Listing 17-26. Matching the Component’s Host Element in the productForm.component.css File

div {
 background-color: lightcoral;
}
:host:hover {
 font-size: 25px;
}

When the mouse pointer is over the host element, its font-size property will be set to 25px, which
increases the text size to 25 points for all the elements in the form, as shown in Figure 17-15.

Table 17-5. The Shadow DOM CSS Selectors

Name Description

:host This selector is used to match the component’s host element.

:host-context(classSelector) This selector is used to match the ancestors of the host element that
are members of a specific class.

/deep/ or >>> This selector is used by a parent component to define styles that affect
the elements in child component templates. This selector should be
used only when the @Component decorator’s encapsulation property
is set to emulated, as described in the “Setting View Encapsulation”
section.

Chapter 17 ■ Understanding Components

424

Selecting the Host Element’s Ancestors

The :host-context selector is used to style elements within the component’s template based on the class
membership of the host element’s ancestors (which are outside the template). This is a more limited selector
than :host and cannot be used to specify anything other than a class selector, without support for matching
tag types, attributes, or any other selector. Listing 17-27 shows the use of the :host-context selector.

Listing 17-27. Selecting the Host Element’s Ancestors in the productForm.component.css File

div {
 background-color: lightcoral;
}
:host:hover {
 font-size: 25px;
}
:host-context(.angularApp) input {
 background-color: lightgray;
}

The selector in the listing sets the background-color property of input elements within the
component’s template to lightgrey only if one of the host element’s ancestor elements is a member of a
class called angularApp. In Listing 17-28, I have added the app element in the index.html file, which is the
host element for the root component, to the angularApp class.

Listing 17-28. Adding the Root Component’s Host Element to a Class in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title></title>

Figure 17-15. Selecting the host element in a component style

Chapter 17 ■ Understanding Components

425

 <meta charset="utf-8" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <app class="angularApp"></app>
</body>
</html>

Figure 17-16 shows the effect of the selector before and after the changes in Listing 17-28.

Figure 17-16. Selecting the host element’s ancestors

Chapter 17 ■ Understanding Components

426

Pushing a Style into the Child Component’s Template

Styles defined by a component are not automatically applied to the elements in the child component’s
templates. As a demonstration, Listing 17-29 adds a style to the @Component decorator of the root component.

Listing 17-29. Defining Styles in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html",
 styles: ["div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

The selector matches all div elements and applies a border and changes the font style. Figure 17-17
shows the result.

Figure 17-17. Applying regular CSS styles

Chapter 17 ■ Understanding Components

427

Some CSS style properties, such as font-style, are inherited by default, which means that setting
such a property in a parent component will affect the elements in child component templates because the
browser automatically applies the style.

Other properties, such as border, are not inherited by default, and setting such a property in a parent
component has no effect on child component templates, unless the /deep/ or >> > selectors are used, as
shown in Listing 17-30. (These selectors are aliases of one another and have the same effect.)

Listing 17-30. Pushing a Style into Child Component Templates in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html",
 styles: ["/deep/ div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

The selector for the style uses /deep/ to push the styles into the child components’ templates, which
means that all the div elements are given a border, as shown in Figure 17-18.

Chapter 17 ■ Understanding Components

428

Querying Template Content
Components can query the content of their templates to locate instances of directives or components, which
are known as view children. These are similar to the directive content children queries that were described in
Chapter 16 but with some important differences.

In Listing 17-31, I have added some code to the component that manages the table that queries for
the PaCellColor directive that was created to demonstrate directive content queries. This directive is still
registered in the Angular module and selects td elements, so Angular will have applied it to the cells in the
table component’s content.

Listing 17-31. Selecting View Children in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { PaCellColor } from "./cellColor.directive";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model;

Figure 17-18. Pushing a style into child component templates

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 17 ■ Understanding Components

429

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }

 showTable: boolean = true;

 @ViewChildren(PaCellColor)
 viewChildren: QueryList<PaCellColor>;

 ngAfterViewInit() {
 this.viewChildren.changes.subscribe(() => {
 this.updateViewChildren();
 });
 this.updateViewChildren();
 }

 private updateViewChildren() {
 setTimeout(() => {
 this.viewChildren.forEach((child, index) => {
 child.setColor(index % 2 ? true : false);
 })
 }, 0);
 }
}

There are two property decorators that are used to query for directives or components defined in the
template, as described in Table 17-6.

Table 17-6. The View Children Query Property Decorators

Name Description

@ViewChild(class) This decorator tells Angular to query for the first directive or component
object of the specified type and assign it to the property. The class name can
be replaced with a template variable. Multiple classes or templates can be
separated by commas.

@ViewChildren(class) This decorator assigns all the directive and component objects of the
specified type to the property. Template variables can be used instead of
classes, and multiple values can be separated by commas. The results are
provided in a QueryList object, described in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 17 ■ Understanding Components

430

In the listing, I used the @ViewChildren decorator to select all the PaCellColor objects from the
component’s template. Aside from the different property decorators, components have two different
lifecycle methods that are used to provide information about how the template has been processed, as
described in Table 17-7.

Table 17-7. The Additional Component Lifecycle Methods

Name Description

ngAfterViewInit This method is called when the component’s view has been initialized. The results
of the view queries are set before this method is invoked.

ngAfterViewChecked This method is called after the component’s view has been checked as part of the
change detection process.

In the listing, I implement the ngAfterViewInit method to ensure that Angular has processed the
component’s template and set the result of the query. Within the method I perform the initial call to the
updateViewChildren method, which operates on the PaCellColor objects, and set up the function that will
be called when the query results change, using the QueryList.changes property, as described in Chapter
16. The view children are updated within a call to the setTimeout function, as explained in Chapter 16. The
result is that the color of every second table cell is changed, as shown in Figure 17-19.

Figure 17-19. Querying for view children

http://dx.doi.org/10.1007/978-1-4842-2307-9_16
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 17 ■ Understanding Components

431

 ■ Tip You may need to combine view child and content child queries if you have used the ng-content
element. the content defined in the template is queried using the technique shown in Listing 17-31, but the
project content—which replaces the ng-content element—is queried using the child queries described in
Chapter 16.

Summary
In this chapter, I revisited the topic of components and explained how to combine all of the features of
directives with the ability to provide their own templates. I explained how to structure an application to
create small module components and how components can coordinate between themselves using input and
output properties. I also showed you how components can define CSS styles that are applied only to their
templates and no other parts of the application. In the next chapter, I introduce pipes, which are used to
prepare data for display in templates.

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

433© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_18

CHAPTER 18

Using and Creating Pipes

Pipes are small fragments of code that transform data values so they can be displayed to the user in
templates. Pipes allow transformation logic to be defined in self-contained classes so that it can be applied
consistently throughout an application. Table 18-1 puts pipes in context.

Table 18-2 summarizes the chapter.

Table 18-1. Putting Pipes in Context

Question Answer

What are they? Pipes are classes that are used to prepare data for display to the user.

Why are they useful? Pipes allow preparation logic to be defined in a single class that can be used
throughout an application, ensuing that data is presented consistently.

How are they used? The @Pipe decorator is applied to a class and used to specify a name by
which the pipe can be used in a template.

Are there any pitfalls or
limitations?

Pipes should be simple and focused on preparing data. It can be tempting
to let the functionality creep into areas that are the responsibility of other
building blocks, such as directives or components.

Are there any alternatives? You can implement data preparation code in components or directives, but
that makes it harder to reuse in other parts of the application.

Table 18-2. Chapter Summary

Problem Solution Listing

Format a data value for inclusion in a template Use a pipe in a data binding expression 1–8

Create a custom pipe Apply the @Pipe decorator to a class 9–11

Format a data value using multiple pipes Chain the pipe names together using the
bar character

12

Specify when Angular should reevaluate the
output from a pipe

Use the pure property of the @Pipe
decorator.

13–16

Format numerical values Use the number pipe 17, 18

(continued)

Chapter 18 ■ Using and Creating pipes

434

Preparing the Example Project
I am going to continue working with the example project that was first created in Chapter 11 and that
has been expanded and modified in the chapters since. In the final examples in the previous chapter,
component styles and view children queries left the application with a strikingly garish appearance that I am
going to tone down for this chapter. In Listing 18-1, I have disabled the inline component styles applied to
the form elements.

Listing 18-1. Disabling CSS Styles in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 //styleUrls: ["app/productForm.component.css"],
 //encapsulation: ViewEncapsulation.Emulated
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

Problem Solution Listing

Format currency values Use the currency pipe 19, 20

Format percentage values Use the percent pipe 21–24

Change the case of strings Use the uppercase or lowercase pipes 25

Serialize objects into the JSON format Use the json pipe 26

Select elements from an array Use the slice pipe 27

Table 18-2. (continued)

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 18 ■ Using and Creating pipes

435

To disable the checkerboard coloring of the table cells, I changed the selector for the PaCellColor
directive so that it matches an attribute that is not currently applied to the HTML elements, as shown in
Listing 18-2.

Listing 18-2. Changing the Selector in the cellColor.directive.ts File

import { Directive, HostBinding } from "@angular/core";

@Directive({
 selector: "td[paApplyColor]"
})
export class PaCellColor {

 @HostBinding("class")
 bgClass: string = "";

 setColor(dark: Boolean) {
 this.bgClass = dark ? "bg-inverse" : "";
 }
}

Listing 18-3 disables the deep styles defined by the root component.

Listing 18-3. Disabling CSS Styles in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html",
 //styles: ["/deep/ div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

The next change for the existing code in the example application is to simplify the
ProductTableComponent class to remove methods and properties that are no longer required, as shown in
Listing 18-4.

Listing 18-4. Simplifying the Code in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

Chapter 18 ■ Using and Creating pipes

436

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model;

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }
}

Finally, I have removed one of the component elements from the root component’s template to disable
the checkbox that shows and hides the table, as shown in Listing 18-5.

Listing 18-5. Simplifying the Elements in the template.html File

<div class="col-xs-4 p-a-1">
 <paProductForm (paNewProduct)="addProduct($event)"></paProductForm>
</div>
<div class="col-xs-8 p-a-1">
 <paProductTable [model]="model"></paProductTable>
</div>

Installing the Internationalization Polyfill
Some of the built-in pipes that Angular provides rely on the Internationalization API, which provides
location-sensitive string comparisons and formatting for numbers, dates, and times. This API is supported
by most recent browsers, but a polyfill library is required for some of the browsers that Angular supports,
including older versions of Internet Explorer. At the time of writing, the most complete polyfill for the
Internationalization API is Intl.js, which I have added to the set of package dependencies in Listing 18-6.

Listing 18-6. Adding a Package to the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",

Chapter 18 ■ Using and Creating pipes

437

 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

Run the following command in the example folder to download and install the new package:

npm install

In Listing 18-7, I have added a script element to the main HTML document to load the polyfill library.

Listing 18-7. Adding a Script Element in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="systemjs.config.js"></script>

Chapter 18 ■ Using and Creating pipes

438

 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <app class="angularApp"></app>
</body>
</html>

The Intl.complete.js file that the script element adds in Listing 18-7 includes all of the locale
information available in the Intl.js library, which is convenient but adds a relatively large file that the
browser has to download. See the library home page (github.com/andyearnshaw/Intl.js) for instructions
about being more selective about the locale data that is loaded.

Run the following command in the example folder to start the TypeScript compiler and the
development HTTP server:

npm start

The browser will open a new tab or window and display the content shown in Figure 18-1.

Figure 18-1. Running the example application

Chapter 18 ■ Using and Creating pipes

439

Understanding Pipes
Pipes are classes that transform data before it is received by a directive or component. That may not sound
like an important job, but pipes can be used to perform some of the most commonly required development
tasks easily and—most importantly—consistently.

As a quick example to demonstrate how pipes are used, Listing 18-8 applies one of the built-in pipes to
transform the values displayed in the Price column of the table displayed by the application.

Listing 18-8. Using a Pipe in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">{{item.price | currency:"USD":true }}</td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

The syntax for applying a pipe is similar to the style used by command prompts, where a value is
“piped” for transformation using the vertical bar symbol (the | character). Figure 18-2 shows the structure of
the data binding that contains the pipe.

The name of the pipe used in Listing 18-8 is currency, and it formats numbers into currency values.
Arguments to the pipe are separated by colons (the : character). The first pipe argument specifies the
currency code that should be used, which is USD in this case, representing US dollars. The second pipe
argument, which is true, specifies whether the currency symbol, rather than its code, should be displayed.

When Angular processes the expression, it obtains the data value and passes it to the pipe for
transformation. The result produced by the pipe is then used as the expression result for the data binding. In
the example, the bindings are string interpolations, and the results can be seen in Figure 18-3.

Figure 18-2. The anatomy of data binding with a pipe

Chapter 18 ■ Using and Creating pipes

440

Creating a Custom Pipe
I will return to the built-in pipes that Angular provides later in the chapter, but the best way to understand
how pipes work and what they are capable of is to create a custom pipe class. I added a file called
addTax.pipe.ts in the app folder and defined the class shown in Listing 18-9.

Listing 18-9. The Contents of the addTax.pipe.ts File in the app Folder

import { Pipe } from "@angular/core";

@Pipe({
 name: "addTax"
})
export class PaAddTaxPipe {

 defaultRate: number = 10;

 transform(value: any, rate?: any): number {
 let valueNumber = Number.parseFloat(value);
 let rateNumber = rate == undefined ?
 this.defaultRate : Number.parseInt(rate);
 return valueNumber + (valueNumber * (rateNumber / 100));
 }
}

Figure 18-3. The effect of using the currency pipe

Chapter 18 ■ Using and Creating pipes

441

Pipes are classes to which the @Pipe decorator has been applied and that implement a method called
transform. (Pipes can also implement an interface called PipeTransform, but this is optional, and I don’t
use it in this book.) The @Pipe decorator defines two properties, which are used to configure pipes, as
described in Table 18-3.

The example pipe is defined in a class called PaAddTaxPipe, and its decorator name property specifies
that the pipe will be applied using addTax in templates.

The transform method must accept at least one argument, which Angular uses to provide the data
value that the pipe operates on. The pipe does its work in the transform method, and its result is used by
Angular in the binding expression. In this example, the pipe accepts a number value, and its result is the
received value plus sales tax.

The transform method can also define additional argument that are used to configure the pipe. In the
example, the optional rate argument can be used to specify the sales tax rate, which defaults to 10 percent.

 ■ Caution Be careful when dealing with the arguments received by the transform method and make sure
that you parse or convert them to the types you need. the typescript type annotations are not enforced at
runtime, and angular will pass you whatever data values it is working with.

Registering a Custom Pipe
Pipes are registered using the declarations property of the Angular module, as shown in Listing 18-10.

Listing 18-10. Registering a Custom Pipe in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";

Table 18-3. The @Pipe Decorator Properties

Name Description

name This property specifies the name by which the pipe is applied in templates.

pure When true, this pipe is reevaluated only when its input value or its arguments are
changed. This is the default value. See the “Creating Impure Pipes” section for details.

Chapter 18 ■ Using and Creating pipes

442

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Applying a Custom Pipe
Once a custom pipe has been registered, it can be used in data binding expressions. In Listing 18-11, I have
applied the pipe to the price value in the tables and added a select element that allows the tax rate to be
specified.

Listing 18-11. Applying the Custom Pipe in the productTable.component.html File

<div>
 <label>Tax Rate:</label>
 <select [value]="taxRate || 0" (change)="taxRate=$event.target.value">
 <option value="0">None</option>
 <option value="10">10%</option>
 <option value="20">20%</option>
 <option value="50">50%</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

Just for some variety, I have defined the tax rate entirely within the template. The select element has
a binding that sets its value property to a component variable called taxRate or defaults to 0 if the property
has not been defined. The event binding handles the change event and sets the value of the taxRate
property. You cannot specify a fallback value when using the ngModel directive, which is why I have split up
the bindings.

Chapter 18 ■ Using and Creating pipes

443

In applying the custom pipe, I have used the vertical bar character, followed by the value specified by
the name property in the pipe’s decorator. The name of the pipe is followed by a colon, which is followed by
an expression that is evaluated to provide the pipe with its argument. In this case, the taxRate property will
be used if it has been defined, with a fallback value of zero.

Pipes are part of the dynamic nature of Angular data bindings, and the pipe’s transform method will
be called to get an updated value if the underlying data value changes or if the expression used for the
arguments changes. The dynamic nature of pipes can be seen by changing the value displayed by the select
element, which will define or change the taxRate property, which will, in turn, update the amount added to
the price property by the custom pipe, as shown in Figure 18-4.

Combining Pipes
The addTax pipe is applying the tax rate, but the fractional amounts that are produced by the calculation are
unsightly—and unhelpful, since few tax authorities insist on accuracy to 15 fractional digits.

I could fix this by adding support to the custom pipe to format the number values as currencies, but that
would require duplicating the functionality of the built-in currency pipe that I used earlier in the chapter.
A better approach is to combine the functionality of both pipes so that the output from the custom addTax
pipe is fed into the built-in currency pipe, which is then used to produce the value displayed to the user.

Pipes are chained together in this way using the vertical bar character, and the names of the pipes are
specified in the order that data should flow, as shown in Listing 18-12.

Figure 18-4. Using a custom pipe

Chapter 18 ■ Using and Creating pipes

444

Listing 18-12. Combining Pipes in the productTable.component.html File

...
<td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true }}
</td>
...

The value of the item.price property is passed to the addTax pipe, which adds the sales tax, and then to
the currency pipe, which formats the number value into a currency amount, as shown in Figure 18-5.

Creating Impure Pipes
The pure decorator property is used to tell Angular when to call the pipe’s transform method. The default
value for the pure property is true, which tells Angular that the pipe’s transform method will generate a
new value only if the input data value—the data value before the vertical bar character in the template—
changes or when one or more of its arguments is modified. This is known as a pure pipe because it has no
independent internal state and all its dependencies can be managed using the Angular change detection
process.

Setting the pure decorator property to false creates an impure pipe and tells Angular that the pipe has
its own state data or that it depends on data that may not be picked up in the change detection process when
there is a new value.

When Angular performs its change detection process, it treats impure pipes as sources of data values in
their own right and invokes the transform methods even when there has been no data value or argument
changes.

Figure 18-5. Combining the functionality of pipes

Chapter 18 ■ Using and Creating pipes

445

The most common need for impure pipes is when they process the contents of arrays and the elements
in the array change. As you saw in Chapter 16, Angular doesn’t automatically detect changes that occur
within arrays and won’t invoke a pure pipe’s transform method when an array element is added, edited, or
deleted because it just sees the same array object being used as the input data value.

 ■ Caution impure pipes should be used sparingly because angular has to call the transform method
whenever there is any data change or user interaction in the application, just in case it might result in a
different result from the pipe. if you do create an impure pipe, then keep it as simple as possible. performing
complex operations, such as sorting an array, can devastate the performance of an angular application.

As a demonstration, I added a file called categoryFilter.pipe.ts in the app folder and used it to
define the pipe shown in Listing 18-13.

Listing 18-13. The Contents of the categoryFilter.pipe.ts File in the app Folder

import { Pipe } from "@angular/core";
import { Product } from "./product.model";

@Pipe({
 name: "filter",
 pure: true
})
export class PaCategoryFilterPipe {

 transform(products: Product[], category: string): Product[] {
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

This is a pure filter that receives an array of Product objects and returns only the ones whose category
property matches the category argument. Listing 18-14 shows the new pipe registered in the Angular
module.

Listing 18-14. Registering a Pipe in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";

http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 18 ■ Using and Creating pipes

446

import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-15 shows the application of the new pipe to the binding expression that targets the ngFor
directive as well as a new select element that allows the filter category to be selected.

Listing 18-15. Applying a Pipe in the productTable.component.html File

<div>
 <label>Tax Rate:</label>
 <select [value]="taxRate || 0" (change)="taxRate=$event.target.value">
 <option value="0">None</option>
 <option value="10">10%</option>
 <option value="20">20%</option>
 <option value="50">50%</option>
 </select>
</div>

<div>
 <label>Category Filter:</label>
 <select [(ngModel)]="categoryFilter">
 <option>Watersports</option>
 <option>Soccer</option>
 <option>Chess</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd; let even = even"
 [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true }}
 </td>

Chapter 18 ■ Using and Creating pipes

447

 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

To see the problem, use the select element to filter the products in the table so that only those in the
Soccer category are shown. Then use the form elements to create a new product in that category. Clicking
the Create button will add the product to the data model, but the new product won’t be shown in the table,
as illustrated in Figure 18-6.

The table isn’t updated because, as far as Angular is concerned, none of the inputs to the filter pipe
has changed. The component’s getProducts method returns the same array object, and the categoryFilter
property is still set to Soccer. The fact that there is a new object inside the array returned by the getProducts
method isn’t recognized by Angular.

The solution is to set the pipe’s pure property to false, as shown in Listing 18-16.

Listing 18-16. Marking a Pipe as Impure in the categoryFilter.pipe.ts File

import { Pipe } from "@angular/core";
import { Product } from "./product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[], category: string): Product[] {
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Figure 18-6. A problem caused by a pure pipe

Chapter 18 ■ Using and Creating pipes

448

If you repeat the test, you will see that the new product is now correctly displayed in the table, as shown
in Figure 18-7.

Using the Built-in Pipes
Angular includes a set of built-in pipes that perform commonly required tasks. These pipes are described in
Table 18-4 and demonstrated in the sections that follow.

Table 18-4. The Built-in Pipes

Name Description

number This pipe performs location-sensitive formatting of number values. See the
“Formatting Numbers” section for details.

currency This pipe performs location-sensitive formatting of currency amounts. See the
“Formatting Currency Values” section for details.

percent This pipe performs location-sensitive formatting of percentage values. See the
“Formatting Percentages” section for details.

date This pipe performs location-sensitive formatting of dates. See the “Formatting Dates”
section for details.

uppercase This pipe transforms all the characters in a string to uppercase. See the “Changing
String Case” section for details.

lowercase This pipe transforms all the characters in a string to lowercase. See the “Changing
String Case” section for details.

json This pipe transforms an object into a JSON string. See the “Serializing Data as JSON”
section for details.

slice This pipe selects items from an array or characters from a string, as described in the
“Slicing Data Arrays” section.

async This pipe subscribes to an observable or a promise and displays the most recent value
it produces. This pipe is demonstrated in Chapter 23.

Figure 18-7. Using an impure pipe

http://dx.doi.org/10.1007/978-1-4842-2307-9_23

Chapter 18 ■ Using and Creating pipes

449

 ■ Tip angular also includes i18nplural and i18nselect pipes, which are used to localize content.
i don’t cover the localization support in angular in this book because it not ready for production use. see
http://angular.io/docs/ts/latest/cookbook/i18n.html for details.

Formatting Numbers
The number pipe formats number values using location-sensitive rules, which requires the
Internationalization API for which I added a polyfill at the start of the chapter. Listing 18-17 shows the use of
the number pipe, along with the argument that specifies the formatting that will be used. I have removed the
custom pipes and the associated select elements from the template.

Listing 18-17. Using the number Pipe in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">{{item.price | number:"3.2-2" }}</td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

The number pipe accepts a single argument that specifies the number of digits that are included in
the formatted result. The argument is in the following format (note the period and hyphen that separate the
values and that the entire argument is quoted as a string):

"<minIntegerDigits>.<minFactionDigits>-<maxFractionDigits>"

Each element of the formatting argument is described in Table 18-5.

Table 18-5. The Elements of the number Pipe Argument

Name Description

minIntegerDigits This value specifies the minimum number of digits. The default value is 1.

minFractionDigits This value specifies the minimum number of factional digits. The default
value is 0.

maxFractionDigits This value specifies the maximum number of fractional digits. The default
value is 3.

http://angular.io/docs/ts/latest/cookbook/i18n.html

Chapter 18 ■ Using and Creating pipes

450

The argument used in the listing is "3.2-2", which specifies that at least three digits should be used
to display the integer portion of the number and that two fractional digits should always be used. This
produces the result shown in Figure 18-8.

The number pipe is location sensitive, which means that the same format argument will produce
differently formatted results based on the user’s locale setting. Angular applications default to the en-US
locale by default and require it to be changed explicitly with an entry in the root module, as shown in
Listing 18-18.

Listing 18-18. Setting the Locale in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { LOCALE_ID } from "@angular/core";

Figure 18-8. Formatting number values

Chapter 18 ■ Using and Creating pipes

451

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 providers: [{ provide: LOCALE_ID, useValue: "fr-FR" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Setting the locale relies on features that I describe in Chapter 20, but the effect is to change to the
fr-FR locale, which represents the French language as it is used in France, which changes the format of the
number values, as shown in Figure 18-9.

Formatting Currency Values
The currency pipe formats number values that represent monetary amounts. Listing 18-8 used this pipe to
introduce the topic, and Listing 18-19 shows another application of the same pipe but with the addition of
number format specifiers.

Figure 18-9. Locale-sensitive formatting

http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 18 ■ Using and Creating pipes

452

Listing 18-19. Using the currency Pipe in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

The currency pipe can be configured using three arguments, which are described in Table 18-6.

The arguments specified in Listing 18-19 tell the pipe to use the US dollar as the currency (which has
the ISO code USD), to display the symbol rather than the code in the output, and to format the number so
that it has at least two integer digits and exactly two fraction digits.

This pipe relies on the Internationalization API to get details of the currency—especially its symbol—
but doesn’t select the currency automatically to reflect the user’s locale setting.

This means that the formatting of the number and the position of the currency symbol are affected by
the application’s locale setting, regardless of the currency that has been specified by the pipe. The example
application is still configured to use the fr-FR locale, which produces the results shown in Figure 18-10.

Table 18-6. The Types of Web Forms Code Nuggets

Name Description

currencyCode This string argument specifies the currency using an ISO 4217 code. The default
value is USD if this argument is omitted. You can see a list of currency codes at
http://en.wikipedia.org/wiki/ISO_4217.

symbolDisplay When true, this Boolean argument specifies that the currency symbol should
be displayed. When false, the ISO 4217 currency code will be used instead. The
default value is false.

digitInfo This string argument specifies the formatting for the number, using the same
formatting instructions supported by the number pipe, as described in the
“Formatting Numbers” section.

http://en.wikipedia.org/wiki/ISO_4217

Chapter 18 ■ Using and Creating pipes

453

To revert to the default locale, Listing 18-20 removes the fr-FR setting from the application’s root
module.

Listing 18-20. Removing the locale setting in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
//import { LOCALE_ID } from "@angular/core";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,

Figure 18-10. Location-sensitive currency formatting

Chapter 18 ■ Using and Creating pipes

454

 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 //providers: [{ provide: LOCALE_ID, useValue: "fr-FR" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Figure 18-11 shows the result.

Formatting Percentages
The percent pipe formats number values as percentages, where values between 0 and 1 are formatted to
represent 0 to 100 percent. This pipe has an optional argument that is used to specify the number formatting
options, using the same format as the number pipe. Listing 18-21 reintroduces the custom sales tax filter
and populates the associated select element with option elements whose content is formatted with the
percent filter.

Listing 18-21. Formatting Percentage Values in the productTable.component.html File

<div>
 <label>Tax Rate:</label>
 <select [value]="taxRate || 0" (change)="taxRate=$event.target.value">
 <option value="0">None</option>
 <option value="10">{{ 0.1 | percent }}</option>

Figure 18-11. Formatting currency values

Chapter 18 ■ Using and Creating pipes

455

 <option value="20">{{ 0.2 | percent }}</option>
 <option value="50">{{ 0.5 | percent }}</option>
 <option value="150">{{ 1.5 | percent }}</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

Values that are greater than 1 are formatted into percentages greater than 100 percent. You can see this
in the last item shown in Figure 18-12, where the value 1.5 produces a formatted value of 150 percent.

Figure 18-12. Formatting percentage values

Chapter 18 ■ Using and Creating pipes

456

The formatting of percentage values is location-sensitive, although the differences between locales can
be subtle. As an example, while the en-US locale produces a result such as 10 percent, with the numerals and
the percent sign next to one another, many locales, including fr-FR, will produce a result such as 10%, with a
space between the numerals and the percent sign.

Formatting Dates
The date pipe performs location-sensitive formatting of dates. Dates can be expressed using JavaScript
Date objects, as a number value representing milliseconds since the beginning of 1970 or as a well-formatted
string. Listing 18-22 adds three properties to the ProductTableComponent class, each of which encodes a
date in one of the formats supported by the date pipe.

Listing 18-22. Defining Dates in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model;

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }

 dateObject: Date = new Date(2020, 1, 20);
 dateString: string = "2020-02-20T00:00:00.000Z";
 dateNumber: number = 1582156800000;
}

All three properties describe the same date, which is February 20, 2020, with no time specified. In
Listing 18-23, I have used the date pipe to format all three properties.

Chapter 18 ■ Using and Creating pipes

457

Listing 18-23. Formatting Dates in the productTable.component.html File

<div class="bg-info m-a-1 p-a-1">
 <div>Date formatted from object: {{ dateObject | date }}</div>
 <div>Date formatted from string: {{ dateString | date }}</div>
 <div>Date formatted from number: {{ dateNumber | date }}</div>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

The pipe works out which data type it is working with, parses the value to get a date, and then formats it,
as shown in Figure 18-13.

Figure 18-13. Formatting dates

Chapter 18 ■ Using and Creating pipes

458

The date pipe accepts a single argument, which is used to specify the date format that should be used.
Individual date components can be selected for the output using the symbols described in Table 18-7.

The symbols in Table 18-7 provide access to the date components in differing levels of brevity so that M
will return 2 if the month is February, MM will return 02, MMM will return Feb, and MMMM will return February,
assuming that you are using the en-US locale. The date pipe also supports predefined date formats for
commonly used combinations, as described in Table 18-8.

Listing 18-24 shows the use of the predefined formats as arguments to the date pipe, rendering the
same date in different ways.

Table 18-7. The Date Pipe Format Symbols

Name Description

y, yy These symbols select the year.

M, MMM, MMMM These symbols select the month.

d, dd These symbols select the day (as a number).

E, EE, EEEE These symbols select the day (as a name).

j, jj These symbols select the hour.

h, hh, H, HH These symbols select the hour in 12- and 24-hour forms.

m, mm These symbols select the minutes.

s, ss These symbols select the seconds.

Z This symbol selects the time zone.

Table 18-8. The Predefined date Pipe Formats

Name Description

short This format is equivalent to the component string yMdjm. It presents the date in a
concise format, including the time component.

medium This format is equivalent to the component string yMMMdjms. It presents the date as a
more expansive format, including the time component.

shortDate This format is equivalent to the component string yMd. It presents the date in a
concise format and excludes the time component.

mediumDate This format is equivalent to the component string yMMMd. It presents the date in a
more expansive format and excludes the time component.

longDate This format is equivalent to the component string yMMMMd. It presents the date and
excludes the time component.

fullDate This format is equivalent to the component string yMMMMEEEEd. It presents the date
fully and excludes the date format.

shortTime This format is equivalent to the component string jm.

mediumTime This format is equivalent to the component string jms.

Chapter 18 ■ Using and Creating pipes

459

Listing 18-24. Formatting Dates in the productTable.component.html File

...
<div class="bg-info m-a-1 p-a-1">
 <div>Date formatted as shortDate: {{ dateObject | date:"shortDate" }}</div>
 <div>Date formatted as mediumDate: {{ dateObject | date:"mediumDate" }}</div>
 <div>Date formatted as longDate: {{ dateObject | date:"longDate" }}</div>
</div>
...

Arguments are specified as literal strings. Take care to capitalize the format string correctly because
shortDate will be interpreted as one of the predefined formats from Table 18-8, but shortdate (with a
lowercase letter d) will be interpreted a series of characters from Table 18-7 and produce nonsensical output.

 ■ Caution date parsing and formatting is a complex and time-consuming process. as a consequence, the
pure property for the date pipe is true; as a result, changes to individual components of a Date object won’t
trigger an update. if you need to reflect changes in the way that a date is displayed, then you must change the
reference to the Date object that the binding containing the date pipe refers to.

Date formatting is location- sensitive, which means that you will receive different components for
different locales. Do not assume that a date format that makes sense in one locale will have any meaning in
another. Figure 18-14 shows the formatted dates, in the en-US and fr-FR locales.

Changing String Case
The uppercase and lowercase pipes convert all the characters in a string to uppercase or lowercase,
respectively. Listing 18-25 shows both pipes applied to cells in the product table.

Listing 18-25. Changing Character Case in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">

Figure 18-14. Location-sensitive date formatting

Chapter 18 ■ Using and Creating pipes

460

 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name | uppercase }}</td>
 <td style="vertical-align:middle">{{item.category | lowercase }}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

These pipes use the standard JavaScript string methods toUpperCase and toLowerCase, which are not
sensitive to locale settings, as shown in Figure 18-15.

Serializing Data as JSON
The json pipe creates a JSON representation of a data value. No arguments are accepted by this pipe, which
uses the browser’s JSON.stringify method to create the JSON string. Listing 18-26 applies this pipe to
create a JSON representation of the objects in the data model.

Figure 18-15. Changing character case

Chapter 18 ■ Using and Creating pipes

461

Listing 18-26. Creating a JSON String in the productTable.component.html File

<div class="bg-info m-a-1 p-a-1">
 <div>{{ getProducts() | json }}</div>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name | uppercase }}</td>
 <td style="vertical-align:middle">{{item.category | lowercase }}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

This pipe is useful during debugging, and its decorator’s pure property is false so that any change in
the application will cause the pipe’s transform method to be invoked, ensuring that even collection-level
changes are shown. Figure 18-16 shows the JSON generated from the objects in the example application’s
data model.

Figure 18-16. Generating JSON strings for debugging

Slicing Data Arrays
The slice pipe operates on an array or string and returns a subset of the elements or characters it contains.
This is an impure pipe, which means that it will reflect any changes that occur within the data object it is
operating on but also means that the slice operation will be performed after any change in the application,
even if that change was not related to the source data.

The objects or characters selected by the slice pipe are specified using two arguments, which are
described in Table 18-9.

Chapter 18 ■ Using and Creating pipes

462

Listing 18-27 demonstrates the use of the slice pipe in combination with a select element that
specifies how many items should be displayed in the product table.

Listing 18-27. Using the slice Pipe in the productTable.component.html File

<div>
 <label>Number of items:</label>
 <select [value]="itemCount || 1" (change)="itemCount=$event.target.value">
 <option *ngFor="let item of getProducts(); let i = index" [value]="i + 1">
 {{i + 1}}
 </option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts() | slice:0:(itemCount || 1);
 let i = index; let odd = odd; let even = even"
 [class.bg-info]="odd" [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name | uppercase }}</td>
 <td style="vertical-align:middle">{{item.category | lowercase }}</td>
 <td style="vertical-align:middle">
 {{item.price | addTax:(taxRate || 0) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

Table 18-9. The Slice Pipe Arguments

Name Description

start This argument must be specified. If the value is positive, the start index for items to be
included in the result counts from the first position in the array. If the value is negative,
then pipe counts back from the end of the array.

end This optional argument is used to specify how many items from the start index should
be included in the result. If this value is omitted, all of the items after the start index
(or before in the case of negative values) will be included.

Chapter 18 ■ Using and Creating pipes

463

The select element is populated with option elements created with the ngFor directive. This directive
doesn’t directly support iterating a specific number of times, so I have used the index variable to generate
the values that are required. The select element sets a variable called itemCount, which is used as the
second argument of the slice pipe, like this:

...
<tr *paFor="let item of getProducts() | slice:0:(itemCount || 1);
 let i = index; let odd = odd; let even = even"
 [class.bg-info]="odd" [class.bg-warning]="even">
...

The effect is that changing the value displayed by the select element changes the number of items
displayed in the product table, as shown in Figure 18-17.

Summary
In this chapter, I introduced pipes and explained how they are used to transform data values so they can
be presented to the user in the template. I demonstrated the process for creating custom pipes, explained
how some pipes are pure and others are not, and demonstrated the built-in pipes that Angular provides for
handling common tasks. In the next chapter, I introduce services, which can be used to simplify the design
of Angular applications and allow building blocks to easily collaborate.

Figure 18-17. Using the slice pipe

465© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_19

CHAPTER 19

Using Services

Services are objects that provide common functionality to support other building blocks in an application,
such as directives, components, and pipes. What’s important about services is the way that they are used,
which is through a process called dependency injection. Using services can increase the flexibility and
scalability of an Angular application, but dependency injection can be a difficult topic to understand, both
in terms of how it works and why it can be useful. To that end, I start this chapter slowly and explain the
problems that services and dependency injection can be used to solve, how dependency injection works,
and why you should consider using services in your own projects. In Chapter 20, I introduce some more
advanced features that Angular provides for service. Table 19-1 puts services in context.

Table 19-1. Putting Services in Context

Question Answer

What are they? Services are objects that define functionality required by other building
blocks such as components or directives. What separates services from
regular objects is that they are provided to building blocks by an external
provider, rather than being created directly using the new keyword or
received by an input property.

Why are they useful? Services simplify the structure of applications, make it easier to move or
reuse functionality, and make it easier to isolate building blocks for effective
unit testing.

How are they used? Classes declare dependencies on services using constructor parameters,
which are then resolved using the set of services for which the application
has been configured. Services are classes to which the @Injectable
decorator has been applied.

Are there any pitfalls or
limitations?

Dependency injection is a contentious topic, and not all developers like
using it. If you don’t perform unit tests or if your applications are relatively
simple, the extra work required to implement dependency injection is
unlikely to pay any long-term dividends.

Are there any alternatives? Services and dependency injection are hard to avoid because Angular uses
them to provide access to built-in functionality. But you are not required to
define services for your own custom functionality, if that is your preference.

http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 19 ■ Using serviCes

466

Table 19-2 summarizes the chapter.

Preparing the Example Project
I continue using the example project in this chapter that I have been working with since Chapter 11. To
prepare for this chapter, I have removed most of the pipes from the data binding expressions in the table of
products and also removed the select element that was used to choose how many products were displayed,
as shown in Listing 19-1.

Listing 19-1. Removing the Pipe from the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

Run the following command in the example folder to start the TypeScript compiler and the
development HTTP server:

npm start

Table 19-2. Chapter Summary

Problem Solution Listing

Avoid the need to distribute shared objects
manually

Use services 1–14, 21–28

Declare a dependency on a service Add a constructor argument with the
type of the service you require

15–20

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 19 ■ Using serviCes

467

A new browser tab will open and display the content shown in Figure 19-1.

Understanding the Object Distribution Problem
In Chapter 17, I added components to the project to help break up the monolithic structure of the
application. In doing this, I used input and output properties to connect components together, using host
elements to bridge the isolation that Angular enforces between a parent component and its children. I also
showed you how to query the contents of the template for view children, which complements the content
children feature described in Chapter 16.

These techniques for coordinating between directives and components can be powerful and useful if
applied carefully. But they can also end up as a general tool for distributing shared objects throughout an
application, where the result is to increase the complexity of the application and to tightly bind components
together.

Demonstrating the Problem
To help demonstrate the problem, I need to add a shared object to the project and two components that
rely on it. To get started, I created a file called discount.service.ts to the app folder and defined the class
shown in Listing 19-2. I’ll explain the significance of the service part the file name later in the chapter.

Figure 19-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2307-9_17
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 19 ■ Using serviCes

468

Listing 19-2. The Contents of the discount.service.ts File in the app Folder

export class DiscountService {
 private discountValue: number = 10;

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 return Math.max(price - this.discountValue, 5);
 }
}

The DiscountService class defines a private property called discountValue that is used to store a
number that will be used to reduce the product prices in the data model. This value is exposed through
getters and setters called discount, and there is a convenience method called applyDiscount that reduces a
price while applying a minimum value of 5.

For the first of the components that make use of the DiscountService class, I added a file called
discountDisplay.component.ts to the app folder and added the code shown in Listing 19-3.

Listing 19-3. The Contents of the discountDisplay.component.ts in the app Folder

import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info p-a-1">
 The discount is {{discounter.discount}}
 </div>`
})
export class PaDiscountDisplayComponent {

 @Input("discounter")
 discounter: DiscountService;
}

The DiscountDisplayComponent uses an inline template to display the discount amount, which is
obtained from a DiscountService object received through an input property.

For the second of the components that make use of the DiscountService class, I added a file called
discountEditor.component.ts to the app folder and added the code shown in Listing 19-4.

Chapter 19 ■ Using serviCes

469

Listing 19-4. The Contents of the discountEditor.component.ts File in the app Folder

import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 @Input("discounter")
 discounter: DiscountService;
}

The DiscountEditorComponent uses an inline template with an input element that allows the discount
amount to be edited. The input element has a two-way binding on the DiscountService.discount property
that targets the ngModel directive. Listing 19-5 shows the new components being enabled in the Angular module.

Listing 19-5. Enabling the Components in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Chapter 19 ■ Using serviCes

470

To get the new components working, I need to add them to parent component’s template. I want to
position the new content underneath the table that lists the products, which means that I need to edit the
productTable.component.html file, as shown in Listing 19-6.

Listing 19-6. Adding Component Elements in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

<paDiscountEditor [discounter]="discounter"></paDiscountEditor>
<paDiscountDisplay [discounter]="discounter"></paDiscountDisplay>

These elements correspond to the components’ selector properties in Listing 19-3 and Listing 19-4
and use data bindings to set the value of the input properties. The final step is to create an object in the
parent component that will provide the value for the data binding expressions, as shown in Listing 19-7.

Listing 19-7. Creating the Shared Object in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {
 discounter: DiscountService = new DiscountService();

 @Input("model")
 dataModel: Model;

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

Chapter 19 ■ Using serviCes

471

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }

 dateObject: Date = new Date(2020, 1, 20);
 dateString: string = "2020-02-20T00:00:00.000Z";
 dateNumber: number = 1582156800000;
}

Figure 19-2 shows the content from the new components. Changes to the value in the input element
provided by one of the components will be reflected in the string interpolation binding provided by the other
component, reflecting the use of the shared DiscountService object and its discount property.

The process for adding the new components and the shared object was straightforward and logical,
until the final stage. The problem arises in the way that I had to create and distribute the shared object: the
instance of the DiscountService class.

Figure 19-2. Adding components to the example application

Chapter 19 ■ Using serviCes

472

Because Angular isolates components from one another, I had no way to share the DiscountService
object directly between the DiscountEditorComponent and DiscountDisplayComponent. Each component
could have created its own DiscountService object, but that means that changes from the editor component
wouldn’t be shown in the display component.

That is what led me to create the DiscountService object in the product table component, which is
the first shared ancestor of the discount editor and display components. This allowed me to distribute the
DiscountService object through the product table component’s template, ensuring that a single object was
shared with both of the components that need it.

But there are a couple of problems. The first is that the ProductTableComponent class doesn’t
actually need or use a DiscountService object to deliver its own functionality. It just happens to be the
first common ancestor of the components that do need the object. And creating the shared object in the
ProductTableComponent class makes that class slightly more complex and slightly more difficult to test
effectively. This is a modest increment of complexity, but it will occur for every shared object that the
application requires—and a complex application can depend on a lot of shared objects, each of which ends
up being created by components that just happen to be the first common ancestor of the classes that depend
on them.

The second problem is hinted at by the term first common ancestor. The ProductTableComponent
class happens to be the parent of both of the classes that depend on the DiscountService object, but think
about what would happen if I wanted to move the DiscountEditorComponent so that it was displayed
under the form rather than the table. In this situation, I have to work my way up the tree of components
until I find a common ancestor, which would end up being the root component. And then I would have
to work my way down the component tree adding input properties and modifying templates so that each
intermediate component could receive the DiscountService object from its parent and pass it on to any
children who have descendants that need it. And the same applies to any directives that depend on receiving
a DiscountService object, where any component whose template contains data bindings that target that
directive must make sure they are part of the distribution chain, too.

The result is that the components and directives in the application become tightly bound together. A
major refactoring is required if you need to move or reuse a component in a different part of the application
and the management of the input properties and data bindings becomes unmanageable.

Distributing Objects as Services Using Dependency Injection
There is a better way to distribute objects to the classes that depend on them, which is to use dependency
injection, where objects are provided to classes from an external source. Angular includes a built-in
dependency injection system and supplies the external source of objects, known as providers. In the sections
that follow, I rework the example application to provide the DiscountService object without needing to use
the component hierarchy as a distribution mechanism.

Preparing the Service
Any object that is managed and distributed through dependency injection is called a service, which is why I
selected the name DiscountService for the class that defines the shared object and why that class is defined
in a file called discount.service.ts. Angular denotes service classes using the @Injectable decorator, as
shown in Listing 19-8. The @Injectable decorator doesn’t define any configuration properties.

Chapter 19 ■ Using serviCes

473

Listing 19-8. Preparing a Class as a Service in the discount.service.ts File

import { Injectable } from "@angular/core";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 return Math.max(price - this.discountValue, 5);
 }
}

Preparing the Dependent Components
A class declares dependencies using its constructor. When Angular needs to create an instance of the
class—such as when it finds an element that matches the selector property defined by a component—its
constructor is inspected, and the type of each argument is examined. Angular then uses the services that
have been defined to try to satisfy the dependencies. The term dependency injection arises because each
dependency is injected into the constructor to create the new instance.

For the example application, it means that the components that depend on a DiscountService object
no longer require input properties and can declare a constructor dependency instead. Listing 19-9 shows the
changes to the DiscountDisplayComponent class.

Listing 19-9. Declaring a Dependency in the discountDisplay.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info p-a-1">
 The discount is {{discounter.discount}}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(private discounter: DiscountService) { }
}

Chapter 19 ■ Using serviCes

474

The same change can be applied to the DiscountEditorComponent class, replacing the input property
with a dependency declared through the constructor, as shown in Listing 19-10.

Listing 19-10. Declaring a Dependency in the discountEditor.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(private discounter: DiscountService) { }
}

These are small changes, but they avoid the need to distribute objects using templates and input
properties and produce a more flexible application. I can now remove the DiscountService object from the
product table component, as shown in Listing 19-11.

Listing 19-11. Removing the Shared Object in the productTable.component.ts File

import { Component, Input } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {
 //discounter: DiscountService = new DiscountService();

 // ...other methods and properties omitted for brevity...
}

And since the parent component is no longer providing the shared object through data bindings, I can
remove them from the template, as shown in Listing 19-12.

Listing 19-12. Removing the Data Bindings in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">

Chapter 19 ■ Using serviCes

475

 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Registering the Service
The final change is to configure the dependency injection feature so that it can provide DiscountService
objects to the components that require them. To make the service available throughout the application, it is
registered in the Angular module, as shown in Listing 19-13.

Listing 19-13. Registering a Service in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent],

Chapter 19 ■ Using serviCes

476

 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The NgModule decorator’s providers property is set to an array of the classes that will be used as
services. There is only one service at the moment, which is provided by the DiscountService class.

When you save the changes to the application, there won’t be any visual changes, but the dependency
injection feature will be used to provide the components with the DiscountService object they require.

Reviewing the Dependency Injection Changes
Angular seamlessly integrates dependency injection into its feature set. Each time that Angular encounters
an element that requires a new building block, such as a component or a pipe, to be instantiated, it examines
the class constructor to check what dependencies have been declared and uses its services to try to resolve
them. The set of services used to resolve dependencies includes the custom services defined by the
application, such as the DiscountService service that has been registered in Listing 19-13, and a set of built-
in services provided by Angular and that are described in later chapters.

The changes to introduce dependency injection in the previous section didn’t result in a big bang
change in the way that the application works—or any visible change at all. But there is a profound difference
in the way that the application is put together that makes it more flexible and fluid. The best demonstration
of this is to add the components that require the DiscountService to a different part of the application, as
shown in Listing 19-14.

Listing 19-14. Adding Components in the productForm.component.html File

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && !control.valid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && !form.valid">
 Create
 </button>
</form>
<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Chapter 19 ■ Using serviCes

477

These new elements duplicate the discount display and editor components so they appear below the
form used to create new products, as shown in Figure 19-3.

There are two points of note. First, using dependency injection made this a simple process of adding
elements to a template, without needing to modify the ancestor components to provide a DiscountService
object using input properties.

The second point of note is that all the components in the application that have declared a dependency
on DiscountService have received the same object. If you edit the value in either of the input elements, the
changes will be reflected in the other input element and in the string interpolation bindings, as shown in
Figure 19-4.

Figure 19-3. Duplicating components with dependencies

Chapter 19 ■ Using serviCes

478

Declaring Dependencies in Other Building Blocks
It isn’t just components that can declare constructor dependencies, and once you have defined a service,
you can use it more widely, including in other building blocks in the application, such as pipes and
directives, as demonstrated in the sections that follow.

Declaring a Dependency in a Pipe
Pipes can declare dependencies on services by defining a constructor with arguments for each required
service. To demonstrate, I added a file called discount.pipe.ts to the app folder and used it to define the
pipe shown in Listing 19-15.

Listing 19-15. The Contents of the discount.pipe.ts File in the app Folder

import { Pipe, Injectable } from "@angular/core";
import { DiscountService } from "./discount.service";

@Pipe({
 name: "discount",
 pure: false
})
export class PaDiscountPipe {

 constructor(private discount: DiscountService) { }

 transform(price: number): number {
 return this.discount.applyDiscount(price);
 }
}

The PaDiscountPipe class is a pipe that receives a price and generates a result by calling the
DiscountService.applyDiscount method, where the service is received through the constructor. The pure
property in the @Pipe decorator is false, which means that the pipe will be asked to update its result when
the value stored by the DiscountService changes, which won’t be recognized by the Angular
change-detection process.

Figure 19-4. Checking that the dependency is resolved using a shared object

Chapter 19 ■ Using serviCes

479

 ■ Tip as explained in Chapter 18, this feature should be used with caution because it means that the
transform method will be called after every change in the application, not just when the service is changed.

Listing 19-16 shows the new pipe being registered in the application’s Angular module.

Listing 19-16. Registering a Pipe in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe],
 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 19-17 shows the new pipe applied to the price column in the product table.

Listing 19-17. Applying a Pipe in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>

http://dx.doi.org/10.1007/978-1-4842-2307-9_18

Chapter 19 ■ Using serviCes

480

 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | discount | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

The discount pipe processes the price to apply the discount and then passes on the value to the
currency pipe for formatting. You can see the effect of using the service in the pipe by changing the value in
one of the discount input elements, as shown in Figure 19-5.

Figure 19-5. Using a service in a pipe

Chapter 19 ■ Using serviCes

481

Declaring Dependencies in Directives
Directives can also use services. As I explained in Chapter 17, components are just directives with templates,
so anything that works in a component will also work in a directive.

To demonstrate using a service in a directive, I added a file called discountAmount.directive.ts to the
app folder and used it to define the directive shown in Listing 19-18.

Listing 19-18. The Contents of the discountAmount.directive.ts File in the app Folder

import { Directive, HostBinding, Input,
 SimpleChange, KeyValueDiffer, KeyValueDiffers,
 ChangeDetectorRef } from "@angular/core";
import { DiscountService } from "./discount.service";

@Directive({
 selector: "td[pa-price]",
 exportAs: "discount"
})
export class PaDiscountAmountDirective {
 private differ: KeyValueDiffer;

 constructor(private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef,
 private discount: DiscountService) { }

 @Input("pa-price")
 originalPrice: number;

 discountAmount: number;

 ngOnInit() {
 this.differ =
 this.keyValueDiffers.find(this.discount).create(this.changeDetector);
 }

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 if (changes["originalPrice"] != null) {
 this.updateValue();
 }
 }

 ngDoCheck() {
 if (this.differ.diff(this.discount) != null) {
 this.updateValue();
 }
 }

 private updateValue() {
 this.discountAmount = this.originalPrice
 - this.discount.applyDiscount(this.originalPrice);
 }
}

http://dx.doi.org/10.1007/978-1-4842-2307-9_17

Chapter 19 ■ Using serviCes

482

Directives don’t have an equivalent to the pure property used by pipes and must take direct
responsibility for responding to changes propagated through services. Some services, such as the built-in
Http service described in Chapter 24, provide support for receiving notifications when a change occurs.
Others, such as the DiscountService used in this example, leave it to the directive to do the work.

This directive displays the discounted amount for a product. The selector property matches td elements
that have a pa-price attribute, which is also used as an input property to receive the price that will be
discounted. The directive exports its functionality using the exportAs property and provides a property
called discountAmount whose value is set to the discount that has been applied to the product.

There are two other points to note about this directive. The first is that the DiscountService object isn’t
the only constructor parameters in the directive’s class.

...
constructor(private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef,
 private discount: DiscountService) { }
...

The KeyValueDiffers and ChangeDetectorRef parameters are also dependencies that Angular will
have to resolve when it creates a new instance of the directive class. These are examples of the built-in
services that Angular provides that deliver commonly required function functionality.

The second point of note is what the directive does with the services it receives. The components and the
pipe that use the DiscountService service don’t have to worry about tracking updates, either because Angular
automatically evaluates the expressions of the data bindings and updates them when the discount rate changed
(for the components) or because any change in the application triggers an update (for the impure pipe).

The data binding for this directive is on the price property, which will trigger a change if is altered. But
there is also a dependency on the discount property defined by the DsscountService class. Changes in the
discount property are detected using the services received through the constructor, which are similar to the
ones used to track changes in iterable sequences described in Chapter 16 but which operate on key/value pair
objects, such as Map objects or regular objects that define properties, such as DiscountService. When Angular
invokes the ngDoCheck method, the directive uses the key/value pair differ to see whether there has been a
change. (This change direction could also have been handled by keeping track of the previous update in the
directive class, but I wanted to provide an example of using the key/value differ feature.)The directive also
implements the ngOnChanges method so that it can respond to changes in the value of the input property. For
both types of update, the updateValue method is called, which calculates the discounted price and assigns it to
the discountAmount property. Listing 19-19 registers the new directive in the application’s Angular module.

Listing 19-19. Registering a Directive in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

http://dx.doi.org/10.1007/978-1-4842-2307-9_24
http://dx.doi.org/10.1007/978-1-4842-2307-9_16

Chapter 19 ■ Using serviCes

483

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

To apply the new directive, Listing 19-20 adds a new column to the table, using a string interpolation
binding to access the property provided by the directive and pass it to the currency pipe.

Listing 19-20. Creating a New Column in the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th></th><th>Name</th><th>Category</th><th>Price</th>
 <th>Discount</th><th></th>
 </tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | discount | currency:"USD":true }}
 </td>
 <td style="vertical-align:middle" [pa-price]="item.price"
 #discount="discount">
 {{ discount.discountAmount | currency:"USD": true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Chapter 19 ■ Using serviCes

484

The directive could have created a host binding on the textContent property to set the contents of its
host element, but that would have prevented the currency pipe being used. Instead, the directive is assigned
to the discount template variable, which is then used in the string interpolation binding to access and then
format the discountAmount value. Figure 19-6 shows the results. Changes to the discount amount in either of
the discount editor input elements will be reflected in the new table column.

Understanding the Test Isolation Problem
The example application contains a related problem that services and dependency injection can be used to
solve. Consider how the Model class is created in the root component:

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})

Figure 19-6. Using a service in a directive

Chapter 19 ■ Using serviCes

485

export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

The root component is defined as the ProductComponent class, and it sets up a value for its model
property by creating a new instance of the Model class. This works—and is a perfectly legitimate way to
create an object—but it makes it harder to perform unit testing effectively.

Unit testing works best when you can isolate one small part of the application and focus on it to perform
tests. But when you create an instance of the ProductComponent class, you are implicitly creating an instance of
the Model class as well. If you were to run tests on the root component’s addProduct method and you found a
problem, you would have no indication of whether the problem was in the ProductComponent or Model classes.

Isolating Components Using Services and Dependency Injection
The underlying problem is that the ProductComponent class is tightly bound to the Model class, which is,
in turn, tightly bound to the SimpleDataSource class. Dependency injection can be used to tease apart the
building blocks in an application so that each class can be isolated and tested on its own. In the sections that
follow, I walk through the process of breaking up these tightly coupled classes, following essentially the same
process as in the previous section but delving deeper into the example application.

Preparing the Services
The @Injectable decorator is used to denote services, just as in the previous example. Listing 19-21 shows
the decorator applied to the SimpleDataSource class.

Listing 19-21. Denoting a Service in the datasource.model.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class SimpleDataSource {
 private data:Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Chapter 19 ■ Using serviCes

486

No other changes are required. Listing 19-22 shows the same decorator being applied to the data
repository, and since this class has a dependency on the SimpleDataSource class, it declares it as a
constructor dependency rather than creating an instance directly.

Listing 19-22. Denoting a Service and Declaring a Dependency in the repository.model.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";

@Injectable()
export class Model {
 //private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p:Product, id:number) => p.id == id;

 constructor(private dataSource: SimpleDataSource) {
 //this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 // ...other members omitted for brevity...
}

The important point to note in this listing is that services can declare dependencies on other services.
When Angular comes to create a new instance of a service class, it inspects the constructor and tries to
resolve the services in the same way as when dealing with a component or directive.

Registering the Services
These services must be registered so that Angular knows how to resolve dependencies on them, as shown in
Listing 19-23.

Listing 19-23. Registering the Services in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";

Chapter 19 ■ Using serviCes

487

import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Preparing the Dependent Component
Rather than create a Model object directly, the root component can declare a constructor dependency that
Angular will resolve using dependency injection when the application starts, as shown in Listing 19-24.

Listing 19-24. Declaring a Service Dependency in the component.ts File

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 //model: Model = new Model();

 constructor(private model: Model) { }

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

There is now a chain of dependencies that Angular has to resolve. When the application starts, the
Angular module specifies that the ProductComponent class needs a Model object. Angular inspects the Model
class and finds that it needs a SimpleDataSource object. Angular inspects the SimpleDataSource object and
finds that there are no declared dependencies and therefore knows that this is the end of the chain. It creates

Chapter 19 ■ Using serviCes

488

a SimpleDataSource object and passes it as an argument to the Model constructor in order to create a Model
object, which can then be passed to the ProductComponent class constructor to create the object that will be
used as the root component. All of this happens automatically, based on the constructors defined by each
class and the use of the @Injectable decorator.

These changes don’t create any visible changes in the way that the application works, but they do allow
a completely different way of performing unit tests. The ProductComponent class requires that a Model object
is provided as a constructor argument, which allows for a mock object to be used.

Breaking up the direct dependencies between the classes in the application means that each of them
can be isolated for the purposes of unit testing and provided with mock objects through their constructor,
allowing the effect of a method or some other feature to be consistently and independently assessed.

Completing the Adoption of Services
Once you start using services in an application, the process generally takes on a life of its own, and you
start to examine the relationships between the building blocks you have created. The extent to which you
introduce services is—at least in part—a matter of personal preference.

A good example is the use of the Model class in the root component. Although the component does
implement a method that uses the Model object, it does so because it needs to handle a custom event from
one of its child components. The only other reason that the root component has for needing a Model object
is to pass it on via its template to the other child component, via an input property.

This situation isn’t an enormous problem, and your preference may be to have these kinds of
relationships in a project. After all, each of the components can be isolated for unit testing, and there is
some purpose, however limited, to the relationships between them. This kind of relationship between
components can help make sense of the functionality that an application provides.

On the other hand, the more you use services, the more the building blocks in your project become
self-contained and reusable blocks of functionality, which can ease the process of adding or changing
functionality as the project matures.

There is no absolute right or wrong, and you must find the balance that suits you, your team, and,
ultimately, your users and customers. Not everyone likes using dependency injection, and not everyone
performs unit testing.

My preference is to use dependency injection as widely as possible. I find that the final structure of
my applications can differ significantly from what I expect when I start a new project and that the flexibility
offered by dependency injection helps me avoid repeated periods of refactoring. And so, to complete this
chapter, I am going to push the use of the Model service into the rest of the application, breaking the coupling
between the root component and its immediate children.

Updating the Root Component and Template
The first changes I will make are to remove the Model object from the root component, along with the
method that uses it and the input property in the template that distributes the model to one of the child
components. Listing 19-25 shows the changes to the component class.

Listing 19-25. Removing the Model Object from the component.ts File

import { Component } from "@angular/core";
//import { Model } from "./repository.model";
//import { Product } from "./product.model";
//import { ProductFormGroup } from "./form.model";

Chapter 19 ■ Using serviCes

489

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {
 //model: Model = new Model();

 //constructor(private model: Model) { }

 //addProduct(p: Product) {
 // this.model.saveProduct(p);
 //}
}

The revised root component class doesn’t define any functionality and now exists only to provide the
top-level application content in its template. Listing 19-26 shows the corresponding changes in the root
template to remove the custom event binding and the input property.

Listing 19-26. Removing the Data Bindings in the template.html File

<div class="col-xs-4 p-a-1">
 <paProductForm></paProductForm>
</div>
<div class="col-xs-8 p-a-1">
 <paProductTable></paProductTable>
</div>

Updating the Child Components
The component that provides the form for creating new Product objects relied on the root component to
handle its custom event and update the model. Without this support, the component must now declare a
Model dependency and perform the update itself, as shown in Listing 19-27.

Listing 19-27. Working Directly with the Model in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";
import { Model } from "./repository.model";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 //styleUrls: ["app/productForm.component.css"],
 //encapsulation: ViewEncapsulation.Emulated
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

Chapter 19 ■ Using serviCes

490

 constructor(private model: Model) { }

 //@Output("paNewProduct")
 //newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 //this.newProductEvent.emit(this.newProduct);
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

The component that manages the table of product objects used an input property to receive a Model
object from its parent but must now obtain it directly by declaring a constructor dependency, as shown in
Listing 19-28.

Listing 19-28. Declaring a Model Dependency in the productTable.component.ts File

import { Component, Input } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {
 //discounter: DiscountService = new DiscountService();

 constructor(private dataModel: Model) { }

 //@Input("model")
 //dataModel: Model;

 getProduct(key: number): Product {
 return this.dataModel.getProduct(key);
 }

 getProducts(): Product[] {
 return this.dataModel.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel.deleteProduct(key);
 }

Chapter 19 ■ Using serviCes

491

 dateObject: Date = new Date(2020, 1, 20);
 dateString: string = "2020-02-20T00:00:00.000Z";
 dateNumber: number = 1582156800000;
}

You will see the same functionality displayed in the browser window when all of the changes have been
saved and the browser reloads the Angular application—but the way that the functionality is wired up has
changed substantially, with each component obtaining the share objects it needs through the dependency
injection feature, rather than relying on its parent component to provide it.

Summary
In this chapter, I explained the problems that dependency injection can be used to address and
demonstrated the process for defining and consuming services. I described how services can be used to
increase the flexibility in the structure of an application and how dependency injection makes it possible
to isolate building blocks so they can be unit tested effectively. In the next chapter, I describe the advanced
features that Angular provides for working with services.

493© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_20

CHAPTER 20

Using Service Providers

In the previous chapter, I introduced services and explained how they are distributed using dependency
injection. When using dependency injection, the objects that are used to resolve dependencies are
created by service providers, known more commonly as providers. In this chapter, I explain how providers
work, describe the different types of provider that are available, and demonstrate how providers can
be created in different parts of the application to change the way that services behave. Table 20-1 puts
providers in context.

Table 20-1. Putting Service Providers in Context

Question Answer

What are they? Providers are classes that create service objects the first time that Angular
needs to resolve a dependency.

Why are they useful? Providers allow the creation of service objects to be tailored to the needs
of the application. The simplest provider just creates an instance of a
specified class, but there are other providers that can be used to tailor the
way that service objects are created and configured.

How are they used? Providers are defined in the providers property of the Angular module’s
decorator. They can also be defined by components and directives
to provide services to their children, as described in the “Using Local
Providers” section.

Are there any pitfalls or
limitations?

It is easy to create unexpected behavior, especially when working with
local providers. If you encounter problems, check the scope of the local
providers you have created and make sure that your dependencies and
providers are using the same tokens.

Are there any alternatives? Many applications will require only the basic dependency injection
features described in Chapter 19. You should use the features in this
chapter only if you cannot build your application using the basic features
and only if you have a solid understanding of dependency injection.

http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 20 ■ Using serviCe providers

494

WHY YOU SHOULD CONSIDER SKIPPING THIS CHAPTER

dependency injection provokes strong reactions in developers and polarizes opinion. if you are new to
dependency injection and have yet to form your own opinion, then you might want to skip this chapter
and just use the features that i described in Chapter 19. that’s because features like the ones i describe
in this chapter are exactly why many developers dread using dependency injection and form a strong
preference against its use.

the basic angular dependency injection features are easy to understand and have an immediate and
obvious benefit in making applications easier to write and maintain. the features described in this
chapter provide fine-grained control over how dependency injection works, but they also make it
possible to sharply increase the complexity of an angular application and, ultimately, undermine many
of the benefits that the basic features offer.

if you decide that you want all of the gritty detail, then read on. But if you are new to the world of
dependency injection, you may prefer to skip this chapter until you find that the basic features from
Chapter 19 don’t deliver the functionality you require.

Table 20-2 summarizes the chapter.

Preparing the Example Project
As with the other chapters in this part of the book, I am going to continue working with the project created
in Chapter 11 and most recently modified in Chapter 19. To prepare for this chapter, I added a file called
log.service.ts to the app folder and used it to define the service shown in Listing 20-1.

Listing 20-1. The Contents of the log.service.ts File in the app Folder

import { Injectable } from "@angular/core";

export enum LogLevel {
 DEBUG, INFO, ERROR
}

Table 20-2. Chapter Summary

Problem Solution Listing

Change the way that services are created Use a service provider 1–3

Specify a service using a class Use the class provider 4–6, 10–13

Define arbitrary tokens for services Use the OpaqueToken class 7–9

Specify a service using an object Use the value provider 14–15

Specify a service using a function Use the factory provider 16–18

Specify one service using another Use the existing service provider 19

Change the scope of a service Use a local service provider 20–28

Control the resolution of dependencies Use the @Host, @Optional, or @SkipSelf decorator 29–30

http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_19

Chapter 20 ■ Using serviCe providers

495

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 logInfoMessage(message: string) {
 this.logMessage(LogLevel.INFO, message);
 }

 logDebugMessage(message: string) {
 this.logMessage(LogLevel.DEBUG, message);
 }

 logErrorMessage(message: string) {
 this.logMessage(LogLevel.ERROR, message);
 }

 logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Message (${LogLevel[level]}): ${message}`);
 }
 }
}

This service writes out log messages, with differing levels of severity, to the browser’s JavaScript console.
I will register and use this service later in the chapter.

When you have created the service and saved the changes, run the following command in the example
folder to start the TypeScript compiler and the development HTTP server:

npm start

A new browser window will open and display the application shown in Figure 20-1.

Chapter 20 ■ Using serviCe providers

496

Using Service Providers
As I explained in the previous chapters, classes declare dependencies on services using their constructor
arguments. When Angular needs to create a new instance of the class, it inspects the constructor and
uses a combination of built-in and custom services to resolve each argument. In Listing 20-2 shows the
DiscountService class updated so that it depends on the LogService class created in the previous section.

Listing 20-2. Creating a Dependency in the discount.service.ts File

import { Injectable } from "@angular/core";
import { LogService } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

Figure 20-1. Running the example application

Chapter 20 ■ Using serviCe providers

497

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

The changes in Listing 20-2 prevent the application from running. Angular processes the HTML
document and starts creating the hierarchy of components, each with their templates that require directives
and data bindings, and it encounters the classes that depend on the DiscountService class. But it can’t
create an instance of DiscountService because its constructor requires a LogService object and it doesn’t
know how to handle this class.

When you save the changes in Listing 20-2, you will see an error like this one in the browser’s JavaScript
console:

Error in app/productForm.component.html:20:0 caused by: No provider for LogService!

Angular delegates responsibility for creating the objects needed for dependency injection to
providers, each of which managed a single type of dependency. When it needs to create an instance of the
DiscountService class, it looks for a suitable provider to resolve the LogService dependency. Since there is
no such provider, Angular can’t create the objects it needs to start the application and reports the error.

The simplest way to create a provider is to add the service class to the array assigned to the Angular
module’s providers property, as shown in Listing 20-3.

Listing 20-3. Creating a Provider in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";

Chapter 20 ■ Using serviCe providers

498

import { Model } from "./repository.model";
import { LogService } from "./log.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model, LogService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

When you save the changes, you will have defined the provider that Angular requires to handle the
LogService dependency, and you will see messages like this one shown in the browser’s JavaScript console:

Message (INFO): Discount 10 applied to price: 16

You might wonder why the configuration step in Listing 20-3 is required. After all, Angular could just
assume that it should create a new LogService object the first time it needs one.

In fact, Angular provides a range of different providers, each of which creates objects in a different
way to let you take control of the service creation process. Table 20-3 describes the set of providers that are
available, which are described in the sections that follow.

Using the Class Provider
This provider is the most commonly used. This is the provider that is targeted by adding the class names to
the module’s providers property in Listing 20-3, but this is a shorthand syntax. There is also a literal syntax
that achieves the same result, as shown in Listing 20-4.

Table 20-3. The Angular Providers

Name Description

Class provider This provider is configured using a class. Dependencies on the service are
resolved by an instance of the class, which Angular creates.

Value provider This provider is configured using an object, which is used to resolve
dependencies on the service.

Factory provider This provider is configured using a function. Dependencies on the service
are resolved using an object that is created by invoking the function.

Existing service provider This provider is configured using the name of another service and allows
aliases for services to be created.

Chapter 20 ■ Using serviCe providers

499

Listing 20-4. Using the Class Provider Literal Syntax in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LogService, useClass: LogService }],
 bootstrap: [ProductComponent]
})
...

Providers are defined as classes, but they can be specified and configured using the JavaScript object
literal format, like this:

...
{
 provide: LogService,
 useClass: LogService
}
...

The class provider supports three properties, which are described in Table 20-4 and explained in the
sections that follow.

Understanding the Token
All providers rely on a token, which the dependency injection system uses to identity the dependency that
the provider can resolve. The simplest approach is to use a class as the token, which is the approach taken in
Listing 20-4.

However, you can use any object as the token, which allows the dependency and the type of the object
to be separated. This increases the flexibility of the dependency injection configuration because it allows a
provider to supply objects of different types, which can be useful with some of the more advanced providers
described later in the chapter.

Table 20-4. The Class Provider’s Properties

Name Description

provide This property is used to specify the token, which is used to identify the provider and the
dependency that will be resolved. See the “Understanding the Token” section.

useClass This property is used to specify the class that will be instantiated to resolve the
dependency by the provider. See the “Understanding the useClass Property” section.

multi This property can be used to deliver an array of service objects to resolve dependencies.
See the “Resolving a Dependency with Multiple Objects” section.

Chapter 20 ■ Using serviCe providers

500

Listing 20-5 uses the class provider to register the log service created at the start of the chapter using a
string.

Listing 20-5. Registering a Service with a Token in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: "logger", useClass: LogService }],
 bootstrap: [ProductComponent]
})
...

In the listing the provide property of the new provider is set to logger. Angular will automatically
match providers whose token is a class but needs some additional help for other token types. Listing 20-6
shows the DiscountService class updated with a dependency on the logging service, accessed using the
logger token.

Listing 20-6. Using a String Provider Token in the discount.service.ts File

import { Injectable, Inject } from "@angular/core";
import { LogService } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(@Inject("logger") private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Chapter 20 ■ Using serviCe providers

501

The @Inject decorator is applied to the constructor argument and is used to specify the provider
token that should be used to resolve the dependency. When Angular needs to create an instance of the
DiscountService class, it will inspect the constructor and use the @Inject decorator argument to select the
provider that will be used to resolve the dependency.

Using Opaque Tokens

When using simple types as provider tokens, there is a chance that two different parts of the application will
try to use the same token to identify different services, which means that the wrong type of object may be
used to resolve dependencies and cause errors.

To help work around this, Angular provides the OpaqueToken class, which provides an object wrapper
around a string value and which can be used to create unique token values. In Listing 20-7, I have used the
OpaqueToken class to create a token that will be used to identify dependencies on the LogService class.

Listing 20-7. Creating a Token Using the OpaqueToken Class in the log.service.ts File

import { Injectable, OpaqueToken } from "@angular/core";
export const LOG_SERVICE = new OpaqueToken("logger");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 // ...methods omitted for brevity...
}

The constructor for the OpaqueToken class accepts a string value that describes the service, but it is the
OpaqueToken object itself that will be the token. Dependencies must be declared on the same OpaqueToken
that is used to create the provider in the module, which is why the token has been created using the const
keyword, which presents the object from being modified. Listing 20-8 shows the provider configuration
using the new token.

Listing 20-8. Creating a Provider Using an OpaqueToken in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

Chapter 20 ■ Using serviCe providers

502

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE } from "./log.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: LogService }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

And finally, Listing 20-9 shows the DiscountService class updated to declare a dependency using the
OpaqueToken instead of a string.

Listing 20-9. Declaring a Dependency Using an OpaqueToken in the discount.service.ts File

import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(@Inject(LOG_SERVICE) private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Chapter 20 ■ Using serviCe providers

503

There is no difference in the functionality offered by the application, but using the OpaqueToken means
that there will be no confusion between services.

Understanding the useClass Property
The class provider’s useClass property specifies the class that will be instantiated to resolve dependencies.
The provider can be configured with any class, which means that you can change the implementation
of a service by changing the provider configuration. However, this should be used with caution, because
the recipients of the service object will be expecting a specific type, and any mismatches won’t result in
problems until the application is running in the browser. (TypeScript type enforcement has no effect on
dependency injection because it occurs at runtime, long after the type annotations have been processed by
the TypeScript compiler.)

The most common way to change classes is to use different subclasses. In Listing 20-10, I extended
the LogService class to create a service that writes a different format of message in the browser’s JavaScript
console.

Listing 20-10. Creating a Subclassed Service in the log.service.ts File

import { Injectable, OpaqueToken } from "@angular/core";
export const LOG_SERVICE = new OpaqueToken("logger");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 logInfoMessage(message: string) {
 this.logMessage(LogLevel.INFO, message);
 }

 logDebugMessage(message: string) {
 this.logMessage(LogLevel.DEBUG, message);
 }

 logErrorMessage(message: string) {
 this.logMessage(LogLevel.ERROR, message);
 }

 logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Message (${LogLevel[level]}): ${message}`);
 }
 }
}

Chapter 20 ■ Using serviCe providers

504

@Injectable()
export class SpecialLogService extends LogService {

 constructor() {
 super()
 this.minimumLevel = LogLevel.DEBUG;
 }

 logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Special Message (${LogLevel[level]}): ${message}`);
 }
 }
}

The SpecialLogService class extends LogService and provides its own implementation of the
logMessage method. Listing 20-11 updates the provider configuration so that the useClass property
specifies the new service.

Listing 20-11. Configuring the Provider in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService } from "./log.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],

Chapter 20 ■ Using serviCe providers

505

 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: SpecialLogService }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The combination of token and class means that dependencies on the LOG_SERVICE opaque token will be
resolved using a SpecialLogService object. When you save the changes, you will see messages like this one
displayed in the browser’s JavaScript console, indicating that the derived service has been used:

Special Message (INFO): Discount 10 applied to price: 275

Care must be taken when setting the useClass property to specify a type that the dependent classes are
expecting. Specifying a subclass is the safe option because the functionality of the base class is guaranteed to
be available.

Resolving a Dependency with Multiple Objects
The class provider can be configured to deliver an array of objects to resolve a dependency, which can be
useful if you want to provide a set of related services that differ in how they are configured. To provide an
array, multiple class providers are configured using the same token and with the multi property set as true,
as shown in Listing 20-12.

Listing 20-12. Configuring Multiple Service Objects in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: LogService, multi: true },
 { provide: LOG_SERVICE, useClass: SpecialLogService, multi: true }],
 bootstrap: [ProductComponent]
})
...

The Angular dependency injection system will resolve dependencies on the LOG_SERVICE token by
creating LogService and SpecialLogService objects, placing them in an array, and passing them to the
dependent class’s constructor. The class that receives the services must be expecting an array, as shown in
Listing 20-13.

Chapter 20 ■ Using serviCe providers

506

Listing 20-13. Receiving Multiple Services in the discount.service.ts File

import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE, LogLevel } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;
 private logger: LogService;

 constructor(@Inject(LOG_SERVICE) loggers: LogService[]) {
 this.logger = loggers.find(l => l.minimumLevel == LogLevel.DEBUG);
 }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

The services are received as an array by the constructor, which uses the array find method to locate
the first logger whose minimumLevel property is LogLevel.Debug and assign it to the logger property. The
applyDiscount method calls the service’s logDebugMessage method, which results in messages like this one
displayed in the browser’s JavaScript console:

Special Message (INFO): Discount 10 applied to price: 275

Using the Value Provider
The value provider is used when you need to take responsibility for creating the service objects yourself,
rather than leaving it to the class provider. This can also be useful when services are simple types, such as
string or number values, which can be a useful way of providing access to common configuration settings.
The value provider can be applied using a literal object and supports the properties described in Table 20-5.

Chapter 20 ■ Using serviCe providers

507

The value provider works in the same way as the class provider except that it is configured with an
object rather than a type. Listing 20-14 shows the use of the value provider to create an instance of the
LogService class that is configured with a specific property value.

Listing 20-14. Using the Value Provider in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService, LogLevel } from "./log.service";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],

Table 20-5. The Value Provider Properties

Name Description

provide This property defines the service token, as described in the “Understanding the Token”
section earlier in the chapter.

useValue This property specifies the object that will be used to resolve the dependency.

multi This property is used to allow multiple providers to be combined to provide an array
of objects that will be used to resolve a dependency on the token. See the “Resolving a
Dependency with Multiple Objects” section earlier in the chapter for an example.

Chapter 20 ■ Using serviCe providers

508

 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LogService, useValue: logger }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

This value provider is configured to resolve dependencies on the LogService token with a specific
object that has been created and configured outside of the module class.

The value provider—and, in fact, all of the providers—can use any object as the token, as described
in the previous section, but I have returned to using types as tokens because it is the most commonly used
technique and because it works so nicely with TypeScript constructor parameter typing. Listing 20-15 shows
the corresponding change to the DiscountService, which declares a dependency using a typed constructor
argument.

Listing 20-15. Declaring a Dependency Using a Type in the discount.service.ts File

import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE, LogLevel } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Using the Factory Provider
The factory provider uses a function to create the object required to resolve a dependency. This provider
supports the properties described in Table 20-6.

Chapter 20 ■ Using serviCe providers

509

This is the provider that gives the most flexibility in how service objects are created because you can
define functions that are tailored to your application’s requirements. Listing 20-16 shows a factory function
that creates LogService objects.

Listing 20-16. Using the Factory Provider in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 {
 provide: LogService, useFactory: () => {
 let logger = new LogService();
 logger.minimumLevel = LogLevel.DEBUG;
 return logger;
 }
 }],

 bootstrap: [ProductComponent]
})
...

The function in this example is simple: it receives no arguments and just creates a new LogService
object. The real flexibility of this provider comes when the deps property is used, which allows for
dependencies to be created on other services. In Listing 20-17, I have defined a token that specifies a
debugging level.

Table 20-6. The Factory Provider Properties

Name Description

provide This property defines the service token, as described in the “Understanding the Token”
section earlier in the chapter.

deps This property specifies an array of provider tokens that will be resolved and passed to
the function specified by the useFactory property.

useFactory This property specifies the function that will create the service object. The objects
produced by resolving the tokens specified by the deps property will be passed to the
function as arguments. The result returned by the function will be used as the service
object.

multi This property is used to allow multiple providers to be combined to provide an array
of objects that will be used to resolve a dependency on the token. See the “Resolving a
Dependency with Multiple Objects” section earlier in the chapter for an example.

Chapter 20 ■ Using serviCe providers

510

Listing 20-17. Defining a Logging Level Service in the log.service.ts File

import { Injectable, OpaqueToken } from "@angular/core";

export const LOG_SERVICE = new OpaqueToken("logger");
export const LOG_LEVEL = new OpaqueToken("log_level");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 // ...methods omitted for brevity...
}

@Injectable()
export class SpecialLogService extends LogService {

 // ...methods omitted for brevity...
}

In Listing 20-18, I have defined a value provider that creates a service using the LOG_LEVEL token and
used that service in the factory function that creates the LogService object.

Listing 20-18. Using Factory Dependencies in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";

Chapter 20 ■ Using serviCe providers

511

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.DEBUG },
 { provide: LogService,
 deps: [LOG_LEVEL],
 useFactory: (level) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }
 }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The LOG_LEVEL token is used by a value provider to define a simple value as a service. The factory
provider specifies this token in its deps array, which the dependency injection system resolves and provides
as an argument to the factory function, which uses it to set the minimumLevel property of a new LogService
object.

Using the Existing Service Provider
This provider is used to create aliases for services so they can be targeted using more than one token, using
the properties described in Table 20-7.

This provider can be useful when you want to refactor the set of providers but don’t want to eliminate
all the obsolete tokens in order to avoid refactoring the rest of the application. Listing 20-19 shows the use of
this provider.

Table 20-7. The Existing Provider Properties

Name Description

provide This property defines the service token, as described in the “Understanding the
Token” section earlier in the chapter.

useExisting This property is used to specify the token of another provider, whose service object
will be used to resolve dependencies on this service.

multi This property is used to allow multiple providers to be combined to provide an
array of objects that will be used to resolve a dependency on the token. See the
“Resolving a Dependency with Multiple Objects” section earlier in the chapter for
an example.

Chapter 20 ■ Using serviCe providers

512

Listing 20-19. Creating a Service Alias in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.DEBUG },
 { provide: "debugLevel", useExisting: LOG_LEVEL },
 { provide: LogService,
 deps: ["debugLevel"],
 useFactory: (level) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }
 }],
 bootstrap: [ProductComponent]
})
...

The token for the new service is the string debugLevel, and it is aliased to the provider with the
LOG_LEVEL token. Using either token will result in the dependency being resolved with the same value.

Using Local Providers
When Angular creates a new instance of a class, it resolves any dependencies using an injector. It is an
injector that is responsible for inspecting the constructors of classes to determine what dependencies have
been declared and resolving them using the available providers.

So far, all of the dependency injection examples have relied on providers configured in the application’s
Angular module. But the Angular dependency injection system is more complex: there is a hierarchy of
injectors that corresponds to the application’s tree of components and directives. Each component and
directive can have its own injector, and each injector can be configured with its own set of providers, known
as local providers.

When there is a dependency to resolve, Angular uses the injector for the nearest component or directive.
The injector first tries to resolve the dependency using its own set of local providers. If no local providers have
been set up or there are no providers that can be used to resolve this specific dependency, then the injector
consults the parent component’s injector. The process is repeated—the parent component’s injector tries to
resolve the dependency using its own set of local providers. If a suitable provider is available, then it is used
to provide the service object required to resolve the dependency. If there is no suitable provider, then the
request is passed up to the next level in the hierarchy, to the grandparent of the original injector. At the top of
the hierarchy is the root Angular module, whose providers are the last resort before reporting an error.

Defining providers in the Angular module means that all dependencies for a token within the
application will be resolved using the same object. As I explain in the following sections, registering
providers further down the injector hierarchy can change this behavior and alter the way that services are
created and used.

Chapter 20 ■ Using serviCe providers

513

Understanding the Limitations of Single Service Objects
Using a single service object can be a powerful tool, allowing building blocks in different parts of the
application to share data and respond to user interactions. But some services don’t lend themselves to being
shared so widely. As a simple example, Listing 20-20 adds a dependency on LogService to one of the pipes
created in Chapter 18.

Listing 20-20. Adding a Service Dependency in the discount.pipe.ts File

import { Pipe, Injectable } from "@angular/core";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";

@Pipe({
 name: "discount",
 pure: false
})
export class PaDiscountPipe {

 constructor(private discount: DiscountService,
 private logger: LogService) { }

 transform(price: number): number {
 if (price > 100) {
 this.logger.logInfoMessage(`Large price discounted: ${price}`);
 }
 return this.discount.applyDiscount(price);
 }
}

The pipe’s transform method uses the LogService object, which is received as a constructor argument,
to generate logging messages when the price it transforms is greater than 100.

The problem is that these log messages are drowned out by the messages generated by the
DiscountService object, which creates a message every time a discount is applied. The obvious thing to do
is to change the minimum level in the LogService object when it is created by the module provider’s factory
function, as shown in Listing 20-21.

Listing 20-21. Changing the Logging Level in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.ERROR },

http://dx.doi.org/10.1007/978-1-4842-2307-9_18

Chapter 20 ■ Using serviCe providers

514

 { provide: "debugLevel", useExisting: LOG_LEVEL },
 {
 provide: LogService,
 deps: ["debugLevel"],
 useFactory: (level) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }
 }],
 bootstrap: [ProductComponent]
})
...

Of course, this doesn’t have the desired effect because the same LogService object is used throughout
the application and filtering the DiscountService messages means that the pipe messages are filtered too.

I could enhance the LogService class so there are different filters for each source of logging messages,
but that gets complicated pretty quickly. Instead, I am going to solve the problem by creating a local provider
so that there are multiple LogService objects in the application, each of which can then be configured
separately.

Creating Local Providers in a Directive
Directives define local providers using the providers property, using the same providers and syntax
described at the start of the chapter. When Angular needs to resolve a dependency for the directive or one
of its content children—meaning the directives or pipes contained within its host element—then the local
provider will be used. Listing 20-22 shows a local provider created by a directive.

Listing 20-22. Creating a Local Provider in the cellColorSwitches.directive.ts File

import {
 Directive, Input, Output, EventEmitter,
 SimpleChange, ContentChildren, QueryList
} from "@angular/core";
import { PaCellColor } from "./cellColor.directive";
import { LogService } from "./log.service";

@Directive({
 selector: "table",
 providers: [LogService]
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean;

 @ContentChildren(PaCellColor)
 contentChildren: QueryList<PaCellColor>;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 this.updateContentChildren(changes["modelProperty"].currentValue);
 }

Chapter 20 ■ Using serviCe providers

515

 ngAfterContentInit() {
 this.contentChildren.changes.subscribe(() => {
 setTimeout(() => this.updateContentChildren(this.modelProperty), 0);
 });
 }

 private updateContentChildren(dark: Boolean) {
 if (this.contentChildren != null && dark != undefined) {
 this.contentChildren.forEach((child, index) => {
 child.setColor(index % 2 ? dark : !dark);
 });
 }
 }
}

This directive was responsible for changing the color of table cells in an earlier chapter by coordinating
with another directive. It may seem like an odd place to create a local provider, but the hierarchy of injectors
follows the structure of the application, and this directive operates on the table element, which means that
the pipe objects that have the LogService dependency are children of the directive’s host element.

When Angular needs to create a new pipe object, it detects the dependency on LogService and
starts working its way up the application hierarchy, examining each component and directive that
it finds to determine whether they have a provider that can be used to resolve the dependency. The
PaCellColorSwitcher directive does have a LogService provider, which is used to create the service used to
resolve the pipe’s dependency. This means there are now two LogService objects in the application, each of
which can be configured separately, as shown in Figure 20-2.

Figure 20-2. Creating a local provider

Chapter 20 ■ Using serviCe providers

516

The LogService object created by the color switcher directive’s provider uses the default value for its
minimumLevel property and will display LogLevel.INFO messages. The LogService object created by the
module, which will be used to resolve all other dependencies in the application, including the one declared
by the DiscountService class, is configured so that it will display only LogLevel.ERROR messages. When
you save the changes, you will see the logging messages from the pipe (which receives the service from the
directive) but not from DiscountService (which receives the service from the module).

Creating Local Providers in a Component
Creating local providers is slightly more complex in a component because there is a decision to be made
about the visibility of the services that are created. Components support two decorator properties for
creating local providers, as described in Table 20-8.

To demonstrate the use of these properties, I added a file called valueDisplay.directive.ts to the app
folder and used it to define the directive shown in Listing 20-23.

Listing 20-23. The Contents of the valueDisplay.directive.ts File in the app Folder

import { Directive, OpaqueToken, Inject, HostBinding} from "@angular/core";
export const VALUE_SERVICE = new OpaqueToken("value_service");

@Directive({
 selector: "[paDisplayValue]"
})
export class PaDisplayValueDirective {

 constructor(@Inject(VALUE_SERVICE) serviceValue: string) {
 this.elementContent = serviceValue;
 }

 @HostBinding("textContent")
 elementContent: string;
}

The VALUE_SERVICE opaque token will be used to define a value-based service, on which the directive
in this listing declares a dependency so that it can be displayed in the host element’s content. Listing 20-24
shows the service being defined and the directive being registered in the Angular module. I have also
simplified the LogService provider in the module for brevity.

Table 20-8. The Component Decorator Properties for Local Providers

Name Description

providers This property is used to create a provider used to resolve dependencies of view
and content children.

viewProviders This property is used to create a provider used to resolve dependencies of view
children.

Chapter 20 ■ Using serviCe providers

517

Listing 20-24. Registering the Directive and Service in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

The provider sets up a value of Apples for the VALUE_SERVICE service. The next step is to apply the
new directive so there is an instance that is a view child of a component and another that is a content child.
Listing 20-25 sets up the content child instance.

Listing 20-25. Applying a Content Child Directive in the template.html File

<div class="col-xs-4 p-a-1">
 <paProductForm>

 </paProductForm>
</div>

Chapter 20 ■ Using serviCe providers

518

<div class="col-xs-8 p-a-1">
 <paProductTable></paProductTable>
</div>

Listing 20-26 projects the host element’s content and adds a view child instance of the new directive.

Listing 20-26. Adding Directives in the productForm.component.html File

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && !control.valid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && !form.valid">
 Create
 </button>
</form>
<div class="bg-info m-t-1 p-a-1">
 View Child Value:
</div>
<div class="bg-info m-t-1 p-a-1">
 Content Child Value: <ng-content></ng-content>
</div>

When you save the changes, you will see the new elements, as shown in Figure 20-3, both of which show
the same value because the only provider for VALUE_SERVICE is defined in the module.

Chapter 20 ■ Using serviCe providers

519

Creating a Local Provider for All Children
The @Component decorator’s providers property is used to define providers that will be used to resolve
service dependencies for all children, regardless of whether they are defined in the template (view children)
or projected from the host element (content children). Listing 20-27 defines a VALUE_SERVICE provider in the
parent component for two new directive instances.

Listing 20-27. Defining a Provider in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 providers: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 constructor(private model: Model) { }

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();

Figure 20-3. View and content child directives

Chapter 20 ■ Using serviCe providers

520

 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

The new provider changes the service value. When Angular comes to create the instances of the new
directive, it begins its search for providers by working its way up the application hierarchy and finds the
VALUE_SERVICE provider defined in Listing 20-27. The service value is used by both instances of the directive,
as shown in Figure 20-4.

Creating a Provider for View Children
The viewProviders property defines providers that are used to resolve dependencies for view children but
not content children. Listing 20-28 uses the viewProviders property to define a provider for VALUE_SERVICE.

Listing 20-28. Defining a View Child Provider in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {

 // ...methods and properties omitted for brevity...
}

Angular uses the provider when resolving dependencies for view children but not for content children.
This means dependencies for content children are referred up the application’s hierarchy as though the
component had not defined a provider. In the example, this means that the view child will receive the service

Figure 20-4. Defining a provider for all children in a component

Chapter 20 ■ Using serviCe providers

521

created by the component’s provider, and the content child will receive the service created by the module’s
provider, as shown in Figure 20-5.

 ■ Caution defining providers for the same service using both the providers and viewProviders properties
is not supported. if you do this, the view and content children will both receive the service created by the
viewProviders provider.

Controlling Dependency Resolution
Angular provides three decorators that can be used to provide instructions about how a dependency is
resolved. These decorators are described in Table 20-9 and demonstrated in the following sections.

Restricting the Provider Search
The @Host decorator restricts the search for a suitable provider so that it stops once the closest component
has been reached. The decorator is typically combined with @Optional, which prevents Angular from
throwing an exception if a service dependency cannot be resolved. Listing 20-29 shows the addition of both
decorators to the directive in the example.

Figure 20-5. Defining a provider for view children

Table 20-9. The Dependency Resolution Decorators

Name Description

@Host This decorator restricts the search for a provider to the nearest component.

@Optional This decorator stops Angular from reporting an error if the dependency cannot be
resolved.

@SkipSelf This decorator excludes the providers defined by the component/directive whose
dependency is being resolved.

Chapter 20 ■ Using serviCe providers

522

Listing 20-29. Adding Dependency Decorators in the valueDisplay.directive.ts File

import { Directive, OpaqueToken, Inject,
 HostBinding, Host, Optional} from "@angular/core";

export const VALUE_SERVICE = new OpaqueToken("value_service");

@Directive({
 selector: "[paDisplayValue]"
})
export class PaDisplayValueDirective {

 constructor(@Inject(VALUE_SERVICE) @Host() @Optional() serviceValue: string) {
 this.elementContent = serviceValue || "No Value";
 }

 @HostBinding("textContent")
 elementContent: string;
}

When using the @Optional decorator, you must ensure that the class is able to function if the service
cannot be resolved, in which case the constructor argument for the service is undefined. The nearest
component defines a service for its view children but not content children, which means that one instance of
the directive will receive a service object and the other will not, as illustrated in Figure 20-6.

Skipping Self-Defined Providers
By default, the providers defined by a component or directive are used to resolve its dependencies.
The @SkipSelf decorator can be applied to constructor arguments to tell Angular to ignore the local
providers and start the search at the next level in the application hierarchy, which means that the
local providers will be used only to resolve dependencies for children. In Listing 20-30, I have added a
dependency on the VALUE_SERVICE provider that is decorated with @SkipSelf.

Figure 20-6. Controlling how a dependency is resolved

Chapter 20 ■ Using serviCe providers

523

Listing 20-30. Skipping Local Providers in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./product.model";
import { ProductFormGroup } from "./form.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 form: ProductFormGroup = new ProductFormGroup();
 newProduct: Product = new Product();
 formSubmitted: boolean = false;

 constructor(private model: Model,
 @Inject(VALUE_SERVICE) @SkipSelf() private serviceValue: string) {
 console.log("Service Value: " + serviceValue);
 }

 submitForm(form: any) {
 this.formSubmitted = true;
 if (form.valid) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 this.form.reset();
 this.formSubmitted = false;
 }
 }
}

When you save the changes and the browser reloads the page, you will see the following message in the
browser’s JavaScript console, showing that the service value defined locally (Oranges) has been skipped and
allowing the dependency to be resolved by the Angular module:

Service Value: Apples

Summary
In this chapter, I explained the role that providers play in dependency injection and explained how they can
be used to change how services are used to resolve dependencies. I described the different types of provider
that can be used to create service objects and demonstrated how directives and components can define their
own providers to resolve their own dependencies and those of their children. In the next chapter, I describe
modules, which are the final building block for Angular applications.

525© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_21

CHAPTER 21

Using and Creating Modules

In this chapter, I describe the last of the Angular building blocks: modules. In the first part of the chapter,
I describe the root module, which every Angular application uses to describe the configuration of the
application to Angular. In the second part of the chapter, I describe feature modules, which are used to add
structure to an application so that related features can be grouped as a single unit. Table 21-1 puts modules
in context.

Table 21-2 summarizes the chapter.

Table 21-1. Putting Modules in Context

Question Answer

What are they? Modules provide configuration information to Angular.

Why are they useful? The root module describes the application to Angular, setting up
essential features such as components and services. Feature modules
are useful for adding structure to complex projects, making them easier
to manage and maintain.

How are they used? Modules are classes to which the @NgModule decorator has been applied.
The properties used by the decorator have different meanings for root
and feature modules.

Are there any pitfalls or
limitations?

There is no module-wide scope for providers, which means that the
providers defined by a feature module will be available as though they
had been defined by the root module.

Are there any alternatives? Every application must have a rot module, but the use of feature
modules is entirely optional. However, if you don’t use feature modules,
then the files in an application can become difficult to manage.

Table 21-2. Chapter Summary

Problem Solution Listing

Describe an application and the building blocks it
contains

Use the root module 1–7

Group related features together Create a feature module 8–28

Chapter 21 ■ Using and Creating ModUles

526

Preparing the Example Project
As with the other chapters in this part of the book, I am going to use the example project that was created in
Chapter 11 and has been expanded and extended in each chapter since.

 ■ Tip You can download the same code for all the chapters in this book from apress.com if you don’t want to
have to create the project yourself.

To prepare for this chapter, I have removed some functionality from the component templates.
Listing 21-1 shows the template for the product table, in which I have commented out the elements for the
discount editor and display components.

Listing 21-1. The Contents of the productTable.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th></th><th>Name</th><th>Category</th><th>Price</th>
 <th>Discount</th><th></th>
 </tr>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.bg-info]="odd"
 [class.bg-warning]="even">
 <td style="vertical-align:middle">{{i + 1}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | discount | currency:"USD":true }}
 </td>
 <td style="vertical-align:middle" [pa-price]="item.price"
 #discount="discount">
 {{ discount.discountAmount | currency:"USD": true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
</table>
<!--<paDiscountEditor></paDiscountEditor>-->
<!--<paDiscountDisplay></paDiscountDisplay>-->

Listing 21-2 shows the template from the product form component, in which I have commented out the
elements that I used to demonstrate the difference between providers for view children and content children
in Chapter 20.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 21 ■ Using and Creating ModUles

527

Listing 21-2. The Contents of the productForm.component.html File

<form novalidate [formGroup]="form" (ngSubmit)="submitForm(form)">
 <div class="form-group" *ngFor="let control of form.productControls">
 <label>{{control.label}}</label>
 <input class="form-control"
 [(ngModel)]="newProduct[control.modelProperty]"
 name="{{control.modelProperty}}"
 formControlName="{{control.modelProperty}}" />
 <ul class="text-danger list-unstyled"
 *ngIf="(formSubmitted || control.dirty) && !control.valid">
 <li *ngFor="let error of control.getValidationMessages()">
 {{error}}

 </div>
 <button class="btn btn-primary" type="submit"
 [disabled]="formSubmitted && !form.valid"
 [class.btn-secondary]="formSubmitted && !form.valid">
 Create
 </button>
</form>
<!--<div class="bg-info m-t-1 p-a-1">
 View Child Value:
</div>
<div class="bg-info m-t-1 p-a-1">
 Content Child Value: <ng-content></ng-content>
</div>-->

Start the TypeScript compiler and development HTTP server by running the following command in the
example folder:

npm start

A new browser window or tab will open and you will see the content shown in Figure 21-1.

Chapter 21 ■ Using and Creating ModUles

528

Understanding the Root Module
Every Angular has at least one module, known as the root module. The root module is conventionally
defined in a file called app.module.ts in the app folder, and it contains a class to which the @NgModule
decorator has been applied. Listing 21-3 shows the root module from the example application.

Listing 21-3. The Root Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";

Figure 21-1. Running the example application

Chapter 21 ■ Using and Creating ModUles

529

import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

There can be multiple modules in a project but the root module is the one used in the bootstrap file,
which is conventionally called main.ts and is defined in the app folder. Listing 21-4 shows the main.ts file
for the example project.

ANGULAR MODULES VERSUS JAVASCRIPT MODULES

there are two kinds of module in an angular application: angular modules and Javascript modules. the
angular module is a class to which the @NgModule decorator has been applied. every application has
a root angular module, and angular modules are added to the application using the root component’s
imports property. in listing 21-3, the FormsModule is included in the root module’s imports property,
enabling the functionality that it contains.

...
imports: [BrowserModule, FormsModule, ReactiveFormsModule],
...

the browser needs to load the code in the angular module, which is where the Javascript package
comes in. to bring the FormsModule type into scope, the app.module.ts file contains an import
statement like this:

...
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
...

the @angular/forms reference is for a Javascript module. the Javascript module loader, the systemJs
package in the case of the example application, maps the @angular/forms reference to the file
node_modules/@angular/forms/bundles/forms.umd.min.js, which is a minified Javascript code file
that contains multiple angular modules.

so, even though the term module has two different meanings in an angular application, those meaning
are related. angular modules are classes that provide access to angular functionality and that are
packaged for delivery to the browser in Javascript modules.

Chapter 21 ■ Using and Creating ModUles

530

Listing 21-4. The Angular Bootstrap in the main.ts File

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

Angular applications can be run in different environments, such as web browsers and native application
containers. The job of the bootstrap file is to select the platform and identify the root module. The
platformBrowserDynamic method creates the browser runtime, and the bootstrapModule method is used to
specify the module, which is the AppModule class from Listing 21-3.

When defining the root module, the @NgModule decorator properties described in Table 21-3 are used.
(There are additional decorator properties, which are described later in the chapter.)

Understanding the Imports Property
The imports property is used to list the other modules that the application requires. In the example
application, these are all modules provided by the Angular framework.

...
imports: [BrowserModule, FormsModule, ReactiveFormsModule],
...

The BrowserModule provides the functionality required to run Angular applications in web browsers.
The other two modules provide support for working with HTML forms and model-based forms, as described
in Chapter 14. There are other Angular modules, which are introduced in later chapters.

The imports property is also used to declare dependency on custom modules, which are used to
manage complex Angular applications and to create units of reusable functionality. I explain how custom
modules are defined in the “Creating Feature Modules” section.

Understanding the Declarations Property
The declarations property is used to provide Angular with a list of the directives, components, and pipes
that the application requires, known collectively as the declarable classes. The declarations property in the
example project root module contains a long list of classes, each of which is available only for use elsewhere
in the application because it is listed here.

Table 21-3. The @NgModule Decorator Root Module Properties

Name Description

imports This property specifies the Angular modules that are required to support the
directives, components, and pipes in the application.

declarations This property is used to specify the directives, components, and pipes that are used in
the application.

providers This property defines the service providers that will be used by the module’s injector.
These are the providers that will be available throughout the application and used
when no local provider for a service is available, as described in Chapter 20.

bootstrap This property specifies the root components for the application.

http://dx.doi.org/10.1007/978-1-4842-2307-9_14
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 21 ■ Using and Creating ModUles

531

...
declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
...

Notice that the built-in declarable classes, such as the directives described in Chapter 13 and the pipes
described in Chapter 18, are not included in the declarations property for the root module. This is because
they are managed by the BrowserModule, and when you add a module to the imports property, its declarable
classes are automatically available for use in the application.

Understanding the Providers Property
The providers property is used to define the service providers that will be used to resolve dependencies
when there are no suitable local providers available. The use of providers for services is described in detail in
Chapters 19 and 20.

Understanding the Bootstrap Property
The bootstrap property specifies the root component or components for the application. When Angular
process the main HTML document, which is conventionally called index.html, it inspects the root
components and applies them using the value of the selector property in the @Component decorators.

 ■ Tip the components listed in the bootstrap property must also be included in the declarations list.

Here is the bootstrap property from the example project’s root module:

...
bootstrap: [ProductComponent]
...

The ProductComponent class provides the root component, and its selector property specifies the app
element, as shown in Listing 21-5.

Listing 21-5. The Root Component in the component.ts File

import { Component } from "@angular/core";

@Component({
 selector: "app",
 templateUrl: "app/template.html"
})
export class ProductComponent {

}

http://dx.doi.org/10.1007/978-1-4842-2307-9_13
http://dx.doi.org/10.1007/978-1-4842-2307-9_18
http://dx.doi.org/10.1007/978-1-4842-2307-9_19
http://dx.doi.org/10.1007/978-1-4842-2307-9_20

Chapter 21 ■ Using and Creating ModUles

532

When I started the example project in Chapter 11, the root component had a lot of functionality. But
since the introduction of additional components, the role of this component has been reduced, and it is now
essentially a placeholder that tells Angular to project the contents of the app/template.html file into the app
element in the HTML document, which allows the components that do the real work in the application to be
loaded.

There is nothing wrong with this approach, but it does mean that the root component in the application
doesn’t have a great deal to do. If this kind of redundancy feels untidy, then you can specify multiple root
components in the root module, and all of them will be used to target elements in the HTML document. To
demonstrate, I have removed the existing root component from the root module’s bootstrap property and
replaced it with the component classes that are responsible for the product form and the product table, as
shown in Listing 21-6.

Listing 21-6. Specifying Multiple Root Components in the app.module.ts File

...
@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }
...

Listing 21-7 reflects the change in the root components in the main HTML document.

Listing 21-7. Changing the Root Component Elements in the index.html File

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>

http://dx.doi.org/10.1007/978-1-4842-2307-9_11

Chapter 21 ■ Using and Creating ModUles

533

<body class="m-a-1">
 <div class="col-xs-8 p-a-1">
 <paProductTable></paProductTable>
 </div>
 <div class="col-xs-4 p-a-1">
 <paProductForm></paProductForm>
 </div>
</body>
</html>

I have reversed the order in which these components appear compared to previous examples, just to
create a detectable change in the application’s layout. When all the changes are saved and the browser has
reloaded the page, you will see the new root components displayed, as illustrated by Figure 21-2.

The module’s service providers are used to resolve dependencies for all root components. In the case of
the example application, this means that there is a single Model service object that is shared throughout the
application and that allows products created with the HTML form to be displayed automatically in the table,
even though these components have been promoted to be root components.

Creating Feature Modules
As I have described different features to the example application, the root module has become increasingly
complex, with a long list of import statements to load JavaScript modules and a set of classes in the
declararations property of the @NgModule decorator that spans several lines, as shown in Listing 21-8.

Figure 21-2. Using multiple root components

Chapter 21 ■ Using and Creating ModUles

534

Listing 21-8. The Contents of the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Feature modules are used to group related functionality together so that it can be used as a single entity,
just like the Angular modules. When I need to use the features for working with forms, for example, I don’t
have to add import statements and declarations entries for each individual directive, component, or pipe.
Instead, I just add BrowserModule to the decorator’s import property, and all of the functionality it contains
is available throughout the application.

When you create a feature module, you can choose to focus on an application function or elect to group
together a set of related building blocks that provide your application’s infrastructure. I’ll do both in the sections
that follow because they work in slightly different ways and have different considerations. Feature modules use
the same @NgModule decorator but with an overlapping set of configuration properties, some of which are new
and some of which are used in common with the root module but have a different effect. I explain how these
properties are used in the following sections, but Table 21-4 provides a summary for future quick reference.

Chapter 21 ■ Using and Creating ModUles

535

Creating a Model Module
The term model module might be a tongue twister, but it is generally a good place to start when refactoring
an application using feature modules because just about every other building block in the application
depends on the model.

The first step is to create the folder that will contain the module. Module folders are defined within the
app folder and are given a meaningful name. For this module, I created an app/model folder.

The naming conventions used for Angular files makes it easy to move and delete multiple files. Run the
following commands in the example folder to move the files (they will work in Windows PowerShell, Linux,
and macOS):

mv app/*.model.ts app/model/
mv app/limit.formvalidator.ts app/model/

Once you have moved all the files, you should delete the corresponding JavaScript files by running the
following commands in the example folder:

rm app/*.model.js
rm app/limit.formvalidator.js

The result is that the files listed in Table 21-5 are moved to the model folder.

Table 21-4. The @NgModule Decorator Properties for Feature Modules

Name Description

imports This property is used to import the modules that are required by the classes in the modules.

providers This property is used to define the module’s providers. When the feature module is
loaded, the set of providers are combined with those in the root module, which means
that the feature module’s services are available throughout the application (and not just
within the module).

declarations This property is used to specify the directives, components, and pipes in the module.
This property must contain the classes that are used within the module and those that are
exposed by the module to the rest of the application.

exports This property is used to define the public exports from the module. It contains some or all
of the directives, components, and pipes from the declarations property and some or all
of the modules from the imports property.

Table 21-5. The File Moves Required for the Module

File New Location

app/datasource.model.ts app/model/datasource.model.ts

app/form.model.ts app/model/form.model.ts

app/limit.formvalidator.ts app/model/limit.formvalidator.ts

app/product.model.ts app/model/product.model.ts

app/repository.model.ts app/model/repository.model.ts

Chapter 21 ■ Using and Creating ModUles

536

When you have finished moving and deleting file, the TypeScript compiler will list a series of compiler
errors because some of the key declarable classes are unavailable and the browser will report errors because
it can’t find the JavaScript files that were removed. I’ll work through dealing with these problems in the
sections that follow.

Creating the Module Definition
The next step is to define a module that brings together the functionality in the files that have been moved to
the new folder. I added a file called model.module.ts in the app/model folder and defined the module shown
in Listing 21-9.

Listing 21-9. The Contents of the model.module.ts File in the app/model Folder

import { NgModule } from "@angular/core";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";

@NgModule({
 providers: [Model, SimpleDataSource]
})
export class ModelModule { }

This is a simple module, but there are some important characteristics to understand because the purpose
of a feature module is to selectively expose the contents of the module folder to the rest of the application.

The @NgModule decorator for this module uses only the providers property to define class providers for
the Model and SimpleDataSource services. When you use providers in a feature module, they are registered
with the root module’s injector, which means they are available throughout the application, which is exactly
what is required for the data model in the example application.

 ■ Tip a common mistake is to assume that services defined in a module are accessible only to the classes
within that module. there is no module scope in angular. providers defined by a feature module are used as
though they were defined by the root module. local providers defined by directives and components in the
feature module are available to their view and content children even if they are defined in other modules.

Updating the Other Classes in the Application
Moving classes into the model folder has broken import statements in other parts of the application,
which depend on either the Product or ProductFormGroup class. The next step is to update those import
statements to point to the new module. There are four affected files: attr.directive.ts, categoryFilter.
pipe.ts, productForm.component.ts, and productTable.component.ts. Listing 21-10 shows the changes
required to the attr.directive.ts file.

Listing 21-10. Updating the Import Reference in the attr.directive.ts File

import { Directive, ElementRef, Attribute, Input,
 SimpleChange, Output, EventEmitter, HostListener, HostBinding }
from "@angular/core";
import { Product } from "./model/product.model";

Chapter 21 ■ Using and Creating ModUles

537

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 // ...statements omitted for brevity...
}

The only change that is required is to update the path used in the import statement to reflect the new
location of the code file. Listing 21-11 shows the same change applied to the categoryFilter.pipe.ts file.

Listing 21-11. Updating the Import Reference in the categoryFilter.pipe.ts File

import { Pipe } from "@angular/core";
import { Product } from "./model/product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[], category: string): Product[] {
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Listing 21-12 updates the import statements in the productForm.component.ts file.

Listing 21-12. Updating Import Paths in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./model/product.model";
import { ProductFormGroup } from "./model/form.model";
import { Model } from "./model/repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {

 // ...statements omitted for brevity...
}

Chapter 21 ■ Using and Creating ModUles

538

Listing 21-13 updates the paths in the final file, productTable.component.ts.

Listing 21-13. Updating Import Paths in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./model/repository.model";
import { Product } from "./model/product.model";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 // ...statements omitted for brevity...
}

Updating the Root Module
The final step is to update the root module so that the services defined in the feature module are made
available throughout the application. Listing 21-14 shows the required changes.

Listing 21-14. Updating the Root Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { ModelModule } from "./model/model.module";
import {
 LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL
} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective } from "./valueDisplay.directive";

Chapter 21 ■ Using and Creating ModUles

539

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule, ModelModule],
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaAddTaxPipe, PaCategoryFilterPipe,
 PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 providers: [DiscountService, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

I imported the feature module and added it to the root module’s imports list. Since the feature module
defines providers for Model and SimpleDataSource, I removed the entries from the root module’s providers
list and removed the associated import statements.

When you save the changes to the root module, the browser will reload the application. The root
module will load the model feature module, which will provide access to the model services, and the
application will start correctly.

Creating a Utility Feature Module
A model module is good place to start because it demonstrates the basic structure of a feature module and
how it relates to the root module. The impact on the application was slight, however, and not a great deal of
simplification was achieved.

The next step up in complexity is a utility feature module, which groups together all of the common
functionality in the application, such as pipes and directives. In a real project, you might be more selective
about how you group these types of building block together so that there are several modules, each
containing similar functionality. For the example application, I am going to move all of the pipes, directives,
and services into a single module.

Creating the Module Folder and Moving the Files
As with the previous module, the first step is to create the folder. For this module, I created a folder called
app/common. Run the following commands in the example folder to move the TypeScript files for the pipes
and directives:

mv app/*.pipe.ts app/common/
mv app/*.directive.ts app/common/

These commands should work in Windows PowerShell, Linux, and macOS. Some of the directives and
pipes in the application rely on the DiscountService and LogServices classes, which is provided to them
through dependency injection. Run the following command in the app folder to move the TypeScript file for
the service into the module folder:

mv app/*.service.ts app/common/

Chapter 21 ■ Using and Creating ModUles

540

Once you have moved the TypeScript files, you should delete the corresponding JavaScript files by
running the following commands in the example folder:

rm app/*.pipe.js
rm app/*.directive.js
rm app/*.service.js

The result is that the files listed in Table 21-6 are moved to the module folder.

Updating the Classes in the New Module
Some of the classes that have been moved into the new folder have import statements that have to be
updated to reflect the new path to the model module. Listing 21-15 shows the change required to the
attr.directive.ts file.

Listing 21-15. Updating the Imports in the attr.directive.ts File

import {
 Directive, ElementRef, Attribute, Input,
 SimpleChange, Output, EventEmitter, HostListener, HostBinding
}
 from "@angular/core";
import { Product } from "../model/product.model";

@Directive({
 selector: "[pa-attr]"
})

Table 21-6. The File Moves Required for the Module

File New Location

app/addTax.pipe.ts app/common/addTax.pipe.ts

app/attr.directive.ts app/common/attr.directive.ts

app/categoryFilter.pipe.ts app/common/categoryFilter.pipe.ts

app/cellColor.directive.ts app/common/cellColor.directive.ts

app/cellColorSwitcher.directive.ts app/common/cellColorSwitcher.directive.ts

app/discount.pipe.ts app/common/discount.pipe.ts

app/discountAmount.directive.ts app/common/discountAmount.directive.ts

app/iterator.directive.ts app/common/iterator.directive.ts

app/structure.directive.ts app/common/structure.directive.ts

app/twoway.directive.ts app/common/twoway.directive.ts

app/valueDisplay.directive.ts app/common/valueDisplay.directive.ts

app/discount.service.ts app/common/discount.service.ts

app/log.service.ts app/common/log.service.ts

Chapter 21 ■ Using and Creating ModUles

541

export class PaAttrDirective {

 // ...statements omitted for brevity...
}

Listing 21-16 shows the corresponding change to the categoryFilter.pipe.ts file.

Listing 21-16. Updating the Imports in the categoryFilfer.pipe.ts File

import { Pipe } from "@angular/core";
import { Product } from "../model/product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[], category: string): Product[] {
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Creating the Module Definition
The next step is to define a module that brings together the functionality in the files that have been moved
to the new folder. I added a file called common.module.ts in the app/common folder and defined the module
shown in Listing 21-17.

Listing 21-17. The Contents of the common.module.ts File in the app/common Folder

import { NgModule } from "@angular/core";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaAttrDirective } from "./attr.directive";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaModel } from "./twoway.directive";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";
import { ModelModule } from "../model/model.module";

@NgModule({
 imports: [ModelModule],
 providers: [LogService, DiscountService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],

Chapter 21 ■ Using and Creating ModUles

542

 declarations: [PaAddTaxPipe, PaAttrDirective, PaCategoryFilterPipe,
 PaCellColor, PaCellColorSwitcher, PaDiscountPipe,
 PaDiscountAmountDirective, PaIteratorDirective, PaStructureDirective,
 PaModel, PaDisplayValueDirective],
 exports: [PaAddTaxPipe, PaAttrDirective, PaCategoryFilterPipe,
 PaCellColor, PaCellColorSwitcher, PaDiscountPipe,
 PaDiscountAmountDirective, PaIteratorDirective, PaStructureDirective,
 PaModel, PaDisplayValueDirective]
})
export class CommonModule { }

This is a more complex module than the one required for the data model. In the sections that follow, I
describe the values that are used for each of the decorator’s properties.

Understanding the Imports

Some of the directives and pipes in the module depend on the services defined in the model module,
created earlier in this chapter. To ensure that the features in that module are available, I have added to the
common module’s imports property.

Understanding the Providers

The providers property ensures that the services that the directives and pipes in the feature module
have access to the services they require. This means adding class providers to create LogService and
DiscountService services, which will be added to the root module’s providers when the module is loaded.
Not only will the services be available to the directives and pipes in the common module; they will also be
available throughout the application.

Understanding the Declarations

The declarations property is used to provide Angular with a list of the directives and pipes (and
components, if there are any) in the module. In a feature module, this property has two purposes: it enables
the declarable classes for use in any templates contained within the module, and it allows a module to make
those declarable classes available outside of the module. I create a module that contains template content
later in this chapter, but for this module, the value of the declarations property is that it must be used in
order to prepare for the exports property, described in the next section.

Understanding the Exports

For a module that contains directives and pipes intended for use elsewhere in the application, the
exports property is the most important in the @NgModule decorator because it defines the set of directives,
components, and pipes that the module provides for use when it is imported elsewhere in the application.
The exports property can contain individual classes and module types, although both must already be listed
in the declarations or imports property. When the module is imported, the types listed behave as though
they had been added to the importing module’s declarations property.

Chapter 21 ■ Using and Creating ModUles

543

Updating the Other Classes in the Application
Now that the module has been defined, I can update the other files in the application that contain import
statements for the types that are now part of the common module. Listing 21-18 shows the changes required to
the discountDisplay.component.ts file.

Listing 21-18. Updating the Import Reference in the discountDisplay.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "./common/discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info p-a-1">
 The discount is {{discounter.discount}}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(private discounter: DiscountService) { }
}

Listing 21-19 shows the changes to the discountEditor.component.ts file.

Listing 21-19. Updating the Import Reference in the discountEditor.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "./common/discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(private discounter: DiscountService) { }
}

Listing 21-20 shows the changes to the productForm.component.ts file.

Listing 21-20. Updating the Import Reference in the productForm.component.ts File

import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./model/product.model";
import { ProductFormGroup } from "./model/form.model";
import { Model } from "./model/repository.model";
import { VALUE_SERVICE } from "./common/valueDisplay.directive";

Chapter 21 ■ Using and Creating ModUles

544

@Component({
 selector: "paProductForm",
 templateUrl: "app/productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {

 // ...statements omitted for brevity...
}

The final change is to the productTable.component.ts File, as shown in Listing 21-21.

Listing 21-21. Updating the Import Reference in the productTable.component.ts File

import { Component, Input, ViewChildren, QueryList } from "@angular/core";
import { Model } from "./model/repository.model";
import { Product } from "./model/product.model";
import { DiscountService } from "./common/discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/productTable.component.html"
})
export class ProductTableComponent {

 // ...statements omitted for brevity...
}

Updating the Root Module
The final step is to update the root module so that it loads the common module in order to provide access to
the directives and pipes it contains, as shown in Listing 21-22.

Listing 21-22. Importing a Feature Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { ModelModule } from "./model/model.module";
import { CommonModule } from "./common/common.module";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule,
 ModelModule, CommonModule],
 declarations: [ProductComponent, ProductTableComponent,
 ProductFormComponent, PaDiscountDisplayComponent, PaDiscountEditorComponent],

Chapter 21 ■ Using and Creating ModUles

545

 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

The root module has been substantially simplified with the creation of the common module, which has
been added to the imports list. All of the individual classes for directives and pipes have been removed
from the declarations list, and their associated import statements have been removed from the file. When
common module is imported, all of the types listed in its exports property will be added to the root module’s
declarations property.

Creating a Feature Module with Components
The final module that I am going to create will contain the application’s components so that I can
demonstrate how to deal with external templates. The basic process for creating the module is the same as in
the previous examples, as described in the sections that follow.

Creating the Module Folder and Moving the Files
The module will be called components, and I created an app/components to contain the files. Run the
following commands in the example folder to move the directive TypeScript, HTML, and CSS files into the
new folder and to delete the corresponding JavaScript files:

mv app/*.component.ts app/components/
mv app/*.component.html app/components/
mv app/*.component.css app/components/
rm app/*.component.js

The result of these commands is that the directive code files are moved into the new folder, as listed in
Table 21-7.

Table 21-7. The File Moves Required for the Component Module

File New Location

app/discountDisplay.component.ts app/component/discountDisplay.component.ts

app/discountEditor.component.ts app/component/discountEditor.component.ts

app/productForm.component.ts app/component/productForm.component.ts

app/productTable.component.ts app/component/productTable.component.ts

Updating the Template URLs
Two of the components in the new module use external templates, the locations of which are specified
using the @Component decorators templateUrl property. Now that the files have been moved, these URLs
are no longer accurate because they refer to the old locations of the HTML files. There are two ways to solve
this problem. The simplest is just to update the value of the templateUrl property so that it reflects the new
location of the HTML file, as shown in Listing 21-23, which also updates the paths to the other modules in
the import statements.

Chapter 21 ■ Using and Creating ModUles

546

Listing 21-23. Updating the Template Location in the productTable.component.ts File

import { Component, Input } from "@angular/core";
import { Model } from "../model/repository.model";
import { Product } from "../model/product.model";
import { DiscountService } from "../common/discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "app/components/productTable.component.html"
})
export class ProductTableComponent {

 // ...statements omitted for brevity...
}

This is easy to do, but it does mean you have to revise the template URL if you refactor the application
into different modules. A more flexible approach is to use the moduleId property and take advantage of a
feature provided by the JavaScript module loader to configure the URL automatically, as shown in
Listing 21-24.

Listing 21-24. Configuring the Module ID in the productForm.component.ts File

import {
 Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf
} from "@angular/core";
import { Product } from "../model/product.model";
import { ProductFormGroup } from "../model/form.model";
import { Model } from "../model/repository.model";
import { VALUE_SERVICE } from "../common/valueDisplay.directive";

@Component({
 selector: "paProductForm",
 moduleId: module.id,
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {

 // ...statements omitted for brevity...
}

The module.id property is provided at runtime and will be set to the module that contains the
component class. Assigning this value to the moduleId property tells Angular to request the value of the
templateUrl relative to the module location, which no longer needs to be hard-coded into the URL. In
fact, the templateUrl value should contain only the file name without any path segments, as shown in
the listing.

Chapter 21 ■ Using and Creating ModUles

547

Updating the Module References
There are two classes that have been moved into the new module whose import statements must be updated
to reflect the path to other modules in the application. Listing 21-25 shows the change required for the
discountDisplay.component.ts file.

Listing 21-25. Updating Paths in the discountDisplay.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "../common/discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info p-a-1">
 The discount is {{discounter.discount}}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(private discounter: DiscountService) { }
}

Listing 21-26 shows the same change applied to the discountEditor.component.ts file.

Listing 21-26. Updating Paths in the discountEditor.component.ts File

import { Component, Input } from "@angular/core";
import { DiscountService } from "../common/discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(private discounter: DiscountService) { }
}

Creating the Module Definition
To create the module, I added a file called components.module.ts to the app/components folder and added
the statements shown in Listing 21-27.

Listing 21-27. The Contents of the components.module.ts File in the app/components Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { CommonModule } from "../common/common.module";

Chapter 21 ■ Using and Creating ModUles

548

import { FormsModule, ReactiveFormsModule } from "@angular/forms"
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { ProductFormComponent } from "./productForm.component";
import { ProductTableComponent } from "./productTable.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule, CommonModule],
 declarations: [PaDiscountDisplayComponent, PaDiscountEditorComponent,
 ProductFormComponent, ProductTableComponent],
 exports: [ProductFormComponent, ProductTableComponent]
})
export class ComponentsModule { }

This module imports BrowserModule and CommonModule to ensure that the directives have access
to the services and the declarable classes they require. It exports the ProductFormComponent and
ProductTableComponent, which are the two components used in the root component’s bootstrap property.
The other components are private to the module.

Updating the Root Module
The final step is to update the root module to remove the outdated references to the individual files and to
import the new module, as shown in Listing 21-28.

Listing 21-28. Importing a Feature Module in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ProductComponent } from "./component";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ProductTableComponent } from "./components/productTable.component";
import { ProductFormComponent } from "./components/productForm.component";
import { ModelModule } from "./model/model.module";
import { CommonModule } from "./common/common.module";
import { ComponentsModule } from "./components/components.module";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule,
 ModelModule, CommonModule, ComponentsModule],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Adding modules to the application has radically simplified the root module and allows related features
to be defined in self-contained blocks, which can be extended or modified in relative isolation from the rest
of the application.

Chapter 21 ■ Using and Creating ModUles

549

Summary
In this chapter, I described in the last of the Angular building blocks: modules. I explained the role of the root
module and demonstrated how to create feature modules in order to add structure to an application. In the
next part of the book, I describe the features that Angular provides to shape the building blocks into complex
and responsive applications.

551© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_22

CHAPTER 22

Creating the Example Project

Throughout the chapters in the previous part of the book, I added classes and content to the example project
to demonstrate different Angular features and then, in Chapter 21 introduced feature modules to add some
structure to the project. The result is a project with a lot of redundant and unused functionality, and for this
part of the book, I am going to start a new project that takes some of the core features from earlier chapters
and provides a clean foundation on which to build in the chapters that follow.

 ■ Tip You can download the complete project as part of the free source code download that accompanies
this book, which is available from apress.com.

Starting the Example Project
To distinguish the project used in this part of the book from earlier examples, I created a folder called
exampleApp, which will be the root folder for the project. I added a series of subfolders that will be used to
contain the application code and some features modules, as listed in Table 22-1.

 ■ Note I don’t describe the structure or purpose of the files I add to the project in this chapter. See Chapter 11
for a detailed explanation of how an Angular project is created.

Table 22-1. The Folders Created for the Example Application

Name Description

exampleApp This is the root folder, which will contain all the files in the project.

exampleApp/app This is the folder that will contain all the Angular code files, modules,
components, and templates.

exampleApp/app/model This folder will contain a feature module containing the data model.

exampleApp/app/core This folder will contain a feature module containing components that
provide the core features of the application.

exampleApp/app/messages This folder will contain a feature module that is used to display messages
and errors to the user.

http://dx.doi.org/10.1007/978-1-4842-2307-9_21
http://dx.doi.org/10.1007/978-1-4842-2307-9_11

ChApter 22 ■ CreAtIng the exAmple projeCt

552

Adding and Configuring the Packages
I added a file called package.json to the exampleApp folder and used it to define the list of packages that the
project requires and the NPM scripts that will be to start the development tools, as shown in Listing 22-1.

Listing 22-1. The Contents of the package.json File in the exampleApp Folder

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

This is the same set of packages that I used in Part 2, including the polyfill for the Internationalization
API that I added in Chapter 18. There is one new addition in the devDependencies section, which is used in
the “Creating the Reactive Extensions Module” section.

To download and install the packages, run the following command from the exampleApp folder:

npm install

http://dx.doi.org/10.1007/978-1-4842-2307-9_18

ChApter 22 ■ CreAtIng the exAmple projeCt

553

Configuring TypeScript
Once NPM has downloaded and installed the packages, run the following commands in the exampleApp
folder to add the type information that will be used by the TypeScript compiler:

npm run typings -- install dt~core-js --save --global
npm run typings -- install dt~node --save --global

The typings package will get the latest type information for the Core-JS and Node packages and save
them in a folder called typings. It will also generate a file called typings.json, which will contain references
to the packages, as shown in Listing 22-2.

Listing 22-2. The Contents of the typings.json File in the exampleApp Folder

{
 "globalDependencies": {
 "core-js": "registry:dt/core-js#0.0.0+20160914114559",
 "node": "registry:dt/node#6.0.0+20161110151007"
 }
}

TypeScript also requires a configuration for its compiler so that it will generate JavaScript code that
works in Angular application. I created a file called tsconfig.json and added the configuration properties
shown in Listing 22-3. These are the same properties used in Part 2 of the book.

Listing 22-3. The Contents of the tsconfig.json File in the exampleApp Folder

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true
 },
 "exclude": ["node_modules"]
}

Configuring the Development HTTP Server
To prepare the BrowserSync package that is used by the lite-server HTTP server, I created a file called
bs-config.js in the exampleApp folder and used it to define the configuration shown in Listing 22-4.

Listing 22-4. The Contents of the bs-config.js File in the exampleApp Folder

module.exports = {
 ghostMode: false,
 reloadDelay: 1000,
 reloadDebounce: 1000,
 injectChanges: false,
 minify: false
}

ChApter 22 ■ CreAtIng the exAmple projeCt

554

Configuring the JavaScript Module Loader
To prepare the SystemJS module loader, I added a file called systemjs.config.js in the exampleApp folder
and used it to define the configuration shown in Listing 22-5. This is the same configuration used in Part 2.

Listing 22-5. The Contents of the systemjs.config.js File in the exampleApp Folder

(function (global) {

 var paths = {
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic", "forms"];

 angularModules.forEach(function (pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });

})(this);

Creating the Model Module
The first feature module will contain the project’s data model, which is similar to the one used in Part 2,
although it won’t contain the form validation logic, which will be handled elsewhere.

Creating the Product Data Type
To define the basic data type around which the application is based, I added a file called product.model.ts
to the exampleApp/app/model folder and defined the class shown in Listing 22-6.

Listing 22-6. The product.model.ts File in the exampleApp/app/model Folder

export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number) {}
}

ChApter 22 ■ CreAtIng the exAmple projeCt

555

Creating the Data Source and Repository
To provide the application with some initial data, I created a file called static.datasource.ts in the
exampleApp/app/model folder and defined the service shown in Listing 22-7. This class will be used as the
data source until Chapter 24, where I explain how to use asynchronous HTTP requests to request data from
web services.

 ■ Tip I am more relaxed about following the name conventions for Angular files when creating files within a
feature module, especially if the purpose of the module is obvious from its name.

Listing 22-7. The static.datasource.ts File in the exampleApp/app/model Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class StaticDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

The next step is to define the repository, through which the rest of the application will access the model
data. I created a file called repository.model.ts in the exampleApp/app/model folder and used it to define
the class shown in Listing 22-8.

Listing 22-8. The repository.model.ts File in the exampleApp/app/model Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id: number) => p.id == id;

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

ChApter 22 ■ CreAtIng the exAmple projeCt

556

 constructor(private dataSource: StaticDataSource) {
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();
 this.products.push(product);
 } else {
 let index = this.products
 .findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

Completing the Model Module
To complete the data model, I need to define the module. I created a file called model.module.ts in the
exampleApp/app/model folder and used it to define the Angular module shown in Listing 22-9.

Listing 22-9. The Contents of the model.module.ts File in the exampleApp/app/model Folder

import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";

ChApter 22 ■ CreAtIng the exAmple projeCt

557

@NgModule({
 providers: [Model, StaticDataSource]
})
export class ModelModule { }

Creating the Core Module
The core module will contain the central functionality of the application, built on features that were
described in Part 2, presenting the user with a list of the products in the model and the ability to create and
edit them.

Creating the Shared State Service
To help the components in this module to collaborate, I am going to add a service that records the current
mode, noting whether the user is editing or creating a product. I added a file called sharedState.model.ts
to the exampleApp/app/core folder and defined the enum and class shown in Listing 22-10.

 ■ Tip I have used the model.ts file name, rather than service.ts, because the role of this class will change
in a later chapter. Bear with me for the moment, even though I am breaking the naming convention.

Listing 22-10. The Contents of the sharedState.model.ts File in the exampleApp/app/core Folder

export enum MODES {
 CREATE, EDIT
}

export class SharedState {
 mode: MODES = MODES.EDIT;
 id: number;
}

The SharedState class contains two properties that reflect the current mode and the ID of the data
model object that is being operated on.

Creating the Table Component
This component will present the user with the table that lists all the products in the application and that
will be the main focal point in the application, providing access to other areas of functionality through
buttons that allow objects to be created, edited, or deleted. Listing 22-11 shows the contents of the table.
component.ts file, which I created in the exampleApp/app/core folder.

Listing 22-11. The Contents of the table.component.ts File in the exampleApp/app/core Folder

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState } from "./sharedState.model";

ChApter 22 ■ CreAtIng the exAmple projeCt

558

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html"
})
export class TableComponent {

 constructor(private model: Model, private state: SharedState) { }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 editProduct(key: number) {
 this.state.id = key;
 this.state.mode = MODES.EDIT;
 }

 createProduct() {
 this.state.id = undefined;
 this.state.mode = MODES.CREATE;
 }
}

This component provides the same basic functionality used in Part 2, with the addition of editProduct
and createProduct methods. These methods update the shared state service when the user wants to edit or
create a product.

Creating the Table Component Template
To provide the table component with a template, I added an HTML file called table.component.html to the
exampleApp/app/core folder and added the markup shown in Listing 22-12.

Listing 22-12. The table.component.html File in the exampleApp/app/core Folder

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>

ChApter 22 ■ CreAtIng the exAmple projeCt

559

 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" (click)="createProduct()">
 Create New Product
</button>

This template uses the ngFor directive to create rows in a table for each product in the data model,
including buttons that call the deleteProduct and editProduct methods. There is also a button element
outside of the table that calls the component’s createProduct method when it is clicked.

Creating the Form Component
For this project, I am going to create a form component that will manage an HTML form that will allow new
products to be created and allow existing products to be modified. To define the component, I added a file
called form.component.ts to the exampleApp/app/core folder and added the code shown in Listing 22-13.

Listing 22-13. The Contents of the form.component.ts File in the exampleApp/app/core Folder

import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { MODES, SharedState } from "./sharedState.model";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 private state: SharedState) { }

 get editing(): boolean {
 return this.state.mode == MODES.EDIT;
 }

ChApter 22 ■ CreAtIng the exAmple projeCt

560

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The same component and form will be used create new products and edit existing ones, so there is
some additional functionality compared with the equivalent component from Part 2. The editing property
will be used in the view to signal the current setting of the shared state service. The resetForm method is the
other new addition and resets the object used to provide data values to the form. The submitForm method
hasn’t changed and relies on the data model to determine whether the object passed to the saveProduct
method is a new addition to the model or a replacement for an existing object.

Creating the Form Component Template
To provide the component with a template, I added an HTML file called form.component.html to the
exampleApp/app/core folder and added the markup shown in Listing 22-14.

Listing 22-14. The form.component.html File in the exampleApp/app/core Folder

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
</div>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

ChApter 22 ■ CreAtIng the exAmple projeCt

561

 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary">Cancel</button>
</form>

The most important part of this template is the form, which contains input elements for the name,
category, and price properties required to create or edit a product. The header at the top of the template
and the submit button for the form change their content and appearance based on the editing mode to
distinguish between different operations.

Creating the Form Component Styles
To keep the example simple, I have used the basic form validation without any error messages. Instead, I rely
on CSS styles that are applied using the Angular validation classes. I added a file called form.component.css
to the exampleApp/app/core folder and defined the styles shown in Listing 22-15.

Listing 22-15. The form.component.css File in the exampleApp/app/core Folder

input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Completing the Core Module
To define the module that contains the components, I added a file called core.module.ts to the
exampleApp/app/core folder and created the Angular module shown in Listing 22-16.

Listing 22-16. The core.module.ts File in the exampleApp/app/core Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.model";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule],
 declarations: [TableComponent, FormComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

The module imports three modules in order to access the core Angular functionality, the Angular forms
features, and the application’s data model, created earlier in the chapter. It also sets up a provider for the
SharedState service.

ChApter 22 ■ CreAtIng the exAmple projeCt

562

Creating the Messages Module
The messages module will contain a service that is used to report messages or errors that should be
displayed to the user and a component that actually presents them. This is functionality that will be required
throughout the application and doesn’t really belong in either of the other two modules.

Creating the Message Model and Service
To represent messages that should be displayed to the user, I added a file called message.model.ts to the
exampleApp/app/messages folder and added the code shown in Listing 22-17.

Listing 22-17. The Contents of the message.model.ts File in the exampleApp/app/messages Folder

export class Message {

 constructor(private text: string,
 private error: boolean = false) { }
}

The Message class defines properties that present the text that will be displayed to the user and whether
the message represents an error. Next, I created a file called message.service.ts in the exampleApp/app/
messages folder and used it to define the service shown in Listing 22-18, which will be used to register
messages that should be displayed to the user.

Listing 22-18. The Contents of the message.service.ts File in the exampleApp/app/messages Folder

import { Injectable } from "@angular/core";
import { Message } from "./message.model";

@Injectable()
export class MessageService {
 private handler: (m: Message) => void;

 reportMessage(msg: Message) {
 if (this.handler != null) {
 this.handler(msg);
 }
 }

 registerMessageHandler(handler: (m: Message) => void) {
 this.handler = handler;
 }
}

This service acts as a broker between the parts of the application that generate error messages and
those that need to receive them. I’ll improve the way that this service works in Chapter 23, when I introduce
features from the Reactive Extensions package.

http://dx.doi.org/10.1007/978-1-4842-2307-9_23

ChApter 22 ■ CreAtIng the exAmple projeCt

563

Creating the Component and Template
Now that I have a source of messages, I can create a component that will display them to the user. I added
a file called message.component.ts to the exampleApp/app/messages folder and defined the component
shown in Listing 22-19.

Listing 22-19. The message.component.ts File in the exampleApp/app/messages Folder

import { Component } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";

@Component({
 selector: "paMessages",
 moduleId: module.id,
 templateUrl: "message.component.html",
})
export class MessageComponent {
 lastMessage: Message;

 constructor(messageService: MessageService) {
 messageService.registerMessageHandler(m => this.lastMessage = m);
 }
}

The component receives a MessageService object as its constructor argument and uses it to register a
handler function that will be invoked when a message is received by the service, assigning the most recent
message to a property called lastMessage. To provide a template for the component, I created a file
called message.component.html in the exampleApp/app/messages folder and added the markup shown in
Listing 22-20, which displays the message to the user.

Listing 22-20. The message.component.html File in the exampleApp/app/messages Folder

<div *ngIf="lastMessage"
 class="bg-info p-a-1 text-xs-center"
 [class.bg-danger]="lastMessage.error">
 <h4>{{lastMessage.text}}</h4>
</div>

Completing the Message Module
I added a file called message.module.ts in the exampleApp/app/messages folder and defined the module
shown in Listing 22-21.

Listing 22-21. The message.module.ts File in the exampleApp/app/messages Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { MessageComponent } from "./message.component";
import { MessageService } from "./message.service";

ChApter 22 ■ CreAtIng the exAmple projeCt

564

@NgModule({
 imports: [BrowserModule],
 declarations: [MessageComponent],
 exports: [MessageComponent],
 providers: [MessageService]
})
export class MessageModule { }

Completing the Project
To give the project a root module, I added a file called app.module.ts to the exampleApp/app folder and
used it to define the Angular module shown in Listing 22-22.

Listing 22-22. The Contents of the app.module.ts File in the exampleApp/app Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";

@NgModule({
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule],
 bootstrap: [TableComponent, FormComponent, MessageComponent]
})
export class AppModule { }

This module imports the feature modules created in this chapter, as well as BrowserModule, which
provides access to core Angular features. The module specifies three root components, two of which were
defined in CoreModule and one from MessageModule. These will display the product table and form and any
messages or errors.

Creating the Angular Bootstrap
To bootstrap the application, I created a file called main.ts in the exampleApp/app folder and added the
statements shown in Listing 22-23.

Listing 22-23. The Contents of the main.ts File in the exampleApp/app Folder

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

The call to the bootstrapModule method tells Angular to use the class defined in Listing 22-22 as the
root module for the application.

ChApter 22 ■ CreAtIng the exAmple projeCt

565

Creating the Reactive Extensions Module
In the previous part of the book, I configured the SystemJS JavaScript module loader so that it resolved all
dependencies on the rxjs package by loading the node_modules/rxjs/bundles/Rx.min.js file. This is an
approach that works nicely until you start using the functionality provided by Reactive Extensions directly in
your code (which I do in Chapter 23 or start using the Angular router module (which I describe in Chapter 25).

The problem is that the Reactive Extensions package doesn’t contain the information that SystemJS
loader needs to load and process a module and to address this means generating a custom module file. The
systemjs-builder package that I added to the project using the package.json file is used to build modules
and to configure it. I added a file called rxModuleBuilder.js to the exampleApp folder and added the code
shown in Listing 22-24.

Listing 22-24. The Contents of the rxModuleBuilder.js File in the exampleApp Folder

var Builder = require("systemjs-builder");

var builder = new Builder("./");
builder.config({
 paths: {
 "rxjs/*": "node_modules/rxjs/*.js"
 },
 map: {
 "rxjs": "node_modules/rxjs"
 },
 packages: {
 "rxjs": { main: "Rx.js", defaultExtension: "js" }
 }
});
builder.bundle("rxjs", "rxjs.module.min.js", {
 normalize: true,
 runtime: false,
 minify: true,
 mangle: false
});

This configuration creates a module containing all of the Reactive Extensions functionality, along with
the additional information that SystemJS needs to resolve dependencies. Run the following command in the
exampleApp folder:

node ./rxModuleBuilder.js

It can take a few minutes to process the package, but when the command finishes, you will see a file
called rxjs.module.min.js in the exampleApp folder. This is the file that will be used in the project to
provide access to the Reactive Extensions package.

Creating the HTML Document
To complete the application, I added a file called index.html to the exampleApp folder and added the HTML
elements shown in Listing 22-25.

http://dx.doi.org/10.1007/978-1-4842-2307-9_23
http://dx.doi.org/10.1007/978-1-4842-2307-9_25

ChApter 22 ■ CreAtIng the exAmple projeCt

566

Listing 22-25. The Contents of the index.html File in the exampleApp Folder

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="rxjs.module.min.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <paMessages></paMessages>
 <div class="col-xs-8 p-a-1">
 <paTable></paTable>
 </div>
 <div class="col-xs-4 p-a-1">
 <paForm></paForm>
 </div>
</body>
</html>

The paTable and paForm elements corresponds to the selectors of the components defined in the core
feature module and are laid out side-by-side using Bootstrap CSS classes. The paMessages element applies
the component from the messages module.

 ■ Tip notice the script element for the rxjs.module.min.js file, which was created in the previous section.
loading the file using a script element takes advantage of the information generated using the
systemjs-builder package.

Running the Example Project
To start the TypeScript compiler and the development HTTP server, run the following command in the
exampleApp folder:

npm start

ChApter 22 ■ CreAtIng the exAmple projeCt

567

The TypeScript code will be compiled into JavaScript, and the development server will cause a new
browser tab or window to open with the content shown in Figure 22-1.

Not everything in the example application works at the moment. You can toggle between the two modes
of operation by clicking the Create New Product and Edit buttons, but the editing function doesn’t work. I
complete the core functionality and add new features in the chapters that follow.

Summary
In this chapter, I created the example project that I will use in this part of the book. The basic structure is
the same as the example used in earlier chapters but without the redundant code and markup that I used to
demonstrate earlier features. In the next chapter, I introduce the Reactive Extensions package, which is used
to handle updates in Angular applications.

Figure 22-1. Running the example application

569© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_23

CHAPTER 23

Using Reactive Extensions

Angular has a lot of features, but the one that grabs the most attention is the way that changes propagate
through the application so that filling in a form field or clicking a button causes immediate updates to the
application state. But there are limitations to the changes that Angular can detect, and some features require
working directly with the library that Angular uses to distribute updates throughout an application. This
library is called Reactive Extensions, also known as RxJS.

In this chapter, I explain why working with Reactive Extensions is required for advanced projects,
introduce the core Reactive Extensions features (known as Observers and Observables -), and use them
to enhance the application so that users can edit existing objects in the model, as well as create new ones.
Table 23-1 puts Reactive Extensions into context.

 ■ Note The focus on this chapter is on the RxJS features that are most useful in Angular projects. The RxJS
package has a lot of features, and if you want more information, you should consult the project homepage at
https://github.com/Reactive-Extensions/RxJS.

Table 23-1. Putting the Reactive Extensions Library in Context

Question Answer

What is it? The Reactive Extensions library provides an asynchronous event
distribution mechanism that is used extensively inside Angular for change
detection and event propagation.

Why is it useful? RxJS allows for the parts of an application that are not addressed by the
standard Angular change detection process to receive notifications of
important events and respond appropriately. Since RxJS is required in
order to use Angular, its functionality is readily available for use.

How is it used? An Observer is created that collects the events and distributes them to
subscribers through an Observable. The simplest way to achieve this
is to create a Subject, which provides both Observer and Observable
functionality. The flow of events to a subscriber can be managed using a
set of operators.

Are there any pitfalls or
limitations?

Once you have mastered the basics, the RxJS package is easy to use,
although there are so many features that it can take some experimentation
to find the combination that efficiently achieves a specific outcome.

Are there any alternatives? RxJS is required to access some Angular features, such as updates to child
and view children queries and making asynchronous HTTP requests.

https://github.com/Reactive-Extensions/RxJS

ChApTeR 23 ■ USing ReACTive exTenSionS

570

Table 23-2 summarizes the chapter.

Preparing the Example Project
This chapter uses the exampleApp project created in Chapter 22. No changes are required for this chapter.
Run the following command in the exampleApp folder to start the TypeScript compiler and the HTTP
development server:

npm start

A new browser tab or window will open and show the content illustrated by Figure 23-1.

Table 23-2. Chapter Summary

Problem Solution Listing

Distribute events in an application Use Reactive Extensions 1–5

Wait for asynchronous results in a
template

Use the async pipe 6–9

Use events to enable collaboration
between components

Use Observable 10–12

Manage the flow of events Use operators such as filter or map 13–18

Figure 23-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2307-9_22

ChApTeR 23 ■ USing ReACTive exTenSionS

571

 ■ Tip if you don’t want to create the example project step-by-step, the free source download at apress.com
that accompanies this book contains the project for this chapter (and every other chapter in the book).

Understanding the Problem
Angular excels at detecting changes in the expressions used for data bindings. It does this seamlessly and
efficiently, and the result is a framework that makes it easy to create dynamic applications. You can see the
change detection at work in the example application by clicking the Create New Product button. The service
that provides the shared state information is updated by the table component, which is then reflected in
the data bindings that control the appearance of the elements managed by the form component, as shown
in Figure 23-2. When you click the Create New Product button, the color of the title and buttons in the form
changes immediately.

As the number of objects in an application increases, change detection can spiral out of control and put
an enormous drain on an application’s performance, especially on less capable devices such as phones and
tablets. Rather than keep track of all the objects in the application, Angular focuses on data bindings and,
specifically, on working out when property values change.

And that presents a problem, because Angular manages the bindings for the HTML elements automatically,
but it doesn’t provide any support for responding to service changes within the component itself.

You can see an immediate consequence of the lack of change in the component by clicking one of the
Edit buttons in the table. Although the data bindings will update immediately, the component doesn’t get a

Figure 23-2. Updating data binding expressions

ChApTeR 23 ■ USing ReACTive exTenSionS

572

notification when the button is clicked and doesn’t know it needs to update the property that will populate
the form elements for editing.

The lack of updates means that the form component needs to fall back on the ngDoCheck method,
originally described in Chapter 15, to determine when an important change occurs, as shown in Listing 23-1.

Listing 23-1. Monitoring Service Changes in the form.component.ts File

import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { MODES, SharedState } from "./sharedState.model";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 lastId: number;

 constructor(private model: Model,
 private state: SharedState) { }

 get editing(): boolean {
 return this.state.mode == MODES.EDIT;
 }

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }

 ngDoCheck() {
 if (this.lastId != this.state.id) {
 this.product = new Product();
 if (this.state.mode == MODES.EDIT) {
 Object.assign(this.product, this.model.getProduct(this.state.id));
 }
 this.lastId = this.state.id;
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

ChApTeR 23 ■ USing ReACTive exTenSionS

573

To see the effect of these changes, click one of the Edit buttons in the table and the form will be
populated with the details for editing. When you have finished editing the values in the form, click the Save
button and the data model will be updated, reflecting your changes in the table, as shown in Figure 23-3.

The problem with this code is that the ngDoCheck method will be called whenever Angular detects any
kind of change in the application. It doesn’t matter what happens or where it happens: Angular is going to
have to call the ngDoCheck method to give the component a chance to update itself. You can minimize the
amount of work that is done in the ngDoCheck method, but as the number of directives and components in
the application increases, the number of change events and the number of calls to the ngDoCheck method
will increase, which can drag down the performance of the application.

It is also harder than you might think to handle change detection correctly. As an example, try editing
a product using the example application, clicking the Save button to store the changes in the model, and
then clicking the Edit button again for the same product: nothing will happen. This is a common mistake in
implementing the ngDoCheck method, which is called even when a change is triggered by the component
itself, confusing the checks in the ngDoCheck method that are trying to avoid doing unnecessary work.
Overall, this approach is unreliable, is expensive, and doesn’t scale well.

Solving the Problem with Reactive Extensions
The reason that the Reactive Extensions library is useful in Angular applications is because it provides
a simple and unambiguous system for sending and receiving notifications. It doesn’t sound like a huge
achievement, but it underpins most of the built-in Angular functionality, and it can be used directly by
applications to avoid the problems that come from trying to implement change detection using ngDoCheck.
To prepare for the direct use of Reactive Extensions, Listing 23-2 defines an opaque token that will be used
to provide a service that uses Reactive Extensions to distribute updates and changes the SharedState class
so that it defines a constructor. These changes will temporarily break the application because Angular will
not be able to provide values for the SharedState constructor when it tries to instantiate an instance to use
as a service. The application will start working again once the changes required for Reactive Extensions are
complete.

Figure 23-3. Updating a product

ChApTeR 23 ■ USing ReACTive exTenSionS

574

Listing 23-2. Defining a Provider Token in the sharedState.model.ts File

import { OpaqueToken } from "@angular/core";

export enum MODES {
 CREATE, EDIT
}

export class SharedState {

 constructor(public mode: MODES, public id?: number) { }
}

export const SHARED_STATE = new OpaqueToken("shared_state");

Understanding Observables
The key Reactive Extensions building block is Observable, which represents an observable sequence of
events. An object such as a component can subscribe to an Observable and receive a notification each time
an event occurs, allowing it to respond only when the event has been observed instead of every time there is
a change anywhere in the application.

The basic method provided by an Observable is subscribe, which accepts three functions as
arguments, as described in Table 23-3.

Only the onNext function is required to subscribe to an Observable, although it is generally good
practice to implement the others to provide error handling and to respond if you expect the sequence
of events to come to an end. There won’t be an end to the events for this example, but for other uses of
Observable, such as for handling HTTP responses, knowing when the event sequence has ended can be
more useful. Listing 23-3 revises the form component so that it declares a dependency on an Observable
service.

Listing 23-3. Using an Observable in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observable } from "rxjs/Observable";

@Component({
 selector: "paForm",
 moduleId: module.id,

Table 23-3. The Types of Web Forms Code Nuggets

Name Description

onNext This function is invoked when a new event occurs.

onError This function is invoked when an error occurs.

onCompleted This function is invoked when the sequence of events ends.

ChApTeR 23 ■ USing ReACTive exTenSionS

575

 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents.subscribe((update) => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The Reactive Extensions NPM package includes individual JavaScript modules for each of the types that
it provides so that you can import the Observable type from the rxjs/Observable module.

To receive notifications, the component declares a dependency on the SHARED_STATE service, which is
received as an Observable<SharedState > object. This object is an Observerable whose notifications will be
SharedState objects, which will represent an edit or create operation started by the user. The component
calls the Observable.subscribe method, providing a function that receives each SharedState object and
uses it to update its state.

WHAT ABOUT PROMISES?

You may be used to representing asynchronous activities using Promises. observables perform the
same basic role but are more flexible and have more features. Angular does provide support for working
with promises, which can be useful as you transition to Angular and when working with libraries that
rely on promises, such as jQuery.

Reactive extensions provides an Observable.fromPromise method that will create an Observable
using a Promise as the source of events. There is also an Observable.toPromise method if you have
an Observable and need a Promise for some reason.

ChApTeR 23 ■ USing ReACTive exTenSionS

576

in addition, there are some Angular features that let you choose which you use, such as the guards
feature described in Chapter 27, which supports both.

But the Reactive extensions library is an important part of working with Angular, and you will encounter
it often in the chapters in this part of the book. i recommend that you work with Observable when you
encounter it and minimize the conversions to and from Promises.

Understanding Observers
The Reactive Extensions Observer provides the mechanism by which updates are created, using the
methods described in Table 23-4.

Listing 23-4 updates the table component so that it uses an Observer to send out events when the user
has clicked the Create New Product button or one of the Edit buttons.

Listing 23-4. Using an Observer in the table.component.ts File

import { Component, Inject } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observer } from "rxjs/Observer";

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html"
})
export class TableComponent {

 constructor(private model: Model,
 @Inject(SHARED_STATE) private observer: Observer<SharedState>) { }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

Table 23-4. The Observer Methods

Name Description

next(value) This method creates a new event using the specified value.

error(errorObject) This method reports an error, described using the argument, which can be any
object.

complete() This method ends the sequence, indicating that no further events will be sent.

http://dx.doi.org/10.1007/978-1-4842-2307-9_27

ChApTeR 23 ■ USing ReACTive exTenSionS

577

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 editProduct(key: number) {
 this.observer.next(new SharedState(MODES.EDIT, key));
 }

 createProduct() {
 this.observer.next(new SharedState(MODES.CREATE));
 }
}

The component declares a dependency on the SHARED_STATE service, which is received as an
Observer<SharedState > object, meaning an Observer will send events that are described using
SharedState objects. The editProduct and createProduct methods have been updated so they call the
next method on the observer to signal a change in state.

Understanding Subjects
Both of the components have declared dependencies on services using the SHARED_STATE token, but each
expects to get a different type: the table component wants to receive an Observer<SharedState > object,
while the form component wants an Observable<SharedState > object.

The Reactive Extensions library provides the Subject class, which implements both the Observer
and Observable functionality. This makes it easy to create a service that allows events to be produced
and consumed with a single object. In Listing 23-5, I have changed the service declared in the @NgModule
decorator’s providers property to use a Subject object.

Listing 23-5. Changing the Service in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule],
 declarations: [TableComponent, FormComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [{ provide: SHARED_STATE, useValue: new Subject<SharedState>() }]
})
export class CoreModule { }

The value-based provider tells Angular to use a Subject<SharedState > object to resolve dependencies
on the SHARED_STATE token, which will provide the components with the functionality they need to
collaborate.

ChApTeR 23 ■ USing ReACTive exTenSionS

578

The result is that changing the shared service so that it is a Subject allows the table component to
emit distinct events that are received by the form component and that are used to update its state without
needing to rely on the awkward and expensive ngDoCheck method. There is also no need to try to work
out which changes have been generated by the local component and which come from elsewhere, since a
component that subscribes to an Observable knows that all the events it receives must have originated from
the Observer. This means that niggly problems like not being able to edit the same product twice simply go
away, as shown in Figure 23-4.

THE DIFFERENT TYPES OF SUBJECT

Listing 23-5 uses the Subject class, which is the simplest way to create an object that is both an
Observer and an Observable. its main limitation is that when a new subscriber is created using the
subscribe method, it won’t receive an event until the next time the next method is called. This can be
unhelpful if you are creating instances of components or directives dynamically and you want them to
have some context data as soon as they are created.

The Reactive extensions library includes some specialized implementations of the Subject class
that can be used to work around this problem. The BehaviorSubject class keeps track of the last
event it processed and sends it to new subscribers as soon as they call the subscribe method. The
ReplaySubject class does something similar, except that it keeps track of all of its events and sends
them all to new subscribers, allowing them to catch up with any events that were sent before they
subscribed.

Using the Async Pipe
Angular includes the async pipe, which can be used to consume Observable objects directly in a view,
selecting the last object received from the event sequence. This is an impure pipe, as described in Chapter
18 because its changes are driven from outside of the view in which it is used, meaning that its transform
method will be called often, even if a new event has not been received from the Observable. Listing 23-6
shows the addition of the async pipe to the view managed by the form component.

Figure 23-4. The effect of using Reactive Extensions

http://dx.doi.org/10.1007/978-1-4842-2307-9_18

ChApTeR 23 ■ USing ReACTive exTenSionS

579

Listing 23-6. Using the Async Pipe in the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
 Last Event: {{ stateEvents | async | json }}
</div>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >

 ...elements omitted for brevity...

</form>

The string interpolation binding expression gets the stateEvents property from the component, which
is the Observable<SharedState > object, and passes it to the async pipe, which keeps track of the most
recent event that has been received. The async filter then passes on the event to the json pipe, which creates
a JSON representation of the event object. The result is that you can keep track of the events that are received
by the form component, as shown in Figure 23-5.

This isn’t the most useful display of data, but it does give some useful debugging insight. In this case, the
most recent event has a mode value of 1, which corresponds to the Edit mode, and an id value of 4, which is
the ID of the Corner Flags product.

Using the Async Pipe with Custom Pipes
The async pipe can be used with custom pipes to present the event data in a more user-friendly manner. To
demonstrate, I added a file called state.pipe.ts to the exampleApp/app/core folder and used it to define
the pipe shown in Listing 23-7.

Listing 23-7. The Contents of the state.pipe.ts File in the exampleApp/app/core Folder

import { Pipe } from "@angular/core";
import { SharedState, MODES } from "./sharedState.model";

Figure 23-5. Displaying observable events

ChApTeR 23 ■ USing ReACTive exTenSionS

580

import { Model } from "../model/repository.model";

@Pipe({
 name: "formatState",
 pure: true
})
export class StatePipe {

 constructor(private model: Model) { }

 transform(value: any): string {
 if (value instanceof SharedState) {
 let state = value as SharedState;
 return MODES[state.mode] + (state.id != undefined
 ? ` ${this.model.getProduct(state.id).name}` : "");
 } else {
 return "<No Data>"
 }
 }
}

In Listing 23-8, I have added the pipe to the set of declarations made by the core module.

 ■ Tip TypeScript enumerations have a useful feature through which the name of a value can be obtained. So,
the expression MODES[1], for example, will return EDIT, since that is the name of the MODES enumeration value
at index 1. The pipe in Listing 23-7 uses this feature to present the state update to the user.

Listing 23-8. Registering the Pipe in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule],
 declarations: [TableComponent, FormComponent, StatePipe],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [{ provide: SHARED_STATE, useValue: new Subject<SharedState>() }]
})
export class CoreModule { }

Listing 23-9 shows the new pipe used to replace the built-in json pipe in the template managed by the
form component.

ChApTeR 23 ■ USing ReACTive exTenSionS

581

Listing 23-9. Applying a Custom Pipe in the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
 Last Event: {{ stateEvents | async | formatState }}
</div>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >

 ...elements omitted for brevity...

</form>

This example demonstrates that events received from Observable objects can be processed and
transformed just like any other objects, as shown in Figure 23-6, which illustrates how a custom pipe can
build on the core functionality provided by the async pipe.

Scaling Up Application Feature Modules
The same Reactive Extensions building blocks can be used anywhere in the application and make it
easy to allow building blocks to collaborate, even if the use of Reactive Extensions isn’t exposed to all the
collaborating parts of the application. As a demonstration, Listing 23-10 shows the addition of a Subject to
the MessageService class to distribute the messages that should be displayed to the user.

Listing 23-10. Using a Subject in the message.service.ts File

import { Injectable } from "@angular/core";
import { Message } from "./message.model";
import { Observable } from "rxjs/Observable";
import { Subject } from "rxjs/Subject";

@Injectable()

Figure 23-6. Formatting values received through an observable sequence

ChApTeR 23 ■ USing ReACTive exTenSionS

582

export class MessageService {
 private subject = new Subject<Message>();

 reportMessage(msg: Message) {
 this.subject.next(msg);
 }

 get messages(): Observable<Message> {
 return this.subject;
 }
}

The previous implementation of the message service supported only a single recipient of the messages
that should be displayed to the user. I could have added code that managed multiple recipients, but, given
that the application already uses Reactive Extensions, it is much simpler to delegate that work to the Subject
class, which scales up well and won’t require any additional code or testing if there are multiple subscribers
in the application.

Listing 23-11 shows the corresponding changes in the message component that will display the most
recent message to the user.

Listing 23-11. Observing Messages in the message.component.ts File

import { Component } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";
import { Observable } from "rxjs/Observable";

@Component({
 selector: "paMessages",
 moduleId: module.id,
 templateUrl: "message.component.html",
})
export class MessageComponent {
 lastMessage: Message;

 constructor(messageService: MessageService) {
 messageService.messages.subscribe(m => this.lastMessage = m);
 }
}

The final step is to generate some messages to display. In Listing 23-12, I have modified the
configuration of the core feature module so that the SHARED_STATE provider uses a factory function to create
the Subject that is used to distribute state change events and adds a subscription that feeds the events into
the message service.

ChApTeR 23 ■ USing ReACTive exTenSionS

583

Listing 23-12. Feeding the Message Service in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule } from "../messages/message.module";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { Model } from "../model/repository.model";
import { MODES } from "./sharedState.model";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule],
 declarations: [TableComponent, FormComponent, StatePipe],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [{
 provide: SHARED_STATE,
 deps: [MessageService, Model],
 useFactory: (messageService, model) => {
 let subject = new Subject<SharedState>();
 subject.subscribe(m => messageService.reportMessage(
 new Message(MODES[m.mode] + (m.id != undefined
 ? ` ${model.getProduct(m.id).name}` : "")))
);
 return subject;
 }
 }]
})
export class CoreModule { }

The code is a little messy, but the result is that every state change event sent by the table component is
displayed by the message component, as shown in Figure 23-7. Reactive Extensions makes it easy to wire up
parts of the application, and the reason that the code in the listing is so dense is because it is also using the
Model service to look up names from the data model to make the events easier to read.

ChApTeR 23 ■ USing ReACTive exTenSionS

584

Going Beyond the Basics
The examples in the previous sections cover the basic use of Observable, Observer, and Subject. There
is, however, a lot more functionality available when working with Reactive Extensions that can be used in
advanced or complex applications. The full set of operations is described at http://github.com/Reactive-
Extensions/RxJS, but in this chapter I demonstrate a small number of the features that you are most likely
to require in an Angular application, as described in Table 23-5. The methods described in the table are used
to control the way that events are received from an Observable object.

Table 23-5. Useful Reactive Extensions Methods for Selecting Events

Name Description

filter This method invokes a function to evaluate each event received from the
Observable and discards those for which the function returns false.

map This method invokes a function to transform each event received from the
Observable and passes on the object that the function returns.

distinctUntilChanged This method suppresses events until the event object changes.

skipWhile This method filters events until a specified condition is satisfied, after which
they are forwarded to the subscriber.

takeWhile This method passes on events to the subscriber until a specified condition is
satisfied, after which events are filtered.

Figure 23-7. Using Reactive Extensions in the Message service

http://github.com/Reactive-Extensions/RxJS
http://github.com/Reactive-Extensions/RxJS

ChApTeR 23 ■ USing ReACTive exTenSionS

585

Filtering Events
The filter method accepts a method that is used to inspect each object that is received from the
Observable and select only those that are required. Listing 23-13 demonstrates the use of the filter
method to filter out the events that relate to a specific product.

Listing 23-13. Filtering Events in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/filter";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .filter(state => state.id != 3)
 .subscribe((update) => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

ChApTeR 23 ■ USing ReACTive exTenSionS

586

To use the methods described in Table 23-5, an import statement for the corresponding file in the rxjs
package is required, like this:

...
import "rxjs/add/operator/filter";
...

The node_modules/add/operator directory provides the definitions of these methods and includes type
information for their use in TypeScript. The TypeScript compiler always looks in the node_modules folder
when it is trying to resolve a reference, and it is omitted from the import statement.

In the case of the example, the rxjs/add/operator/filter.ts file extends the Observable definition
to add a method called filter, which can be called on an Observable object to select the events that will be
passed on to the function provided using the subscribe method.

You can see the effect by clicking the Edit button for the Soccer Ball product, which has the ID that the
filter function is checking for. The async pipe shows that an EDIT event has been sent through the shared
service, but the filter method prevents it from being received by the component’s subscribe function.
The result is that the form doesn’t reflect the change in state and isn’t populated with the selected product
information, as shown in Figure 23-8.

Transforming Events
The map method is used to transform the objects received from an Observable. You can use this method to
transform event objects in any way, and the result from the function replaces the event object. Listing 23-14
uses the map method to change the value of an event object property.

Listing 23-14. Transforming Events in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/filter";

Figure 23-8. Filtering events

ChApTeR 23 ■ USing ReACTive exTenSionS

587

import "rxjs/add/operator/map";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .map(state => new SharedState(state.mode, state.id == 5 ? 1 : state.id))
 .filter(state => state.id != 3)
 .subscribe((update) => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The function passed to the map method in this example looks for SharedState objects that have an id
value of 5 and, when found, changes the value to 1. The result is that clicking the Edit button for the Thinking
Cap product selects the Kayak product for editing, as shown in Figure 23-9.

 ■ Caution When using the map method, do not modify the object that is received as the argument to the
function. This object is passed to all the subscribers in turn, and any changes you make will affect subsequent
subscribers. This means that some subscribers will receive the unmodified object, and some will receive the
object returned by the map function. instead, create a new object, as shown in Listing 23-14.

ChApTeR 23 ■ USing ReACTive exTenSionS

588

Notice that the methods used to prepare and create a subscription on an Observable object can be
chained together. In the example, the result from the map method is used as the input for the filter method,
whose results are then passed to the subscribe method’s function. Chaining methods together in this way
allows complex rules to be created for the way that events are processed and received.

Using Different Event Objects
The map method can be used to produce any object and is not limited to changing property values on the
object it receives. In Listing 23-15, I have used the map method to produce a number whose value encodes
the operation and the object to which it applies.

Listing 23-15. Projecting a Different Type in the form.component.ts File

...
constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .map(state => state.mode == MODES.EDIT ? state.id : -1)
 .filter(id => id != 3)
 .subscribe((id) => {
 this.editing = id != -1;
 this.product = new Product();
 if (id != -1) {
 Object.assign(this.product, this.model.getProduct(id))

Figure 23-9. Transforming events

ChApTeR 23 ■ USing ReACTive exTenSionS

589

 }
 });
}
...

There is no advantage in making a simple data type represent and operation and specify its target. In
fact, it generally causes problems because it means that the component assumes that there will never be an
object in the model whose id property is -1. But as a simple example, it demonstrates how the map method
can project different types and how those types are then passed along the chain of Reactive Extensions
methods, meaning that the number values produced by the map method are received as the values to be
processed by the filter method and, in turn, the subscribe method, the functions for which have both
been updated to work with the new data values.

Receiving Only Distinct Events
The distinctUntilChanged method filters the sequence of events so that only distinct values are passed
along to the subscriber. To see the kind of problem that this can be used to solve, click the Edit button
for the Kayak product and change the value of the Category field. Without clicking the Save button, click
the Kayak’s Edit button again and you will see your edits discarded. In Listing 23-16, I have added the
distinctUntilChanged method to the chain of methods so that it applies to the number values produced by
the map method. Only different values will be forwarded to the filter and subscribe methods.

Listing 23-16. Preventing Duplicate Events in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/filter";
import "rxjs/add/operator/map";
import "rxjs/add/operator/distinctUntilChanged";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .map(state => state.mode == MODES.EDIT ? state.id : -1)
 .distinctUntilChanged()
 .filter(id => id != 3)
 .subscribe((id) => {
 this.editing = id != -1;

ChApTeR 23 ■ USing ReACTive exTenSionS

590

 this.product = new Product();
 if (id != -1) {
 Object.assign(this.product, this.model.getProduct(id))
 }
 });
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

If you repeat the Kayak editing process, you will see that the changes are no longer discarded when
you click the Edit button for the product that is being edited, since this will produce the same value as the
previous event. Editing a different product will cause the map method to emit a different number value, which
will be passed on by the distinctUntilChanged method.

Using a Custom Equality Checker
The distinctUntilChanged method can make easy comparisons between simple datatypes like number, but
it doesn’t know how to compare objects and will assume that any two objects are different. To address this,
you can specify a comparison function that will be used to check whether events are distinct, as shown in
Listing 23-17.

Listing 23-17. Using a Equality Checker in the form.component.ts File

...
constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .distinctUntilChanged((firstState, secondState) =>
 firstState.mode == secondState.mode && firstState.id == secondState.id)
 .subscribe(update => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
}
...

ChApTeR 23 ■ USing ReACTive exTenSionS

591

This listing removes the map and filter methods and provides the distinctUntilChanged method with
a function that compares SharedState objects by comparing their mode and id properties. Distinct objects
are passed onto the function provided to the subscribe method.

Taking and Skipping Events
The skipWhile and takeWhile methods are used to specify conditions that will cause events to be filtered or
passed on to the subscriber. These methods must be used carefully because it is easy to specify conditions
that will permanently filter events from the subscriber. In Listing 23-18, I have used the skipWhile method to
filter events until the user clicks the Create New Product button, after which events will be passed on.

Listing 23-18. Skipping Events in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/filter";
import "rxjs/add/operator/map";
import "rxjs/add/operator/distinctUntilChanged";
import "rxjs/add/operator/skipWhile";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 .skipWhile(state => state.mode == MODES.EDIT)
 .distinctUntilChanged((firstState, secondState) =>
 firstState.mode == secondState.mode
 && firstState.id == secondState.id)
 .subscribe(update => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
 }

 editing: boolean = false;

ChApTeR 23 ■ USing ReACTive exTenSionS

592

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

Clicking the Edit buttons in the table will still generate events, which will be displayed by the async
pipe, which is subscribed to the Subject without any filtering or skipping. But the form component doesn’t
receive those events, as shown in Figure 23-10, since its subscription is filtered by the skipWhile method
until an event whose mode property isn’t MODES.EDIT is received. Clicking the Create New Product button
generates an event that ends the skipping, after which the component will receive all events.

Summary
In this chapter, I introduced the Reactive Extensions package and explained how it can be used to handle
changes in the parts of the application that are not managed by the Angular change-detection process. I
demonstrated the use of Observable, Observer, and Subject objects to distribute events in an application,
showed you how the built-in async pipe works, and introduced some of the most useful operators that the
Reactive Extensions library provides for controlling the flow of events to a subscriber. In the next chapter, I
explain how to make asynchronous HTTP requests in Angular applications and how to consume RESTful
web services.

Figure 23-10. Skipping events

593© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_24

CHAPTER 24

Making Asynchronous HTTP
Requests

All the examples since Chapter 11 have relied on static data that has been hardwired into the application. In
this chapter, I demonstrate how to use asynchronous HTTP requests, often called Ajax requests, to interact
with a web service to get real data into an application. Table 24-1 puts HTTP requests in context.

Table 24-1. Putting Asynchronous HTTP Requests in Context

Question Answer

What are they? Asynchronous HTTP requests are HTTP requests sent by the
browser on behalf of the application. The term asynchronous refers
to the fact that the application continues to operate while the
browser is waiting for the server to respond.

Why are they useful? Asynchronous HTTP requests allow Angular applications to
interact with web services so that persistent data can be loaded into
the application and changes can be sent to the server and saved.

How are they used? Requests are made using the Http class, which is delivered as a
service through dependency injection. This class provides an
Angular-friendly wrapper around the browser’s XMLHttpRequest
feature.

Are there any pitfalls or limitations? Using the Angular HTTP feature requires the use of Reactive
Extensions Observable objects, as described in Chapter 23.

Are there any alternatives? You can work directly with the browser’s XMLHttpRequest object
if you prefer, and some applications—those that don’t need to
deal with persistent data—can be written without making HTTP
requests at all.

http://dx.doi.org/10.1007/978-1-4842-2307-9_11
http://dx.doi.org/10.1007/978-1-4842-2307-9_23

Chapter 24 ■ Making asynChronous http requests

594

PROBLEMS WITH HTTP SERVERS

in the first edition of this book, i picked a package called Deployd to provide the restful web
service. this turned out to be a poor decision because it didn’t work properly for some readers. as a
consequence, i wrote some replacement chapters that used parse.com, a commercial api hosting
platform owned by Facebook. i thought that would be a solid platform for long-term use, but Facebook
recently announced the closure of parse.com.

For this edition, i am relying on an excellent package called json-server, and i am hopeful that there
won’t be any problems this time, just as long as you use the package versions that are shown in
Listing 24-1.

if you do encounter problems, then please check apress.com to see whether there are any replacement
chapters available, similar to the ones that i wrote for the previous edition. if not or you need some
additional help getting everything working, then send me an e-mail at adam@adam-freeman.com and i
will endeavor to assist.

Table 24-2 summarizes the chapter.

Table 24-2. Chapter Summary

Problem Solution Listing

Send HTTP requests in an Angular application Use the Http service. 1–8

Perform REST operations Use the HTTP method and URL to specify an
operation and a target for that operation.

9–11

Make cross-origin requests The Http service supports CORS automatically
but JSONP requests are also supported.

12–13

Include headers in a request Set the headers property in the Request object. 14–15

Respond to an HTTP error Create an error handler class. 16–19

Preparing the Example Project
The features described in this chapter rely on the Angular HTTP module, which must be added to the
application. Listing 24-1 shows the addition of the Angular JavaScript module to the package list.

Listing 24-1. Adding Packages and a Script in the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",

Chapter 24 ■ Making asynChronous http requests

595

 "@angular/http": "2.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server --p 3500 restData.js",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

The JavaScript module named @angular/http provides the features that this chapter requires and is
added to the dependencies section of the file. The other changes in the package.json file add the json-
server package to the project and add a script that runs it. This package makes it easy to create web services,
which will provide a back end to which the examples in this chapter can send HTTP requests.

Configuring the JavaScript Module Loader
The next step is to update the SystemJS configuration file so that it is able to resolve dependencies on the
forms module, as shown in Listing 24-2.

Listing 24-2. Adding the HTTP Module in the systemjs.config.js File

(function (global) {

 var paths = {
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

Chapter 24 ■ Making asynChronous http requests

596

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic", "forms", "http"];

 angularModules.forEach(function (pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });

})(this);

Configuring the Model Feature Module
The @angular/http JavaScript module contains an Angular module called HttpModule, which must be
imported into the application in either the root module or one of the feature modules. I only need the
HTTP functionality in the data model, so Listing 24-3 shows the changes to the model.module.ts file in the
exampleApp/app/model folder.

Listing 24-3. Importing a Module in the model.module.ts File

import { NgModule } from "@angular/core";
import { HttpModule } from "@angular/http"
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";

@NgModule({
 imports: [HttpModule],
 providers: [Model, StaticDataSource]
})
export class ModelModule { }

The json entry in the scripts section of Listing 24-1 tells the json-server package that it should listen
for HTTP requests on port 3500 and that it should get its data from a file called restData.js. To provide the
data, I added a file called restData.js to the exampleApp folder and added the code shown in Listing 24-4.

Listing 24-4. The Contents of the restData.js File in the exampleApp Folder

module.exports = function () {
 var data = {
 products: [
 { id: 1, name: "Kayak", category: "Watersports", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer", price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess", price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess", price: 1200 }

Chapter 24 ■ Making asynChronous http requests

597

]
 }
 return data
}

The json-server package can work with JSON or JavaScript files. If you use a JSON file, then its contents
will be modified to reflect changes requests made by clients. I have chosen the JavaScript option, which
allows data to be generated programmatically and means that restarting the process will return to the
original data.

Updating the Form Component
In Chapter 23, I configured the component that manages the HTML form to ignore events generated by
the table component until the first time that the Create New Product button is clicked. To avoid confusing
results, Listing 24-5 disables the skipWhile and distinctUntilChanged methods that were applied to the
Observable.

Listing 24-5. Disabling Event Skipping in the form.component.ts File

...
constructor(private model: Model,
 @Inject(SHARED_STATE) private stateEvents: Observable<SharedState>) {

 stateEvents
 //.skipWhile(state => state.mode == MODES.EDIT)
 //.distinctUntilChanged((firstState, secondState) =>
 // firstState.mode == secondState.mode
 // && firstState.id == secondState.id)
 .subscribe(update => {
 this.product = new Product();
 if (update.id != undefined) {
 Object.assign(this.product, this.model.getProduct(update.id));
 }
 this.editing = update.mode == MODES.EDIT;
 });
}
...

Running the Example Project
Save the changes and run the following command in the exampleApp folder to download and install the
Angular Http module and the json-server package:

npm install

Once the update has been completed, run the following command to start the TypeScript compiler, the
development HTTP server, and the RESTful web service:

npm start

http://dx.doi.org/10.1007/978-1-4842-2307-9_23

Chapter 24 ■ Making asynChronous http requests

598

A new browser window or tab will open and show the content illustrated in Figure 24-1.

Figure 24-1. Running the example application

To test the RESTful web services, request the following URL in the browser window:

http://localhost:3500/products/2

The server will respond with the following data:

{ "id": 2, "name": "Lifejacket", "category": "Watersports", "price": 48.95 }

Understanding RESTful Web Services
The most common approach for delivering data to an application is to use the Representational State
Transfer pattern, known as REST, to create a data web service. There is no detailed specification for REST,
which leads to a lot of different approaches that fall under the RESTful banner. There are, however, some
unifying ideas that are useful in web application development.

The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request
methods—also known as verbs—specify an operation for the server to perform, and the request URL
specifies one or more data objects to which the operation will be applied.

Chapter 24 ■ Making asynChronous http requests

599

As an example, here is a URL that might refer to a specific product in the example application:

http://localhost:3500/products/2

The first segment of the URL—products—is used to indicate the collection of objects that will be
operated on and allows a single server to provide multiple services, each of which with its own data. The
second segment—2—selects an individual object within the products collection. In the example, it is the
value of the id property that uniquely identifies an object and that would be used in the URL, in this case,
specifying the Lifejacket object.

The HTTP verb or method used to make the request tells the RESTful server what operation should
be performed on the specified object. When you tested the RESTful server in the previous section, the
browser sent an HTTP GET request, which the server interprets as an instruction to retrieve the specified
object and send it to the client. It is for this reason that the browser displayed a JSON representation of the
Lifejacket object.

Table 24-3 shows the most common combination of HTTP methods and URLs and explains what each
of them does when sent to a RESTful server.

Table 24-3. Common HTTP Verbs and Their Effect in a RESTful Web Service

Verb URL Description

GET /products This combination retrieves all the objects in the products collection.

GET /products/2 This combination retrieves the object whose id is 2 from the products
collection.

POST /products This combination is used to add a new object to the products collection.
The request body contains a JSON representation of the new object.

PUT /products/2 This combination is used to replace the object in the products collection
whose id is 2. The request body contains a JSON representation of the
replacement object.

PATCH /products/2 This combination is used to update a subset of the properties of the object
in the products collection whose id is 2. The request body contains a
JSON representation of the properties to update and the new values.

DELETE /products/2 This combination is used to delete the product whose id is 2 from the
products collection.

Caution is required because there can be considerable differences in the way that some RESTful web
services work, caused by differences in the frameworks used to create them and the preferences of the
development team. It is important to confirm how a web service uses verbs and what is required in the URL
and request body to perform operations.

Some common variations include web services that won’t accept any request bodies that contain id
values (to ensure they are generated uniquely by the server’s data store) and web services that don’t support
all of the verbs (it is common to ignore PATCH requests and only accept updates using the PUT verb).

Replacing the Static Data Source
The best place to start with HTTP requests is to replace the static data source in the example application
with one that retrieves data from the RESTful web service. This will provide a foundation for describing how
Angular supports HTTP requests and how they can be integrated into an application.

Chapter 24 ■ Making asynChronous http requests

600

Creating the New Data Source Service
To create a new data source, I added a file called rest.datasource.ts in the exampleApp/app/model folder
and added the statements shown in Listing 24-6.

Listing 24-6. The Contents of the rest.datasource.ts File in the exampleApp/app/model Folder

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.http.get(this.url).map(response => response.json());
 }
}

This is a simple-looking class, but there are some important features at work, which I described in the
sections that follow.

Setting Up the HTTP Request
Angular provides the ability to make asynchronous HTTP requests through the Http class, which is defined
in the @angular/http JavaScript module and is provided as a service in the HttpModule feature module. The
data source declared a dependency on the Http class using its constructor, like this:

...
constructor(private http: Http, @Inject(REST_URL) private url: string) { }
...

The other constructor argument is used so that the URL that requests are sent to doesn’t have to be
hardwired into the data source. I’ll create a provider using the REST_URL opaque token when I configure the
feature module. The Http object received through the constructor is used to make an HTTP GET request in
the data source’s getData method, like this:

...
getData(): Observable<Product[]> {
 return this.http.get(this.url).map(response => response.json());
}
...

The Http class defines a set of methods for making HTTP requests, each of which uses a different HTTP
verb, as described in Table 24-4.

Chapter 24 ■ Making asynChronous http requests

601

 ■ Tip the methods in table 24-4 accept an optional configuration object, as demonstrated in the
“Configuring request headers” section.

Table 24-4. The Http Methods

Name Description

get(url) This method sends a GET request to the specified URL.

post(url, body) This method sends a POST request using the specified object as the body.

put(url, body) This method sends a PUT request using the specified object as the body.

patch(url, body) This method sends a PATCH request using the specified object as the body.

delete(url) This method sends a DELETE request to the specified URL.

head(url) This method sends a HEAD request, which has the same effect as a GET request
except that the server will return only the headers and not the request body.

options(url) This method sends an OPTIONS request to the specified URL.

request(request) This method can be used to send a request with any verb, as described in the
“Consolidating HTTP Requests” section.

Processing the Response
The methods described in Table 24-4 return a Reactive Extensions Observable<Response[] > object, as
described in Chapter 23, which sends an event when the response is received from the server.

The Response class, which is also defined in the @angular/http JavaScript module, is used to represent
the response from the server. Table 24-5 describes the most useful methods and properties defined by the
Response class.

Table 24-5. Useful Response Methods and Properties

Name Description

ok This boolean property returns true if the response status code is between 200 and 299,
indicating a successful request.

status This number property returns the status code from the response.

statusText This string property returns the descriptive status code message from the response.

url This string property returns the requested URL.

totalBytes This number property returns the expected size of the response.

headers This property returns a Headers object, which provides access to the response headers.
See the “Configuring Request Headers” section for details of the Headers class.

json() This method treats the response data as JSON and attempts to parse it to create
JavaScript objects.

text() This method returns the response data as a string.

blob() This method returns the response data as a binary object.

arrayBuffer() This method returns the response data as an array buffer.

http://dx.doi.org/10.1007/978-1-4842-2307-9_23

Chapter 24 ■ Making asynChronous http requests

602

The RESTful web server returns JSON data, which has become the de facto standard used by web
services, and the json method is used to parse the response and create an array of JavaScript objects.

...
getData(): Observable<Product[]> {
 return this.http.get(this.url).map(response => response.json());
}
...

The effect is that the Observable<Response > returned by the Http.get method is transformed into
an Observable<Product[] > by the combination of the Observable.map method and the Response.json
method, with the array of objects being sent to the Observer object’s subscribers.

 ■ Caution the methods in table 24-4 prepare an http request, but it isn’t sent to the server until
the observer object’s subscribe method is invoked. Be careful, though, because the request will be
sent once per call to the subscribe method, which makes it easy to inadvertently send the same
request multiple times.

Configuring the Data Source
The next step is to configure a provider for the new data source and to create a value-based provider
to configure it with a URL to which requests will be sent. Listing 24-7 shows the changes to the
model.module.ts file.

Listing 24-7. Configuring the Data Source in the model.module.ts File

import { NgModule } from "@angular/core";
import { HttpModule } from "@angular/http"
//import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";
import { RestDataSource, REST_URL } from "./rest.datasource";

@NgModule({
 imports: [HttpModule],
 providers: [Model, RestDataSource,
 { provide: REST_URL, useValue: `http://${location.hostname}:3500/products` }]
})
export class ModelModule { }

The two new providers enable the RestDataSource class as a service and use the REST_URL opaque
token to configure the URL for the web service. I removed the provider for the StaticDataSource class,
which is no longer required.

Chapter 24 ■ Making asynChronous http requests

603

ISOLATING A DATA SOURCE FOR UNIT TESTING

Data sources that make network requests can be hard to isolate for unit testing because it is hard to
differentiate between the behavior of the data source class and any unexpected effects caused by the
network and the server.

there is an npM package available that provides an in-memory api service that can be used to simulate
http requests using data that has been defined locally. this provides a way to isolate a data source
class and ensure that only its behavior is being tested. the package is called angular-in-memory-web-
api, and it is described at https://github.com/angular/in-memory-web-api.

Using the REST Data Source
The final step is to update the repository class so that it declares a dependency on the new data source and
uses it to get the application data, as shown in Listing 24-8.

Listing 24-8. Using the New Data Source in the repository.model.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
//import { StaticDataSource } from "./static.datasource";
import { Observable } from "rxjs/Observable";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[] = new Array<Product>();
 private locator = (p: Product, id: number) => p.id == id;

 constructor(private dataSource: RestDataSource) {
 //this.products = new Array<Product>();
 //this.dataSource.getData().forEach(p => this.products.push(p));
 this.dataSource.getData().subscribe(data => this.products = data);
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();
 this.products.push(product);
 } else {

https://github.com/angular/in-memory-web-api

Chapter 24 ■ Making asynChronous http requests

604

 let index = this.products
 .findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

The constructor dependency has changed so that the repository will receive a RestDataSource object
when it is created. Within the constructor, the data source’s getData method is called, and the subscribe
method is used to receive the data objects that are returned from the server and process them.

When you save the changes, the browser will reload the application, and the new data source will be
used. An asynchronous HTTP request will be sent to the RESTful web service, which will return the larger set
of data objects shown in Figure 24-2.

Chapter 24 ■ Making asynChronous http requests

605

Saving and Deleting Data
The data source is able to get data from the server, but it also needs to send data the other way, persisting
changes that the user makes to objects in the model and storing new objects that are created. Listing 24-9
adds methods to the data source class to send HTTP requests to save or update objects using the Angular
Http class.

Listing 24-9. Sending Data in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

Figure 24-2. Getting the application data

Chapter 24 ■ Making asynChronous http requests

606

 getData(): Observable<Product[]> {
 return this.http.get(this.url)
 .map(response => response.json());
 }

 saveProduct(product: Product): Observable<Product> {
 return this.http.post(this.url, product)
 .map(response => response.json());
 }

 updateProduct(product: Product): Observable<Product> {
 return this.http.put(`${this.url}/${product.id}`, product)
 .map(response => response.json());
 }

 deleteProduct(id: number): Observable<Product> {
 return this.http.delete(`${this.url}/${id}`)
 .map(response => response.json());
 }
}

The saveProduct, updateProduct, and deleteProduct methods follow the same pattern: they call
one of the Http class methods, use the map method to process the Response object that the HTTP request
produces, and return an Observable<Product > as the result. The difference between the methods is in the
URL that the requests are sent to.

When saving a new object, the ID of the object is generated by the server so that it is unique and clients
don’t inadvertently use the same ID for different objects. In this situation, the POST method is used, and the
request is sent to the /products URL.

When updating or deleting an existing object, the ID is already known, and a PUT request is sent to
a URL that includes the ID. So, a request to update the object whose ID is 2, for example, is sent to the /
products/2 URL. Similarly, to remove that object, a DELETE request would be sent to the same URL.

What these methods have in common is that the server is the authoritative data store and the response
from the server contains the official version of the object that has been saved by the server. It is this object
that is returned as the results from these methods, provided through the Observable<Product > .

Listing 24-10 shows the corresponding changes in the repository class that take advantage of the new
data source features.

Listing 24-10. Using the Data Source Features in the repository.model.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Observable } from "rxjs/Observable";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[] = new Array<Product>();
 private locator = (p: Product, id: number) => p.id == id;

 constructor(private dataSource: RestDataSource) {
 this.dataSource.getData().subscribe(data => this.products = data);
 }

Chapter 24 ■ Making asynChronous http requests

607

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product).subscribe(p => {
 let index = this.products
 .findIndex(item => this.locator(item, p.id));
 this.products.splice(index, 1, p);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(() => {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 });
 }
}

The changes use the data source to send updates to the server and use the results to update the locally
stored data so that it is displayed by the rest of the application. To test the changes, click the Edit button for
the Kayak product and change its name to Green Kayak. Click the Save button and the browser will send
an HTTP PUT request to the server, which will return a modified object that is added to the repository’s
products array and is displayed in the table, as shown in Figure 24-3.

Figure 24-3. Sending a PUT request to the server

Chapter 24 ■ Making asynChronous http requests

608

You can check that the server has stored the changes by using the browser to request
http://localhost/products/1, which will produce the following representation of the object:

{
 "id": 1,
 "name": "Green Kayak",
 "category": "Watersports",
 "price": 275
}

Consolidating HTTP Requests
Each of the methods in the data source class duplicates the same basic pattern of sending an HTTP request
and then parsing the JSON response from the server. This means that any change to the way that HTTP
requests are made has to be repeated in four different places, ensuring that the requests that use the GET,
POST, PUT, and DELETE verbs are all correctly updated.

The Http class defines the request method, which allows the HTTP verb to be specified as an
argument. Listing 24-11 uses the request method to consolidate the HTTP requests to remove duplication
in the data source class.

Listing 24-11. Consolidating HTTP Requests in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Post, this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Put,
 `${this.url}/${product.id}`, product);
 }

Chapter 24 ■ Making asynChronous http requests

609

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest(RequestMethod.Delete, `${this.url}/${id}`);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {
 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body
 })).map(response => response.json());
 }
}

The request method accepts a Request object that describes the HTTP request that should be sent. The
process for creating a Request object is a little odd because it relies on an interface called RequestArgs to
define configuration properties, which can be expressed as an object literal as the argument to the Request
method, like this:

...
return this.http.request(new Request({
 method: verb,
 url: url,
 body: body
})).map(response => response.json());
...

Table 24-6 describes the properties that can be specified to configure the request.

Table 24-6. The RequestArgs Properties

Name Description

method This property sets the HTTP verb/method that will be used for the request, specified
as a string or as a value from the RequestMethod enum.

url This property specifies the URL to which the request will be sent.

headers This property returns a Headers object that allows the request headers to be specified,
as described in the “Configuring Request Headers” section.

body This property is used to set the request body. The object assigned to this property will
be serialized as JSON when the request is sent.

withCredentials When true, this property is used to include authentication cookies when making
cross-site requests. This setting must be used only with servers that include the
Access-Control-Allow-Credentials header in responses, as part of the Cross-Origin
Resource Sharing (CORS) specification. See the “Making Cross-Origin Requests”
section for details.

In the listing, I use the method, url, and body properties to configure all the requests that are needed,
consolidating the use of the Http object in a single method.

Chapter 24 ■ Making asynChronous http requests

610

Making Cross-Origin Requests
By default, browsers enforce a security policy that only allows JavaScript code to make asynchronous
HTTP requests within the same origin as the document that contains them. This policy is intended to
reduce the risk of cross-site scripting (CSS) attacks, where the browser is tricked into executing malicious
code. The details of this attack are beyond the scope of this book, but there is a nice article available at
http://en.wikipedia.org/wiki/Cross-site_scripting that provides a good introduction to the topic.

For Angular developers, the same-origin policy can be a problem when using web services because
they are typically outside of the origin that contains the application’s JavaScript code. Two URLs are
considered to be in the same origin if they have the same protocol, host, and port and have different origins
if this is not the case. The URL for the HTML file that contains the example application’s JavaScript code is
http://localhost:3000/index.html. Table 24-7 summarizes how similar URLs have the same or different
origins, compared with the application’s URL.

Table 24-7. URLs and Their Origins

URL Origin Comparison

http://localhost:3000/otherfile.html Same origin

http://localhost:3000/app/main.js Same origin

https://localhost:3000/index.html Different origin; protocol differs

http://localhost:3500/products Different origin; port differs

http://angular.io/index.html Different origin; host differs

As the table shows, the URL for the RESTful web service, http://localhost:3500/products, has a
different origin because it uses a different port from the main application.

HTTP requests made using the Angular Http class will automatically use Cross-Origin Resource Sharing
(CORS) to send requests to different origins. With CORS, the browser includes headers in the asynchronous
HTTP request that provide the server with the origin of the JavaScript code. The response from the server
includes headers that tell the browser whether it is willing to accept the request. The details of CORS are
outside the scope of this book, but there is an introduction to the topic at https://en.wikipedia.org/wiki/
Cross-origin_resource_sharing, and the CORS specification is available at http://www.w3.org/TR/cors.

For the Angular developer, CORS is something that is taken care of automatically, just as long as the
server that receives asynchronous HTTP requests supports the specification. The json-server package
that has been providing the RESTful web service for the examples supports CORS and will accept requests
from any origin, which is why the examples have been working. If you want to see CORS in action, use
the browser’s F12 developer tools to watch the network requests that are made when you edit or create a
product. You may see a request made using the OPTIONS verb, known as the preflight request, which the
browser uses to check that it is allowed to make the POST or PUT request to the server. This request and the
subsequent request that sends the data to the server will contain an Origin header, and the response will
contain one or more Access-Control-Allow headers, through which the server sets out what it is willing to
accept from the client.

All of this happens automatically, and the only configuration option is the withCredentials property
that was described in Table 24-6. When this property is true, the browser will include authentication
cookies, and headers from the origin will be included in the request to the server.

http://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors

Chapter 24 ■ Making asynChronous http requests

611

Using JSONP Requests
CORS is available only if the server to which the HTTP requests are sent supports it. For servers that don’t
implement CORS, Angular also provides support for JSONP, which allows a more limited form of cross-
origin requests.

JSONP works by adding a script element to the Document Object Model that specifies the cross-origin
server in its src attribute. The browser sends a GET request to the server, which returns JavaScript code that,
when executed, provides the application with the data it requires. JSONP is, essentially, a hack that works around
the browser’s same-origin security policy. JSONP can be used only to make GET requests, and it presents greater
security risks than CORS. As a consequence, JSONP should be used only when CORS isn’t available.

The Angular support for JSONP is defined in a feature module called JsonpModule, which is defined
in the @angular/http JavaScript module. To enable JSONP, Listing 24-12 adds JsonpModule to the set of
imports for the model module.

Listing 24-12. Enabling JSONP in the model.module.ts File

import { NgModule } from "@angular/core";
import { HttpModule, JsonpModule } from "@angular/http"
import { Model } from "./repository.model";
import { RestDataSource, REST_URL } from "./rest.datasource";

@NgModule({
 imports: [HttpModule, JsonpModule],
 providers: [Model, RestDataSource,
 { provide: REST_URL, useValue: `http://${location.hostname}:3500/products` }]
})
export class ModelModule { }

Angular provides support for JSONP through a Jsonp service defined in the @angular/http module.
This service takes care of managing the JSONP HTTP request and processing the response, which can
otherwise be a tedious and error-prone process. Listing 24-13 shows the data source using JSONP to request
the initial data for the application.

 ■ Tip the Jsonp class defines the same set of methods as the Http class but supports only get requests.
an error will occur if you try to send any other request type.

Listing 24-13. Making a JSONP Request in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod, Jsonp } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http, private jsonp: Jsonp,
 @Inject(REST_URL) private url: string) { }

Chapter 24 ■ Making asynChronous http requests

612

 getData(): Observable<Product[]> {
 return this.jsonp.get(this.url + "?callback=JSONP_CALLBACK")
 .map(response => response.json());
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Post, this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Put,
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest(RequestMethod.Delete, `${this.url}/${id}`);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {
 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body
 })).map(response => response.json());
 }
}

When you use JSONP, the URL you request must include a callback parameter, and it must be set to
JSONP_CALLBACK, like this:

...
return this.jsonp.get(this.url + "?callback=JSONP_CALLBACK")
 .map(response => response.json());
...

When Angular makes the HTTP request, it replaces JSONP_CALLBACK with the name of a dynamically
generated function. If you look at the network requests that the browser makes, you will see that the initial
request is sent to a URL like this one:

http://localhost:3500/products?callback=__ng_jsonp__.__req0.finished

The server uses the value of the callback parameter to generate a JavaScript file that invokes the named
function and passes it the data from the model, like this:

typeof __ng_jsonp__.__req0.finished === 'function'
 &&__ng_jsonp__.__req0.finished([
 { "id": 1, "name": "Green Kayak", "category": "Watersports", "price": 275 },
 { "id": 2,"name": "Lifejacket", "category": "Watersports", "price": 48.95 },
 { ...other objects omitted for brevity... }
]);

Chapter 24 ■ Making asynChronous http requests

613

The browser loads the JavaScript file generated by the server and executes the function, which Angular
uses to receive the data into the application. JSONP is a more limited way to make cross-origin requests, and,
unlike CORS, it skirts around the browser’s security policy, but it can be a useful fallback in a pinch.

Configuring Request Headers
If you are using a commercial RESTful web service, you will often have to set a request header to provide
an API key so that the server can associate the request with your application for the purposes of access
control and billing. You can set this kind of header—or any other header—by configuring the RequestArgs
configuration object that is passed to the request method, as shown in Listing 24-14. This listing also returns
to using the Http class for all requests, rather than JSONP.

Listing 24-14. Setting a Request Header in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod, Headers } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Post, this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Put,
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest(RequestMethod.Delete, `${this.url}/${id}`);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {
 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body,

Chapter 24 ■ Making asynChronous http requests

614

 headers: new Headers({
 "Access-Key": "<secret>",
 "Application-Name": "exampleApp"
 })
 })).map(response => response.json());
 }
}

The headers property is set to a Headers object, which can be created using a map object of properties
that correspond to header names and the values that should be used for them. If you use the browser’s F12
developer tools to inspect the asynchronous HTTP requests, you will see that the two headers specified in
the listing are sent to the server along with the standard headers that the browser creates, like this:

...
Accept:*/*
Accept-Encoding:gzip, deflate, sdch, br
Accept-Language:en-US,en;q=0.8
access-key:<secret>
application-name:exampleApp
Connection:keep-alive
...

The header names are sent in lowercase, but HTTP header names are case-insensitive. If you have
more complex demands for request headers, then you can use the methods defined by the Headers class, as
described in Table 24-8.

Table 24-8. The Headers Methods

Name Description

get(name) Returns the first value for the specified header

getAll(name) Returns all the values for the specified header

has(name) Returns true if the collection contains the specified header

set(header, value) Replaces all existing values for the specified header with a single value

set(header, values) Replaces all existing values for the specified header with an array of values

append(name, value) Appends a value to the list of values for the specified header

delete(name) Removes the specified header from the collection

toJson() Returns a JSON representation of all the headers and values

HTTP headers can have multiple values, which is why there are methods that append values for headers
or replace all the values in the collection. Listing 24-15 creates an empty Headers object and populates it
with headers that have multiple values.

Chapter 24 ■ Making asynChronous http requests

615

Listing 24-15. Setting Multiple Header Values in the rest.datasource.ts File

...
private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {

 let headers = new Headers();
 headers.set("Access-Key", "<secret>");
 headers.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body,
 headers: headers
 })).map(response => response.json());
}
...

When the browser sends requests to the server, they will include the following headers:

...
Accept:*/*
Accept-Encoding:gzip, deflate, sdch, br
Accept-Language:en-US,en;q=0.8
access-key:<secret>
application-names:exampleApp,proAngular
Connection:keep-alive
...

Handling Errors
At the moment, there is no error handling in the application, which means that Angular doesn’t know what
to do if there is a problem with an HTTP request. To make it easy to generate an error, I have added a button
to the product table that will lead to an HTTP request to delete an object that doesn’t exist at the server, as
shown in Listing 24-16.

Listing 24-16. Adding an Error Button in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>

Chapter 24 ■ Making asynChronous http requests

616

 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)">
 Edit
 </button>
 </td>
 </tr>

</table>
<button class="btn btn-primary" (click)="createProduct()">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

The button element invokes the component’s deleteProduct method with an argument of -1. The
component will ask the repository to delete this object, which will lead to an HTTP DELETE request being
sent to /products/-1, which does not exist. If you open the browser’s JavaScript console and click the new
button, you will see the response from the server displayed, like this:

EXCEPTION: Response with status: 404 Not Found for URL: http://localhost:3500/products/-1

Improving on this situation means detecting this kind of error when one occurs and notifying the user,
who won’t typically be looking at the JavaScript console. A real application might also respond to errors by
logging them so they can be analyzed later, but I am going to keep things simple and just display an error
message.

Generating User-Ready Messages
The first step in handling errors is to convert the HTTP exception into something that can be displayed to
the user. The default error message, which is the one written to the JavaScript console, contains too much
information to display to the user. Users don’t need to know the URL that the request was sent to; just having
a sense of the kind of problem that has occurred will be enough.

The best way to transform error messages is to use the catch and throw methods defined by the
Observable class. The catch method is used to receive any errors that occur within an Observable sequence,
and the throw method is used to create a new Observable that just contains the error. Listing 24-17 applies
both methods to the data source.

 ■ Tip notice that the throw method is imported from rxjs/add/observable.

Chapter 24 ■ Making asynChronous http requests

617

Listing 24-17. Transforming Errors in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod, Headers, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";
import "rxjs/add/operator/catch";
import "rxjs/add/observable/throw";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest(RequestMethod.Get, this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Post, this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest(RequestMethod.Put,
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest(RequestMethod.Delete, `${this.url}/${id}`);
 }

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {

 let headers = new Headers();
 headers.set("Access-Key", "<secret>");
 headers.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body,
 headers: headers
 })).map(response => response.json())
 .catch((error: Response) => Observable.throw(
 `Network Error: ${error.statusText} (${error.status})`));
 }
}

Chapter 24 ■ Making asynChronous http requests

618

The function passed to the catch method is invoked when there is an error and receives the Response
object that describes the outcome. The Observable.throw method creates a new observable that contains
just an error object, which in this case is used to generate an error message that contains the HTTP status
code and status text from the response.

If you save the changes and then click the Generate HTTP Error button again, the error message will
still be written to the browser’s JavaScript console but will have changed to the format produced by the
catch/throw methods:

EXCEPTION: Network Error: Not Found (404)

Handling the Errors
The errors have been transformed but not handled, which is why they are still being reported as exceptions
in the browser’s JavaScript console.

There are two ways in which the errors can be handled. The first is to provide an error-handling
function to the subscribe method for the Observable objects created by the Http object. This is a useful way
to localize the error and provide the repository with the opportunity to retry the operation or try to recover in
some other way.

The second approach is to replace the built-in Angular error-handling feature, which responds to any
unhandled errors in the application and, by default, writes them to the console. It is this feature that writes
out the messages shown in the previous sections.

For the example application, I want to override the default error handler with one that uses the message
service. I created a file called errorHandler.ts in the exampleApp/app/messages folder and used it to define
the class shown in Listing 24-18.

Listing 24-18. The Contents of the errorHandler.ts File in the exampleApp/app/messages Folder

import { ErrorHandler, Injectable } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";

@Injectable()
export class MessageErrorHandler implements ErrorHandler {

 constructor(private messageService: MessageService) {
 }

 handleError(error) {
 let msg = error instanceof Error ? error.message : error.toString();
 setTimeout(() => this.messageService
 .reportMessage(new Message(msg, true)), 0);
 }
}

The ErrorHandler class is defined in the @angular/core module and responds to errors through a
handleError method. The class shown in the listing replaces the default implementation of this method
with one that uses the MessageService to report an error. The setTimeout function ensures that the message
is displayed to the user, working around a wrinkle in the way that Angular handles updates.

To replace the default ErrorHandler, I used a class provider in the message module, as shown in
Listing 24-19.

Chapter 24 ■ Making asynChronous http requests

619

Listing 24-19. Replacing the Default Error Handler in the message.module.ts File

import { NgModule, ErrorHandler } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { MessageComponent } from "./message.component";
import { MessageService } from "./message.service";
import { MessageErrorHandler } from "./errorHandler";

@NgModule({
 imports: [BrowserModule],
 declarations: [MessageComponent],
 exports: [MessageComponent],
 providers: [MessageService,
 { provide: ErrorHandler, useClass: MessageErrorHandler }]
})
export class MessageModule { }

The error handling function uses the MessageService to report an error message to the user. Once these
changes have been saved, clicking the Generate HTTP Error button produces an error that the user can see,
as shown in Figure 24-4.

Figure 24-4. Handling an HTTP error

Chapter 24 ■ Making asynChronous http requests

620

Summary
In this chapter, I explained how to make asynchronous HTTP request in Angular applications. I introduced
RESTful web services and the methods provided by the Angular Http class that can be used into interact with
them. I explained how the browser restricts requests to different origins and how Angular supports CORS
and JSONP to make requests outside of the application’s origin. In the next chapter, I introduce the URL
routing feature, which allows for navigation around complex applications.

621© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_25

CHAPTER 25

Routing and Navigation: Part 1

The Angular routing feature allows applications to change the components and templates that are displayed
to the user by responding to changes to the browser’s URL. This allows complex applications to be created
that adapt the content they present in an open and flexible way, with minimal coding. To support this
feature, there are data bindings and services that can be used to change the browser’s URL, allowing the user
to navigate around the application.

Routing is useful as the complexity of a project increases because it allows the structure of an
application to be defined separately from the components and directives, meaning that changes to
the structure can be made in the routing configuration and do not have to be applied to the individual
components.

In this chapter, I demonstrate how the basic routing system works and apply it to the example application.
In Chapters 26 and 27, I explain the more advanced routing features. Table 25-1 puts routing in context.

Table 25-1. Putting Routing and Navigation in Context

Question Answer

What is it? Routing uses the browser’s URL to manage the content displayed
to the user.

Why is it useful? Routing allows the structure of an application to be kept
apart from the components and templates in the application.
Changes to the structure of the application are made in the
routing configuration rather than in individual components and
directives.

How is it used? The routing configuration is defined as a set of fragments that are
used to match the browser’s URL and select a component whose
template is displayed as the content of an HTML element called
router-outlet.

Are there any pitfalls or limitations? The routing configuration can become unmanageable, especially
if the URL schema is being defined gradually, on an ad hoc basis.

Are there any alternatives? You don’t have to use the routing feature. You could achieve
similar results by creating a component whose view selects the
content to display to the user with the ngIf or ngSwitch directive,
although this approach becomes more difficult than using routing
as the size and complexity of an application increases.

http://dx.doi.org/10.1007/978-1-4842-2307-9_26
http://dx.doi.org/10.1007/978-1-4842-2307-9_27

Chapter 25 ■ routing and navigation: part 1

622

Table 25-2 summarizes the chapter.

 ■ Note the examples in this chapter require the reactive extensions module created using the
systemjs-builder package in Chapter 22. if you have not prepared this file, then you should do so now or,
alternatively, download the project for this chapter from apress.com.

Preparing the Example Project
The features used in this chapter rely on the Angular Router module, which must be added to the
application. Listing 25-1 shows the addition of the module to the package list.

 ■ Caution notice the version number for this package is higher than for the other angular packages. this
oddity arose because the way the routing feature works was substantially revised during development of
angular 2.

Listing 25-1. Adding the Router Package to the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/http": "2.2.0",
 "@angular/router": "3.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",

Table 25-2. Chapter Summary

Problem Solution Listing

Use URL navigation to select the content
shown to users

Use URL routing 1–9

Navigate using an HTML element Apply the routerLink attribute 10–12

Respond to route changes Use the routing services to receive notifications 13

Include information in URLs Use route parameters 14–20

Navigate using code Use the Router service 21

Receive notifications of routing activity Handle the routing events 22–23

http://dx.doi.org/10.1007/978-1-4842-2307-9_22

Chapter 25 ■ routing and navigation: part 1

623

 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4",
 "html5-history-api": "4.2.7"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server --p 3500 restData.js",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

The Angular routing features depend on the JavaScript History API, which is not supported by older
browsers, so I have added the html5-history-api package to the application to provide a polyfill for the
missing API.

 ■ Tip You can download the projects for all the chapters in this book from apress.com.

The Angular router module must also be registered with the SystemJS JavaScript module loader, as
shown in Listing 25-2.

Listing 25-2. Adding the Router Module in the systemjs.config.js File

(function (global) {

 var paths = {
 "@angular/*": "node_modules/@angular/*"
 }

 var packages = { "app": {} };

 var angularModules = ["common", "compiler",
 "core", "platform-browser", "platform-browser-dynamic", "forms",
 "http", "router"];

Chapter 25 ■ routing and navigation: part 1

624

 angularModules.forEach(function (pkg) {
 packages["@angular/" + pkg] = {
 main: "/bundles/" + pkg + ".umd.min.js"
 };
 });

 System.config({ paths: paths, packages: packages });

})(this);

Disabling the State Change Event Display
The application is configured to display the state change events sent from the table component to the
product component in two places: through the message service and in the form component’s template.
These messages are no longer required, and Listing 25-3 removes the event display from the component’s
template.

Listing 25-3. Removing the Event Display in the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
 <!--Last Event: {{ stateEvents | async | formatState }}-->
</div>

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary">Cancel</button>
</form>

Chapter 25 ■ routing and navigation: part 1

625

Listing 25-4 disables the code that pushes the state change events into the message service.

Listing 25-4. Disabling State Change Events in the core.model.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule, Model } from "model/module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { Product } from "model/module";
import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule, MessageService, Message } from "messages/module";
import { MODES } from "./sharedState.model";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule],
 declarations: [TableComponent, FormComponent, StatePipe],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [{
 provide: SHARED_STATE,
 deps: [MessageService, Model],
 useFactory: (messageService, model) => {
 return new Subject<SharedState>();
 //subject.subscribe(m => messageService.reportMessage(
 // new Message(MODES[m.mode] + (m.id != undefined
 // ? ` ${model.getProduct(m.id).name}` : "")))
 //);
 //return subject;
 }
 }]
})
export class CoreModule { }

Save the changes and run the following command in the exampleApp folder to download and install the
Angular module:

npm install

Once the update has been completed, run the following command in the exampleApp folder to start the
TypeScript compiler, the development HTTP server, and the RESTful web service:

npm start

A new browser window or tab will open, and you will see the content shown in Figure 25-1.

Chapter 25 ■ routing and navigation: part 1

626

Getting Started with Routing
At the moment, all the content in the application is visible to the user all of the time. For the example
application, this means that both the table and the form are always visible and it is up to the user to keep
track of which part of the application they are using for the task at hand.

That’s fine for a simple application, but it becomes unmanageable in a complex project, which can have
many areas of functionality that would be overwhelming if they were all displayed at the same time.

URL routing adds structure to an application using a natural and well-understood aspect of web
applications: the URL. In this section, I am going to introduce URL routing by applying it to the example
application so that either the table or the form is visible, with the active component being chosen based on
the user’s actions. This will provide a good basis for explaining how routing works and set the foundation for
more advanced features.

Figure 25-1. Running the example application

Chapter 25 ■ routing and navigation: part 1

627

Creating a Routing Configuration
The first step when applying routing is to define the routes, which are mappings between URLs and the
components that will be displayed to the user. Routing configurations are conventionally defined in a file
called app.routing.ts, defined in the app folder. I created this file and added the statements shown in
Listing 25-5.

Listing 25-5. The Contents of the app.routing.ts File in the exampleApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 { path: "form/edit", component: FormComponent },
 { path: "form/create", component: FormComponent },
 { path: "", component: TableComponent }]

export const routing = RouterModule.forRoot(routes);

The Routes class defines a collection of routes, each of which tells Angular how to handle a specific
URL. This example uses the most basic properties, where the path specifies the URL and the component
property specifies the component that will be displayed to the user.

The path property is specific relative to the rest of the application, which means that the configuration
in Listing 25-5 sets up the routes shown in Table 25-3.

The routes are packaged into a module using the RouterModule.forRoot method. The forRoot method
produces a module that includes the routing service. There is also a forChild method that doesn’t include
the service and that is demonstrated in Chapter 26, where I explain how to create routes for feature modules.

Although the path and component properties are the most commonly used when defining routes,
there are a range of additional properties that can be used to define routes with advanced features. These
properties are described in Table 25-4, along with details of where they are described.

Table 25-3. The Routes Created in the Example

URL Displayed Component

http://localhost:3000/form/edit FormComponent

http://localhost:3000/form/create FormComponent

http://localhost:3000/ TableComponent

http://dx.doi.org/10.1007/978-1-4842-2307-9_26

Chapter 25 ■ routing and navigation: part 1

628

UNDERSTANDING ROUTE ORDERING

the order in which routes are defined is significant. angular compares the urL to which the browser
has navigated with the path property of each route in turn until it finds a match. this means that the
most specific routes should be defined first, with the routes that follow decreasing in specificity. this
isn’t a big deal for the routes in Listing 25-5, but it becomes significant when using route parameters
(described in the “using route parameters” section of this chapter) or adding child routes (described in
Chapter 26).

if you find that your routing configuration doesn’t result in the behavior you expect, then the order in
which the routes have been defined is the first thing to check.

Table 25-4. The Routes Properties Used to Define Routes

Name Description

path This property specifies the path for the route.

component This property specifies the component that will be selected when the activate
URL matches the path.

pathMatch This property tells Angular how to match the current URL to the path property.
There are two allowed values: full, which requires the path value to completely
match the URL, and prefix, which allows the path value to match the URL,
even if the URL contains additional segments that are not part of the path value.
This property is required when using the redirectTo property, as demonstrated
in Chapter 26.

redirectTo This property is used to create a route that redirects the browser to a different
URL when activated. See Chapter 26 for details.

children This property is used to specify child routes, which display additional
components in nested router-outlet elements contained in the template of
the activate component, as demonstrated in Chapter 26.

outlet This property is used to support multiple outlet elements, as described in
Chapter 27.

resolve This property is used to define work that must be completed before a route can
be activated, as described in Chapter 27.

canActivate This property is used to control when a route can be activated, as described in
Chapter 27.

canActivateChild This property is used to control when a child route can be activated, as
described in Chapter 27.

canDeactivate This property is used to control when a route can be deactivated so that a new
route can be activated, as described in Chapter 27.

loadChildren This property is used to configure a module that is loaded only when it is
needed, as described in Chapter 27.

canLoad This property is used to control when an on-demand module can be loaded.

http://dx.doi.org/10.1007/978-1-4842-2307-9_26
http://dx.doi.org/10.1007/978-1-4842-2307-9_26
http://dx.doi.org/10.1007/978-1-4842-2307-9_26
http://dx.doi.org/10.1007/978-1-4842-2307-9_26
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_27

Chapter 25 ■ routing and navigation: part 1

629

Creating the Routing Component
When using routing, the root component is dedicated to managing the navigation between different parts
of the application. I added a file called app.component.ts in the exampleApp/app folder and defined the
component shown in Listing 25-6.

Listing 25-6. The Contents of the app.component.ts File in the exampleApp/app File

import { Component } from "@angular/core";

@Component({
 selector: "app",
 moduleId: module.id,
 templateUrl: "app.component.html"
})
export class AppComponent { }

This component is a vehicle for its template, which I created by adding a file called app.component.
html to the exampleApp/app folder and adding the elements shown in Listing 25-7.

Listing 25-7. The Contents of the app.component.html File in the exampleApp/app File

<paMessages></paMessages>
<router-outlet></router-outlet>

The paMessages element displays any messages and errors in the application. For the purposes of
routing, it is the router-outlet element—known as the outlet—that is important because it tells Angular
that this is where the component matched by the routing configuration should be displayed.

Updating the Root Module
The next step is to update the root module so that the new root component is used to bootstrap the
application, as shown in Listing 25-8, which also imports the module that contains the routing configuration.

Listing 25-8. Enabling Routing in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { routing } from "./app.routing";
import { AppComponent } from "./app.component";

@NgModule({
 imports: [BrowserModule, CoreModule, MessageModule, routing],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

Chapter 25 ■ routing and navigation: part 1

630

Completing the Configuration
The final step to apply routing to the application is to update the index.html file, as shown in Listing 25-9.

Listing 25-9. Configuring Routing in the index.html File

<!DOCTYPE html>
<html>
<head>
 <base href="/">
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/html5-history-api/history.min.js"></script>
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="rxjs.module.min.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <app></app>
</body>
</html>

The base element sets the URL against which the routing paths in Listing 25-5 are applied. The app
element applies the new root component, whose template contains the router-outlet element. The new
script element in the listing loads the polyfill for the History API so that the application will run correctly on
older browsers.

When you save the changes and the browser reloads the application, you will see just the product table,
as illustrated by Figure 25-2. The default URL for the application, http://localhost:3000, corresponds to
the route that shows the product table.

Chapter 25 ■ routing and navigation: part 1

631

Adding Navigation Links
The basic routing configuration is in place, but there is no way to navigate around the application: nothing
happens when you click the Create New Product or Edit button.

The next step is to add links to the application that will change the browser’s URL and, in doing so,
trigger a routing change that will display a different component to the user. Listing 25-10 adds these links to
the table component’s template.

Listing 25-10. Adding Navigation Links in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">

Figure 25-2. Using routing to display components to the user

Chapter 25 ■ routing and navigation: part 1

632

 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 routerLink="/form/edit">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" (click)="createProduct()" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

The routerLink attribute applies a directive from the routing package that performs the navigation
change. This directive can be applied to any element, although it is typically applied to button and anchor
(a) elements. The expression for the routeLink directive applied to the Edit buttons tells Angular to target
the /form/edit route:

...
<button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 routerLink="/form/edit">
 Edit
</button>
...

The same directive applied to the Create New Product button tells Angular to target the /create route.

...
<button class="btn btn-primary" (click)="createProduct()" routerLink="/form/create">
 Create New Product
</button>
...

The routing links added to the table component’s template will allow the user to navigate to the form.
The addition to the form component’s template shown in Listing 25-11 will allow the user to navigate back
again using the Cancel button.

Listing 25-11. Adding a Navigation Link in the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
</div>
<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

Chapter 25 ■ routing and navigation: part 1

633

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary" routerLink="/">Cancel</button>
</form>

The value assigned to the routerLink attribute targets the route that displays the product table.
Listing 25-12 updates the feature module that contains the template so that it imports the RouterModule,
which is the Angular module that contains the directive that selects the routerLink attribute.

Listing 25-12. Enabling the Routing Directive in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule } from "../messages/message.module";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { Model } from "../model/repository.model";
import { MODES } from "./sharedState.model";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule, RouterModule],
 declarations: [TableComponent, FormComponent, StatePipe],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [{
 provide: SHARED_STATE,
 deps: [MessageService, Model],
 useFactory: (messageService, model) => {
 return new Subject<SharedState>();
 }

Chapter 25 ■ routing and navigation: part 1

634

 }]
})
export class CoreModule { }

Understanding the Effect of Routing
When all the changes have been saved, you will be able to navigate around the application using the Edit,
Create New Product, and Cancel buttons, as shown in Figure 25-3.

Not all the features in the application work yet, but this is a good time to explore the effect of adding
routing to the application. Enter the root URL for the application (http://localhost:3000) and then click
the Create New Product button. When you clicked the button, the Angular routing system changed the URL
that the browser displays to this:

http://localhost:3000/form/create

If you watch the output from the development HTTP server during the transition, you will notice that
no requests are received by the server for new content. This change is done entirely within the Angular
application and does not produce any new HTTP requests.

The new URL is processed by the Angular routing system, which is able to match the new URL to this
route from the app.routing.ts file.

...
{ path: "form/create", component: FormComponent },
...

Figure 25-3. Using routes to navigate around the application

Chapter 25 ■ routing and navigation: part 1

635

The routing system takes into account the base element in the index.html file when it matches the URL
to a route. The base element is configured with an href value of / that is combined with the path in the route
to make a match when the URL is /form/create.

The component property tells the Angular routing system that it should display the FormComponent to the
user. A new instance of the FormComponent class is created, and its template content is used as the content
for the router-outlet element in the root component’s template.

If you click the Cancel button below the form, then the process is repeated, but this time, the browser
returns to the root URL for the application, which is matched by the route whose path component is the
empty string.

{ path: "", component: TableComponent }

This route tells Angular to display the TableComponent to the user. A new instance of the
TableComponent class is created, and its template is used as the content of the router-outlet element,
displaying the model data to the user.

This is the essence of routing: the browser’s URL changes, which causes the routing system to consult its
configuration to determine which component should be displayed to the user. There are lots of options and
features available, but this is the core purpose of routing, and you won’t go too far wrong if you keep this in mind.

THE PERILS OF CHANGING THE URL MANUALLY

the routerLink directive sets the urL using a JavaScript api that tells the browser that this is a
change relative to the current document and not a change that requires an http request to the server.

if you enter a urL that matches the routing system into the browser window, you will see an effect that
looks like the expected change but is actually something else entirely. Keep one eye on the output from
the development http server while manually entering the following urL into the browser:

http://localhost:3000/form/create

rather than handling the change within the angular application, the browser sends an http request to
the server, which reloads the application. once the application is loaded, the routing system inspects the
browser’s urL, matches one of the routes in the configuration, and then displays the FormComponent.

the reason this works is because the lite-server package, which provides the development http
server capability, will return the contents of the index.html file for urLs that don’t correspond to files
on the disk. as an example, request this urL:

http://localhost:3000/this/does/not/exist

the browser will display an error because the request has provided the browser with the contents of the
index.html file, which it has used to load and start the example angular application. When the routing
system inspects the urL, it finds no matching route and creates an error.

there are two important points to note. the first is that when you test your application’s routing
configuration, you should keep an eye on the http requests that the browser is making because you
will sometimes see the right result for the wrong reasons. on a fast machine, you may not even realize
that the application has been reloaded and restarted by the browser.

Chapter 25 ■ routing and navigation: part 1

636

Second, you must remember that the urL must be changed using the routerLink directive (or one of
similar features provided by the router module) and not manually using the browser’s urL bar.

Finally, since users won’t know about the difference between programmatic and manual urL changes,
your routing configuration should be able to deal with urLs that don’t correspond to routes, as
described in Chapter 26.

Completing the Routing Implementation
Adding routing to the application is a good start, but a lot of the application features just don’t work. For
example, clicking an Edit button displays the form, but it isn’t populated, and it doesn’t show the color cue
that indicates editing. In the sections that follow, I use features provided by the routing system to finish
wiring up the application so that everything works as expected.

Handling Route Changes in Components
The form component isn’t working properly because it isn’t being notified that the user has clicked a button
to edit a product. This problem occurs because the routing system creates new instances of component
classes only when it needs them, which means the FormComponent object is created only after the Edit button
is clicked. If you click the Cancel button under the form and then click an Edit button in this table again, a
second instance of the FormComponent will be created.

This leads to a timing issue in the way that the product component and the table component
communicate, via a Reactive Extensions Subject. A Subject only passes on events to subscribers that arrive
after the subscribe method has been called. The introduction of routing means that the FormComponent
object is created after the event describing the edit operation has already been sent.

This problem could be solved by replacing the Subject with a BehaviorSubject, which sends the most
recent event to subscribers when they call the subscribe method. But a more elegant approach—especially
since this is a chapter on the routing system—is to use the URL to collaborate between components.

Angular provides a service that components can receive to get details of the current route. The
relationship between the service and the types that it provides access to may seem complicated at first, but it
will make sense as you see how the examples unfold and some of the different ways that routing can be used.

The class on which components declare a dependency is called ActivatedRoute. For the purposes of
this section, it defines one important property, which is described in Table 25-5. There are other properties,
too, which are described later in the chapter but which you can ignore for the moment.

The snapshot property returns an instance of the ActivatedRouteSnapshot class, which provides
information about the route that led to the current component being displayed to the user using the
properties described in Table 25-6.

Table 25-5. The ActivatedRoute Property

Name Description

snapshot This property returns an ActivatedRouteSnapshot object that describes the current route.

http://dx.doi.org/10.1007/978-1-4842-2307-9_26

Chapter 25 ■ routing and navigation: part 1

637

The url property is the one that is most important for this example because it allows the component to
inspect the segments of the current URL and extract the information from them required to perform an operation.
The url property returns an array of UrlSegment objects, which provide the properties described in Table 25-7.

To determine what route has been activated by the user, the form component can declare a dependency
on ActivatedRoute and then use the object it receives to inspect the segments of the URL, as shown in
Listing 25-13.

Listing 25-13. Inspecting the Active Route in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
//import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
//import { Observable } from "rxjs/Observable";
//import "rxjs/add/operator/filter";
//import "rxjs/add/operator/map";
//import "rxjs/add/operator/distinctUntilChanged";
//import "rxjs/add/operator/skipWhile";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

Table 25-6. The Basic ActivatedRouteSnapshot Properties

Name Description

url This property returns an array of UrlSegment objects, each of which describes a
single segment in the URL that matched the current route.

params This property returns a Params object, which describes the URL parameters, indexed
by name.

queryParams This property returns a Params object, which describes the URL query parameters,
indexed by name.

fragment This property returns a string containing the URL fragment.

Table 25-7. The URLSegment Properties

Name Description

Path This property returns a string that contains the segment value.

parameters This property returns an indexed collection of parameters, as described in the “Using
Route Parameters” section.

Chapter 25 ■ routing and navigation: part 1

638

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.url[1].path == "edit";
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.reset();
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The component no longer uses Reactive Extensions to receive events. Instead, it inspects the second
segment of the active route’s URL to set the value of the editing property, which determines whether it
should display its create or edit mode. If you click an Edit button in the table, you will now see the correct
coloring displayed, as shown in Figure 25-4.

Figure 25-4. Using the active route in a component

Chapter 25 ■ routing and navigation: part 1

639

UNDERSTANDING THE URL ENTRY PROBLEM

the development http server used in this book, lite-server, has a feature that returns the contents
of the index.html file when the browser requests a urL that doesn’t match a file in the project.
Combined with the automatic browser reload feature, this means you can cause the application to
start at a specific urL. as an example, if you click one of the edit buttons in the previous example, the
browser will navigate to the /form/edit urL. When you modify a file, the browser will be automatically
reloaded and ask the http server for the /form/edit urL, which doesn’t correspond to a file in the
exampleApp folder and for which the http server will respond with the contents of the index.html file.

this can be a useful feature because it prevents 404 - not Found errors when the application navigates
to a route that has yet to be implemented. But it can also cause problems because the application
hasn’t gone through the sequence of navigation steps from the root urL required to set up state data
required for the route that the browser jumps to.

in Chapter 27, i show you how to use a feature called route guarding to prevent this behavior. until then,
some of the examples that follow won’t work as expected unless you explicitly request the http://
localhost:3000 urL and then navigate using the buttons in the application layout.

Using Route Parameters
When I set up the routing configuration for the application, I defined two routes that targeted the form
component, like this:

...
{ path: "form/edit", component: FormComponent },
{ path: "form/create", component: FormComponent },
...

When Angular is trying to match a route to a URL, it looks at each segment in turn and checks to see
that it matches the URL that is being navigated to. Both of these URLs are made up of static segments, which
means they have to match the navigated URL exactly before Angular will activate the route.

Angular routes can be more flexible and include route parameters, which allow any value for a
segment to match the corresponding segment in the navigated URL. This means routes that target the same
component with similar URLs can be consolidated into a single route, as shown in Listing 25-14.

Listing 25-14. Consolidating Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent }
]

export const routing = RouterModule.forRoot(routes);

http://dx.doi.org/10.1007/978-1-4842-2307-9_27

Chapter 25 ■ routing and navigation: part 1

640

The second segment of the modified URL defines a route parameter, denoted by the colon (the :
character) followed by a name. In this case, the route parameter is called mode. This route will match any
URL that has two segments where the first segment is form, as summarized in Table 25-8. The content of the
second segment will be assigned to a parameter called mode.

Using route parameters make it simpler to handle routes programmatically because the value of the
parameter can be obtained using its name, as shown in Listing 25-15.

Listing 25-15. Reading a Route Parameter in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 }

 // ...methods and property omitted for brevity...
}

The component doesn’t need to know the structure of the URL to get the information it needs. Instead,
it can use the params property provided by the ActivatedRouteSnapshot class to get a collection of the
parameter values, indexed by name. The component gets the value of the mode parameter and uses it to set
the editing property.

Table 25-8. URL Matching with the Route Parameter

URL Result

http://localhost:3000/form No match—too few segments

http://localhost:3000/form/create Matches, with create assigned to the mode parameter

http://localhost:3000/form/london Matches, with london assigned to the mode parameter

http://localhost:3000/product/edit No match—first segment is not form

http://localhost:3000/form/edit/1 No match—too many segments

Chapter 25 ■ routing and navigation: part 1

641

Using Multiple Route Parameters
To tell the form component which product has been selected when the user clicks an Edit button, I need to
use a second route parameter. Since Angular matches URLs based on the number of segments they contain,
this means I need to split up the routes that target the form component again, as shown in Listing 25-16. This
cycle of consolidating and then expanding routes is typical of most development projects as you increase the
amount of information that is included in routed URLs to add functionality to the application.

Listing 25-16. Adding a Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent }]

export const routing = RouterModule.forRoot(routes);

The new route will match any URL that has three segments where the first segment is form. To create
URLs that target this route, I need to use a different approach for the routerLink expressions in the template
because I need to generate the third segment dynamically for each Edit button in the product table, as
shown in Listing 25-17.

Listing 25-17. Generating Dynamic URLs in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" (click)="createProduct()" routerLink="/form/create">
 Create New Product

Chapter 25 ■ routing and navigation: part 1

642

</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

The routerLink attribute is now enclosed in square brackets, telling Angular that it should treat
the attribute value as a data binding expression. The expression is set out as an array, with each element
containing the value for one segment. The first two segments are literal strings and will be included in the
target URL without modification. The third segment will be evaluated to include the id property value for the
current Product object being processed by the ngIf directive, just like the other expressions in the template.
The routerLink directive will combine the individual segments to create a URL such as /form/edit/2.

Listing 25-18 shows how the form component gets the value of the new route parameter and uses it to
select the product that is to be edited.

Listing 25-18. Using the New Route Parameter in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 Object.assign(this.product, model.getProduct(id) || new Product());
 }
 }

 // ...methods and property omitted for brevity...
}

When the user clicks an Edit button, the routing URL that is activated tells the form component that an
edit operation is required and which product is to be modified, allowing the form to be populated correctly,
as shown in Figure 25-5.

Chapter 25 ■ routing and navigation: part 1

643

 ■ Tip notice that i check to confirm that i have been able to retrieve a Product object from the data model
in Listing 25-18 and create a new object if that isn’t the case. this is important because the data in the model
is obtained asynchronously and may not have arrived by the time that the form component is displayed if the
user requests the urL directly. this can also be a problem in development, where a change to the code in the
application triggers a recompilation followed by a reload of whatever urL you navigated to before making the
change. the result is an error as angular tries to navigate directly to a route that you expected would not be
required until after the data model had been populated. in Chapter 27, i explain how you can stop routes being
activated until a specific condition is true, such as the arrival of the data.

Figure 25-5. Using URLs segments to provide information

http://dx.doi.org/10.1007/978-1-4842-2307-9_27

Chapter 25 ■ routing and navigation: part 1

644

Using Optional Route Parameters
Optional route parameters allow URLs to include additional information to provide hints or guidance to the
rest of the application but which is not essential for the application to work.

This type of route parameter is expressed using URL matrix notation, which isn’t part of the
specification for URLs but which browsers support nonetheless. Here is an example of a URL that has
optional route parameters:

http://localhost:3000/form/edit/2;name=Lifejacket;price=48.95

The optional route parameters are separated by semicolons (the ; character), and this URL includes
optional parameters called name and price.

As a demonstration of how to use optional parameters, Listing 25-19 shows the addition of an optional
route parameter that includes the object to be edited as part of the URL. This information isn’t essential
because the form component can get data from the model, but receiving the data via the routing URL would
avoid some work.

Listing 25-19. Using an Optional Route Parameter in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 [routerLink]="['/form', 'edit', item.id,
 {name: item.name, category: item.category, price: item.price}]">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" (click)="createProduct()" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Chapter 25 ■ routing and navigation: part 1

645

The optional values are expressed as literal objects, where property names identify the optional
parameter. In this example, there are name, category, and price properties, and their values are set using the
object being processed by the ngIf directive. The optional parameters will produce a URL like this one:

http://localhost:3000/form/edit/5;name=Stadium;category=Soccer;price=79500

Listing 25-20 shows how the form component checks to see whether the optional parameters are
present. If they have been included in the URL, then the parameter values are used to avoid a request to the
data model.

Listing 25-20. Receiving Optional Route Parameters in the form.component.ts File

...
constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 let name = activeRoute.snapshot.params["name"];
 let category = activeRoute.snapshot.params["category"];
 let price = activeRoute.snapshot.params["price"];

 if (name != null && category != null && price != null) {
 this.product.id = id;
 this.product.name = name;
 this.product.category = category;
 this.product.price = Number.parseFloat(price);
 } else {
 Object.assign(this.product, model.getProduct(id) || new Product());
 }
 }
}
...

Optional route parameters are accessed in the same way as required parameters, and it is the
responsibility of the component to check to see whether they are present and to proceed anyway if they are
not part of the URL. In this case, the component is able to fall back to querying the data model if the URL
does not contain the optional parameters it looks for.

Navigating in Code
Using the routerLink attribute makes it easy to set up navigation in templates, but applications will often
need to initiate navigation on behalf of the user within a component or directive.

To give access to the routing system to building blocks such as directives and components, Angular
provides the Router class, which is available as a service through dependency injection and whose most
useful methods and properties are described in Table 25-9.

Chapter 25 ■ routing and navigation: part 1

646

The navigate and navigateByUrl methods make it easy to perform navigation inside a building block
such as a component. Listing 25-21 shows the use of the Router in the form component to redirect the
application back to the table after a product has been created or updated.

Listing 25-21. Navigating Programmatically in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute,
 private router: Router) {

 this.editing = activeRoute.snapshot.params["mode"] == "edit";

Table 25-9. Selected Router Methods and Properties

Name Description

navigated This boolean property returns true if there has been at least one
navigation event and false otherwise.

url This property returns the active URL.

isActive(url, exact) This method returns true if the specified URL is the URL defined
by the active route. The exact argument specified whether all the
segments in the specified URL must match the current URL for the
method to return true.

events This property returns an Observable<Event > that can be used to
monitor navigation changes. See the “Receiving Navigation Events”
section for details.

navigateByUrl(url, extras) This method navigates to the specified URL. The result of the method
is a Promise, which resolves with true when the navigation is
successful and false when it is not and which is rejected when there
is an error.

navigate(commands, extras) This method navigates using an array of segments. The extras object
can be used to specify whether the change of URL is relative to the
current route. The result of the method is a Promise, which resolves
with true when the navigation is successful and false when it is not
and which is rejected when there is an error.

Chapter 25 ■ routing and navigation: part 1

647

 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 let name = activeRoute.snapshot.params["name"];
 let category = activeRoute.snapshot.params["category"];
 let price = activeRoute.snapshot.params["price"];

 if (name != null && category != null && price != null) {
 this.product.id = id;
 this.product.name = name;
 this.product.category = category;
 this.product.price = Number.parseFloat(price);
 } else {
 Object.assign(this.product, model.getProduct(id) || new Product());
 }
 }
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 //this.product = new Product();
 //form.reset();
 this.router.navigateByUrl("/");
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The component receives the Router object as a constructor argument and uses it in the submitForm
method to navigate back to the application’s root URL. The two statements that have been commented
out in the submitForm method are no longer required because the routing system will destroy the form
component once it is no longer on display, which means that resetting the form’s state is not required.

The result is that clicking the Save or Create button in the form will cause the application to display the
product table, as shown in Figure 25-6.

Chapter 25 ■ routing and navigation: part 1

648

Receiving Navigation Events
In many applications, there will be components or directives that are not directly involved in the
application’s navigation but that still need to know when navigation occurs. The example application
contains an example in the message component, which displays notifications and errors to the user. This
component always displays the most recent message, even when that information is stale and unlikely to
be helpful to the user. To see the problem, click the Generate HTTP Error button and then click the Create
New Product button or one of the Edit buttons; the error message remains on display even though you have
navigated elsewhere in the application.

The events property defined by the Router class returns an Observable<Event>, which emits a
sequence of Event objects that describe changes from the routing system. There are five types of event
provided through the observer, as described in Table 25-10.

Figure 25-6. Navigating programmatically

Table 25-10. The Types of Event Provided by the Router.events Observer

Name Description

NavigationStart This event is sent when the navigation process starts.

RoutesRecognized This event is sent when the routing system matches the URL to a route.

NavigationEnd This event is sent when the navigation process completes successfully.

NavigationError This event is sent when the navigation process produces an error.

NavigationCancel This event is sent when the navigation process is canceled.

Chapter 25 ■ routing and navigation: part 1

649

All the event classes define an id property, which returns a number that is incremented each for each
navigation, and a url property that returns the target URL. The RoutesRecognized and NavigationEnd
events also define a urlAfterRedirects property that returns the URL that has been navigated to.

To address the issue with the messaging system, Listing 25-22 subscribes to the observer provided
by the Router.events property and clears the message displayed to the user when the NavigationEnd or
NavigationCancel event is received.

Listing 25-22. Responding to Navigation Events in the message.component.ts File

import { Component } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";
import { Observable } from "rxjs/Observable";
import { Router, NavigationEnd, NavigationCancel } from "@angular/router";
import "rxjs/add/operator/filter";

@Component({
 selector: "paMessages",
 moduleId: module.id,
 templateUrl: "message.component.html",
})
export class MessageComponent {
 lastMessage: Message;

 constructor(messageService: MessageService, router: Router) {
 messageService.messages.subscribe(m => this.lastMessage = m);
 router.events
 .filter(e => e instanceof NavigationEnd || e instanceof NavigationCancel)
 .subscribe(e => { this.lastMessage = null; });
 }
}

The filter method is used to select one type of event from the observer, and the subscribe method
updates the lastMessage property, which will clear the message displayed by the component. Listing 25-23
imports the routing functionality into the message module. (This isn’t required to make the application
work since the root module already imports the routing feature, but it is good practice to have each module
import all the features it requires.)

Listing 25-23. Importing the Routing Module in the message.module.ts File

import { NgModule, ErrorHandler } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { MessageComponent } from "./message.component";
import { MessageService } from "./message.service";
import { MessageErrorHandler } from "./errorHandler";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, RouterModule],
 declarations: [MessageComponent],

Chapter 25 ■ routing and navigation: part 1

650

 exports: [MessageComponent],
 providers: [MessageService,
 { provide: ErrorHandler, useClass: MessageErrorHandler }]
})
export class MessageModule { }

The result of these changes is that messages are shown to the user only until the next navigation event,
as shown in Figure 25-7.

Removing the Event Bindings and Supporting Code
One of the benefits that using the routing system is that it can simplify applications, replacing event
bindings and the methods they invoke with navigation changes. The final changes to complete the routing
implementation are to remove the last traces of the previous mechanism that was used to coordinate
between components. Listing 25-24 comments out the event bindings from the table component’s template,
which were used to respond when the user clicked the Create New Product or Edit button. (The event
binding for the Delete buttons is still required.)

Listing 25-24. Removing Event Bindings in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>

Figure 25-7. Responding to navigation events

Chapter 25 ■ routing and navigation: part 1

651

 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id,
 {name: item.name, category: item.category, price: item.price}]">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Listing 25-25 shows the corresponding changes in the component, which remove the methods that the
event bindings invoked and the dependency on the service that was used to signal when a product should be
edited or created.

Listing 25-25. Removing Event Handling Code in the table.component.ts File

import { Component, Inject } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
//import { MODES, SharedState, SHARED_STATE } from "./sharedState.model";
//import { Observer } from "rxjs/Observer";

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html"
})
export class TableComponent {

 constructor(private model: Model,
 /*@Inject(SHARED_STATE) private observer: Observer<SharedState>*/) { }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

Chapter 25 ■ routing and navigation: part 1

652

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 //editProduct(key: number) {
 // this.observer.next(new SharedState(MODES.EDIT, key));
 //}

 //createProduct() {
 // this.observer.next(new SharedState(MODES.CREATE));
 //}
}

The service used for coordination by the components is no longer required, and Listing 25-26 disables it
from the core module.

Listing 25-26. Removing the Shared State Service in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState, SHARED_STATE } from "./sharedState.model";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule } from "../messages/message.module";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { Model } from "../model/repository.model";
//import { MODES } from "./sharedState.model";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule, RouterModule],
 declarations: [TableComponent, FormComponent, StatePipe],
 exports: [ModelModule, TableComponent, FormComponent],
 //providers: [{
 // provide: SHARED_STATE,
 // deps: [MessageService, Model],
 // useFactory: (messageService, model) => {
 // return new Subject<SharedState>();
 // }
 //}]
})
export class CoreModule { }

Chapter 25 ■ routing and navigation: part 1

653

The result is that the coordination between the table and form components is handled entirely through
the routing system, which is now responsible for displaying the components and managing the navigation
between them.

Summary
In this chapter, I introduced the Angular routing feature and demonstrated how to navigate to a URL in an
application in order to select the content that is displayed to the user. I showed you how to create navigation
links in templates, how to perform navigation in a component or directive, and how to respond to navigation
changes programmatically. In the next chapter, I continue describing the Angular routing system.

655© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_26

CHAPTER 26

Routing and Navigation: Part 2

In the previous chapter, I introduced the Angular URL routing system and explained how it can be used
to control the components that are displayed to the user. The routing system has a lot of features, which
I continue to describe in this chapter and in Chapter 27. This emphasis on this chapter is about creating
more complex routes, including routes that will match any URL, routes that redirect the browser to other
URLs, routes that navigate within a component, and routes that select multiple components. Table 26-1
summarizes the chapter.

Preparing the Example Project
For this chapter, I will continue using the exampleApp that was created in Chapter 22 and has been modified
in each subsequent chapter. To prepare for this chapter, I have added two methods to the repository class, as
shown in Listing 26-1.

 ■ Tip The examples in this chapter rely on the Reactive Extensions package created in Chapter 22. If you
don’t want to create the project yourself, you can get the example application, including the Reactive Extensions
module, as part of the free source code download that accompanies this book from apress.com.

Table 26-1. Chapter Summary

Problem Solution Listing

Match multiple URLs with a single
route

Use routing wildcards 1–10

Redirect one URL to another Use a redirection route 11

Navigate within a component Use a relative URL 12

Receive notifications when the
activated URL changes

Use the Observable objects provided by
the ActivatedRoute class

13

Style an element when a specific
route is active

Use the routerLinkActive attribute 14–17

Use the routing system to displayed
nested components

Define child routes and use the router-
outlet element

18–22

http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_22
http://dx.doi.org/10.1007/978-1-4842-2307-9_22

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

656

Listing 26-1. Adding Methods in the repository.model.ts File

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Observable } from "rxjs/Observable";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[] = new Array<Product>();
 private locator = (p: Product, id: number) => p.id == id;

 constructor(private dataSource: RestDataSource) {
 this.dataSource.getData().subscribe(data => this.products = data);
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product {
 return this.products.find(p => this.locator(p, id));
 }

 getNextProductId(id: number): number {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 return this.products[this.products.length > index + 2
 ? index + 1 : 0].id;
 } else {
 return id || 0;
 }
 }

 getPreviousProductid(id: number): number {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 return this.products[index > 0
 ? index - 1 : this.products.length - 1].id;
 } else {
 return id || 0;
 }
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product).subscribe(p => {
 let index = this.products
 .findIndex(item => this.locator(item, p.id));

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

657

 this.products.splice(index, 1, p);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(() => {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 });
 }
}

The new methods accept an ID value, locate the corresponding product, and then return the IDs of the
next and previous objects in the array that the repository uses to collect the data model objects. I will use this
feature later in the chapter to allow the user to page through the set of objects in the data model.

To simplify the example, Listing 26-2 removes the statements in the form component that receive the
details of the product to edit using optional route parameters.

Listing 26-2. Removing Optional Route Parameters in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute,
 private router: Router) {

 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 Object.assign(this.product, model.getProduct(id) || new Product());
 }
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

658

 this.model.saveProduct(this.product);
 this.router.navigateByUrl("/");
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

Listing 26-3 removes the optional parameters from the table component’s template so they are not
included in the navigation URLs for the Edit buttons.

Listing 26-3. Removing Optional Route Parameters in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Adding Components to the Project
I need to add some components to the application to demonstrate some of the features covered in this
chapter. These components are simple because I am focusing on the routing system, rather than adding
useful features to the application. I created a file called productCount.component.ts to the exampleApp/
app/core folder and used it to define the component shown in Listing 26-4.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

659

 ■ Tip You can omit the selector attribute from the @Component decorator if a component is only going to be
displayed through the routing system. I tend to add it anyway so that I can apply the component using an hTML
element as well.

Listing 26-4. The productCount.component.ts File in the exampleApp/app/core Folder

import { Component, KeyValueDiffer,
 KeyValueDiffers, ChangeDetectorRef } from "@angular/core";
import { Model } from "../model/repository.model";

@Component({
 selector: "paProductCount",
 template: `<div class="bg-info p-a-1">There are {{count}} products</div>`
})
export class ProductCountComponent {
 private differ: KeyValueDiffer;
 count: number = 0;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef) {}

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create(this.changeDetector);
 }

 ngDoCheck() {
 if (this.differ.diff(this.model.getProducts()) != null) {
 this.updateCount();
 }
 }

 private updateCount() {
 this.count = this.model.getProducts().length;
 }
}

This component uses an inline template to display the number of products in the data model, which
is updated when the data model changes. Next, I added a file called categoryCount.component.ts in the
exampleApp/app/core folder and defined the component shown in Listing 26-5.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

660

Listing 26-5. The categoryCount.component.ts File in the exampleApp/app/core Folder

import { Component, KeyValueDiffer,
 KeyValueDiffers, ChangeDetectorRef } from "@angular/core";
import { Model } from "../model/repository.model";

@Component({
 selector: "paCategoryCount",
 template: `<div class="bg-primary p-a-1">There are {{count}} categories</div>`
})
export class CategoryCountComponent {
 private differ: KeyValueDiffer;
 count: number = 0;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef) { }

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create(this.changeDetector);
 }

 ngDoCheck() {
 if (this.differ.diff(this.model.getProducts()) != null) {
 this.count = this.model.getProducts()
 .map(p => p.category)
 .filter((category, index, array) => array.indexOf(category) == index)
 .length;
 }
 }
}

This component uses a differ to track changes in the data model and count the number of unique
categories, which is displayed using a simple inline template. For the final component, I added a file called
notFound.component.ts in the exampleApp/app/core folder and used it to define the component shown in
Listing 26-6.

Listing 26-6. The notFound.component.ts File in the exampleApp/app/core Folder

import { Component } from "@angular/core";

@Component({
 selector: "paNotFound",
 template: `<h3 class="bg-danger p-a-1">Sorry, something went wrong</h3>
 <button class="btn btn-primary" routerLink="/">Start Over</button>`
})
export class NotFoundComponent {}

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

661

This component displays a static message that will be shown when something goes wrong with the
routing system. Listing 26-7 adds the new components to the core module.

Listing 26-7. Declaring Components in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule } from "../messages/message.module";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { Model } from "../model/repository.model";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";
import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule, RouterModule],
 declarations: [TableComponent, FormComponent, StatePipe,
 ProductCountComponent, CategoryCountComponent, NotFoundComponent],
 exports: [ModelModule, TableComponent, FormComponent]
})
export class CoreModule { }

Save the changes shown and run the following command in the exampleApp folder to start the
TypeScript compiler, the development HTTP server, and the RESTful web service:

npm start

A new browser tab or window will open and you will see the content shown in Figure 26-1.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

662

Using Wildcards and Redirections
The routing configuration in an application can quickly become complex and contain redundancies and
oddities to cater for the structure of an application. Angular provides two useful tools that can help simplify
routes and also deal with problems when they arise, as described in the following sections.

Using Wildcards in Routes
The Angular routing system supports a special path, denoted by two asterisks (the ** characters), that allows
routes to match any URL. The basic use for the wildcard path is to deal with navigation that would otherwise
create a routing error. Listing 26-8 adds a button to the table component’s template that navigates to a route
that hasn’t been defined by the application’s routing configuration.

Listing 26-8. Adding a Button That Generates an Error in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>

Figure 26-1. Running the example application

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

663

 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>
<button class="btn btn-primary" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>
<button class="btn btn-danger" routerLink="/does/not/exist">
 Generate Routing Error
</button>

Clicking the button will ask the application to navigate to the URL /does/not/exist, for which there
is no route configured. When a URL doesn’t match a URL, an error is thrown, which is then picked up and
processed by the error handling class, which leads to a warning being displayed by the message component,
as shown in Figure 26-2.

Figure 26-2. The default navigation error

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

664

This isn’t a useful way to deal with an unknown route because the user won’t know what routes are and
may not realize that the application was trying to navigate to the problem URL.

A better approach is to use the wildcard route to handle navigation for URLs that have not been defined
and select a component that will present a more useful message to the user, as illustrated in Listing 26-9.

Listing 26-9. Adding a Wildcard Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The new route in the listing uses the wildcard to select the NotFoundComponent, which displays the
message shown in Figure 26-3 when the Generate Routing Error button is clicked.

Clicking the Start Over button navigates to the / URL, which will select the table component for display.

EMPTY PATHS VERSUS WILDCARDS

It is easy to get confused between the way that the last two routes in Listing 26-9 work.

...
{ path: "", component: TableComponent },
{ path: "**", component: NotFoundComponent }
...

Figure 26-3. Using a wildcard route

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

665

The first route uses the empty path, which matches a single empty segment. This will match a
route only if the segment is empty. For this route, this means that it will only match the http://
localhost:3000/ uRL, but there will be other examples later in the chapter that use the empty path to
match segments from more complex uRLs.

The second route uses the wildcard path, which matches any uRL. The order of routes is important
because angular evaluates them in the order they are defined. The wildcard path must always be used
in the last route that is defined because any subsequent routes will never be reached.

It can be easy to get these paths confused, and it is important to remember that the empty path is strict
in what it will match (a single, empty segment), while the wildcard path is liberal and will match any
number of segments, regardless of what they contain.

Using Redirections in Routes
Routes do not have to select components; they can also be used as aliases that redirect the browser to a
different URL. Redirections are defined using the redirectTo property in a route, as shown in Listing 26-10.

Listing 26-10. Using Route Redirection in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The redirectTo property is used to specify the URL that the browser will be redirected to. When
defining redirections, the pathMatch property must also be specified, using one of the values described in
Table 26-2.

Table 26-2. The pathMatch Values

Name Description

prefix This value configures the route so that it matches URLs that start with the specified path,
ignoring any subsequent segments.

full This value configures the route so that it matches only the URL specified by the path
property.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

666

The first route added in Listing 26-10 specifies a pathMatch value of prefix and a path of does, which
means it will match any URL whose first segment is does, such as the /does/not/exist URL that is navigated
to by the Generate Routing Error button. When the browser navigates to a URL that has this prefix, the
routing system will redirect it to the /form/create URL, as shown in Figure 26-4.

The other routes in Listing 26-10 redirect the empty path to the /table URL, which displays the table
component. This is a common technique that makes the URL schema more obvious because it matches the
default URL (http://localhost:3000/) and redirects it to something more meaningful and memorable to
the user (http://localhost:3000/table). In this case, the pathMatch property value is full, although this
has no effect since it has been applied to the empty path.

Navigating Within a Component
The navigation examples in the previous chapter all navigated between different components so that
clicking a button in the table component navigates to the form component and vice versa.

This isn’t the only kind of navigation that’s possible: you can also navigate within a component. To
demonstrate, Listing 26-11 adds buttons to the form component that allow the user to edit the previous or
next data objects.

Figure 26-4. Performing a route redirection

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

667

Listing 26-11. Adding Buttons to the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
</div>
<div *ngIf="editing" class="p-t-1">
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit', model.getPreviousProductid(product.id)]">
 Previous
 </button>
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit', model.getNextProductId(product.id)]">
 Next
 </button>
</div>
<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary" routerLink="/">Cancel</button>
</form>

These buttons have bindings for the routerLink directive with expressions that target the previous and
next objects in the data model. This means that if you click the Edit button in the table for the Lifejacket
product, for example, the Next button will navigate to the URL that edits the Soccer Ball and the Previous
button will navigate to the URL for the Kayak.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

668

Responding to Ongoing Routing Changes
Clicking the new buttons has no effect at the moment. Angular tries to be efficient during navigation, and
it knows that the URLs that the Previous and Next buttons navigate to are handled by the same component
that is currently displayed to the user. Rather than create a new instance of the component, it simply tells the
component that the selected route has changed.

This is a problem because the form component isn’t set up to receive change notifications. Its
constructor receives the ActivatedRoute object that Angular uses to provide details of the current route, but
only its snapshot property is used. The component’s constructor has long been executed by the time that
Angular updates the values in the ActivatedRoute, which means that it misses the notification. This worked
when the configuration of the application meant that a new form component would be created each time
the user wanted to create or edit a product, but it is no longer sufficient.

Fortunately, the ActivatedRoute class defines a set of properties that allow interested parties to receive
notifications through Reactive Extensions Observable objects. These properties correspond to the ones
provided by the ActivatedRouteSnapshot object returned by the snapshot property (described in Chapter 25)
but send new events when there are any subsequent changes, as described in Table 26-3.

These properties can be used by components that need to handle navigation changes that don’t result
in a different component being displayed to the user, as shown in Listing 26-12.

 ■ Tip If you need to combine different data elements from the route, such as using both segments and
parameters, then subscribe to the Observer for one data element and use the snapshot property to get the rest
of the data you require.

Listing 26-12. Observing Route Changes in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",

Table 26-3. The Observable Properties of the ActivatedRoute Class

Name Description

url This property returns an Observable<UrlSegment[]>, which provides the set of URL
segments each time the route changes.

params This property returns an Observable<Params>, which provides the URL parameters
each time the route changes.

queryParams This property returns an Observable<Params>, which provides the URL query
parameters each time the route changes.

fragment This property returns an Observable<string>, which provides the URL fragment each
time the route changes.

http://dx.doi.org/10.1007/978-1-4842-2307-9_25

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

669

 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute,
 private router: Router) {

 activeRoute.params.subscribe(params => {
 this.editing = params["mode"] == "edit";
 let id = params["id"];
 if (id != null) {
 Object.assign(this.product, model.getProduct(id) || new Product());
 }
 })
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.router.navigateByUrl("/");
 }
 }

 resetForm() {
 this.product = new Product();
 }
}

The component subscribes to the Observer<Params > that sends a new Params object to subscribers
each time the active route changes. The Observer objects returned by the ActivatedRoute properties send
details of the most recent route change when the subscribe method is called, ensuring that the component’s
constructor doesn’t miss the initial navigation that led to it being called.

The result is that the component can react to route changes that don’t cause Angular to create a new
component, meaning that clicking the Next or Previous button changes the product that has been selected
for editing, as shown in Figure 26-5.

 ■ Tip The effect of navigation is obvious when the activated route changes the component that is displayed
to the user. It may not be so obvious when just the data changes. To help emphasize changes, angular can
apply animations that can draw attention to the effects of navigation. See Chapter 28 for details.

http://dx.doi.org/10.1007/978-1-4842-2307-9_28

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

670

Styling Links for Active Routes
A common use for the routing system is to display multiple navigation elements alongside the content
that they select. To demonstrate, Listing 26-13 adds a new route to the application that will allow the table
component to be targeted with a URL that contains a category filter.

Listing 26-13. Defining a Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table/:category", component: TableComponent },
 { path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

Listing 26-14 updates the TableComponent class so that it uses the routing system to get details of the
active route and assigns the value of the category route parameter to a category property that can be
accessed in the template. The category property is used in the getProducts method to filter the objects in
the data model.

Figure 26-5. Responding to route changes

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

671

Listing 26-14. Adding Category Filter Support in the table.component.ts File

import { Component, Inject } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html"
})
export class TableComponent {
 category: string = null;

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): string[] {
 return this.model.getProducts()
 .map(p => p.category)
 .filter((category, index, array) => array.indexOf(category) == index);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }
}

There is also a new categories property that will be used in the template to generate the set of
categories for filtering. The final step is to add the HTML elements to the template that will allow the user to
apply a filter, as shown in Listing 26-15.

Listing 26-15. Adding Filter Elements in the table.component.html File

<div class="col-xs-3">
 <button class="btn btn-secondary btn-block"
 routerLink="/" routerLinkActive="active">
 All
 </button>

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

672

 <button *ngFor="let category of categories" class="btn btn-secondary btn-block"
 [routerLink]="['/table', category]" routerLinkActive="active">
 {{category}}
 </button>
</div>
<div class="col-xs-9">
 <table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </table>
</div>
<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
</div>

The important part of this example is the use of the routerLinkActive attribute, which is used to
specify a CSS class that the element will be assigned to when the URL specified by the routerLink attribute
matches the active route.

The listing specifies a CSS class called active, which is the Bootstrap CSS framework’s class for setting
the active state for buttons. When combined with the functionality added to the component in Listing 26-14,
the result is a set of buttons that allow the user to view products in a single category, as shown in Figure 26-6.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

673

If you click the Soccer button, the application will navigate to the /table/Soccer URL, and the table
will display only those products in the Soccer category. The Soccer button will also be highlighted since the
routerLinkActive attribute means that Angular will add the button element to the Bootstrap active class.

Fixing the All Button
The navigation buttons reveal a common problem, which is that the All button is always added to the active
class, even when the user has filtered the table to show a specific category.

This happens because the routerLinkActive attribute performs partial matches on the active URL by
default. In the case of the example, the / URL will always cause the All button to be activated because it is at
the start of all URLs. This problem can be fixed by configuring the routerLinkActive directive, as shown in
Listing 26-16.

Listing 26-16. Configuring the Directive in the table.component.html File

...
<div class="col-xs-3">
 <button class="btn btn-secondary btn-block"
 routerLink="/table" routerLinkActive="active"
 [routerLinkActiveOptions]="{exact: true}">
 All
 </button>
 <button *ngFor="let category of categories" class="btn btn-secondary btn-block"
 [routerLink]="['/table', category]" routerLinkActive="active">
 {{category}}
 </button>
</div>
...

Figure 26-6. Filtering products

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

674

The configuration is performed using a binding on the routerLinkActiveOptions attribute, which
accepts a literal object. The exact property is the only available configuration setting and is used to control
matching the active route URL. Setting this property true will add the element to the class specified by the
routerLinkActive attribute only when there is an exact match with the active route’s URL. With this change,
the All button will be highlighted only when all of the products are shown, as illustrated by Figure 26-7.

Creating Child Routes
Child routes allow components to respond to part of the URL by embedding router-outlet elements in
their templates, creating more complex arrangements of content. I am going to use the simple components I
created at the start of the chapter to demonstrate how child routes work. These components will be displayed
above the product table, and the component that is shown will be specified in the URLs shown in Table 26-4.

Listing 26-17 shows the changes to the application’s routing configuration to implement the routing
strategy in the table.

Figure 26-7. Fixing the All button problem

Table 26-4. The URLs and the Components They Will Select

URL Component

/table/products The ProductCountComponent will be displayed.

/table/categories The CategoryCountComponent will be displayed.

/table Neither component will be displayed.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

675

Listing 26-17. Configuring Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 {
 path: "table",
 component: TableComponent,
 children: [
 { path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "" }
]
 },
 { path: "table/:category", component: TableComponent },
 //{ path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

Child routes are defined using the children property, which is set to an array of routes defined in the
same way as the top-level routes.

When Angular uses the entire URL to match a route that has children, there will be a match only if
the URL to which the browser navigates contains segments that match both the top-level segment and the
segments specified by one of the child routes.

The first two child routes use the path and component properties to define routes that will match the
segment of the URL and select one of the new components. The third child route does something different.
This is a componentless route, which means it uses the path property to match a URL segment, but it doesn’t
select a component to be displayed. This is a useful way to allow routes to match more widely, since without
the componentless route, I would have to create a separate route to match the /table URL.

 ■ Tip notice that I have added the new route before the one whose path is table/:category. angular
tries to match routes in the order in which they are defined. The table/:category path would match both
the /table/products and /table/categories uRLs and lead the table component to filter the products for
nonexistent categories. By placing the more specific route first, the /table/products and /table/categories
uRLs will be matched before the table/:category path is considered.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

676

Creating the Child Route Outlet
The components selected by child routes are displayed in a router-outlet element defined in the template
of the component selected by the parent route. In the case of the example, this means that the child routes
will target an element in the table component’s template, as shown in Listing 26-18, which also adds
elements that will navigate to the new routes.

Listing 26-18. Adding an Outlet and Navigation in the table.component.html File

<div class="col-xs-3">
 <button class="btn btn-secondary btn-block"
 routerLink="/" routerLinkActive="active"
 [routerLinkActiveOptions]="{exact: true}">
 All
 </button>
 <button *ngFor="let category of categories" class="btn btn-secondary btn-block"
 [routerLink]="['/table', category]" routerLinkActive="active">
 {{category}}
 </button>
</div>
<div class="col-xs-9">
 <div class="m-b-1">
 <button class="btn btn-info" routerLink="/table/products">
 Count Products
 </button>
 <button class="btn btn-primary" routerLink="/table/categories">
 Count Categories
 </button>
 <button class="btn btn-secondary" routerLink="/table">
 Count Neither
 </button>
 <div class="m-t-1">
 <router-outlet></router-outlet>
 </div>
 </div>
 <table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

677

 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </table>
</div>
<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
</div>

The button elements have routerLink attributes that specify the URLs listed in Table 26-4, and there is
also a router-outlet element, which will be used to display the selected component, as shown in Figure 26-8,
or no component if the browser navigates to the /table URL.

Figure 26-8. Using child routes

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

678

Accessing Parameters from Child Routes
Child routes can use all the features available to the top-level routes, including defining route parameters
and even having their own child routes. Route parameters are worth special attention in child routes
because of the way that Angular isolates children from their parents. For this section, I am going to add
support for the URLs described in Table 26-5.

Listing 26-19 defines the routes that support the URLs shown in the table.

Listing 26-19. Adding Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";

const childRoutes: Routes = [
 { path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }
];

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The type of the children property is a Routes object, which makes it easy to minimize duplication in
the route configuration when you need to apply the same set of child routes in different parts of the URL
schema. In the listing, I have defined the child routes in a Routes object called childRoutes and used it as
the value for the children property in two different top-level routes.

Table 26-5. The New URLs Supported by the Example Application

Name Description

/table/:category/products This route will filter the contents of the table and select the
ProductCountComponent.

/table/:category/categories This route will filter the contents of the table and select the
CategoryCountComponent.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

679

 ■ Tip notice that I changed the empty path child route in Listing 26-19 so that the ProductCountComponent
is selected. as I write this, there is a bug in angular that causes an error if navigation doesn’t select
a component for an outlet once it has been used to display a component. For simplicity I selected the
ProductCountComponent, but if you really don’t want to display any content to the user, then create a
component with an empty template and select that instead.

To make it possible to target these new routes, Listing 26-20 changes the targets of the buttons that
appear above the table so they navigate relative to the current URL. I have removed the Count Neither
button, since the ProductCountComponent will be shown when the empty path child route matches the URL.

Listing 26-20. Using Relative URLs in the table.component.html File

...
<div class="m-b-1">
 <button class="btn btn-info" routerLink="products">Count Products</button>
 <button class="btn btn-primary" routerLink="categories">Count Categories</button>
 <div class="m-t-1">
 <router-outlet></router-outlet>
 </div>
</div>
...

When Angular matches routes, the information it provides to the components that are selected through
the ActivatedRoute object is segregated, so that each component only receives details of the part of the
route that selected it.

In the case of the routes added in Listing 26-20, this means the ProductCountComponent and
CategoryCountComponent receive an ActivatedRoute object that only describes the child route that selected
them, with the single segment of /products or /categories. Equally, the TableComponent component
receives an ActivatedRoute object that doesn’t contain the segment that was used to match the child route.

Fortunately, the ActivatedRoute class provides some properties that provide access to the rest of the
route, allowing parents and children to access the rest of the routing information, as described in Table 26-6.

Listing 26-21 shows how the ProductCountComponent component can access the wider set of routes
used to match the current URL to get a value for the category route parameter and adapt its output when the
contents of the table are filtered for a single category.

Table 26-6. The ActivatedRoute Properties for Child/Parent Route Information

Name Description

pathFromRoot This property returns an array of ActivatedRoute objects representing all the routes
used to match the current URL.

parent This property returns an ActivatedRoute representing the parent of the route that
selected the component.

firstChild This property returns an ActivatedRoute representing the first child route used to
match the current URL.

children This property returns an array of ActivatedRoute objects representing all the children
routes used to match the current URL.

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

680

Listing 26-21. Accessing Ancestor Routes in the productCount.component.ts File

import {
 Component, KeyValueDiffer,
 KeyValueDiffers, ChangeDetectorRef
} from "@angular/core";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paProductCount",
 template: `<div class="bg-info p-a-1">There are {{count}} products</div>`
})
export class ProductCountComponent {
 private differ: KeyValueDiffer;
 count: number = 0;
 private category: string;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef,
 activeRoute: ActivatedRoute) {

 activeRoute.pathFromRoot.forEach(route => route.params.subscribe(params => {
 if (params["category"] != null) {
 this.category = params["category"];
 this.updateCount();
 }
 }))
 }

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create(this.changeDetector);
 }

 ngDoCheck() {
 if (this.differ.diff(this.model.getProducts()) != null) {
 this.updateCount();
 }
 }

 private updateCount() {
 this.count = this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category)
 .length;
 }
}

ChapTER 26 ■ RouTIng and navIgaTIon: paRT 2

681

The pathFromRoot property is especially useful because it allows a component to inspect all the
routes that have been used to match the URL. Angular minimizes the routing updates required to handle
navigation, which means that a component that has been selected by a child route won’t receive a change
notification through its ActivatedRoute object if only its parent has changed. It is for this reason that I have
subscribed to updates from all the ActivatedRoute objects returned by the pathFromRoot property, ensuring
that the component will always detect changes in the value of the category route parameter.

To see the result, save the changes, click the Watersports button to filter the contents of the table, and
then click the Count Products button, which selects the ProductCountComponent. This number of products
reported by the component will correspond to the number of rows in the table, as shown in Figure 26-9.

Summary
In this chapter, I continued to describe the features provided by the Angular URL routing system, going
beyond the basic features described in the previous chapter. I explained how to create wildcard and
redirection routes, how to create routes that navigate relative to the current URL, and how to create child
routes to display nested components. In the next chapter, I finish describing the URL routing system,
focusing on the most advanced features.

Figure 26-9. Accessing the other routes used to match a URL

683© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_27

CHAPTER 27

Routing and Navigation: Part 3

In this chapter, I continue to describe the Angular URL routing system, focusing on the most advanced
features. I explain how to control route activation, how to load feature modules dynamically, and how to use
multiple outlet elements in a template. Table 27-1 summarizes the chapter.

Preparing the Example Project
For this chapter, I will continue using the exampleApp that was created in Chapter 22 and has been modified
in each subsequent chapter. To prepare for this chapter, I have simplified the routing configuration, as
shown in Listing 27-1.

 ■ Tip The examples in this chapter rely on the Reactive Extensions package created in Chapter 22. If you
don’t want to create the project yourself, you can get the example application, including the Reactive Extensions
module, as part of the free source code download that accompanies this book from apress.com.

Table 27-1. Chapter Summary

Problem Solution Listing

Delay navigation until a task is
complete

Use a route resolver 1–7

Prevent route activation Use an activation guard 8–14

Prevent the user form navigating
away from the current content

Use a deactivation guard 15–19

Defer loading a feature module
until it is required

Create a dynamically loaded module 20–25

Control when a dynamically loaded
module is used

Use a loading guard 26–28

Use routing to manage multiple
router outlets

Use named outlets in the same
template

29–34

http://dx.doi.org/10.1007/978-1-4842-2307-9_22
http://dx.doi.org/10.1007/978-1-4842-2307-9_22

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

684

Listing 27-1. Simplifying the Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";

const childRoutes: Routes = [
 { path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }
];

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

Save the changes and run the following command in the exampleApp folder to start the TypeScript
compiler, the development HTTP server, and the RESTful web service:

npm start

A new browser tab or window will open, and you will see the content shown in Figure 27-1.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

685

Guarding Routes
At the moment, the user can navigate to anywhere in the application at any time. This isn’t always a good
idea, either because some parts of the application may not always be ready or because some parts of the
application are restricted until specific actions are performed. To control the use of navigation, Angular
supports guards, which are specified as part of the route configuration using the properties defined by the
Routes class, described in Table 27-2.

Figure 27-1. Running the example application

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

686

Delaying Navigation with a Resolver
A common reason for guarding routes is to ensure that the application has received the data that it
requires before a route is activated. The example application loads data from the RESTful web service
asynchronously, which means there can be a delay between the moment at which the browser is asked to
send the HTTP request and the moment at which the response is received and the data is processed. You
may not have noticed this delay as you have followed the examples because the browser and the web service
are running on the same machine. In a deployed application, there is a much greater prospect of there being
a delay, caused by network congestion, high server load, and a dozen other factors.

To simulate network congestion, Listing 27-2 modifies the RESTful data source class to introduce a
delay after the response is received from the web service.

Listing 27-2. Adding a Delay in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod, Headers, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";
import "rxjs/add/operator/catch";
import "rxjs/add/observable/throw";
import "rxjs/add/operator/delay";

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 // ...other methods omitted for brevity...

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {

Table 27-2. The Routes Properties for Guards

Name Description

resolve This property is used to specify guards that will delay route activation until
some operation has been completed, such as loading data from a server.

canActivate This property is used to specify the guards that will be used to determine
whether a route can be activated.

canActivateChild This property is used to specify the guards that will be used to determine
whether a child route can be activated.

canDeactivate This property is used to specify the guards that will be used to determine
whether a route can be deactivated.

canLoad This property is used to guard routes that load feature modules dynamically, as
described in the “Loading Features Modules Dynamically” section.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

687

 let headers = new Headers();
 headers.set("Access-Key", "<secret>");
 headers.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body,
 headers: headers
 })).delay(5000)
 .map(response => response.json())
 .catch((error: Response) => Observable.throw(
 `Network Error: ${error.statusText} (${error.status})`));

 }
}

The delay is added using the Reactive Extensions delay method and is applied to create a five-second
delay, which is long enough to create a noticeable pause without being too painful to wait for every time the
application is reloaded. To change the delay, increase or decrease the argument for the delay method, which
is expressed in milliseconds.

The effect of the delay is that the user is presented with an incomplete and confusing layout while the
application is waiting for the data to load, as shown in Figure 27-2.

 ■ Note The delay is applied to all hTTp requests, which means that if you create, edit, or delete a product,
the change you have made will not be reflected in the product table for five seconds.

Figure 27-2. Waiting for data

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

688

Creating a Resolver Service
A resolver is used to ensure that a task is performed before a route can be activated. To create a resolver, I
added a file called model.resolver.ts in the exampleApp/app/model folder and defined the class shown in
Listing 27-3.

Listing 27-3. The Contents of the model.resolver.ts File in the exampleApp/app/model Folder

import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot } from "@angular/router";
import { Observable } from "rxjs/Observable";
import { Model } from "./repository.model"
import { RestDataSource } from "./rest.datasource";
import { Product } from "./product.model";

@Injectable()
export class ModelResolver {

 constructor(
 private model: Model,
 private dataSource: RestDataSource) { }

 resolve(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<Product[]> {

 return this.model.getProducts().length == 0
 ? this.dataSource.getData() : null;
 }
}

Resolvers are classes that define a resolve method that accepts two arguments. The first argument is an
ActivatedRouteSnapshot object, which describes the route that is being navigated to using the properties
described in Chapter 25. The second argument is a RouterStateSnapshot object, which describes the
current route through a single property called url. These arguments can be used to adapt the resolver to the
navigation that is about to be performed, although neither is required by the resolver in the listing, which
uses the same behavior regardless of the routes that are being navigated to and from.

 ■ Note all of the guards described in this chapter can implement interfaces defined in the @angular/router
module. For example, resolvers can implement an interface called Resolve. These interfaces are optional, and I
have not used them in this chapter.

The resolve method can return three different types of result, as described in Table 27-3.

http://dx.doi.org/10.1007/978-1-4842-2307-9_25

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

689

The Observable and Promise results are useful when dealing with asynchronous operations, such as
requesting data using an HTTP request. Angular waits until the asynchronous operation is complete before
activating the new route. Any other result is interpreted as the result from a synchronous operation, and
Angular will activate the new route immediately.

The resolver in Listing 27-3 uses its constructor to receive Model and RestDataSource objects via
dependency injection. When the resolve method is called, it checks the number of objects in the data
model to determine whether the HTTP request to the RESTful web service has completed. If there are
no objects in the data model, the resolve method returns the Observable from the RestDataSource.
getData method, which will emit an event when the HTTP request completes. Angular will subscribe to the
Observable and delay activating the new route until it emits an event. The resolve method returns null if
there are objects in the model and, since this is neither an Observable nor a Promise, Angular will activate
the new route immediately.

 ■ Tip Combining asynchronous and synchronous results means that the resolver will delay navigation only
until the hTTp request completed and the data model has been populated. This is important because the resolve
method will be called every time that the application tries to navigate to a route to which the resolver has been
applied.

Registering the Resolver Service
The next step is to register the resolver as a service in its feature module, as shown in Listing 27-4.

Listing 27-4. Registering the Resolver as a Service in the model.module.ts File

import { NgModule } from "@angular/core";
import { HttpModule, JsonpModule } from "@angular/http"
import { Model } from "./repository.model";
import { RestDataSource, REST_URL } from "./rest.datasource";
import { ModelResolver } from "./model.resolver";

@NgModule({
 imports: [HttpModule, JsonpModule],
 providers: [Model, RestDataSource, ModelResolver,
 { provide: REST_URL, useValue: "http://localhost:3500/products" }]

})
export class ModelModule { }

Table 27-3. The Result Types Allowed by the resolve Method

Result Type Description

Observable<any> The browser will activate the new route when the Observer emits an event.

Promise<any> The browser will activate the new route when the Promise resolves.

Any other result The browser will activate the new route as soon as the method produces a result.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

690

Applying the Resolver
The resolver is applied to routes using the resolve property, as shown in Listing 27-5.

Listing 27-5. Applying a Resolver in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";

const childRoutes: Routes = [
 { path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The resolve property accepts a map object whose property values are the resolver classes that will be
applied to the route. (The property names do not matter.) I want to apply the resolver to all the views that
display the product table, and so to avoid duplication, I created a componentless route with the resolve
property and used it as the parent for the existing child routes.

Displaying Placeholder Content
Angular uses the resolver before activating any of the routes to which it has been applied, which prevents the
user from seeing the product table until the model has been populated with the data from the RESTful web
service. Sadly, that just means the user sees an empty window while the browser is waiting for the server to
respond. To address this, Listing 27-6 enhances the resolver to use the message service to tell the user what
is happening when the data is being loaded.

Listing 27-6. Displaying a Message in the model.resolver.ts File

import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot } from "@angular/router";
import { Observable } from "rxjs/Observable";

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

691

import { Model } from "./repository.model"
import { RestDataSource } from "./rest.datasource";
import { Product } from "./product.model";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";

@Injectable()
export class ModelResolver {

 constructor(
 private model: Model,
 private dataSource: RestDataSource,
 private messages: MessageService) { }

 resolve(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<Product[]> {

 if (this.model.getProducts().length == 0) {
 this.messages.reportMessage(new Message("Loading data..."));
 return this.dataSource.getData();
 }
 }
}

The component that displays the messages from the service clears its contents when it receives the
NavigationEnd event, which means that the placeholder will be removed when the data has been loaded, as
shown in Figure 27-3.

Using a Resolver to Prevent URL Entry Problems
As I explained in Chapter 25, the development HTTP server will return the contents of the index.html file
when it receives a request for a URL for which there is no corresponding file. Combined with the automatic
browser reload functionality, it is easy to make a change in the project and have the browser reload a URL
that causes the application to jump to a specific URL without going through the navigation steps that the
application expects and that sets up the required state data.

Figure 27-3. Using a resolver to ensure data is loaded

http://dx.doi.org/10.1007/978-1-4842-2307-9_25

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

692

To see an example of the problem, click one of the Edit buttons in the product table and then reload the
browser page. The browser will request a URL like http://localhost:3000/form/edit/1, but this doesn’t
have the expected effect because the component for the activated route attempts to retrieve an object from
the model before the HTTP response from the RESTful server has been received. As a consequence, the form
is just empty, as shown in Figure 27-4.

To avoid this problem, the resolver can be applied more broadly so that it protects other routes, as
shown in Listing 27-7.

Listing 27-7. Applying the Resolver to Other Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";

Figure 27-4. The effect of reloading an arbitrary URL

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

693

const childRoutes: Routes = [
 {
 path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

Applying the ModelResolver class to the routes that target FormComponent prevents the problem shown
in Figure 27-4. There are other ways to solve this problem, including the approach that I used in Chapter 8
for the SportsStore application, which uses the route guard feature described in the “Preventing Route
Activation” section of this chapter.

Preventing Navigation with Guards
Resolvers are used to delay navigation while the application performs some prerequisite work, such as
loading data. The other guards that Angular provides are used to control whether navigation can occur at
all, which can be useful when you want to alert the user to prevent potentially unwanted operations (such as
abandoning data edits) or limit access to parts of the application unless the application is in a specific state
(such as when a user has been authenticated).

Many uses for route guards introduce an additional interaction with the user, either to gain explicit
approval to perform an operation or to obtain additional data, such as authentication credentials. For this
chapter, I am going to handle this kind of interaction by extending the message service so that messages can
require user input. In Listing 27-8, I have added an optional responses constructor argument/property to
the Message model class, which will allow messages to contain prompts to the user and callbacks that will
be invoked when they are selected. The responses property is an array of TypeScript tuples, where the first
value is the name of the response, which will be presented to the user, and the second value is the callback
function, which will be passed the name as its argument.

http://dx.doi.org/10.1007/978-1-4842-2307-9_8

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

694

Listing 27-8. Adding Responses in the message.model.ts File

export class Message {

 constructor(private text: string,
 private error: boolean = false,
 private responses?: [[string, (string) => void]]) { }
}

The only other change required to implement this feature is to present the response options to the
user. Listing 27-9 adds button elements below the message text for each response. Clicking the buttons will
invoke the callback function.

Listing 27-9. Presenting Responses in the message.component.html File

<div *ngIf="lastMessage"
 class="bg-info p-a-1 text-xs-center"
 [class.bg-danger]="lastMessage.error">
 <h4>{{lastMessage.text}}</h4>
</div>
<div class="text-xs-center m-b-1">
 <button *ngFor="let resp of lastMessage?.responses; let i = index"
 (click)="resp[1](resp[0])"
 class="btn btn-primary m-a-1" [class.btn-secondary]="i > 0">
 {{resp[0]}}
 </button>
</div>

Preventing Route Activation
Guards can be used to prevent a route from being activated, helping to protect the application from entering
an unwanted state or warning the user about the impact of performing an operation. To demonstrate, I am
going to guard the /form/create URL to prevent the user from starting the process of creating a new product
unless the user agrees to the application’s terms and conditions.

Guards for route activation are classes that define a method called canActivate, which receives the
same ActivatedRouteSnapshot and RouterStateSnapshot arguments as resolvers. The canActivate
method can be implemented to return three different result types, as described in Table 27-4.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

695

To get started, I added a file called terms.guard.ts to the exampleApp/app folder and defined the class
shown in Listing 27-10.

Listing 27-10. The Contents of the terms.guard.ts File in the exampleApp/app Folder

import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

@Injectable()
export class TermsGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.params["mode"] == "create") {

 return new Promise<boolean>((resolve, reject) => {
 let responses: [[string, (string) => void]] = [

Table 27-4. The Result Types Allowed by the canActivate Method

Result Type Description

boolean This type of result is useful when performing synchronous checks to see
whether the route can be activated. A true result will activate the route, and a
result of false will not, effectively ignoring the navigation request.

Observable<boolean> This type of result is useful when performing asynchronous checks to see
whether the route can be activated. Angular will wait until the Observable emits
a value, which will be used to determine whether the route is activated. When
using this kind of result, it is important to terminate the Observable by calling
the complete method; otherwise, Angular will just keep waiting.

Promise<boolean> This type of result is useful when performing asynchronous checks to see
whether the route can be activated. Angular will wait until the Promise is
resolved and activate the route if it yields true. If the Promise yields false, then
the route will not be activated, effectively ignoring the navigation request.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

696

 ["Yes", () => { resolve(true) }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 resolve(false);
 }]
];
 this.messages.reportMessage(
 new Message("Do you accept the terms & conditions?",
 false, responses));
 });
 } else {
 return true;
 }
 }
}

The canActivate method can return two different types of result. The first type is a boolean, which
allows the guard to respond immediately for routes that it doesn’t need to protect, which in this case is any
that lacks a parameter called mode whose value is create. If the URL matched by the route doesn’t contain
this parameter, the canActivate method returns true, which tells Angular to activate the route. This is
important because the edit and create features both rely on the same routes, and the guard should not
interfere with edit operations.

The other type of result is a Promise<boolean>, which I have used instead of Observable<true > for
variety. The Promise uses the modifications to the message service to solicit a response from the user,
confirming they accept the (unspecified) terms and conditions. There are two possible responses from the
user. If the user clicks the Yes button, then the Promise will resolve and yield true, which tells Angular to
activate the route, displaying the form that is used to create a new product. The Promise will resolve and
yield false if the user clicks the No button, which tells Angular to ignore the navigation request.

UNDERSTANDING THE ROUTE ACTIVATION WORKAROUND

There is one statement in Listing 27-10 that requires additional attention. It is this statement, which is
highlighted in the block of code invoked when the user selects the no response:

...
["No", () => {
 this.router.navigateByUrl(this.router.url);
 resolve(false);
}]
...

When the activation of a route is cancelled, angular doesn’t allow the route to be activated again. This is
a behavior change that appeared in a recent release, made at the time of writing. It means that once the
user has selected no, clicking the Create new product button again has no effect. To work around this,
the highlighted statement navigates to the current uRL, which has no effect other than ensuring that the
route activation that was previously canceled can be attempted again. This behavior may have changed
again by the time you read this chapter, in which case you may not require this statement in your own
projects.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

697

Listing 27-11 registers the TermsGuard as a service so that it can be used in the application’s routing
configuration.

Listing 27-11. Registering the Guard as a Service in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { routing } from "./app.routing";
import { AppComponent } from "./app.component";
import { TermsGuard } from "./terms.guard"

@NgModule({
 imports: [BrowserModule, CoreModule, MessageModule, routing],
 declarations: [AppComponent],
 providers: [TermsGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Finally, Listing 27-12 applies the guard to the routing configuration. Activation guards are applied to
a route using the canActivate property, which is assigned an array of guard services. The canActivate
method of all the guards must return true (or return an Observable or Promise that eventually yields true)
before Angular will activate the route.

Listing 27-12. Applying the Guard to a Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";

const childRoutes: Routes = [
 {
 path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

698

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The effect of creating and applying the activation guard is that the user is prompted when clicking the
Create New Product button, as shown in Figure 27-5. If they respond by clicking the Yes button, then the
navigation request will be completed, and Angular will activate the route that selects the form component,
which will allow a new product to be created. If the user clicks the No button, then the navigation request will
be canceled. In both cases, the routing system emits an event that is received by the component that displays
the messages to the user, which clears its display and ensures that the user doesn’t see stale messages.

Figure 27-5. Guarding route activation

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

699

Consolidating Child Route Guards
If you have a set of child routes, you can guard against their activation using a child route guard, which
is a class that defines a method called canActivateChild. The guard is applied to the parent route in the
application’s configuration, and the canActivateChild method is called whenever any of the child routes are
about to be activated. The method receives the same ActivatedRouteSnapshot and RouterStateSnapshot
objects as the other guards and can return the set of result types described in Table 27-4.

This guard in this example is more readily dealt with by changing the configuration before
implementing the canActivateChild method, as shown in Listing 27-13.

Listing 27-13. Guarding Child Routes in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";

const childRoutes: Routes = [
 {
 path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

700

Child route guards are applied to a route using the canActivateChild property, which is set to an array
of service types that implement the canActivateChild method. This method will be called before Angular
activates any of the route’s children. Listing 27-14 adds the canActivateChild method to the guard class
from the previous section.

Listing 27-14. Implementing Child Route Guards in the terms.guard.ts File

import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

@Injectable()
export class TermsGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.params["mode"] == "create") {

 return new Promise<boolean>((resolve, reject) => {
 let responses: [[string, (string) => void]] = [
 ["Yes", () => { resolve(true) }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 resolve(false);
 }]
];
 this.messages.reportMessage(
 new Message("Do you accept the terms & conditions?",
 false, responses));
 });
 } else {
 return true;
 }
 }

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

701

 canActivateChild(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.url.length > 0
 && route.url[route.url.length - 1].path == "categories") {

 return new Promise<boolean>((resolve, reject) => {
 let responses: [[string, (string) => void]] = [
 ["Yes", () => { resolve(true) }],
 ["No ", () => {
 this.router.navigateByUrl(state.url.replace("categories",
 "products"));
 resolve(false);
 }]
];

 this.messages.reportMessage(
 new Message("Do you want to see the categories component?",
 false, responses));
 });
 } else {
 return true;
 }
 }
}

The guard only protects the categories child route and will return true immediately for any other
route. The guard prompts the user using the message service but does something different if the user clicks
the No button. In addition to rejecting the active route, the guard navigates to a different URL using the
Router service, which is received as a constructor argument. This is a common pattern for authentication,
when the user is redirected to a component that will solicit security credentials if a restricted operation
is attempted. The example is simpler in this case, and the guard navigates to a sibling route that shows
a different component. (You can see an example of using route guards for navigation in the SportsStore
application in Chapter 9.)

To see the effect of the guard, click the Count Categories button, as shown in Figure 27-6. Responding
to the prompt by clicking the Yes button will show the CategoryCountComponent, which displays the number
of categories in the table. Clicking No will reject the active route and navigate to a route that displays the
ProductCountComponent instead.

 ■ Note guards are applied only when the active route changes. So, for example, if you click the Count
Categories button when the /table uRL is active, then you will see the prompt, and clicking Yes will change the
activate route. But nothing will happen if you click the Count Categories button again because angular doesn’t
trigger a route change when the target route and the active route are the same.

http://dx.doi.org/10.1007/978-1-4842-2307-9_9

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

702

Preventing Route Deactivation
When you start working with routes, you will tend to focus on the way that routes are activated to respond to
navigation and present new content to the user. But equally important is route deactivation, which occurs
when the application navigates away from a route.

The most common use for deactivation guards is to prevent the user from navigating when there
are unsaved edits to data. In this section, I will create a guard that warns the user when they are about
to abandon unsaved changes when editing a product. In preparation for this, Listing 27-15 changes the
FormComponent class to simplify the work of the guard.

Listing 27-15. Preparing for the Guard in the form.component.ts File

import { Component, Inject } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 moduleId: module.id,
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 originalProduct = new Product();

 constructor(private model: Model, activeRoute: ActivatedRoute,
 private router: Router) {

Figure 27-6. Guarding child routes

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

703

 activeRoute.params.subscribe(params => {
 this.editing = params["mode"] == "edit";
 let id = params["id"];
 if (id != null) {
 Object.assign(this.product, model.getProduct(id) || new Product());
 Object.assign(this.originalProduct, this.product);
 }
 })
 }

 editing: boolean = false;

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.originalProduct = this.product;
 this.router.navigateByUrl("/");
 }
 }

 //resetForm() {
 // this.product = new Product();
 //}
}

When the component begins editing, it creates a copy of the Product object that it gets from the data
model and assigns it to the originalProduct property. This property will be used by the deactivation
guard to see whether there are unsaved edits. To prevent the guard interrupting save operations, the
originalProduct property is set to the editing product object in the submitForm method before the
navigation request.

A corresponding change is required in the template so that the Cancel button doesn’t invoke the form’s
reset event handler, as shown in Listing 27-16.

Listing 27-16. Disabling Form Reset in the form.component.html File

<div class="bg-primary p-a-1" [class.bg-warning]="editing">
 <h5>{{editing ? "Edit" : "Create"}} Product</h5>
</div>
<div *ngIf="editing" class="p-t-1">
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit', model.getPreviousProductid(product.id)]">
 Previous
 </button>
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit', model.getNextProductId(product.id)]">
 Next
 </button>
</div>
<!--<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="resetForm()" >-->
<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)" >
 <div class="form-group">
 <label>Name</label>

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

704

 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="button" class="btn btn-secondary" routerLink="/">Cancel</button>
</form>

To create the guard, I added a file called unsaved.guard.ts in the exampleApp/core/app folder and
defined the class shown in Listing 27-17.

Listing 27-17. The Contents of the unsaved.guard.ts File in the exampleApp/app/core Folder

import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { Observable } from "rxjs/Observable";
import { Subject } from "rxjs/Subject";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { FormComponent } from "./form.component";

@Injectable()
export class UnsavedGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canDeactivate(component: FormComponent, route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<boolean> | boolean {

 if (component.editing) {
 if (["name", "category", "price"]
 .some(prop => component.product[prop]

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

705

 != component.originalProduct[prop])) {
 let subject = new Subject<boolean>();

 let responses: [[string, (string) => void]] = [
 ["Yes", () => {
 subject.next(true);
 subject.complete();
 }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 subject.next(false);
 subject.complete();
 }]
];
 this.messages.reportMessage(new Message("Discard Changes?",
 true, responses));
 return subject;
 }
 }
 return true;
 }
}

Deactivation guards define a class called canDeactivate that receives three arguments: the component
that is about to be deactivated and the ActivatedRouteSnapshot and RouteStateSnapshot objects. This guard
checks to see whether there are unsaved edits in the component and prompts the user if there are. For variety,
this guard uses an Observable<true>, implemented as a Subject<true>, instead of a Promise<true > to tell
Angular whether it should activate the route, based on the response selected by the user.

 ■ Tip notice that I call the complete method on the Subject after calling the next method. angular will wait
indefinitely for the complete method is called, effectively freezing the application.

The next step is to register the guard as a service in the module that contains it, as shown in Listing 27-18.

Listing 27-18. Registering the Guard as a Service in the core.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { Subject } from "rxjs/Subject";
import { StatePipe } from "./state.pipe";
import { MessageModule } from "../messages/message.module";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { Model } from "../model/repository.model";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

706

import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";
import { UnsavedGuard } from "./unsaved.guard";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, MessageModule, RouterModule],
 declarations: [TableComponent, FormComponent, StatePipe,
 ProductCountComponent, CategoryCountComponent, NotFoundComponent],
 providers: [UnsavedGuard],
 exports: [ModelModule, TableComponent, FormComponent]
})
export class CoreModule { }

Finally, Listing 27-19 applies the guard to the application’s routing configuration. Deactivation guards
are applied to routes using the canDeactivate property, which is set to an array of guard services.

Listing 27-19. Applying the Guard in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";

const childRoutes: Routes = [
 {
 path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

707

 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

To see the effect of the guard, click one of the Edit buttons in the table; edit the data in one of the text
fields; and then click the Cancel, Next, or Previous button. The guard will prompt you before allowing
Angular to activate the route you selected, as shown in Figure 27-7.

Loading Feature Modules Dynamically
Angular supports loading feature modules only when they are required, known as dynamic loading or lazy
loading. This can be useful for functionality that is unlikely to be required by all users. In the sections that
follow, I create a simple feature module and demonstrate how to configure the application so that Angular
will load the module only when the application navigates to a specific URL.

Figure 27-7. Guarding route deactivation

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

708

 ■ Note Loading modules dynamically is a trade-off. The application will be smaller and faster to download
for most users, improving their overall experience. But users who require the dynamically loaded features will
have wait while angular gets the module and its dependencies. The effect can be jarring because the user
has no idea that some features have been loaded and others have not. When you create dynamically loaded
modules, you are balancing improving the experience for some users against making it worse for others.
Consider about how your users fall into these groups, and be careful not to degrade the experience of your most
valuable and important customers.

Creating a Simple Feature Module
Dynamically loaded modules must contain only functionality that not all users will require. I can’t use the
existing modules because they provide the core functionality for the application, which means that I need a
new module for this part of the chapter. I started by creating a folder called ondemand in the exampleApp/app
folder. To give the new module a component, I added a file called first.component.ts in the example/app/
ondemand folder and added the code shown in Listing 27-20.

 ■ Caution It is important not to create dependencies between other parts of the application and the classes
in the dynamically loaded module so that the JavaScript module loader doesn’t try to load the module before it
is required.

Listing 27-20. The Contents of the ondemand.component.ts File in the exampleApp/app/ondemand
Folder

import { Component } from "@angular/core";

@Component({
 selector: "ondemand",
 moduleId: module.id,
 templateUrl: "ondemand.component.html"
})
export class OndemandComponent { }

To provide the component with a template, I added a file called ondemand.component.html and added
the markup shown in Listing 27-21.

Listing 27-21. The ondemand.component.html File in the exampleApp/app/ondemand Folder

<div class="bg-primary p-a-1">This is the ondemand component</div>
<button class="btn btn-primary m-t-1" routerLink="/" >Back</button>

The template contains a message that will make it obvious when the component is selected and that
contains a button element that will navigate back to the application’s root URL when clicked.

To define the module, I added a file called ondemand.module.ts and added the code shown in Listing 27-22.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

709

Listing 27-22. The Contents of the ondemand.module.ts File in the exampleApp/app/ondemand Folder

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";

@NgModule({
 imports: [CommonModule],
 declarations: [OndemandComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

The module imports the CommonModule functionality, which is used instead of the browser-specific
BrowserModule to access the built-in directives in feature modules that are loaded on-demand.

Loading the Module Dynamically
There are two steps to setting up dynamic loading a module. The first is to set up a routing configuration
inside the feature module to provide the rules that will allow Angular to select a component when the
module is loaded. Listing 27-23 adds a single route to the feature module.

Listing 27-23. Defining a Routing Configuration in the ondemand.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";

let routing = RouterModule.forChild([
 { path: "", component: OndemandComponent }
]);

@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Routes in dynamically loaded modules are defined using the same properties as in the main part of the
application and can use all the same features, including child components, guards, and redirections. The
route defined in the listing matches the empty path and selects the OndemandComponent for display.

One important different is the method used to generate the module that contains the routing
information, as follows:

...
let routing = RouterModule.forChild([
 { path: "", component: OndemandComponent }
]);
...

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

710

When I created the application-wide routing configuration, I used the RouterModule.forRoot method.
This is the method that is used to set up the routes in the root module of the application. When creating
dynamically loaded modules, the RouterModule.forChild method must be used; this method creates a
routing configuration that is merged into the overall routing system when the module is loaded.

Creating a Route to Dynamically Load a Module
The second step to set up a dynamically loaded module is to create a route in the main part of the
application that provides Angular with the module’s location, as shown in Listing 27-24.

Listing 27-24. Creating an On-Demand Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";

const childRoutes: Routes = [
 {
 path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: "app/ondemand/ondemand.module#OndemandModule"
 },
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

711

 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The loadChildren property is used to provide Angular with details of how the module should be
loaded. The value for the property is the path to the JavaScript file that contains the module (omitting the file
extension), followed by a # character, followed by the name of the module class. The value in the listing tells
Angular to load the OndemandModule class from the app/ondemand/ondemand.module.js file.

Using a Dynamically Loaded Module
All that remains is to add support for navigating to the URL that will activate the route for the on-demand
module, as shown in Listing 27-25, which adds a button to the template for the table component.

Listing 27-25. Adding Navigation in the table.component.html File

<div class="col-xs-3">
 <button class="btn btn-secondary btn-block"
 routerLink="/" routerLinkActive="active"
 [routerLinkActiveOptions]="{exact: true}">
 All
 </button>
 <button *ngFor="let category of categories" class="btn btn-secondary btn-block"
 [routerLink]="['/table', category]" routerLinkActive="active">
 {{category}}
 </button>
</div>
<div class="col-xs-9">

 < !-- ...elements omitted for brevity... -->

</div>
<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
 <button class="btn btn-danger" routerLink="/ondemand">
 Load Module
 </button>
</div>

No special measures are required to target a route that loads a module, and the Load Module button
in the listing uses the standard routerLink attribute to navigate to the URL specified by the route added in
Listing 27-24.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

712

To see how dynamic module loading works, use the browser’s developer tools to see the list of files
that are loaded as the application starts. You won’t see HTTP requests for any of the files in the on-demand
module until you click the Load Module button. When the button is clicked, Angular uses the routing
configuration to load the module, inspect its routing configuration, and select the component that will be
displayed to the user, as shown in Figure 27-8.

Guarding Dynamic Modules
You can guard against dynamically loading modules to ensure that they are loaded only when the
application is in a specific state or when the user has explicitly agreed to wait while Angular does the loading
(this latter option is typically used only for administration functions, where the user can be expected to have
some understanding of how the application is structured).

The guard for the module must be defined in the main part of the application, so I added a file called
load.guard.ts in the exampleApp/app folder and defined the class shown in Listing 27-26.

Listing 27-26. The Contents of the load.guard.ts File in the exampleApp/app Folder

import { Injectable } from "@angular/core";
import { Route, Router } from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

Figure 27-8. Loading a module dynamically

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

713

@Injectable()
export class LoadGuard {
 private loaded: boolean = false;

 constructor(private messages: MessageService,
 private router: Router) { }

 canLoad(route: Route): Promise<boolean> | boolean {

 return this.loaded || new Promise<boolean>((resolve, reject) => {
 let responses: [[string, (string) => void]] = [
 ["Yes", () => {
 this.loaded = true;
 resolve(true);
 }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 resolve(false);
 }]
];

 this.messages.reportMessage(
 new Message("Do you want to load the module?",
 false, responses));
 });
 }
}

Dynamic loading guards are classes that implement a method called canLoad, which is invoked when
Angular needs to activate the route it is applied to and which is provided with a Route object that describes
the route.

The guard is required only when the URL that loads the module is first activated, so it defines a loaded
property that is set to true when the module has been loaded so that subsequent requests are immediately
approved. Otherwise, this guard follows the same pattern as earlier examples and returns a Promise that will
be resolved when the user clicks one of the buttons displayed by the message service.

Listing 27-27 registers the guard as a service in the root module.

Listing 27-27. Registering the Guard as a Service in the app.module.ts File

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { routing } from "./app.routing";
import { AppComponent } from "./app.component";
import { TermsGuard } from "./terms.guard"
import { LoadGuard } from "./load.guard";

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

714

@NgModule({
 imports: [BrowserModule, CoreModule, MessageModule, routing],
 declarations: [AppComponent],
 providers: [TermsGuard, LoadGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Applying a Dynamic Loading Guard
Guards for dynamic loading are applied to routes using the canLoad property, which accepts an array of
guard types. Listing 27-28 applies the LoadGuard class, which was defined in Listing 27-26, to the route that
dynamically loads the module.

Listing 27-28. Guarding the Route in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";
import { LoadGuard } from "./load.guard";

const childRoutes: Routes = [
 {
 path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: "app/ondemand/ondemand.module#OndemandModule",
 canLoad: [LoadGuard]
 },
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

715

 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

The result is that the user is prompted to determine whether they want to load the module the first time
that Angular tries to activate the route, as shown in Figure 27-9.

Targeting Named Outlets
A template can contain more than one router-outlet element, which allows a single URL to select multiple
components to be displayed to the user.

To demonstrate this feature, I need to add two new components to the ondemand module. I started by
creating a file called first.component.ts in the exampleApp/app/ondemand folder and using it to define the
component shown in Listing 27-29.

Figure 27-9. Guarding dynamic loading

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

716

Listing 27-29. The first.component.ts File in the exampleApp/app/ondemand Folder

import { Component } from "@angular/core";

@Component({
 selector: "first",
 template: `<div class="bg-primary p-a-1">First Component</div>`
})
export class FirstComponent { }

This component uses an inline template to display a message whose purpose is simply to make it clear
which component has been selected by the routing system. Next, I created a file called second.component.
ts in the exampleApp/app/ondemand folder and created the component shown in Listing 27-30.

Listing 27-30. The second.component.ts File in the exampleApp/app/ondemand Folder

import { Component } from "@angular/core";

@Component({
 selector: "second",
 template: `<div class="bg-info p-a-1">Second Component</div>`
})
export class SecondComponent { }

This component is almost identical to the one in Listing 27-29, differing only in the message that it
displays through its inline template.

Creating Additional Outlet Elements
When you are using multiple outlet elements in the same template, Angular needs some way to tell them
apart. This is done using the name attribute, which allows an outlet to be uniquely identified, as shown in
Listing 27-31.

Listing 27-31. Adding Named Outlet Elements in the ondemand.component.html File

<div class="bg-primary p-a-1">This is the ondemand component</div>
<div class="col-xs-12 m-t-1">
 <router-outlet></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="left"></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="right"></router-outlet>
</div>
<button class="btn btn-primary m-t-1" routerLink="/" >Back</button>

The new elements create three new outlets. There can be at most one router-outlet element without
a name element, which is known as the primary outlet. This is because omitting the name attribute has the
same effect as applying it with a value of primary. All the routing examples so far in this book have relied on
the primary outlet to display components to the user.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

717

All other router-outlet elements must have a name element with a unique name. The names I have
used in the listing are left and right because the classes applied to the div elements that contain the
outlets use CSS to position these two outlets side by side.

The next step is to create a route that includes details of which component should be displayed in each
outlet element, as shown in Listing 27-32. If Angular can’t find a route that matches a specific outlet, then no
content will be shown in that element.

Listing 27-32. Targeting Named Outlets in the ondemand.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";
import { FirstComponent } from "./first.component";
import { SecondComponent } from "./second.component";

let routing = RouterModule.forChild([
 {
 path: "",
 component: OndemandComponent,
 children: [
 { path: "",
 children: [
 { outlet: "primary", path: "", component: FirstComponent, },
 { outlet: "left", path: "", component: SecondComponent, },
 { outlet: "right", path: "", component: SecondComponent, },
]},
]
 },
]);

@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent, FirstComponent, SecondComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

The outlet property is used to specify the outlet element that the route applies to. The routing
configuration in the listing matches the empty path for all three outlets and selects the newly created
components for them: the primary outlet will display FirstComponent, and the left and right outlets will
display SecondComponent, as shown in Figure 27-10. To see the effect yourself, click the Load Module button
and click the Yes button when prompted.

 ■ Tip If you omit the outlet property, then angular assumes that the route targets the primary outlet. I tend to
include the outlet property on all routes to emphasize which routes match an outlet element.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

718

When Angular activates the route, it looks for matches for each outlet. All three of the new outlets have
routes that match the empty path, which allows Angular to present the components shown in the figure.

Navigating When Using Multiple Outlets
Changing the components that are displayed by each outlet means creating a new set of routes and then
navigating to the URL that contains them. Listing 27-33 sets up a route that will match the path /ondemand/
swap and that switches the components displayed by the three outlets.

SIMPLIFYING NAMED OUTLETS

The way that I set up the routes and navigate around the application in this section isn’t the only
approach, but it works reliably and can be used in dynamically loaded modules.

The alternative approach is to navigate to uRLs that contain paths for all the outlets that are being
targeted, such as this one:

http://localhost:3000/ondemand/primarypath(left:leftpath//right:rightpath)

The main part of the uRL targets the primary uRL, and the sections in the brackets target the left and
right outlets. The problem is that angular doesn’t look for the routes that target the named outlets
consistently, and it is easy to create a routing configuration that doesn’t work as expected or doesn’t
work at all.

Figure 27-10. Using multiple router outlets

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

719

The approach I have used in this chapter is something of a cheat because I target componentless routes
that have children that take care of the named outlets. This makes the routing configuration more
complicated and requires that you create sets of routes for each combination of components and outlets
you require. But, on the other hand, it is an approach that is easier to understand and can be relied on to
behave, even when using dynamically loaded modules.

Listing 27-33. Setting Up Routes for Named Outlets in the ondemand.module.ts File

import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";
import { FirstComponent } from "./first.component";
import { SecondComponent } from "./second.component";

let routing = RouterModule.forChild([
 {
 path: "",
 component: OndemandComponent,
 children: [
 {
 path: "",
 children: [
 { outlet: "primary", path: "", component: FirstComponent, },
 { outlet: "left", path: "", component: SecondComponent, },
 { outlet: "right", path: "", component: SecondComponent, },
]
 },
 {
 path: "swap",
 children: [
 { outlet: "primary", path: "", component: SecondComponent, },
 { outlet: "left", path: "", component: FirstComponent, },
 { outlet: "right", path: "", component: FirstComponent, },
]
 },
]
 },
]);

@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent, FirstComponent, SecondComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Listing 27-34 adds button elements to the component’s template that will navigate to the two sets of
routes in Listing 27-33, alternating the set of components displayed to the user.

ChapTER 27 ■ RouTIng and navIgaTIon: paRT 3

720

Listing 27-34. Navigating to Multiple Outlets in the ondemand.component.html File

<div class="bg-primary p-a-1">This is the ondemand component</div>
<div class="col-xs-12 m-t-1">
 <router-outlet></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="left"></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="right"></router-outlet>
</div>
<button class="btn btn-secondary m-t-1" routerLink="/ondemand">Normal</button>
<button class="btn btn-secondary m-t-1" routerLink="/ondemand/swap">Swap</button>
<button class="btn btn-primary m-t-1" routerLink="/">Back</button>

The result is that clicking the Swap and Normal button will navigate to routes whose children tell Angular
which components should be displayed by each of the outlet elements, as illustrated by Figure 27-11.

Summary
In this chapter, I finished describing the Angular URL routing features, explaining how to guard routes to
control when a route is activated, how to load modules only when they are needed, and how to use multiple
outlet elements to display components to the user. In the next chapter, I show you how to apply animations
to Angular applications.

Figure 27-11. Using navigation to target multiple outlet elements

721© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_28

CHAPTER 28

Using Animation

In this chapter, I describe the Angular animation system, which uses data bindings to animate HTML
elements to reflect changes in the state of the application. In broad terms, animations have two roles in an
Angular application: to emphasize changes in content or to smooth them out.

Emphasizing changes is important when the content changes in a way that may not be obvious to the
user. In the example application, using the Previous and Next buttons when editing a product changes the
data fields but doesn’t create any other visual change, which results in a transition that the user may not
notice. Animations can be used to draw the eye to this kind of change, helping the user notice the results
of an action.

Smoothing out changes can make an application more pleasant to use. When the user clicks the Edit
button to start editing a product, the content displayed by the example application switches in a way that can
be jarring. Using animations to slow down the transition can help provide a sense of context for the content
change and make it less abrupt. In this chapter, I explain how the animation system works and how it can be
used to draw the user’s eye or take the edge off of sudden transitions.

ANIMATION BROWSER SUPPORT

The Angular animation features depend on the Web Animations API, which is reliably implemented only in
Chrome and Mozilla. Other browsers either don’t implement the API at all or don’t implement all features.
I use a polyfill library to add basic support for older browsers, but some features still won’t work.

This situation may improve with time, but you should test carefully to make sure that the browsers you
target with your project are able to handle the animation features you use.

You should use Chrome if you want to follow the examples in this chapter to make sure you get the
expected results.

ChAPTer 28 ■ UsIng AnIMATIOn

722

Table 28-1. Putting Angular Animations in Context

Question Answer

What is it? The animations system can change the appearance of HTML
elements to reflect changes in the application state.

Why is it useful? Used judiciously, animations can make applications more
pleasant to use.

How is it used? Animations are defined using functions defined in the
@angular/core module, registered using the animations property
in the @Component decorator and applied using a data binding.

Are there any pitfalls or limitations? The main limitation is that it is fully supported on few browsers
and, as a consequence, cannot be relied on to work properly on
all the browsers that Angular supports for its other features.

Are there any alternatives? The only alternative is not to animate the application.

Table 28-2. Chapter Summary

Problem Solution Listing

Draw the user’s attention to a transition in the state of an element Apply an animation 1–9

Animate the change from one element state to another Use an element transition 10–15

Perform animations in parallel Use animation groups 16

Use the same styles in multiple animations Use common styles 17

Animate the position or size of elements Use element transformations 18

Use animations to apply CSS framework styles Use the DOM and CSS APIs 19, 20

Receive notifications about animations Receive animation events 21, 22

Table 28-2 summarizes the chapter.

Preparing the Example Project
In this chapter, I continue using the exampleApp that was first created in Chapter 22 and has been the focus
of every chapter since. The changes in the following sections prepare the example application for the
features described in this chapter.

Adding the Animations Polyfill
The Angular animations feature relies on a JavaScript API that is supported only by recent browsers, and a
polyfill is required to allow older browsers to work. Listing 28-1 adds the polyfill to the set of packages for the
example application.

Table 28-1 puts Angular animations in context.

http://dx.doi.org/10.1007/978-1-4842-2307-9_22

ChAPTer 28 ■ UsIng AnIMATIOn

723

Listing 28-1. Adding the Animation Polyfill in the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/http": "2.2.0",
 "@angular/router": "3.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4",
 "html5-history-api": "4.2.7",
 "web-animations-js": "2.2.2"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",
 "tsc": "tsc",
 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server --p 3500 restData.js",
 "typings": "typings",
 "postinstall": "typings install"
 }
}

The web-animations-js package is recommended by the Angular team for providing animation
support for older browsers. Run the following command in the exampleApp folder to download the
polyfill package:

npm install

ChAPTer 28 ■ UsIng AnIMATIOn

724

Listing 28-2 adds a script element to the index.html file for the polyfill JavaScript file.

Listing 28-2. Adding the Animations Polyfill in the index.html File

<!DOCTYPE html>
<html>
<head>
 <base href="/">
 <title></title>
 <meta charset="utf-8" />
 <script src="node_modules/html5-history-api/history.min.js"></script>
 <script src="node_modules/classlist.js/classList.min.js"></script>
 <script src="node_modules/web-animations-js/web-animations.min.js"></script>
 <script src="node_modules/core-js/client/shim.min.js"></script>
 <script src="node_modules/intl/dist/Intl.complete.js"></script>
 <script src="node_modules/zone.js/dist/zone.min.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>
 <script src="rxjs.module.min.js"></script>
 <script src="systemjs.config.js"></script>
 <script>
 System.import("app/main").catch(function(err){ console.error(err); });
 </script>
 <link href="node_modules/bootstrap/dist/css/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body class="m-a-1">
 <app></app>
</body>
</html>

Disabling the HTTP Delay
The next preparatory step for this chapter is to disable the delay added to asynchronous HTTP requests, as
shown in Listing 28-3.

 ■ Tip You can download complete projects for every chapter as part of the free source code download that
accompanies this book at apress.com.

Listing 28-3. Disabling the Delay in the rest.datasource.ts File

import { Injectable, Inject, OpaqueToken } from "@angular/core";
import { Http, Request, RequestMethod, Headers, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import { Product } from "./product.model";
import "rxjs/add/operator/map";
import "rxjs/add/operator/catch";
import "rxjs/add/observable/throw";
import "rxjs/add/operator/delay";

ChAPTer 28 ■ UsIng AnIMATIOn

725

export const REST_URL = new OpaqueToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: Http,
 @Inject(REST_URL) private url: string) { }

 // ...other methods omitted for brevity...

 private sendRequest(verb: RequestMethod,
 url: string, body?: Product): Observable<Product> {

 let headers = new Headers();
 headers.set("Access-Key", "<secret>");
 headers.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request(new Request({
 method: verb,
 url: url,
 body: body,
 headers: headers
 }))
 //.delay(5000)
 .map(response => response.json())
 .catch((error: Response) => Observable.throw(
 `Network Error: ${error.statusText} (${error.status})`));
 }
}

Simplifying the Table Template and Routing Configuration
Many of the examples in this chapter are applied to the elements in the table of products. The final
preparation for this chapter is to simplify the template for the table component so that I can focus on a
smaller amount of content in the listings.

Listing 28-4 shows the simplified template, which removes the buttons that generated HTTP and
routing errors and the button and outlet element that counted the categories or products. The listing also
removes the buttons that allow the table to be filtered by category.

Listing 28-4. Simplifying the Template in the table.component.html File

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>

ChAPTer 28 ■ UsIng AnIMATIOn

726

 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>

<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
</div>

Listing 28-5 updates the URL routing configuration for the application so that the routes don’t target the
outlet element that has been removed from the table component’s template.

Listing 28-5. Updating the Routing Configuration in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";
import { LoadGuard } from "./load.guard";

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 canDeactivate: [UnsavedGuard]
 },
 { path: "form/:mode", component: FormComponent, canActivate: [TermsGuard] },
 { path: "table", component: TableComponent },
 { path: "table/:category", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

ChAPTer 28 ■ UsIng AnIMATIOn

727

Run the following command in the exampleApp folder to start the RESTful web service, the TypeScript
compiler, and the development HTTP server:

npm start

A new browser tab or window will open and display the content shown in Figure 28-1.

Figure 28-1. Running the example application

Getting Started with Angular Animation
As with most Angular features, the best place to start is with an example, which will let me introduce how
animation works and how it fits in to the rest of the Angular functionality. In the sections that follow, I
create a basic animation that will affect the rows in the table of products. Once you have seen how the basic
features work, I will dive into the detail for each of the different configuration option and explain how they
work in depth.

But to get started, I am going to add a select element to the application that allows the user to select
a category. When a category is selected, the table rows for products in that category will be shown in one of
two styles, as described in Table 28-3.

ChAPTer 28 ■ UsIng AnIMATIOn

728

Creating the Animation
To get started, I created a file called table.animations.ts in the example/app/core folder and added the
code shown in Listing 28-6.

Listing 28-6. The Contents of the table.animations.ts File in the exampleApp/app/core Folder

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 transition("selected => notselected", animate("200 ms")),
 transition("notselected => selected", animate("400 ms"))
]);

The syntax used to define animations can be dense and relies on a set of functions defined in the @
angular/core module. In the following sections, I start at the top and work my way down through the detail
to explain each of the animation building blocks used in the listing.

 ■ Tip Don’t worry if all the building blocks described in the following sections don’t make immediate sense.
This is an area of functionality that starts to make more sense only when you see how all the parts fit together.

Defining Style Groups
The heart of the animation system is the style group, which is a set of CSS style properties and values that
will be applied to an HTML element. Style groups are defined using the style function, which accepts a
JavaScript object literal that provides a map between property names and values, like this:

...
style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})
...

This style group tells Angular to set the background color to lightgreen and to set the font size to 20 pixels.

Table 28-3. The Styles for the Animation Example

Description Styles

The product is in the selected category. The table row will have a green background and larger text.

The product is not in the selected category. The table row will have a red background and smaller text.

ChAPTer 28 ■ UsIng AnIMATIOn

729

CSS PROPERTY NAME CONVENTIONS

There are two ways to specify Css properties when using the style function. You can use the
Javascript property naming convention, such that the property to set the background color of
an element is specified as backgroundColor (all one word, no hyphens, and subsequent words
capitalized). This is the convention I used in Listing 28-6:

...
style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})),
...

Alternatively, you can use the Css convention, where the same property is expressed as background-
color (all lowercase with hyphens between words). If you use the Css format, then you must enclose
the property names in quotes to stop Javascript from trying to interpret the hyphens as arithmetic
operators, like this:

...
state("green", style({
 "background-color": "lightgreen",
 "font-size": "20px"
})),
...

It doesn’t matter which name convention you use, just as long as you are consistent. At the time of
writing, Angular does not correctly apply styles if you mix and match property name conventions. To get
consistent results, pick a naming convention and use it for all the style properties you set throughout
your application.

Defining Element States
Angular needs to know when it needs to apply a set of styles to an element. This is done by defining an
element state, which provides a name by which the set of styles can be referred to. Element states are created
using the state function, which accepts the name and the style set that should be associated with it. This is
one of the two element states that are defined in Listing 28-6:

...
state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})),
...

There are two states in the listing, called selected and notselected, which will correspond to whether
the product described by a table row is in the category selected by the user.

ChAPTer 28 ■ UsIng AnIMATIOn

730

Defining State Transitions
When an HTML element is in one of the states created using the state function, Angular will apply the
CSS properties in the state’s style group. The transition function is used to tell Angular how the new CSS
properties should be applied. There are two transitions in Listing 28-6.

...
transition("selected => notselected", animate("200 ms")),
transition("notselected => selected", animate("400 ms"))
...

The first argument passed to the transition function tells Angular which states this instruction applies
to. The argument is a string that specifies two states and an arrow that expresses the relationship between
them. Two kinds of arrow are available, as described in Table 28-4.

Table 28-4. The Animation Transition Arrow Types

Arrow Example Description

=> selected => notselected This arrow specifies a one-way transition between two
states, such as when the element moves from the selected
to the notselected state.

<=> selected <=> notselected This array specifies a two-way transition between two
states, such as when the element moves from the selected
to the notselected state and from the notselected to the
selected state.

The transitions defined in Listing 28-6 use one-way arrows to tell Angular how it should respond
when an element moves from the selected to the notselected state and from the notselected to the
selected state.

The second argument to the transition function tells Angular what action it should take when the
state change occurs. The animate function tells Angular to gradually transition between the properties
defined in the CSS style set defined by two element states. The arguments passed to the animate function in
Listing 28-6 specify the period of time that this gradual transition should take, either 200 milliseconds or
400 milliseconds.

GUIDANCE FOR APPLYING ANIMATIONS

Developers often get carried away when applying animations, and the result is applications that
users find frustrating. Animations should be applied sparingly, they should be simple, and they should
be quick. Use animations to help the user make sense of your application and not as a vehicle to
demonstrate your artistic skills. Users, especially for corporate line-of-business applications, have to
perform the same task repeatedly, and excessive and long animations just get in the way.

I suffer from this tendency, and, unchecked, my applications behave like Las Vegas slot machines. I have
two rules that I follow to keep the problem under control. The first is that I perform the major tasks or
workflows in the application 20 times in a row. In the case of the example application, that might mean
creating 20 products and then editing 20 products. I remove or shorten any animation that I find myself
having to wait to complete before I can move on to the next step in the process.

ChAPTer 28 ■ UsIng AnIMATIOn

731

The second rule is that I don’t disable animations during development. It can be tempting to comment
out an animation when I am working on a feature because I will be performing a series of quick tests
as I write the code. But any animation that gets in my way will also get in the user’s way, so I leave
the animations in place and adjust them—generally reducing their duration—until they become less
obtrusive and annoying.

You don’t have to follow my rules, of course, but it is important to make sure that the animations are
helpful to the user and not a barrier to working quickly or a distracting annoyance.

Defining the Trigger
The final piece of plumbing is the animation trigger, which packages up the element states and transitions
and assigns a name that can be used to apply the animation in a component. Triggers are created using the
trigger function, like this:

...
export const HighlightTrigger = trigger("rowHighlight", [...])
...

The first argument is the name by which the trigger will be known, which is rowHighlight in this
example, and the second argument is the array of states and transitions that will be available when the
trigger is applied.

Applying the Animation
Once you have defined an animation, you can apply it to one or more components by using the animations
property of the @Component decorator. Listing 28-7 applies the animation defined in Listing 28-6 to the table
component and adds some additional features that are needed to support the animation.

Listing 28-7. Applying an Animation in the table.component.ts File

import { Component, Inject } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
import { HighlightTrigger } from "./table.animations";

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html",
 animations: [HighlightTrigger]
})
export class TableComponent {
 category: string = null;

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

ChAPTer 28 ■ UsIng AnIMATIOn

732

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): string[] {
 return this.model.getProducts()
 .map(p => p.category)
 .filter((category, index, array) => array.indexOf(category) == index);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 highlightCategory: string = "";

 getRowState(category: string): string {
 return this.highlightCategory == "" ? "" :
 this.highlightCategory == category ? "selected" : "notselected";
 }
}

The animations property is set to an array of triggers. You can define animations inline, but they can
quickly become complex and make the entire component hard to read, which is why I used a separate file
and exported a constant value from it, which I then assign to the animations property.

The other changes are to provide a mapping between the category selected by the user and the
animation state that will be assigned to elements. The value of the highlightCategory property will be
set using a select element and is used in the getRowState method to tell Angular which of the animation
states defined in Listing 28-7 should be assigned based on a product category. If a product is in the selected
category, then the method returns selected; otherwise, it returns notselected. If the user has not selected a
category, then the empty string is returned.

The final step is to apply the animation to the component’s template, telling Angular which elements
are going to animated, as shown in Listing 28-8. This listing also adds a select element that sets the value of
the component’s highlightCategory property using the ngModel binding.

Listing 28-8. Applying an Animation in the table.component.html File

<div class="form-group bg-info p-a-1">
 <label>Category</label>
 <select [(ngModel)]="highlightCategory" class="form-control">
 <option value="">None</option>
 <option *ngFor="let category of categories">
 {{category}}
 </option>
 </select>
</div>

ChAPTer 28 ■ UsIng AnIMATIOn

733

<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()"
 [@rowHighlight]="getRowState(item.category)">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>
<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
</div>

Animations are applied to templates using special data bindings, which associate an animation
trigger with an HTML element. The binding’s target tells Angular which animation trigger to apply, and
the binding’s expression tells Angular how to work out which state an element should be assigned to,
like this:

...
<tr *ngFor="let item of getProducts()" [@rowHighlight]="getRowState(item.category)">
...

The target of the binding is the name of the animation trigger, prefixed with the @ character, which
denotes an animation binding. This binding tells Angular that it should apply the rowHighlight trigger to
the tr element. The expression tells Angular that it should invoke the component’s getRowState method
to work out which state the element should be assigned to, using the item.category value as an argument.
Figure 28-2 illustrates the anatomy of an animation data binding for quick reference.

ChAPTer 28 ■ UsIng AnIMATIOn

734

Testing the Animation Effect
The changes in the previous section add a select element above the product table. To see the effect of the
animation, select Soccer from the list, and Angular will use the trigger to figure out which of the animation
states each element should be applied to. Table rows for products in the Soccer category will be assigned to
the selected state, while the other rows will be assigned to the notselected state, creating the effect shown
in Figure 28-3.

Figure 28-3. Selecting a product category

Figure 28-2. The anatomy of an animation data binding

ChAPTer 28 ■ UsIng AnIMATIOn

735

The new styles are applied suddenly. To see a smoother transition, select one the Chess category from
the list, and you will see a gradual animation as the Chess rows are assigned to the selected state and the
other rows are assigned to the notselected state. This happens because the animation trigger contains
transitions between these states that tell Angular to animate the change in CSS styles, as illustrated in
Figure 28-4. There is no transition for the earlier change, so Angular defaults to applying the new styles
immediately.

 ■ Tip It is impossible to capture the effect of animations in a series of screenshots, and the best I can
do is present some of the intermediate states. This is a feature that requires first-hand experimentation to
understand. I encourage you to download the project for this chapter from apress.com and create your own
animations.

Figure 28-4. A gradual transition between animation states

To understand the Angular animation system, you need to understand the relationship between the
different building blocks used to define and apply an animation, which can be described like this:

 1. Evaluating the data binding expression tells Angular which animation state the
host element is assigned to.

 2. The data binding target tells Angular which animation target defines CSS styles
for the element’s state.

 3. The state tells Angular which CSS styles should be applied to the element.

 4. The transition tells Angular how it should apply CSS styles when evaluating the
data binding expression results in a change to the element’s state.

ChAPTer 28 ■ UsIng AnIMATIOn

736

Keep these four points in mind as you read through the rest of the chapter, and you will find the
animation system easier to understand.

Understanding the Built-in Animation States
Animation states are used to define the end result of an animation, grouping together the styles that
should be applied to an element with a name that can be selected by an animation trigger. There are
two built-in states that Angular provides that make it easier to manage the appearance of elements, as
described in Table 28-5.

Table 28-5. The Built-in Animation States

State Description

* This is a fallback state that will be applied if the element isn’t in any of the other states
defined by the animation trigger.

void Elements are in the void state when they are not part of the template. When the expression
for an ngIf directive evaluates as false, for example, the host element is in the void state.
This state is used to animate the addition and removal of elements, as described in the
next section.

An asterisk (the * character) is used to denote a special state that Angular should apply to elements that
are not in any of the other states defined by an animation trigger. Listing 28-9 adds the fallback state to the
animations in the example application.

Listing 28-9. Using the Fallback State in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("*", style({
 border: "solid black 2px"
 })),
 transition("selected => notselected", animate("200 ms")),
 transition("notselected => selected", animate("400 ms"))
]);

In the example application, elements are assigned only to the selected or notselected state once the
user has picked a value with the select element. The fallback state defines a style group that will be applied
to elements until they are entered into one of the other states, as shown in Figure 28-5.

ChAPTer 28 ■ UsIng AnIMATIOn

737

Understanding Element Transitions
The transitions are the real power of the animation system; they tell Angular how it should manage the
change from one state to another. In the sections that follow, I describe different ways in which transitions
can be created and used.

Creating Transitions for Built-in States
The built-in states described in Table 28-5 can be used in transitions. The fallback state can be used to
simplify the animation configuration by representing any state, as shown in Listing 28-10.

Listing 28-10. Using the Fallback State in a Transition in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("*", style({
 border: "solid black 2px"
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms"))
]);

Figure 28-5. Using the fallback state

ChAPTer 28 ■ UsIng AnIMATIOn

738

The transitions in the listing tell Angular how to deal with the change from any state into the
notselected and selected states. The effect is that Angular will animate the transition when the user first
picks a category using the select element and also if the None category is subsequently selected.

Animating Element Addition and Removal
The void state is used to define transitions for when an element is added to or removed from the template,
as shown in Listing 28-11.

Listing 28-11. Using the Void State in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms")),
 transition("void => *", animate("500 ms"))
]);

This listing includes a definition for the void state that sets the opacity property to zero, which makes
the element transparent and, as a consequence, invisible. There is also a transition that tells Angular to
animate the change from the void state to any other state. The effect is that the rows in the table fade into
view as the browser gradually increases the opacity value until the fill opacity is reached, as shown in
Figure 28-6.

Figure 28-6. Animating element addition

ChAPTer 28 ■ UsIng AnIMATIOn

739

 ■ Tip Angular provides aliases that can be used for transitions for the built-in state. The :enter alias can be
used instead of void => *, and the :leave alias can be used instead of * => void.

Controlling Transition Animations
All the examples so far in this chapter have used to animate function in its simplest form, which is to specify
how long a transition between two states should take, like this:

...
transition("void => *", animate("500 ms"))
...

The string argument passes to the animate method can be used to exercise finer-grain control over the
way that transitions are animated by providing an initial delay and specifying how intermediate values for
the style properties are calculated.

EXPRESSING ANIMATION DURATIONS

Durations for animations are expressed using Css time values, which are string values containing
one or more numbers followed by either s for seconds or ms for milliseconds. This value, for example,
specifies a duration of 500 milliseconds:

...
transition("void => *", animate("500 ms"))
...

Durations are expressed flexibly, and the same value could be expressed as a fraction of a second, like this:

...
transition("void => *", animate("0.5 s"))
...

My advice is to stick to one set of units throughout a project to avoid confusion, although it doesn’t
matter which one you use.

Specifying a Timing Function
The timing function is responsible for calculating the intermediate values for CSS properties during
the transition. The timing functions, which are defined as part of the Web Animations specification, are
described in Table 28-6.

ChAPTer 28 ■ UsIng AnIMATIOn

740

Listing 28-12 applies a timing function to one of the transitions in the example application. The timing
function is specified after the duration in the argument to the animate function.

Listing 28-12. Applying a Timing Function in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms ease-in")),
 transition("void => *", animate("500 ms"))
]);

Specifying an Initial Delay
An initial delay can be provided to the animate method, which can be used to stagger animations when
there are multiple transitions being performed simultaneously. The delay is specified as the second value in
the argument passed to the animate function, as shown in Listing 28-13.

Table 28-6. The Animation Timing Functions

Name Description

linear This function changes the value in equal amounts. This is the default.

ease-in This function starts with small changes that increase over time, resulting in an
animation that that starts slowly and speeds up.

ease-out This function starts with large changes that decrease over time, resulting in an
animation that starts quickly and then slows down.

ease-in-out This function starts with large changes that become smaller until the midway point,
after which they become larger again. The result is an animation that starts quickly,
slows down in the middle, and then speeds up again at the end.

cubic-bezier This function is used to create intermediate values using a Bezier curve. See
http://w3c.github.io/web-animations/#time-transformations for details.

http://w3c.github.io/web-animations/#time-transformations

ChAPTer 28 ■ UsIng AnIMATIOn

741

Listing 28-13. Adding an Initial Delay in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms 200 ms ease-in")),
 transition("void => *", animate("500 ms"))
]);

The 200-millisecond delay in this example corresponds to the duration of the animation used when an
element transitions into the notselected state. The effect is that changing the selected category will show
elements returning to the notselected state before the selected elements are changed.

Using Additional Styles During Transition
The animate function can accept a style group as its second argument, as shown in Listing 28-14. These
styles are applied to the host element gradually, over the duration of the animation.

Listing 28-14. Defining Transition Styles in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected",
 animate("400 ms 200 ms ease-in",
 style({
 backgroundColor: "lightblue",

ChAPTer 28 ■ UsIng AnIMATIOn

742

 fontSize: "25px"
 }))
),
 transition("void => *", animate("500 ms"))
]);

The effect of this change is that when an element is transitioning into the selected state, its appearance
will be animated so that the background color will be lightblue and its font size will be 25 pixels. At the end
of the animation, the styles defined by the selected state will be applied all at once, creating a snap effect.

The sudden change in appearance at the end of the animation can be jarring. An alternative approach is
to change the second argument to the transition function to an array of animations. This defines multiple
animations that will be applied to the element in sequence, and, as long as it doesn’t define a style group,
the final animation will be used to transition to the styles defined by the state. Listing 28-15 uses this feature
to add two additional animations to the transition, the last of which will apply the styles defined by the
selected state.

Listing 28-15. Using Multiple Animations in a Transition in the table.animations.ts File

import { trigger, style, state, transition, animate } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected",
 [animate("400 ms 200 ms ease-in",
 style({
 backgroundColor: "lightblue",
 fontSize: "25px"
 })),
 animate("250 ms", style({
 backgroundColor: "lightcoral",
 fontSize: "30px"
 })),
 animate("200 ms")]
),
 transition("void => *", animate("500 ms"))
]);

There are three animations in this transition, and the last one will apply the styles defined by the
selected state. Table 28-7 describes the sequence of animations.

ChAPTer 28 ■ UsIng AnIMATIOn

743

Table 28-7. The Sequence of Animations in the Transition to the selected State

Duration Style Properties and Values

400 milliseconds backgroundColor: lightblue; fontSize: 25px

250 milliseconds backgroundColor: lightcoral; fontSize: 30px

200 milliseconds backgroundColor: lightgreen; fontSize: 20px

Figure 28-7. Using multiple animations in a transition

Pick a category using the select element to see the sequence of animations. Figure 28-7 shows one
frame from each animation.

Performing Parallel Animations
Angular is able to perform animations at the same time, which means you can have different CSS
properties change over different time periods. Parallel animations are passed to the group function, as
shown in Listing 28-16.

Listing 28-16. Performing Parallel Animations in the table.animations.ts File

import { trigger, style, state, transition, animate, group } from "@angular/core";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"

ChAPTer 28 ■ UsIng AnIMATIOn

744

 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected",
 [animate("400 ms 200 ms ease-in",
 style({
 backgroundColor: "lightblue",
 fontSize: "25px"
 })),
 group([
 animate("250 ms", style({
 backgroundColor: "lightcoral",
 })),
 animate("450 ms", style({
 fontSize: "30px"
 })),
]),
 animate("200 ms")]
),
 transition("void => *", animate("500 ms"))
]);

The listing replaces one of the animations in sequence with a pair of parallel animations. The
animations for the backgroundColor and fontSize properties will be started at the same time but last for
differing durations. When both of the animations in the group have completed, Angular will move on to the
final animation, which will target the styles defined in the state.

Understanding Animation Style Groups
The outcome of an Angular animation is that an element is put into a new state and styled using the
properties and values in the associated style group. In this section, I explain some different ways in which
style groups can be used.

 ■ Tip not all Css properties can be animated, and of those that can be animated, some are handled better
by the browser than others. As a rule of thumb, the best results are achieved with properties whose values can
be easily interpolated, which allows the browser to provide a smooth transition between element states. This
means you will usually get good results using properties whose values are colors or numerical values, such
as background, text and font colors, opacity, element sizes, and borders. see https://www.w3.org/TR/css3-
transitions/#animatable-properties for a complete list of properties that can be used with the animation
system.

https://www.w3.org/TR/css3-transitions/#animatable-properties
https://www.w3.org/TR/css3-transitions/#animatable-properties

ChAPTer 28 ■ UsIng AnIMATIOn

745

Defining Common Styles in Reusable Groups
As you create more complex animations and apply them throughout your application, you will inevitably
find that you need to apply some common CSS property values in multiple places. The style function can
accept an array of objects, all of which are combined to create the overall set of styles in the group. This
means you can reduce duplication by defining objects that contain common styles and use them in multiple
style groups, as shown in Listing 28-17. (To keep the example simple, I have also removed the sequence of
styles defined in the previous section.)

Listing 28-17. Defining Common Styles in the table.animations.ts File

import { trigger, style, state, transition, animate, group } from "@angular/core";

const commonStyles = {
 border: "black solid 4px",
 color: "white"
};

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style([commonStyles, {
 backgroundColor: "lightgreen",
 fontSize: "20px"
 }])),
 state("notselected", style([commonStyles, {
 backgroundColor: "lightsalmon",
 fontSize: "12px",
 color: "black"
 }])),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms 200 ms ease-in")),
 transition("void => *", animate("500 ms"))
]);

The commonStyles object defines values for the border and color properties and is passed to the
style function in an array along with the regular style objects. Angular processes the style objects in
order, which means you can override a style value by redefining it in a later object. As an example, the
second style object for the notselected state overrides the common value for the color property with a
custom value. The result is that both the styles for both animation states incorporate the common value
for the border property, and the styles for the selected state also use the common value for the color
property, as shown in Figure 28-8.

ChAPTer 28 ■ UsIng AnIMATIOn

746

Using Element Transformations
All the examples so far in this chapter have animated properties that have affected an aspect of an element’s
appearance, such as background color, font size, or opacity. Animations can also be used to apply CSS
element transformation effects, which are used to move, resize, rotate, or skew an element. These effects are
applied by defining a transform property in a style group, as shown in Listing 28-18.

Listing 28-18. Using an Element Transformation in the table.animations.ts File

import { trigger, style, state, transition, animate, group } from "@angular/core";

const commonStyles = {
 border: "black solid 4px",
 color: "white"
};

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style([commonStyles, {
 backgroundColor: "lightgreen",
 fontSize: "20px"
 }])),
 state("notselected", style([commonStyles, {
 backgroundColor: "lightsalmon",
 fontSize: "12px",
 color: "black"

Figure 28-8. Defining common properties

ChAPTer 28 ■ UsIng AnIMATIOn

747

 }])),
 state("void", style({
 transform: "translateX(-50%)"
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms 200 ms ease-in")),
 transition("void => *", animate("500 ms"))
]);

The value of the transform property is translateX(50%), which tells Angular to move the element
50 percent of its length along the x-axis. The transform property has been applied to the void state, which
means that it will be used on elements as they are being added to the template. The animation contains a
transition from the void state to any other state and tells Angular to animate the changes over 500 milliseconds.
The result is that new elements will be shifted to the left initially and then slid back into their default position
over a period of half a second, as illustrated in Figure 28-9.

Figure 28-9. Transforming an element

Table 28-8 describes the set of transformations that can be applied to elements.

 ■ Tip Multiple transformations can be applied in a single transform property by separating them with
spaces, like this: transform: "scale(1.1, 1.1) rotate(10 deg)".

ChAPTer 28 ■ UsIng AnIMATIOn

748

Applying CSS Framework Styles
If you are using a CSS framework like Bootstrap, you may want to apply classes to elements, rather than
having to define groups of properties. There is no built-in support for working directly with CSS classes, but
the Document Object Model (DOM) and the CSS Object Model (CSSOM) provides API access to inspect the
CSS stylesheets that have been loaded and to see whether they apply to an HTML element. To get the set of
styles defined by classes, I created a file called animationUtils.ts to the exampleApp/app/core folder and
added the code shown in Listing 28-19.

 ■ Caution This technique can require substantial processing in an application that uses a lot of complex
stylesheets, and you may need to adjust the code to work with different browsers and different Css frameworks.

Listing 28-19. The Contents of the animationUtils.ts File in the exampleApp/app/core Folder

export function getStylesFromClasses(names: string | string[],
 elementType: string = "div") : { [key: string]: string | number } {

 let elem = document.createElement(elementType);
 (typeof names == "string" ? [names] : names).forEach(c => elem.classList.add(c));

 let result = {};

Table 28-8. The CSS Transformation Functions

Function Description

translateX(offset) This function moves the element along the x-axis. The amount of
movement can be specified as a percentage or as a length (expressed
in pixels or one of the other CSS length units). Positive values translate
the element to the right, negative values to the left.

translateY(offset) This function moves the element along the y-axis.

translate(xOffset, yOffset) This function moves the element along both axes.

scaleX(amount) The function scales the element along the x-axis. The scaling size is
expressed as a fraction of the element’s regular size, such that 0.5
reduces the element to 50 percent of the original width and 2.0 will
double the width.

scaleY(amount) This function scales the element along the y-axis.

scale(xAmount, yAmount) This function scales the element along both axes.

rotate(angle) This function rotates the element clockwise. The amount of rotation is
expressed as an angle, such as 90 deg or 3.14 rad.

skewX(angle) This function skews the element along the x-axis by a specified angle,
expressed in the same way as for the rotate function.

skewY(angle) This function skews the element along the y-axis by a specified angle,
expressed in the same way as for the rotate function.

skew(xAngle, yAngle) This function skews the element along both axes.

ChAPTer 28 ■ UsIng AnIMATIOn

749

 for (let i = 0; i < document.styleSheets.length; i++) {
 let sheet = document.styleSheets[i] as CSSStyleSheet;
 let rules = sheet.rules || sheet.cssRules;
 for (let j = 0; j < rules.length; j++) {
 if (rules[j].type == CSSRule.STYLE_RULE) {
 let styleRule = rules[j] as CSSStyleRule;
 if (elem.matches(styleRule.selectorText)) {
 for (let k = 0; k < styleRule.style.length; k++) {
 result[styleRule.style[k]] =
 styleRule.style[styleRule.style[k]];
 }
 }
 }
 }
 }
 return result;
}

The getStylesFromClass method accepts a single class name or an array of class names and the
element type to which they should be applied, which defaults to a div element. An element is created and
assigned to the classes and then inspected to see which of the CSS rules defined in the CSS stylesheets apply
to it. The style properties for each matching style are added to an object that can be used to create Angular
animation style groups, as shown in Listing 28-20.

Listing 28-20. Using Bootstrap Classes in the table.animations.ts File

import { trigger, style, state, transition, animate, group } from "@angular/core";
import { getStylesFromClasses } from "./animationUtils";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style(getStylesFromClasses(["bg-success", "h2"]))),
 state("notselected", style(getStylesFromClasses("bg-info"))),
 state("void", style({
 transform: "translateX(-50%)"
 })),
 transition("* => notselected", animate("200 ms")),
 transition("* => selected", animate("400 ms 200 ms ease-in")),
 transition("void => *", animate("500 ms"))
]);

The selected state uses the styles defined in the Bootstrap bg-success and h2 classes, and the
notselected state uses the styles defined by the Bootstrap bg-info class, producing the results shown in
Figure 28-10.

ChAPTer 28 ■ UsIng AnIMATIOn

750

Understanding Animation Trigger Events
By comparison to the other animation building blocks, triggers are relatively simple. They provide a wrapper
around a set of states and transitions and provide the connection between the elements that animations are
applied to, meaning the data model and the animation configuration.

There is one feature that I have yet to describe, however, which is that the directive that applies
triggers to elements emits events about the animations it performs. The events are expressed using the
AnimationTransitionEvent class, which defines the properties described in Table 28-9.

Figure 28-10. Using CSS framework styles in Angular animations

Table 28-9. The AnimationTransitionEvent Properties

Name Description

fromState This property returns the state that the element is exiting.

toState This property returns the state that the element is entering.

totalTime This property returns the duration of the animation.

ChAPTer 28 ■ UsIng AnIMATIOn

751

The animation directive provides start and done properties that can be used in event bindings, as
shown in Listing 28-21.

Listing 28-21. Binding to Animation Events in the table.component.html File

<div class="form-group bg-info p-a-1">
 <label>Category</label>
 <select [(ngModel)]="highlightCategory" class="form-control">
 <option value="">None</option>
 <option *ngFor="let category of categories">
 {{category}}
 </option>
 </select>
</div>
<table class="table table-sm table-bordered table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tr *ngFor="let item of getProducts()"
 [@rowHighlight]="getRowState(item.category)"
 (@rowHighlight.start)="writeAnimationEvent($event, item.name, true)"
 (@rowHighlight.done)="writeAnimationEvent($event, item.name, false)">
 <td style="vertical-align:middle">{{item.id}}</td>
 <td style="vertical-align:middle">{{item.name}}</td>
 <td style="vertical-align:middle">{{item.category}}</td>
 <td style="vertical-align:middle">
 {{item.price | currency:"USD":true }}
 </td>
 <td class="text-xs-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
</table>
<div class="col-xs-12 p-t-1">
 <button class="btn btn-primary" routerLink="/form/create">
 Create New Product
 </button>
</div>

These bindings target a component method called writeAnimationEvent, which is given the event, the
name of the product that the tr element displays, and whether or not this is the start event. Listing 28-22
shows the implementation of this method in the component, which simply writes out the details to the
browser’s JavaScript console.

ChAPTer 28 ■ UsIng AnIMATIOn

752

Listing 28-22. Handling Animation Events in the table.component.ts File

import { Component, Inject } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
import { HighlightTrigger } from "./table.animations";
import { AnimationTransitionEvent } from "@angular/core";

@Component({
 selector: "paTable",
 moduleId: module.id,
 templateUrl: "table.component.html",
 animations: [HighlightTrigger]
})
export class TableComponent {
 category: string = null;

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): string[] {
 return this.model.getProducts()
 .map(p => p.category)
 .filter((category, index, array) => array.indexOf(category) == index);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 highlightCategory: string = "";

 getRowState(category: string): string {
 return this.highlightCategory == "" ? "" :
 this.highlightCategory == category ? "selected" : "notselected";
 }

ChAPTer 28 ■ UsIng AnIMATIOn

753

 writeAnimationEvent(event: AnimationTransitionEvent,
 name: string, start: boolean) {
 console.log("Animation " + name + " " + (start ? 'Start' : 'Done')
 + " from: " + event.fromState + " to: " + event.toState + " time: "
 + event.totalTime);
 }
}

When you pick a category, you will see details of the animations for each table row displayed in the
browser’s JavaScript console, like this:

Animation Lifejacket Start from: notselected to: selected time: 600
Animation Soccer Ball Start from: selected to: notselected time: 200
Animation Corner Flags Start from: selected to: notselected time: 200
Animation Stadium Start from: selected to: notselected time: 200
Animation Soccer Ball Done from: selected to: notselected time: 200
Animation Corner Flags Done from: selected to: notselected time: 200
Animation Stadium Done from: selected to: notselected time: 200
Animation Kayak Done from: notselected to: selected time: 600
Animation Lifejacket Done from: notselected to: selected time: 600

Summary
I described the Angular animation system in this chapter and explained how it uses data bindings to
animate changes in the application’s state. In the next chapter, I describe the features that Angular provides
to support unit testing.

755© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9_29

CHAPTER 29

Angular Unit Testing

In this chapter, I describe the tools that Angular provides for unit testing components and directives. Some
Angular building blocks, such as pipes and services, can be readily tested in isolation using the basic testing
tools that I set up at the start of the chapter. Components (and, to a lesser extent, directives) have complex
interactions with their host elements and with their template content and require special features. Table 29-1
puts Angular unit testing in context.

Table 29-1. Putting Angular Unit Testing Context

Question Answer

What is it? Angular components and directives require special support for
testing so that their interactions with other parts of the application
infrastructure can be isolated and inspected.

Why is it useful? Isolated unit tests are able to assess the basic logic provided by the
class that implements a component or directive but do not capture
the interactions with host elements, services, templates, and other
important Angular features.

How is it used? Angular provides a test bed that allows a realistic application
environment to be created and then used to perform unit tests.

Are there any pitfalls or limitations? Like much of Angular, the unit testing tools are complex. It can
take some time and effort to get to the point where unit tests are
easily written and run and you are sure that you have isolated the
correct part of the application for testing.

Are there any alternatives? As noted, you don’t have to unit test your projects. But if you do
want to unit testing, then you will need to use the Angular features
described in this chapter.

Chapter 29 ■ angular unit testing

756

Table 29-2 summarizes the chapter.

DECIDING WHETHER TO UNIT TEST

unit testing is a contentious topic. this chapter assumes you do want to do unit testing and shows you
how to set up the tools and apply them to angular components and directives. it isn’t an introduction to
unit testing, and i make no effort to persuade skeptical readers that unit testing is worthwhile. if would
like an introduction to unit testing, then there is a good article here: https://en.wikipedia.org/wiki/
Unit_testing.

i like unit testing, and i use it in my own projects—but not all of them and not as consistently as you
might expect. i tend to focus on writing unit tests for features and functions that i know will be hard to
write and that are likely to be the source of bugs in deployment. in these situations, unit testing helps
structure my thoughts about how to best implement what i need. i find that just thinking about what i
need to test helps produce ideas about potential problems, and that’s before i start dealing with actual
bugs and defects.

that said, unit testing is a tool and not a religion, and only you know how much testing you require.
if you don’t find unit testing useful or if you have a different methodology that suits you better, then
don’t feel you need to unit test just because it is fashionable. (however, if you don’t have a better
methodology and you are not testing at all, then you are probably letting users find your bugs, which is
rarely ideal.)

Table 29-2. Chapter Summary

Problem Solution Listing

Prepare for unit testing Add the Karma and Jasmine packages to the project and
configure them.

1–8

Perform a basic test on a
component

Initialize a test module and create an instance of the
component. If the component has an external template,
an additional compilation step must be performed.

9–12, 14–16

Test a component’s data
bindings

Use the DebugElement class to query the component’s
template.

13

Test a component’s response to
events

Trigger the events using the debug element. 14–19

Test a component’s output
properties

Subscribe to the EventEmitter created by the
component.

20, 21

Test a component’s input
properties

Create a test component whose template applies the
component under test.

22, 23

Perform a test that relies on an
asynchronous operation

Use the whenStable method to defer the test until the
effect of the operation has been processed.

24, 25

Test a directive Create a test component whose template applies the
directive under test.

26, 27

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing

Chapter 29 ■ angular unit testing

757

Preparing the Example Project
I continue to use the exampleApp project from earlier chapters. I need a simple target to focus on for unit
testing, so Listing 29-1 changes the routing configuration so that the ondemand feature module is loaded by
default.

Listing 29-1. Changing the Routing Configuration in the app.routing.ts File

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";
import { LoadGuard } from "./load.guard";

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: "app/ondemand/ondemand.module#OndemandModule"
 },
 { path: "", redirectTo: "/ondemand", pathMatch: "full" }
]

export const routing = RouterModule.forRoot(routes);

This module contains some simple components that I will use to demonstrate different unit testing
features. To keep the content shown by the application simple, Listing 29-2 tidies up the template displayed
by the top-level component in the feature module.

Listing 29-2. Simplifying the Template in the ondemand.component.html File

<div class="col-xs-12 p-a-1">
 <router-outlet></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="left"></router-outlet>
</div>
<div class="col-xs-6">
 <router-outlet name="right"></router-outlet>
</div>
<div class="p-a-1">
 <button class="btn btn-secondary m-t-1" routerLink="/ondemand">Normal</button>
 <button class="btn btn-secondary m-t-1" routerLink="/ondemand/swap">Swap</button>
</div>

Chapter 29 ■ angular unit testing

758

Adding the Testing Packages
To set up and perform unit tests, I added a number of packages to the project, as shown in Listing 29-3.

 ■ Caution You can use any modern browser for running angular applications, but the examples in this
chapter assume you are using google Chrome to run the unit tests. You will need to install Chrome if you want
to follow the examples.

Listing 29-3. Adding Unit Testing Packages in the package.json File

{
 "dependencies": {
 "@angular/common": "2.2.0",
 "@angular/compiler": "2.2.0",
 "@angular/core": "2.2.0",
 "@angular/platform-browser": "2.2.0",
 "@angular/platform-browser-dynamic": "2.2.0",
 "@angular/upgrade": "2.2.0",
 "@angular/forms": "2.2.0",
 "@angular/http": "2.2.0",
 "@angular/router": "3.2.0",
 "reflect-metadata": "0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "0.6.26",
 "core-js": "2.4.1",
 "classlist.js": "1.1.20150312",
 "systemjs": "0.19.40",
 "bootstrap": "4.0.0-alpha.4",
 "intl": "1.2.4",
 "html5-history-api": "4.2.7",
 "web-animations-js": "2.2.2"
 },

 "devDependencies": {
 "lite-server": "2.2.2",
 "typescript": "2.0.2",
 "typings": "1.3.2",
 "concurrently": "2.2.0",
 "systemjs-builder": "0.15.32",
 "json-server": "0.8.21",
 "jasmine-core": "2.5.2",
 "karma": "1.3.0",
 "karma-jasmine": "1.0.2",
 "karma-chrome-launcher": "2.0.0"
 },

 "scripts": {
 "start": "concurrently \"npm run tscwatch\" \"npm run lite\" \"npm run json\" ",
 "tsc": "tsc",

Chapter 29 ■ angular unit testing

759

 "tscwatch": "tsc -w",
 "lite": "lite-server",
 "json": "json-server --p 3500 restData.js",
 "karma": "karma start karma.conf.js",
 "tests": "npm run karma"
 "typings": "typings",
 "postinstall": "typings install"
 }
}

I use two different tools to perform unit testing in this chapter. Jasmin is a popular unit testing
framework that allows test to be defined and evaluated. The code that is contained in the unit test files is
written using the Jasmine API, which I describe in the “Working with Jasmine” section.

Karma is a test runner, which means it monitors the files in a project and runs the tests that have been
defined using Jasmine when it detects a change. Together, these tools make it easy to define and run unit
tests in JavaScript projects. There are some wrinkles introduced by Angular, however, which means that the
process for configuring Karma and writing unit tests for Angular applications requires some measures that
are not required for unit testing other kinds of JavaScript code.

Save the changes to the package.json file and run the following command in the exampleApp folder to
download and install the new packages:

npm install

Configuring Karma
The most difficult part of setting up unit testing is getting the correct configuration, which can require some
trial and error. The problem is that testing Angular applications requires using the JavaScript module loader
to handle the dependencies in the application so that the unit test can access Angular functionality, which in
turn requires the JavaScript packages that Angular relies on. The first step is to create a Karma configuration
file, which I did by adding a file called karma.conf.js to the exampleApp folder and adding the configuration
code shown in Listing 29-4.

Listing 29-4. The Contents of the karma.conf.js File in the exampleApp Folder

module.exports = (config) => { config.set({
frameworks: ["jasmine"],
plugins: [require("karma-jasmine"), require("karma-chrome-launcher")],

files: [
 "node_modules/reflect-metadata/Reflect.js",
 "node_modules/systemjs/dist/system.src.js",
 "node_modules/zone.js/dist/zone.js",
 "node_modules/zone.js/dist/proxy.js",
 "node_modules/zone.js/dist/sync-test.js",
 "node_modules/zone.js/dist/jasmine-patch.js",
 "node_modules/zone.js/dist/async-test.js",
 "node_modules/zone.js/dist/fake-async-test.js",
 { pattern: "node_modules/rxjs/**/*.js", included: false, watched: false },
 { pattern: "node_modules/@angular/**/*.js", included: false, watched: false },

Chapter 29 ■ angular unit testing

760

 { pattern: "app/**/*.js", included: false, watched: true },
 { pattern: "app/**/*.html", included: false, watched: true },
 { pattern: "app/**/*.css", included: false, watched: true },
 { pattern: "tests/**/*.js", included: false, watched: true },

 { pattern: "karma-test-shim.js", included: true, watched: true },
],
reporters: ["progress"],
port: 9876,
colors: true,
logLevel: config.LOG_INFO,
autoWatch: true,
browsers: ["Chrome"],
singleRun: false
})}

The most important part of the configuration is the files section, which is used to configure the files
that will be used in unit testing. The first set of entries includes the files required to support Angular unit
testing and provide Karma with the Reactive Extensions and Angular framework files. The second set of files
tells Karma how to find the application’s JavaScript, HTML, and CSS files, as well as the test files.

 ■ Tip i like to keep my unit tests separate from the rest of the application in a folder called tests. some
developers prefer to mix tests and code side by side, and either approach can be used in angular unit testing.

The final entry specifies a file called karma-test-shim.js, which is responsible for setting up the test
environment required by Angular. I added this file in the exampleApp folder and added the code shown in
Listing 29-5.

Listing 29-5. The Contents of the karma-test-shim.js File in the exampleApp Folder

__karma__.loaded = function () {};

let map = { "rxjs": "node_modules/rxjs" };

var angularModules = ["common", "compiler", "core", "platform-browser",
 "platform-browser-dynamic", "forms", "http", "router"];

angularModules.forEach(module => {
 map[`@angular/${module}`] =
 `node_modules/@angular/${module}/bundles/${module}.umd.js`;
 map[`@angular/${module}/testing`] =
 `node_modules/@angular/${module}/bundles/${module}-testing.umd.js`
});

System.config({ baseURL: "/base", map: map, defaultJSExtensions: true });

Promise.all([
 System.import("@angular/core/testing"),
 System.import("@angular/platform-browser-dynamic/testing")

Chapter 29 ■ angular unit testing

761

]).then(providers => {
 var testing = providers[0];
 var testingBrowser = providers[1];

 testing.TestBed.initTestEnvironment(testingBrowser.BrowserDynamicTestingModule,
 testingBrowser.platformBrowserDynamicTesting());

}).then(() => Promise.all(Object.keys(window.__karma__.files)
 .filter(name => name.endsWith("spec.js"))
 .map(moduleName => System.import(moduleName))))
.then(__karma__.start, __karma__.error);

The first part of the file creates the SystemJS configuration that will be used to resolve JavaScript module
dependencies. The second part creates a Promise that loads the basic testing modules, sets up the Angular
testing framework, and imports the unit tests.

 ■ Tip in this chapter, i define unit tests in files whose names end with spec.js. there is a filter function in
listing 29-5 that uses this naming convention to locate the unit tests in the project. You will need to modify this
function if you use a different naming convention.

Configuring TypeScript
TypeScript requires type annotations so that it can understand the Jasmine API. Run the following command
in the exampleApp folder to download and install type information for Jasmine:

npm run typings -- install dt~jasmine --save --global

Creating a Simple Unit Test
To make sure that the unit testing framework is working, it is helpful to create a basic unit test. I added a file
called frameworkTest.spec.ts in the tests folder and added the code shown in Listing 29-6.

Listing 29-6. The Contents of the frameworkTest.spec.ts File in the exampleApp/tests Folder

describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(true));
});

I explain the basics of working with the Jasmine API shortly, and you can ignore the syntax for the
moment.

Starting the Tools
I am going to run the unit tests alongside the application, which will allow me to add features to the
application and test the same time. This requires two command prompts. In the first, navigate to the
exampleApp folder and run the following command:

Chapter 29 ■ angular unit testing

762

npm start

This command starts the TypeScript compiler, the development HTTP server, and the RESTful web
service. A new browser tab will open and show the content illustrated by Figure 29-1.

Using a second command prompt, navigate to the exampleApp folder and run the following command:

npm run tests

This command uses the scripts entry I added to the package.json file at the start of the chapter and
starts the Karma test runner. A new tab will appear, as shown in Figure 29-2.

Figure 29-1. Running the example application

Figure 29-2. Starting the Karma test runner

Chapter 29 ■ angular unit testing

763

The browser window is used to run the tests, but the important information is written out to the
command prompt used to start the test runner, where you will see a message like this:

Chrome 54.0.2840 (Windows 10 0.0.0): Executed 1 of 1 SUCCESS (0.002 secs / 0 secs)

This shows that the one unit test in the project has been located and has been executed successfully.
Whenever you make a change that updates one of the JavaScript files in the project, the unit tests will be
located and executed, and any problems will be written to the command prompt. To show what an error
looks like, Listing 29-7 changes the unit test so that it will fail.

Listing 29-7. Making a Unit Test Fail in the frameworkTest.spec.ts File

describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(false));
});

This test will fail and will result in the following output, which indicates the test that has failed and what
went wrong:

Chrome 54.0.2840 (Windows 10 0.0.0) Jasmine Test Environment is working FAILED
[1] Expected true to be false.
[1] at Object.eval (tests/frameworkTest.spec.js:2:56)
[1] at ZoneDelegate.invoke (node_modules/zone.js/dist/zone.js:232:26)
[1] at ProxyZoneSpec.onInvoke (node_modules/zone.js/dist/proxy.js:79:39)
[1] at ZoneDelegate.invoke (node_modules/zone.js/dist/zone.js:231:32)
Chrome 54.0.2840 (Windows 10 0.0.0): Executed 1 of 1 (1 FAILED) ERROR

Working with Jasmine
The API that Jasmine provides chains together JavaScript methods to define unit tests. You can find the
full documentation for Jasmine at http://jasmine.github.io, but Table 29-3 describes the most useful
functions for Angular testing.

Table 29-3. Useful Jasmine Methods

Name Description

describe(description,
function)

This method is used to group together a set of related tests.

beforeEach(function) This method is used to specify a task that is performed before
each unit test.

afterEach(function) This method is used to specify a test that is performed after
each unit test.

it(description, function) This method is used to perform the test action.

expect(value) This method is used to identity the result of the test.

toBe(value) This method specifies the expected value of the test.

http://jasmine.github.io/

Chapter 29 ■ angular unit testing

764

You can see how the methods in Table 29-3 were used to create the unit test in Listing 29-7.

...
describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(false));
});
...

You can also see why the test has failed, since the expect and toBe methods have been used to check
that true and false are equal. Since this cannot be the case, the test fails.

The toBe method isn’t the only way to evaluate the result of a unit test. Table 29-4 shows other
evaluation methods provided by Angular.

Listing 29-8 shows how these evaluation methods can be used in tests, replacing the failing test from the
previous section.

Listing 29-8. Replacing the Unit Test in the frameworkTest.spec.ts File

describe("Jasmine Test Environment", () => {
 it("test numeric value", () => expect(12).toBeGreaterThan(10));
 it("test string value", () => expect("London").toMatch("^Lon"));
});

When you save the changes to the file, the tests will be executed, and the results will be shown in the
command prompt.

Table 29-4. Useful Jasmine Evaluation Methods

Name Description

toBe(value) This method asserts that a result is the same as the specified value (but
need not be the same object).

toEqual(object) This method asserts that a result is the same object as the specified value.

toMatch(regexp) This method asserts that a result matches the specified regular expression.

toBeDefined() This method asserts that the result has been defined.

toBeUndefined() This method asserts that the result has not been defined.

toBeNull() This method asserts that the result is null.

toBeTruthy() This method asserts that the result is truthy, as described in Chapter 12.

toBeFalsy() This method asserts that the result is falsy, as described in Chapter 12.

toContain(substring) This method asserts that the result contains the specified substring.

toBeLessThan(value) This method asserts that the result is less than the specified value.

toBeGreaterThan(value) This method asserts that the result is more than the specified value.

http://dx.doi.org/10.1007/978-1-4842-2307-9_12
http://dx.doi.org/10.1007/978-1-4842-2307-9_12

Chapter 29 ■ angular unit testing

765

Testing an Angular Component
The building blocks of an Angular application can’t be tested in isolation because they depend on the
underlying features provided by Angular and by the other parts of the project, including the services,
directives, templates, and modules it contains. As a consequence, testing a building block such as a
component means using testing utilities that are provided by Angular to re-create enough of the application
to let the component function so that tests can be performed against it. In this section, I walk through the
process of performing a unit test on the FirstComponent class in the OnDemand feature module, which was
added to the project in Chapter 27. As a reminder, here is the definition of the component:

import { Component } from "@angular/core";

@Component({
 selector: "first",
 template: `<div class="bg-primary p-a-1">First Component</div>`
})
export class FirstComponent { }

This component is so simple that it doesn’t have functionality of its own to test, but it is enough to
demonstrate how the test process is applied.

Working with the TestBed Class
At the heart of Angular unit testing is a class called TestBed, which is responsible for simulating the Angular
application environment so that tests can be performed. Table 29-5 describes the most useful methods
provided by the TestBed method, all of which are static, as described in Chapter 6.

The configureTestingModule method is used to configure the Angular module that is used in testing,
using the same properties supported by the @NgModel decorator. Just like in a real application, a component
cannot be used in a unit test unless it has been added to the declarations property of the module. This
means that the first step in most unit tests is to configure the testing module. To demonstrate, I added a file
called first.component.spec.ts in the tests folder and added the code shown in Listing 29-9.

Listing 29-9. The Contents of the first.component.spec.ts File in the tests Folder

import { TestBed } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";

describe("FirstComponent", () => {

Table 29-5. Useful TestBed Methods

Name Description

configureTestingModule This method is used to configure the Angular testing module.

createComponent This method is used to create an instance of the component.

compileComponents This method is used to compile components, as described in the “Testing a
Component with an External Template” section.

http://dx.doi.org/10.1007/978-1-4842-2307-9_27
http://dx.doi.org/10.1007/978-1-4842-2307-9_6

Chapter 29 ■ angular unit testing

766

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent]
 });
 });
});

The TestBed class is defined in the @angular/core/testing module, and the configureTestingModule
accepts an object whose declarations property tells the test module that the FirstComponent class is going
to be used.

 ■ Tip notice that the TestBed class is used within the beforeEach function. if you try to use the TestBed
outside of this function, you will see an error about using Promises.

The next step is to create a new instance of the component so that it can be used in tests. This is done
using the createComponent method, as shown in Listing 29-10.

Listing 29-10. Creating an Instance of the Component in the first.component.spec.ts File

import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent]
 });
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 });

 it("is defined", () => {
 expect(component).toBeDefined()
 });
});

The argument to the createComponent method tells the test bed which component type it should
instantiate, which is FirstComponent in this case. The result is a ComponentFixture<FirstComponent >
object, which provides features for testing a component, using the methods and properties described in
Table 29-6.

Chapter 29 ■ angular unit testing

767

In the listing, I use the componentInstance property to get the FirstComponent object that has been
created by the test bed and perform a simple test to ensure that it has been created by using the expect
method to select the component object as the target of the test and the toBeDefined method to perform the
test. I demonstrate the other methods and properties in the sections that follow.

 ■ Tip the initial configuration for the TestBed class is performed in the karma-test-shim.js file, which is
shown in listing 29-5, and prepares the testing environment so that it can be used in individual unit tests.

Configuring the Test Bed for Dependencies
One of the most important features of Angular applications is dependency injection, which allows
components and other building blocks to receive services by declaring dependencies on them using
constructor parameters. Listing 29-11 adds a dependency on the data model repository service to the
FirstComponent class.

Listing 29-11. Adding a Service Dependency in the first.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 template: `<div class="bg-primary p-a-1">
 There are
 {{getProducts().length}}
 products
 </div>`
})

Table 29-6. Useful ComponentFixture Methods and Properties

Name Description

componentInstance This property returns the component object.

debugElement This property returns the test host element for the component.

nativeElement This property returns the DOM object representing the host element for the
component.

detectChanges() This method causes the test bed to detect state changes and reflect them in the
component’s template.

whenStable() This method returns a Promise that is resolved when the effect of an operation
has been fully applied. See the “Testing with Asynchronous Operations” section
for details.

Chapter 29 ■ angular unit testing

768

export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }
}

The component uses the repository to provide a filtered collection of Product objects, which are
exposed though a method called getProducts and filtered using a category property. The inline template
has a corresponding data binding that displays the number of products that the getProducts method
returns.

Being able to unit test the component means providing it with a repository service. The Angular test bed
will take care of resolving dependencies as long as they are configured through the test module. Effective unit
testing generally requires components to be isolated from the rest of the application, which means that mock
or fake objects (also known as test doubles) are used as substitutes for real services in unit tests. Listing 29-12
configures the test bed so that a fake repository is used to provide the component with its service.

Listing 29-12. Providing a Service in the first.component.spec.ts File

import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });

Chapter 29 ■ angular unit testing

769

 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 });

 it("filters categories", () => {
 component.category = "Chess"
 expect(component.getProducts().length).toBe(1);
 component.category = "Soccer";
 expect(component.getProducts().length).toBe(2);
 component.category = "Running";
 expect(component.getProducts().length).toBe(0);
 });
});

The mockRepository variable is assigned an object that provides a getProducts method that returns
fixed data that can be used to test for known outcomes. To provide the component with the service, the
providers property for the object passed to the TestBed.configureTestingModule method is configured in
the same way as a real Angular module, using the value provider to resolve dependencies on the Model class
using the mockRepository variable. The test invokes the component’s getProducts method and compares
the results with the expected outcome, changing the value of the category property to check different filters.

Testing Data Bindings
The previous example showed how a component’s properties and methods can be used in a unit test. This
is a good start, but many components will also include small fragments of functionality in the data binding
expressions contained in their templates, and these should be tested as well. Listing 29-13 checks that the
data binding in the component’s template correctly displays the number of products in the mock data
model.

Listing 29-13. Unit Testing a Data Binding in the first.component.spec.ts File

import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let bindingElement: HTMLSpanElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),

Chapter 29 ■ angular unit testing

770

 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 bindingElement = debugElement.query(By.css("span")).nativeElement;
 });

 it("filters categories", () => {
 component.category = "Chess"
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(1);
 expect(bindingElement.textContent).toContain("1");

 component.category = "Soccer";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(2);
 expect(bindingElement.textContent).toContain("2");

 component.category = "Running";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(0);
 expect(bindingElement.textContent).toContain("0");
 });
});

The ComponentFixture.debugElement property returns a DebugElement object that represents the
root element from the component’s template, and Table 29-7 lists the most useful methods and properties
described by the DebugElement class.

Chapter 29 ■ angular unit testing

771

Locating elements is done through the query and queryAll methods, which accept functions that
inspect DebugElement objects and return true if they should be included in the results. The By class, defined
in the @angular/platform-browser module, makes it easier to locate elements in the component’s template
through the static methods described in Table 29-8.

In the listing, I use the By.css method to locate the first span element in the template and access the
DOM object that represents it through the nativeElement property so that I can check the value of the
textContent property in the unit tests.

Notice that after each change to the component’s category property, I call the ComponentFixture
object’s detectChanges method, like this:

...
component.category = "Soccer";
fixture.detectChanges();
expect(component.getProducts().length).toBe(2);
expect(bindingElement.textContent).toContain("2");
...

Table 29-7. Useful DebugElement Properties and Methods

Name Description

nativeElement This property returns the object that represents the HTML
element in the DOM.

children This property returns an array of DebugElement objects
representing the children of this element.

query(selectorFunction) The selectorFunction is passed a DebugElement object for each
HTML element in the component’s template, and this method
returns the first DebugElement for which the function returns
true.

queryAll(selectorFunction) Similar to the query method, except the result is all the
DebugElement objects for which the function returns true.

triggerEventHandler(name, event) This method triggers an event. See the “Testing Component
Events” section for details.

Table 29-8. The By Methods

Name Description

By.all() This method returns a function that matches any element.

By.css(selector) This method returns a function that uses a CSS selector to match elements.

By.directive(type) This method returns a function that matches elements to which the specified
directive class has been applied, as demonstrated in the “Testing Input
Properties” section.

Chapter 29 ■ angular unit testing

772

This method tells the Angular testing environment to process any changes and evaluate the data
binding expressions in the template. Without this method call, the change to the value of the category
component would not be reflected in the template, and the test would fail.

Testing a Component with an External Template
Angular components are compiled into factory classes, either within the browser or by the Ahead-of-
Time compiler that I demonstrated in Chapter 10. As part of this process, Angular processes any external
templates and includes them as text in the JavaScript code that is generated similar to an inline template.
When unit testing a component with an external template, the compilation step must be performed
explicitly. In Listing 29-14, I changed the @Component decorator applied to the FirstComponent class so that
it specifies an external template.

Listing 29-14. Specifying an External Template in the first.component.ts File

import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 moduleId: module.id,
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }
}

To provide the template, I created a file called first.component.html in the exampleApp/app/ondemand
folder and added the elements shown in Listing 29-15.

Listing 29-15. The first.component.html File in the exampleApp/app/ondemand Folder

<div class="bg-primary p-a-1">
 There are
 {{getProducts().length}}
 products
</div>

This is the same content that was previously defined inline. Listing 29-16 updates the unit test for the
component to deal with the external template by explicitly compiling the component.

http://dx.doi.org/10.1007/978-1-4842-2307-9_10

Chapter 29 ■ angular unit testing

773

Listing 29-16. Compiling a Component in the first.component.spec.ts File

import { TestBed, ComponentFixture, async } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let spanElement: HTMLSpanElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 spanElement = debugElement.query(By.css("span")).nativeElement;
 });
 }));

 it("filters categories", () => {
 component.category = "Chess"
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(1);
 expect(spanElement.textContent).toContain("1");
 });
});

Chapter 29 ■ angular unit testing

774

Components are compiled using the TestBed.compileComponents method. The compilation process
is asynchronous, and the compileComponents method returns a Promise, which must be used to complete
the test setup when the compilation is complete. To make it easier to work with asynchronous operations
in unit tests, the @angular/core/testing module contains a function called async, which is used with the
beforeEach method.

Testing Component Events
To demonstrate how to test for a component’s response to events, I defined a new property in the
FirstComponent class and added a method to which the @HostBinding decorator has been applied, as
shown in Listing 29-17.

Listing 29-17. Adding Event Handling in the first.component.ts File

import { Component, HostListener} from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 moduleId: module.id,
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";
 highlighted: boolean = false;

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }

 @HostListener("mouseenter", ["$event.type"])
 @HostListener("mouseleave", ["$event.type"])
 setHighlight(type: string) {
 this.highlighted = type == "mouseenter";
 }
}

The setHighlight method has configured so that it will be invoked when the host element’s
mouseenter and mouseleave events are triggered. Listing 29-18 updates the component’s template so that it
uses the new property in a data binding.

Listing 29-18. Binding to a Property in the first.component.html File

<div class="bg-primary p-a-1" [class.bg-success]="highlighted">
 There are
 {{getProducts().length}}
 products
</div>

Chapter 29 ■ angular unit testing

775

Events can be triggered in unit tests through the triggerEventHandler method defined by the
DebugElement class, as shown in Listing 29-19.

Listing 29-19. Triggering Events in the first.component.spec.ts File

import { TestBed, ComponentFixture, async } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let divElement: HTMLDivElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 divElement = debugElement.children[0].nativeElement;
 });
 }));

 it("handles mouse events", () => {
 expect(component.highlighted).toBeFalsy();
 expect(divElement.classList.contains("bg-success")).toBeFalsy();
 debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 fixture.detectChanges();
 expect(component.highlighted).toBeTruthy();
 expect(divElement.classList.contains("bg-success")).toBeTruthy();
 debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));

Chapter 29 ■ angular unit testing

776

 fixture.detectChanges();
 expect(component.highlighted).toBeFalsy();
 expect(divElement.classList.contains("bg-success")).toBeFalsy();
 });
});

The test in this listing checks the initial state of the component and the template and then triggers the
mouseenter and mouseleave events, checking the effect that each has.

Testing Output Properties
Testing output properties is a simple process because the EventEmitter objects used to implement them
are Observable objects that can be subscribed to in unit tests. Listing 29-20 adds an output property to the
component under test.

Listing 29-20. Adding an Output Property in the first.component.ts File

import { Component, HostListener, Output, EventEmitter} from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 moduleId: module.id,
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";
 highlighted: boolean = false;

 @Output("pa-highlight")
 change = new EventEmitter<boolean>();

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }

 @HostListener("mouseenter", ["$event.type"])
 @HostListener("mouseleave", ["$event.type"])
 setHighlight(type: string) {
 this.highlighted = type == "mouseenter";
 this.change.emit(this.highlighted);
 }
}

The component defines an output property called change, which is used to emit an event when the
setHighlight method is called. Listing 29-21 shows a unit test that targets the output property.

Chapter 29 ■ angular unit testing

777

Listing 29-21. Testing an Output Property in the first.component.spec.ts File

import { TestBed, ComponentFixture, async } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 });
 }));

 it("implements output property", () => {
 let highlighted: boolean;
 component.change.subscribe(value => highlighted = value);
 debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 expect(highlighted).toBeTruthy();
 debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));
 expect(highlighted).toBeFalsy();
 });
});

I could have invoked the component’s setHighlight method directly in the unit test, but instead I have
chosen to trigger the mouseenter and mouseleave events, which will activate the output property indirectly.
Before triggering the events, I use the subscribe method to receive the event from the output property,
which is then used to check for the expected outcomes.

Chapter 29 ■ angular unit testing

778

Testing Input Properties
The process for testing input properties requires a little extra work. To get started, I added an input property
to the FirstComponent class that is used to receive the data model repository, replacing the service that was
received by the constructor, as shown in Listing 29-22. I have also removed the host event bindings and the
output property in order to keep the example simple.

Listing 29-22. Adding an Input Property in the first.component.ts File

import { Component, HostListener, Input } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 moduleId: module.id,
 templateUrl: "first.component.html"
})
export class FirstComponent {

 category: string = "Soccer";
 highlighted: boolean = false;

 getProducts(): Product[] {
 return this.model == null ? [] : this.model.getProducts()
 .filter(p => p.category == this.category);
 }

 @Input("pa-model")
 model: Model;
}

The input property is set using an attribute called pa-model and is used within the getProducts
method. Listing 29-23 shows how to write a unit test that targets the input property.

Listing 29-23. Testing an Input Property in the first.component.spec.ts File

import { TestBed, ComponentFixture, async } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";
import { Component, ViewChild } from "@angular/core";

@Component({
 template: `<first [pa-model]="model"></first>`
})
class TestComponent {

 constructor(public model: Model) { }

Chapter 29 ■ angular unit testing

779

 @ViewChild(FirstComponent)
 firstComponent: FirstComponent;
}

describe("FirstComponent", () => {

 let fixture: ComponentFixture<TestComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent, TestComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(TestComponent);
 component = fixture.componentInstance.firstComponent;
 debugElement = fixture.debugElement.query(By.directive(FirstComponent));
 });
 }));

 it("receives the model through an input property", () => {
 component.category = "Chess";
 fixture.detectChanges();
 let products = mockRepository.getProducts()
 .filter(p => p.category == component.category);
 let componentProducts = component.getProducts();
 for (let i = 0; i < componentProducts.length; i++) {
 expect(componentProducts[i]).toEqual(products[i]);
 }
 expect(debugElement.query(By.css("span")).nativeElement.textContent)
 .toContain(products.length);
 });
});

The trick here is to define a component that is only required to set up the test and whose template
contains an element that matches the selector of the component you want to target. In this example,
I defined a component class called TestComponent with an inline template defined in the @Component

Chapter 29 ■ angular unit testing

780

decorator that contains a first element with a pa-model attribute, which corresponds to the @Input
decorator applied to the FirstComponent class in Listing 29-22.

The test component class is added to the declarations array for the testing module, and an
instance is created using the TestBed.createComponent method. I used the @ViewChild decorator in the
TestComponent class so that I can get hold of the FirstComponent instance I require for the test. To get the
FirstComponent root element, I used the DebugElement.query method with the By.directive method.

The result is that I am able to access both the component and its root element for the test, which sets
the category property and then validates the results both from the component and through the data binding
in its template.

Testing with Asynchronous Operations
Another area that requires special measures is dealing with asynchronous operations. To demonstrate how
this is done, Listing 29-24 modifies the component under test so that it uses the RestDataSource class,
defined in Chapter 24, to get its data. This isn’t a class that was intended for use outside of the model feature
module, but it provides a useful set of asynchronous methods that return Observable objects, so I have
broken through the intended structure of the application so that I can demonstrate the test technique.

Listing 29-24. Performing an Asynchronous Operation in the first.component.ts File

import { Component, HostListener, Input } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { RestDataSource } from "../model/rest.datasource";
import { Observable } from "rxjs/Observable";

@Component({
 selector: "first",
 moduleId: module.id,
 templateUrl: "first.component.html"
})
export class FirstComponent {
 _category: string = "Soccer";
 _products: Product[] = [];
 highlighted: boolean = false;

 constructor(public datasource: RestDataSource) {}

 ngOnInit() {
 this.updateData();
 }

 getProducts(): Product[] {
 return this._products;
 }

 set category(newValue: string) {
 this._category;
 this.updateData();
 }

http://dx.doi.org/10.1007/978-1-4842-2307-9_24

Chapter 29 ■ angular unit testing

781

 updateData() {
 this.datasource.getData()
 .subscribe(data => this._products = data
 .filter(p => p.category == this._category));
 }
}

The component gets its data through the data source’s getData method, which returns an Observable
object. The component subscribes to the Observable and updates its _product property with the data
objects, which is exposed to the template through the getProducts method.

Listing 29-25 shows how this kind of component can be tested using the tools Angular provides for
working with asynchronous operations in unit tests.

Listing 29-25. Testing an Asynchronous Operation in the first.component.spec.ts File

import { TestBed, ComponentFixture, async } from "@angular/core/testing";
import { FirstComponent } from "../app/ondemand/first.component";
import { Product } from "../app/model/product.model";
import { Model } from "../app/model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";
import { Component, ViewChild } from "@angular/core";
import { RestDataSource } from "../app/model/rest.datasource";
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/from";
import { Injectable } from "@angular/core";

@Injectable()
class MockDataSource {
 public data = [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
];

 getData(): Observable<Product[]> {
 return new Observable<Product>(obs => {
 setTimeout(() => obs.next(this.data), 1000);
 })
 }
}

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let dataSource = new MockDataSource();

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],

Chapter 29 ■ angular unit testing

782

 providers: [
 { provide: RestDataSource, useValue: dataSource }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 });
 }));

 it("performs async op", () => {
 dataSource.data.push(new Product(100, "test100", "Soccer", 100));
 fixture.detectChanges();

 fixture.whenStable().then(() => {
 expect(component.getProducts().length).toBe(3);
 });
 });
});

The mock object in this example is more fully formed than the one I created previously, just to show
different ways of achieving the same goal. The important point to note is that the getData method it
implements introduces a one-second delay before it returns the sample data.

This delay is important because it means that the effect of calling the detectChanges method in the
unit test won’t affect the component immediately. To deal with this, I call the whenStable method defined
by the ComponentFixture class, which returns a Promise that resolves when all the changes have been fully
processed. This allows me to defer the assessment of the outcome of the test until the Observable returned
by the mock data source has delivered its data to the component.

Testing an Angular Directive
The process for testing directives is similar to the one required to test input properties, in that a test
component and template are used to create an environment for testing in which the directive can be
applied. In order that I have a directive to test, I added a file called attr.directive.ts to the exampleApp/
app/ondemand folder and added the code shown in Listing 29-26.

 ■ Note i have shown an attribute directive in this example, but the technique in this section can be used to
test structural directives equally well.

Listing 29-26. The Contents of the attr.directive.ts File in the exampleApp/app/ondemand Folder

import {
 Directive, ElementRef, Attribute, Input, SimpleChange
} from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})

Chapter 29 ■ angular unit testing

783

export class PaAttrDirective {

 constructor(private element: ElementRef) { }

 @Input("pa-attr")
 bgClass: string;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;
 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

This is an attribute directive based on an example from Chapter 15. To create a unit test that targets the
directive, I added a file called attr.directive.spec.ts to the exampleApp/tests folder and added the code
shown in Listing 29-27.

Listing 29-27. The Contents of the attr.directive.spec.ts File in the exampleApp/tests Folder

import { TestBed, ComponentFixture } from "@angular/core/testing";
import { Component, DebugElement, ViewChild } from "@angular/core";
import { By } from "@angular/platform-browser";
import { PaAttrDirective } from "../app/ondemand/attr.directive";

@Component({
 template: `<div>Test Content</div>`
})
class TestComponent {
 className = "initialClass"

 @ViewChild(PaAttrDirective)
 attrDirective: PaAttrDirective;
}

describe("PaAttrDirective", () => {

 let fixture: ComponentFixture<TestComponent>;
 let directive: PaAttrDirective;
 let spanElement: HTMLSpanElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [TestComponent, PaAttrDirective],
 });

http://dx.doi.org/10.1007/978-1-4842-2307-9_15

Chapter 29 ■ angular unit testing

784

 fixture = TestBed.createComponent(TestComponent);
 directive = fixture.componentInstance.attrDirective;
 spanElement = fixture.debugElement.query(By.css("span")).nativeElement;
 });

 it("generates the correct number of elements", () => {
 fixture.detectChanges();
 expect(directive.bgClass).toBe("initialClass");
 expect(spanElement.className).toBe("initialClass");

 fixture.componentInstance.className = "nextClass";
 fixture.detectChanges();
 expect(directive.bgClass).toBe("nextClass");
 expect(spanElement.className).toBe("nextClass");
 });
});

The text component has an inline template that applies the directive and a property that is referred to
in the data binding. The @ViewChild decorator provides access to the directive object that Angular creates
when it processes the template, and the unit test is able to check that changing the value used by the data
binding has an effect on the directive object and the element it has been applied to.

Summary
In this chapter, I demonstrated the different ways in which Angular components and directives can be unit
tested. I explained the process for installing the test framework and tools and how to create the test bed
through which tests are applied. I demonstrated how to test the different aspects of components and how
the same techniques can be applied to directives as well.

And that is all I have to teach you about Angular. I started by creating a simple application and then took
you on a comprehensive tour of the different building blocks in the framework, showing you how they can
be created, configured, and applied to create web applications.

I wish you every success in your Angular projects, and I can only hope that you have enjoyed reading
this book as much as I enjoyed writing it.

785© Adam Freeman 2017
A. Freeman, Pro Angular, DOI 10.1007/978-1-4842-2307-9

��������� A
Ahead-of-Time Compiler, 197
Ajax,41. See also HTTP Requests
Animation, 721

element transitions, 737
parallel animations, 743
state transitions, 730
style groups, 744
timing functions, 739
trigger events, 750
triggers, 728, 731

@Attribute decorator, 346
Attribute directives, 337

host element attributes, 343
lifecycle, 348

��������� B
Banana in a box, 304
Bootstrap package, 51, 211

��������� C
classlist.js package, 211
@Component decorator, 403
Components, 399

child components, 409
projecting content, 414
styles, 417
templates, 406

external, 407
view children, 428
view encapsulation, 420

concurrently package, 212
Content children, 390
core-js package, 211
Cross-origin requests. See HTTP Requests
Cross-site scripting (CSS), 45

��������� D
Data bindings, 237

attribute bindings, 247
banana in a box, 304
class bindings, 249
event bindings, 293
expressions, 242
forms, 305

model-based, 324
validation, 307

one-way, 239
restrictions, 282

property bindings, 241
standard property bindings, 244

string interpolation, 246
style bindings, 254
two-way, 301

Decorators
@Attribute, 346
@Component, 403
@Directive, 341
@HostBinding, 354
@HostListener, 354
@Inject, 501
@Injectable, 472
@Input, 347
@NgModule, 528
@Output, 351
@Pipe, 441
@ViewChild, 429
@ViewChildren, 429

Dependency injection. See Services
Development HTTP server, 216
@Directive decorator, 341
Directives, 261

attribute directives (see (Attribute Directives))
micro-templates, 265
ngClass, 251

Index

■ INDEX

786

ngFor, 269
ngIf, 264
ngModel, 303
ngStyle, 256
ngSwitch, 266
ngTemplateOutlet, 279
structural directives (see Structural Directives)

Docker, 203

��������� E
Events, 293

custom events, 351

��������� F, G
Forms, 305

model-based, 324
validation, 307

��������� H
@HostBinding decorator, 354
Host Element Bindings, 354
@HostListener decorator, 354
HTML, 45

attributes, 48
document structure, 49
elements, 47
void elements, 48

HTTP Requests, 593
authentication, 175
configuring, 596
consolidating requests, 608
cross-origin requests, 610
errors, 615
headers, 613
HTTP service, 600
JSONP requests, 611
making requests, 600
responses, 601
RESTful web services, 598

��������� I
@Injectable decorator, 472
@Inject decorator, 501
@Input decorator, 347
Input properties, 347

��������� J, K
JavaScript, 65

arrays, 85
arrow functions, 77

classes, 92
getters and setters, 94
inheritance, 95

closures, 78
functions, 72

parameters, 74
results, 75

modules, 96
objects, 90

methods, 91
object literals, 91

operators, 81
primitives, 79
statements, 72
template strings, 80
variables, 77

JavaScript Module Loader, 228
jQuery, 35
JSON web token, 175

��������� L
lite-server package, 212, 216

��������� M
Maps, 388
Model View Controller pattern, 36
Modules, 525

Angular vs. JavaScript modules, 529
feature modules, 533
root module, 528

MVC. See Model View
Controller pattern

��������� N
ngClass directive, 251
ngFor directive, 269
ngIf directive, 264
ngModel directive, 303
@NgModule decorator, 528
ngStyle directive, 256
ngSwitch directive, 266
ngTemplateOutlet

directive, 279
Node.js, 5

node package manager, 5
Node package manager, 5, 209

��������� O
Observables. See Reactive Extensions
@Output decorator, 351
Output properties, 351

Directives (cont.)

■ INDEX

787

��������� P, Q
@Pipe decorator, 441
Pipes, 433

arguments, 439
built-in, 448

async, 578
currency, 451
date, 456
json, 460
lowercase, 459
number, 449
percent, 454
slice, 461
uppercase, 459

combining, 443
pure and impure, 444
vertical bar, 439

Project
app folder, 208
component

overview, 220
creating, 207
data model, 223
index.html file, 208
overview, 220
package.json, 209

dependencies, 209
devDependencies, 209
scripts, 209

packages
bootstrap, 211
classlist.js, 211
concurrently, 212, 219
core-js, 211
intl.js, 436
lite-server, 212
reflect-metadata, 211
rxjs, 211
systemjs, 211
typescript (see TypeScript)
typings, 212
zone.js, 211

tsconfig.json file, 214
typings.json file, 213
watch processes, 219

��������� R
Reactive Extensions, 569

async pipe, 578
Observables, 574
Observers, 576
Subjects, 577

reflect-metadata package, 211

RESTful web services, 41, 598
authentication, 175

Routing, 621
child routes, 674
configuration, 627

properties, 627
dynamic feature modules, 707
events, 648
guarding, 685

preventing navigation, 693
navigation within a component, 666
ongoing route changes, 668
redirections, 665
resolvers, 686
route outlets, 676
route parameters, 639
routing component, 629
routing in code, 636, 645
routing links, 631
styles, 670
wildcards, 662

rxjs package. See Reactive Extensions

��������� S
Services, 465

declaring dependency, 473
registering, 475
service providers, 493

class provider, 498
existing service provider, 511
factory provider, 508
injectors, 512
local providers, 512
value provider, 506

using for testing, 484
Shaking the tree, 201
SportsStore, 109

bootstrap file, 120
data model, 121
JavaScript module loader, 120
root component, 118
root module, 119
routing, 148

guarding, 154
navigation, 151

web service, 166
authentication, 175

Structural directives, 363
change detection, 383
concise syntax, 370
content children, 390
context data, 374
iterating directives, 371

systemjs package. See JavaScript Module Loader

■ INDEX

788

��������� T
tsconfig.json file, 214
TypeScript,65. See also JavaScript

access
modifiers, 107

indexable types, 106
tuples, 106
type annotations, 100

typescript package. See TypeScript
typings.json file, 213
typings package, 212

��������� U
Unit testing, 755

asynchronous
operations, 780

components
events, 774
templates, 772

data bindings, 769
directives, 782
input properties, 778
Jasmine, 763
output properties, 776
test beds, 765

URL Routing. See Routing

��������� V
@ViewChild decorator, 429
View children, 428
@ViewChildren decorator, 429

��������� W, X, Y
Webservices. See HTTP Requests

��������� Z
zone.js package, 211

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Getting Ready
	What Do You Need to Know?
	What Is the Structure of This Book?
	Part 1: Getting Ready
	Part 2: Working with Angular
	Part 3: Advanced Angular Features

	Are There Lots of Examples?
	Where Can You Get the Example Code?
	How Do You Set Up Your Development Environment?
	Contacting the Author
	Summary

	Chapter 2: Your First Angular App
	Preparing the Development Environment
	Installing Node.js and NPM
	Updating NPM

	Installing an Editor
	Installing a Browser

	Creating and Preparing the Project
	Creating the Package File
	Installing the NPM Packages
	Configuring the TypeScript Compiler
	Installing the TypeScript Type Information

	Creating the HTML File
	Starting the Server
	Replacing the HTML Content

	Adding Angular to the Project
	Preparing the HTML File
	Creating a Data Model
	Creating a Template
	Creating a Component
	Understanding the Imports
	Understanding the Decorator
	Understanding the Class

	Putting the Application Together
	Running the Application

	Adding Features to the Example Application
	Adding the To-Do Table
	Creating a Two-Way Data Binding
	Filtering To-Do Items

	Adding To-Do Items

	Summary

	Chapter 3: Putting Angular in Context
	Understanding Where Angular Excels
	Understanding Round-Trip and Single-Page Applications

	Understanding the MVC Pattern
	Understanding Models
	Understanding Controllers/Components
	Understanding View Data

	Understanding Views/Templates

	Understanding RESTful Services
	Common Design Pitfalls
	Putting the Logic in the Wrong Place
	Adopting the Data Store Data Format
	Just Enough Knowledge to Cause Trouble

	Summary

	Chapter 4: An HTML and CSS Primer
	Preparing the Example Project
	Understanding HTML
	Understanding Void Elements
	Understanding Attributes
	Applying Attributes Without Values
	Quoting Literal Values in Attributes
	Understanding Element Content
	Understanding the Document Structure

	Understanding Bootstrap
	Applying Basic Bootstrap Classes
	Using Contextual Classes
	Using Margin and Padding
	Changing Element Sizes

	Using Bootstrap to Style Tables
	Using Bootstrap to Create Forms
	Using Bootstrap to Create Grids
	Creating Responsive Grids
	Creating a Simplified Grid Layout

	Summary

	Chapter 5: JavaScript and TypeScript: Part 1
	Preparing the Example Project
	Creating the HTML and JavaScript Files
	Configuring the TypeScript Compiler
	Running the Example Project

	Understanding the Script Element
	Using a JavaScript Module Loader
	Understanding the Basic Workflow

	Using Statements
	Defining and Using Functions
	Defining Functions with Parameters
	Using Default and Rest Parameters

	Defining Functions That Return Results
	Using Functions as Arguments to Other Functions
	Using Arrow Functions

	Using Variables and Types
	Using the Primitive Types
	Working with Booleans
	Working with Strings
	Using Template Strings

	Working with Numbers

	Using JavaScript Operators
	Using Conditional Statements
	The Equality Operator vs. the Identity Operator
	Explicitly Converting Types
	Converting Numbers to Strings
	Converting Strings to Numbers

	Working with Arrays
	Using an Array Literal
	Reading and Modifying the Contents of an Array
	Enumerating the Contents of an Array
	Using the Built-in Array Methods

	Summary

	Chapter 6: JavaScript and TypeScript: Part 2
	Preparing the Example Project
	Working with Objects
	Using Object Literals
	Using Functions as Methods
	Defining Classes
	Defining Class Getter and Setter Properties
	Using Class Inheritance

	Working with JavaScript Modules
	Creating Modules
	Importing from JavaScript Modules
	Importing Specific Types
	Renaming Imports
	Importing All of the Types in a Module

	Useful TypeScript Features
	Using Type Annotations
	Type Annotating Properties and Variables
	Specifying Multiple Types or Any Type

	Using Tuples
	Using Indexable Types
	Using Access Modifiers

	Summary

	Chapter 7: SportsStore: A Real Application
	Preparing the Project
	Creating the Folder Structure
	Installing the NPM Packages
	Preparing the RESTful Web Service
	Configuring TypeScript
	Configuring the Development HTTP Server
	Configuring the JavaScript Module Loader
	Creating the Reactive Extensions JavaScript Module
	Creating the HTML File
	Running the Example Application

	Preparing the Angular Project Features
	Creating the Root Component
	Creating the Root Module
	Creating the Bootstrap File
	Adding the JavaScript Module Loader to the HTML Document

	Starting the Data Model
	Creating the Model Classes
	Creating the Dummy Data Source
	Creating the Model Repository
	Creating the Feature Module

	Starting the Store
	Creating the Store Component and Template
	Creating the Store Feature Module
	Updating the Root Component and Root Module

	Adding Store Features the Product Details
	Displaying the Product Details
	Adding Category Selection
	Adding Product Pagination
	Creating a Custom Directive

	Summary

	Chapter 8: SportsStore: Orders and Checkout
	Preparing the Example Application
	Creating the Cart
	Creating the Cart Model
	Creating the Cart Summary Components
	Integrating the Cart into the Store

	Adding URL Routing
	Creating the Cart Detail and Checkout Components
	Creating and Applying the Routing Configuration
	Navigating through the Application
	Guarding the Routes

	Completing the Cart Detail Feature
	Processing Orders
	Extending the Model
	Updating the Repository and Data Source
	Updating the Feature Module

	Collecting the Order Details

	Using the RESTful Web Service
	Applying the Data Source

	Summary

	Chapter 9: SportsStore: Administration
	Preparing the Example Application
	Creating the Module
	Configuring the URL Routing System
	Navigating to the Administration URL

	Implementing Authentication
	Understanding the Authentication System
	Extending the Data Source
	Creating the Authentication Service
	Enabling Authentication

	Extending the Data Source and Repositories
	Creating the Administration Feature Structure
	Creating the Placeholder Components
	Preparing the Common Content and the Feature Module
	Implementing the Product Feature
	Implementing the Product Editor

	Implementing the Orders Feature

	Summary

	Chapter 10: SportsStore: Deployment
	Stopping the TypeScript Compiler
	Working Around a Compiler Bug
	Using the Ahead-of-Time Compiler
	Installing and Configuring the AoT Compiler
	Configuring the Application Bootstrap
	Compiling the Application

	Shaking the Tree
	Testing the Application

	Containerizing the SportsStore Application
	Installing Docker
	Preparing the Application
	Configuring the HTTP Server

	Creating the Container
	Running the Application

	Summary

	Chapter 11: Creating an Angular Project
	Preparing a TypeScript Angular Development Project
	Creating the Project Folder Structure
	Creating and Serving the HTML Document
	Preparing the Project Configuration
	Adding Packages
	Understanding the Dependencies Packages
	Understanding the Development Dependencies Packages
	Setting Up TypeScript
	Configuring the TypeScript Compiler

	Configuring the Development HTTP Server

	Starting the Watch Processes

	Starting Angular Development with TypeScript
	Creating the Data Model
	Creating the Descriptive Model Class
	Creating the Data Source
	Creating the Model Repository

	Creating the Template and Root Component
	Creating the Angular Module
	Bootstrapping the Application
	Configuring the JavaScript Module Loader
	Resolving the RxJS Modules
	Resolving the Custom Application Modules
	Resolving the Angular Modules
	Applying the Configuration Options

	Updating the HTML Document
	Applying the JavaScript Module Loader
	Styling the Content

	Running the Application

	Summary

	Chapter 12: Using Data Bindings
	Preparing the Example Project
	Understanding One-Way Data Bindings
	Understanding the Binding Target
	Understanding Property Bindings

	Understanding the Expression
	Understanding the Brackets
	Understanding the Host Element

	Using the Standard Property and Attribute Bindings
	Using the Standard Property Binding
	Using the String Interpolation Binding
	Using the Attribute Binding

	Setting Classes and Styles
	Using the Class Bindings
	Setting All of an Element’s Classes with the Standard Binding
	Setting Individual Classes Using the Special Class Binding
	Setting Classes Using the ngClass Directive

	Using the Style Bindings
	Setting a Single Style Property
	Setting Styles Using the ngStyle Directive

	Updating the Data in the Application
	Summary

	Chapter 13: Using the Built-In in Directives
	Preparing the Example Project
	Using the Built-in Directives
	Using the ngIf Directive
	Using the ngSwitch Directive
	Avoiding Literal Value Problems

	Using the ngFor Directive
	Using Other Template Variables
	Using the Index Value
	Using the Odd and Even Values
	Using the First and Last Values

	Minimizing Element Operations

	Using the ngTemplateOutlet Directive
	Providing Context Data

	Understanding One-Way Data Binding Restrictions
	Using Idempotent Expressions
	Understanding the Expression Context

	Summary

	Chapter 14: Using Events and Forms
	Preparing the Example Project
	Adding the Forms Module
	Preparing the Component and Template

	Using the Event Binding
	Understanding Dynamically Defined Properties
	Using Event Data
	Using Template Reference Variables

	Using Two-Way Data Bindings
	Using the ngModel Directive

	Working with Forms
	Adding a Form to the Example Application
	Adding Form Data Validation
	Styling Elements Using Validation Classes
	Displaying Field-Level Validation Messages
	Using the Component to Display Validation Messages

	Validating the Entire Form
	Displaying Summary Validation Messages
	Disabling the Submit Button

	Using Model-Based Forms
	Enabling Model-Based Forms Feature
	Defining the Form Model Classes
	Using the Model for Validation
	Generating the Elements from the Model

	Creating Custom Form Validators
	Applying a Custom Validator

	Summary

	Chapter 15: Creating Attribute Directives
	Preparing the Example Project
	Creating a Simple Attribute Directive
	Applying a Custom Directive

	Accessing Application Data in a Directive
	Reading Host Element Attributes
	Using a Single Host Element Attribute

	Creating Data-Bound Input Properties
	Responding to Input Property Changes

	Creating Custom Events
	Binding to a Custom Event

	Creating Host Element Bindings
	Creating a Two-Way Binding on the Host Element
	Exporting a Directive for Use in a Template Variable
	Summary

	Chapter 16: Creating Structural Directives
	Preparing the Example Project
	Creating a Simple Structural Directive
	Implementing the Structural Directive Class
	Enabling the Structural Directive
	Setting the Initial Expression Value

	Using the Concise Structural Directive Syntax

	Creating Iterating Structural Directives
	Providing Additional Context Data
	Using the Concise Structure Syntax
	Dealing with Property-Level Data Changes
	Dealing with Collection-Level Data Changes
	Keeping Track of Views

	Querying the Host Element Content
	Querying Multiple Content Children
	Receiving Query Change Notifications

	Summary

	Chapter 17: Understanding Components
	Preparing the Example Project
	Structuring an Application with Components
	Creating New Components
	Understanding the New Application Structure

	Defining Templates
	Defining External Templates
	Using Data Bindings in Component Templates
	Using Input Properties to Coordinate Between Components
	Using Directives in a Child Component Template

	Using Output Properties to Coordinate Between Components
	Projecting Host Element Content

	Completing the Component Restructure

	Using Component Styles
	Defining External Component Styles
	Using Advanced Style Features
	Setting View Encapsulation
	Using the Shadow DOM CSS Selectors
	Selecting the Host Element
	Selecting the Host Element’s Ancestors
	Pushing a Style into the Child Component’s Template

	Querying Template Content
	Summary

	Chapter 18: Using and Creating Pipes
	Preparing the Example Project
	Installing the Internationalization Polyfill

	Understanding Pipes
	Creating a Custom Pipe
	Registering a Custom Pipe
	Applying a Custom Pipe
	Combining Pipes
	Creating Impure Pipes

	Using the Built-in Pipes
	Formatting Numbers
	Formatting Currency Values
	Formatting Percentages
	Formatting Dates
	Changing String Case
	Serializing Data as JSON
	Slicing Data Arrays

	Summary

	Chapter 19: Using Services
	Preparing the Example Project
	Understanding the Object Distribution Problem
	Demonstrating the Problem
	Distributing Objects as Services Using Dependency Injection
	Preparing the Service
	Preparing the Dependent Components
	Registering the Service
	Reviewing the Dependency Injection Changes

	Declaring Dependencies in Other Building Blocks
	Declaring a Dependency in a Pipe
	Declaring Dependencies in Directives

	Understanding the Test Isolation Problem
	Isolating Components Using Services and Dependency Injection
	Preparing the Services
	Registering the Services
	Preparing the Dependent Component

	Completing the Adoption of Services
	Updating the Root Component and Template
	Updating the Child Components

	Summary

	Chapter 20: Using Service Providers
	Preparing the Example Project
	Using Service Providers
	Using the Class Provider
	Understanding the Token
	Using Opaque Tokens

	Understanding the useClass Property
	Resolving a Dependency with Multiple Objects

	Using the Value Provider
	Using the Factory Provider
	Using the Existing Service Provider

	Using Local Providers
	Understanding the Limitations of Single Service Objects
	Creating Local Providers in a Directive
	Creating Local Providers in a Component
	Creating a Local Provider for All Children
	Creating a Provider for View Children

	Controlling Dependency Resolution
	Restricting the Provider Search
	Skipping Self-Defined Providers

	Summary

	Chapter 21: Using and Creating Modules
	Preparing the Example Project
	Understanding the Root Module
	Understanding the Imports Property
	Understanding the Declarations Property
	Understanding the Providers Property
	Understanding the Bootstrap Property

	Creating Feature Modules
	Creating a Model Module
	Creating the Module Definition
	Updating the Other Classes in the Application
	Updating the Root Module

	Creating a Utility Feature Module
	Creating the Module Folder and Moving the Files
	Updating the Classes in the New Module
	Creating the Module Definition
	Understanding the Imports
	Understanding the Providers
	Understanding the Declarations
	Understanding the Exports

	Updating the Other Classes in the Application
	Updating the Root Module

	Creating a Feature Module with Components
	Creating the Module Folder and Moving the Files
	Updating the Template URLs
	Updating the Module References
	Creating the Module Definition
	Updating the Root Module

	Summary

	Chapter 22: Creating the Example Project
	Starting the Example Project
	Adding and Configuring the Packages
	Configuring TypeScript
	Configuring the Development HTTP Server
	Configuring the JavaScript Module Loader

	Creating the Model Module
	Creating the Product Data Type
	Creating the Data Source and Repository
	Completing the Model Module

	Creating the Core Module
	Creating the Shared State Service
	Creating the Table Component
	Creating the Table Component Template

	Creating the Form Component
	Creating the Form Component Template
	Creating the Form Component Styles

	Completing the Core Module

	Creating the Messages Module
	Creating the Message Model and Service
	Creating the Component and Template
	Completing the Message Module

	Completing the Project
	Creating the Angular Bootstrap
	Creating the Reactive Extensions Module
	Creating the HTML Document

	Running the Example Project
	Summary

	Chapter 23: Using Reactive Extensions
	Preparing the Example Project
	Understanding the Problem
	Solving the Problem with Reactive Extensions
	Understanding Observables
	Understanding Observers
	Understanding Subjects

	Using the Async Pipe
	Using the Async Pipe with Custom Pipes

	Scaling Up Application Feature Modules
	Going Beyond the Basics
	Filtering Events
	Transforming Events
	Using Different Event Objects

	Receiving Only Distinct Events
	Using a Custom Equality Checker

	Taking and Skipping Events

	Summary

	Chapter 24: Making Asynchronous HTTP Requests
	Preparing the Example Project
	Configuring the JavaScript Module Loader
	Configuring the Model Feature Module
	Updating the Form Component
	Running the Example Project

	Understanding RESTful Web Services
	Replacing the Static Data Source
	Creating the New Data Source Service
	Setting Up the HTTP Request
	Processing the Response

	Configuring the Data Source
	Using the REST Data Source
	Saving and Deleting Data

	Consolidating HTTP Requests
	Making Cross-Origin Requests
	Using JSONP Requests

	Configuring Request Headers
	Handling Errors
	Generating User-Ready Messages
	Handling the Errors

	Summary

	Chapter 25: Routing and Navigation: Part 1
	Preparing the Example Project
	Disabling the State Change Event Display

	Getting Started with Routing
	Creating a Routing Configuration
	Creating the Routing Component
	Updating the Root Module
	Completing the Configuration
	Adding Navigation Links
	Understanding the Effect of Routing

	Completing the Routing Implementation
	Handling Route Changes in Components
	Using Route Parameters
	Using Multiple Route Parameters
	Using Optional Route Parameters

	Navigating in Code
	Receiving Navigation Events
	Removing the Event Bindings and Supporting Code

	Summary

	Chapter 26: Routing and Navigation: Part 2
	Preparing the Example Project
	Adding Components to the Project

	Using Wildcards and Redirections
	Using Wildcards in Routes
	Using Redirections in Routes

	Navigating Within a Component
	Responding to Ongoing Routing Changes
	Styling Links for Active Routes
	Fixing the All Button

	Creating Child Routes
	Creating the Child Route Outlet
	Accessing Parameters from Child Routes

	Summary

	Chapter 27: Routing and Navigation: Part 3
	Preparing the Example Project
	Guarding Routes
	Delaying Navigation with a Resolver
	Creating a Resolver Service
	Registering the Resolver Service
	Applying the Resolver
	Displaying Placeholder Content
	Using a Resolver to Prevent URL Entry Problems

	Preventing Navigation with Guards
	Preventing Route Activation
	Consolidating Child Route Guards
	Preventing Route Deactivation

	Loading Feature Modules Dynamically
	Creating a Simple Feature Module
	Loading the Module Dynamically
	Creating a Route to Dynamically Load a Module
	Using a Dynamically Loaded Module

	Guarding Dynamic Modules
	Applying a Dynamic Loading Guard

	Targeting Named Outlets
	Creating Additional Outlet Elements
	Navigating When Using Multiple Outlets

	Summary

	Chapter 28: Using Animation
	Preparing the Example Project
	Adding the Animations Polyfill
	Disabling the HTTP Delay
	Simplifying the Table Template and Routing Configuration

	Getting Started with Angular Animation
	Creating the Animation
	Defining Style Groups
	Defining Element States
	Defining State Transitions
	Defining the Trigger

	Applying the Animation
	Testing the Animation Effect

	Understanding the Built-in Animation States
	Understanding Element Transitions
	Creating Transitions for Built-in States
	Animating Element Addition and Removal

	Controlling Transition Animations
	Specifying a Timing Function
	Specifying an Initial Delay
	Using Additional Styles During Transition
	Performing Parallel Animations

	Understanding Animation Style Groups
	Defining Common Styles in Reusable Groups
	Using Element Transformations
	Applying CSS Framework Styles

	Understanding Animation Trigger Events
	Summary

	Chapter 29: Angular Unit Testing
	Preparing the Example Project
	Adding the Testing Packages
	Configuring Karma
	Configuring TypeScript

	Creating a Simple Unit Test
	Starting the Tools

	Working with Jasmine
	Testing an Angular Component
	Working with the TestBed Class
	Configuring the Test Bed for Dependencies

	Testing Data Bindings
	Testing a Component with an External Template
	Testing Component Events
	Testing Output Properties
	Testing Input Properties
	Testing with Asynchronous Operations

	Testing an Angular Directive
	Summary

	Index

