
Pro Apache
Phoenix

An SQL Driver for HBase
—
First Edition
—
Shakil Akhtar
Ravi Magham

www.allitebooks.com

http://www.allitebooks.org

Pro Apache Phoenix
An SQL Driver for HBase

First Edition

Shakil Akhtar

Ravi Magham

www.allitebooks.com

http://www.allitebooks.org

Pro Apache Phoenix: An SQL Driver for HBase

Shakil Akhtar Ravi Magham
Bangalore, Karnataka Santa Clara, California
India USA

ISBN-13 (pbk): 978-1-4842-2369-7 ISBN-13 (electronic): 978-1-4842-2370-3
DOI 10.1007/978-1-4842-2370-3

Library of Congress Control Number: 2016961814

Copyright © 2017 by Shakil Akhtar and Ravi Magham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewers: Ankit Singhal and Rajeshbabu Chintaguntla
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Alexander Krider
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ��� xiii

About the Technical Reviewers ��� xv

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: Using Phoenix ��� 15

 ■Chapter 3: CRUD with Phoenix �� 37

 ■Chapter 4: Querying Data ��� 51

 ■Chapter 5: Advanced Querying ��� 63

 ■Chapter 6: Transactions �� 79

 ■Chapter 7: Advanced Phoenix Concepts ��������������������������������������� 91

 ■Chapter 8: Integrating Phoenix with Other Frameworks ������������ 111

 ■Chapter 9: Tools & Tuning ��� 123

Index �� 137

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors ��� xiii

About the Technical Reviewers ��� xv

 ■Chapter 1: Introduction �� 1

1.1 Big Data Lake and Its Representation .. 2

1.2 Modern Applications and Big Data ... 3

1.2.1 Fraud Detection in Banking ... 3

1.2.2 Log Data Analysis ... 3

1.2.3 Recommendation Engines .. 4

1.3 Analyzing Big Data ... 4

1.4 An Overview of Hadoop and MapReduce 5

1.5 Hadoop Ecosystem ... 5

1.5.1 HDFS ... 6

1.5.2 MapReduce ... 7

1.5.3 HBase ... 9

1.5.4 Hive .. 10

1.5.5 YARN ... 11

1.5.6 Spark .. 11

1.5.7 PIG .. 11

1.5.8 ZooKeeper .. 11

1.6 Phoenix in the Hadoop Ecosystem ... 12

1.7 Phoenix’s Place in Big Data Systems ... 12

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vi

1.8 Importance of Traditional SQL-Based Tools and
the Role of Phoenix .. 12

1.8.1 Traditional DBA Problems for Big Data Systems- 13

1.8.2 Which Tool Should I Use for Big Data? .. 13

1.8.3 Massive Data Storage and Challenges ... 13

1.8.4 A Traditional Data Warehouse and Querying .. 13

1.9 Apache Phoenix in Big Data Analytics .. 14

1.10 Summary .. 14

 ■Chapter 2: Using Phoenix ��� 15

2.1 What is Apache Phoenix? ... 15

2.2 Architecture ... 16

2.2.1 Installing Apache Phoenix .. 17

2.2.2 Installing Java .. 17

2.3 Installing HBase ... 18

2.4 Installing Apache Phoenix ... 19

2.5 Installing Phoenix on Hortonworks HDP 20

2.5.1 Downloading Hortonworks Sandbox .. 21

2.5.2 Start HBase ... 27

2.5.3 Testing Your Phoenix Installation .. 28

2.6 Installing Phoenix on Cloudera Hadoop .. 30

2.7 Capabilities .. 31

2.8 Hadoop Ecosystem and the Role of Phoenix 32

2.9 Brief Description of Phoenix’s Key Features 33

2.9.1 Transactions ... 33

2.9.2 User-Defined Functions .. 33

2.9.3 Secondary Indexes ... 34

2.9.4 Skip Scan .. 34

2.9.5 Views .. 34

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

2.9.6 Multi-Tenancy ... 34

2.9.7 Query Server .. 35

2.10 Summary .. 35

 ■Chapter 3: CRUD with Phoenix �� 37

3.1 Data Types in Phoenix .. 37

3.1.1 Primitive Data Types ... 37

3.1.2 Complex Data Types ... 37

3.2 Data Model ... 38

3.2.1 Steps in data modeling ... 39

3.3 Phoenix Write Path ... 39

3.4 Phoenix Read Path ... 39

3.5 Basic Commands ... 39

3.5.1 HELP .. 40

3.5.2 CREATE ... 41

3.5.3 UPSERT .. 41

3.5.4 SELECT ... 41

3.5.5 ALTER .. 42

3.5.6 DELETE ... 42

3.5.7 DESCRIBE .. 42

3.5.8 LIST... 43

3.6 Working with Phoenix API .. 43

3.6.1 Environment setup .. 43

3.7 Summary .. 49

 ■Chapter 4: Querying Data ��� 51

4.1 Constraints .. 51

4.1.1 NOT NULL ... 51

4.2 Creating Tables .. 52

4.3 Salted Tables ... 53

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

viii

4.4 Dropping Tables ... 55

4.5 ALTER Tables ... 55

4.5.1 Adding Columns.. 56

4.5.2 Deleting or Replacing Columns .. 56

4.5.3 Renaming a Column ... 57

4.6 Clauses ... 57

4.6.1 LIMIT .. 57

4.6.2 WHERE ... 58

4.6.3 GROUP BY .. 58

4.6.4 HAVING .. 59

4.6.5 ORDER BY .. 59

4.7 Logical Operators ... 60

4.7.1 AND .. 60

4.7.2 OR .. 60

4.7.3 IN ... 60

4.7.4 LIKE ... 61

4.7.5 BETWEEN .. 61

4.8 Summary .. 61

 ■Chapter 5: Advanced Querying ��� 63

5.1 Joins ... 63

5.2 Inner Join ... 63

5.3 Outer Join ... 64

5.3.1 Left Outer Join .. 64

5.3.2 Right Outer Join .. 65

5.3.3 Full Outer Join .. 66

5.4 Grouped Joins .. 67

5.5 Hash Join ... 68

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

5.6 Sort Merge Join .. 69

5.7 Join Query Optimizations ... 69

5.7.1 Optimizing Through Configuration Properties .. 70

5.7.2 Optimizing Query .. 70

5.8 Subqueries ... 71

5.8.1 IN and NOT IN in Subqueries .. 72

5.8.2 EXISTS and NOT EXISTS Clauses ... 72

5.8.3 ANY, SOME, and ALL Operators with Subqueries .. 73

5.8.4 UPSERT Using Subqueries .. 73

5.9 Views .. 74

5.9.1 Creating Views .. 74

5.9.2 Dropping Views... 75

5.10 Paged Queries .. 75

5.10.1 LIMIT and OFFSET... 76

5.10.2 Row Value Constructor .. 76

5.11 Summary .. 77

 ■Chapter 6: Transactions �� 79

6.1 SQL Transactions .. 79

6.2 Transaction Properties ... 79

6.2.1 Atomicity ... 80

6.2.2 Consistency ... 80

6.2.3 Isolation ... 80

6.2.4 Durability .. 80

6.3 Transaction Control .. 80

6.3.1 COMMIT .. 80

6.3.2 ROLLBACK ... 80

6.3.3 SAVEPOINT ... 81

6.3.4 SET TRANSACTION ... 81

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

x

6.4 Transactions in HBase .. 81

6.4.1 Integrating HBase with Transaction Manager .. 81

6.4.2 Components of Transaction Manager ... 82

6.4.3 Transaction Lifecycle .. 84

6.4.4 Concurrency Control ... 84

6.4.5 Multiversion Concurrency Control .. 85

6.4.6 Optimistic Concurrency Control .. 85

6.5 Apache Tephra As a Transaction Manager 85

6.6 Phoenix Transactions ... 86

6.6.1 Enabling Transactions for Tables .. 89

6.6.2 Committing Transactions .. 89

6.7 Transaction Limitations in Phoenix ... 90

6.8 Summary .. 90

 ■Chapter 7: Advanced Phoenix Concepts ��������������������������������������� 91

7.1 Secondary Indexes ... 91

7.1.1 Global Index .. 92

7.1.2 Local Index ... 96

7.1.3 Covered Index ... 99

7.1.4 Functional Indexes ... 100

7.1.5 Index Consistency ... 100

7.2 User Defined Functions .. 102

7.2.1 Writing Custom User Defined Functions ... 102

7.3 Phoenix Query Server... 106

7.3.1 Download.. 107

7.3.2 Installation .. 107

7.3.3 Setup .. 107

7.3.4 Starting PQS ... 107

7.3.5 Client .. 107

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xi

7.3.6 Usage ... 108

7.3.7 Additional PQS Features ... 109

7.4 Summary .. 109

 ■Chapter 8: Integrating Phoenix with Other Frameworks ������������ 111

8.1 Hadoop Ecosystem ... 111

8.2 MapReduce Integration .. 111

8.2.1 Setup .. 112

8.3 Apache Spark Integration ... 115

8.3.1 Setup .. 116

8.3.2 Reading and Writing Using Dataframe ... 117

8.4 Apache Hive Integration ... 118

8.4.1 Setup .. 118

8.4.2 Table Creation ... 119

8.5 Apache Pig Integration ... 120

8.5.1 Setup ... 120

8.5.2 Accessing Data from Phoenix ... 120

8.5.3 Storing Data to Phoenix .. 120

8.6 Apache Flume Integration .. 121

8.6.1 Setup .. 121

8.6.2 Configuration ... 121

8.6.3 Running the Above Setup ... 122

8.7 Summary .. 122

 ■Chapter 9: Tools & Tuning ��� 123

9.1 Phoenix Tracing Server .. 123

9.1.1 Trace .. 123

9.1.2 Span .. 124

9.1.3 Span Receivers .. 124

9.1.4 Setup ... 124

 ■ Contents

xii

9.2 Phoenix Bulk Loading ... 127

9.2.1 Setup .. 127

9.2.2 Gotchas... 128

9.3 Index Load Async ... 129

9.4 Pherf ... 129

9.4.1 Setup to Run the Test ... 133

9.4.2 Gotchas... 134

9.5 Summary .. 135

Index �� 137

xiii

About the Authors

Shakil Akhtar is a TOGAF 9 Certified Enterprise
Architect passionate about digital transformation,
cloud computing, big data and Internet of Things
technologies. He holds many certifications, including
Oracle Certified Master Java Enterprise Architect
(OCMJEA). He has worked with Cisco, Oracle, CA
Technologies, and various other organizations, where
he developed and architected large-scale complex
enterprise software, creating frameworks and scaling
systems to petabyte datasets. He is a longtime fan and
an enthusiastic user of open source projects. When not
working, he can be found playing guitar and jamming
with his friends.

Ravi Magham an engineer passionate about data and
data-driven engineering, is experienced in working
with and scaling solutions to petabyte datasets. In his
past experience, he has worked with CA Technologies,
Bazaarvoice, and various other startups. He is actively
involved in open source projects and is a member of
the Apache Phoenix Project Management Committee
(PMC). His current interests are in distributed data
stream processing.

xv

About the Technical
Reviewers

Ankit Singhal is a software engineer who specializes
in designing and developing big data solutions for
different lines of business. With over 6 years of big data
experience, he has architected and created various
analytics products and data warehouse solutions
using Hadoop technologies including Hadoop, Kafka,
Hive, HBase, and Phoenix. He has a keen interest in
contributing to open source projects and has been a
committer and a member of Apache Phoenix PMC for
more than a year.

Rajeshbabu Chintaguntla committer and a member of the Apache Phoenix PMC, is also
a committer for the Apache HBase project. He is an open source enthusiast and has been
working on big data projects such as HBase and Phoenix for the past 5 years. He holds a
master’s degree in computer applications from the University of Hyderabad.

1© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_1

CHAPTER 1

Introduction

From the inception of mainframes to modern cloud storage and mobile devices, the
amount of data produced has risen steeply. Today, humans produce large amounts of
data as they go about their day-to-day activities and business operations. For decades,
much of the data produced was not used for analysis or business decision purposes.
Nevertheless, data has always been indispensable for both small and large enterprises.
Nowadays due to digitalization, the importance and value of data has become an integral
part of business decisions. Take the example of online retailers who base business
predictions on the basis of user clicks and purchasing patterns—actions that generated a
huge amount of data. By applying analytical tools to this data, the retailer gleans valuable
information for decision making. One can imagine the flood of data pouring from a smart
house or a smart city. These examples give some notion of the huge amount of data and
its uses in our public lives. “Big Data” can be seen as comprised of both structured and
unstructured data. Figure 1-1 shows some of the big data sources that generate a huge
amount of data.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2370-3_1) contains supplementary material,
which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2202-7_1

Chapter 1 ■ IntroduCtIon

2

For decades we have been using relational database systems and working with
transactional data. In relational database systems, we rarely work with unstructured data
as it is deemed less important and only indirectly involved in business activities.
When we talk about big data, we mean a mix of transactional data and unstructured
data, for example click stream data, sensor data and system logs. Most of us are
more comfortable and more skilled in managing transactional data, but more and
more often find ourselves handling interactive data that has variety, large volume and
high velocity (such as streaming data from a data lake). Unlike transactional data,
ever-growing data has velocity characteristics that present significant challenges to the
enterprise in both management and analysis. Big data governance can become a tedious
task, and lack of expertise and resources can make it difficult for an organization to adapt
to this newly-emerging paradigm.

1.1 Big Data Lake and Its Representation
A data lake stores vast amount of data just like water in a natural lake. The data in a data
lake usually resides in its native format, including both unstructured and structured data.
Requirements and data structure are not defined until the data must be processed.

A data lake uses a flat architecture to store data, unlike the more familiar hierarchical
data warehouse that stores data in files or folders. Each data element in a lake has a unique
identifier and a set of extended metadata tags. When performing a business analysis
involving a data lake query for relevant data, this metadata helps in analyzing the results.

Figure 1-1. Big Data Sources

Chapter 1 ■ IntroduCtIon

3

The term data lake is generally used in Hadoop-oriented storage. The data is first
loaded into Hadoop cluster nodes, and then data mining and analytics tools are applied
to extract business insights from it.

1.2 Modern Applications and Big Data
Today's organizations must manage a vast amount of data from all aspects of their
operations. For example, Facebook process more than 500 terabytes of new data daily.
A Boeing airliner generates 240 terabytes of data during a single flight across the United
States. The data created and consumed by smart phones and sensors embedded
into everyday objects generate billions of new data feeds containing information on
environment, location, and other information, including video streams.

We can find many such use cases of big data generated from applications, machines,
and other means. Let’s discuss some of them here. In this section, we will see some big
data use cases and their means of generating it.

1.2.1 Fraud Detection in Banking
Increases in digitalization and heavy use of information technology create an increasing
number of threats the banking sector. Organizations have to deal with many challenges and
must find more innovative and effective approaches to detecting and fighting fraud. Under
the traditional model, banks have to work with Business Intelligence (BI) tools and attempt
to gain insights by running complex Structured Query Language (SQL) queries on billing
and claims data. The problem with this analysis process is the time required—sometimes it
takes weeks or months to get results.

With the advent of big data technologies, processing time can be reduced to hours,
and in some cases analysis can even be done in real time. There are many tools available
to process billions of records and to analyze them by performing intuitive searches
via graphical user interfaces. In real time detection, predictive analytics and machine
learning techniques have been applied to issue red flag alerts whenever they recognize a
pattern that matches a previously known fraud.

1.2.2 Log Data Analysis
Server logs, application logs, and any other informative logs are valuable sources of
operational intelligence and finding new business revenue opportunities. We have been
using log management and analysis tools since long before big data was in the picture.
With the exponential growth in business activities due to e-commerce, Internet of Things,
and digitalization, log data has become an arduous task to store, process, and analyze in
a cost-effective manner. For example, an advertising agency derives some of its greatest
customer insight from analyzing its most transient data by examining its clickstream logs.

Today we can use tools like Hadoop to store and process such big data and draw
important information from it.

Chapter 1 ■ IntroduCtIon

4

1.2.3 Recommendation Engines
When you use YouTube, Netflix or other online media services, you may have noticed
“recommendation for you” on videos, movies or music. As consumers, we like to have a
personalized list for easy access to services and to save time. As we watch more videos,
those recommendations become better in accuracy and quality. A more satisfied and
happy user is a winning factor for a media company.

Big data makes this easy and cool stuff available to us with its scalability and its
power to process huge data either structured (e.g. video titles users search for, music
genres they prefer) or unstructured data (e.g. user viewing and listening patterns).

Through big data, data developers can analyze billions of clicks (clickstream
data) and process them with the help of machine learning to better provide even more
narrowed recommendations for the user.

1.2.3.1 Social Media Analysis
Social Media has emerged as the platform where we discuss most of our daily activities,
likes, dislikes, and a lot about personal taste. Companies try to understand a buyer’s
persona and present recommendations, adjust their pricing, and campaign for optimal
results. This data is used to build customer loyalty and find new business opportunities.
A big data solution analyzes social media activity data and extracts insightful information
from it. There are many big data solutions available for social media analytics such as
Google Analytics, Facebook Insights, Twitter Analytics and IBM’s Cognos.

1.3 Analyzing Big Data
Big data does not behave the same as traditional transactional data. Big data has many
different challenges to manage due to its large data volumes, high velocity of data creation,
data type complexity, and extreme time sensitivity. The challenges associated with analytics
on big data require a different approach from traditional data analytic processes. For example,
content analysis of streaming media requires high-speed processing, storage, and fast
analytic techniques. Information gathered from analytical findings can lead to more effective
marketing, new revenue opportunities, better customer service, improved operational
efficiency, competitive advantages over rival organizations and other business benefits.

Unlike conventional data search, which brings up results based on search strings,
unstructured or semi-structured data identifies patterns in text, images, videos, and other
such content. Analyzing text is more about searching patterns within documents, emails,
and conversations to draw inferences and insights. Unstructured and semi-structured
data is analyzed using methods such as Natural Language Processing (NLP), Master Data
Management (MDM), data mining, and statistics. These analytics use NoSQL databases
such as Hbase and Cassandra to standardize the structure of data that can be queried
using query languages such as Phoenix, Hive, Pig, and others.

Chapter 1 ■ IntroduCtIon

5

Business Intelligence (BI) software and data visualization tools are mainly used in
data analysis processes, especially in traditional data analysis. But these tools may not fit
well with the semi-structured and unstructured data stored in a big data system. Another
set of tools including Splunk, Tableau, Pentaho, and Silk, can be easily used for big data
analysis and data visualization. Such tools offer their own graphical user interfaces or can
be rendered visually with the help of some connectors.

1.4 An Overview of Hadoop and MapReduce
If you are familiar with the Hadoop and MapReduce computing model, you can skip this
section. While you do not need intimate knowledge of Hadoop or HBase internals to use
Phoenix, understanding their basic principles will help you understand what Phoenix is
doing behind the scenes and how you can use Phoenix more effectively with them.

We provide a brief overview of Hadoop and MapReduce here. For more details, you
can check Apress books on Hadoop and MapReduce.

1.5 Hadoop Ecosystem
Hadoop has gained familiarity over the years. Below figure 1-2 shows the Hadoop
Ecosystem stack. Apache Phoenix works as an SQL skin for HBase that requires basic
HBase understanding and, to some extent, an understanding of its native calls behavior.
Knowledge about other Hadoop ecosystem components, along with HBase, will be
an added advantage in best understanding the big data landscape and in utilizing
Phoenix and its best available features. In this chapter we provide an overview of these
components and their place in the ecosystem.

Phoenix
(SQL)

Pig
(Dataflow)

Hive
(SQL)

Spark

Map Reduce

YARN

HDFS 2.0

HBase
(Columnar NoSQL)

Zo
ok

ee
pe

r
(C

oo
rd

in
at

io
n)

Figure 1-2. Hadoop Ecosystem

Chapter 1 ■ IntroduCtIon

6

1.5.1 HDFS
HDFS (Hadoop Distributed File System) is a distributed file-system that provides high
throughput access to data. HDFS stores data in the form of blocks. Each block is 64 MB in
size for older versions and 128 MB for newer Hadoop versions. A file larger than a block in
size will automatically split into multiple blocks and be stored, replicated on the nodes, by
a default replication factor of three to each block; this means each block will be available
on three nodes to ensure high availability and fault tolerance. The replication number is
configurable and can be changed in the HDFS configuration file.

NameNode: The NameNode is responsible for coordinating and managing other
nodes in the system. NameNode acts as the master of the system. It keeps track of files
and directories by using a name system with the help of metadata. It manages data blocks
stored on the Data Nodes (nodes containing actual data). NameNode can be configured
as High Availability with backup nodes in standby and primary as an active node.

DataNodes: DataNodes are machines having actual data (HDFS blocks) in the
cluster. In HDFS, the data block size is distributed over a network. Data blocks are
replicated on more than one data node to handle node failure scenarios. Data Node
servers read and write requests from blocks to the clients.

Secondary NameNode: The secondary NameNode provides backup of data either
in memory or local to the disk store. It connects to the primary NameNode periodically
and performs checkpoints for backup of metadata in memory. If NameNode fails, you can
rebuild the NameNode using this collected checkpoint information. In current Hadoop
versions secondary NameNode is almost deprecated and not much in use.

The following figure (see Figure 1-3) shows HDFS components and the data storage
of blocks.

Figure 1-3. Hadoop HDFS

Chapter 1 ■ IntroduCtIon

7

1.5.2 MapReduce
Hadoop MapReduce is a software framework with which we can easily write applications
to process large amounts of data in parallel on large clusters of commodity hardware in a
reliable, fault-tolerant manner. MapReduce is a programming technique containing two
types of algorithm, namely Map and Reduce.

The Map Task: The Map stage or mapper’s job is to process input and convert it into
smaller parts in the form of key/value pairs.

The Reduce Task: The reduce stage or reducer’s job is to process map stage data
output into smaller tuples (key/value pairs). This stage combines both shuffle and
reduce tasks.

Figure 1-4. MapReduce

Let’s take a word count example to understand how MapReduce works.
A word count problem is a very basic example, like HelloWorld in Java programming,

where Hadoop developers typically start their hands-on MapReduce programming. In
the following example, MapReduce is used to count the number of occurrences of each
word in the input file.

The word count processing takes place in two stages a mapper phase and a reducer
phase. In the mapper phase (done by Mapper), first the input is tokenized into words,
then we form a key/value pair with these words where the key is the word itself and value
is its count, so here it will be ‘1’.

Chapter 1 ■ IntroduCtIon

8

For example, consider this sentence as an input to MapReduce processing:

“hello phoenix world by phoenix”

In the map phase, the sentence is split into words, each assigned to an initial key
value pair reflecting a single occurrence:

<hello,1>
<phoenix,1>
<world,1>
<bye,1>
<phoenix,1>

In the reduce phase, the keys are grouped together, and the values for similar keys
are added. So, there is only one pair of similar keys, and the values (counts) for these keys
would be added so the output key/value pairs would be

<bye,1>
<hello,1>
<phoenix,2>
<world,1>

This gives the number of occurrence of each word in the input file. Thus, reducer
forms an aggregation of mapper keys. We can also apply sorting in the reduce phase.

The point to be noted here is that first the mapper executes completely on the
entire data set, splitting the words and making their key value pairs. Only after mapper
completes its process does the reducer start. Say we have a total of 50 lines in our input
files combined, first the 50 lines are tokenized and key value pairs are formed in parallel
(the job performed by each node in parallel); only after this would the reducer start its
aggregation.

See Figure 1-5 below to understand how MapReduce processing is done for our word
count example.

Chapter 1 ■ IntroduCtIon

9

Here we will not describe how to implement MapReduce with Java or any other
language. The intention is to illustrate the MapReduce concept.

1.5.3 HBase
HBase is a NoSQL column family database that runs on top of Hadoop HDFS. HBase
was developed to handle large storage tables which have billions of rows and millions of
columns with fault tolerance capability and horizontal scalability. The HBase concept
was inspired by Google’s Big Table. Hadoop is mainly meant for batch processing, in
which data will be accessed only in a sequential manner, where HBase is used for quick
random access of huge data.

HBase is a distributed, column-oriented NoSQL database and uses HDFS for its
underlying storage. HDFS, which we already mentioned, works on a write-once and
read-many-times (WORM) pattern, but this isn’t always the case. Sometimes even a huge
dataset requires real time read/write random access; this is where HBase comes into the
picture. HBase is built on top of HDFS and distributed on a column-oriented database.
Figure 1-6 shows a simple HBase architecture and its components.

Figure 1-5. MapReduce processing

Chapter 1 ■ IntroduCtIon

10

1.5.4 Hive
Hive is an interactive, easy, SQL-like scripting language used to query data stored in
HDFS. Although we can use Java to work with HDFS, many data programmers are most
comfortable using SQL. Hive was initially created by Facebook for its own infrastructure
processing, later they made it open source and donated it to the Apache Software
Foundation. The advantage of Hive is that it runs MapReduce jobs behind the scenes, but
the programmer does not have to worry about how this is happening. The programmer
simply writes HQL (Hive Query Language), and results will be displayed on the console.

Hive is a part of the Hadoop ecosystem and provides an SQL-like interactive
interface to Hadoop’s underlying HDFS. You can write ad-hoc queries and analyze large
datasets Stored in HDFS. Programmers can plug in their custom mappers and reducers
when it is inconvenient or inefficient to write this logic in Hive Query Language.

Hive can be divided into the following components:

Metastore: Contains metadata about partitions, columns and
the system catalog.

Driver: Provides management for the HQL (Hive Query
Language) statement lifecycle.

Query Compiler: Compiles HQL into a directed acyclic graph.

Execution Engine: Executes tasks in the order in which they
are produced by the compiler.

HiveServer: Provides a Thrift interface and a JDBC/ODBC
server.

Figure 1-6. HBase Architecture

Chapter 1 ■ IntroduCtIon

11

Example: A sample hive query HiveSQL

SELECT product.product_name, SUM(orders.purchases)
 FROM product JOIN orders
 ON (product.id = orders.product_id)
 WHERE orders.quarter = 'Q1'
 GROUP BY product.product_name; YARN

1.5.5 YARN
Apache Hadoop YARN is a cluster management technology and a sub project of Apache
Hadoop in Apache Software Foundation (ASF) like other HDFS, Hadoop Common
and MapReduce. YARN stands for Yet Another Resource Negotiator. YARN is a general
purpose, distributed, application management framework that supersedes the classic
MapReduce framework for processing data in Hadoop clusters.

In Hadoop ecosystem, HDFS is storage layer and MapReduce was the data processing
layer. However, the MapReduce algorithm is not enough for variety of use-cases. YARN is
a central resource manager and distributed application framework that can be used for
multiple data processing applications. It reconciles the way applications use resources with
node manager agents that monitor the processing operations of individual cluster nodes.

1.5.6 Spark
Apache Apache Spark is an open source fast, in-memory data processing engine, designed
for speed, ease of use, and sophisticated analytic. Spark is used to manage big data
processing for a variety of data sets ex. text data, graph data etc as well as the source of data
(batch/real-time streaming data). Spark enables applications in Hadoop to run in memory
that is much faster than running on disk. In addition to Map and Reduce operations, Spark
supports streaming data, SQL queries, machine learning and graph data processing. Apart
from this, it also reduces the management problem of maintaining separate tools.

1.5.7 PIG
Apache Pig is used for querying data stored in Hadoop clusters. It allows users to write
complex MapReduce transformations using high-level SQL -like scripting language called
Pig Latin. Pig translates the Pig Latin script into MapReduce tasks by using its Pig Engine
component so that it can be executed within YARN for access to a single dataset stored
in the HDFS. Programmers need not write complex code in Java for MapReduce tasks
rather they can use Pig Latin to perform MapReduce tasks. SQL developers love scripting
and Pig Latin comes as their first choice over coding. Apache Pig provides nested data
types like tuples, bags, and maps that are missing from MapReduce along with built-in
operators like joins, filters, ordering etc.

1.5.8 ZooKeeper
It’s difficult to write distributed applications because partial failure may occur between
hosts. Apache Zookeeper was developed to mitigate this problem. Zookeeper maintains
an open-source server which enables highly reliable distributed coordination.

Chapter 1 ■ IntroduCtIon

12

The Zookeeper framework was created by Yahoo for its internal use and donated to the
open source community. Zookeeper is a distributed coordination service that manages
large sets of nodes. On any partial failure, clients can connect to any node to receive
correct, up-to-date information. HBase is not operational without ZooKeeper. ZooKeeper
is a key component for coordination services in Apache Phoenix.

Zookeeper deals with the distributed nature of the application and lets the
programmer focus on application logic.

1.6 Phoenix in the Hadoop Ecosystem
Developers who write code may be comfortable with the HBase API to store, retrieve or
query data from HBase. Many programmers prefer Structured Query Language (SQL) to
writing code in Java or another language. Phoenix is one of the SQL interfaces they can
use for querying data from an HBase store. It’s a system that gives users the tools to make
powerful queries and get results, often in real time. Compared to Hive, Phoenix is highly
optimized for Hbase, provides better performance than other similar frameworks, and
supports many other interesting features which we will discuss in upcoming chapters. HBase
is used as a primary database for Hadoop, also known as Hadoop’s database. Phoenix as the
SQL interface for Hbase plays a vital role in Hadoop-related big data analysis.

See the following example of a sample Phoenix query that retrieves records from an
employee table. If you analyze the query, you will find that it’s similar to SQL and easy to
write and understand.

Example:

SELECT EMP_ID, FNAME,CITY FROM EMPLOYEE;

1.7 Phoenix’s Place in Big Data Systems
Although Phoenix is not an integral part of the Hadoop ecosystem, it is a necessary tool
to work effectively with Hadoop. It is now gaining traction with programmers who write
queries to work with HBase data. In this section we will examine challenges in performing
big data analysis from a database administrator’s perspective and how Phoenix helps to
mitigate them.

1.8 Importance of Traditional SQL-Based Tools
and the Role of Phoenix

SQL had been the primary tool for interacting with relational database systems for
decades. People are comfortable and familiar with this technology and its syntax. In the
big data world, there is no standard tool like SQL, but many distributors offer options that
provide SQL-like interfaces for querying big data systems. These tools are optimized for
underlying support and fast enough to query millions of rows. Phoenix, Hive, and others
fall into this category.

Chapter 1 ■ IntroduCtIon

13

If you are a DBA, you may not want to learn or understand Java code to work with
data in a Hadoop system. These tools provide that kind of support; you should not have
to be a developer to understand the Hadoop API to query data. Phoenix gives you the
flexibility to write queries just like SQL when you work with data.

1.8.1 Traditional DBA Problems for Big Data Systems-
A traditional database administrator who has been working on relational databases for
a long time is always hesitant about adopting big data culture. What are some of the
challenges for a database administrator who adopts big data technology, and what would
be the commonly available tools in his or her day-to-day work?

1.8.2 Which Tool Should I Use for Big Data?
You might have used many tools in the past decade to retrieve records from and store
data into relational databases. In traditional transactional databases, we might be
querying millions of rows. When we talk about big data we are dealing with terabytes,
even petabytes of data, or billions of rows. It is quite possible that relational database tools
will not work or it will simply take hours, even days, to analyze such a large amount of
data. Such slow access might not be relevant for our business purposes if we need instant
results to guide some business actions; we want fast results to do business predictions.

Although there is no standard tool available for big data but we have tools that works
like relational databases tools support scripting like SQL, such tools are Phoenix, Hive,
and Pig. Phoenix can work with petabytes of data and is highly optimized for Hadoop
Hbase analysis. This book is about Phoenix; we will see how Phoenix provides these
features in analyzing and querying big data storage.

1.8.3 Massive Data Storage and Challenges
Traditional data management and analysis systems are based on the relational database
management system (RDBMS). However, RDBMSs apply only to structured data, rather
than semi-structured or unstructured data. In addition, RDBMSs are increasingly utilizing
more and more expensive hardware. It is apparent that the traditional RDBMSs cannot
handle the huge volume and heterogeneity of big data. RDBMS solutions for handling big
data are limited by their design and cannot scale on very large data sets. Even to support
such solutions requires specialized hardware that increases cost, while big data options
like Hadoop run on commodity hardware and are meant for handling such problems in a
cost effective manner.

1.8.4 A Traditional Data Warehouse and Querying
In today's organizations, many hundreds of systems may be distributed throughout the
company. Each system is largely independent, and any customer experience data is kept
within that system. Data warehouses mainly provide storage, more advance querying, and
responsiveness to queries more readily than transactional databases without these storage
advantages. They can be queried to get useful information from these sources for business
decisions in a fast way. Data warehouses are meant to improve the performance of databases.

Chapter 1 ■ IntroduCtIon

14

Generally, we have to face many challenges while getting information out of a data
warehouse. These challenges include problems like many incomplete data sources: they
do not use the same definitions, and are not always available. For warehouses, data has
to be copied to a central location to keep it updated. Copying all data from each of the
systems is unfeasible or requires large amounts of time and money. Even sampling the
data could be very problematic, as it requires much time and is a costly process. With the
help of big data technologies, these problems are mitigated by generating and accessing
the data in and from the same big data platform, and we are able to get real time analytics
out of it in a fast way for improved business decisions based on these analyses.

1.9 Apache Phoenix in Big Data Analytics
Big data growth is making it essential for businesses to become involved in the use of
technologies such as cloud computing and the Internet of Things. Big data analytics are
becoming more necessary for organizations to stay on track with market trends. Phoenix
and other big data tools are gaining momentum due to their support for comfortable
SQL-like interfaces, readability, and rapid learning curves. Behind the wall, Phoenix
compiles SQL queries to HBase native calls and runs the scan or plan in parallel for
optimization. Phoenix applications can run MapReduce jobs as per user request and
utilize big data fundamentals, but the programmer does not need to know about that; he
or she should be focusing business logic and writing scripts to access big data storage.

Apache Phoenix is increasing in popularity over other tools available in its space.
The beauty is that Phoenix provides features such as skipping full table scan, improves
performance of overall system, server/client side parallelizations, filters push down, and
Phoenix query server to decouple processing from application, transactions, and secondary
indexes. The fact that Phoenix queries are very similar to SQL makes every legacy database
admin love it. Certainly, many other tools are available to interact with big data systems
for querying and performing analysis, but Phoenix’s strong support and optimization for
HBase makes it a more likely first choice of SQL interface to work with Hadoop HBase
databases. Though it is not a necessary part of the Hadoop ecosystem, it is much in demand
for Hbase. Phoenix’s integration with big data technologies for ETLs like Spark, Flume, Hive,
Pig, and MapReduce makes it a welcome part of the Hadoop ecosystem.

1.10 Summary
In this chapter we discussed big data, some of its uses, and some of the primary sources
that generate big data. We also introduced the Hadoop ecosystem as a prerequisite for
understanding the role of Apache Phoenix. Phoenix is used as a tool to work with data
stored in HBase. Hbase, also known as Hadoop’s database, is a column-oriented NoSQL
database used primarily for high read-write operations for large tables.

We have been comfortable using traditional RDBMS tools to work with transactional
data in a very efficient way. Big data, as such, does not provide those traditional tools,
but we have options like Phoenix, Hive, and Impala, which can be used to interact with
big data storage and perform operations on it.

In the next chapter we will see how to work with Phoenix, discuss its installation
process, and further explore querying HBase data using Phoenix.

15© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_2

CHAPTER 2

Using Phoenix

Apache Phoenix is a coating of traditional SQL-like syntactic sugar applied to Hadoop’s
HBase NoSQL database. It was created as an internal project at Salesforce, later open-
sourced on GitHub, and became a top-level Apache project in a very short period of time.
HBase, the Hadoop database, is a highly-scalable NoSQL database. You can query HBase
data using Phoenix with a syntax similar to SQL as used for relational databases. Apache
Phoenix provides a JDBC driver and works as an SQL driver to HBase. Phoenix queries
are optimized primarily for HBase and use many Hbase-related techniques, such as
skip scan, to improve performance. We will cover skip scan and other advanced Phoenix
topics in further chapters.

2.1 What is Apache Phoenix?
The history of Apache Phoenix begins with Salesforce.com, which created Phoenix as an
internal project for its need to support a higher level, easy to use, readable SQL language
on top of a big data ecosystem. Later, Salesforce.com open-sourced Phoenix on GitHub,
and it became a top-level Apache project in May 2014. Now Phoenix is supported by
many Hadoop distribution platforms, such as Hortonworks, who provide Phoenix
support in their data platform (HDP) versions 2.1 and above Cloudera supports Phoenix
in their CDH distribution, and MapR offers easy integration with Phoenix inside their
Hadoop distribution platform.

By utilizing HBase as its storage database, Phoenix enables OLTP and analytics for
low latency applications in Hadoop by combining standard SQL and JDBC APIs with
full ACID transaction capabilities and schema-on-read, late-bound capacities from the
world of NoSQL databases (see Figures 2-1). Phoenix supports easy integration with other
Hadoop ecosystem products, for example, Hive, Pig, Spark, Flume, and MapReduce.

Chapter 2 ■ Using phoenix

16

Figure 2-1. Phoenix as an SQL driver for HBase

Phoenix documentation and releases details can be found at https://phoenix.
apache.org/. Phoenix source code is hosted on the GitHub repository https://github.
com/apache/phoenix

2.2 Architecture

Figure 2-2. Phoenix architecture

www.allitebooks.com

https://phoenix.apache.org/
https://phoenix.apache.org/
https://github.com/apache/phoenix
https://github.com/apache/phoenix
http://www.allitebooks.org

Chapter 2 ■ Using phoenix

17

Phoenix framework provides the client and server libraries. On the server side, Phoenix
custom HBase coprocessors handle indexing, joins, transactions, schema and metadata
management. It has custom observers and endpoint coprocessors to support these
functionalities.

On the client end, phoenix client library has the parser, necessary relational algebra
and query plan components that are used to parse the given query and choose the
optimal plan based on cost-based optimization. Once a query plan is chosen, Phoenix
internally converts the request to a SCAN, PUT or DELETE operation and executes the
operation. The results returned from server are mapped to java ResultSets.

2.2.1 Installing Apache Phoenix
Phoenix requires Java to be installed on the system. In the next section, you will see how
to install prerequisite software to get started with Phoenix. Let’s start with installing Java
then we will see how to install Phoenix.

2.2.2 Installing Java
To install Phoenix, Java must be installed first, along with Hadoop. Ensure you have
a recent JDK v1.8.x JVM (Java Virtual Machine) where x is the minor update version.
Although only a JRE (Java Runtime Environment) is required to run Phoenix, you will
need the full JDK to build the examples in this book that demonstrate how to extend
Phoenix with Java code. If you are a non-programmer, the source code distribution for
this book contains Phoenix scripts. These can be used to understand Phoenix, work on its
features and query data with the Phoenix shell.

You can install Hadoop and Phoenix on Windows, Linux, or MAC OS X systems. We
first install Java and set the JAVA_HOME environment variable.

2.2.2.1 Installing Java on Linux
There are many ways you can install Java on Linux. Here we describe how to setup
Java in a bash file for all users. You must set up JAVA_HOME environment variable
in the /etc/profile.d/ directory. This directory requires root access to change
environmental settings. The Oracle JVM installer typically installs Java in /usr/java/
jdk-1.8.x, and it creates symlinks from /usr/java/default and /usr/java/latest
to the installation.

$ /usr/java/latest/bin/java -version
java version "1.8.0_72"
Java(TM) SE Runtime Environment (build 1.8.0_72-b15)
Java HotSpot(TM) 64-Bit Server VM (build 25.72-b19, mixed mode)

$ sudo echo "export JAVA_HOME=/usr/java/latest" > /etc/profile.d/java.sh
$ sudo echo "PATH=$PATH:$JAVA_HOME/bin" >> /etc/profile.d/java.sh
$./etc/profile
$ echo $JAVA_HOME
/usr/java/latest

Chapter 2 ■ Using phoenix

18

2.2.2.2 Installing Java on Mac OS X
Mac OS X systems don’t have the /etc/profile.d directory and they are typically
single-user systems, so the best practice is to put the environment variable definitions
in your $HOME/.bashrc. The Java paths are different, too, and they may be in one of
several places.

First you’ll need to determine where Java is installed on your Mac and adjust the
definitions accordingly. Here is a Java 1.8 example for Mac OS X:

Add the JAVA_HOME environment variable to the location where Java is installed and
then export this variable. You can also add these changes in the ~/.bash_profile file.

$ export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.8/Home
$ export PATH=$PATH:$JAVA_HOME/bin

2.3 Installing HBase
Before you can work with Phoenix, you must install HBase. Phoenix provides binaries
that are compatible with different versions of HBase. Currently Phoenix version 4.7
supports HBase versions 0.98, 1.0, and 1.1, and Phoenix 4.8 release supports
HBase 1.2, as well.

To install Hbase, download the HBase binaries and extract the archive from one of
the recommended mirror pages:

 1. Select a mirror and navigate to the 1.1.4 directory. If you want
to install a different version of HBase, select that version’s
directory instead, and substitute the version number in place
of “1.1.4” in this example.

 2. Inside the directory you will find an hbase-1.1.4-bin.tar.gz file.
Download the file to install on your system.

 3. Unarchive the hbase-1.1.4-bin.tar.gz file into some location.

 4. Create the HBASE_HOME environment variable. If you are
using a Mac, add the variable to your ~/.bash_profile file:

export HBASE_HOME=/Users/hbase-user/Downloads/hbase-1.1.4

Chapter 2 ■ Using phoenix

19

2.4 Installing Apache Phoenix
Now that we have installed all prerequisite software for Phoenix, the process to install
Phoenix is simple. You can build Phoenix from source code or you can use the convenient
binary tarfile for a simple setup. It’s easy and handy to install Phoenix from the binary
distribution. Here we show how to install Phoenix from the binary distribution:

 1. Locate the latest Phoenix distribution on the website
https://phoenix.apache.org. The file will have
a name of the form phoenix-[version]-bin.tar. In this
example we use phoenix-4.6.0-HBase-1.1-bin.tar.gz, which is
compatible with HBase version 1.1. If you choose a different
version, substitute that version number in place of “4.6.0” in
this example.

 2. Download phoenix-4.6.0-HBase-1.1-bin.tar.gz archive and
extract to your preferred directory.

 3. Go to your Phoenix installation directory and copy the
phoenix-4.6.0-HBase-1.1-server.jar jar to the HBase lib
directory.

 4. We have integrated Phoenix. Now start HBase by executing
the following script from HBase’s bin directory:

./start-hbase.sh

This will start HBase in standalone mode.

 5. With HBase running, start the Phoenix shell by executing the
Python script from the bin directory:

./sqlline.py localhost

where localhost is actually the zookeeper quorum address as
we are running HBase in standalone mode, so the zookeeper
address is localhost, and 2181 is the default port).

 6. Confirm that you see the following as your command-line
prompt:

0:jdbc:phoenix:localhost>

This means Phoenix is installed and running.

 7. Go to your Hbase installation directory and start HBase by
executing the start-hbase.sh shell script

 8. After starting HBase as shown in Figure 2-3, open another
terminal and start Phoenix (see Figure 2-4)

https://phoenix.apache.org/

Chapter 2 ■ Using phoenix

20

Figure 2-4. Phoenix shell connected with local HBase

Figure 2-3. HBase running

Congratulations! You have successfully installed Phoenix with HBase.

2.5 Installing Phoenix on Hortonworks HDP
In the bare HBase installation, we saw how to integrate Phoenix with HBase. Now let’s
install Phoenix on the Hortonworks Data Platform, HDP. HDP is the Hortonworks
Hadoop distribution platform. It’s easy to install Phoenix on HDP as it comes with HBase
pre-installed. Hortonworks provides a sandbox distribution for HDP; we will need to
import this as a virtual machine.

Chapter 2 ■ Using phoenix

21

Here we use Oracle’s open source VirtualBox. You can also install HDP on other
virtualization platforms such as kvm or VMware. Check compatibility on the Hortonworks
website and download a version of VirtualBox that is compatible to your sandbox. In this
example we use the HDP 2.4 distribution. Go to the website https://www.virtualbox.
org/wiki/Downloads and download VirtualBox for your operating system. In this
example, we downloaded VirtualBox 5.0.20 for OS X hosts.

2.5.1 Downloading Hortonworks Sandbox
Download a Hortonworks HDP sandbox distribution from the Hortonworks website
http://hortonworks.com/downloads/. They have different sandboxes for VMware and
VirtualBox. Select the Hortonworks sandbox for VirtualBox. We downloaded the HDP 2.4
sandbox for this demo.

After you have VirtualBox installed in your system and have downloaded HDP for
VirtualBox, just double-click on the downloaded file; this will open a VirtualBox window
as shown in Figure 2-5.

Figure 2-5. Installing HDP Sandbox on VirtualBox

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://hortonworks.com/downloads/

Chapter 2 ■ Using phoenix

22

Now you configure the vm for the Hortonworks HDP 2.4 platform. (If you are using some
other version of HDP make sure you are using a compatible VirtualBox version with it.)

HDP can be started by clicking the power button or just pressing the start arrow.

Figure 2-6. HDP Installation running on VM

When HDP is running you will see a window like that shown in Figure 2-7. You can
now access HDP. To install Phoenix on top of HDP, we need to log in to HDP and install
Phoenix on it.

Chapter 2 ■ Using phoenix

23

Log in to HDP with the default username “root” and “Hadoop” as the password. After
login, HDP will prompt you to change the password for security. Choose a new password
and move ahead.

Figure 2-7. HDP installation completed

Figure 2-8. Hadoop password creation

Chapter 2 ■ Using phoenix

24

Now we are ready to install Phoenix. We’re going to be using the open-source
package management utility yum to install Phoenix. To start the installation by running
the following command:

yum install phoenix

Figure 2-9. Downloading Phoenix on HDP

The yum dialog will ask you to download Phoenix. Enter y and proceed. After
downloading Phoenix you should see a window similar to that shown in Figure 2-10.

Figure 2-10. Phoenix download success

Chapter 2 ■ Using phoenix

25

Now that we have downloaded Phoenix, let’s configure it to work with HDP.
You can connect to HDP through ssh or execute these steps directly on the HDP

console.
Once the installation finishes, find your Phoenix core jar file. Locate this file at /

usr/hdp/2.4.0.0-169/phoenix/lib/phoenix-core-4.4.0.2.4.0.0-169.jar. Link the
Phoenix core jar file to the HBase Master and Region servers.

It’s good to connect remotely by ssh. In this example, we ssh to HDP running on
virtual machine localhost on port 2222. Execute the following command from your
terminal:

ssh root@127.0.0.1 -p 2222

Change the version numbers if you have different versions of Hadoop (HDP) or
Phoenix.

Figure 2-11. Check Phoenix prerequisites for executing installation

Chapter 2 ■ Using phoenix

26

The next step is editing the hbase-site.xml. Go to location /usr/hdp/2.4.0.0-169/
etc/hbase/conf.dist and open hbase-site.xml in your favorite editor. Here we use vi
to edit the file.

vi /usr/hdp/2.4.0.0-169/etc/hbase/conf.dist/hbase-site.xml

Substitute your version numbers in the command line as necessary. In your editor,
insert this code between the two configuration tags:

<property>
 <name>hbase.defaults.for.version.skip</name>
 <value>true</value>
</property>
<property>
 <name>hbase.regionserver.wal.codec</name>
 <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</
value>
</property>

When you’re done, the file should resemble that shown in Figure 2-13:

Figure 2-12. Verify that Phoenix core jars are available

Chapter 2 ■ Using phoenix

27

Save the file and exit from the editor. These properties will be taken into
consideration when your HBase is up and running.

2.5.2 Start HBase
If HBase isn’t running yet, you need to start it. Similarly, if HBase is already running, you
need to restart it.

Log into Ambari in your browser at 127.0.0.1:8080 with username/password admin/
admin. If that doesn’t work, check which ip address to use by typing this code in your
terminal:

 ifconfig

Once you’re logged in, start HBase by clicking HBase on the left panel then Service
Actions > Start:

Figure 2-13. HBase property modification for Phoenix

Chapter 2 ■ Using phoenix

28

You get a red alert when HBase first starts up; give it a minute or two to start. If the
alert persists, you may have to stop another service to free up memory on your sandbox.
For example, you may choose to stop MapReduce2 for now. You can always enable it later.

Phoenix should now be installed and ready for use.

2.5.3 Testing Your Phoenix Installation
To test your new Phoenix installation, navigate to Phoenix’s bin folder:

cd /usr/hdp/2.4.0.0-169/phoenix/bin

Run the sqlline.py program:

python sqlline.py localhost:2181:/hbase-unsecure

This may take a minute or two to start up. If it hangs for too long, check Ambari to
make sure HBase is still running.

Figure 2-14. HDP HBase service screen

Chapter 2 ■ Using phoenix

29

Once the program starts, enter the command !tables, and you will see the window
in Fig 2-16:

Figure 2-15. Phoenix shell

Chapter 2 ■ Using phoenix

30

2.6 Installing Phoenix on Cloudera Hadoop
Just like the Hortonworks Hadoop distribution, Cloudera has its own Hadoop distribution
called CDH. The Phoenix package is currently distributed only as a parcel. Because
Cloudera does not support mixing parcels and packages in the same Cloudera Manager
instance, you can only install Phoenix into a Cloudera Manager instance that uses
parcels. Install Phoenix on Cloudera as described in Cloudera distribution documents.

If you are configuring HBase to use secondary indexes, no WALs can be present in
the HBase log directory. To ensure that this is the case, use a fresh HBase installation or
perform a full clean shutdown of HBase before configuring Phoenix. We recommend first
going without secondary indexes, then when you have a good understanding of the basic
concepts you can explore them later.

Install and activate the parcel:

 1. In Cloudera Manager, go to Hosts, then Parcels.

 2. Select Edit Settings.

Figure 2-16. Validating Phoenix successful installation

Chapter 2 ■ Using phoenix

31

 3. Click the + sign next to an existing Remote Parcel Repository
URL, and add the appropriate URL (http://archive.
cloudera.com/cloudera-labs/phoenix/parcels/1.1/ or
http://archive.cloudera.com/cloudera-labs/phoenix/
parcels/1.2/). Click Save Changes.

 4. Select Hosts, then Parcels.

 5. In the list of Parcel Names, CLABS_PHOENIX should now be
available. Select it and choose Download.

 6. The first cluster is selected by default. To choose a different
cluster for distribution, select it. Find CLABS_PHOENIX in the
list, and click Distribute.

 7. If you do not plan to use secondary indexing, but only plan
to use Phoenix for doing simple upsert/select, skip this step.
If you do plan to use secondary indexing, add the following
to the hbase-site.xml advanced configuration snippet. Go
to the HBase service, click Configuration, and choose HBase
Service Advanced Configuration Snippet for hbase-site.
xml. Paste in the following XML, then save the changes.

<property>
 <name>hbase.regionserver.wal.codec</name>

 <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value>
</property>

To configure the IndexedWALEditCodec, see https://phoenix.apache.org/
secondary_indexing.html.
Click Actions > Restart.

From a shell, execute phoenix-sqlline.py localhost:2181. If you have a different
port configured for Phoenix, use that port in the command. This will open the Phoenix shell.

Now you are ready to write some SQL. To see available tables, execute the SQL
command !tables on the Phoenix console.

2.7 Capabilities
Phoenix is an open source SQL driver for HBase. It converts standard JDBC APIs to native
HBase calls to create tables, insert data, and query HBase data. In this section we provide
an introductory description of Phoenix features. We will discuss them in detail in later
chapters.

•	 Common SQL data types

•	 Inserts and updates

http://archive.cloudera.com/cloudera-labs/phoenix/parcels/1.1/
http://archive.cloudera.com/cloudera-labs/phoenix/parcels/1.1/
http://archive.cloudera.com/cloudera-labs/phoenix/parcels/1.2/
http://archive.cloudera.com/cloudera-labs/phoenix/parcels/1.2/

Chapter 2 ■ Using phoenix

32

•	 SELECT, DISTINCT, GROUP BY, HAVING

•	 NOT NULL and primary key constraints

•	 Inner and outer JOINs

•	 Views

•	 Subqueries

•	 Improving query performance on non-row key columns with
Secondary Indexes

•	 Spark integration

•	 User Defined Functions to allow users to create and deploy their
own custom or domain-specific functions to the cluster

•	 Transactions

•	 Statistics collection

•	 Dynamic columns

•	 Query server

•	 Multi-tenancy

2.8 Hadoop Ecosystem and the Role of Phoenix
Hadoop has become established as a primary source for big data analytics. It has various
components and technologies in its ecosystem. HBase, a non-relational distributed
database, is one of the components used for column data model storage. Hbase, known
as Hadoop database, supports random, real-time read and write operations in very large
column-oriented tables. It is used as the backing system for MapReduce jobs.

We can use the HBase API for database operations on HBase. Phoenix is a high
performance SQL skin for HBase used to provide the user an interactive SQL interface
for writing efficient, high performance queries. Figure 2-17 illustrates high-level Phoenix
working with a Hadoop HBase database.

Figure 2-17. Phoenix communicating with HBase

Chapter 2 ■ Using phoenix

33

There are SQL interfaces for Hadoop other than Phoenix, such as Apache Hive and
Cloudera Impala. Table 2-1 presents a comparison of these three and their features. Hive
is a powerful querying engine for the Hadoop ecosystem, but Phoenix is Hbase-specific
and highly optimized for it. Phoenix advantages that give it better performance than
other alternatives include support for secondary indexes, transactions, and user defined
functions.

Table 2-1. Comparison of Phoenix, Hive, and Impala

2.9 Brief Description of Phoenix’s Key Features
Let’s discuss some of the key features of Phoenix we will be using while taking a deep dive
in our examples. This is just an overview; in later chapters we will discuss them in detail.

2.9.1 Transactions
Phoenix provides transaction support with full ACID semantics with the help of Apache
Tephra for HBase row-level transactional semantics. Apache Tephra provides snapshot
isolation of concurrent transactions by implementing multi-versioned concurrency
control. At the time of this writing, Tephra is an Apache incubator project.

2.9.2 User-Defined Functions
You can create temporary or permanent user-defined or domain-specific scalar functions.
User defined functions can be used in the same way as built-in functions in queries such
as SELECT, DELETE, and UPSERT to create functional indexes. Temporary functions

Chapter 2 ■ Using phoenix

34

are specific to a connection and are not accessible in other connections. For permanent
functions, meta-information is stored in a system table called SYSTEM.FUNCTION.
Phoenix supports tenant-specific functions. Functions created in a tenant-specific session
or connection are not visible to other tenant-specific sessions or connections. Only global
tenant (a.k.a. no tenant) specific functions are visible to all the connections.

2.9.3 Secondary Indexes
Secondary indexes are not like primary indexes, and may have duplicate values. For
example, a customer name can have similar values. Generally, primary keys are created
in the database when the table is activated. Secondary indexes are created for a large
frequently accessed table when primary index sorting is not possible or hard to apply.
HBase does not have indexes. The row key is sorted in sort order and the access pattern is
based on row key. Orthogonal access patterns require a full scan of the table. Secondary
indexes created on alternate row keys can allow point lookup (accessed using get()
operations), are much faster, and do not require a full scan on the table.

2.9.4 Skip Scan
Skip scan uses column(s) of a composite index to find distinct values. The first matched
value is skipped along with the index until it finds the next value. Skip scan significantly
improves query performance over a range and on full scans on a given set of keys while
retrieving rows.

The skip scan utilizes the SEEK_NEXT_USING_HINT enum of the HBase filter. It
specifies the next key to seek given as a hint by the filter. It stores details about what set of
keys are being searched for in each column. It then takes a key, and figures out whether it
is one of the combinations. If not, it evaluates the next highest key to which to jump.

2.9.5 Views
Phoenix supports view syntax as in standard SQL to enable multiple virtual tables to all
share the same underlying physical HBase table. There are many limitations for views
in Phoenix; you can find them in the Phoenix reference documentation at https://
phoenix.apache.org/views.html. This feature is very important in HBase, as you cannot
realistically keep more than a hundred physical tables and continue getting reasonable
performance from HBase.

2.9.6 Multi-Tenancy
Phoenix offers multi-tenancy by declaring it while creating tables with tenant-specific
configuration properties. The tenant-specific connection has to be injected by supplying
a tenant id at the time of connection. Once the connection is opened you can access
that tenant data. Tenants can see all data in regular tables, but see only their own data in
multi-tenant tables.

https://phoenix.apache.org/views.html
https://phoenix.apache.org/views.html

Chapter 2 ■ Using phoenix

35

You can create tenant-specific views on top of multi-tenant-tables and add your own
columns to the views.

2.9.7 Query Server
Phoenix Query Server is a way to support other Java clients. It has an inbuilt stand-alone
server that exposes a thin client. The thin client uses JSON to interact with the Phoenix
query server (PQS). The query server is an HTTP server that supports two transport
mechanisms, JSON and Protocol Buffers, for communications to the clients. Protocol
buffers are the default in PQS and more efficient than JSON. The thin client is built using
Apache Calcite’s Avatica component.

You can write your clients in C#, Python, or other languages by utilizing this beautiful
feature. You will see more on query server in later sections of this book.

2.10 Summary
Apache Phoenix is an open source SQL driver for Hadoop’s HBase database. It is used
to query HBase data by writing simple SQL-like queries. Phoenix can be installed with
HBase running in standalone or distributed environments. It is available with the
Hortonworks Data Platform or the Cloudera Hadoop distribution.

In the upcoming chapters, we will discuss Phoenix syntax and CRUD operations for
HBase data and query optimization techniques.

37© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_3

CHAPTER 3

CRUD with Phoenix

Now that we have installed Phoenix and HBase, let’s get started with performing the basic
operations of CREATE, UPDATE, DELETE and SELECT using SQL. Let’s also take a dive
into the data types and perform CRUD operations from the “Sqlline” CLI available in
Phoenix.

3.1 Data Types in Phoenix
Unlike HBase which is data-type agnostic, Phoenix provides a set of data types that
specify the type of data that the column holds. Each data type is internally mapped to
a corresponding data type of either Java or SQL. There are Unsigned versions of the
numeric and time data types that hold only positive values. The Unsigned versions of
the time data types are needed when the value has been serialized by the HBase utility
method org.apache.hadoop.hbase.utils.Bytes.

3.1.1 Primitive Data Types
Phoenix framework provides a custom DataType mapping to various types defined in
java.sql.Types unlike in HBase where all the data is just stored as bytes in big endian
notation. Each datatype has a codec to decode the raw bytes to java primitives. The
supported data types are boolean, char, varchar, decimal, int, short, long, float, double,
date and time . For each of the numerical data types there is an associated unsigned
version to handle positive values.

3.1.2 Complex Data Types
HBase gives you freedom in what and how you store, and Phoenix gives you its methods.
Similar to other platforms support of the complex types like STRUCT, ARRAY , Phoenix
only supports Array type.

See Table 3-1 for frequently used available data types in Phoenix and their
corresponding Java mappings.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ CrUD with phoenix

38

Table 3-1. Phoenix data types

Data Type Java Mapping Notes

TINYINT java.lang.Byte

SMALLINT java.lang.Short

INTEGER java.lang.Integer

BIGINT java.lang.BigInteger

FLOAT java.lang.Float

DOUBLE java.lang.Double

DECIMAL java.math.BigDecimal Can specify fixed precision and scale.

BOOLEAN java.lang.Boolean True/False. Mapped internally to 0/1.

TIME java.sql.Time. The default
format is yyyy-MM-
ddhh:mm:ss

Internal representation based on
number of milliseconds since the
epoch in GMT

VARCHAR java.lang.String Variable length string mapped
internally in UTF8

CHAR java.lang.String Fixed length string mapped internally
in UTF8

BINARY byte[] Fixed length byte array.

VARBINARY byte[] Variable length byte array.

ARRAY java.sql.Array. Every primitive type except
VARBINARY may be declared as a
single dimension ARRAY.

3.2 Data Model
Apart from many similarities of Phoenix with relation databases like organizing data as
rows and columns into tables, there are couple of significant differences. Each table in
Phoenix must contain atleast one column family. Simply put, a column family allows us
to group a set of columns into one to which we can specify separates tuning and storage
specifications at table creation time. Each column is versioned and the column content
is an uninterrupted byte array. Each row is uniquely identified by a row key. Data is
apparently stored physically on a per column family basis as separate HFiles on disk.

Chapter 3 ■ CrUD with phoenix

39

3.2.1 Steps in data modeling
As in designing relational systems, the steps in designing the data model in Phoenix
involves

 1. Analyzing requirements

 2. Identifying entities and their relationships

 3. Identify queries

 4. Define the schema

In a relational system, the focus and effort is more around describing entities and
its interactions and less about the kind of queries that will be run . However, in Phoenix
more focus should be given in identifying the query access patterns and then come up
with a schema aligned to meet it.

Additionally we should avoid trying to create normalized tables as joins are a
costly call.

3.3 Phoenix Write Path
When an UPSERT statement is issued, Phoenix parses the query and converts to a
HBase Put operation. This operation does the functionality of an INSERT of a new row or
UPDATE of an existing row. A write by default when received by a Region server is first
written off to it Write Ahead Log(WAL) and Memstore. Writes to WAL ensure durability.
A write is considered complete only when the change is written to the two places.

3.4 Phoenix Read Path

A SELECT query allows for reading data from multiple tables. Once the query is parsed
by Phoenix, it prepares a set of query plans and chooses an optimal one based on various
criterias like indexes on table. The optimal plan is then materialized into a set of HBase
Scan operations which are executed in parallel using an ExecutorService pool. The results
are merged on the client.

3.5 Basic Commands
In this section, we do not elaborate on the detailed working of Phoenix commands,
instead we just touch upon things to get some hands-on experience. We will add more
sugar to these concepts in the next chapter where we explain more advanced Phoenix
concepts.

Let’s get started by running basic SQL commands, as if you were merely using a
SQL database, from the CLI sqlline.py. To run sqlline.py, create a new terminal window,
navigate to the binary distribution directory(bin) on the machine and type the following
command.

Chapter 3 ■ CrUD with phoenix

40

 ■ Note By default, phoenix upper-cases all column names and table names defined in the
table. if you are Looking case-sensitive, enclose each column name with “double quotes.”

3.5.1 HELP
To request help from the shell, type !help to see the list of available commands.

 ■ Note these commands correspond to phoenix Sqlline. For other JDBC clients you can
refer to their manuals.

Chapter 3 ■ CrUD with phoenix

41

3.5.2 CREATE

Let’s create a simple user table with ‘id’ as a primary key. Note that the columns
first_name and last_name are mapped to the ‘d’ column family. If no column family is
specified, the column is internally mapped to the ‘0’ column family. You can override
the default column family by defining the DDL property DEFAULT_COLUMN_
FAMILY=column_family_name while creating tables.

3.5.3 UPSERT
Let’s upsert two rows. Care should be taken to ensure the integrity constraints defined
are honored. Here, we explicitly set the value for the id column. Phoenix does provide a
‘SEQUENCE’ feature for providing a monotonically increasing value to a column.

Internally, the SQL call is converted into an HBase Put mutation.

3.5.4 SELECT

SELECT retrieves data from one or more tables, and can include a UNION ALL to
combine rows from multiple SELECT statements.

Do a quick start of your HBase Shell and perform a scan ‘USER’; you should see two
rows with each row having three columns. You may be surprised to see column D:_0. In
the next chapter we will discuss the purpose of ‘0’.

Chapter 3 ■ CrUD with phoenix

42

3.5.5 ALTER

The ALTER command allows us to alter the schema of a table. You can add or drop
columns, and can update the table options. Let’s try adding a zipcode column to the
user table.

3.5.6 DELETE

The DELETE statement deletes the rows matching the WHERE clause from the
underlying table.

3.5.7 DESCRIBE

DESCRIBE is an Sqlline command. The statement allows us to view the schema defined
for a table. All metadata about the tables and the schema of the column names and the
data types is stored in a table named SYSTEM.CATALOG. The following query fetches the
schema from the CATALOG table.

Chapter 3 ■ CrUD with phoenix

43

3.5.8 LIST

To get a list of the set of tables in the database, execute the following Sqlline command.
List is also an Sqlline command, as is DESCRIBE, as we mentioned above.

3.6 Working with Phoenix API
Now you understand Phoenix CLI and how to work with it. Phoenix Command Line
Interface is an intuitive and easy to use interface to work with big data analysis and has
been popular tool among SQL developers. Phoenix also provides APIs for developers who
write code. APIs are written in Java and easy to use. Developers can use them similar like
other Java libraries in their projects.

In the following section, you will see how to work with Phoenix API using popular
eclipse IDE and maven as a build mechanism.

3.6.1 Environment setup
To work with Phoenix API, you need an editor or IDE for faster development. Eclipse, an
open source IDE has been most popular Java IDE since decade. We are using eclipse mars
in our example. You can download eclipse from https://eclipse.org/downloads/ Make
sure you have Java installed to work with eclipse. Create a maven project in eclipse in our
example we create project pro-apache-phoenix. Maven is used for build, packaging and
dependency management for your project. See Figure 3-1 setting maven project.

https://eclipse.org/downloads/.

Chapter 3 ■ CrUD with phoenix

44

You must add phoenix maven dependencies along with HBase dependencies. We
need HBase dependencies as Phoenix works with HBase. Choose your phoenix and
HBase compatible versions. You can find Phoenix versions compatibility for HBase on
Phoenix website. Now we have created maven project let's see what's inside maven
dependencies. Your maven pom file should look like below if you are using same version
as in this example.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.
org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.phoenix</groupId>
 <artifactId>pro-apache-phoenix</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>pro-apache-phoenix</name>

Figure 3-1. Setting up maven project

Chapter 3 ■ CrUD with phoenix

45

 <description>Pro Apache Phoenix Source Code </description>

 <properties>
 <java.version>1.8</java.version>
 <phoenix.version>4.8.0-HBase-1.1</phoenix.version>
 <junit.version>4.11</junit.version>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

<dependencies>
 <dependency>
 <groupId>org.apache.phoenix</groupId>
 <artifactId>phoenix-core</artifactId>
 <version>${phoenix.version}</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>${java.version}</source>
<target>${java.version}</target>
<encoding>${project.build.sourceEncoding}</encoding>
<debug>true</debug>
</configuration>
</plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefix>
 <mainClass>com.apress.pap.PhoenixJdbc</

mainClass>
 </manifest>
 </archive>
 </configuration>

Chapter 3 ■ CrUD with phoenix

46

 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy</id>
 <phase>install</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/

lib</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </project>

The first dependency entry in the POM file imports the Phoenix Core Maven
dependency, which provides access to the Phoenix JDBC drive. It sets the source
compilation to Java 8, specifies that dependencies should be copied to the target/lib
folder during the build, and makes the resulting JAR file executable for the main class,
com.apress.pap.PhoenixJdbc. After adding all dependencies to maven pom.xml run mvn
clean install that will install all required libraries into your local maven repository and
add them to your project compilation unit. Once done, you can start using Phoenix API.
In our project, we created one java class PhoneixJdbc.java . Let’s explore PhoenixJdbc
source code.

package com.apress.pap;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

/**
 * Using Phoenix API for CRUD Operations
 */
public class PhoenixJdbc {

 public static void main(String[] args) {
 Connection connection = null;

Chapter 3 ■ CrUD with phoenix

47

 Statement statement = null;
 ResultSet rs = null;
 PreparedStatement ps = null;

 try {

 Class.forName("org.apache.phoenix.jdbc.
PhoenixDriver");

 // Connect to the database
 connection = DriverManager.getConnection("jdbc:phoen

ix:localhost:2181:/hbase");
 System.out.println("Connection established....");
 // Create a JDBC statement
 statement = connection.createStatement();

 // Execute our statements
 statement.executeUpdate(
 "create table user (id INTEGER NOT

NULL PRIMARY KEY, d.first_name
VARCHAR,d.last_name VARCHAR)");

 statement.executeUpdate("upsert into user values
(1,'John','Mayer')");

 statement.executeUpdate("upsert into user values
(2,'Eva','Peters')");

 connection.commit();

 // Query for selecting records from table
 ps = connection.prepareStatement("select * from

user");
 rs = ps.executeQuery();
 System.out.println("Table Values");
 while (rs.next()) {
 Integer id = rs.getInt(1);
 String name = rs.getString(2);
 System.out.println("\tRow: " + id + " = " +

name);
 }
 } catch (SQLException | ClassNotFoundException e) {
 e.printStackTrace();
 } finally {
 if (ps != null) {
 try {
 ps.close();
 } catch (Exception e) {
 }
 }
 if (rs != null) {
 try {
 rs.close();

Chapter 3 ■ CrUD with phoenix

48

 } catch (Exception e) {
 }
 }
 if (statement != null) {
 try {
 statement.close();
 } catch (Exception e) {
 }
 }
 if (connection != null) {
 try {
 connection.close();
 } catch (Exception e) {
 }
 }
 }

 }
}

In PhoenixJdbc souce code listing you see traditional JDBC imports. This is because
phoenix provide a JDBC driver for intracting with HBase. You can also mix existing JDBC
apis with phoenix for your task wherever they required. The above listing code first
creates a database connection by passing jdbc: phoenix:localhost as the JDBC URL
to the DriverManager class. Just like in the phoenix cli console, localhost refers to the
server running Zookeeper. If you were connecting to a production HBase instance, you
would want to use server name or IP address for that production instance. The code itself
explainatory and easy to understand if you already used JDBC programming.

The steps are as follows:

 1. Create a Statement for the connection.

 2. Execute statements using the executeUpdate () method.

 3. Create a PreparedStatement to select inserted data.

 4. Execute the PreparedStatement, retrieve a ResultSet, and
iterate over the results.

You can build project by executing maven goal mvn clean install. To run this
program your HBase server should be up and running. Go to your target directory and
execute following command with your project created jar.

java -jar <your project jar>

For this project our jar will be phoenix-jdbc-1.0-SNAPSHOT.jar

Chapter 3 ■ CrUD with phoenix

49

3.7 Summary
In this chapter we discussed Phoenix basic commands, their syntax, and hands-on
working examples. The main purpose was to get an idea of the available Phoenix
data types and to set the context for upcoming chapters. This chapter just scratched
the surface, demonstrating how easy it is to perform CRUD operations with Phoenix.
Subsequent chapters will take a deep dive into the syntax of the various commands and
show how Phoenix internally maps SQL commands to HBase operations.

51© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_4

CHAPTER 4

Querying Data

In the previous chapter, we discussed basic Phoenix commands for CRUD operations.
In this chapter we will be digging deep into working with tables (creating, altering, and
dropping tables), Phoenix available clauses (LIMIT, WHERE, GROUP BY, HAVING, and
ORDER BY), data constraints (NOT NULL) and conditional operators (AND, OR, IN,
LIKE, and BETWEEN) for data retrieval.

4.1 Constraints
Constraints are rules applied on the values, structure or result set. You can enforce
constraints on columns and tables, such as PRIMARY KEY, that will enforce constraints
while queries are conducted.

4.1.1 NOT NULL
The NOT NULL constraint enforces a column to NOT accept NULL values.

It enforces a field to always contain a value. This means that you cannot insert a new
record, or update a record without adding a value to this field. Phoenix do not allow not
null constraint on non-primary key columns.

The following SQL enforces the "CUST_ID" column and the "LNAME" column to not
accept NULL values.

Syntax:

CREATE TABLE CUSTOMER
(
CUST_ID INTEGER NOT NULL,
FNAME VARCHAR,
LNAME VARCHAR NOT NULL,
EMAIL VARCHAR,
DOB DATE
CONSTRAINTS PRIMARY KEY(CUST_ID,LNAME))

Chapter 4 ■ Querying Data

52

4.2 Creating Tables
CREATE TABLE follows SQL conventions, but the Phoenix version offers significant
extensions to support a wide range of flexibility, including where the data files for tables
are stored and the formats used.

CREATE TABLE creates a new table, and any column families referenced are created if
they don't exist. By default, Table names, column family and column names are uppercased,
but if you want to maintain case sensitivity for names then specify names inside double
quotes. If any column family is available in HBase but is not listed, then that will be ignored.
While creating a table, an empty key value is added to the first column family of any existing
rows or to the default column family, which improves query performance. This is because
having a key value column always guarantee to be there and minimize the amount of data
that must be projected and subsequently returned back to the client.

 ■ Note an empty Key value is required because on deletion of all, columns will not
remove the row key so that row columns can be queried.

Phoenix stores all the metadata of all tables in the HBase SYSTEM_CATALOG table.
The parameter phoenix.schema.dropMetaData can be set to true or false for dropping the
actual physical HBase table. It determines whether table needs to be dropped for HBase
or not. If set to true, it will drop the HBase table. Setting this to false will delete the cells at
the latest timestamp and retain the HBase table for back queries.

See how you can write syntax for creating tables:

CREATE TABLE schema.table_name (column1, column2...column(n))
CREATE TABLE “case_sensitive_table" (column1, column2... column(n))

The DDL will create a table with the given table_name having the specified number
of columns and any constraints applied on them.

Example -

CREATE TABLE dbschema.CUSTOMER(CUST_ID BIGINT NOT NULL, FNAME VARCHAR (30),
LNAME VARCHAR (30), EMAIL VARCHAR(50),DOB DATE CONSTRAINT PRIMARY KEY(CUST_ID))

CREATE TABLE table_name (ORDER_ID bigint NOT NULL primary key desc, ORDER_
DATE DATE , AMOUNT DECIMAL, quantity bigint)
DATA_BLOCK_ENCODING='DIFF'

IF NOT EXISTS while creating tables-

When using the IF NOT EXISTS clause, if a table already exists, then no change will
be made to it, and no validation is done to check whether the existing table metadata
matches the proposed table metadata.

Chapter 4 ■ Querying Data

53

So it's better to use DROP TABLE followed by CREATE TABLE if the table metadata
may be changing.

Following syntax is for creating a table using IF NOT EXISTS clause:

CREATE TABLE IF NOT EXISTS "case_sensitive_table (column1 datatype, column2
datatype, ...column data type)
DATA_BLOCK_ENCODING='NONE’, VERSIONS=5,
MAX_FILESIZE=2000000 split on (?, ?, ?)

CREATE TABLE IF NOT EXISTS schema_name. table_name (
ORDER_ID BIGINT, CUST_ID BIGINT, AMOUNT DECIMAL,
CONSTRAINT pk PRIMARY KEY (ORDER_ID, CUST_ID)) TTL=86400

0: jdbc:phoenix:localhost:2181:/hbase> CREATE TABLE IF NOT EXISTS
ORDERS(ORDER_ID BIGINT NOT NULL,ORDER_DATE DATE,CUST_ID BIGINT NOT NULL,
AMOUNT DECIMAL,QUANTITY BIGINT CONSTRAINT PK PRIMARY KEY (ORDER_ID,CUST_ID));
No rows affected (1.389 seconds)

After creating tables, use DESCRIBE TABLE to see that the database has created
structure, columns, and column types. The following line describes the ORDERS table.

0: jdbc:phoenix:localhost> ! describe ORDERS

4.3 Salted Tables
HBase sequential write may suffer from region server hot spotting if the row key is
monotonically increasing. To overcome this problem, salting can be used with row key.
Salting can significantly increase performance by pre-splitting the data into multiple
regions and avoiding sequential scan. Sequential scans are not always bad, and may
sometimes even be good for certain use cases.

Salted tables do not store data in sequential fashion so results are returned naturally
unsorted. Any queries that ask for ordering will have to force sequential table scan and
decreases performance. You can also enforce ordering by adding the configuration

Chapter 4 ■ Querying Data

54

property phoenix.query.force.rowkeyorder. This brings some performance degradation
due to merge sort at the client but if query already contains order by and group by then it
will not much affect performance.Uniform load distribution brings optimized write and
also increases read queries performance.

In Phoenix, we can salt the row key with a salting byte for a table. This table option is
known as SALT_BUCKETS and needs to be provided when creating table having a value
from 1 to 256. When specified, Phoenix would pre-split the table in regions equal to the
number of SALT_BUCKETS and each region start key prefix with the salt bytes to ensure
even load distribution among region servers if the user does not provide any split point.

Syntax:

CREATE TABLE table (key VARCHAR PRIMARY KEY, column(n) data type(s)) SALT_
BUCKETS = number;
CREATE TABLE ORDERS (ORDER_ID BIGINT NOT NULL PRIMARY KEY, ORDER_NO BIGINT,
ORDER_DATE DATE) SALT_BUCKETS=10

In pre-split salting will be done automatically for tables but in case you want to
exactly control where table split occurs without adding extra byte or change row key order
then you can pre-split a table.

CREATE TABLE CUSTOMER (CUST_ID BIGINT NOT NULL PRIMARY KEY, FNAME VARCHAR,
LNAME VARCHAR , STATE VARCHAR,) SPLIT ON (‘AZ’,'CA','NJ')

Creating table with column families--

Phoenix allows you to create a table with column families as supported by HBase.
Column families are useful when we use a query to select some common columns
and group them together. It improves performance at read time because with column
families, related data is stored in separate files.

Syntax:

CREATE TABLE table_name (key primary key, A.column1 datatype, A.column2 data
type, B.column3 datatype)

In above create table DDL two column families, A and B, will be created.

0: jdbc:phoenix:localhost:2181:/hbase> CREATE TABLE ITEM (ITEM_ID VARCHAR NOT
NULL PRIMARY KEY, A.ITEM_CODE VARCHAR, A.ITEM_TYPE VARCHAR, B.PRICE DOUBLE);
No rows affected (1.386 seconds)

Chapter 4 ■ Querying Data

55

It is important to consider performance while creating the table itself, as later it’s
hard to migrate or drop a table loaded with lots of data. Phoenix also gives ability for
compression on disk that significantly improves performance on large tables.

To enable compression, you have to supply COMPRESSION parameter and its type
while creating table.

Syntax:

CREATE TABLE table_name (Key data type PRIMARY KEY, column(s) data type(s))
COMPRESSION='compression type'

0: jdbc:phoenix:localhost:2181:/hbase> CREATE TABLE ITEM (ITEM_ID VARCHAR
NOT NULL PRIMARY KEY, A.ITEM_CODE VARCHAR, A.ITEM_TYPE VARCHAR, B.PRICE DOUBLE)
COMPRESSION='GZ';

4.4 Dropping Tables
The favorite DROP TABLE command from SQL is supported:

DROP TABLE IF EXISTS ORDERS

The IF EXISTS keywords are optional. It is used to ensure if table doesn’t exist
Phoenix should not return an error. On dropping a table, by default underlying HBase
data and index tables are dropped as well. You can use property phoenix.schema.
dropMetaData to override this and keep the HBase table for point-in-time queries.

 ■ Note an optional CASCADE keyword can be used to drop any available views for the
table. this is used to drop dangling views for dropped tables. a table cannot be dropped if a
view exists on the table.

Syntax:

DROP TABLE schema_name.table_name CASCADE;

4.5 ALTER Tables
A table alteration is required for modifying column adding new columns or deleting
column from the table etc. In the section below adding, deleting column from table
is explained.

Chapter 4 ■ Querying Data

56

4.5.1 Adding Columns
Adding column can be done by using keyword ADD followed by column name and data
type. It is required to alter table for adding columns to it. We can use ALTER TABLE
command as mentioned above.

Syntax:

ALTER TABLE table_name DROP column_name data type

ALTER TABLE CUSTOMER ADD PHONE_NO INTEGER (10);

0: jdbc:phoenix:localhost:2181:/hbase> ALTER TABLE CUSTOMER ADD PHONE_NO
INTEGER (10);
No rows affected (6.01 seconds)

Now you can query on the added column, and it can be added as a part of SELECT.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,PHONE_NO FROM CUSTOMER;

4.5.2 Deleting or Replacing Columns
Dropping a column is easy with using keyword DROP and COLUMN along with column
name to be dropped. When this DDL statement executes a full table scan is performed
and add delete marker to it

Syntax:

ALTER TABLE table_name DROP COLUMN column_name;

ALTER TABLE CUSTOMER DROP COLUMN PHONE_NO

Chapter 4 ■ Querying Data

57

In the example PHONE_NO column if exists will be dropped otherwise it will show
an error if the column does not exist.

0: jdbc:phoenix:localhost:2181:/hbase> ALTER TABLE CUSTOMER DROP COLUMN PHONE_NO;
6 rows affected (0.022 seconds)

4.5.3 Renaming a Column
Renaming column or changing data type of a column command is not available in
phoenix as a single command but there is way to achieve this. You first need to drop a
column and then create a new column. What about the data if available in the column?
Do we lose or it can be retained? If you have existing data, following steps can be used to
retain it.

 1. Create a new column (with the new name and possibly
new type).

 2. Run an UPSERT SELECT statement to copy migrate data from
the old column to the new column. We will discuss UPSERT
and SELECT in detail in querying part.

 3. Drop the old column.

 ■ Note the above operations can be slow depending upon the data available in the table,
as it has to go two full table scans, once for upSert SeLeCt and other for dropping the
column.

4.6 Clauses
4.6.1 LIMIT
While SELECT clauses select columns, LIMIT clauses are filters; a LIMIT clause can be
used to specify the number of records to return. For example, if we write LIMIT 2, only
two rows will be returned in the query result, provided the table has two or more than two
records. The LIMIT clause can be very useful on large tables with millions of records, as
returning a large number of records can impact on performance.

Chapter 4 ■ Querying Data

58

Let’s use this clause in our retail orders table example.
Syntax:

0: jdbc:phoenix:localhost:2181:/hbase> SELECT * FROM ORDERS LIMIT 2;

4.6.2 WHERE
While SELECT clauses select columns, WHERE clauses are filters.

WHERE clauses use predicate expressions, applying predicate operators, which we’ll
describe in a moment, to columns. Several predicate expressions can be joined with AND
and OR operators. When the predicate expressions evaluate to true, the corresponding
rows are retained in the output.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT * FROM ORDERS WHERE ORDER_ID=10249;

4.6.3 GROUP BY
The GROUP BY clause is used to arrange data into groups with aggregate functions. It is
normally used in conjunction with SELECT.

SELECT column, aggregate_function(column)
FROM table
WHERE column operator value
GROUP BY column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,SUM(QUANTITY) FROM
ORDERS GROUP BY CUST_ID;

Chapter 4 ■ Querying Data

59

4.6.4 HAVING
The WHERE clause cannot be used for applying conditions on aggregate functions, so
HAVING clause is introduced to support conditions on aggregate functions.

SELECT column1,
aggregate_function(column2)
FROM table(s)
GROUP BY column(s)
HAVING condition;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,SUM(QUANTITY) FROM
ORDERS GROUP BY CUST_ID HAVING CUST_ID >101 ;

4.6.5 ORDER BY
This clause is used to sort the result set in ascending (ASC) or descending (DESC) order.
By default, result set is sorted in ascending order.

SELECT column(s)
FROM table
ORDER BY column ASC|DESC, column ASC|DESC;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID,ORDER_DATE,CUST_ID
FROM ORDERS ORDER BY ORDER_DATE ASC;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID,ORDER_DATE,CUST_ID
FROM ORDERS ORDER BY ORDER_ID DESC;

Chapter 4 ■ Querying Data

60

4.7 Logical Operators
4.7.1 AND
The AND operator displays a record if both the first condition AND the second condition
are true

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,FNAME,CITY,STATE FROM
CUSTOMER WHERE CUST_ID >100 AND STATE='Texas';

4.7.2 OR
The OR operator displays a record if either the first condition OR the second condition is true.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,FNAME,CITY,STATE FROM
CUSTOMER WHERE CUST_ID >200 OR STATE='Arizona';

4.7.3 IN
The IN operator displays a record if the first item can be found in a specified list.

SELECT column(s)
FROM table
WHERE column IN (value1,value2,...);

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,FNAME,CITY,STATE FROM
CUSTOMER WHERE STATE IN ('Arizona','Texas');

Chapter 4 ■ Querying Data

61

4.7.4 LIKE
Use the LIKE operator in WHERE clause to search for a specific pattern.

Syntax:

SELECT column(s)
FROM table
WHERE column LIKE pattern;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,FNAME,CITY,STATE FROM
CUSTOMER WHERE STATE LIKE 'Tex%';

4.7.5 BETWEEN
BETWEEN is used for range selection. It does an inclusive comparison for both operands.

SELECT column(s)
FROM table
WHERE column BETWEEN value1 AND value2;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID, ORDER_DATE, CUST_ID
FROM ORDERS WHERE ORDER_ID BETWEEN 10300 AND 10400;

4.8 Summary
In this chapter we discussed phoenix building blocks and its available constructs for
general query writing on HBase data store. You have seen how to work with tables,
constraints, clauses and their available types. These are primary things we should be
knowing while working with SQL. Although Structured Query Language (SQL) supports
variety of ways to write queries and more feature rich than phoenix querying to HBase
data. The reason is RDBMS are stabilized and less flexible than NoSQL databases and
phoenix team did a great job in providing many out of the box features considering data
performance in mind.

63© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_5

CHAPTER 5

Advanced Querying

Chapter 4 discussed more on generic querying where only one table is involved.
We saw how to restrict values using constraints, a go through on table concepts and use
of operators in phoenix query language. In chapter 5, we will look into more advanced
querying like SQL joins, filters on the result set using subqueries and working with
multiple tables. Let’s see how these advanced concepts work and their use in phoenix.

5.1 Joins
In general querying, we saw how to work with single table. Now let’s explore how to work
with multiple tables. When we want to retrieve data from more than one tables from
database, joins are used to collect required columns data in a single query. Joins are
heavy and slower than plain queries but phoenix supports many configurations and hints
to fine tune your join query performance for faster results. We will discuss them in this
chapter while explaining join optimizations section.

Let’s see how we can write a join query in Phoenix with an example.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME,C.CITY,
O.ORDER_DATE FROM ORDERS AS O,CUSTOMER AS C WHERE O.CUST_ID = C.CUST_ID;

5.2 Inner Join
This is most frequently used join type also known as EQUIJOIN. Inner join returns all
rows from tables where the matching key records of one table is equal to the key records
of another table (see Figure 5-1).

http://dx.doi.org/10.1007/978-1-4842-2370-3_4
http://dx.doi.org/10.1007/978-1-4842-2370-3_5

Chapter 5 ■ advanCed Querying

64

Consider our example where we have a Customer table and an Orders table. If we
search how many customers placed orders and on what date, then a join will be used on
Customer and Orders tables to find aggregate results. Following is the join query to find
these results.

Syntax:

SELECT t1.column1, t2.column2...
FROM table1 t1
INNER JOIN table2 t2
ON t1.column = t2.column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME,C.CITY,
O.ORDER_DATE FROM ORDERS AS O INNER JOIN CUSTOMER AS C ON O.CUST_ID = C.CUST_ID;

5.3 Outer Join
Just like in SQL, an OUTER JOIN in Phoenix returns all records from the participating
tables which satisfy the join condition along with records which do not satisfy the
condition. It has two subtypes LEFT OUTER JOIN or LEFT JOIN and RIGHT OUTER JOIN
or RIGHT JOIN. Following section describes these two subtypes with examples.

5.3.1 Left Outer Join
LEFT OUTER JOIN or LEFT JOIN returns all records from the left-side table, even if there
are no matching records from the right-side table. This means if the condition is not
matched in the right table, the join will still return records in the result having null in each
column. See Figure 5-2 for a left join pictorial representation (See Figure 5-2. Left Join).

Figure 5-1. Inner Join

Chapter 5 ■ advanCed Querying

65

Syntax:

SELECT t1.column1, t2.column2...
FROM table1 t1
LEFT JOIN table2 t2
ON t1.column = t2.column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.LNAME,C.CITY,
O.ORDER_DATE FROM ORDERS O LEFT OUTER JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.LNAME,C.CITY,
O.ORDER_DATE FROM ORDERS O LEFT JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

5.3.2 Right Outer Join
RIGHT OUTER JOIN or RIGHT JOIN returns all records from the right-side table even if
there are no matching records from the left-side table. This means if the condition is not
matched in the left table, the join will still return records in the result having null in each
column. See Figure 5-3. Right Join) for right join pictorial representation.

Figure 5-2. Left Join

Chapter 5 ■ advanCed Querying

66

Syntax:

SELECT t1.column1, t2.column2...
FROM table1 t1
RIGHT JOIN table2 t2
ON t1.column = t2.column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME, C.CITY,
O.ORDER_DATE FROM ORDERS O RIGHT OUTER JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME, C.CITY,
O.ORDER_DATE FROM ORDERS O RIGHT JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

5.3.3 Full Outer Join
This type of join returns all rows from both the left-side table and the right-side table. If
there are missing entries, it will add null to them. It is basically combined result of both
left and right joins. In Figure (Figure 5-4), Table 1 is the left-side table and Table 2 is the
right-side table.

Figure 5-3. Right Join

Chapter 5 ■ advanCed Querying

67

Syntax:

SELECT t1.column1, t2.column2...
FROM table1 t1
FULL JOIN table2 t2
ON t1.column = t2.column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME, C.LNAME,
O.ORDER_DATE FROM ORDERS O FULL OUTER JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, C.FNAME, C.LNAME,
O.ORDER_DATE FROM ORDERS O FULL JOIN CUSTOMER C ON O.CUST_ID = C.CUST_ID;

5.4 Grouped Joins
Group joins, also known as subjoins, are complex nested join queries. Phoenix has
support of group join for handling complex joins. These joins are normally applied on
outer and inner joins where inner query joins results further as nested query joins.
Here one thing is to be noted about phoenix nested joins, they are always surrounded by
parenthesis in query.

Figure 5-4. Full Join

Chapter 5 ■ advanCed Querying

68

Syntax:

SELECT t1.column1, t2.column2,t3.column...
FROM table1 t1
Join1
 (table2 t2
 join2 table3 t3
 ON t2.column = t3.column)
ON t1.column = t2.column;

0: jdbc:phoenix:localhost:2181:/hbase> SELECT O.ORDER_ID, I.ITEM_ID,
S.SUPPLIER_NAME,S.CITY FROM ORDERS AS O LEFT JOIN (ITEM AS I INNER JOIN
SUPPLIER AS S ON I.SUPPLIER_ID = S.SUPPLIER_ID) ON O.ITEM_ID = I.ITEM_ID;

5.5 Hash Join
Phoenix internally uses hash and merge joins for join operations. In Hash join phoenix
computes the results for the RHS of a join condition and broadcasts the results onto all
the RS of HBase. Data is cached and data cache age can be configured by using phoenix.
coprocessor.maxServerCacheTimeToLiveMs property which allows increasing the cache
time on the server. The sequence of steps followed for Hash Join are:

 1. The Phoenix client executes the RHS of the join query given
by client.

 2. The results returned are serialized and broadcasted to all RS
which hold the regions of the LHS table using HBase Endpoint
Coprocessors.

 3. Since endpoint coprocessors are primarily RPC services which
follow the request / response pattern using Protocol Buffers,
the servers cache the serialized data onto the server and
respond with an acknowledgement.

 4. The Phoenix client then triggers the execution of the LHS of
the join query.

 5. On the server end, since the RHS of the data is resident in
memory, the join is done and the results are returned.

 6. Once the join query is complete, the client then triggers
another RPC call to free up the serve cache on the region
servers.

Chapter 5 ■ advanCed Querying

69

5.6 Sort Merge Join
This join is preferred mostly for the cases where Hash Join doesn't scale and work. Its
suggested to use sort-merge join where the results of both LHS and RHS are sorted and
the merge happens on the client side.

5.7 Join Query Optimizations
As we know from SQL, joins are slow because of huge relation data sets that often
require complete table scans. Phoenix automatically performs many optimizations for
us when we execute any join query. For example, Phoenix uses secondary indexes, if
defined in the table, to improve performance. (We will see more on indexes in coming
chapters.) It is important to understand that at least one table must be of a size that
can fit into memory for Hash Joins, while sort merge join relations can be of any size. If
you run into memory problems with very large tables, then allocate enough memory to
Phoenix by changing configuration settings.

You can use hints to tell the query engine which join algorithm should be used. By
default, Phoenix uses Hash Join algorithm whenever possible, because these are faster
than any other join algorithms. If you want to use another join algorithm, such as a sort
merge, then pass an attribute like USE_SORT_MERGE_JOIN in the query hint that will
be enforced while executing the query internally. Although we can use algorithms as per
need, it is suggested to use the Hash Join algorithm when one of the relations or result
sets of table fits into memory, otherwise use a Sort Merge Join algorithm for faster results.

Two more options NO_STAR_JOIN and NO_CHILD_PARENT_JOIN_
OPTIMIZATION, are available as join hints. The NO_STAR_JOIN is used to tell the
optimizer not to use a star join query to broadcast querying results for one common table
to all region servers. Similarly, you can use other options to instruct the optimizer not to
do point lookups between a child and a parent table for a correlated subquery.

See the following example where CUSTOMER and ORDERS are used in the joins
section after using a hint to enforce the join algorithm.

0: jdbc:phoenix:localhost:2181:/hbase> EXPLAIN SELECT /*+USE_SORT_MERGE_
JOIN*/O.ORDER_ID, C.FNAME, C.LNAME,C.CITY, O.ORDER_DATE FROM ORDERS AS O
INNER JOIN CUSTOMER AS C ON O.CUST_ID = C.CUST_ID;

While looking at the query plan, it shows enforced self-merge-join as join algorithm.

Chapter 5 ■ advanCed Querying

70

If we don’t define a hint, then default join algorithm will be used.

5.7.1 Optimizing Through Configuration Properties
Cache has been primary technology to improve significant performance while working
with databases. Same fundamentals are applied here in phoenix for HBase querying.
Phoenix coprocessors do lot of work on server to give response time in seconds, while at
the same time aggregating results by working with region server caches. It is important to
set significant cache memory for relations data on servers. Phoenix builds hash table on
region server for smaller relations. These relations can be physical table, views, subqueries
or a join results. Underlying configuration properties can be tweaked to improve query
performance. You can define these properties in hbase-site.xml. If HBase is already
running, then region server restart is required to take effect of these properties.

phoenix.query.maxServerCacheBytes: defines the
maximum raw results size that can be compressed and
sent to the region servers. If the size is exceeded, it will throw
MaxServerCacheSizeExceededException. By default, memory
bytes are 100 MB.

phoenix.query.maxGlobalMemoryPercentage: This property
shows the percentage of total available heap memory.
The sum of all working caches must be less than this
global memory pool size; if not, you might encounter
InsufficientMemoryException. As a default, 15 percent is
taken for global memory.

phoenix.coprocessor.maxServerCacheTimeToLiveMs: This
property defines the maximum server cache living time in
milliseconds. A cache entry will be removed after spending
this much idle time. Default time is set to 30,000 milliseconds.

5.7.2 Optimizing Query
As a hash join requires more memory, it is important to know which part of the join query
(left or right part) commonly taken as a smaller relation and stored on server cache.
Table 5-1. Join types and their cache storage explains the general behaviour.

Chapter 5 ■ advanCed Querying

71

If your query has multiple joins it is suggested to use EXPLAIN query plan and check
what can be tuned in query to improve overall performance. You can also consider hints
while tuning query after analyzing query execution plan.

5.8 Subqueries
A Phoenix subquery or nested query is a query within another Phoenix query used within
a WHERE clause as a condition to filter or restrict result data. Nested queries must be
enclosed within parentheses.

Syntax:

SELECT column(s)
FROM table(s)
WHERE column OPERATOR
 (SELECT column(s)
 FROM table(s)
 [WHERE])

Now we have seen syntax for subquery, let's do an example on this. Consider our
customer table where we want to search customers having date of birth (DOB) greater that
conditional date. Here the query inside parenthesis is sub query to fetch customers with
DOB greater than 1975-01-01. The outer query makes use of inner query (in parenthesis)
returned results for matching criteria.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT CUST_ID,FNAME,LNAME,DOB
FROM CUSTOMER WHERE CUST_ID IN (SELECT CUST_ID FROM CUSTOMER WHERE DOB >
to_date('1975-01-01'));

Table 5-1. Join types and their cache storage

Join Type relation cache storage

left side INNER JOIN right side right side of INNER JOIN will be built as a hash
table in server cache

left side LEFT JOIN/LEFT OUTER
JOIN right side

right side of LEFT JOIN/LEFT OUTER JOIN will
be built as a hash table in server cache

left side RIGHT JOIN/RIGHT OUTER
JOIN right side

left side of RIGHT JOIN/RIGHT OUTER JOIN
will be built as a hash table in server cache

Chapter 5 ■ advanCed Querying

72

5.8.1 IN and NOT IN in Subqueries
We already discussed IN in Chapter 4. IN can be also used with subqueries in a WHERE
clause. The following example shows how to write a query using these together.

Most of the time, Phoenix internally translates IN and NOT IN into semi-joins and
anti-joins to get better performance out of it.

A semi-join differs from a conventional join as it returns rows at most once from the
first table. Even if the second table contains many matches for the rows in the first table,
only one copy will be returned.

An anti-join is opposite of a semi-join. While a semi-join returns matching rows from
a table, an anti-join returns one copy of each row from the first table for which no match
was found.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ITEM_ID,ITEM_TYPE,PRICE
FROM ITEM WHERE ITEM_ID IN (SELECT ITEM_ID FROM ORDERS WHERE ORDER_DATE >=
to_date('1998-5-7'));

5.8.2 EXISTS and NOT EXISTS Clauses
In Chapter 4 we discussed many clauses in simple querying. EXISTS and NOT EXISTS are
also clauses that used along with subqueries. They just check if any record returned
by inner query (subquery) exists and return a Boolean TRUE otherwise FALSE.

Like IN and NOT IN phoenix translates EXISTS and NOT EXISTS into semi-joins
and anti joins (see above section for semi and anti joins) to improve overall query
performance.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ITEM_ID,ITEM_TYPE,PRICE FROM
ITEM I WHERE EXISTS(SELECT * FROM ORDERS WHERE ORDER_DATE >= to_date('1998-5-7')
AND ITEM_ID=I.ITEM_ID);

Underlying query illustrates NOT EXISTS that will return rows not matching criteria.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT C.CUST_ID,C.FNAME FROM CUSTOMER
C WHERE C.CUST_ID = 101 AND NOT EXISTS (SELECT * FROM ORDERS O WHERE O.ORDER_
DATE = to_date('1997-4-7') AND O.CUST_ID =C.CUST_ID)ORDER BY C.FNAME;

http://dx.doi.org/10.1007/978-1-4842-2370-3_4
http://dx.doi.org/10.1007/978-1-4842-2370-3_4

Chapter 5 ■ advanCed Querying

73

5.8.3 ANY, SOME, and ALL Operators with Subqueries
You can use comparison operators with subqueries to filter rows in the result set.

Syntax:

SELECT column(s) | expression1
FROM table
WHERE expression2 operator {ALL | ANY | SOME} (subquery)

The following query illustrates ANY comparison operator for the ORDERS table to
find maximum quantity of records.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID FROM ORDERS WHERE
QUANTITY >= ANY (SELECT max(QUANTITY) FROM ORDERS GROUP BY ITEM_ID);

Now let’s do one query using an ALL operator with a subquery from ours Orders table.

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID FROM ORDERS WHERE
QUANTITY >= ALL (SELECT max(QUANTITY) FROM ORDERS GROUP BY ITEM_ID);

5.8.4 UPSERT Using Subqueries
You can use subqueries with UPSERT statements for inserting data returned from
subqueries into another table. Consider a table backup of our existing CUSTOMER
table called CUST_BACKUP. We want to copy data from CUSTOMER to CUST_BACKUP.
Underlying query will do this work for us.

0: jdbc:phoenix:localhost:2181:/hbase> UPSERT INTO CUST_BACKUP SELECT * FROM
CUSTOMER WHERE CUST_ID IN (SELECT CUST_ID FROM CUSTOMER);

Chapter 5 ■ advanCed Querying

74

5.9 Views
Phoenix supports standard SQL views, with some limitations to it. In general, a view
is just a SQL statement kept in the database having a name to it. A view is like a virtual
table, having columns from one or more tables clubbed together. Although phoenix views
inherit parent table columns but you can define additional columns to them. Phoenix
allows these tables to share same underlying physical HBase table. As views share same
HBase table, their size must be limited to give a reasonable performance to an extent
(phoenix documentation says up to 100 tables). As the number grows, performance will
be affected accordingly.

Currently Phoenix supports creating views for a single table and for all columns in
the view creation, that is, SELECT *. Phoenix gives little relax on dropping non-primary
key columns from table in the view.

While creating views if simple equity expressions are used then those views can be
updated and known as Updatable Views. If there are more complex expressions, then
updating views are not allowed and can be used for read only purpose. These types of
views are known as Read-only views.

Let’s see in following section how to create views and work with them.

5.9.1 Creating Views
A view can be created using the following syntax We can define new columns while
creating view in the parenthesis.

Syntax:

CREATE VIEW view_name AS
SELECT column(s)
FROM table_name
WHERE [condition]

0: jdbc:phoenix:localhost:2181:/hbase> CREATE VIEW VIEW_HIGH_PRICE_ITEMS AS
SELECT * FROM ITEM WHERE PRICE > 15;

If you check the type of created view, this will show the type as ‘VIEW’.

Chapter 5 ■ advanCed Querying

75

Let’s see an example where we can add new columns to the view.
In the view VIEW_HIGH_PRICE_ITEMS, lets add one column for discontinued items.

Before creating any column, running a query !describe VIEW_HIGH_PRICE_ITEMS will show
only columns from parent table in the result. Now add one column and execute describe
command that will display view having a newly added column in the view metadata.

0: jdbc:phoenix:localhost:2181:/hbase> CREATE VIEW VIEW_HIGH_PRICE_
ITEMS(HIGH_PRICE_ITEM DOUBLE) AS SELECT * FROM ITEM WHERE PRICE > 15;

5.9.2 Dropping Views
It uses similar syntax as dropping a table, just prefix the statement with the ‘VIEW’
attribute.

Syntax:

DROP VIEW view_name;

Now let’s run a drop view command on our created view VIEW_HIGH_PRICE_ITEMS.
After executing above command, you can validate view is removed from phoenix by
running !tables command on the view.

5.10 Paged Queries
Paging is very intuitive part for any web applications to give user seamless experience on
web. If the query data is huge to show on the UI, application designer access records in
pages limiting number of rows to get better data handling and performance. Although
phoenix does not support paging in the way standard SQL support in query but phoenix
has concept of page query that can be used to get similar sort of result. Phoenix allows
paged queries with the help of Row Value Constructor(RVC) and Offset with limit. Let's
see what are these and how we can use them for pagination.

Chapter 5 ■ advanCed Querying

76

5.10.1 LIMIT and OFFSET
To allow paging you can pair OFFSET with LIMIT. OFFSET defines a starting point and
LIMIT sets the page size that tells Phoenix how many records to present in one page.

Syntax:

SELECT column(s) FROM table
LIMIT value OFFSET value

For example, if we have a page size of 10 and want to retrieve a second page, the
query will look like this:

SELECT ORDER_ID,ITEM_ID,QUANTITY FROM ORDERS WHERE ORDER_DATE > to_
date('1998-6-7') ORDER BY ORDER_ID LIMIT 10 OFFSET 10;

5.10.2 Row Value Constructor
A Row Value Constructor (RVC) is an ordered set of values enclosed within parentheses.
This can be thought of as constructing a row with a series of values, just like a table row
composed of fields and columns. Lets see how to query them with an example.

Syntax:

(column1,column2....,column(n))

(8249,'ABC Corporation','Dayton')
('A1000','Clothing',20.28,8249)

You can use row value constructors in comparison expressions in a way similar to the
use of regular values.

WHERE (LNAME,FNAME) =(‘Hall’, ‘Andrew’)

WHERE(ITEM_ID,PRICE) >=(A1000,15)

0: jdbc:phoenix:localhost:2181:/hbase> SELECT * FROM CUSTOMER WHERE
(LNAME,FNAME)=('Hall','Andrew') ;

You can use row value constructor for stepping through set of rows. See the following
query, that would move 5 rows at a time. Here client binds two variables to the values of
the last row processed. The next invocation to it would find next 5 matching rows. This
behaves like a page of pagination where we hope through page size.

Chapter 5 ■ advanCed Querying

77

0: jdbc:phoenix:localhost:2181:/hbase> SELECT ORDER_ID,ITEM_ID,QUANTITY
FROM ORDERS WHERE ORDER_DATE > to_date('1998-6-7') AND (ITEM_ID,QUANTITY)
>=('A1101',5) ORDER BY ORDER_ID LIMIT 5;

5.11 Summary
Phoenix supports complex querying on HBase data and can be customized for fast
query results. When we deal with millions of rows of huge data, it is important to get
reasonable performance. Phoenix caching configuration properties can help us improve
performance and build faster relations on the server. We saw how to write complex
queries using Phoenix joins, subqueries, and views for tables. Phoenix can be used for
even more complex queries based on these fundamental concepts. In later chapters we
will discuss indexes, transactions, and other important features that bolster Phoenix as a
great choice for an SQL skin over HBase.

79© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_6

CHAPTER 6

Transactions

When we discuss databases either Relations or Non-relational transactions are more
important to ensure data integrity or dealing with concurrent tasks. Transactions also
play an important role when handling database errors and avoiding database to any
inconsistent state. Transactions are an integral part of relational databases. Although
majority of NoSQL databases do not have full support for transactions but some of them
provide transactions support with the help of a transaction manager. Similarly, HBase
leverage Apache Tephra as the transaction manager for transactions support. In this
chapter, we will see how Phoenix supports transactions.

6.1 SQL Transactions
A transaction is basically a process of one or more changes done in the database in a
logical order. It can be done in a manual fashion by a user or automatically by a database
program. Moreover, a transaction is a sequence of reads and writes. It is important to
control transactions to ensure data integrity and to handle database errors. Practically,
you will club SQL queries into a group and execute all of them together as a part of a
transaction.

Consider an example of transferring an amount from one account to another, and
how this can be grouped together in a transaction. The steps to be performed are:

Step1: Read from account A

Step2: Write to account A

Step3: Read from account B

Step4: Write to account B

6.2 Transaction Properties
A transaction is managed and monitored by a transaction manager, also called a
transaction monitor, which ensures four primary attributes (properties) for any
transaction. These are atomicity, consistency, isolation, and durability. In short, they are
commonly called the ACID properties of a transaction.

Chapter 6 ■ transaCtions

80

6.2.1 Atomicity
Atomicity ensures all operations as a unit of work are committed at once. If a failure
occurs, the transaction will be aborted, and any previous operations will roll back to their
former state.

6.2.2 Consistency
Consistency makes sure that database changes will not be committed as a partial
state change in the event of a failure. Changes should be saved only upon a successful
transaction commit.

6.2.3 Isolation
Isolation allows multiple transactions to run independently of one another. Transactions
run in their own allocated space and do not see each other’s changes. A transaction is
visible only after it is committed, thus avoiding “dirty reads” due to partial changes.

6.2.4 Durability
Durability ensures that committed transactions changes are stored permanently to the
database and do not disappear or get erased, even if database crashes.

6.3 Transaction Control
Transactions are part of data consistency and failure handling in a relational database.
The following commands are used to control transactions. These control commands are
used with DML operations INSERT, UPDATE, and DELETE for relational databases.

6.3.1 COMMIT
After completing a transaction, COMMIT saves changes to the database. It makes sure
that all data is synced and stored, and associated with current transaction.

6.3.2 ROLLBACK
A ROLLBACK can be performed following an error or a failure in a transaction to return
the database its previous state, as it was before starting the transaction. It will not store
any changes performed to the database during the rolled-back transaction.

Chapter 6 ■ transaCtions

81

6.3.3 SAVEPOINT
A SAVEPOINT is basically a state of the database that can be restored by a ROLLBACK.
Let’s take an example to understand save points. Imagine that you started a transaction
or group of transactions from database state ‘A’. After some changes or some transaction
commits, the database came to state B and similar other states. You can revert your
changes to these points (a.k.a. save points) or states. These points can be within groups of
transactions in which to ROLLBACK.

6.3.4 SET TRANSACTION
You can give a name to a transaction using SET TRANSACTION. A transaction with a
name is easy to read and find.

6.4 Transactions in HBase
NoSQL databases are meant for solving the problem of scalability and read-write
performance and keep less focus on transactions but some NoSQL databases support
transactions with the help of a transaction manager either inbuilt or integrating with a third-
party transaction manager. HBase provides transaction support by using Apache Tephra as
a transaction manager. Apache HBase does not completely support ACID properties, but it
guarantees a good part of these for transactions. You can find more on HBase transactions
support on their website https://hbase.apache.org/acid-semantics.html.

The rowkey also provides a logical grouping of cells; and HBase ensures that all
cells with the same rowkey are co-located on the same server (called a Region Server in
HBase), which allows for ACID guarantees for updates with the same rowkey without
complicated and slow two-phase-commit or paxos.

HBase supports atomic operations for cell value and batch operations on rows within
a region. The cell value atomicity is maintained by using checkAndPut, checkAndDelete,
increment, append. HBase supports batch operations on rows for example cross row
operations within region supports through MultiRowMutationEndPoint. It does not
support cross-region, cross table and multi-RPC atomic operations.

As Phoenix is SQL skin over HBase, that means it also applies underlying HBase
transaction limitations.

Before moving into phoenix transactions section let’s have a look on Apache Tephra,
a key part for allowing transaction capabilities.

6.4.1 Integrating HBase with Transaction Manager
By default, HBase does not provide full ACID support, but we can achieve a broader set of
transaction features by integrating a third party transaction manager.

You can plug in a transaction manager and configure it either for single point failure
or active and standby with high availability support. This transaction manager service will
be registered with Zookeeper and a client, for example, Apache Phoenix might be used to
start a transaction. Communications will occur among client, transaction manager, and the
HBase region server. The interactions between these components are shown in Figure 6-1.

https://hbase.apache.org/acid-semantics.html

Chapter 6 ■ transaCtions

82

6.4.2 Components of Transaction Manager
The following components play mostly inside a third party transaction API like Apache
Tephra. We will discuss them here to understand how transactions work inside HBase.

6.4.2.1 TransactionAware Client
A TransactionAware client coordinates the transaction lifecycle with the transaction
manager and directly communicates with HBase for reads and writes.

6.4.2.2 Transaction Manager
Just like a relational database transaction manager that provides a monotonically
increasing write pointer (a pointer that gives write IDs for the database), a transaction
manager assigns unique transaction IDs (a unique identifier for each transaction) for
each transaction and maintains their states while transactions are in progress and
committed. It also controls any invalid transaction states and conflicts with other
running transactions in the same transaction boundaries. Basically, it manages the whole
transaction process by controlling available transaction states. A transaction manager is
simple and fast, keeps all required states in memory, and persists all states to a write-
ahead log. You can configure transaction manager in high availability mode, one as active
and other as standby, so that failover can be handled quickly.

Figure 6-2 shows a transaction with its read pointers, write pointers, and current
state. When the client makes a call to start a transaction, the manager spawns a new
transaction, increments its write pointer, and adds an entry into the transaction log. After
the transaction is started and running, it increments its progress count and keeps all data
in memory. Keeping transaction state in memory improves transaction performance.

Figure 6-1. HBase with Transaction Manager

Chapter 6 ■ transaCtions

83

Figure 6-3 shows transaction’s commit process. When the client has done its work,
it makes a commit call to the manager to complete the transaction. If the transaction is
successful, the in-progress pointer will be reduced by one, and the committed count will
be increased by one. Finally, a log entry is added to record the transaction’s successful
completion.

Figure 6-2. Starting a transaction

Figure 6-3. Committing a transaction

6.4.2.3 Transaction Processor Coprocessor
A transaction coprocessor is similar to the Phoenix coprocessor, which aggregates results
or filters for reads on the HBase region server. Because a transaction keeps data versions
or snapshots, the coprocessor is also used for cleaning up data from failed or invalid
transactions.

Chapter 6 ■ transaCtions

84

6.4.3 Transaction Lifecycle
In HBase a transaction is started by a client like Phoenix with the help of a transaction
manager (Phoenix uses Apache Tephra as transaction manager). The client places a
RPC call to the transaction manager for starting transaction. At this point, transaction
manager starts the transaction and changes its state from new to in-progress. The client
then performs many operations (Put, Delete, etc.) and many other operations, and writes
them to HBase. When all operations are done, the client tries to commit changes into
HBase by invoking the commit RPC API. The transaction manager takes the changes and
checks for any conflict with already running transactions. If there are no conflicts it saves
changes into the database and associates a version to it. When the client tries committing
changes and fails, an abort will be initiated. If aborting goes fine, the transaction will still
be in a complete state and changes will be rolled back. If aborting fails, the transaction
will lead to an invalid state and marked as an invalid transaction in the write log.

A transaction can also move to an invalid state if it is in progress and the transaction
maximum time limit is exceeds. See Figure 6-4 for an illustration of the transaction
lifecycle.

Figure 6-4. Transaction Lifecycle

6.4.4 Concurrency Control
When reading and writing happens at the same time, it is quite possible that the reader
might see inconsistent data. For each transaction, HBase performs certain activities such
as writes to Write-Ahead-Log(WAL), writes each data cell to memstore. It writes to WAL
for disaster recovery and update an in-memory copy (memstore) of the data. These steps
run in parallel for concurrent transactions and might lead to data inconsistency. There
are many ways to solve this problem known as concurrency control methods. HBase uses
underlying concurrency control methods to deal with concurrent transactions.

Chapter 6 ■ transaCtions

85

6.4.5 Multiversion Concurrency Control
Multiversion concurrency control(MVCC) is used to handle concurrent transactions.
In this technique, each user sees a snapshot of database at an instant in time. Any
changes made will not be seen by other users until the changes have been completed or
committed. A newer version number is used to keep latest snapshot of the data for any
data update. It keeps all versions of data and do not override old data.

HBase uses MVCC for read operations to avoid row locks. Mutiversion in HBase works as
below for read and write operations.

Steps for read:

 1. A read timestamp is assigned for each read operation known
as read point.

 2. Read point is highest integer for which all writes with write
number less than or equal to that number have been completed.

 3. Data cell will be returned for a read of certain row, column
combination with the matching row, column whose write
number is the largest value that is less than or equal to the
read point of read operation.

Steps for writes:

 1. A write number will be assigned for each write operation after
acquiring row lock.

 2. Each data cell will store step one created write number in the
write store.

 3. Write operation will be marked as completed by declaring its
write number.

6.4.6 Optimistic Concurrency Control
Optimistic Concurrency Control(OCC) works on the basis that no other transaction
interferes each other when they execute. This way they avoid cost of locking rows and
tables. OCC verifies any data modifications by other transactions before committing and If
the data is modified by other transaction, then just rollback all changes. This technique is
good when there are rare conflicts like short transactions, disjoint partitioning of work etc.

6.5 Apache Tephra As a Transaction Manager
Apache Tephra is a transactional engine for distributed stores like HBase that provides
support of multi-versioning and rollback. Tephra uses snapshot isolation for transactions.
It uses HBase’s native data versioning to provide multi-versioned concurrency control
(MVCC) for transactional reads and writes. Multiversion concurrency control keeps a
snapshot of data for each user, so each will be working with his or her own copy. Any

Chapter 6 ■ transaCtions

86

changes made by the user will be visible until the final changes are complete, i.e. the
transaction is committed. Tephra also enables optimistic control with the help of multi-
version control and conflict detection.

Apache Tephra enables transaction capabilities in HBase across regions, tables, and
remote procedure calls (RPCs). You can use your SQL knowledge for transactions, as
Tephra has support for ACID properties.

6.6 Phoenix Transactions
Apache Phoenix provides full ACID support for cross row and cross table transactions
for HBase, by using Apache Tephra as a transaction manager A powerful transaction
manager with multi-versioned concurrency control and snapshot isolation for concurrent
transactions.

By default, Phoenix does not enable transactions; you have to add enable transaction
properties, for example by adding the phoenix.transactions.enabled property into the
Hbase configuration file hbase-site.xml. The following properties are required in the
HBase configuration file to work with Phoenix transactions.

<property>
 <name>phoenix.transactions.enabled</name>
 <value>true</value>
</property>

Chapter 6 ■ transaCtions

87

You need to add Apache Tephra configuration as a transaction manager into the
server side hbase-site.xml and specify a snapshot directory in which to maintain Tephra
snapshot versions. You must restart the region server after adding these configurations in
order for them to take effect.

<property>
 <name>data.tx.snapshot.dir</name>
 <value>/tmp/tephra/snapshots</value>
</property>

After configuring the transaction manager, specify the transaction time limit for
all transactions. It is important to set this time limit in order to handle any database
transaction errors. Give this number as per your business SLAs and constraints. In
general, do not open this window for a long time, because other threads might be waiting
for the resources held by the failing transaction.

<property>
 <name>data.tx.timeout</name>
 <value>60</value>
</property>

When completed, your hbase-site.xml initialization file will contain all properties
configured and should look like following Figure 6-5.

Figure 6-5. hbase-site.xml with configuration properties

Chapter 6 ■ transaCtions

88

Figure 6-6. Tephra inside Phoenix bin

Figure 6-5. (Continued)

When you are done with configuration, then start your transaction manager
(Apache Tephra) by executing the following command from Phoenix. You will find Tephra
executable inside your Phoenix bin directory as shown in Figure 6-6.

./bin/tephra start

When starting, Phoenix will detect transactions and start functioning in transaction
mode.

Chapter 6 ■ transaCtions

89

6.6.1 Enabling Transactions for Tables
You can specify transactional table either at the time of table creation or later updating
table to support transactions.

While creating a table you must specify the ‘TRANSACTIONAL=true’ attribute in the
table creation query.

Syntax:

CREATE TABLE table_name (column(s) data type(s)) TRANSACTIONAL=true;

For example, let’s consider our supplier table example. We already saw how to create
this table as non-transactional. Now we will create a transactional supplier table that will
allow transactions.

CREATE TABLE SUPPLIER(SUPPLIER_ID BIGINT NOT NULL PRIMARY KEY,SUPPLIER_NAME
VARCHAR(30),CITY VARCHAR(40),STATE VARCHAR(30),ZIP INTEGER(10),COUNTRY
VARCHAR(100)) TRANSACTIONAL=true;

You can enable transactions for a table that has already been created as non-
transactional by updating it to transactional.

Syntax:

ALTER TABLE table_name SET TRANSACTIONAL=true;

Let’s enable our already-created table CUSTOMER to support transactions.

ALTER TABLE CUSTOMER SET TRANSACTIONAL=true;

Now, operations performed on this table will be handled by Phoenix as transactional
operations.

 ■ Note if you enable transactions on a non-transactional table, it cannot be changed
back to the non-transactional state.

6.6.2 Committing Transactions
When Phoenix is executing in transactional mode, then any statement we call in a query
will initiate a new transaction. Until a COMMIT is executed, data will be in a raw state.
When you have completed your changes, you can execute commit by simply entering the
‘!commit’ command. This will complete your transaction, and all changes to the database
will be visible to other users.

Chapter 6 ■ transaCtions

90

Let’s see these steps by applying them to the ORDERS table. We will first query for all
available orders, then execute some commands for updating and deleting orders.

SELECT * FROM ORDERS; -- Start a new transaction

UPSERT INTO ORDERS VALUES (10250,'2016-5-7', 108, 50,'A1100');

DELETE FROM ORDERS WHERE ORDER_ID='10248';

!commit -- This will commit the transaction

on commit, everyone who looks at this table will see all changes.

6.7 Transaction Limitations in Phoenix
Phoenix is still maturing in transaction capabilities support at the time of writing. One of
the limitations is manual cleanup of an invalid transactions list; a transaction that failed
or became invalid due to a timeout is added to an invalid transactions list maintained
by Tephra. An administrator is required to manually clear this list when there is a major
compaction. This is limitation to Apache Tephra. Tephra developers are working on
providing an automated cleanup for this list or a tool for administrators use to clear the
list or a range of invalid transactions from the list.

Another limitation is to the number of snapshots for concurrent transactions when
setting the version number property while creating a transactional table. This can result
in the loss of some important log information.

While creating an asynchronous index to an existing transactional table, you should
run a major compaction before issuing the CREATE INDEX ASYNC command; otherwise
invalid and uncommitted transactions may appear in the index.

6.8 Summary
We discussed transactions in this chapter. Phoenix is used as a client for transaction
enablement with the help of Apache Tephra (an Apache incubator project) transaction
manager. Phoenix transactions support is still in beta phase till the writing of this book.
This support will be improving as Tephra maturity grows. It is important to check
Phoenix and HBase versions while doing transaction labs along with Tephra dependency
requirement.

www.allitebooks.com

http://www.allitebooks.org

91© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_7

CHAPTER 7

Advanced Phoenix Concepts

It is important to consider data retrieval or search performance in achieving customer
SLAs to get a business benefit out of it. We add indexes to improve data access
time performance for relational as well as NoSQL databases. We will discuss in this
chapter,how Phoneix indexing improves query performance for larger data sets. Along
with Indexing, we will see how to work with phoenix user defined functions (UDF),
writing custom UDFs and phoenix query server.

7.1 Secondary Indexes
For efficient access to data in a table, HBase creates and maintains a unique index on the
row key and stores the data lexicographically. This allows applications to quickly retrieve
data when primary key values are specified in a query. However, many applications
might benefit from having one or more secondary indexes on columns in addition to the
primary key, thus providing orthogonal access to data. This is definitely a huge challenge
due to the ACID considerations in HBase.

Phoenix allows you to create multiple indexes on a table. While secondary index
data structures add a lot of flexibility to the way data is modeled and efficiently queried, it
adds a lot of complexity on the server end to keep the index in sync with the primary data.
Phoenix uses custom coprocessors to sync data across indexes.

Secondary indexes can be created on data tables or on views. The index will be
automatically kept in sync with the table as the data changes. For a given query, the
Phoenix Query planner and optimizer chooses the best Query Plan. If, for example, the
search query contains indexed columns, Phoenix internally rewrites the query to use the
index table, rather than the data table, to fetch the data.

If a table has rows that are write-once and append-only, then the developer may set
the table’s IMMUTABLE_ROWS property to true, either up-front in the CREATE TABLE
statement or afterward in an ALTER TABLE statement. This reduces the overhead at write
time to maintain the index. If this property is not set on the table, then incremental index
maintenance will be performed on the server side when the data changes.

There are two types of indexes that can be created in Phoenix: global indexes and
local indexes.

Chapter 7 ■ advanCed phoenix ConCepts

92

7.1.1 Global Index
Global indexes target read-heavy use cases. There is a minor performance hit during
writes as the mutations (Put/Delete) have to be written to both the data table and to
the indexes. HBase coprocessors provide hooks allowing them to be notified on various
activities going on the WAL and the region server. These hooks help in constructing the
necessary data that needs to be written to index tables. Scan queries perform better on
global indexes as the framework rewrites queries to choose the optimal query plan and
may decide to fetch data from index tables rather than from data tables. See Figure 7-1
for how global indexes look internally on the region server. As part of a query, the user
can specify special hints to the query optimizer to choose one table over another. It’s
always a good practice to run the query through an Explain plan to better understand
its implications.

Client
Data table

Region

1

2

3

3 4

4

Region CO
processor

Host

Index Table Region

Index Table Region

Region CO
processor

Host

Region CO
processor

Host

W
A
L

W
A
L

Figure 7-1. Mutable Global Index

Syntax:

 CREATE INDEX index_name
 ON table (expression)
 INCLUDE (column_refs)
 [ASYNC]
 [table_options] [SPLIT ON (constant)]

Example: Let’s create an index on the CUSTOMER table that includes the state column:

0: jdbc:phoenix:localhost:2181> CREATE INDEX customer_state_indx ON customer (state);
6 rows affected (6.296 seconds)

Chapter 7 ■ advanCed phoenix ConCepts

93

Let’s start an interactive HBase shell by starting a terminal and executing ‘hbase shell’
and take a quick look at the index table.

$ hbase shell

$ scan 'CUSTOMER_STATE_INDX'

Apparently, for mutable indexes the row key format in the index table is in the format
{index_column} {primary_table_rowkey}.

 ■ Note if the index_column is a variable length column, an empty byte separator is used
to separate the fields. here, the qualifier and the column family for the rows are the defaults,
which are ‘0’ and ‘_0’.

As stated above, Phoenix tries to sync the index table with the master table once the
request for index creation is received. Since this is a synchronous process, you will have
periods of time where the index table cannot be used for querying. To check the status of
the index, execute the following command

0: jdbc:phoenix:localhost:2181> !tables CUSTOMER_STATE_INDX

This marks the INDEX_STATE as ‘ACTIVE’. The other likely states that an index can
have are BUILDING, USABLE, UNUSABLE, INACTIVE, DISABLE, and REBUILD.

Only when the index is in the ‘ACTIVE’ state will Phoenix use the index table,
otherwise it uses the master table for queries.

 ■ Note if the master table is huge, you are likely to see a delay in the response from
the “Create index” query as phoenix internally initiates an “Upsert into .. seLeCt”
statement. starting with phoenix version 4.7, you can populate the index asynchronously by
appending the “asYnC” keyword.

Chapter 7 ■ advanCed phoenix ConCepts

94

To ensure consistency between the master data and index data, mutations received
to the master table are synchronously sent to the index table. The way this is handled
differs depending on whether the master table is mutable or immutable.

7.1.1.1 Immutable Tables
Implicitly, every HBase table is mutable. However, tables designed to store time series
data, for example, do not update existing data as they are usually append-only, once-
written. In such cases, you can mark the master table with an additional table option,
“IMMUTABLE ROWS = true”.

The primary contract of an immutable table is the fact that data, once written,
doesn’t change. If this contract is broken by the client, the framework cannot help much
in resolving inconsistencies that arise.

Command to mark a table as immutable:

 0: jdbc: phoenix:localhost:2181:/hbase> ALTER TABLE ORDERS SET IMMUTABLE_
ROWS = true;

0: jdbc: phoenix:localhost:2181> ALTER TABLE ORDERS SET IMMUTABLE_ROWS = true;
16/09/18 17:44:36 WARN query. ConnectionQueryServicesImpl: Attempt to cache
older version of ORDERS: current= 3, new=3
No rows affected (0.005 seconds)

Example: For the ORDER tables, the current rowkey is a concatenation of order_id
and cust_id. To know the order amounts for each customer ID, the select query will turn
to a full table scan:

 0: jdbc: phoenix:localhost:2181:/hbase> EXPLAIN SELECT SUM(AMOUNT) FROM
ORDERS GROUP BY CUST_ID;

Here, we observe the query performs a full table scan on the ORDERS table. Now,
let’s create a secondary index named ‘customer_orders_indx’ for which the row key is
‘cust_id’ and ‘order_id’.

Chapter 7 ■ advanCed phoenix ConCepts

95

0: jdbc: phoenix:localhost:2181:/hbase> CREATE INDEX CUSTOMER_ORDER_INDX ON
ORDERS (CUST_ID, ORDER_ID) include (amount);

Now, let’s run the query

0: jdbc:phoenix:localhost:2181:/hbase> EXPLAIN SELECT SUM(AMOUNT) FROM
ORDERS GROUP BY CUST_ID;

Here, the same query does a full table scan on CUSTOMER_ORDER_INDX but
performs better, as the row key starts with the cust_id. You can gain performance boost
by skipping client side sorting for the query. This difference can be observed from the
query execution plan by using EXPLAIN PLAN.

7.1.1.1.1 Consistency

For an immutable table, index maintenance is on the client side. By that, we mean
that Phoenix internally creates mutations for the index table based on the input data
in addition to the master table. The first write is to the master table, followed by writes
to the index table. One important thing to note is the fact that there is a possibility of
inconsistency in the index that can arise if the mutation to the master table is successful,
but a failure arises while writing to the index tables. The client can keep retrying to ensure
the upsert is successful. If the retries do not succeed, the master and index table will be
out of sync.

Another fact to keep in mind is that we cannot prevent the data from being updated
in a table merely by setting the table as IMMUTABLE, and if such an update happens, we
will end up with inconsistent data.

Chapter 7 ■ advanCed phoenix ConCepts

96

7.1.1.2 Mutable Tables
For mutable tables, Phoenix works smartly by leveraging Region Observer Coprocessor
hooks that behave like triggers in a database. With custom RegionObservers and WAL
Observers, the framework intercepts the mutations (Put/Delete) to the master table,
creates the necessary mutations for the index table and writes to it. From within the
coprocessors, the writes are done in parallel on each of the index tables by running
mutations for each table in a separate thread.

Index updates fail if any of the writes to the index table fail. When failures happen,
Phoenix supports a choice of failure policies:

 1. The failed index can be disabled so that it won’t be used in
queries, and automatic index rebuild begins from the point of
failure. Once the rebuild succeeds, the index will be active.

 2. Kill the region server policy: the region server tries to kill itself,
thereby allowing it an opportunity to replay the WAL and
repeat the process.

7.1.1.2.1 Configuration

Add the following property in the hbase-site.xml on the region servers.

 <property>
 <name>hbase.regionserver.wal.codec</name>
 <value>
 org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec
 </value>
</property>

7.1.1.2.2 Consistency

Mutable indexes try to maintain consistency in the case of failures that occur during
writes to index tables by having the region server die and retrying the operations during
the replay of WAL. However, if the write to the data table failed, then the client has to retry
the mutations to avoid inconsistent data.

7.1.2 Local Index
With global mutable and immutable indexes, the writes to an index table can often result
in an update in multiple region servers. With local indexes, indexing is region wise. Until
Phoenix version 4.8, Phoenix maintained an index table having same number of regions
and boundaries as the data table, and there will be one-to-one mapping of data and index
regions that are collocated on same region server.

The index data local to a data region is stored in a mapped index region. Local
indexes provide an alternative where both the master and index tables are co-located in

Chapter 7 ■ advanCed phoenix ConCepts

97

the same region. This gives a big boost to write-heavy workloads, as both the tables are
co-located in the same region. Thus, it is recommended to use local indexes for cases of
heavy writes, as it avoids the network overhead of sending index table updates to remote
servers.

Until Phoenix version 4.8, the framework was piggy-backing on the custom load
balancer and the region split/merge process through custom coprocessors to ensure both
the master and local indexes regions were collocated. The rowkey of the local index tables
was of the format

 region_startkey + index_id + index_column_value + master_table_rowkey.

Local Indexes until Phoenix version 4.7 and its available components are shown in
Figure 7-2.

Client

1 2

co
pr

oc
es

so
r

Region Server

Index
Table

Region

Data
Table

Region

Data and index tables
have the same start
and end row keys for

each region

3

Figure 7-2. Local Indexes until Phoenix 4.7

Phoenix version 4.8 introduced many performance improvements for local indexes,
as the local indexes are stored in separate column families in the same master table. We
no longer have separate tables. Data for the index tables are in the column family ‘L#0’.
The rowkey of the local index in Phoenix version 4.8 is

 region_startkey + index_id + index_column_value + master_table_rowkey

You can find changes in the formation of local Indexes and their intractions with
region servers in Figure 7-3.

Chapter 7 ■ advanCed phoenix ConCepts

98

Region Server

cf1
Table
cf2 L#

32

1

coprocessor

Client
Both data and index tables
are the same except that

the data is stored in
different column families

Figure 7-3. Local Indexes in Phoenix 4.8

Since we no longer have separate index tables, the meta-information of the index
tables is stored in the SYSTEM.CATALOG table. Even though there was a separate table
earlier, we store metadata in system.catalog table.

Let’s get started by creating a local index on the ITEM table where we add a local
index on ‘supplier_id’.

Syntax:

0: jdbc:phoenix:localhost:2181:/hbase> CREATE LOCAL INDEX ITEM_SUPPLIER_
LINDX ON ITEM(supplier_id);

From the HBase shell, let’s do a quick scan on the ITEM table. You will notice that
we have a new column family, ‘L#0’, where L indicates a local index and 0 marks the
default column family name. If we have a column in the include part of an index creation
command with some column family, let’s say ‘cf1:c’, then we will have one more column
family, ‘L#cf1’, to store the key values of the first column ‘c’ local index on the table.
The index number keeps increasing with the creation of local indexes on the table.

Chapter 7 ■ advanCed phoenix ConCepts

99

7.1.3 Covered Index
Apart from the fact that we can create secondary indexes with key columns, we can also
include additional columns from the data table into the index. This helps in covering
more queries where a query contains all the columns that can be fetched from the index,
avoiding the costly call to the data table. This improves read performance to a large
extent.

Syntax:

CREATE INDEX INDX_NAME ON TABLE_NAME (COL1, COL2...) INCLUDE (COLX, COLY);

Example:

CREATE INDEX CUSTOMER_ORDER_INDX ON ORDERS(CUST_ID, ORDER_ID) include (amount);

Here, we create an index which holds CUST_ID and ORDER_ID as key columns and
‘amount’ as a covered column in the table ‘CUSTOMER_ORDER_INDX’.

Though data is stored redundantly in the master and the index tables, the performance
gains covered indexes provide can easily offset the storage cost.

Chapter 7 ■ advanCed phoenix ConCepts

100

7.1.4 Functional Indexes
Functional indexes provide the ability to create indexes with expressions on one or
more columns of a table. The expressions are evaluated on the incoming data table,
and a corresponding UPSERT command is generated synchronously for the index
table. By storing the evaluated expression at write time, we avoid the cost at fetch
time. Queries that contain the expression will be redirected to the index table to fetch
the information.

Example: Let’s create a functional index with covered columns on a ‘supplier’ table

CREATE INDEX SUPPLIER_UPPER_NAME_INDX ON SUPPLIER (UPPER(SUPPLIER_NAME))
INCLUDE (STATE)

As we can observe, when the SELECT query contains the expression
UPPER(SUPPLIER_NAME), the query is redirected to the index table rather than to the
data table ‘SUPPLIER’.

7.1.5 Index Consistency
Below is a quick outline of the consistency guarantees one can expect from the framework
and the configurations that can help handle scenarios where the data and index tables
are inconsistent.

 1. If the table is a non-transactional immutable (where
IMMUTABLE_ROWS= true is set as the table configuration)
one, any failures that happen in the writes to data or index
table need to be handled at the client end by doing a retry
until success. An index is in an inconsistent state when the
write to the data table went through fine but the write to index
failed. On the other hand, if the write to data table itself failed,
the index will remain in consistent state.

 2. If the table is mutable non-transactional one and a failure
is returned from a query, then the tables (data or index) can
potentially be inconsistent. If the write to data table is success,

Chapter 7 ■ advanCed phoenix ConCepts

101

the index is one write behind. At this point, there are couple
of configurations in hand that can be done to overcome the
issue.

 a) Allow writes to data table Is the default behavior where
Phoenix allows writes to data table but disallows
any to the index table. The index table is marked as
'DISABLED' Phoenix runs a background process to
rebuild the index. No explicit configuration is required
for this behavior. Once the index table is in sync with
the data table, the state of the index table is changed
back to 'ACTIVE'.

 b) Disable further writes to data table till index is in sync
with an automatic index rebuild. In this case, the index
is still marked as 'ACTIVE' and is used for serving
queries. Only that new writes aren't received till it is in
sync with data table. phoenix.index.failure.block.write:
blocks write to data table once a failure is noticed on
index writes. Set to 'true' to enforce this. phoenix.index.
failure.handling.rebuild: Phoenix does a rebuild of the
index in the background by default. Since the default is
'true', no change is required.

 c) Disable writes to index table with a manual rebuild.
This is used in cases where the index is totally corrupt
and requires a complete rebuild of the index. When a
write to an index fail, Phoenix changes the state of the
index to 'REBUILD'. phoenix.index.failure.handling.
rebuild: Set this property to 'false' to disallow Phoenix
to rebuild the index automatically. To excplicitly
rebuild the index, execute the following command.

ALTER INDEX IF EXISTS INDX_TABLE ON DATA_TABLE
REBUILD [ASYNC]

If you pass ASYNC, the index creation uses a Map Reduce job
rather than rebuilding the index synchronously.

 3. For local indexes, the data and local indexes can be in
inconsistent state but phoenix tries to keep them in sync and
it is quick because the local indexes are in the same Region
Server. Starting 4.8, since local index are now in a different
column family of the data table, the default HBase ACID
property of consistency guarantees for a row will hold true
there by ensuring we never have inconsistency.

 4. Transaction tables are always in a consistent state.

Chapter 7 ■ advanCed phoenix ConCepts

102

7.2 User Defined Functions
Phoenix has a collection of built-in Functions (https://phoenix.apache.org/language/
functions.html) as part of its standard library. Starting with Phoenix version 4.4.0,
developers can write user-defined functions (UDFs) with custom code having application
logic that processes column values during a query. Currently, developers can write scalar
functions which take one input and return one output value. The UDFs can be used
the same way as built-in functions in queries such as SELECT, UPSERT, DELETE, and
Functional Indexes.

This feature provides many advantages for developers to write transformations in
flexible ways that are outside the scope of the custom functions registry. A custom UDF
has access to an entire row. The framework triggers a callback to your function as part of
an HBase scan for each key value. The tuple passed to the evaluate method is the current
state of the row.

7.2.1 Writing Custom User Defined Functions
Let's create a custom user defined function (UDF) “hasVowels” that checks if the input
string contains a vowel. This simple example shows the power of custom user defined
functions.

import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.phoenix.compile.KeyPart;
import org.apache.phoenix.expression.Expression
import org.apache.phoenix.expression.function.ScalarFuction;
import org.apache.phoenix.schema.tuple.Tuple;
import org.apache.phoenix.schema.types.PBoolean;
import org.apache.phoenix.schema.types.PDataType;
import org.apache.phoenix.schema.types.PVarchar;

import java.sql.SQLException;
import java.util.List;

/**
 *
*/
public class HasVowelsFunction extends ScalarFunction {

 private static final String FUNC_NAME = "hasVowels";

 @Override
 public PDataType getDataType() {
 return PBoolean.INSTANCE;
 }

https://phoenix.apache.org/language/functions.html
https://phoenix.apache.org/language/functions.html

Chapter 7 ■ advanCed phoenix ConCepts

103

 public HasVowelsFunction() {
 }

 public HasVowelsFunction(List<Expression> children) throws SQLException {
 super(children);
 }

 /**
 * Determines whether a function may be used to form
 * the start/stop key of a scan
 * @return the zero-based position of the argument to traverse
 * into to look for a primary key column reference, or
 * {@value #NO_TRAVERSAL} if the function cannot be used to
 * form the scan key.
 */
 public int getKeyFormationTraversalIndex() {
 return NO_TRAVERSAL;
 }

 /**
 * Manufactures a KeyPart used to construct the KeyRange given
 * a constant and a comparison operator.
 * @param childPart the KeyPart formulated for the child expression
 * at the {@link #getKeyFormationTraversalIndex()} position.
 * @return the KeyPart for constructing the KeyRange for this function.
 */
 public KeyPart newKeyPart(KeyPart childPart) {
 return null;
 }

 /**
 * Determines whether the result of the function invocation
 * will be ordered in the same way as the input to the function.
 * Returning YES enables an optimization to occur when a
 * GROUP BY contains function invocations using the leading PK
 * column(s).
 * @return YES if the function invocation will always preserve order for
 * the inputs versus the outputs and false otherwise, YES_IF_LAST if the
 * function preserves order, but any further column reference would not
 * continue to preserve order, and NO if the function does not preserve
 * order.
 */
 public OrderPreserving preservesOrder() {
 return OrderPreserving.NO;
 }

 /**
 * is the method to be implemented which provides access to the Tuple

Chapter 7 ■ advanCed phoenix ConCepts

104

 * @param tuple Single row result during scan iteration
 * @param ptr Pointer to byte value being accessed
 * @return
 */
 @Override
 public boolean evaluate(Tuple tuple, ImmutableBytesWritable ptr) {
 Expression child = children.get(0);
 if (!child.evaluate(tuple, ptr)) {
 return false;
 }

 St ring inputStr = (String) PVarchar.INSTANCE.toObject(ptr, child.
getSortOrder());

 if (inputStr == null) {
 return true;
 }

 boolean vowelFound = false;
 for(char each : inputStr.toCharArray()) {
 if(vowelFound) {
 break;
 }
 switch(each) {
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':
 ptr.set(PBoolean.INSTANCE.toBytes(true));
 vowelFound = true;
 break;
 default:
 }
 }
 if(!vowelFound) {
 ptr.set(PBoolean.INSTANCE.toBytes(false));
 }

 return true;
 }
 @Override
 public String getName() {
 return FUNC_NAME;
 }
}

Chapter 7 ■ advanCed phoenix ConCepts

105

7.2.1.2 Runtime Environment
To register the function with Phoenix, first copy the compiled artifact into a JAR and
place it in any directory on HDFS. By default, Phoenix copies the UDFs artifacts into the
“$hbase.local.dir”.

$ hadoop fs -copyFromLocal udfs.jar /hbase/lib/

Next, register the custom function with Phoenix.
Syntax:

 CREATE [TEMPORARY] FUNCTION {function_name}
 RETURN {phoenix_data_type} as {class_name} USING JAR {hdfs_jar_path}

Example:

0: jdbc:phoenix:localhost:2181:/hbase> CREATE FUNCTION hasVowels(varchar)
returns BOOLEAN as 'HasVowelsFunction' USING JAR ‘/hbase/lib/udfs.jar’;

Apparently, when we register a custom UDF function, Phoenix stores the metadata,
including the UDF JAR location, function name, return type, and the number of
arguments to the function, in a table named ‘SYSTEM.FUNCTION’.

7.2.1.1 Configuration
Registering custom functions requires minor configuration changes as shown in Table 7-1
needs to be set in hbase-site.xml. See Table 7-1 for properties and their corresponding
values.

Table 7-1. UDF Configuration Properties

Property name Value

phoenix.functions.allowUserDefinedFunctions true

hbase.dynamic.jars.dir ${hbase.rootdir}/lib

hbase.local.dir ${hbase.tmp.dir}/local/

Chapter 7 ■ advanCed phoenix ConCepts

106

Phoenix Query Server (PQS) complements this by allowing the clients use a thin
driver and allowing the query plan, execution, and processing on an external server
process to be scaled horizontally independent of the client process, as the query server
is stateless. The thin driver is based on the Avatica (https://calcite.apache.org/
avatica/) framework, which provides an API between the client and the server. In
Avatica, the server is an HTTP server and the client is a simple JDBC driver that allows
the client to communicate over protocol buffers or JSON. Wire protocols provide the
flexibility to have clients in non-JVM languages.

A couple of limitations that often arise with UDFs are:

 1. Since the JARs are loaded on the HBase RegionServer, any
minor changes to UDFs would mean creating a new JAR and
adding that to the HBase dynamic lib directory. If your server
goes down, then you can redeploy the function.

 2. While executing a query with a UDF, the dynamic class loader
copies the artifact containing the function to {hbase.local.dir}/
jars at the Phoenix client. The JARs must be deleted manually
once a function is deleted.

 3. Currently, only scalar functions are supported. You cannot
register custom aggregate functions.

7.3 Phoenix Query Server
By default, clients can connect to Phoenix-backed HBase through the JDBC driver. This
presents a couple of challenges when integrating from non-JVM based client languages.
Also, the query plan, query execution, and results processing on the client can impact the
client process. The JDBC driver primarily acts as a thick client. Figure 7-4 describes how
the Phoenix query server interacts with HBase region servers.

Client

Phoenix Query Server

Phoenix
Client

HBase api

HBase Region Server

HBase Region Server

Json /
Proto

on Http

Figure 7-4. Phoenix Query Server

https://calcite.apache.org/avatica/
https://calcite.apache.org/avatica/

Chapter 7 ■ advanCed phoenix ConCepts

107

7.3.1 Download
Phoenix provides thin driver artifacts used by the client process and server artifacts to
start the Phoenix Query server as part of the tar download.

7.3.2 Installation
A typical installation runs the query server on the hosts that run the HBase region servers.
Though it doesn't need to be a one-to-one mapping to the region server count, it is
preferred to run one instance of the server on one host.

7.3.3 Setup
Export the following environment variables with the exact values based on your
environment in either ~/.ssh/bash_profile or ~/.ssh/.bashrc.

export HBASE_CONF_DIR=<path_to_hbase_conf>
export PHOENIX_LIB_DIR=<path_to_phoenix_lib_directory>
export HADOOP_CONF_DIR=<path_to_hadoop_conf>

7.3.4 Starting PQS
Navigate to the base Phoenix directory and start the query server. The basic usage is:

$ bin/queryserver.py [start|stop|makeWinServiceDesc] [-Dhadoop=configs]

To start the service in the background, run the following command.

$ bin/queryserver.py start background

The logs of the query server are written to the same HBase logs directory with the
default file name format <username>-queryserver.log.

The query server internally starts a Jetty HTTP server on port 8765. To change the
port number, set a property ‘phoenix.queryserver.http.port’ in hbase-site.xml.

The default wire API for serializing the communication between client and
server uses protocol buffers. To change this, set the property ‘phoenix.queryserver.
serialization’ to ‘json’.

7.3.5 Client
Until now the driver protocol had the syntax “jdbc:phoenix:<zk host>:<zk port>”.
However, to use the thin client, the syntax of the protocol URL to be constructed is in
the format “jdbc:phoenix:thin:url=<scheme>://<server-hostname>:<port>”. The
following table shows template parameters and their descriptions. You can replace values
in value column in Table 7-2 with your environment values.

Chapter 7 ■ advanCed phoenix ConCepts

108

7.3.6 Usage
For a quick start, you can use the sqline-thin.py script to start communicating to the
query service. Let’s start by connecting to a local query server.

Ex. $ bin/sqlline-thin.py <http_query_server_url> <sql_file>

Let’s create a simple file ‘employee_ddl.sql’ with the following DDL query to create
the employee table.

CREATE TABLE IF NOT EXISTS EMPLOYEE (
 EMP_ID INTEGER NOT NULL,
 EMP_NAME VARCHAR ,
 CONTACT VARCHAR ,
 HIRE_DATE DATE,
 SALARY INTEGER
CONSTRAINT PK PRIMARY KEY (EMP_ID));

Let’s run the table creation through the query server.

 $ bin/sqlline-thin.py http://localhost:8765 employee_ddl.sql

Table 7-2. Phoenix Query Server configuration properties

Property Value

scheme http

server-host-name The hostname of the server

port The http port of the query server

Chapter 7 ■ advanCed phoenix ConCepts

109

After the successful completion, let’s view the employee table schema.

$ /bin/sqlline-thin.py http://localhost:8765

7.3.7 Additional PQS Features
The Phoenix Query Server (PQS) supports connecting to a secure HBase cluster.

Since PQS is inherently wrapped as an HTTP server, it’s easy to have it running
behind load balancers to achieve better availability.

7.3.7.1 Gotchas
Ordering of results from server can be a problem. Apparently the query server collects
data from the backend region servers and streams them across to the client. Unless the
property ‘phoenix.query.force.rowkeyorder’ is specified in the hbase-site.xml, the
ordering of the results returned can vary for each call for the same query.

Backwards compatibility isn’t guaranteed on the JSON transport API. However, with
protocol buffers, backwards compatibility can be better achieved moving forward.

7.4 Summary
In this chapter we described advanced concepts including user-defined functions,
indexing, and the Phoenix query server. User-defined functions can be customized to a
greater extent to make it more flexible for business use cases. We saw how to deal with the
Phoenix query server, its installation, and other constructs. In later chapters we will see
how to integrate Phoenix with other available technologies.

111© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_8

CHAPTER 8

Integrating Phoenix with
Other Frameworks

In previous chapters we discussed Phoenix fundamental constructs, querying using
Phoenix and other advanced concepts. We can also use Phoenix with other existing
technologies in the Hadoop ecosystem. This chapter focuses on Phoenix integration
with Spark, Pig, Hive, and MapReduce frameworks. Phoenix is a powerful yet easy to use
framework for integrating with Spark for real time data analysis and massively parallel
MapReduce jobs. It can also act as a catalyst for Hive and Pig-like scripting to achieve
better performance in big data analytics space. We will discuss all these integration points
available in Phoenix and how to use them effectively for massive data sets.

8.1 Hadoop Ecosystem
Apache Phoenix plays very well with the other frameworks like Apache Spark, Apache Pig,
and Apache Hive in the Hadoop ecosystem, all of which provide handlers to read and write
from HBase. Though we can use these frameworks to directly read and write to Phoenix,
you get better query performance using the respective handlers provided by Phoenix, as
they transform data types from the native format to the external framework data types.

8.2 MapReduce Integration
MapReduce is a programming paradigm for performing processing on large datasets at a
massive scale on commodity hardware in a reliable and fault tolerant manner. It brought
about a mind shift of doing data processing on large datasets by moving the computation
to the data rather than the other way round. Efficient scheduler algorithms help improve
performance of MapReduce jobs by taking advantage of data locality in addition to
monitoring and rerunning failed jobs.

The workings of a MapReduce job are very simple as it starts off with processing
small splits of the input dataset by mapping tasks in parallel. The framework then sorts
the mapper output, which is subsequently fetched by the reduce tasks. The reduce tasks
do the final aggregation on each group per key in the reduce function.

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

112

Though Phoenix supports SELECT and UPSERT statements at scale using the
underlying HBase API, quite often when we need to perform large data processing
tasks such as index building, aggregations on large tables, leveraging the driver API
can become a bottleneck as the client can consume a lot of memory, affecting the
performance of the application. To support use cases where batch processing is
acceptable, we can write MapReduce jobs that can read or write to Phoenix tables.

Phoenix leverages the DBInputFormat (https://hadoop.apache.org/docs/
r2.7.2/api/org/apache/hadoop/mapreduce/lib/db/DBInputFormat.html) and
DBOutputFormat (https://hadoop.apache.org/docs/r2.7.2/api/org/apache/
hadoop/mapreduce/lib/db/DBOutputFormat.html) APIs for reading and writing in
MapReduce jobs. Users can provide the exact SELECT query or pass in the list of columns
that they would like to read from Phoenix, and the underlying library marshalls the
underlying byte streams to the custom Writable class.

The custom InputFormat class PhoenixInputFormat internally computes the
query plan and optimizes on the number of input splits based on the input query. The
PhoenixOutputFormat serializes the Java data types onto byte streams before writing to
HBase.

8.2.1 Setup
Include the phoenix-client-<phoenix_version>.jar in the classpath of the uber
MapReduce job, thereby ensuring the driver program has access to tables, and compute
the query plan.

Example:

Let’s write a MapReduce program that reads from ORDERS table and compute the
total amount per customer id and write the result back to the “ORDER_STATS” table.

package com.apress.phoenix.mapreduce;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;
import org.apache.hadoop.util.Tool;
import org.apache.phoenix.mapreduce.PhoenixOutputFormat;
import org.apache.phoenix.mapreduce.util.PhoenixMapReduceUtil;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/mapreduce/lib/db/DBInputFormat.html
https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/mapreduce/lib/db/DBInputFormat.html
https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/mapreduce/lib/db/DBInputFormat.html
https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/mapreduce/lib/db/DBInputFormat.html

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

113

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

/**
*
*/
public class OrderStatsApp extends Configured implements Tool {

 private static final Logger LOG = LoggerFactory.getLogger(OrderStatsApp.class);

 public int run(String[] args) throws Exception {
 try {
 final Configuration configuration = HBaseConfiguration.create(getConf());
 setConf(configuration);
 final Job job = Job.getInstance(configuration, " phoenix-mr-order_

stats-job");
 final String selectQuery = " SELECT ORDER_ID, CUST_ID, AMOUNT FROM

ORDERS ";

 // set the input table and select query. you can also pass in the
list of columns

 Pho enixMapReduceUtil.setInput(job, OrderWritable.class, "ORDERS",
selectQuery);

 // set the output table name and the list of columns.
 PhoenixMapReduceUtil.setOutput(job, "ORDER_STATS", "CUST_ID, AMOUNT");

 job.setMapperClass(OrderMapper.class);
 job.setReducerClass(OrderReducer.class);
 job.setOutputFormatClass(PhoenixOutputFormat.class);

 job.setMapOutputKeyClass(LongWritable.class);
 job.setMapOutputValueClass(DoubleWritable.class);
 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(OrderWritable.class);
 TableMapReduceUtil.addDependencyJars(job);
 job.waitForCompletion(true);
 return 0;
 } catch (Exception ex) {
 LOG. error(String.format("An exception [%s] occurred while

performing the job: ", ex.getMessage()));
 return -1;
 }
 }

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

114

 public static void main(String[] args) throws Exception{
 int status =ToolRunner.run(new OrderStatsApp(), args);
 System.exit(status);
 }

 public static class OrderMapper extends Mapper<NullWritable,
OrderWritable, LongWritable, DoubleWritable> {

 private LongWritable customerId = new LongWritable();
 private DoubleWritable amount = new DoubleWritable();

 @Override
 prot ected void map(NullWritable key, OrderWritable order,

Context context) throws IOException, InterruptedException {
 // leaving out data validation for brevity.
 customerId.set(order.customerId);
 amount.set(order.amount);
 context.write(customerId, amount);
 }
 }

 pub lic static class OrderReducer extends Reducer<LongWritable,
DoubleWritable, NullWritable, OrderWritable> {

 @Override
 protected void reduce(LongWritable key, Iterable<DoubleWritable>

amounts, Context context) throws IOException, InterruptedException {
 // keeping only the core logic here.
 double totalValue = 0.0;
 for(DoubleWritable amount : amounts) {
 totalValue += amount.get();
 }

 con text.write(NullWritable.get(), new OrderWritable(key.get(),
totalValue));

 }
 }

 public static class OrderWritable implements DBWritable, Writable {

 private Long customerId;
 private Double amount;

 public OrderWritable() {

 }

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

115

 public OrderWritable(Long customerId, Double amount) {
 this.customerId = customerId;
 this.amount = amount;
 }
 public void write(PreparedStatement preparedStatement) throws SQLException {
 preparedStatement.setLong(1, customerId);
 preparedStatement.setDouble(2, amount);
 }

 public void readFields(ResultSet resultSet) throws SQLException {
 customerId = resultSet.getLong("CUST_ID");
 amount = resultSet.getDouble("AMOUNT");
 }

 public void write(DataOutput dataOutput) throws IOException {
 dataOutput.writeLong(customerId);
 dataOutput.writeDouble(amount);
 }

 public void readFields(DataInput dataInput) throws IOException {
 this.customerId = dataInput.readLong();
 this.amount = dataInput.readDouble();
 }
 }
}

From the above program we can see how easy it is to write a MapReduce job to
process data at scale.

Gotchas:

 a. Group By and Distinct clause queries aren’t supported as part
of input query.

 b. We can apply functions on columns by passing in the explicit
SELECT query.

In the previous chapters we have seen that, by default, index creation is a
synchronous process, and it can be a challenge to scale it up if the data (master) table is
large and we created an index. Starting with Phoenix 4.5, there is support for building the
index asynchronously using a MapReduce job.

8.3 Apache Spark Integration
Apache Spark is an open source processing engine built for large scale processing of data.
Its ease of programming allows for rapid development of data pipelines for both bounded
and unbounded streams. It is being widely adopted in data engineering and developing
iterative machine learning models.

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

116

Apart from the diverse data sources that Spark can access, there is native support
for reading and writing to Phoenix using the Spark API. Users interested in the RDD
approach to development can use PhoenixRDD, while others can use Dataframe, which
operates on creating relational transformations.

8.3.1 Setup
Copy the artifact phoenix-spark-<phoenix_version>-Hbase-<hbase_version>.jar from
the downloaded distribution and copy it to a location, say /usr/local/spark.

As part of spark-submit.sh to run a spark job, add the following configuration
parameter.

--jars /usr/local/spark/phoenix-spark-<phoenix_version>.jar

Example: Reading and Writing to Phoenix using RDD

Below is a sample Spark program to read from the ‘ORDERS’ table and compute the
total amount by customer ID.

package com.apress.phoenix.spark

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD

/**
 *
 */
object PhoenixSparkRDDApp {

 def main(args: Array[String]) {

 import org.apache.spark.SparkContext
 import org.apache.phoenix.spark._

 val zkQuorum = "localhost:2181"
 val master = "local[*]"
 val sparkConf = new SparkConf()
 sparkConf.setAppName("phoenix-spark-save")
 .setMaster(s"${master}")

 val sc = new SparkContext(sparkConf)

 // read from orders phoenix table
 val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD("ORDERS", Seq.

apply("ORDER_ID", "CUST_ID", "AMOUNT"),
 zkUrl = Some.apply(s"${zkQuorum}")
)

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

117

 val result = rdd.map(row => (row("CUST_ID").asInstanceOf[Long],
(row("AMOUNT").asInstanceOf[java.math.BigDecimal]).doubleValue()))
 .reduceByKey(_ + _)

 // save to customer_stats phoenix table.
 result.saveToPhoenix(
 "CUSTOMER_STATS", Seq("CUST_ID","AMOUNT"), zkUrl = Some.apply(s"
${zkQuorum}"))

 }
}

8.3.2 Reading and Writing Using Dataframe

package com.apress.phoenix.spark

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext

/**
 *
 */
object PhoenixSparkDfApp {

 def main(args: Array[String]) {

 import org.apache.spark.SparkContext
 import org.apache.phoenix.spark._

 val zkQuorum = "localhost:2181"
 val master = "local[*]"
 val sparkConf = new SparkConf()
 sparkConf.setAppName("phoenix-spark-save")
 .setMaster(s"${master}")

 val sc = new SparkContext(sparkConf)
 val sqlContext = new SQLContext(sc)

 // read from orders phoenix table
 val df = sqlContext.phoenixTableAsDataFrame("ORDERS", Seq.apply

("ORDER_ID", "CUST_ID", "QUANTITY"),
 zkUrl = Some.apply(s"${zkQuorum}")
)

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

118

 val result = d f.rdd.map(row => (row.getLong(1), row.getLong(2))).
reduceByKey(_ + _)

 // save to customer_stats phoenix table.
 result.saveToPhoenix("CUSTOMER_STATS", Seq("CUST_ID", "QUANTITY"), zkUrl =

Some.apply(s"${zkQuorum}"))

 }
}

Gotchas:

•	 The Spark plugin doesn’t support bulk loading of data into
Phoenix tables.

•	 For Java users, going through the route of Dataframe is simpler
than RDD as the PhoenixRDD cannot be invoked from Java.

8.4 Apache Hive Integration
Apache Hive is a data warehouse system on Hadoop. To make data access easier for non-
programmers, it provides a simpler SQL-like language called HiveQL. Hive queries can be
converted to MapReduce, Spark, or Tez jobs transparently. By abstracting the underlying
storage and providing a simpler query language, Hive allows users to easily manipulate
and perform various transformations using the various built-in and custom user defined
functions (UDFs).

Starting with Phoenix version 4.8.0, users can use the custom PhoenixHiveHandler
to read data from Phoenix in Hive.

8.4.1 Setup
Have the jar phoenix-<phoenix_version>-Hbase-<hbase_version>-hive.jar in the
Hive classpath. From the Hive shell, execute the following command

ADD JAR /path-to/phoenix-<phoenix_version>-Hbase-<hbase_version>-hive.jar

Though the path to the JAR can be a URI referring to the local system, storing it
on a distributed file system like HDFS or S3 is preferred, as all the nodes in the cluster
have access to the path. Additionally, you can update the auxiliary path configuration
parameter hive.aux.jars.path (https://cwiki.apache.org/confluence/display/
Hive/AdminManual+Configuration), specifying the URI to the JAR in hive-site.xml or
as part of the Hive client.

Example:

$ bin/hive --auxpath= /path-to/phoenix-<phoenix_version>-Hbase-<hbase_
version>-hive.jar

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

119

In ${HIVE_HOME}/conf/hive-site.xml

<property>
 <name>hive.aux.jars.path</name>
 <value>/path-to/phoenix-<phoenix_version>-Hbase-<hbase_version>-hive.

jar</value>
 </property>

8.4.2 Table Creation
Hive tables can be either EXTERNAL or INTERNAL; the difference primarily lies in
who is managing the lifecycle of the table and its data. For INTERNAL tables, both
data and lifecycle are managed by Hive; for EXTERNAL tables, only the metadata is
managed by Hive.

CREATE [EXTERNAL] TABLE ORDERS
(
 id int,
 custid int,
 order_date date,
 amount double,
 quantity int
)
STORED BY 'org.apache.phoenix.hive.PhoenixStorageHandler'

TBLPROPERTIES (
 "phoenix.table.name" = "orders",
 "phoenix.zookeeper.quorum" = "zk_quorum",
 "phoenix.rowkeys" = "id, custid",
 "phoenix.column.mapping" = "id:order_id, custid:cust_id,
 order_date:order_date, amount:amount, quantity:quantity",
 "phoenix.table.options" = "SALT_BUCKETS=10"
);

 ■ Note the property “phoenix.column.mapping” maps each column in hive with
phoenix. the mapping is a ‘,’ separated map of <hive_column> : <phoenix_column>.

Any additional properties that need to be passed to Phoenix tables can be passed as
part of TBLPROPERTIES.

Executing the above command creates a table entry in the Hive metastore and also
creates a Phoenix table.

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

120

8.5 Apache Pig Integration
Apache Pig is a high level language to process and store data on Hadoop. Through
PigLatin scripts, we can define high level analyses of data processing as data flows, rather
than explicitly writing native MapReduce jobs. The scripts are transformed into a series of
MapReduce jobs to be run on the Hadoop cluster.

Users can use the PhoenixHBaseLoader and PhoenixHBaseStorage to load and store
data to tables backed by Phoenix.

8.5.1 Setup
To either load or store data to Phoenix from Pig, we need to register the phoenix-pig-
<phoenix_version>-HBase-<hbase_version>.jar in the pig script using the REGISTER
(https://pig.apache.org/docs/r0.16.0/basic.html#register-jar) command.

REGISTER /path/to/phoenix-pig.jar

We can also pass the JAR path as part of configuration parameter ‘pig.additional.jars.uris’ as

$pig -Dpig.additional.jars.uris=/path/to/phoenix-pig.jar script.pig

8.5.2 Accessing Data from Phoenix
When accessing data from tables backed by Phoenix, we can specify either the table name
followed by the list of columns or an SQL query.

REGISTER hdfs://apps/pig/lib/phoenix-pig.jar
ORDER = LOAD 'hbase://table/ORDERS’ using org.apache.phoenix.pig.
PhoenixHBaseLoader(‘zookeeper_quorum_uri’);

REGISTER hdfs://apps/pig/lib/phoenix-pig.jar
ORDER = LOAD 'hbase://table/ORDERS/ORDER_ID, CUST_ID’ using org.apache.
phoenix.pig.PhoenixHBaseLoader(‘zookeeper_quorum_uri’);

REGISTER hdfs://apps/pig/lib/phoenix-pig.jar
ORDER = LOAD 'hbase://query/SELECT ORDER_ID, CUST_ID FROM ORDERS’ using
org.apache.phoenix.pig.PhoenixHBaseLoader(‘zookeeper_quorum_uri’);

Internally, the PhoenixHBaseLoader converts the LOAD definition to a SELECT
query which fetches data from multiple regions of the table.

8.5.3 Storing Data to Phoenix
PhoenixHBaseStorage allows storing into Phoenix tables. It internally maps the Pig data
types to Phoenix data types and serializes them correctly.

https://pig.apache.org/docs/r0.16.0/basic.html#register-jar

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

121

REGISTER hdfs://apps/pig/lib/phoenix-pig.jar
A = LOAD '/path/to/data' USING PigStorage(‘\t’) as (a:chararray,
b:chararray, c: datetime);

STORE A into 'hbase://phoenix-table’ using
 org.apache.phoenix.pig.PhoenixHBaseStorage('${zookeeper.quorum}',

‘-batchSize 100’);

// the second argument to PhoenixHBaseStorage is batch commit interval.

In both cases, Phoenix takes care of the necessary mapping between Pig schema and
Phoenix data types.

Gotchas:
We cannot use AGGREGATE, GROUP BY, LIMIT, or DISTINCT keywords in the query

part of the LOAD function.

8.6 Apache Flume Integration
Flume is a distributed, reliable log aggregation service to continuously stream data from
sources onto sinks which can be HDFS or HBase. Its support for contextual routing and
ease of extending and customization makes it a great tool for draining events to multiple
sinks. In a typical installation, Flume agents run alongside the cluster with a configuration
of the source which allows the ability to poll or pull data to multiplex or pass on to
channels. Channels work as buffered queues thus avoiding data volume spikes.

Events in channels are persisted till sinks explicitly remove them as parts of
transactions after writing them to the destination locations. Sinks are pluggable, and
Phoenix provides custom sinks, leveraging the pluggability behavior.

8.6.1 Setup
The Phoenix Flume plugin needs to be registered with Flume. Copy the JAR phoenix-
flume-<phoenix_version>-HBase-<hbase_version>.jar and place it in the $FLUME_
HOME/plugins.d/phoenix-sink/lib directory.

8.6.2 Configuration
Let’s configure a single source and a sink for Phoenix by creating a simple configuration
file named phoenix-agent.conf. Here, we will stream data from Kafka to Phoenix.

main components
agent.sources=kcollector
agent.sinks=phoenix-sink
agent.channels=memoryChannel

#configuring source
agent.sources.kcollector.type = org.apache.flume.source.kafka.KafkaSource
agent.sources.kcollector.channels = memoryChannel

Chapter 8 ■ IntegratIng phoenIx wIth other Frameworks

122

agent.sources.kcollector.zookeeperConnect = localhost:2181
agent.sources.kcollector.topic = test
agent.sources.kcollector.groupId = flume_to_phoenix
agent.sources.kcollector.kafka.consumer.timeout.ms = 100

#configure channel
agent.channels.memoryChannel.type=memory
agent.channels.memoryChannel.byteCapacityBufferPercentage=20
agent.channels.memoryChannel.transactionCapacity=100

#configure sink
agent.sinks.phoenix-sink.type=org.apache.phoenix.flume.sink.PhoenixSink
agent.sinks.phoenix-sink.channel=memoryChannel
agent.sinks.phoenix-sink.batchSize=100
agent.sinks.phoenix-sink.table=TEST
agent.sinks.phoenix-sink.ddl=CREATE TABLE IF NOT EXISTS TEST(uid VARCHAT NOT
NULL, msg VARCHAR CONSTRAINT pk PRIMARY KEY(uid))
agent.sinks.phoenix-sink.zookeeperQuorum=localhost
agent.sinks.phoenix-sink.serializer=REGEX
agent.sinks.phoenix-sink.serializer.rowkeyType=uuid
agent.sinks.phoenix-sink.serializer.regex=([^]*)
agent.sinks.phoenix-sink.serializer.columns=msg

8.6.3 Running the Above Setup
Open a terminal and run the following command.

$ bin/flume-ng agent -f conf/phoenix-agent.conf -c ./conf -n agent

In the above setup, we take in each message from Kafka, convert it into a String, and
write to Phoenix.

8.7 Summary
It is important for any technology to provide integration points and custom behavior
that can be customized as per user need. We saw how good phoenix deals with these
philosophies and exposes many integration points to extend the framework to the next
level. Although Hadoop is much popular and we might have used hive or pig for our
projects, but we always look for better ways to work on data analysis for greater system
performance. You should consider phoenix as a new participant in our existing system
portfolio. Phoenix hides complexities and lets you work with older systems using hive,
pig etc. with phoenix integration points extensions. This chapter brings important
information for those who deal with the polyglot of databases and consume large data
from data lake.

123© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3_9

CHAPTER 9

Tools & Tuning

We have seen how phoenix can help us for big data analysis by writing simple easy
to use queries and other features for handling HBase storage data in an efficient
way. The important thing for any database query engine is its performance and how
this can support increasing load with optimal performance. Phoenix provides many
configurations and suggests many ways by which we can meet our performance SLAs.
This chapter is all about performance and available phoenix tools to understand phoenix
internal tuning, debugging, and handling any such related issues in our production
environment.

9.1 Phoenix Tracing Server
Most internet services that are built on complex distributed systems fan out a single
request to multiple backend system calls to process the request and respond. Often it
becomes necessary to understand any performance bottlenecks in a deeply nested set of
backend services to help aid in performance optimizations and root cause analysis.

To enable users to better understand and monitor performance and latency that
arise at either the client or server end, Phoenix integrates with Apache HTrace (http://
htrace.incubator.apache.org). HTrace is a tracing library that provides traces across
network boundaries on a sampled subset of requests that span distributed systems
like the Hadoop Distributed File System (HDFS) and HBase. By leveraging the HTrace
library, Phoenix sends these traces from the client and server to a Phoenix table. It
extends further by providing a web server to view these traces, thereby providing a unique
opportunity for developers and the operations team in having a 360 degree view of the
request/response workflow.

Though this chapter will not be a deep dive into HTrace, we will give an overview
with enough depth to provide a better understanding of how Phoenix and Htrace work
together to address performance issues.

9.1.1 Trace
Each user initiated request is termed a TraceScope. Trace manages the lifecycle of spans.

http://htrace.incubator.apache.org/
http://htrace.incubator.apache.org/

Chapter 9 ■ tools & tuning

124

9.1.2 Span
Each trace can be made up of multiple spans where each span, identified by a pseudo-
random number, is mapped to one RPC or a block of execution. Information, such as the
begin and end time of the span, a description, and additional information annotated for
each span. Spans can be deeply nested; each span has information about its parent span
and can span across network boundaries

9.1.3 Span Receivers
Span receivers, a.k.a. collectors, collect the spans from Trace and write to a
store. Examples of these are LocalFileSpanReceiver, StandardOutSpanReceiver,
ZipkinSpanReceiver, TraceMetricSource (the span receiver in Phoenix).

9.1.4 Setup
The Hadoop metrics framework (https://hadoop.apache.org/docs/r2.7.2/api/org/
apache/hadoop/metrics2/package-summary.html#instrumentation) provides a way to
produce and consume metrics using MetricsSource and MetricsSink. Phoenix provides
a custom sink that receives the spans and traces from the client and server onto a default
table SYSTEM.TRACING_STATS.

To enable tracing, changes need to be made on both the client and server end.

9.1.4.1 Client Configuration
Place the hadoop-metrics2-phoenix.properties file at the ${HBASE_CONF_DIR} location.

metrics sink impl class that collects the traces
phoenix.sink.tracing.class=org.apache.phoenix.trace.PhoenixMetricsSink
Tell the sink where to write the metrics phoenix.sink.tracing.writer-
class=org.apache.phoenix.trace.PhoenixTableMetricsWriter
Only handles traces with a context of "tracing". This ensures
phoenix.sink.tracing.context=tracing

Sample from all the sources every 10 seconds
*.period=10

chooses one of the following.
never - equal to disabling tracing.
always - trace every request
Add below configutation properties in hbase-site.xml
probability - does a sampling of request.
phoenix.tracing.frequency=[never | always | probability]

used when the tracing frequency is set to ‘probability’.
phoenix.trace.probability.threshold = 0.05

https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/metrics2/package-summary.html#instrumentation
https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/metrics2/package-summary.html#instrumentation

Chapter 9 ■ tools & tuning

125

Apart from specifying the configuration in a properties file, you can configure tracing
at a connection level. For example:

Properties props = new Properties();
props.setProperty("phoenix.trace.frequency", "probability");
props.setProperty("phoenix.trace.probability.threshold", 0.5)
final Connection conn = DriverManager.getConnection("jdbc:phoenix:localho
st", props);

9.1.4.2 Server Configuration
Similar to the setup on the client, we need to update the hadoop-metrics2-hbase.
properties file at ${HBASE_CONF_DIR} on the server.

metrics sink impl class that collects the traces
phoenix.sink.tracing.class=org.apache.phoenix.trace.PhoenixMetricsSink
Only handle traces with a context of "tracing". This ensures
phoenix.sink.tracing.context=tracing
ensure that we receive traces on the server
hbase.sink.tracing.class=org.apache.phoenix.trace.PhoenixMetricsSink
Tell the sink where to write the metrics
hbase.sink.tracing.writer-class=org.apache.phoenix.trace.
PhoenixTableMetricsWriter
Only handle traces with a context of "tracing"
hbase.sink.tracing.context=tracing

By default, all traces are written to SYSTEM.TRACING_STATS. If you wish to change
this, update the hbase-site.xml file with the following addition:

<property>
 <name>phoenix.trace.statsTableName</name>
 <value>{custom_tracing_table}</value>
 </property>

Based on the frequency set, the trace requests wrapped in a MetricsRecord are
written to the table. To view the contents of the table, open up Sqlline.py and run the
following command:

$ bin/sqlline.py

Chapter 9 ■ tools & tuning

126

You can enable and disable tracing at each request level by executing the following
queries

$ 0: jdbc:phoenix:> TRACE ON;

$ 0: jdbc:phoenix:> TRACE OFF;

Trace information can be collected with sampling rates (range from 0 to 1). Changing
tracing frequency of the query can improve the visualization; for example setting trace on
with a sampling value of 0.5.

We can compute the metrics at a request level in the code. Phoenix takes this a step
further and provides a web UI to better view the traces.

Start the tracing server by issuing the command at PHOENIX_HOME directory

$./bin/traceserver.py start

Chapter 9 ■ tools & tuning

127

The above commands start a Jetty server locally on port 8864. To change these
configurations, update hbase-site.xml on the client

<property>
 <name>phoenix.traceserver.http.port"</name>
 <value>8864</value>
 </property>

The web UI provides a quick view of trace distributions, counts, dependencies, and
timelines.

Gotchas:

With the above setup, we capture traces of the Phoenix API through Hadoop
metrics. To get deeper insight into tracing of HBase and HDFS, you need to configure the
necessary span receivers in hbase-site.xml and hdfs-site.xml. To streamline the trace
collection, we could write a custom span receiver that writes the traces and spans to the
same Phoenix table.

9.2 Phoenix Bulk Loading
Phoenix bulk load is a MapReduce job that allows loading of CSV and JSON datasets into
Phoenix tables. This tool internally generates the necessary HFiles for the data table,
which provides a high throughput and efficient usage of the cluster, better than bin/
psql.py which uses the HBase Put API. We can also specify the index table name.

9.2.1 Setup

$export HADOOP_CLASSPATH = $(hbase mapredcp):/path-to-hbase-conf

to load CSV data
$ hadoop jar phoenix-<version>-HBase-<hbase-version>-client.jar org.apache.
phoenix.mapreduce.CsvBulkLoadTool --table ORDERS --input orders.csv

to load JSON data
$ hadoop jar phoenix-<version>-HBase-<hbase-version>-client.jar org.apache.
phoenix.mapreduce.JsonBulkLoadTool --table ORDERS --input orders.csv

Chapter 9 ■ tools & tuning

128

9.2.2 Gotchas
 1. The above job produces HFiles at the --output location

specified. To ensure the subsequent step that loads the HFiles
into HBase tables has the necessary permissions, we need to
generate the files as user ‘hbase’. Prefix the above commands
with ‘sudo -u hbase’.

 2. When importing CSV data, if a column is of an array type, use
a different delimiter to explicitly differentiate the array values.
The default delimiter is ‘:’.

 3. If the target table is a newly created Phoenix table, ensure
the table is pre-split, as the number of reducers that run
for the job depends on the number of regions for the table.
By default, since there is only one region, you will notice
degraded MapReduce performance as mutations end up on
one reducer.

 4. By default, bulk loading of HFiles with more than 32 per
column family fails with an IOException. Either we can
increase the region size from its default of 10 GB to a much
larger number, or we can update the property ‘hbase.
mapreduce.bulkload.max.hfiles.perRegion.perFamily’ in
hbase-site.xml

 5. Bulk loading JSON data using the JsonBulkLoadTool job
doesn’t allow nested JSON structures. Also, lists in JSON are
internally mapped as Array types in Phoenix.

Additional arguments

Table 9-1. Bulk Loading arguments

--input Input path to data. Mandatory

--zookeeper Zookeeper quorum uri

--schema Schema of the data table.

--table Data table. Mandatory

--index-table Index table when we wish to load data to index table rather than

--import-columns Comma separated list of columns

--ignore-errors Ignore any errors that arise in the job.

--output Output path where the intermediate HFiles are placed.

--delimiter Delimiter to be used for CSV data only. Default is ‘,’

--quote Phrase delimiter used for CSV data only. Defaults to double quote

--array-delimiter Delimiter for array elements. Defaults to ‘:’

Chapter 9 ■ tools & tuning

129

9.3 Index Load Async
In the previous chapters, we have created both mutable and immutable indexes, and
have observed that index population on an existing data table takes a long time due to its
synchronous nature. Starting with Phoenix version 4.5, we can run index creation using
an asynchronous approach by running a MapReduce job.

Let’s see how to create an index table asynchronously through the following command.

CREATE INDEX index_name ON schema_name.table_name (columns) ASYNC

After running the command, Phoenix internally marks the index state as INACTIVE.
After running the MapReduce job successfully, the index is ACTIVE and is served for
querying.

$export HADOOP_CLASSPATH = $(hbase mapredcp):/path-to-hbase-conf

$ hadoop jar phoenix-<version>-HBase-<hbase-version>-client.jar org.apache.
phoenix.mapreduce.index.IndexTool
 --schema MY_SCHEMA --data-table MY_TABLE --index-table ASYNC_IDX
 --output-path /hdfs/path/for/hfiles

9.4 Pherf
Pherf is a tool, similar to Jmeter, which is part of the standard distribution that allows
developers to configure scenarios of various queries which can be run on a standalone or
a distributed cluster. The tool provides the ability to benchmark a cluster and helps the
developer understand the impact of various configuration changes and new features on
the cluster.

The Pherf tool records the times of both read and write operations, and can be
configured to run with multiple threads with various test scenarios.

Each configured test requires a schema and a scenario. The schema file defines the
schemas of the table and the respective indexes (if needed) that need to be created as a
precursor to the performance test. Configuration is accomplished primarily using the
Data Definition language.

The scenario file is an XML file where we define the data model of the columns and
the rules that govern the data creation. Each scenario is a definition of the kind of data to
be generated against the table, the number of rows to be upserted and the set of queries
to be fired against the cluster.

In addition, for each column, based on the type, you can define rules like the length
of the data, the data sequence (which can be either SEQUENTIAL or RANDOM), min and
max values for numeric data type columns, fixed sets of values for dates along with the
probability distribution of the number of rows containing them, and prefixes that can be
used for string columns. Defining custom data generation rules helps modeling in data
upsert and validation resembling the dataset of your needs.

Chapter 9 ■ tools & tuning

130

Example porders-schema.sql file

ORDER table DDL

CREATE TABLE IF NOT EXISTS PORDERS(
 ORDER_ID INTEGER NOT NULL,
 CUST_ID INTEGER NOT NULL,
 ORDER_DATE DATE,
 AMOUNT DECIMAL,
 QUANTITY INTEGER
CONSTRAINT PK PRIMARY KEY (ORDER_ID,CUST_ID)
)

Example porders-scenario.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<datamodel name="orders">
 <datamapping>
 <column>
 <!-- This column type defines what will generally happen

to VARCHAR fields unless they are explicitly defined or
overridden elsewhere -->

 <name>GENERAL_VARCHAR</name>
 <type>VARCHAR</type>
 <dataSequence>RANDOM</dataSequence>
 <length>10</length>
 </column>
 <column>
 <name>GENERAL_CHAR</name>
 <type>CHAR</type>
 <dataSequence>SEQUENTIAL</dataSequence>
 <length>15</length>
 </column>
 <column>
 <type>DATE</type>
 <!--SEQUENTIAL is unsupported for DATE -->
 <dataSequence>RANDOM</dataSequence>
 <!-- Number [0-100] that represents the probability of creating a

null value -->
 <!-- The higher the number, the more like the value will returned

will be null -->
 <!-- Leaving this tag out is equivalent to having a 0

probability. i.e. never null -->
 <nullChance>0</nullChance>
 <minValue>1975</minValue>
 <maxValue>2025</maxValue>
 <name>GENERAL_DATE</name>
 </column>

Chapter 9 ■ tools & tuning

131

 <column>
 <type>DATE</type>
 <!--SEQUENTIAL is unsupported for DATE -->
 <dataSequence>RANDOM</dataSequence>
 <!-- Number [0-100] that represents the probability of creating a

null value -->
 <!-- The higher the number, the more like the value will returned

will be null -->
 <!-- Leaving this tag out is equivalent to having a 0 probability.

i.e. never null -->
 <nullChance>0</nullChance>
 <useCurrentDate>true</useCurrentDate>
 <name>NOW_DATE</name>
 </column>
 <column>
 <type>DECIMAL</type>
 <dataSequence>RANDOM</dataSequence>
 <minValue>0</minValue>
 <maxValue>1</maxValue>

 <!-- Precision is limited to 18 -->
 <precision>18</precision>
 <!-- Number [0-100] that represents the probability of creating a

null value -->
 <!-- The higher the number, the more like the value will returned

will be null -->
 <!-- Leaving this tag out is equivalent to having a 0 probability.

i.e. never null -->
 <nullChance>10</nullChance>
 <name>GENERAL_DECIMAL</name>
 </column>
 <column>
 <name>GENERAL_INTEGER</name>
 <type>INTEGER</type>
 <dataSequence>RANDOM</dataSequence>
 <minValue>1</minValue>
 <maxValue>999999</maxValue>
 <!-- Number [0-100] that represents the probability of creating a

null value -->
 <!-- The higher the number, the more like the value will returned

will be null -->
 <!-- Leaving this tag out is equivalent to having a 0 probability.

i.e. never null -->
 <nullChance>0</nullChance>
 </column>
 <column>
 <type>DATE</type>
 <name>CREATED_DATE</name>

Chapter 9 ■ tools & tuning

132

 <minValue>2000</minValue>
 <maxValue>2015</maxValue>
 <valuelist>
 <!-- Distributes randomly with equal chance of being picked -->
 <datavalue distribution="80">
 <!-- Joda time format: yyyy-MM-dd HH:mm:ss.SSS ZZZ -->
 <minValue>2016-09-15 00:01:00.000</minValue>
 <maxValue>2016-09-15 11:00:00.000</maxValue>
 </datavalue>
 <datavalue distribution="10">
 <value>2016-11-04 00:01:00.000</value>
 </datavalue>
 <datavalue distribution="10">
 <minValue>2016-12-25 00:01:00.000</minValue>
 <maxValue>2016-12-31 00:01:00.300</maxValue>
 </datavalue>
 </valuelist>
 </column>
 <column>
 <type>CHAR</type>
 <userDefined>true</userDefined>
 <dataSequence>LIST</dataSequence>
 <length>15</length>
 <name>PARENT_ID</name>
 <valuelist>
 <!-- Distributes according to specified values. These must

total 100 -->
 <datavalue distribution="60">
 <value>aAAyYhnNbBs9kWk</value>
 </datavalue>
 <datavalue distribution="20">
 <value>bBByYhnNbBs9kWu</value>
 </datavalue>
 <datavalue distribution="20">
 <value>cCCyYhnNbBs9kWr</value>
 </datavalue>
 </valuelist>
 </column>
 <column>
 <name>PREFX_STRING</name>
 <type>VARCHAR</type>
 <length>10</length>
 <userDefined>true</userDefined>
 <dataSequence>RANDOM</dataSequence>
 <prefix>MYPRFX</prefix>
 </column>
 </datamapping>

Chapter 9 ■ tools & tuning

133

 <scenarios>
 <scenario tableName="PORDERS" rowCount="1000" name="perf_read_writes">

 <!--
 This is used to add mixed R/W workloads.

 If this tag exists, a writer pool will be created based on
the below properties.

 The se props will override the default values in pherf.
properties, but only for this

 sce nario.The write jobs will run in conjunction with the
querySet below.

 -->
 <writeParams executionDurationInMs="10000">
 <writerThreadCount>10</writerThreadCount>

 <!--
 Throttles the writers with a small sleep durations between

writes.
 -->
 <threadSleepDuration>10</threadSleepDuration>
 <batchSize>1000</batchSize>
 </writeParams>
 <que rySet concurrency="1" executionType="PARALLEL"

executionDurationInMs="10000">
 <query id="q1" statement="select count(*) from PORDERS"/>
 <query id="q2" statement="select sum(QUANTITY) from PORDERS"/>
 </querySet>

 </scenario>
 </scenarios>
</datamodel>

9.4.1 Setup to Run the Test
The Phoenix distribution comes with both pherf-standalone.py and pherf-cluster.py.

 1. Copy the porders-schema.sql to the directory ${PHOENIX_
HOME}/bin/config/datamodel/

 2. Copy the porders-scenario.xml to the directory

${PHOENIX_HOME}/bin/config/scenario/

 3. Run the tool

$./bin/pherf-standalone.py -z localhost:2181 -scenarioFile .*porders-
scenario.xml -schemaFile .*porders-schema.sql -d -export -l

Chapter 9 ■ tools & tuning

134

Arguments

Table 9-2. pherf attributes

Key Description

-l Apply the schema and load data.

-q Executes the queries

-z Zookeeper quorum

-scenarioFile Path to the scenario file

-schemaFile Path to the schema file

-export Exports the results to CSV.

-diff Compares the results of two runs

-drop Drops and recreates the tables.

-stat Update the SYSTEM.STATS table

-d Debug mode

-listFiles Command to display the schema and scenario files that the tool can read.

The results of the run are dumped onto the RESULTS directory in the folder from
which you ran the above command.

9.4.2 Gotchas
Though Pherf is a great tool to do quick performance benchmarks, it doesn’t do query
result validation. It can execute queries but cannot validate if the results returned are
correct.

Chapter 9 ■ tools & tuning

135

9.5 Summary
In this chapter we discussed Phoenix performance configurations and how to tune them,
tracing Phoenix for debugging purposes and knowing what is happening inside Phoenix.
The Phoenix team is now trying to keep separate query parser to improve performance
and integration with other frameworks. Separating parsing and other query processing
activities will improve load balancing of phoenix and make this more component
oriented pluggable architecture.

137

��������� A
ALTER tables

columns, 56
deleting/replacing columns, 56
rename, 57

Apache Phoenix. See Phoenix

��������� B
Big data source

Apache Phoenix analytics, 14
data warehouse

and querying, 13
Phoenix, 12
RDBMSs, 13
relational databases, 13
traditional DBA problem, 12

Big data sources, 1–2
analysis, 4
applications (see Modern

applications)
Hadoop (see Hadoop ecosystem)
lake and representation, 2
transactional data, 2

Bulk loading, 127
arguments, 128
gotchas, 128
setup, 127

Business Intelligence (BI), 5

��������� C
Clauses

GROUP BY, 58
HAVING, 59

LIMIT, 57
ORDER BY, 59
WHERE, 58

Clickstream logs, 3
Cloudera Hadoop, 30–31
Constraints, 51
Covered index, 99
CRUD

data types, 37
complex, 37–38
primitive, 37

SQL commands, 39–40
ALTER, 42
CREATE, 41
DELETE, 42
DESCRIBE, 42
HELP, 40
LIST, 43
SELECT, 41
UPSERT, 41

��������� D
DROP TABLE command, 55

��������� E
EQUIJOIN, 63

��������� F
Flume integration

configuration, 121
run command, 122
setup, 121

Functional indexes, 100

Index

© Shakil Akhtar and Ravi Magham 2017
S. Akhtar and R. Magham, Pro Apache Phoenix, DOI 10.1007/978-1-4842-2370-3

■ INDEX

138

��������� G
Global indexes, 92
Gotchas, 109
Group joins, 67

��������� H
Hadoop Distributed File

System (HDFS), 6, 123
components and data storage, 6
DataNodes, 6
NameNode, 6
secondary NameNode, 6

Hadoop ecosystem, 5
HBase, 9–10
HDFS, 6
Hive, 10–11
integration, 111
MapReduce (see MapReduce)
Oozie, 11
overview, 5
Phoenix, 12
role of Phoenix, 32

comparison, 33
HBase, 32

stack, 5
ZooKeeper, 11

HBase, 9–10
HBase installation, 18
Hive, 10–11

integration, 118
setup, 118
table creation, 119

Hortonworks Hadoop distribution
platform (HDP), 20

HBase, 27
Phoenix shell, 29
sandbox distribution, 21

core jars verification, 26
Hadoop password creation, 23
HBase property modification, 27
installation, 23
Phoenix download, 24–25
prerequisites, 25
VirtualBox, 21–22
VM, 22

testing, 28, 30

��������� I
Immutable tables, 94–95

consistency, 95
mutable tables, 96

configuration, 96
consistency, 96

Index load async, 129
Inner join, 63
Integration, 111

Dataframe, 117
Flume, 121
Hadoop ecosystem, 111
Hive, 118
MapReduce, 111
Pig, 120
Spark, 115

��������� J, K
Join query, 63

group joins, 67
inner join, 63
optimizations, 69

algorithm, 70
configuration

properties, 70
types and cache storage, 71

outer join
FULL OUTER JOIN, 66–67
LEFT OUTER JOIN, 64–65
RIGHT OUTER JOIN, 65–66

subqueries
(see Subqueries)

��������� L
Linux, 17
Local index, 96

components, 97
intractions, 97–98
syntax, 98

Logical operators
AND, 60
BETWEEN, 61
IN, 60
LIKE, 61
OR, 60

■ INDEX

139

��������� M
Mac OS X, 18
MapReduce

integration, 111
Map tasks, 7
processing data, 9
reduce phase, 8
reduce stage, 7
shuffle and reduce tasks, 7
word count processing, 7

Modern applications, 3
banking sector, 3
fraud detection, 3
log data analysis, 3
recommendation engines, 4
social Media, 4

Multiversion concurrency control, 85
Multi-versioned concurrency

control (MVCC), 85

��������� N
NOT NULL constraint, 51

��������� O
Oozie, 11
Optimistic concurrency control, 85
Outer join

FULL OUTER JOIN, 66–67
LEFT OUTER JOIN, 64–65
RIGHT OUTER JOIN, 65–66

��������� P, Q
Paged queries, 75

LIMIT and OFFSET, 76
Row Value Constructor (RVC), 76

Pherf, 129–133
attributes, 134
gotchas, 134
setup, 133

Phoenix, 15
architecture, 16
capabilities, 31–32
Cloudera Hadoop, 30–31
Hadoop ecosystem

(see Hadoop ecosystem)

HBase, 18
history of, 15
Hortonworks HDP (see Hortonworks

Hadoop distribution platform)
installation, 17

binary distribution, 19
HBase, 20
local HBase, 20

Java installation, 17
Linux, 17
Mac OS X, 18

multi-tenancy, 34
query server, 35
secondary indexes, 34
skip scan, 34
SQL driver (HBase), 15–16
transactions, 33, 86

committing transactions, 89
hbase-site.xml, 87
limitations, 90
properties, 86
tables, 89
Tephra configuration, 87

user-defined functions, 33
view syntax, 34

Phoenix Query Server (PQS)
client, 107
configuration properties, 108
directories and

start server, 107
download, 107
features, 109
Gotchas, 109
installation, 107
interaction, 106
setup, 107
usage, 108

Pig
integration, 120

data access, 120
PhoenixHBaseStorage, 120
setup, 120

��������� R
Relational database management

system (RDBMS), 13
ROLLBACK, 80
Row Value Constructor (RVC), 75, 76

■ INDEX

140

��������� S
Salted tables, 53
SAVEPOINT, 81
Secondary indexes, 91

covered index, 99
data tables/views, 91
functional indexes, 100
global indexes, 92
immutable tables

(see Immutable tables)
local index, 96

components, 97
intractions, 97–98
syntax, 98

SET TRANSACTION, 81
Spark integration, 115
SQL transactions, 79
Subjoins. Group joins
Subqueries

ANY, SOME and ALL, 73
EXISTS and NOT EXISTS clauses, 72
IN and NOT IN, 72
nested query, 71
UPSERT statements, 73

��������� T
Table creation, 52
Tephra, 85
Tracing server, 123

client configuration, 124
multiple spans, 124
server configuration, 125–127
setup, 124
span receivers, 124
trace, 123

Transactions
COMMIT, 80
HBase, 81

commit, 83
components, 82
integration, 81–82

lifecycle, 84
multiversion concurrency

control, 85
optimistic concurrency control, 85
processor coprocessor, 83
TransactionAware client, 82
transaction manager, 82

HBaserowkey, 81
Phoenix

committing transactions, 89
hbase-site.xml, 87
limitations, 90
properties, 86
tables, 89
Tephra configuration, 87

properties
atomicity, 80
consistency, 80
durability, 80
isolation, 80

ROLLBACK, 80
SAVEPOINT, 81
SET TRANSACTION, 81
SQL transactions, 79
Tephra, 85

��������� U
UPSERT statements, 73
User defined functions (UDF), 91, 102

advantages, 102
configuration properties, 105
custom creation, 102–104
runtime environment, 105–106

��������� V, W, X, Y
Views, 74

��������� Z
ZooKeeper, 11

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Chapter 1: Introduction
	1.1 Big Data Lake and Its Representation
	1.2 Modern Applications and Big Data
	1.2.1 Fraud Detection in Banking
	1.2.2 Log Data Analysis
	1.2.3 Recommendation Engines
	1.2.3.1 Social Media Analysis

	1.3 Analyzing Big Data
	1.4 An Overview of Hadoop and MapReduce
	1.5 Hadoop Ecosystem
	1.5.1 HDFS
	1.5.2 MapReduce
	1.5.3 HBase
	1.5.4 Hive
	1.5.5 YARN
	1.5.6 Spark
	1.5.7 PIG
	1.5.8 ZooKeeper

	1.6 Phoenix in the Hadoop Ecosystem
	1.7 Phoenix’s Place in Big Data Systems
	1.8 Importance of Traditional SQL-Based Tools and the Role of Phoenix
	1.8.1 Traditional DBA Problems for Big Data Systems-
	1.8.2 Which Tool Should I Use for Big Data?
	1.8.3 Massive Data Storage and Challenges
	1.8.4 A Traditional Data Warehouse and Querying

	1.9 Apache Phoenix in Big Data Analytics
	1.10 Summary

	Chapter 2: Using Phoenix
	2.1 What is Apache Phoenix?
	2.2 Architecture
	2.2.1 Installing Apache Phoenix
	2.2.2 Installing Java
	2.2.2.1 Installing Java on Linux
	2.2.2.2 Installing Java on Mac OS X

	2.3 Installing HBase
	2.4 Installing Apache Phoenix
	2.5 Installing Phoenix on Hortonworks HDP
	2.5.1 Downloading Hortonworks Sandbox
	2.5.2 Start HBase
	2.5.3 Testing Your Phoenix Installation

	2.6 Installing Phoenix on Cloudera Hadoop
	2.7 Capabilities
	2.8 Hadoop Ecosystem and the Role of Phoenix
	2.9 Brief Description of Phoenix’s Key Features
	2.9.1 Transactions
	2.9.2 User-Defined Functions
	2.9.3 Secondary Indexes
	2.9.4 Skip Scan
	2.9.5 Views
	2.9.6 Multi-Tenancy
	2.9.7 Query Server

	2.10 Summary

	Chapter 3: CRUD with Phoenix
	3.1 Data Types in Phoenix
	3.1.1 Primitive Data Types
	3.1.2 Complex Data Types

	3.2 Data Model
	3.2.1 Steps in data modeling

	3.3 Phoenix Write Path
	3.4 Phoenix Read Path
	3.5 Basic Commands
	3.5.1 HELP
	3.5.2 CREATE
	3.5.3 UPSERT
	3.5.4 SELECT
	3.5.5 ALTER
	3.5.6 DELETE
	3.5.7 DESCRIBE
	3.5.8 LIST

	3.6 Working with Phoenix API
	3.6.1 Environment setup

	3.7 Summary

	Chapter 4: Querying Data
	4.1 Constraints
	4.1.1 NOT NULL

	4.2 Creating Tables
	4.3 Salted Tables
	4.4 Dropping Tables
	4.5 ALTER Tables
	4.5.1 Adding Columns
	4.5.2 Deleting or Replacing Columns
	4.5.3 Renaming a Column

	4.6 Clauses
	4.6.1 LIMIT
	4.6.2 WHERE
	4.6.3 GROUP BY
	4.6.4 HAVING
	4.6.5 ORDER BY

	4.7 Logical Operators
	4.7.1 AND
	4.7.2 OR
	4.7.3 IN
	4.7.4 LIKE
	4.7.5 BETWEEN

	4.8 Summary

	Chapter 5: Advanced Querying
	5.1 Joins
	5.2 Inner Join
	5.3 Outer Join
	5.3.1 Left Outer Join
	5.3.2 Right Outer Join
	5.3.3 Full Outer Join

	5.4 Grouped Joins
	5.5 Hash Join
	5.6 Sort Merge Join
	5.7 Join Query Optimizations
	5.7.1 Optimizing Through Configuration Properties
	5.7.2 Optimizing Query

	5.8 Subqueries
	5.8.1 IN and NOT IN in Subqueries
	5.8.2 EXISTS and NOT EXISTS Clauses
	5.8.3 ANY, SOME, and ALL Operators with Subqueries
	5.8.4 UPSERT Using Subqueries

	5.9 Views
	5.9.1 Creating Views
	5.9.2 Dropping Views

	5.10 Paged Queries
	5.10.1 LIMIT and OFFSET
	5.10.2 Row Value Constructor

	5.11 Summary

	Chapter 6: Transactions
	6.1 SQL Transactions
	6.2 Transaction Properties
	6.2.1 Atomicity
	6.2.2 Consistency
	6.2.3 Isolation
	6.2.4 Durability

	6.3 Transaction Control
	6.3.1 COMMIT
	6.3.2 ROLLBACK
	6.3.3 SAVEPOINT
	6.3.4 SET TRANSACTION

	6.4 Transactions in HBase
	6.4.1 Integrating HBase with Transaction Manager
	6.4.2 Components of Transaction Manager
	6.4.2.1 TransactionAware Client
	6.4.2.2 Transaction Manager
	6.4.2.3 Transaction Processor Coprocessor

	6.4.3 Transaction Lifecycle
	6.4.4 Concurrency Control
	6.4.5 Multiversion Concurrency Control
	6.4.6 Optimistic Concurrency Control

	6.5 Apache Tephra As a Transaction Manager
	6.6 Phoenix Transactions
	6.6.1 Enabling Transactions for Tables
	6.6.2 Committing Transactions

	6.7 Transaction Limitations in Phoenix
	6.8 Summary

	Chapter 7: Advanced Phoenix Concepts
	7.1 Secondary Indexes
	7.1.1 Global Index
	7.1.1.1 Immutable Tables
	7.1.1.1.1 Consistency

	7.1.1.2 Mutable Tables
	7.1.1.2.1 Configuration
	7.1.1.2.2 Consistency

	7.1.2 Local Index
	7.1.3 Covered Index
	7.1.4 Functional Indexes
	7.1.5 Index Consistency

	7.2 User Defined Functions
	7.2.1 Writing Custom User Defined Functions
	7.2.1.1 Configuration
	7.2.1.2 Runtime Environment

	7.3 Phoenix Query Server
	7.3.1 Download
	7.3.2 Installation
	7.3.3 Setup
	7.3.4 Starting PQS
	7.3.5 Client
	7.3.6 Usage
	7.3.7 Additional PQS Features
	7.3.7.1 Gotchas

	7.4 Summary

	Chapter 8: Integrating Phoenix with Other Frameworks
	8.1 Hadoop Ecosystem
	8.2 MapReduce Integration
	8.2.1 Setup

	8.3 Apache Spark Integration
	8.3.1 Setup
	8.3.2 Reading and Writing Using Dataframe

	8.4 Apache Hive Integration
	8.4.1 Setup
	8.4.2 Table Creation

	8.5 Apache Pig Integration
	8.5.1 Setup
	8.5.2 Accessing Data from Phoenix
	8.5.3 Storing Data to Phoenix

	8.6 Apache Flume Integration
	8.6.1 Setup
	8.6.2 Configuration
	8.6.3 Running the Above Setup

	8.7 Summary

	Chapter 9: Tools & Tuning
	9.1 Phoenix Tracing Server
	9.1.1 Trace
	9.1.2 Span
	9.1.3 Span Receivers
	9.1.4 Setup
	9.1.4.1 Client Configuration
	9.1.4.2 Server Configuration

	9.2 Phoenix Bulk Loading
	9.2.1 Setup
	9.2.2 Gotchas

	9.3 Index Load Async
	9.4 Pherf
	9.4.1 Setup to Run the Test
	9.4.2 Gotchas

	9.5 Summary

	Index

