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Introduction

The Apache Hadoop software library has come into it’s own. It is the basis for advanced distributed 
development for a host of companies, government institutions, and scientific research facilities. The 
Hadoop ecosystem now contains dozens of components for everything from search, databases, and data 
warehousing to image processing, deep learning, and natural language processing. With the advent of 
Hadoop 2, different resource managers may be used to provide an even greater level of sophistication and 
control than previously possible. Competitors, replacements, as well as successors and mutations of the 
Hadoop technologies and architectures abound. These include Apache Flink, Apache Spark, and many 
others. The “death of Hadoop” has been announced many times by software experts and commentators.

We have to face the question squarely: is Hadoop dead? It depends on the perceived boundaries of 
Hadoop itself. Do we consider Apache Spark, the in-memory successor to Hadoop’s batch file approach, a 
part of the Hadoop family simply because it also uses HDFS, the Hadoop file system? Many other examples 
of “gray areas” exist in which newer technologies replace or enhance the original “Hadoop classic” features. 
Distributed computing is a moving target and the boundaries of Hadoop and its ecosystem have changed 
remarkably over a few short years. In this book, we attempt to show some of the diverse and dynamic aspects 
of Hadoop and its associated ecosystem, and to try to convince you that, although changing, Hadoop is still 
very much alive, relevant to current software development, and particularly interesting to data analytics 
programmers.



PART I

Concepts

The first part of our book describes the basic concepts, structure, and use of the distributed analytics 
software system, why it is useful, and some of the necessary tools required to use this type of 
distributed system. We will also introduce some of the distributed infrastructure we need to build 
systems, including Apache Hadoop and its ecosystem.
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CHAPTER 1

Overview: Building Data Analytic 
Systems with Hadoop

This book is about designing and implementing software systems that ingest, analyze, and visualize big data 
sets. Throughout the book, we’ll use the acronym BDA or BDAs (big data analytics system) to describe this 
kind of software. Big data itself deserves a word of explanation. As computer programmers and architects, 
we know that what we now call “big data” has been with us for a very long time—decades, in fact, because 
“big data” has always been a relative, multi-dimensional term, a space which is not defined by the mere size 
of the data alone. Complexity, speed, veracity—and of course, size and volume of data—are all dimensions 
of any modern “big data set”.

In this chapter, we discuss what big data analytic systems (BDAs) using Hadoop are, why they are 
important, what data sources, sinks, and repositories may be used, and candidate applications which 
are—and are not—suitable for a distributed system approach using Hadoop. We also briefly discuss some 
alternatives to the Hadoop/Spark paradigm for building this type of system.

There has always been a sense of urgency in software development, and the development of big data 
analytics is no exception. Even in the earliest days of what was to become a burgeoning new industry, big 
data analytics have demanded the ability to process and analyze more and more data at a faster rate, and at 
a deeper level of understanding. When we examine the practical nuts-and-bolts details of software system 
architecting and development, the fundamental requirement to process more and more data in a more 
comprehensive way has always been a key objective in abstract computer science and applied computer 
technology alike. Again, big data applications and systems are no exception to this rule. This can be no 
surprise when we consider how available global data resources have grown explosively over the last few 
years, as shown in Figure 1-1.

http://dx.doi.org/10.1007/978-1-4842-1910-2_1
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As a result of the rapid evolution of software components and inexpensive off-the-shelf processing 
power, combined with the rapidly increasing pace of software development itself, architects and 
programmers desiring to build a BDA for their own application can often feel overwhelmed by the 
technological and strategic choices confronting them in the BDA arena. In this introductory chapter, we 
will take a high-level overview of the BDA landscape and attempt to pin down some of the technological 
questions we need to ask ourselves when building BDAs.

1.1  A Need for Distributed Analytical Systems
We need distributed big data analysis because old-school business analytics are inadequate to the task of 
keeping up with the volume, complexity, variety, and high data processing rates demanded by modern 
analytical applications. The big data analysis situation has changed dramatically in another way besides 
software alone. Hardware costs—for computation and storage alike—have gone down tremendously. Tools 
like Hadoop, which rely on clusters of relatively low-cost machines and disks, make distributed processing 
a day-to-day reality, and, for large-scale data projects, a necessity. There is a lot of support software 
(frameworks, libraries, and toolkits) for doing distributed computing, as well. Indeed, the problem of 
choosing a technology stack has become a serious issue, and careful attention to application requirements 
and available resources is crucial.

Historically, hardware technologies defined the limits of what software components are capable of, 
particularly when it came to data analytics. Old-school data analytics meant doing statistical visualization 
(histograms, pie charts, and tabular reports) on simple file-based data sets or direct connections to a 
relational data store. The computational engine would typically be implemented using batch processing on 
a single server. In the brave new world of distributed computation, the use of a cluster of computers to divide 
and conquer a big data problem has become a standard way of doing computation: this scalability allows us 
to transcend the boundaries of a single computer's capabilities and add as much off-the-shelf hardware as 
we need (or as we can afford). Software tools such as Ambari, Zookeeper, or Curator assist us in managing 
the cluster and providing scalability as well as high availability of clustered resources.

Figure 1-1. Annual data volume statistics [Cisco VNI Global IP Traffic Forecast 2014–2019]
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1.2  The Hadoop Core and a Small Amount of History
Some software ideas have been around for so long now that it’s not even computer history any more—it’s 
computer archaeology. The idea of the “map-reduce” problem-solving method goes back to the second-
oldest programming language, LISP (List Processing) dating back to the 1950s. “Map,” “reduce.” “send,” and 
“lambda” were standard functions within the LISP language itself! A few decades later, what we now know 
as Apache Hadoop, the Java-based open source–distributed processing framework, was not set in motion 
“from scratch.” It evolved from Apache Nutch, an open source web search engine, which in turn was based 
on Apache Lucene. Interestingly, the R statistical library (which we will also be discussing in depth in a later 
chapter) also has LISP as a fundamental influence, and was originally written in the LISP language.

The Hadoop Core component deserves a brief mention before we talk about the Hadoop ecosystem. 
As the name suggests, the Hadoop Core is the essence of the Hadoop framework [figure 1.1]. Support 
components, architectures, and of course the ancillary libraries, problem-solving components, and sub-
frameworks known as the Hadoop ecosystem are all built on top of the Hadoop Core foundation, as shown 
in Figure 1-2. Please note that within the scope of this book, we will not be discussing Hadoop 1, as it has 
been supplanted by the new reimplementation using YARN (Yet Another Resource Negotiator). Please note 
that, in the Hadoop 2 system, MapReduce has not gone away, it has simply been modularized and abstracted 
out into a component which will play well with other data-processing modules.

Figure 1-2. Hadoop 2 Core diagram

1.3  A Survey of the Hadoop Ecosystem
Hadoop and its ecosystem, plus the new frameworks and libraries which have grown up around them, 
continue to be a force to be reckoned with in the world of big data analytics. The remainder of this book 
will assist you in formulating a focused response to your big data analytical challenges, while providing 
a minimum of background and context to help you learn new approaches to big data analytical problem 
solving. Hadoop and its ecosystem are usually divided into four main categories or functional blocks as 
shown in Figure 1-3. You’ll notice that we include a couple of extra blocks to show the need for software 
“glue” components as well as some kind of security functionality. You may also add support libraries and 
frameworks to your BDA system as your individual requirements dictate.
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 ■ Note throughout this book we will keep the emphasis on free, third-party components such as the apache 
components and libraries mentioned earlier. this doesn’t mean you can’t integrate your favorite graph database 
(or relational database, for that matter) as a data source into your Bdas. we will also emphasize the flexibility 
and modularity of the open source components, which allow you to hook data pipeline components together 
with a minimum of additional software “glue.” in our discussion we will use the Spring data component of the 
Spring Framework, as well as apache Camel, to provide the integrating “glue” support to link our components.

Figure 1-3. Hadoop 2 Technology Stack diagram
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1.4  AI Technologies, Cognitive Computing, Deep Learning, 
and Big Data Analysis

Big data analysis is not just simple statistical analysis anymore. As BDAs and their support frameworks have 
evolved, technologies from machine learning (ML) artificial intelligence (AI), image and signal processing, 
and other sophisticated technologies (including the so-called “cognitive computing” technologies) have 
matured and become standard components of the data analyst’s toolkit.

1.5  Natural Language Processing and BDAs
Natural language processing (NLP) components have proven to be useful in a large and varied number of 
domains, from scanning and interpreting receipts and invoices to sophisticated processing of prescription 
data in pharmacies and medical records in hospitals, as well as many other domains in which unstructured 
and semi-structured data abounds. Hadoop is a natural choice when processing this kind of “mix-and-
match” data source, in which bar codes, signatures, images and signals, geospatial data (GPS locations) and 
other data types might be thrown into the mix. Hadoop is also a very powerful means of doing large-scale 
document analyses of all kinds.

We will discuss the so-called “semantic web” technologies, such as taxonomies and ontologies, rule-
based control, and NLP components in a separate chapter. For now, suffice it to say that NLP has moved 
out of the research domain and into the sphere of practical app development, with a variety of toolkits and 
libraries to choose from. Some of the NLP toolkits we’ll be discussing in this book are the Python-based 
Natural Language Toolkit (NLTK), Stanford NLP, and Digital Pebble’s Behemoth, an open source platform for 
large-scale document analysis, based on Apache Hadoop.1

1.6  SQL and NoSQL Querying
Data is not useful unless it is queried. The process of querying a data set—whether it be a key-value pair 
collection, a relational database result set from Oracle or MySQL, or a representation of vertices and edges 
such as that found in a graph database like Neo4j or Apache Giraph—requires us to filter, sort, group, 
organize, compare, partition, and evaluate our data. This has led to the development of query languages 
such as SQL, as well as all the mutations and variations of query languages associated with “NoSQL” 
components and databases such as HBase, Cassandra, MongoDB, CouchBase, and many others. In this 
book, we will concentrate on using read-eval-print loops (REPLs), interactive shells (such as IPython) 
and other interactive tools to express our queries, and we will try to relate our queries to well-known SQL 
concepts as much as possible, regardless of what software component they are associated with. For example, 
some graph databases such as Neo4j (which we will discuss in detail in a later chapter) have their own  
SQL-like query languages. We will try and stick to the SQL-like query tradition as much as possible 
throughout the book, but will point out some interesting alternatives to the SQL paradigm as we go.

1One of the best introductions to the “semantic web” approach is Dean Allemang and Jim Hendler’s “Semantic Web for 
the Working Ontologist: Effective Modeling in RDFS and OWL”, 2008, Morgan-Kaufmann/Elsevier Publishing, 
Burlington, MA. ISBN 978-0-12-373556-0.
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1.7  The Necessary Math
In this book, we will keep the mathematics to a minimum. Sometimes, though, a mathematical equation 
becomes more than a necessary evil. Sometimes the best way to understand your problem and implement 
your solution is the mathematical route—and, again, in some situations the “necessary math” becomes the 
key ingredient for solving the puzzle. Data models, neural nets, single or multiple classifiers, and Bayesian 
graph techniques demand at least some understanding of the underlying dynamics of these systems. And, 
for programmers and architects, the necessary math can almost always be converted into useful algorithms, 
and from there to useful implementations.

1.8  A Cyclic Process for Designing and Building BDA 
Systems

There is a lot of good news when it comes to building BDAs these days. The advent of Apache Spark with 
its in-memory model of computation is one of the major positives, but there are several other reasons why 
building BDAs has never been easier. Some of these reasons include:

•	 a wealth of frameworks and IDEs to aid with development;

•	 mature and well-tested components to assist building BDAs, and corporation-
supported BDA products if you need them. Framework maturity (such as the Spring 
Framework, Spring Data subframework, Apache Camel, and many others) has 
helped distributed system development by providing reliable core infrastructure to 
build upon.

•	 a vital online and in-person BDA development community with innumerable 
developer forums and meet-ups. Chances are if you have encountered an 
architectural or technical problem in regard to BDA design and development, 
someone in the user community can offer you useful advice.

Throughout this book we will be using the following nine-step process to specify and create our BDA 
example systems. This process is only suggestive. You can use the process listed below as-is, make your own 
modifications to it, add or subtract structure or steps, or come up with your own development process. It’s 
up to you. The following steps have been found to be especially useful for planning and organizing BDA 
projects and some of the questions that arise as we develop and build them.

You might notice that problem and requirement definition, implementation, testing, and 
documentation are merged into one overall process. The process described here is ideally suited for a rapid-
iteration development process where the requirements and technologies used are relatively constant over a 
development cycle.

The basic steps when defining and building a BDA system are as follows. The overall cycle is shown in 
Figure 1.4.
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 1. Identify requirements for the BDA system. The initial phase of development 
requires generating an outline of the technologies, resources, techniques and 
strategies, and other components necessary to achieve the objectives. The initial 
set of objectives (subject to change of course) need to be pinned down, ordered, 
and well-defined. It’s understood that the objectives and other requirements 
are subject to change as more is learned about the project’s needs. BDA systems 
have special requirements (which might include what’s in your Hadoop cluster, 
special data sources, user interface, reporting, and dashboard requirements). 
Make a list of data source types, data sink types, necessary parsing, 
transformation, validation, and data security concerns. Being able to adapt 
your requirements to the plastic and changeable nature of BDA technologies 
will insure you can modify your system in a modular, organized way. Identify 
computations and processes in the components, determine whether batch or 
stream processing (or both) is required, and draw a flowchart of the computation 
engine. This will help define and understand the “business logic” of the system.

Figure 1-4. A cyclic process for designing and building BDAs
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 2. Define the initial technology stack. The initial technology stack will include a 
Hadoop Core as well as appropriate ecosystem components appropriate for the 
requirements you defined in the last step. You may include Apache Spark if you 
require streaming support, or you’re using one of the machine learning libraries 
based on Spark we discuss later in the book. Keep in mind the programming 
languages you will use. If you are using Hadoop, the Java language will be part 
of the stack. If you are using Apache Spark, the Scala language will also be used. 
Python has a number of very interesting special applications, as we will discuss 
in a later chapter. Other language bindings may be used if they are part of the 
requirements.

 3. Define data sources, input and output data formats, and data cleansing 
processes. In the requirement-gathering phase (step 0), you made an initial 
list of the data source/sink types and made a top-level flowchart to help define 
your data pipeline. A lot of exotic data sources may be used in a BDA system, 
including images, geospatial locations, timestamps, log files, and many others, 
so keep a current list of data source (and data sink!) types handy as you do your 
initial design work.

 4. Define, gather, and organize initial data sets. You may have initial data for your 
project, test and training data (more about training data later in the book), legacy 
data from previous systems, or no data at all. Think about the minimum amount 
of data sets (number, kind, and volume) and make a plan to procure or generate 
the data you need. Please note that as you add new code, new data sets may 
be required in order to perform adequate testing. The initial data sets should 
exercise each module of the data pipeline, assuring that end-to-end processing is 
performed properly.

 5. Define the computations to be performed. Business logic in its conceptual 
form comes from the requirements phase, but what this logic is and how it is 
implemented will change over time. In this phase, define inputs, outputs, rules, 
and transformations to be performed on your data elements. These definitions 
get translated into implementation of the computation engine in step 6.

 6. Preprocess data sets for use by the computation engine. Sometimes the data 
sets need preprocessing: validation, security checks, cleansing, conversion to a 
more appropriate format for processing, and several other steps. Have a checklist 
of preprocessing objectives to be met, and continue to pay attention to these 
issues throughout the development cycle, and make necessary modifications as 
the development progresses.

 7. Define the computation engine steps; define the result formats. The business 
logic, flow, accuracy of results, algorithm and implementation correctness, and 
efficiency of the computation engine will always need to be questioned and improved.

 8. Place filtered results in results repositories of data sinks. Data sinks are the 
data repositories that hold the final output of our data pipeline. There may be 
several steps of filtration or transformation before your output data is ready to 
be reported or displayed. The final results of your analysis can be stored in files, 
databases, temporary repositories, reports, or whatever the requirements dictate. 
Keep in mind user actions from the UI or dashboard may influence the format, 
volume, and presentation of the outputs. Some of these interactive results 
may need to be persisted back to a data store. Organize a list of requirements 
specifically for data output, reporting, presentation, and persistence.
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 9. Define and build output reports, dashboards, and other output displays and 
controls. The output displays and reports, which are generated, provide clarity 
on the results of all your analytic computations. This component of a BDA system 
is typically written, at least in part, in JavaScript and may use sophisticated data 
visualization libraries to assist different kinds of dashboards, reports, and other 
output displays.

 10. Document, test, refine, and repeat. If necessary, we can go through the steps 
again after refining the requirements, stack, algorithms, data sets, and the rest. 
Documentation initially consists of the notes you made throughout the last seven 
steps, but needs to be refined and rewritten as the project progresses. Tests need 
to be created, refined, and improved throughout each cycle. Incidentally, each 
development cycle can be considered a version, iteration, or however you like to 
organize your program cycles.

There you have it. A systematic use of this iterative process will enable you to design and build BDA 
systems comparable to the ones described in this book.

1.9  How The Hadoop Ecosystem Implements Big  
Data Analysis

The Hadoop ecosystem implements big data analysis by linking together all the necessary ingredients for 
analysis (data sources, transformations, infrastructure, persistence, and visualization) in a data pipeline 
architecture while allowing these components to operate in a distributed way. Hadoop Core (or in certain 
cases Apache Spark or even hybrid systems using Hadoop and Storm together) supplies the distributed 
system infrastructure and cluster (node) coordination via components such as ZooKeeper, Curator, and 
Ambari. On top of Hadoop Core, the ecosystem provides sophisticated libraries for analysis, visualization, 
persistence, and reporting.

The Hadoop ecosystem is more than tacked-on libraries to the Hadoop Core functionality. The 
ecosystem provides integrated, seamless components with the Hadoop Core specifically designed for 
solving specific distributed problems. For example, Apache Mahout provides a toolkit of distributed 
machine learning algorithms.

Having some well-thought-out APIs makes it easy to link up our data sources to our Hadoop engine and 
other computational elements. With the “glue” capability of Apache Camel, Spring Framework, Spring Data, 
and Apache Tika, we will be able to link up all our components into a useful dataflow engine.

1.10  The Idea of “Images as Big Data” (IABD)
Images—pictures and signals of all kinds in fact—are among the most widespread, useful, and complex 
sources of “big data type” information.

Images are sometimes thought of as two-dimensional arrays of atomic units called pixels and, in fact 
(with some associated metadata), this is usually how images are represented in computer programming 
languages such as Java, and in associated image processing libraries such as Java Advanced Imaging 
(JAI), OpenCV and BoofCV, among others. However, biological systems “pull things out” of these “two-
dimensional arrays”: lines and shapes, color, metadata and context, edges, curves, and the relationships 
between all these. It soon becomes apparent that images (and, incidentally, related data such as time series 
and “signals” from sensors such as microphones or range-finders) are one of the best example types of big 
data, and one might say that distributed big data analysis of images is inspired by biological systems. After 
all, many of us perform very sophisticated three-dimensional stereo vision processing as a distributed 
system every time we drive an automobile.
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The good news about including imagery as a big data source is that it’s not at all as difficult as it once 
was. Sophisticated libraries are available to interface with Hadoop and other necessary components, such 
as graph databases, or a messaging component such as Apache Kafka. Low-level libraries such as OpenCV 
or BoofCV can provide image processing primitives, if necessary. Writing code is compact and easy. For 
example, we can write a simple, scrollable image viewer with the following Java class (shown in Listing 1-1).

Listing 1-1. Hello image world: Java code for an image visualizer stub as shown in Figure 1-5

package com.kildane.iabt;
import java.awt.image.RenderedImage;
import java.io.File;
import java.io.IOException;

import javax.media.jai.JAI;
import javax.imageio.ImageIO;
import javax.media.jai.PlanarImage;
import javax.media.jai.widget.ScrollingImagePanel;
import javax.swing.JFrame;

/**
 * Hello IABT world!
 * The worlds most powerful image processing toolkit (for its size)?
 */
public class App 
{
    public static void main(String[] args)
    {
        JAI jai = new JAI();
        RenderedImage image = null;
                try {
                        image =  ImageIO.read(new File("/Users/kerryk/Documents/SA1_057_62_

hr4.png"));
                } catch (IOException e) {
                        e.printStackTrace();
                }
                if (image == null){ System.out.println("Sorry, the image was null"); return; }
                JFrame f = new JFrame("Image Processing Demo for Pro Hadoop Data Analytics");
        ScrollingImagePanel panel = new ScrollingImagePanel(image, 512, 512);
        f.add(panel);
        f.setSize(512, 512);
        f.setVisible(true);
        System.out.println("Hello IABT World, version of JAI is: " + JAI.getBuildVersion());
    }
}
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A simple image viewer is just the beginning of an image BDA system, however. There is low-level image 
processing, feature extraction, transformation into an appropriate data representation for analysis, and 
finally loading out the results to reports, dashboards, or customized result displays.

We will explore the images as big data (IABD) concept more thoroughly in Chapter 14.

1.10.1  Programming Languages Used
First, a word about programming languages. While Hadoop and its ecosystem were originally written in Java, 
modern Hadoop subsystems have language bindings for almost every conceivable language, including Scala 
and Python. This makes it very easy to build the kind of polyglot systems necessary to exploit the useful 
features of a variety of programming languages, all within one application.

1.10.2  Polyglot Components of the Hadoop Ecosystem
In the modern big data analytical arena, one-language systems are few and far between. While many of 
the older components and libraries we discuss in this book were primarily written in one programming 
language (for example, Hadoop itself was written in Java while Apache Spark was primarily written in Scala), 
BDAs as a rule are a composite of different components, sometimes using Java, Scala, Python, and JavaScript 
within the same application. These multilingual, modular systems are usually known as polyglot systems.

Figure 1-5. Sophisticated third-party libraries make it easy to build image visualization components in just a 
few lines of code

http://dx.doi.org/10.1007/978-1-4842-1910-2_14
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Modern programmers are used to polyglot systems. Some of the need for a multilingual approach is 
out of necessity: writing a dashboard for the Internet is appropriate for a language such as JavaScript, for 
example, although one could write a dashboard using Java Swing in stand-alone or even web mode, under 
duress. It’s all a matter of what is most effective and efficient for the application at hand. In this book, we 
will embrace the polyglot philosophy, essentially using Java for Hadoop-based components, Scala for 
Spark-based components, Python and scripting as needed, and JavaScript-based toolkits for the front end, 
dashboards, and miscellaneous graphics and plotting examples.

1.10.3  Hadoop Ecosystem Structure
While the Hadoop Core provides the bedrock that builds the distributed system functionality, the attached 
libraries and frameworks known as the “Hadoop ecosystem” provide the useful connections to APIs and 
functionalities which solve application problems and build distributed systems.

We could visualize the Hadoop ecosystem as a kind of “solar system,” the individual components of 
the ecosystem dependent upon the central Hadoop components, with the Hadoop Core at the center “sun” 
position, as shown in Figure 1-6. Besides providing management and bookkeeping for the Hadoop cluster 
itself (for example, Zookeeper and Curator), standard components such as Hive and Pig provide data 
warehousing, and other ancillary libraries such as Mahout provide standard machine learning algorithm 
support.

Figure 1-6. A simplified “solar system” graph of the Hadoop ecosystem

www.allitebooks.com

http://www.allitebooks.org
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Apache ZooKeeper (zookeeper.apache.org) is a distributed coordination service for use with a variety 
of Hadoop- and Spark-based systems. It features a naming service, group membership, locks and carries 
for distributed synchronization, as well as a highly reliable and centralized registry. ZooKeeper has a 
hierarchical namespace data model consisting of “znodes.” Apache ZooKeeper is open source and is 
supported by an interesting ancillary component called Apache Curator, a client wrapper for ZooKeeper 
which is also a rich framework to support ZooKeeper-centric components. We will meet ZooKeeper and 
Curator again when setting up a configuration to run the Kafka messaging system.

1.11  A Note about “Software Glue” and Frameworks
“Glue” is necessary for any construction project, and software projects are no exception. In fact, some 
software components, such as the natural language processing (NLP) component Digital Pebble Behemoth 
(which we will be discussing in detail later) refer to themselves as “glueware.” Fortunately, there are also 
some general purpose integration libraries and packages that are eminently suitable for building BDAs, as 
shown in Table 1-1.

Table 1-1. Database types and some examples from industry

Name Location Description

Spring Framework http://projects.spring.io/
spring-framework/

a Java-based framework for application 
development, has library support for virtually 
any part of the application development 
requirements

Apache Tika tika.apache.org detects and extracts metadata from a wide 
variety of file types

Apache Camel Camel.apache.org a “glueware” component which implements 
enterprise integration patterns (EIPs)

Spring Data http://projects.spring.io/
spring-data/

data access toolkit, tightly coupled to the rest of 
Spring Framework

Behemoth https://github.com/
DigitalPebble/behemoth

large-scale document analysis “glueware” 

To use Apache Camel effectively, it's helpful to know about enterprise integration patterns (EIPs). There 
are several good books about EIPs and they are especially important for using Apache Camel.2

2The go-to book on Enterprise Integration Patterns (EIPs) is Gregor Hohpe and Bobby Woolf’s Enterprise Integration 
Patterns: Designing, Building, and Deploying Messaging Solutions, 2004, Pearson Education Inc. Boston, MA. ISBN 
0-321-20068-3.

http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/
https://github.com/DigitalPebble/behemoth
https://github.com/DigitalPebble/behemoth
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1.12  Apache Lucene, Solr, and All That: Open Source 
Search Components

Search components are as important to distributed computing, and especially big data analysis, as the query 
engine itself. In fact, sometimes a search engine such as Apache Lucene or Apache Solr is a key part of the 
query engine implementation itself. We can see the interactions between some of these components in 
Figure 1-7. It turns out that Lucene’s Solr components have an ecosystem of their own, albeit not as large in 
size as the Hadoop ecosystem. Nevertheless, the Lucene ecosystem contains some very relevant software 
resources for big data analysis. Besides Lucene and Solr, the Lucene ecosystem includes Nutch, an extensible 
and highly scalable web crawler (nutch.apache.org). The Lily project from NGDATA is a very interesting 
software framework we can use to leverage HBase, Zookeeper, Solr, and Hadoop seamlessly. Lily clients can 
use protocols based on Avro to provide connectivity to Lily. Recall that Apache Avro (avro.apache.org) is a 
data serialization system which provides a compact and fast binary data format with simple integration with 
dynamic languages.

Figure 1-7. A relationship diagram between Hadoop and other Apache search-related components

1.13  Architectures for Building Big Data Analytic Systems
Part of the problem when building BDAs is that software development is not really constructing a building. 
It’s just a metaphor, albeit a useful one. When we design a piece of software, we are already using a lot of 
metaphors and analogies to think about what we’re doing. We call it software architecture because it’s an 
analogous process to building a house, and some of the basic principles apply to designing a shopping 
center as designing a software system.

We want to learn from the history of our technology and not re-invent the wheel or commit the same 
mistakes as our predecessors. As a result, we have “best practices,” software “patterns” and “anti-patterns,” 
methodologies such as Agile or iterative development, and a whole palette of other techniques and 
strategies. These resources help us achieve quality, reduce cost, and provide effective and manageable 
solutions for our software requirements.
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The “software architecture” metaphor breaks down because of certain realities about software 
development. If you are building a luxury hotel and you suddenly decide you want to add personal spa 
rooms or a fireplace to each suite, it’s a problem. It’s difficult to redesign floor plans, or what brand of carpet 
to use. There’s a heavy penalty for changing your mind. Occasionally we must break out of the building 
metaphor and take a look at what makes software architecture fundamentally different from its metaphor.

Most of this difference has to do with the dynamic and changeable nature of software itself. 
Requirements change, data changes, software technologies evolve rapidly. Clients change their minds 
about what they need and how they need it. Experienced software engineers take this plastic, pliable nature 
of software for granted, and these realities—the fluid nature of software and of data—impact everything 
from toolkits to methodologies, particularly the Agile-style methodologies, which assume rapidly changing 
requirements almost as a matter of course.

These abstract ideas influence our practical software architecture choices. In a nutshell, when designing 
big data analytical systems, standard architectural principles which have stood the test of time still apply. We 
can use organizational principles common to any standard Java programming project, for example. We can 
use enterprise integration patterns (EIPs) to help organize and integrate disparate components throughout 
our project. And we can continue to use traditional n-tier, client-server, or peer-to-peer principles to 
organize our systems, if we wish to do so.

As architects, we must also be aware of how distributed systems in general—and Hadoop in particular—
change the equation of practical system building. The architect must take into consideration the patterns 
that apply specifically to Hadoop technologies: for example, mapReduce patterns and anti-patterns. 
Knowledge is key. So in the next section, we’ll tell you what you need to know in order to build effective 
Hadoop BDAs.

1.14  What You Need to Know
When we wrote this book we had to make some assumptions about you, the reader. We presumed a lot: 
that you are an experienced programmer and/or architect, that you already know Java, that you know some 
Hadoop and are acquainted with the Hadoop 2 Core system (including YARN), the Hadoop ecosystem, 
and that you are used to the basic mechanics of building a Java-style application from scratch. This means 
that you are familiar with an IDE (such as Eclipse, which we talk about briefly below), that you know about 
build tools such as Ant and Maven, and that you have a big data analytics problem to solve. We presume 
you are pretty well-acquainted with the technical issues you want to solve: these include selecting your 
programming languages, your technology stack, and that you know your data sources, data formats, and 
data sinks. You may already be familiar with Python and Scala programming languages as well, but we 
include a quick refresher of these languages—and some thoughts about what they are particularly useful 
for—in the next chapter. The Hadoop ecosystem has a lot of components and only some of them are relevant 
to what we’ll be discussing, so in Table 1-3 we describe briefly some of the Hadoop ecosystem components 
we will be using.

It’s not just your programming prowess we’re making assumptions about. We are also presuming 
that you are a strategic thinker: that you understand that while software technologies change, evolve, and 
mutate, sound strategy and methodology (with computer science as well as with any other kind of science) 
allows you to adapt to new technologies and new problem areas alike. As a consequence of being a strategic 
thinker, you are interested in data formats.

While data formats are certainly not the most glamorous aspect of big data science, they are one of 
the most relevant issues to the architect and software engineer, because data sources and their formats 
dictate, to a certain extent, one very important part of any data pipeline: that initial software component 
or preprocessor that cleans, verifies, validates, insures security, and ingests data from the data source 
in anticipation of being processed by the computation engine stage of the pipeline. Hadoop is a critical 
component of the big data analytics discussed in this book, and to benefit the most from this book, you 
should have a firm understanding of Hadoop Core and the basic components of the Hadoop ecosystem.  
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This includes the “classic ecosystem” components such as Hive, Pig, and HBase, as well as glue components 
such as Apache Camel, Spring Framework, the Spring Data sub-framework, and Apache Kafka messaging 
system. If you are interested in using relational data sources, a knowledge of JDBC and Spring Framework 
JDBC as practiced in standard Java programming will be helpful. JDBC has made a comeback in components 
such as Apache Phoenix (phoenix.apache.org), an interesting combination of relational and Hadoop-based 
technologies. Phoenix provides low-latency queries over HBase data, using standard SQL syntax in the 
queries. Phoenix is available as a client-embedded JDBC driver, so an HBase cluster may be accessed with 
a single line of Java code. Apache Phoenix also provides support for schema definitions, transactions, and 
metadata.

Table 1-3. A sampling of BDA components in and used with the Hadoop Ecosystem

Name Vendor Location Description

Mahout Apache mahout.apache.org machine learning for Hadoop

MLlib Apache Spark.apache.org/mllib machine learning for Apache Spark

R https://www.r-project.org statistical, general purpose

Weka University of Waikato, NZ http://www.cs.waikato.
ac.nz/ml/weka/

statistical analysis and data mining 
(Java based)

H2O H20 H2o.ai JVM-based machine learning

scikit_learn scikit-learn.org machine learning in Python

Spark Apache spark.apache.org open source cluster-computing 
framework

Kafka Apache kafka.apache.org a distributed messaging system

Table 1-2. Database types and some examples from industry

Database Type Example Location Description

Relational mysql mahout.apache.org This type of database has been 
around long enough to acquire 
sophisticated support frameworks 
and systems.

Document Apache Jackrabbit jackrabbit.apache.org a content repository in Java

Graph Neo4j Neo4j.com a multipurpose graph database

File-based Lucene Lucene.apache.org statistical, general purpose

Hybrid Solr+Camel Lucene.apache.org/
solr ,
Camel.apache.org

Lucene, Solr, and glue together as one

 ■ Note One of the best references for setting up and effectively using hadoop is the book Pro Apache 
Hadoop, second edition, by Jason venner and Sameer wadkhar, available from apress publishing.

Some of the toolkits we will discuss are briefly summarized in Table 1-3.

https://www.r-project.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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1.15  Data Visualization and Reporting
Data visualization and reporting may be the last step in a data pipeline architecture, but it is certainly as 
important as the other stages. Data visualization allows the interactive viewing and manipulation of data 
by the end user of the system. It may be web-based, using RESTful APIs and browsers, mobile devices, or 
standalone applications designed to run on high-powered graphics displays. Some of the standard libraries 
for data visualization are shown in Table 1-4.

Table 1-4. A sampling of front-end components for data visualization

Name Location Description

D3 D3.org Javascript data visualization

Ggplot2 http://ggplot2.org data visualization in Python

matplotlib http://matplotlib.org Python library for basic plotting

Three.js http://threejs.org JavaScript library for three-dimensional graphs and plots

Angular JS http://angularjs.org toolkit allowing the creation of modular data visualization 
components using JavaScript. It’s especially interesting because 
AngularJS integrates well with Spring Framework and other 
pipeline components. 

It’s pretty straightforward to create a dashboard or front-end user interface using these libraries or 
similar ones. Most of the advanced JavaScript libraries contain efficient APIs to connect with databases, 
RESTful web services, or Java/Scala/Python applications.
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Big data analysis with Hadoop is something special. For the Hadoop system architect, Hadoop BDA 
provides and allows the leverage of standard, mainstream architectural patterns, anti-patterns, and 
strategies. For example, BDAs can be developed using the standard ETL (extract-transform-load) concepts, 
as well as the architectural principles for developing analytical systems “within the cloud.” Standard system 
modeling techniques still apply, including the “application tier” approach to design.

One example of an application tier design might contain a “service tier” (which provides the 
“computational engine” or “business logic” of the application) and a data tier (which stores and regulates 
input and output data, as well as data sources and sinks and an output tier accessed by the system user, 
which provides content to output devices). This is usually referred to as a “web tier” when content is 
supplied to a web browser.

Figure 1-8. Simple data visualization displayed on a world map, using the DevExpress toolkit
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ISSUES OF THE PLATFORM

in this book, we express a lot of our examples in a mac OS X environment. this is by design. the main 
reason we use the mac environment is that it seemed the best compromise between a linux/unix 
syntax (which, after all, is where hadoop lives and breathes) and a development environment on a more 
modest scale, where a developer could try out some of the ideas shown here without the need for a 
large hadoop cluster or even more than a single laptop. this doesn’t mean you cannot run hadoop on a 
windows platform in Cygwin or a similar environment if you wish to do so.

Figure 1-9. A simple data pipeline

a simple data pipeline is shown in Figure 1-9. in a way, this simple pipeline is the “hello world” program 
when thinking about Bdas. it corresponds to the kind of straightforward mainstream etl (extract-
transform-load) process familiar to all data analysts. Successive stages of the pipline transform the 
previous output contents until the data is emitted to the final data sink or result repository.

1.15.1  Using the Eclipse IDE as a Development Environment
The Eclipse IDE has been around for a long while, and the debate over using Eclipse for modern application 
development rages on in most development centers that use Java or Scala. There are now many alternatives 
to Eclipse as an IDE, and you may choose any of these to try out and extend the example systems developed 
in this book. Or you may even use a regular text editor and run the systems from the command line if you 
wish, as long as you have the most up-to-date version of Apache Maven around. Appendix A shows you 
how to set up and run the example systems for a variety of IDEs and platforms, including a modern Eclipse 
environment. Incidentally, Maven is a very effective tool for organizing the modular Java-based components 
(as well as components implemented in other languages such as Scala or JavaScript) which make up any 
BDA, and is integrated directly into the Eclipse IDE. Maven is equally effective on the command line to 
build, test, and run BDAs.

We have found the Eclipse IDE to be particularly valuable when developing some of the hybrid 
application examples discussed in this book, but this can be a matter of individual taste. Please feel free to 
import the examples into your IDE of choice.
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DATA SOURCES AND APPLICATION DEVELOPMENT

in mainstream application development—most of the time—we only encounter a few basic types of 
data sources: relational, various file formats (including raw unstructured text), comma-separated values, 
or even images (perhaps streamed data or even something more exotic like the export from a graph 
database such as neo4j). in the world of big data analysis, signals, images, and non-structured data 
of many kinds may be used. these may include spatial or gpS information, timestamps from sensors, 
and a variety of other data types, metadata, and data formats. in this book, particularly in the examples, 
we will expose you to a wide variety of common as well as exotic data formats, and provide hints on 
how to do standard etl operations on the data. when appropriate, we will discuss data validation, 
compression, and conversion from one data format into another, as needed.

1.15.2  What This Book Is Not 
Now that we have given some attention to what this book is about, we must now examine what it is not.

This book is not an introduction to Apache Hadoop, big data analytical components, or Apache Spark. 
There are many excellent books already in existence which describe the features and mechanics of “vanilla 
Hadoop” (directly available from hadoop.apache.org) and its ecosystem, as well as the more recent Apache 
Spark technologies, which are a replacement for the original map-reduce component of Hadoop, and allow 
for both batch and in-memory processing.

Figure 1-10. A useful IDE for development : Eclipse IDE with Maven and Scala built in
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Throughout the book, we will describe useful Hadoop ecosystem components, particularly those which 
are relevant to the example systems we will be building throughout the rest of this book. These components 
are building blocks for our BDAs or Big Data Analysis components, so the book will not be discussing the 
component functionality in depth. In the case of standard Hadoop-compatible components like Apache 
Lucene, Solr, or Apache Camel or Spring Framework, books and Internet tutorials abound.

We will also not be discussing methodologies (such as iterative or Agile methodologies) in depth, 
although these are very important aspects of building big data analytical systems. We hope that the systems 
we are discussing here will be useful to you regardless of what methodology style you choose.

HOW TO BUILD THE BDA EVALUATION SYSTEM

in this section we give a thumbnail sketch of how to build the Bda evaluation system. when completed 
successfully, this will give you everything you need to evaluate code and examples discussed in the 
rest of the book. the individual components have complete installation directions at their respective 
web sites.

1. Set up your basic development environment if you have not already done so. this 
includes Java 8.0, maven, and the eclipse ide. For the latest installation instructions 
for Java, visit oracle.com. don’t forget to set the appropriate environment variables 
accordingly, such as Java_hOme. download and install maven (maven.apache.
org), and set the m2_hOme environment variable. to make sure maven has been 
installed correctly, type mvn –version on the command line. also type ‘which mvn’ 
on the command line to insure the maven executable is where you think it is.

2. insure that mySQl is installed. download the appropriate installation package from 
www.mysql.com/downloads. use the sample schema and data included with this 
book to test the functionality. you should be able to run ‘mysql’ and ‘mysqld’.

3. install the hadoop Core system. in the examples in this book we use hadoop 
version 2.7.1. if you are on the mac you can use homeBrew to install hadoop, or 
download from the web site and install according to directions. Set the hadOOp_
hOme environment variable in your.bash_profile file.

4. insure that apache Spark is installed. experiment with a single-machine cluster by 
following the instructions at http://spark.apache.org/docs/latest/spark-
standalone.html#installing-spark-standalone-to-a-cluster. Spark is a key 
component for the evaluation system. make sure the SparK_hOme environment 
variable is set in your.bash_profile file.

http://www.mysql.com/downloads
http://spark.apache.org/docs/latest/spark-standalone.html#installing-spark-standalone-to-a-cluster
http://spark.apache.org/docs/latest/spark-standalone.html#installing-spark-standalone-to-a-cluster
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To make sure the Spark system is executing correctly, run the program from the 
SPARK_HOME directory.

./bin/run-example SparkPi 10 

You will see a result similar to the picture in Figure 1-12.

Figure 1-11. Successful installation and run of Apache Spark results in a status page at localhost:8080
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5. install apache mahout (mahout.apache.org). this is a very useful distributed 
analytics toolkit. Set appropriate environment variables including mahOut_hOme. 
run the mahout test suite to insure it is installed correctly.

6. install apache Kafka (kafka.apache.org). this messaging system will figure 
prominently in our examples. Chapter 3 lists all the steps necessary to set up and 
thoroughly exercise the Kafka system.

7. install your favorite noSQl and graph databases. these might include 
Cassandra (Cassandra.apache.org), mongodB (https://www.mongodb.org/
downloads#production), etc. if you are interested in the graph analytics part of 
this book, neo4j (http://neo4j.com) is a very popular graph database. Our graph 
analytics examples are all based on neo4j. in this book, we use Cassandra as our 
noSQl database of choice.

Figure 1-12. To test your Spark installation, run the Spark Pi estimator program. A console view of some 
expected results.

http://dx.doi.org/10.1007/978-1-4842-1910-2_3
https://www.mongodb.org/downloads#production
https://www.mongodb.org/downloads#production
http://neo4j.com/
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8. install apache Solr (lucene.apache.org/solr). download the Solr server zip file, 
unzip, and follow additional directions from the readme file. this configurable 
Java-based search component can be seamlessly coupled with hadoop to provide 
sophisticated, scalable, and customizable search capabilities, leveraging hadoop 
and Spark infrastructure.

9. install the Scala programming languages and akka. make sure that you have a 
support Scala plug-in in your eclipse ide. make sure Scala and the Scala compiler 
are installed correctly by typing ‘scalac –version’ and ‘which scala’ on the 
command line.

10. install python and ipython. On macOS systems, python is already available. you may 
wish to install the anaconda system, which provides python, interactive python, and 
many useful libraries all as one package.

11. install h20 (h2o.ai) and Sparkling water. Once apache Spark and akka are installed, 
we can install h20 and Sparkling water components.

12. install appropriate “glue” components. Spring Framework, Spring data, apache Camel, 
and apache tika should be installed. there are already appropriate dependencies for these 
components in the maven pom.xml shown in appendix a. you may wish to install some 
ancillary components such as Spatialhadoop, distributed weka for hadoop, and others.

When you have installed all these components, congratulations. You now have a basic software 
environment in which you can thoroughly investigate big data analytics systems (BDAs). Using this basic 
system as a starting point, we are ready to explore the individual modules as well as to write some extensions 
to the basic BDA functionality provided.

1.16  Summary
In this introductory chapter we looked at the changing landscape of big data, methods to ingest, analyze, 
store, visualize, and understand the ever-increasing ocean of big data in which we find ourselves. We learned 
that big data sources are varied and numerous, and that these big data sources pose new and challenging 
questions for the aspiring big data analyst. One of the major challenges facing the big data analyst today is 
making a selection between all the libraries and toolkits, technology stacks, and methodologies available for 
big data analytics.

We also took a brief overview of the Hadoop framework, both core components and associated 
ecosystem components. In spite of this necessarily brief tour of what Hadoop and its ecosystem can do for 
us as data analysts, we then explored the architectures and strategies that are available to us, with a mind 
towards designing and implementing effective Hadoop-based analytical systems, or BDAs. These systems 
will have the scalability and flexibility to solve a wide spectrum of analytical challenges.

The data analyst has a lot of choices when it comes to selecting big data toolkits, and being able to 
navigate through the bewildering list of features in order to come up with an effective overall technology 
stack is key to successful development and deployment. We keep it simple (as simple as possible, that 
is) by focusing on components which integrate relatively seamlessly with the Hadoop Core and its 
ecosystem.
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Throughout this book we will attempt to prove to you that the design and implementation steps 
outlined above can result in workable data pipeline architectures and systems suitable for a wide range of 
domains and problem areas. Because of the flexibility of the systems discussed, we will be able to “swap out” 
modular components as technology changes. We might find that one machine learning or image processing 
library is more suitable to use, for example, and we might wish to replace the currently existing application 
library with one of these. Having a modular design in the first place allows us the freedom of swapping out 
components easily. We’ll see this principle in action when we develop the “image as big data” application 
example in a later chapter.

In the next chapter, we will take a quick overview and refresher of two of the most popular languages 
for big data analytics—Scala and Python—and explore application examples where these two languages are 
particularly useful.
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CHAPTER 2

A Scala and Python Refresher

This chapter contains a quick review of the Scala and Python programming languages used throughout the 
book. The material discussed here is primarily aimed at Java/C++ programmers who need a quick review of 
Scala and Python.

 ■ Note A painless way to install Python is to install the Anaconda Python distribution, available at www.
continuum.io/downloads. Anaconda provides many additional Python libraries for math and analytics, 
including support for Hadoop, Weka, R, and many others.

2.1  Motivation: Selecting the Right Language(s) Defines 
the Application

Selecting the right programming languages for the right tasks defines the application. In many cases, the 
choices may seem natural: Java for Hadoop-centric components, Scala for Spark-centric ones. Using Java as 
the main language of a BDA allows access to Spring Framework, Apache Tika, and Apache Camel to provide 
“glueware” components. However, strategically (and depending upon the nature of your BDA application) 
you may need to include other languages and other language bindings. This in turn influences the overall 
technology stack and the nature of the development process itself. For example, a mobile application 
might require interfacing with low-level code for the mobile device, possibly including the Erlang language,  
C++ or C, or others.

Another area in which careful programming language choice is key is in the front-end components 
for displaying and reporting BDA results. Front-end dashboarding and reporting modules may 
consist only of JavaScript libraries of varying complexity, if they are web-based. Stand-alone scientific 
applications, however, may be another story. These may use sophisticated visualization libraries in C, 
C++, Java, or Python.

Careful control, development, and questioning of the technology stack is very important; but in order 
to select the technology stack components and their language bindings, we must first compare language 
features.

http://www.continuum.io/downloads
http://www.continuum.io/downloads
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2.1.1  Language Features—a Comparison
We are now going to do a quick comparison of the ten most important features Java, Scala, and Python have 
to offer us, specifically in terms of developing BDA systems. Each feature we discuss is an essential part 
of modern programming languages, but has particular usefulness when it comes to BDAs. These useful 
features (the ones we’re mostly concerned with) are:

•	 standard logical, arithmetic, and control structures. Java, Scala, and Python have 
much in common as far as fundamental language constructs go.

•	 object orientation. All three of our languages have an object system, and syntax and 
semantics vary considerably between Java, Scala, and Python.

•	 database connectivity. Because the whole point of building a BDA is to establish 
end-to-end data processing pipelines, efficient handling of the data sources—and 
the exporting to data sinks—is a key consideration of overall design and technology 
stack choices.

•	 functional programming support. Functional programming has always been an 
important part of distributed application development.

•	 library support, especially machine learning and statistic library support. A host 
of different libraries exist written in Java, Scala, or Python. Library and framework 
selection is one of the most challenging problems facing the BDA designer. 
Modularity and extensibility of the libraries you select, however, is a key requirement 
to an effective BDA design. Task-specific libraries, like MLlib for machine learning, 
are particularly useful but create a dependency on Spark and Scala. These 
dependencies are particularly important to keep in mind.

•	 dashboard and front-end connectivity. Usually JavaScript toolkits and libraries (such 
as AngularJS, D3, and others) are sufficient to build sophisticated dashboards and 
front-end controls, but—as we will see in the rest of the book—there are exceptions 
to this, particularly in mobile application development.

•	 “glueware” connectivity and support. This will include both Java-centric connections 
as well as connectivity to other libraries and frameworks, even those, like Vowpal 
Wabbit machine learning library, which are written in C++. We can access VW 
through web services, or even with a Java-native interface (JNI) support library,  
if we wish.

•	 read-eval-print loop support. All modern languages have read-eval-print loops 
(REPLs) except Java, and this is remedied in the Java 9 specification.

•	 native, multi-core support, and explicit memory management. This varies 
considerably between our languages, as we will discuss.

•	 connectivity with Hadoop, Spark, NoSQL databases and their ecosystems. Tools such 
as PySpark, Spring Data Hadoop, Apache Camel-neo4j, and many others are used to 
connect the different components you may require in your BDA.
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2.2  Review of Scala
This short review of the Scala language consists of five simple code snippets which highlight a variety of 
language features that we described in our introductory sections. Scala is particularly interesting because of 
built-in language features such as type inference, closures, currying, and more. Scala also has a sophisticated 
object system: each value is an object, every operation a method invocation. Scala is also compatible with 
Java programs. Modern languages always include support for standard data structures, sets, arrays, and 
vectors. Scala is no exception, and because Scala has a very close affinity to Java, all the data structures 
familiar to you from Java programming still apply.

 ■ Note In this book we will be discussing Scala version 2.11.7. type ‘scala –version’ on the command line 
to check your installed version of Scala. you may also check your Scala compiler version by typing ‘scalac –
version’ on the command line.

2.2.1  Scala and its Interactive Shell
Let’s start with a simple implementation of the quicksort algorithm, and follow that up by testing the routine 
in the Scala interactive shell. You can see that Listing 2-1 is a simple declarative style Scala program using 
recursion. If you were to throw the code into your interactive Scala shell, you would see the result shown in 
Figure y.y. Java programmers can immediately see the similarity between Java and Scala: Scala also uses the 
JVM and works hand-in-hand with Java. Even the “package” and “import” statements are similar, and the 
organization of code modules by “packages” in Scala is also similar to that of the Java package system.

Please note that, like Java, Scala provides a convenient object-oriented packaging system. You can also 
define a Runnable “main” method in a similar way to Java, as shown in Listing 2-1.

Listing 2-1. Simple example of a Scala program which can be tried out in the interactive shell

/** An example of a quicksort implementation, this one uses a functional style. */
object Sorter {
  def sortRoutine(lst: List[Int]): List[Int] = {
    if (lst.length < 2)
      lst
    else {
      val pivel = lst(lst.length / 2)
      sortRoutine(lst.filter(_ < pivel)) :::
           lst.filter(_ == pivel) :::
           sortRoutine(lst.filter(_ > pivel))
    }
  }

  def main(args: Array[String]) {
    val examplelist = List(11,14,100,1,99,5,7)
    println(examplelist)
    println(sortRoutine(examplelist))
  }
}
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Figure 2-1.  

Listing 2-2. An example of functional programming in Scala

Functional programming in Scala [includes the results from the Scala REPL as well]

scala> def closure1(): Int => Int = {
     | val next = 1
     | def addit(x: Int) = x + next
     | addit
     | }
closure1: ()Int => Int

scala> def closure2() = {
     | val y = 2
     | val f = closure1()
     | println(f(100))
     | }
closure2: ()Unit

You can easily use Spark in any of the interactive Scala shells, as shown in Listing 2-3.
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Listing 2-3. Simple use of Apache Spark in Scala

NOTE: Please make sure the bdasourcedatafile.dat file is present in your HDFS before running.

val bdaTextFile = sc.textFile("hdfs://bdasourcedatafile.dat")
val returnedErrors = bdaTextFile.filter(line => line.contains("ERROR"))
// Count all the errors
returnedErrors.count()
// Count errors mentioning ‘Pro Hadoop Analytics’
errors.filter(line => line.contains("Pro Hadoop Analytics")).count()
// Fetch the Pro Hadoop Analytics errors as an array of strings...
returnedErrors.filter(line => line.contains("Pro Hadoop Analytics")).collect()

Listing 2-4. Scala example 4: using Apache Kafka to do word counting

KafkaWordCount program in Scala
package org.apache.spark.examples.streaming

import java.util.HashMap

import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord}

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf

/**
 * Consumes messages from one or more topics in Kafka and does wordcount.
 * Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
 *   <zkQuorum> is a list of one or more zookeeper servers that make quorum
 *   <group> is the name of kafka consumer group
 *   <topics> is a list of one or more kafka topics to consume from
 *   <numThreads> is the number of threads the kafka consumer should use
 *
 * Example:
 *    `$ bin/run-example \
 *      org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \
 *      my-consumer-group topic1,topic2 1`
 */
object KafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }

    StreamingExamples.setStreamingLogLevels()

    val Array(zkQuorum, group, topics, numThreads) = args
    val sparkConf = new SparkConf().setAppName("KafkaWordCount")
    val ssc = new StreamingContext(sparkConf, Seconds(2))
    ssc.checkpoint("checkpoint")
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    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L))
      .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
}

// Produces some random words between 1 and 100.
object KafkaWordCountProducer {

  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
        "<messagesPerSec> <wordsPerMessage>")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args

    // Zookeeper connection properties
    val props = new HashMap[String, Object]()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")

    val producer = new KafkaProducer[String, String](props)

    // Send some messages
    while(true) {
      (1 to messagesPerSec.toInt).foreach { messageNum =>
        val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
          .mkString(" ")

        val message = new ProducerRecord[String, String](topic, null, str)
        producer.send(message)
      }

      Thread.sleep(1000)
    }
  }

}

Lazy evaluation is a “call-by-need” strategy implementable in any of our favorite languages. A simple 
example of a lazy evaluation exercise is shown in Listing 2-5.
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Listing 2-5. Lazy evaluation in Scala

/* Object-oriented lazy evaluation in Scala */

package probdalazy

object lazyLib {

  /** Delay the evaluation of an expression until it is required. */
  def delay[A](value: => A): Susp[A] = new SuspImpl[A](value)

  /** Get the value of a delayed expression. */
  implicit def force[A](s: Susp[A]): A = s()

  /** 
   * Data type of suspended computations. (The name froms from ML.) 
   */
  abstract class Susp[+A] extends Function0[A]

  /** 
   * Implementation of suspended computations, separated from the 
   * abstract class so that the type parameter can be invariant. 
   */
  class SuspImpl[A](lazyValue: => A) extends Susp[A] {
    private var maybeValue: Option[A] = None

    override def apply() = maybeValue match {
      case None =>
        val value = lazyValue
        maybeValue = Some(value)
        value
          case Some(value) =>
        value
    }

    override def toString() = maybeValue match {
      case None => "Susp(?)"
      case Some(value) => "Susp(" + value + ")"
    }
  }
}

object lazyEvaluation {
  import lazyLib._

  def main(args: Array[String]) = {
    val s: Susp[Int] = delay { println("evaluating..."); 3 }

    println("s     = " + s)       // show that s is unevaluated

www.allitebooks.com

http://www.allitebooks.org
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    println("s()   = " + s())     // evaluate s
    println("s     = " + s)       // show that the value is saved
    println("2 + s = " + (2 + s)) // implicit call to force()

    val sl = delay { Some(3) }
    val sl1: Susp[Some[Int]] = sl
    val sl2: Susp[Option[Int]] = sl1   // the type is covariant

    println("sl2   = " + sl2)
    println("sl2() = " + sl2())
    println("sl2   = " + sl2)
  }
}

2.3  Review of Python
In this section we provide a very succinct overview of the Python programming language. Python is a 
particularly useful resource for building BDAs because of its advanced language features and seamless 
compatibility with Apache Spark. Like Scala and Java, Python has thorough support for all the usual 
data structure types you would expect. There are many advantages to using the Python programming 
language for building at least some of the components in a BDA system. Python has become a mainstream 
development language in a relatively short amount of time, and part of the reason for this is that it’s an easy 
language to learn. The interactive shell allows for quick experimentation and the ability to try out new ideas 
in a facile way. Many numerical and scientific libraries exist to support Python, and there are many good 
books and online tutorials to learn the language and its support libraries.

 ■ Note throughout the book we will be using Python version 2.7.6 and interactive Python (IPython) version 
4.0.0. to check the versions of python you have installed, type python –version or ipython –version 
respectively on the command line.
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 ■ Note to run database connectivity examples, please keep in mind we are primarily using the MySQl 
database from oracle. this means you must download and install the MySQl connector for Python from the 
oracle web site, which is located at https://dev.mysql.com/downloads/connector/python/2.1.html the 
connector is easy to install. on the Mac, simply double-click on the dmg file and follow the directions. you can 
then test connectivity using an interactive Python shell.

Figure 2-2. Simple example of an IPython program, showing database connectivity

A simple example of database connectivity in Python is shown in Listing 2-6. Readers familiar with Java 
JDBC constructs will see the similarity. This simple example makes a database connection, then closes it. 
Between the two statements the programmer can access the designated database, define tables, and perform 
relational queries.

Listing 2-6. Database connectivity code with Python

Database connectivity example in Python: import, connect, and release (close)

import mysql.connector

cnx = mysql.connector.connect(user='admin', password='',
                              host='127.0.0.1',
                              database='test')
cnx.close()

https://dev.mysql.com/downloads/connector/python/2.1.html
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Algorithms of all kinds are easily implemented in Python, and there is a wide range of libraries to assist 
you. Use of recursion and all the standard programming structures are available. A simple example of a 
recursive program is shown in Listing 2-7.

Listing 2-7. Recursive Python code that flattens a list

A simple Python code example using recursion

def FlattenList(a, result=None):
    result = []
    for x in a:
        if isinstance(x, list):
            FlattenList(x, result)
            else:
                result.append(x)
                return result

            FlattenList([ [0, 1, [2, 3] ], [4, 5], 6])

Just as with Java and Scala, it’s easy to include support packages with the Python “import” statement. A 
simple example of this is shown in Listing 2-8.

Planning your import lists explicitly is key to keeping a Python program organized and coherent to the 
development team and others using the Python code.

Listing 2-8. Python code example using time functions

Python example using time functions

import time
size_of_vec = 1000
def pure_python_version():
    t1 = time.time()
    X = range(size_of_vec)
    Y = range(size_of_vec)
    Z = []
    for i in range(len(X)):
        Z.append(X[i] + Y[i])
    return time.time() - t1
def numpy_version():
    t1 = time.time()
    X = np.arange(size_of_vec)
    Y = np.arange(size_of_vec)
    Z = X + Y
    return time.time() - t1
t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)
print("Pro Data Analytics Numpy in this example, is: " + str(t1/t2) + " faster!")

The answer returned in IPython will be similar to:

Pro Data Analytics Hadoop Numpy in this example, is:  7.75 faster!
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The NumPy library provides an extension to the python programming language.

Listing 2-9. Python code example 4: Using the NumPy Library

Python example using the NumPy library
import numpy as np
from timeit import Timer
size_of_vec = 1000
def pure_python_version():
    X = range(size_of_vec)
    Y = range(size_of_vec)
    Z = []
    for i in range(len(X)):
        Z.append(X[i] + Y[i])
def numpy_version():
    X = np.arange(size_of_vec)
    Y = np.arange(size_of_vec)
    Z = X + Y
#timer_obj = Timer("x = x + 1", "x = 0")
timer_obj1 = Timer("pure_python_version()", "from __main__ import pure_python_version")
timer_obj2 = Timer("numpy_version()", "from __main__ import numpy_version")
print(timer_obj1.timeit(10))
print(timer_obj2.timeit(10))

Listing 2-10 shows an automatic startup file example.

Listing 2-10. Python code example 5: automatic startup behavior in Python

Python example:  using a startup file

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):
    with open(filename) as fobj:
       startup_file = fobj.read()
    exec(startup_file)

import site

site.getusersitepackages()

2.4  Troubleshoot, Debug, Profile, and Document
Troubleshooting, regardless of what language you are doing it in, involves identifying and solving immediate 
and serious problems when running your program. Debugging is also troubleshooting, but implies a less 
serious difficultly, such as an unexpected error condition, logic error, or other unexpected program result. 
One example of this distinction is a permissions problem. You can’t run your program if you don’t have 
execute permissions on a file. You might need to do a ‘chmod’ command to fix this.

Additionally, we would suggest that troubleshooting is a mental process. Debugging, on the other 
hand, can be supported with explicit tools for helping you find bugs, logic errors, unexpected conditions, 
and the like.
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2.4.1  Debugging Resources in Python
In Python, the pdb debugger can be loaded by typing:

import pdb
import yourmodule
pdb.run (‘yourmodule.test()’)

or you may use pdb with Python directly by typing:

python –m pdb yourprogram.py

For profiling Python, Robert Kern’s very useful line profiler (https://pypi.python.org/pypi/line_
profiler/1.0b3) may be installed by typing the following on the command line:

sudo pip install line_profiler

Successful installation looks like the picture in Figure 2-3.

Figure 2-3. Successful installation of the line profiler package

http://www.huyng.com/posts/python-performance-analysis/ has a very good discussion on 
profiling Python programs.

Install a memory profiler by typing:

sudo pip install -U memory_profiler

Why not test your profilers by writing a simple Python program to generate primes, a Fibonacci series, 
or some other small routine of your choice?

https://pypi.python.org/pypi/line_profiler/1.0b3)
https://pypi.python.org/pypi/line_profiler/1.0b3)
http://www.huyng.com/posts/python-performance-analysis/
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2.4.2  Documentation of Python
When documenting Python code, its very helpful to take a look at the documentation style guide from 
python.org. This can be found at

https://docs.python.org/devguide/documenting.html.

2.4.3  Debugging Resources in Scala
In this section we’ll discuss resources available to help you debug Scala programs. One of the easiest ways to 
debug programs is simply to install the Scala plug-in within the Eclipse IDE, create and build Scala projects 
within Eclipse, and debug and run them there as well. For extensive tutorials on how to do this, please refer 
to http://scala-ide.org.

2.5  Programming Applications and Example
Building a BDA means building a data pipeline processor. While there are many other ways to conceive and 
build software systems—including the use of methodologies such as Agile, technological concepts such as 
object orientation, and enterprise integration patterns (EIPs)—a constant is the pipeline concept.

Figure 2-4. Profiling Python code using memory and line profilers

https://docs.python.org/devguide/documenting.html
http://scala-ide.org/


CHAPteR 2 ■ A SCAlA And PytHon RefReSHeR

42

2.6  Summary
In this chapter, we reviewed the Scala and Python programming languages, and compared them with Java. 
Hadoop is a Java-centric framework while Apache Spark is written in Scala. Most commonly used BDA 
components typically have language bindings for Java, Scala, and Python, and we discussed some of these 
components at a high level.

Each of the languages has particular strengths and we were able to touch on some of the appropriate 
use cases for Java, Scala, and Python.

We reviewed ways to troubleshoot, debug, profile, and document BDA systems, regardless of what 
language we’re coding the BDAs in, and we discussed a variety of plug-ins available for the Eclipse IDE to 
work with Python and Scala.

In the next chapter, we will be looking at the necessary ingredients for BDA development: the 
frameworks and libraries necessary to build BDAs using Hadoop and Spark.
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CHAPTER 3

Standard Toolkits for Hadoop and 
Analytics

In this chapter, we take a look at the necessary ingredients for a BDA system: the standard libraries and 
toolkits most useful for building BDAs. We describe an example system (which we develop throughout the 
remainder of the book) using standard toolkits from the Hadoop and Spark ecosystems. We also use other 
analytical toolkits, such as R and Weka, with mainstream development components such as Ant, Maven, 
npm, pip, Bower, and other system building tools. “Glueware components” such as Apache Camel, Spring 
Framework, Spring Data, Apache Kafka, Apache Tika, and others can be used to create a Hadoop-based 
system appropriate for a variety of applications.

 ■ Note A successful installation of Hadoop and its associated components is key to evaluating the 
examples in this book. Doing the Hadoop installation on the Mac in a relatively painless way is described in  
http://amodernstory.com/2014/09/23/installing-hadoop-on-mac-osx-yosemite/ in a post titled 
“Installing Hadoop on the Mac Part I.”

3.1  Libraries, Components, and Toolkits: A Survey
No one chapter could describe all the big data analytics components that are out there to assist you in 
building BDA systems. We can only suggest the categories of components, talk about some typical examples, 
and expand on these examples in later chapters.

There are an enormous number of libraries which support BDA system building out there. To get an 
idea of the spectrum of available techniques, consider the components shown in Figure 3-1. This is not an 
exclusive list of component types, but when you realize that each component type has a variety of toolkits, 
libraries, languages, and frameworks to choose from, defining the BDA system technology stack can seem 
overwhelming at first. To overcome this definition problem, system modularity and flexibility are key.

http://amodernstory.com/2014/09/23/installing-hadoop-on-mac-osx-yosemite/
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One of the easiest ways to build a modular BDA system is to use Apache Maven to manage the 
dependencies and do most of the simple component management for you. Setting up a simple Maven 
pom.xml file and creating a simple project in Eclipse IDE is a good way to get the evaluation system going. 
We can start with a simple Maven pom.xml similar to the one shown in Listing 2-1. Please note the only 
dependencies shown are for the Hadoop Core and Apache Mahout, the machine learning toolkit for Hadoop 
we discussed in Chapter 1, which we use frequently in the examples. We will extend the Maven pom file to 
include all the ancillary toolkits we use later in the book. You can add or subtract components as you wish, 
simply by removing dependencies from the pom.xml file.

Keep in mind that for every technique shown in the diagram, there are several alternatives. For each 
choice in the technology stack, there are usually convenient Maven dependencies you can add to your 
evaluation system to check out the functionality, so it’s easy to mix and match components. Including the 
right “glueware” components can make integration of different libraries less painful.

Figure 3-1. A whole spectrum of distributed techniques are available for building BDAs

http://dx.doi.org/10.1007/978-1-4842-1910-2_1
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 ■ Note  the following important environment variables need to be set to use the book examples effectively:

   export BDA_HOME="/Users/kerryk/workspace/bdt"

Listing 3-1. A basic pom.xml file for the evaluation system

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.kildane</groupId>
  <artifactId>bdt</artifactId>
  <packaging>war</packaging>
  <version>0.0.1-SNAPSHOT</version>
  <name>Big Data Toolkit (BDT) Application</name>
  <url>http://maven.apache.org</url>
  <properties>
  <hadoop.version>0.20.2</hadoop.version>
  </properties>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-core</artifactId>
        <version>${hadoop.version}</version>
</dependency>
<dependency>
        <groupId>org.apache.mahout</groupId>
        <artifactId>mahout-core</artifactId>
        <version>0.9</version>
</dependency>
  </dependencies>
  <build>
    <finalName>BDT</finalName>
  </build>
</project>

The easiest way to build a modular BDA system is to use Apache Maven to manage the dependencies 
and do most of the simple component management for you. Using a simple pom.xml to get your BDA 
project started is a good way to experiment with modules, lock in your technology stack, and define system 
functionality—gradually modifying your dependencies and plug-ins as necessary.
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Setting up a simple Maven pom.xml file and creating a simple project in Eclipse IDE is an easy way to 
get the evaluation system going. We can start with a simple Maven pom.xml similar to the one shown in 
Listing 3-1. Please note the only dependencies shown are for the Hadoop Core and Apache Mahout, the 
machine learning toolkit for Hadoop we discussed in Chapter 1, which we use frequently in the examples. 
We will extend the Maven pom file to include all the ancillary toolkits we use later in the book. You can add 
or subtract components as you wish, simply by removing dependencies from the pom.xml file.

Let's add a rule system to the evaluation system by way of an example. Simply add the appropriate 
dependencies for the Drools rule system (Google “drools maven dependencies” for most up to date versions 
of Drools). The complete pom.xml file (building upon our original) is shown in Listing 3-2. We will be 
leveraging the functionality of JBoss Drools in a complete analytical engine example in Chapter 8. Please 
note that we supply dependencies to connect the Drools system with Apache Camel as well as Spring 
Framework for Drools.

Listing 3-2. Add JBoss Drools dependencies to add rule-based support to your analytical engine. A complete 
example of a Drools use case is in Chapter 8!

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.kildane</groupId>
  <artifactId>bdt</artifactId>
  <packaging>war</packaging>
  <version>0.0.1-SNAPSHOT</version>
  <name>Big Data Toolkit (BDT) Application, with JBoss Drools Component</name>
  <url>http://maven.apache.org</url>
  <properties>
  <hadoop.version>0.20.2</hadoop.version>
  </properties>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>

<!--  add these five dependencies to your BDA project to achieve rule-based support -->
<dependency>
        <groupId>org.drools</groupId>
        <artifactId>drools-core</artifactId>
        <version>6.3.0.Final</version>
</dependency>
<dependency>
        <groupId>org.drools</groupId>
        <artifactId>drools-persistence-jpa</artifactId>
        <version>6.3.0.Final</version>
</dependency>

http://dx.doi.org/10.1007/978-1-4842-1910-2_1
http://dx.doi.org/10.1007/978-1-4842-1910-2_8
http://dx.doi.org/10.1007/978-1-4842-1910-2_8
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<dependency>
        <groupId>org.drools</groupId>
        <artifactId>drools-spring</artifactId>
        <version>6.0.0.Beta2</version>
</dependency>
<dependency>
        <groupId>org.drools</groupId>
        <artifactId>drools-camel</artifactId>
        <version>6.0.0.Beta2</version>
</dependency>
<dependency>
        <groupId>org.drools</groupId>
        <artifactId>drools-jsr94</artifactId>
        <version>6.3.0.Final</version>
</dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-core</artifactId>
        <version>${hadoop.version}</version>
</dependency>
<dependency>
        <groupId>org.apache.mahout</groupId>
        <artifactId>mahout-core</artifactId>
        <version>0.9</version>
</dependency>
  </dependencies>
  <build>
    <finalName>BDT</finalName>
  </build>
</project>

3.2  Using Deep Learning with the Evaluation System
DL4j (http://deeplearning4j.org) is an open source–distributed deep learning library for Java and Scala. 
It is integrated with Hadoop and Spark.

To install:

git clone https://github.com/deeplearning4j/dl4j-0.4-examples.git 

To build the system:

cd $DL4J_HOME directory 

Then:

mvn clean install -DskipTests -Dmaven.javadoc.skip=true

To verify the dl4j component is running correctly, type:

mvn exec:java -Dexec.mainClass="org.deeplearning4j.examples.tsne.TSNEStandardExample" 
-Dexec.cleanupDaemonThreads=false

http://deeplearning4j.org/
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You will see textual output similar to that in Listing y.y. if the component is running successfully.

Listing 3-3. Output from the deep learning 4j test routine

[INFO] --- exec-maven-plugin:1.4.0:java (default-cli) @ deeplearning4j-examples ---
o.d.e.t.TSNEStandardExample - Load & Vectorize data....
Nov 01, 2015 1:44:49 PM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded /var/folders/kf/6fwdssg903x6hq7y0fdgfhxc0000gn/T/jniloader54508704
4337083844netlib-native_system-osx-x86_64.jnilib
o.d.e.t.TSNEStandardExample - Build model....
o.d.e.t.TSNEStandardExample - Store TSNE Coordinates for Plotting....
o.d.plot.Tsne - Calculating probabilities of data similarities..
o.d.plot.Tsne - Mean value of sigma 0.00
o.d.plot.Tsne - Cost at iteration 0 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 1 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 2 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 3 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 4 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 5 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 6 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 7 was 98.8718490600586
o.d.plot.Tsne - Cost at iteration 8 was 98.87185668945312
o.d.plot.Tsne - Cost at iteration 9 was 98.87185668945312
o.d.plot.Tsne - Cost at iteration 10 was 98.87186431884766
......    ......    ......   .......   .....  ......
o.d.plot.Tsne - Cost at iteration 98 was 98.99024963378906
o.d.plot.Tsne - Cost at iteration 99 was 98.99067687988281
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 23.075 s
[INFO] Finished at: 2015-11-01T13:45:06-08:00
[INFO] Final Memory: 21M/721M
[INFO] ------------------------------------------------------------------------

To use the deeplearning4j component in our evaluation system, we will now require the most 
extensive changes to our BDA pom file to date. The complete file is shown in Listing 3-4.

Listing 3-4. Complete listing to include deeplearning 4j components

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <groupId>com.kildane</groupId>
        <artifactId>bdt</artifactId>
        <packaging>war</packaging>
        <version>0.0.1-SNAPSHOT</version>
        <name>Big Data Toolkit (BDT) Application</name>
        <url>http://maven.apache.org</url>
        <properties>
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        <!--  new properties for deep learning (dl4j) components -->
                <nd4j.version>0.4-rc3.5</nd4j.version>
                <dl4j.version> 0.4-rc3.4 </dl4j.version>
                <canova.version>0.0.0.11</canova.version>
                <jackson.version>2.5.1</jackson.version>

                <hadoop.version>0.20.2</hadoop.version>
                <mahout.version>0.9</mahout.version>
        </properties>
        <!--  distribution management for dl4j  -->
        <distributionManagement>
                <snapshotRepository>
                        <id>sonatype-nexus-snapshots</id>
                        <name>Sonatype Nexus snapshot repository</name>
                        <url>https://oss.sonatype.org/content/repositories/snapshots</url>
                </snapshotRepository>
                <repository>
                        <id>nexus-releases</id>
                        <name>Nexus Release Repository</name>
                        <url>http://oss.sonatype.org/service/local/staging/deploy/maven2/</url>
                </repository>
        </distributionManagement>
        <dependencyManagement>
                <dependencies>
                        <dependency>
                                <groupId>org.nd4j</groupId>
                                <artifactId>nd4j-jcublas-7.5</artifactId>
                                <version>${nd4j.version}</version>
                        </dependency>
                </dependencies>
        </dependencyManagement>
        <repositories>
                <repository>
                        <id>pentaho-releases</id>
                        <url>http://repository.pentaho.org/artifactory/repo/</url>
                </repository>
        </repositories>
        <dependencies>
                <!--  dependencies for dl4j components -->
                <dependency>
                        <groupId>org.deeplearning4j</groupId>
                        <artifactId>deeplearning4j-nlp</artifactId>
                        <version>${dl4j.version}</version>
                </dependency>
                <dependency>
                        <groupId>org.deeplearning4j</groupId>
                        <artifactId>deeplearning4j-core</artifactId>
                        <version>${dl4j.version}</version>
                </dependency>
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                <dependency>
                        <groupId>org.nd4j</groupId>
                        <artifactId>nd4j-x86</artifactId>
                        <version>${nd4j.version}</version>
                </dependency>
                <dependency>
                        <groupId>org.jblas</groupId>
                        <artifactId>jblas</artifactId>
                        <version>1.2.4</version>
                </dependency>
                <dependency>
                        <artifactId>canova-nd4j-image</artifactId>
                        <groupId>org.nd4j</groupId>
                        <version>${canova.version}</version>
                </dependency>
                <dependency>
                        <groupId>com.fasterxml.jackson.dataformat</groupId>
                        <artifactId>jackson-dataformat-yaml</artifactId>
                        <version>${jackson.version}</version>
                </dependency>

                <dependency>
                        <groupId>org.apache.solr</groupId>
                        <artifactId>solandra</artifactId>
                        <version>UNKNOWN</version>
                </dependency>
                <dependency>
                        <groupId>junit</groupId>
                        <artifactId>junit</artifactId>
                        <version>3.8.1</version>
                        <scope>test</scope>
                </dependency>
                <dependency>
                        <groupId>org.apache.hadoop</groupId>
                        <artifactId>hadoop-core</artifactId>
                        <version>${hadoop.version}</version>
                </dependency>
                <dependency>
                        <groupId>pentaho</groupId>
                        <artifactId>mondrian</artifactId>
                        <version>3.6.0</version>
                </dependency>
                <!-- add these five dependencies to your BDA project to achieve rule-based 
                        support -->
                <dependency>
                        <groupId>org.drools</groupId>
                        <artifactId>drools-core</artifactId>
                        <version>6.3.0.Final</version>
                </dependency>
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                <dependency>
                        <groupId>org.drools</groupId>
                        <artifactId>drools-persistence-jpa</artifactId>
                        <version>6.3.0.Final</version>
                </dependency>
                <dependency>
                        <groupId>org.drools</groupId>
                        <artifactId>drools-spring</artifactId>
                        <version>6.0.0.Beta2</version>
                </dependency>
                <dependency>
                        <groupId>org.apache.spark</groupId>
                        <artifactId>spark-streaming_2.10</artifactId>
                        <version>1.5.1</version>
                </dependency>
                <dependency>
                        <groupId>org.drools</groupId>
                        <artifactId>drools-camel</artifactId>
                        <version>6.0.0.Beta2</version>
                </dependency>
                <dependency>
                        <groupId>org.drools</groupId>
                        <artifactId>drools-jsr94</artifactId>
                        <version>6.3.0.Final</version>
                </dependency>

                <dependency>
                        <groupId>com.github.johnlangford</groupId>
                        <artifactId>vw-jni</artifactId>
                        <version>8.0.0</version>
                </dependency>
                <dependency>
                        <groupId>org.apache.mahout</groupId>
                        <artifactId>mahout-core</artifactId>
                        <version>${mahout.version}</version>
                </dependency>
                <dependency>
                        <groupId>org.apache.mahout</groupId>
                        <artifactId>mahout-math</artifactId>
                        <version>0.11.0</version>
                </dependency>
                <dependency>
                        <groupId>org.apache.mahout</groupId>
                        <artifactId>mahout-hdfs</artifactId>
                        <version>0.11.0</version>
                </dependency>
        </dependencies>
        <build>
                <finalName>BDT</finalName>
                <plugins>
                        <plugin>
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                                <groupId>org.codehaus.mojo</groupId>
                                <artifactId>exec-maven-plugin</artifactId>
                                <version>1.4.0</version>
                                <executions>
                                        <execution>
                                                <goals>
                                                        <goal>exec</goal>
                                                </goals>
                                        </execution>
                                </executions>
                                <configuration>
                                        <executable>java</executable>
                                </configuration>
                        </plugin>
                        <plugin>
                                <groupId>org.apache.maven.plugins</groupId>
                                <artifactId>maven-shade-plugin</artifactId>
                                <version>1.6</version>
                                <configuration>
                                        < createDependencyReducedPom>true</

createDependencyReducedPom>
                                        <filters>
                                                <filter>
                                                        <artifact>*:*</artifact>
                                                        <excludes>
                                                                <e xclude>org/

datanucleus/**</exclude>
                                                                <e xclude>META-INF/*.SF</

exclude>
                                                                <e xclude>META-INF/*.DSA</

exclude>
                                                                <e xclude>META-INF/*.RSA</

exclude>
                                                        </excludes>
                                                </filter>
                                        </filters>
                                </configuration>
                                <executions>
                                        <execution>
                                                <phase>package</phase>
                                                <goals>
                                                        <goal>shade</goal>
                                                </goals>
                                                <configuration>
                                                        <transformers>
                                                                <transformer
                                                                        implementation="org. 
                                  apache.maven.plugins.shade.resource.AppendingTransformer">
                                                                        < resource>reference.

conf</resource>
                                                                </transformer>
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                                                                <transformer
                                                                        implementation="org. 
                         apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
                                                                <transformer
                                                                        implementation="org. 
                           apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                                                </transformer>
                                                        </transformers>
                                                </configuration>
                                        </execution>
                                </executions>
                        </plugin>
                        <plugin>
                                <groupId>org.apache.maven.plugins</groupId>
                                <artifactId>maven-compiler-plugin</artifactId>
                                <configuration>
                                        <source>1.7</source>
                                        <target>1.7</target>
                                </configuration>
                        </plugin>
                </plugins>
        </build>
</project>

After augmenting your BDA evaluation project to use this pom.xml, perform the maven clean, install, 
and package tasks to insure your project compiles correctly.

3.3  Use of Spring Framework and Spring Data
Spring Framework (https://spring.io), and its associated framework Spring Data (projects.spring.io/
spring-data), are important glueware components, but the Spring frameworks provide a wide variety of 
functional resources as well. These include security, ORM connectivity, model-view-controller (MVC)-based 
application development, and more. Spring Framework uses an aspect-oriented programming approach to 
address cross-cutting concerns, and fully supports a variety of annotations called “stereotypes” within the 
Java code, minimizing the need for hand-crafted boilerplate.

We will use Spring Framework throughout this book to leverage the sophisticated functional resources 
it provides, as well as investigating the Spring Data Hadoop component (projects.spring.io/spring-
hadoop/), a seamless integration of Hadoop and Spring. In particular, we will use several Spring Framework 
components in the complete analytical system we develop in Chapter 9.

3.4  Numerical and Statistical Libraries: R, Weka, and Others
In this section, we will discuss R and Weka statistical libraries. R (r-project.org) is an interpreted high-level 
language developed specifically for statistical analysis. Weka (http://www.cs.waikato.ac.nz/ml/weka) is 
a powerful statistics library, providing machine learning algorithms for data mining and other analytical 
tasks. An interesting new development is the Distributed R and Distributed Weka toolkits. Information about 
DistributedWekaBase and Distributed Weka, by Mark Hall, may be found at

•	 http://weka.sourceforge.net/packageMetaData/distributedWekaBase/index.html

•	 http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html

https://spring.io/
http://dx.doi.org/10.1007/978-1-4842-1910-2_9
http://www.cs.waikato.ac.nz/ml/weka
http://weka.sourceforge.net/packageMetaData/distributedWekaBase/index.html
http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html


CHAPter 3 ■ StAnDArD toolkItS for HADooP AnD AnAlytICS

54

3.5  OLAP Techniques in Distributed Systems
OLAP (online analytical processing) is another venerable analytic technique—it's been around since the 
1970s—that has had a renaissance in the “big data era.” Several powerful libraries and frameworks have 
been developed to support big data OLAP operations. Two of the most interesting of these are Pentaho's 
Mondrian (http://community.pentaho.com/projects/mondrian/) and a new incubator project at Apache, 
Apache Kylin (http://kylin.incubator.apache.org). Pentaho Mondrian provides an open source 
analytical engine and its own query language, MDX. To add Pentaho Mondrian to your evaluation system, 
add this repository, and dependency, to your pom.xml:

<repository>
    <id>pentaho-releases</id>
    <url>http://repository.pentaho.org/artifactory/repo/</url>
  </repository>

<dependency>
  <groupId>pentaho</groupId>
  <artifactId>mondrian</artifactId>
  <version>3.6.0</version>
</dependency>

Apache Kylin provides an ANSI SQL interface and multi-dimensional analysis, leveraging Hadoop 
functionalities. Business intelligence tools such as Tableau (get.tableau.com) are supported by Apache 
Kylin as well.

We will be developing a complete analytical engine example using Apache Kylin to provide OLAP 
functionality in Chapter 9.

3.6  Hadoop Toolkits for Analysis: Apache Mahout and 
Friends

Apache Mahout (mahout.apache.org) is a machine learning library specifically designed for use with 
Apache Hadoop and, with more recent versions of Mahout, Apache Spark as well. Like most modern 
software frameworks, Mahout is coupled with Samsara, an additional component cooperating with Mahout, 
to provide an advanced math library support for Mahout functionality. Apache Mahout may also be used 
with compatible libraries like MLlib. More information about high-level functionality can be found in the 
numerous tutorials and books on Apache Mahout and other Hadoop-based machine learning packages.

Mahout contains many standard algorithms implemented for distributed processing. Some of 
these algorithms include classification algorithms such as the random forest classification algorithm, an 
implementation of the muli-layer perceptron neural net classifier, the naïve Bayes classifier, and many other 
classifier algorithms. These can be used singly or as stages in a data pipeline, or even in parallel with the 
right configuration setup.

Vowpal Wabbit (https://github.com/JohnLangford/vowpal_wabbit) is an open source project 
initiated at Yahoo! Inc. and continued by Microsoft Research. Some of VW's features include sparse 
dimension reduction, fast feature lookups, polynomial learning, and cluster parallel learning, all effective 
techniques to use in our BDA systems. One of the most interesting extensions of VW is the RESTful web 
interface, which is available at

http://community.pentaho.com/projects/mondrian/
http://kylin.incubator.apache.org/
http://dx.doi.org/10.1007/978-1-4842-1910-2_9
https://github.com/JohnLangford/vowpal_wabbit
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For a good discussion of Vowpal-Wabbit, and how to set up and run VW correctly, see http://zinkov.
com/posts/2013-08-13-vowpal-tutorial/.

To install the VW system, you may need to install the boost system first.
On Mac OS, type the following three commands (re-chmod your /usr/local/lib afterwards if you wish):

sudo chmod 777 /usr/local/lib
brew install boost
brew link boost

git clone git://github.com/JohnLangford/vowpal_wabbit.git
cd $VW_HOME
make 
make test

You may also want to investigate the very interesting web interface to VW, available at https://github.
com/eHarmony/vw-webservice. To install:

git clone https://github.com/eHarmony/vw-webservice.git
cd $VW_WEBSERVICE_HOME
mvn clean install package

3.7  Visualization in Apache Mahout
Apache Mahout has built-in visualization capabilities for clustering, based on the java.awt graphics 
package. A simple example of a clustering visualization is shown in Figure 3-2. In the visualization 
technology chapter, we will discuss extensions and alternatives to this basic system with a mind towards 
providing more advanced visualization features, extending the visualization controls and displays to include 
an “image as big data” display as well as some Mahout-centric dashboards.

http://zinkov.com/posts/2013-08-13-vowpal-tutorial/
http://zinkov.com/posts/2013-08-13-vowpal-tutorial/
https://github.com/eHarmony/vw-webservice
https://github.com/eHarmony/vw-webservice
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Figure 3-2. A simple data point visualization using Apache Mahout

3.8  Apache Spark Libraries and Components
Apache Spark libraries and components are essential to the development of the BDA systems developed in 
this book. To assist the developer, Spark comes with both Python interactive shell as well as an interactive 
shell for Scala. As we progress through the book, we will be looking at Apache Spark in detail, as it is one of 
the most useful alternatives to Hadoop MapReduce technologies. In this section, we will provide a high-level 
overview of what to expect from the Spark technologies and its ecosystem.

3.8.1  A Variety of Different Shells to Choose From
There are many Python and Scala shells to choose from and in Java 9 we can look forward to a Java-based 
read-eval-print loop (REPL).
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To run the Spark Python shell, type:

/bin/pyspark --master spark://server.com:7077 --driver-memory 4g --executor-memory 4g

To run the Spark Scala shell, type:

./spark-1.2.0/bin/spark-shell --master spark://server.com:7077 --driver-memory 4g 
--executor-memory 4g

Once you have the sparkling-water package installed successfully, you can use the Sparkling shell as 
shown in Figure 3-4 as your Scala shell. It already has some convenient hooks into Apache Spark for your 
convenience.

3.8.2  Apache Spark Streaming
Spark Streaming is a fault-tolerant, scalable, and high throughput stream processor.

 ■ Note  Apache Streaming is actively under development. the information about Spark Streaming is 
constantly subject to change. refer to http://spark.apache.org/docs/latest/streaming-programming-
guide.html in order to get the latest information on Apache Streaming. In this book, we primarily refer to the 
Spark 1.5.1 version.

To add Spark Streaming to your Java project, add this dependency to your pom.xml file (get the most 
recent version parameter to use from the Spark web site):

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.10</artifactId>
    <version>1.5.1</version>
</dependency>

A simplified diagram of the Spark Streaming system is shown in Figure 3-3. Input data streams are 
processed through the Spark engine and emitted as batches of processed data.

http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
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Spark Streaming is also compatible with Amazon Kinesis (https://aws.amazon.com/kinesis/), the 
AWS data streaming platform.

3.8.3  Sparkling Water and H20 Machine Learning
Sparkling Water (h20.ai) is the H20 machine learning toolkit, integrated into Apache Spark. With Sparkling 
Water, you can use Spark data structures as inputs to H20s algorithms, and there is a Python interface which 
allows you to use Sparkling Water directly from PyShell.

Figure 3-3. A simplified diagram of the Spark Streaming system

https://aws.amazon.com/kinesis/
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3.9  Example of Component Use and System Building
In this section we will use the example of the Solandra (Solr + Cassandra) system as a simple example of 
building a BDA which has all the ingredients necessary to perform big data analytics. In Chapter 1 we had a 
brief introduction to Solr, the open source, RESTful search engine component which is compatible with both 
Hadoop and Cassandra NoSQL database. Most of our setup can be done using Maven as shown in Listing 3-4.  
You'll notice that the pom file listed here is the same as our original project pom file, with dependency 
additions for Solr, Solandra, and Cassandra components.

 1. To download Solandra from the Git source (https://github.com/tjake/Solandra):

git clone https://github.com/tjake/Solandra.git

 2. cd to the Solandra directory, and create the JAR file with Maven:

cd Solandra
mvn -DskipTests clean install package

 3. Add the JAR file to your local Maven repository, because there isn't a standard 
Maven dependency for Solandra yet:

mvn install:install-file -Dfile=solandra.jar -DgroupId=solandra 
-DartifactId=solandra -Dpackaging=jar -Dversion=UNKNOWN

Figure 3-4. Running the Sparkling Water shell to test your installation

http://dx.doi.org/10.1007/978-1-4842-1910-2_1
https://github.com/tjake/Solandra
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 4. Modify your BDA system pom.xml file and add the Solandra dependency:

<dependency>
        <groupId>org.apache.solr</groupId>
        <artifactId>solandra</artifactId>
        <version>UNKNOWN</version>
</dependency>

 5. Test your new BDA pom.xml:

cd $BDA_HOME
mvn clean install package

BUILDING THE APACHE KAFKA MESSAGING SYSTEM

In this section, we will discuss in detail how to set up and use the Apache kafka messaging system, an 
important component of our example BDA framework.

1. Download the Apache kafka tAr file from http://kafka.apache.org/downloads.html

2. Set the KAFKA_HOME environment variable.

3. Unzip file and go to KAFKA_HOME (in this case KAFKA_HOME would be /Users/
kerryk/Downloads/kafka_2.9.1-0.8.2.2).

4. next, start the Zookeeper server by typing

bin/zookeeper-server-start.sh  config/zookeeper.properties

5. once the Zookeeper service is up and running, type:

bin/kafka-server-start.sh config/server.properties

6. to test topic creation, type:

bin/kafka-topics.sh –create –zookeeper localhost:2181 –replication-factor 1 –
partitions 1 –topic ProHadoopBDA0

7. to provide a listing of all available topics, type:

bin/kafka-topics.sh –list –zookeeper localhost:2181 

 At this stage, the result will be ProHadoopBDA0, the name of the topic you defined in step 5.

8. Send some messages from the console to test the messaging sending functionality. type:

bin/kafka-console-producer.sh –broker-list localhost:9092 –topic ProHadoopBDA0

 Now type some messages into the console.

9. you can configure a multi broker cluster by modifying the appropriate config files. Check the 
Apache kafka documentation for step-by-step processes how to do this.

http://kafka.apache.org/downloads.html
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3.10  Packaging, Testing and Documentation of the 
Example System

In this section we discuss BDA unit and integration testing. We will discuss Apache Bigtop (bigtop.apache.com)  
and Apache MRUnit (mrunit.apache.com).

Listing 3-5. Example of Python unit testing from https://docs.python.org/2/library/unittest.html

import unittest

class TestStringMethods(unittest.TestCase):

  def test_upper(self):
      self.assertEqual('foo'.upper(), 'FOO')

  def test_isupper(self):
      self.assertTrue('FOO'.isupper())
      self.assertFalse('Foo'.isupper())

  def test_split(self):
      s = 'hello world'
      self.assertEqual(s.split(), ['hello', 'world'])
      # check that s.split fails when the separator is not a string
      with self.assertRaises(TypeError):
          s.split(2)

if __name__ == '__main__':
    unittest.main()

For testing, throughout the book we will use test data sets from http://archive.ics.uci.edu/
ml/machine-learning-databases/ as well as the database from Universita de Bologna at http://www.
dm.unibo.it/~simoncin/DATA.html. For Python testing, we will be using PyUnit (a Python-based version  
of the Java unit testing JUnit framework) and pytest (pytest.org), an alternative Python test framework.  
A simple example of the Python testing component is shown in Listing 3-5.

Figure 3-5. An architecture diagram for the “Sparkling Water” Spark + H20 System

https://docs.python.org/2/library/unittest.html
http://archive.ics.uci.edu/ml/machine-learning-databases/
http://archive.ics.uci.edu/ml/machine-learning-databases/
http://www.dm.unibo.it/~simoncin/DATA.html
http://www.dm.unibo.it/~simoncin/DATA.html
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3.11  Summary
In this chapter, we used the first cut of an extensible example system to help motivate our discussion about 
standard libraries for Hadoop- and Spark-based big data analytics. We also learned that while there are 
innumerable libraries, frameworks, and toolkits for a wide range of distributed analytic domains, all these 
components may be tamed by careful use of a good development environment. We chose the Eclipse IDE, 
Scala and Python plug-in support, and use of the Maven, npm, easy_install, and pip build tools to make our 
lives easier and to help organize our development process. Using the Maven system alone, we were able to 
integrate a large number of tools into a simple but powerful image processing module possessing many of 
the fundamental characteristics of a good BDA data pipelining application.

Throughout this chapter, we have repeatedly returned to our theme of a modular design, showing how 
a variety of data pipeline systems may be defined and built using the standard ten-step process we discussed 
in Chapter 1. We also learned about the categories of libraries that are available to help us, including math, 
statistical, machine learning, image processing, and many others. We discussed in detail how to install 
and use the Apache Kafka messaging system, an important component we use in our example systems 
throughout the rest of the book.

There are many language bindings available for these big data Hadoop packages, but we confined 
our discussion to the Java, Scala, and Python programming languages. You are free to use other language 
bindings when and if your application demands it.

We did not neglect testing and documentation of our example system. While these components are 
often seen as “necessary evils,” “add-ons,” “frills,” or “unnecessary,” unit and integration testing remain 
key components of any successful distributed system. We discussed MRUnit and Apache Bigtop as viable 
testing tools to evaluate BDA systems. Effective testing and documentation lead to effective profiling and 
optimization, as well as overall system improvement in many other ways.

We not only learned about Hadoop-centric BDA construction using Apache Mahout, but also about 
using Apache Spark as a fundamental building block, using PySpark, MLlib, H20, and Sparkling Water 
libraries. Spark technologies for machine learning and BDA construction are now mature and useful ways to 
leverage powerful machine learning, cognitive computing, and natural language processing libraries to build 
and extend your own BDA systems.
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CHAPTER 4

Relational, NoSQL, and Graph 
Databases

In this chapter, we describe the role of databases in distributed big data analysis. Database types include 
relational databases, document databases, graph databases, and others, which may be used as data sources 
or sinks in our analytical pipelines. Most of these database types integrate well with Hadoop ecosystem 
components, as well as with Apache Spark. Connectivity between different kinds of database and Hadoop/
Apache Spark-distributed processing may be provided by “glueware” such as Spring Data or Apache 
Camel. We describe relational databases, such as MySQL, NoSQL databases such as Cassandra, and graph 
databases such as Neo4j, and how to integrate them with the Hadoop ecosystem.

There is a spectrum of database types available for you to use, as shown in Figure 4-1. These include flat 
files (even a CSV file is a kind of database), relational databases such as MySQL and Oracle, key value data 
stores such as Redis, columnar databases such as HBase (part of the Hadoop ecosystem), as well as more 
exotic database types such as graph databases (including Neo4J, GraphX, and Giraph)

Figure 4-1. A spectrum of database types
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We can “abstract out” the concept of different database types as generic data sources, and come up 
with a common API to connect with, process, and output the content of these data sources. This lets us 
use different kinds of databases, as needed, in a flexible way. Sometimes it’s necessary to adopt a “plug 
and play” approach for evaluation purposes or to construct proof-of-concept systems. In these instances, 
it can be convenient to use a NoSQL database such as MongoDB, and compare performance with a 
Cassandra database or even a graph database component. After evaluation, select the right database for your 
requirements. Using the appropriate glueware for this purpose, whether it be Apache Camel, Spring Data, or 
Spring Integration, is key to building a modular system that can be changed rapidly. Much of the glueware 
code can remain the same, or similar to, the existing code base. Minimum re-work is required if the glueware 
is selected appropriately.

All database types shown above can be used as distributed system data sources, including relational 
databases such as MySQL or Oracle. A typical ETL-based processing flow implemented using a relational 
data source might look like the dataflow shown in Figure 4-2.

 1. Cycle Start. The start of the processing cycle is an entry part for the whole 
system’s operation. It’s a point of reference for where to start scheduling the 
processing task, and a place to return to if the system has to undergo a reboot.

 2. Reference Data Building. “Reference data” refers to the valid types of data which 
may be used in individual table fields or the “value” part of key-value pairs.

 3. Source Extraction. Retrieve data from the original data sources and do any 
necessary preprocessing of the data. This might be a preliminary data cleansing 
or formatting step.

 4. Validation Phase. The data is evaluated for consistency.

 5. Data Transformation. “Business logic” operations are performed on the data sets 
to produce an intermediate result.

 6. Load into staging tables/data caches or repositories, if used. Staging tables are 
an intermediate data storage area, which may also be a cache or document 
database.

 7. Report auditing (for business rule compliance, or diagnosis/repair stage). 
Compute and format report results, export to a displayable format (which may 
be anything from CSV files to web pages to elaborate interactive dashboard 
displays). Other forms of report may indicate efficiency of the data process, 
timings and performance data, system health data, and the like. These ancillary 
reports support the main reporting task, which is to coherently communicate the 
results of the data analytics operations on the original data source contents.

 8. Publishing to target tables/ repositories. The results so far are exported to the 
designated output tables or data repositories, which may take a variety of forms 
including key/value caches, document databases, or even graph databases.

 9. Archive back up data. Having a backup strategy is just as important for graph 
data as traditional data. Replication, validation, and efficient recovery is a must.

 10. Log Cycle Status and Errors. We can make use of standard logging constructs, 
even at the level of Log4j in the Java code, or we may wish to use more 
sophisticated error logging and reporting if necessary.

Repeat as needed. You can elaborate the individual steps, or specialize to your individual domain 
problems as required.
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4.1  Graph Query Languages : Cypher and Gremlin
Cypher (http://neo4j.com/developer/cypher-query-language/) and Gremlin (http://tinkerpop.
incubator.apache.org/gremlin.html ) are two of the more well-known graph query languages. Most of 
the time, graph query languages are designed to be relatively intuitive for programmers with an SQL-style 
query language background. Graph query languages use nodes, edges, relationships, and patterns to form 
assertions and queries about data sets modeled as graphs. Refer to Apache TinkerPop’s web page (http://
tinkerpop.incubator.apache.org) for more information about the Gremlin query language.

To use the new TinkerPop 3 (incubating project at the time this book was written) simply include the 
following dependency in your pom.xml file:

<dependency>
  <groupId>org.apache.tinkerpop</groupId>
  <artifactId>gremlin-core</artifactId>
  <version>3.2.0-incubating</version>
</dependency>

Once the dependency is in place in your Java project, you may program to the Java API as shown in 
Listings 4-1 and 4-2. See the online documentation at: https://neo4j.com/developer/cypher-query-
language/ and http://tinkerpop.incubator.apache.org for more information.

4.2  Examples in Cypher
To create a node in Cypher:

CREATE (kerry:Person {name:"Kerry"})

RETURN kerry

MATCH (neo:Database {name:"Neo4j"})

MATCH (arubo:Person {name:"Arubo"})

CREATE (anna)-[:FRIEND]->(:Person:Expert {name:"Arubo"})-[:WORKED_WITH]->(neo)

To export to a CSV file using cURL:

curl -H accept:application/json -H content-type:application/json \
     -d '{"statements":[{"statement":"MATCH (p1:PROFILES)-[:RELATION]-(p2) RETURN ... LIMIT 
4"}]}' \
     http://localhost:7474/db/data/transaction/commit \
  | jq -r '(.results[0]) | .columns,.data[].row | @csv'

And to time performance, use

curl -H accept:application/json -H content-type:application/json \
     -d '{"statements":[{"statement":"MATCH (p1:PROFILES)-[:RELATION]-(p2) RETURN ..."}]}' \
     http://localhost:7474/db/data/transaction/commit \
     | jq -r '(.results[0]) | .columns,.data[].row | @csv' | /dev/null

http://neo4j.com/developer/cypher-query-language/
http://tinkerpop.incubator.apache.org/gremlin.html
http://tinkerpop.incubator.apache.org/gremlin.html
http://tinkerpop.incubator.apache.org/
http://tinkerpop.incubator.apache.org/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://tinkerpop.incubator.apache.org/
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4.3  Examples in Gremlin
The Gremlin graph query language is an alternative to Cypher.

Add a new vertex in the graph

g.addVertex([firstName:'Kerry',lastName:'Koitzsch',age:'50']); g.commit();

This will require multiple statements. Note how the variables (jdoe and mj) are defined just by assigning 
them a value from a Gremlin query.

jdoe = g.addVertex([firstName:'John',lastName:'Doe',age:'25']);  mj = g.addVertex([firstName
:'Mary',lastName:'Joe',age:'21']); g.addEdge(jdoe,mj,'friend'); g.commit();

Add a relation between two existing vertices with id 1 and 2

g.addEdge(g.v(1),g.v(2),'coworker'); g.commit();

Remove all vertices from the graph:

g.V.each{g.removeVertex(it)}
g.commit();

Remove all edges from the graph

g.E.each{g.removeEdge(it)}
g.commit();

Remove all vertices with firstName = 'Kerry'

g.V('firstName','Kerry').each{g.removeVertex(it)}
g.commit();

Remove a vertex with id 1:

g.removeVertex(g.v(1));
g.commit();

Remove an edge with id 1

g.removeEdge(g.e(1));
g.commit();

This is to index the graph with a specific field you may want to search frequently. For example, "myfield"

g.createKeyIndex("frequentSearch",Vertex.class);
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Graphs may also be constructed using the Java API for TinkerPop. In these examples, we will be using 
the cutting edge version (3-incubating) at the time this book was written.

For a thorough discussion of the TinkerPop system, please see http://tinkerpop.apache.org.

For the purposes of managing data, reference data consists of value sets, or status codes or classification 
schemas: these are the data objects appropriate for transactions. If we imagine making an ATM withdrawal 
transaction, for example, we can imagine the associated status codes for such a transaction, such as 
“Succeeded (S),” “Canceled (CN),” “Funds Not Available (FNA),” “Card Cancelled (CC),” etc.

Reference data is generally uniform, company-wide, and can be either created within a country or 
by external standardization bodies. Some types of reference data, such as currencies and currency codes, 
are always standardized. Others, such as the positions of employees within an organization, are less 
standardized.

Master data and associated transactional data are grouped together as part of transactional records.
Reference data is usually highly standardized, either within the company itself, or by a standardization 

code supplied by external authorities set up for the purposes of standardization.
Data objects which are relevant to transaction processes are referred to as reference data. These objects 

may be classification schemas, value sets, or status objects.
Logging cycle status and errors can be as simple as setting the “log levels” in the Java components of the 

programming and letting the program-based logging do the rest, or the construction of whole systems to do 
sophisticated logging, monitoring, alerts, and custom reporting. In most cases it is not enough to trust the 
Java logs alone, of course.

A simple graph database application based on the model-view-controller (MVC) pattern is shown in 
Figure 4-3. The graph query language can be either Cypher or Gremlin, two graph query languages that we 
discussed earlier in the chapter.

Figure 4-2. Extract-Transform-Load (ETL) processing lifecycle

http://tinkerpop.apache.org


Chapter 4 ■ relational, noSQl, and Graph databaSeS

68

4.4  Graph Databases: Apache Neo4J
Graph databases are relative newcomers to the NoSQL database arena. One of the most popular and widely 
used graph databases is the Apache Neo4j package (neo4j.org). Integrating Neo4j graph databases to your 
distributed analytics application is easy using the Spring Data component for Neo4j (http://projects.
spring.io/spring-data-neo4j/). Simply make sure the appropriate dependency is present in your pom.
xml Maven file:

<dependency>
        <groupId>org.springframework.data</groupId>
        <artifactId>spring-data-neo4j</artifactId>
        <version>4.1.1.RELEASE</version>
</dependency>

Be sure to remember to supply the correct version number, or make it one of the properties in your 
pom.xml <properties> tag.

Graph databases can be useful for a number of purposes in a Hadoop-centric system. They can be 
intermediate result repositories, hold the final results from a computation, or even provide some relatively 
simple visualization capabilities “out of the box” for dashboarding components, as shown in Figure 4-4.

Figure 4-3. MVC and graph database components

http://projects.spring.io/spring-data-neo4j/)
http://projects.spring.io/spring-data-neo4j/)
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Let’s try a simple load-and-display Neo4j program to get started. The program uses the standard pom.
xml included with the “Big Data Analytics Toolkit” software included with this book: This pom.xml includes 
the necessary dependencies to run our program, which is shown in Listing 4-1.

Listing 4-1. package com.apress.probda.database;

import org.neo4j.driver.v1.*;

public class Neo4JExample {

public static void main (String... args){
     // NOTE: on the next line, make sure you have a user defined with the appropriate 

password for your
    // authorization tokens.
     Driver driver = GraphDatabase.driver( "bolt://localhost", AuthTokens.basic( "neo4j", 

"datrosa2016" ) );
    Session session = driver.session();

    session.run( "CREATE (a:Person {name:'Kerry', role:'Programmer'})" );

     StatementResult result = session.run( "MATCH (a:Person) WHERE a.name = 'Kerry' RETURN 
a.name AS name, a.role AS role" );

    while ( result.hasNext() )
    {
        Record record = result.next();
         System.out.println( record.get( "role" ).asString() + " " + record.get("name").

asString() );
    }

Figure 4-4. Simple Neo4J data graph visualization
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    System.out.println(".....Simple Neo4J Test is now complete....");
    session.close();
    driver.close();
}
}

4.5  Relational Databases and the Hadoop Ecosystem
Relational databases existed a long time before Hadoop, but they are very compatible with Hadoop, the 
Hadoop ecosystem, and Apache Spark, too. We can use Spring Data JPA (http://docs.spring.io/spring-
data/jpa/docs/current/reference/html/) to combine mainstream relational database technology with a 
distributed environment. The Java Persistence API is a specification (in Java) for managing, accessing, and 
persisting object-based Java data and a relational database such as MySQL (dev.mysql.com). In this section, 
we will use MySQL as an example of relational database implementation. Many other relational database 
systems may be used in place of MySQL.

4.6  Hadoop and Unified Analytics (UA) Components
Apache Lens (lens.apache.org) is a new kind of component which provides “unified analytics” (UA) to 
the Hadoop ecosystem, as shown in Figure 4-5. Unified analytics evolved from the realization that the 
proliferation of software components, language dialects, and technology stacks made standardization of at 
least part of the analytics task essential. Unified analytics attempts to standardize data access semantics in 
the same way that RESTful APIs and semantic web technologies such as RDF (using RDF-REST: http://
liris.cnrs.fr/~pchampin/rdfrest/) and OWL (http://owlapi.hets.eu) provide standardized 
semantics.

Figure 4-5. Apache LENS architecture diagram

http://docs.spring.io/spring-data/jpa/docs/current/reference/html/
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/
http:dev.mysql.com
http://liris.cnrs.fr/~pchampin/rdfrest/)
http://liris.cnrs.fr/~pchampin/rdfrest/)
http://owlapi.hets.eu/
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As with most of the components we discuss in this book, Apache Lens is easy to install. Download the 
most recent version for the web site (for our version this was http://www.apache.org/dyn/closer.lua/
lens/2.5-beta), expand the zipped TAR file, and run

mvn –DskipTests clean package

The LENS system, including the Lens UI component, will build, including the Apache Lens UI as shown 
in Figure 4-6.

Figure 4-6. Apache LENS installed successfully using Maven on MacOSX

Log in to Apache Lens by going to the localhost:8784 default Lens web page in any browser. Your login 
screen will appear as in Figure 4-8.

Run the Lens REPL by typing:

./lens-cli.sh

You will see a result similar to Figure 4-7. Type ‘help’ in the interactive shell to see a list of OLAP 
commands you can try.

http://www.apache.org/dyn/closer.lua/lens/2.5-beta
http://www.apache.org/dyn/closer.lua/lens/2.5-beta


Chapter 4 ■ relational, noSQl, and Graph databaSeS

72

Apache Zeppelin (https://zeppelin.incubator.apache.org) is a web-based, multipurpose notebook 
application which enables data ingestion, discovery, and interactive analytics operations. Zeppelin is 
compatible for use with Scala, SQL, and many other components, languages, and libraries.

mvn clean package -Pcassandra-spark-1.5 -Dhadoop.version=2.6.0 -Phadoop-2.6 –DskipTests

Figure 4-7. Using the Apache Lens REPL

Figure 4-8. Apache LENS login page.Use ‘admin’ for default username and ‘admin’ for default password.

Figure 4-9. . Successfully running the Zeppelin browser UI

https://zeppelin.incubator.apache.org/
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Figure 4-10. Successful Maven build of the Zeppelin notebook

And then

mvn verify

Use

bin/zeppelin-daemon.sh start

to start Zeppelin server, and

bin/zeppelin-daemon.sh stop

to stop the Zeppelin server. Run the introductory tutorials to test the use of Zeppelin at https://zeppelin.
apache.org/docs/0.6.0/quickstart/tutorial.html. Zeppelin is particularly useful for interfacing with 
Apache Spark applications, as well as NoSQL components such as Apache Cassandra.

https://zeppelin.apache.org/docs/0.6.0/quickstart/tutorial.html
https://zeppelin.apache.org/docs/0.6.0/quickstart/tutorial.html
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OLAP is still alive and well in the Hadoop ecosystem. For example, Apache Kylin (http://kylin.
apache.org) is an open source OLAP engine for use with Hadoop. Apache Kylin supports distributed 
analytics, built-in security, and interactive query capabilities, including ANSI SQL support.

Apache Kylin depends on Apache Calcite (http://incubator.apache.org/projects/calcite.html) to 
provide an “SQL core.”

To use Apache Calcite, make sure the following dependencies are in your pom.xml file.

<dependency>
        <groupId>org.apache.calcite</groupId>
        <artifactId>calcite-core</artifactId>
        <version>1.7.0</version>
</dependency>

Figure 4-12. HSQLDB installation from the command line

Figure 4-11. Zeppelin-Lens-Cassandra architecture, with data sources

http://kylin.apache.org/
http://kylin.apache.org/
http://incubator.apache.org/projects/calcite.html
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To install the HSQLDB tools, simply execute

curl -L -O http://search.maven.org/remotecontent?filepath=org/hsqldb/sqltool/2.3.2/sqltool-
2.3.2.jar

and

curl -L -O http://search.maven.org/remotecontent?filepath=org/hsqldb/hsqldb/2.3.2/hsqldb-
2.3.2.jar

on the command line. You should see an installation result similar to Figure 4-13. As you can see, Calcite is 
compatible with many of the databases we have been talking about. Components for use with Cassandra, 
Spark, and Splunk are available.

Figure 4-13. Successful installation of Apache Calcite
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4.7  Summary
In this chapter, we discussed a variety of database types, available software libraries, and how to use the 
databases in a distributed manner. It should be emphasized that there is a wide spectrum of database 
technologies and libraries which can be used with Hadoop and Apache Spark. As we discussed, “glueware” 
such as the Spring Data project, Spring Integration, and Apache Camel, are particularly important when 
integrating BDA systems with database technologies, as they allow integration of distributed processing 
technologies with more mainstream database components. The resulting synergy allows the constructed 
system to leverage relational, NoSQL, and graph technologies to assist with implementation of business 
logic, data cleansing and validation, reporting, and many other parts of the analytic life cycle.

We talked about two of the most popular graph query languages, Cypher and Gremlin, and looked at 
some simple examples of these. We took a look at the Gremlin REPL to perform some simple operations 
there.

When talking about graph databases, we focused on the Neo4j graph database because it is an easy-to-
use, full-featured package. Please keep in mind, however, that there are several similar packages which are 
equally useful, including Apache Giraph (giraph.apache.org),TitanDB (http://thinkaurelius.github.
io/titan/), OrientDB (http://orientdb.com/orientdb/), and Franz’s AllegroGraph (http://franz.com/
agraph/allegrograph/).

In the next chapter, we will discuss distributed data pipelines in more detail—their structure, necessary 
toolkits, and how to design and implement them.
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CHAPTER 5

Data Pipelines and How to 
Construct Them

In this chapter, we will discuss how to construct basic data pipelines using standard data sources and the 
Hadoop ecosystem. We provide an end-to-end example of how data sources may be linked and processed 
using Hadoop and other analytical components, and how this is similar to a standard ETL process. We will 
develop the ideas presented in this chapter in more detail in Chapter 15.

A NOTE ABOUT THE EXAMPLE SYSTEM STRUCTURE

Since we are going to begin developing the example system in earnest, a note about the package 
structure of the example system is not out of place here. The basic package structure of the example 
system developed throughout the book is shown in Figure 5-1, and it’s also reproduced in Appendix A. 
Let’s examine what the packages contain and what they do briefly before moving on to data pipeline 
construction. A brief description of some of the main sub-packages of the Probda system is shown in 
Figure 5-2.
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Figure 5-1. Fundamental package structure for the analytics system
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In this chapter, we will be concentrating on the classes in the package com.apress.probda.pipeline.
There are five base java classes provided in the code contribution which will enable you to work with 

reading, transforming, and writing different data sources using a basic data pipelining strategy. See the code 
contribution notes for more details.

5.1  The Basic Data Pipeline
A basic distributed data pipeline might look like the architecture diagram in Figure 5-3.

Figure 5-2. Brief description of the packages in the Probda example system
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We can use standard off-the-shelf software components to implement this type of architecture.
We will use Apache Kafka, Beam, Storm, Hadoop, Druid, and Gobblin (formerly Camus) to build our 

basic pipeline.

5.2  Introduction to Apache Beam
Apache Beam (http://incubator.apache.org/projects/beam.html) is a toolkit specifically designed for 
constructing data pipelines. It has a unified programming model and is designed to be such, since the core 
of our approach throughout this book is to design and construct distributed data pipelines. Whether using 
Apache Hadoop, Apache Spark, or Apache Flink as core technologies, Apache Beam fits into the technology 
stack in a very logical way. At the time this book was written, Apache Beam was an incubating project, so 
check the web page for its current status.

The key concepts in the Apache Beam programming model are:

•	 “PCollection”: representing a collection of data, which could be bounded or 
unbounded in size

•	 “PTransform”: representing a computation that transforms input PCollections into 
output PCollections

•	 “Pipeline”: manages a directed acyclic graph of PTransforms and PCollections that is 
ready for execution

•	 “PipelineRunner”: specifies where and how the pipeline should execute

Figure 5-3. A basic data pipeline architecture diagram

http://incubator.apache.org/projects/beam.html)
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These basic elements may be used to construct pipelines with many different topologies, like in the 
example code in Listing 5-1.

Listing 5-1. Apache Beam test code snippet example

 static final String[] WORDS_ARRAY = new String[] {
 "probda analytics", "probda", "probda pro analytics",
 "probda one", "three probda", "two probda"};

 static final List<String> TEST_WORDS = Arrays.asList(WORDS_ARRAY);

 static final String[] WORD_COUNT_ARRAY = new String[] {
 "probda: 6", "one: 1", "pro: 1", "two: 1", "three: 1", "analytics: 2"};

 @Test
 @Category(RunnableOnService.class)
 public void testCountWords() throws Exception {
 Pipeline p = TestPipeline.create();

 PCollection<String> input = p.apply(Create.of(TEST_WORDS).withCoder(StringUtf8Coder.of()));

 PCollection<String> output = input.apply(new CountWords())
 .apply(MapElements.via(new FormatAsTextFn()));

 PAssert.that(output).containsInAnyOrder(WORD_COUNT_ARRAY);
 p.run().waitUntilFinish();
 }

cd to contribs/Hadoop and run the Maven file installation
    mvn clean package

Figure 5-4. Successful Maven build of Apache Beam, showing the reactor summary
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5.3  Introduction to Apache Falcon
Apache Falcon (https://falcon.apache.org) is a feed processing and feed management system aimed 
at making it easier for end consumers to onboard their feed processing and perform feed management on 
Hadoop clusters.

Apache Falcon provides the following features:
Apache Falcon (https://falcon.apache.org) can be used to process and manage “feeds” on Hadoop 

clusters, thus providing a system of management which makes it much more straightforward to implement 
onboarding and establish data flows. It has other useful features, including:

•	 establishes relationship between various data and processing elements on a Hadoop 
environment

•	 feed management services such as feed retention, replications across clusters, 
archival, etc.

•	 easy to onboard new workflows/pipelines, with support for late data handling and 
retry policies

•	 integration with metastore/catalog such as Hive/HCatalog

•	 provides notification to end customer based on availability of feed groups (logical 
group of related feeds, which are likely to be used together)

•	 enables use cases for local processing in colo and global aggregations

•	 captures Lineage information for feeds and processes

5.4  Data Sources and Sinks: Using Apache Tika to 
Construct a Pipeline

Apache Tika (tika.apache.org) is a content analysis toolkit. See the installation instructions for Apache Tika 
in Appendix A.

Using Apache Tika, almost all mainstream data sources may be used with a distributed data pipeline.
In this example, we will load a special kind of data file, in DBF format, use Apache Tika to process the 

result, and use a JavaScript visualizer to observe the results of our work.
DBF files are typically used to represent standard database row-oriented data, such as that shown in Listing 5-2.

Map: 26 has: 8 entries...
STATION-->Numeric
5203
MAXDAY-->Numeric
20
AV8TOP-->Numeric
9.947581
MONITOR-->Numeric
36203
LAT-->Numeric

https://falcon.apache.org)
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34.107222
LON-->Numeric
-117.273611
X_COORD-->Numeric
474764.37263
Y_COORD-->Numeric
3774078.43207

DBF files are typically used to represent standard database row-oriented data, such as that shown in Listing 5-3.
A typical method to read DBF files is shown in Listing 5-3.

public static List<Map<String, Object>>readDBF(String filename){
                Charset stringCharset = Charset.forName("Cp866");
        List<Map<String,Object>> maps = new ArrayList<Map<String,Object>>();
                try {
                File file = new File(filename);
                DbfReader reader = new DbfReader(file);
                DbfMetadata meta = reader.getMetadata();
                DbfRecord rec = null;
                int i=0;
                while ((rec = reader.read()) != null) {
                        rec.setStringCharset(stringCharset);
                        Map<String,Object> map = rec.toMap();
                        System.out.println("Map: " + i + " has: " + map.size()+ " entries...");

                        maps.add(map);
                        i++;
                }
                reader.close();
                } catch (IOException e){ e.printStackTrace(); }
                catch (ParseException pe){ pe.printStackTrace(); }
                System.out.println(" Read DBF file: " + filename + " , with : " + maps.

size()+ " results...");
                return maps
}

Gobblin (http://gobblin.readthedocs.io/en/latest/)—formerly known as Camus—is another 
example of a system based on the “universal analytics paradigm” we talked about earlier.

“Something is missing here: is a universal data ingestion framework for extracting, transforming, and 
loading large volume of data from a variety of data sources, e.g., databases, rest APIs, FTP/SFTP servers, 
filers, etc., onto Hadoop. Gobblin handles the common routine tasks required for all data ingestion ETLs, 
including job/task scheduling, task partitioning, error handling, state management, data quality checking, 
data publishing, etc. Gobblin ingests data from different data sources in the same execution framework, 
and manages metadata of different sources all in one place. This, combined with other features such as 
auto scalability, fault tolerance, data quality assurance, extensibility, and the ability of handling data model 
evolution, makes Gobblin an easy-to-use, self-serving, and efficient data ingestion framework.”

Figure 5-5 shows a successful installation of the Gobblin system.

http://gobblin.readthedocs.io/en/latest/)


ChAPTer 5 ■ DATA PiPeLineS AnD how To ConSTruCT Them

84

5.5  Computation and Transformation
Computation and transformation of our data stream can be performed with a small number of simple steps. 
There are several candidates for this part of the processing pipeline, including Splunk and the commercial 
software offering Rocana Transform.

We can either use Splunk as a basis for this, or use Rocana Transform. Rocana is a commercial product, 
so in order to use it you can purchase it or use the free evaluation trial version.

Rocana (https://github.com/scalingdata/rocana-transform-action-plugin) Transform is a 
configuration-driven transformation library that can be embedded in any JVM-based stream processing or 
batch processing system such as Spark Streaming, Storm, Flink, or Apache MapReduce.

One of the code contribution examples shows how to build a Rocana transformation engine plug-in, 
which can perform event data processing within the example system.

In Rocana, a transformation plug-in is made up of two important classes, one based on the Action 
interface and one based on the ActionBuilder interface, as documented in the code contribution.

Figure 5-5. A successful installation of Gobblin

https://github.com/scalingdata/rocana-transform-action-pluginww.tensorflow.org)
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5.6  Visualizing and Reporting the Results
Some visualization and reporting can best be done with a notebook-oriented software tool. Most are based 
on Python—such as Jupyter or Zeppelin. Recall that the Python ecosystem looks something like Figure 5-6. 
Jupyter and Zeppelin would be under the “Other Packages and Toolboxes” heading, but this does not mean 
they are not important.

Figure 5-6. Basic Python ecosystem, with a place for notebook-based visualizers

www.allitebooks.com

http://www.allitebooks.org
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Figure 5-7. Initial installer diagram for the Anaconda Python system
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Figure 5-8. Successful installation of the Anaconda Python system

We’ll be looking at several sophisticated visualization toolkits in chapters to come, but for now let us 
start out with a quick overview of one of the more popular JavaScript-based toolkits, D3, which can be used 
to visualize a wide variety of data sources and presentation types. These include geolocations and maps; 
standard pie, line, and bar charting; tabular reports; and many others (custom presentation types, graph 
database outputs, and more).

Once Anaconda is working correctly, we can proceed to installing another extremely useful toolkit, 
TensorFlow. TensorFlow (https://www.tensorflow.org) is a machine learning library which also contains 
support for a variety of “deep learning” techniques.

https://www.tensorflow.org)
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Figure 5-9. Successfully running the Jupyter notebook program
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Figure 5-10. Successfully installing Anaconda

 ■ Note recall that to build Zeppelin, perform the following steps:

mvn clean package -Pcassandra-spark-1.5 -Dhadoop.version=2.6.0 -Phadoop-2.6 -DskipTests
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Figure 5-11. Sophisticated visualizations may be created using the Jupyter visualization feature.

5.7  Summary
In this chapter, we discussed how to build some basic distributed data pipelines as well as an overview of 
some of the more effective toolkits, stacks, and strategies to organize and build your data pipeline. Among 
these were Apache Tika, Gobblin, Spring Integration, and Apache Flink. We also installed Anaconda (which 
makes the Python development environment much easier to set up and use), as well as an important 
machine learning library, TensorFlow.

In addition, we took a look at a variety of input and output formats including the ancient but useful 
DBF format.

In the next chapter, we will discuss advanced search techniques using Lucene and Solr, and introduce 
some interesting newer extensions of Lucene, such as ElasticSearch.
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CHAPTER 6

Advanced Search Techniques with 
Hadoop, Lucene, and Solr

In this chapter, we describe the structure and use of the Apache Lucene and Solr third-party search engine 
components, how to use them with Hadoop, and how to develop advanced search capability customized for 
an analytical application. We will also investigate some newer Lucene-based search frameworks, primarily 
Elasticsearch, a premier search tool particularly well-suited towards building distributed analytic data 
pipelines. We will also discuss the extended Lucene/Solr ecosystem and some real-world programming 
examples of how to use Lucene and Solr in distributed big data analytics applications.

6.1  Introduction to the Lucene/SOLR Ecosystem
As we discussed in the overview of Lucene and Solr in Chapter 1, Apache Lucene (lucene.apache.com) is a 
key technology to know about when you’re building customized search components, and for good reason. 
It’s one of the most venerable Apache components around and has had a long time to mature. In spite of its 
age, the Lucene/Solr project has been the focus of some interesting new developments in search technology. 
Lucene and Solr have been merged into one Apache project as of 2010. Some of the main components of the 
Lucene/Solr ecosystem are shown in Figure 6-1.

http://dx.doi.org/10.1007/978-1-4842-1910-2_1
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SolrCloud, a new addition to the Lucene/Solr technology stack, allows multicore processing with a 
RESTful interface. To read more about SolrCloud, visit the information page at https://cwiki.apache.org/
confluence/display/solr/SolrCloud.

6.2  Lucene Query Syntax
Lucene queries have evolved over the life of the Lucene project to include some sophisticated extensions to 
the basic query syntax of yesteryear. While Lucene query syntax may change from version to version (and it 
has evolved considerable since its introduction at Apache in 2001) most of the functionality and search types 
remain constant, as is shown in Table 6-1.

Figure 6-1. The Lucene/SOLR ecosystem, with some useful additions

https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://cwiki.apache.org/confluence/display/solr/SolrCloud
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INSTALLING HADOOP, APACHE SOLR, AND NGDATA LILY

in this section we are going to take a brief overview of how to install hadoop, Lucene/Solr, and nGdata’s 
Lily project and suggest some “quick start” techniques to get a Lily installation up and running for 
development and test purposes.

First, install hadoop. this is a download, unzip, configure, and run process similar to the many others 
you have encountered in this book.

when you have successfully installed and configured hadoop, and and set up the hdFS file system, you 
should be able to execute some simple hadoop commands such as

hadoop fs –ls /

after executing this, you should see a screen similar to the one in Figure 6-2.

Table 6-1. Lucene query types and how to use them

Type of Search  
Component

Syntax Example Description

free form text word or "the phrase" "to be or not to be" either un-quoted words or phrases 
with double-quotes

keyword search field name : colon value city:Sunnyvale field to be searched, a colon, and the 
string to search for

boosting term or phrase followed 
by boost value

term^3 Use the caret to provide a new 
boosting value for a term.

wildcard search The * symbol can be used 
for wild carding.

*kerry wild card searches with the ‘*’ or “?” 
symbol

fuzzy search Use the tilde to indicate 
metric distance.

Hadoop~ Fuzzy search uses the symbol tilde 
to indicate closeness using the 
Levenschein distance metric.

grouping Normal parentheses 
provide grouping.

(java or C) Use parentheses to provide sub-
queries.

field grouping Parentheses and colons 
are used to clarify the 
query string.

title:(+gift +"of 
the magi")

grouping with field name 
qualifications, use ordinary 
parentheses to provide grouping

range search field name and colon 
followed by range clause

startDate:[20020101 
TO 20030101]
heroes:{Achilles TO 
Zoroaster}

Square brackets and the keyword 
TO allow construction of the range 
clause, i.e. {Achilles TO Zoroaster}.

proximity Search term tilde proximity value Term~10 Proximity search uses tilde symbol 
to indicate “closeness” to the match.
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Second, install Solr. this is simply a matter of downloading the zip file at, uncompressing, and cd’ing to 
the binary file, where you may then start the server immediately, using the command.

a successful installation of Solr can be tested as in Figure 6-3.

Figure 6-2. Successful test of installation of Hadoop and the Hadoop Distributed File System (HDFS)

Figure 6-3. A successful installation and start of the Solr server
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third, download nGdata’s Lily project from the github project at https://github.com/NGDATA/
lilyproject.

Getting Hadoop, Lucene, Solr, and Lily to cooperate in the same software environment can be tricky, so 
we include some tips on setting up the environment that you may have forgotten.

TIPS ON USING HADOOP WITH SOLR AND LUCENE

1. Make sure you can log in with ‘ssh’ without password. this is essential for hadoop 
to work correctly. it doesn’t hurt to exercise your hadoop installation from time to 
time, to insure all the moving parts are working correctly. a quick test of hadoop 
functionality can be accomplished on the command line with just a few commands. 
For example:

2. Make sure your environment variables are set correctly, and configure your init 
files appropriately. this includes such things as your .bash_profile file, if you are on 
MacoS, for example.

3. test component interaction frequently. there are a lot of moving parts in distributed 
systems. perform individual tests to insure each part is working smoothly.

4. test interaction in standalone, pseudo-distributed, and full-distributed modes when 
appropriate. this includes investigating suspicious performance problems, hang-
ups, unexpected stalls and errors, and version incompatibilities.

5. watch out for version incompatibilities in your pom.xml, and perform good pom.
xml hygiene at all times. Make sure your infrastructure components such as Java, 
Maven, python, npm, node, and the rest are up-to-date and compatible. please 
note: most of the examples in this book use Java 8 (and some examples rely on 
the advanced features present in Java 8), as well as using Maven 3+. use java –
version and mvn –version when in doubt!

6. perform “overall optimization” throughout your technology stack. this includes 
at the hadoop, Solr, and data source/sink levels. identify bottlenecks and 
resource problems. identify “problem hardware,” particularly individual “problem 
processors,” if you are running on a small hadoop cluster.

7. exercise the multicore functionality in your application frequently. it is rare you will 
use a single core in a sophisticated application, so make sure using more than one 
core works smoothly.

8. perform integration testing religiously.

9. performance monitoring is a must. use a standard performance monitoring 
“script” and evaluate performance based on previous results as well as current 
expectations. upgrade hardware and software as required to improve performance 
results, and re-monitor to insure accurate profiling.

10. do not neglect unit tests. a good introduction to writing unit tests for current versions of 
hadoop can be found at https://wiki.apache.org/hadoop/HowToDevelopUnitTests.

https://github.com/NGDATA/lilyproject
https://github.com/NGDATA/lilyproject
https://wiki.apache.org/hadoop/HowToDevelopUnitTests
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Apache Katta (http://katta.sourceforge.net/about) is a useful addition to any Solr-based 
distributed data pipelining architecture, and allows Hadoop indexing into shards, as well as many other 
advanced features.

HOW TO INSTALL AND CONFIGURE APACHE KATTA

1. download apache Katta from the repository at  https://sourceforge.net/
projects/katta/files/. unzip the file.

2. add the Katta environment variables to your .bash_profile file if you are running 
under MacoS, or the appropriate start-up file if running another version of Linux. 
these variables include (please note these are examples only; substitute your own 
appropriate path values here):

export KATTA_HOME= /Users/kerryk/Downloads/kata-core-0.6.4

 and add the binary of Katta to the path so you can call it directly:

export PATH=$KATTA_HOME/bin:$PATH

3. Check to make sure the Katta process is running correctly by typing

ps –al | grep katta

 on the command line. You should see an output similar to Figure 6-4.

Figure 6-4. A successful initialization of the Katta Solr subsystem

http://katta.sourceforge.net/about
https://sourceforge.net/projects/katta/files/
https://sourceforge.net/projects/katta/files/
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4. Successfully running the Katta component will produce results similar to those in Figure 6-4.

Figure 6-5. Successful installation and run of Apache Katta screen

6.3  A Programming Example using SOLR
We are going to work through a complete example of using SOLR to load, modify, evaluate, and search a 
standard data set that we download from the Internet. We’re going to highlight a few features of Solr as we 
go. As we noted earlier, Solr contains separate data repositories called “cores.” Each one may have a separate 
defined schema associated with it. Solr cores may be created on the command line.

First, download the sample data set as a csv file from the URL http://samplecsvs.s3.amazonaws.com/
SacramentocrimeJanuary2006.csv

You will find it in your downloads folder with the file name

yourDownLoadDirectory/SacramentocrimeJanuary2006.csv

Create a new SOLR core with the command:

./solr create –c crimecore1 –d basic_configs

You will see a screen similar to the one in Figure 6-2 if your core creation is successful.

http://samplecsvs.s3.amazonaws.com/SacramentocrimeJanuary2006.csv
http://samplecsvs.s3.amazonaws.com/SacramentocrimeJanuary2006.csv
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Modify the schema file schema.xml by adding the right fields to the end of the specification.

<!— much more of the schema.xml file will be here -->

                                ............

<!--   you will now add the field specifications for the cdatetime,address,district,beat,gri
d,crimedescr,ucr_ncic_code,latitude,longitude 
   fields found in the data file SacramentocrimeJanuary2006.csv 
--> 
    < field name="cdatetime" type="string" indexed="true" stored="true" required="true" 

multiValued="false" />  
    < field name="address" type="string" indexed="true" stored="true" required="true" 

multiValued="false" />  

    < field name="district" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  

<field name="beat" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  

<field name="grid" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  
<field name="crimedescr" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  

Figure 6-6. Successful construction of a Solr core
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<field name="ucr_ncic_code" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  
<field name="latitude" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  

<field name="longitude" type="string" indexed="true" stored="true" required="true" 
multiValued="false" />  
   <field name="internalCreatedDate" type="date" indexed="true" stored="true" 
required="true" multiValued="false" />  

   <!--  the previous fields were added to the schema.xml file. Field type definition for 
currentcy is shown below  --> 

    <fieldType name="currency" class="solr.CurrencyField" precisionStep="8" 
defaultCurrency="USD" currencyConfig="currency.xml" /> 

</schema> 

It’s easy to modify data by appending keys and additional data to the individual data lines of the CSV 
file. Listing 6-1 is a simple example of such a CSV conversion program.

Modify the Solr data by adding a unique key and creation date to the CSV file.
The program to do this is shown in Listing 6-1. The file name will be com/apress/converter/csv/

CSVConverter.java.
The program to add fields to the CSV data set needs little explanation. It reads an input CSV file line by 

line, adding a unique ID and date field to each line of data. There are two helper methods within the class, 
createInternalSolrDate() and getCSVField().

Within the CSV data file, the header and the first few rows appear as in Figure 6-7, as shown in Excel.

Figure 6-7. Crime data CSV file. This data will be used throughout this chapter.
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Listing 6-1. Java source code for CSVConverter.java.

package com.apress.converter.csv;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.LineNumberReader;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.TimeZone;
import java.util.logging.Logger;

public class CSVConverter {
        Logger LOGGER = Logger.getAnonymousLogger();

        String targetSource = "SacramentocrimeJan2006.csv";
        String targetDest = "crime0.csv";

        /** Make a date Solr can understand from a regular oracle-style day string.
         * 
         * @param regularJavaDate
         * @return
         */
        public String createInternalSolrDate(String regularJavaDate){
                if (regularJavaDate.equals("")||(regularJavaDate.equals("\"\""))){ return ""; }

                String answer = "";
                TimeZone tz = TimeZone.getTimeZone("UTC");
                DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'");
                df.setTimeZone(tz);
                try {
                answer = df.format(new Date(regularJavaDate));
                } catch (IllegalArgumentException e){
                        return "";
                }
                return answer;
        }

        /**  Get a CSV field in a CSV string by numerical index. Doesnt care if there are 
blank fields, but they count in the indices.

         * 
         * @param s
         * @param fieldnum
         * @return
         */
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        public String getCSVField(String s, int fieldnum){
                String answer = "";
                if (s != null) { s = s.replace(",,", ", ,");
                String[] them = s.split(",");
                int count = 0;
                for (String t : them){
                        if (fieldnum == count) answer = them[fieldnum];
                        count++;
                }        
                }
                return answer;
        }

        public CSVConverter(){
                LOGGER.info("Performing CSV conversion for SOLR input");

                List<String>contents = new ArrayList<String>();
                ArrayList<String>result = new ArrayList<String>();
                String readline = "";
                LineNumberReader reader = null;
                FileOutputStream writer = null;
                try {
                         reader = new LineNumberReader(new FileReader(targetSource));
                         writer = new FileOutputStream (new File(targetDest));
                        int count = 0;
                        int thefield = 1;
                        while (readline != null){
                        readline = reader.readLine();
                        if (readline.split(","))<2){
                                LOGGER.info("Last line, exiting...");
                                break;
                        }
                        if (count != 0){ 
                                String origDate = getCSVField(readline, thefield).split(“ “)[0];
                                String newdate = createInternalSolrDate(origDate);
                                String resultLine = readline + "," + newdate+"\n";
                                LOGGER.info("===== Created new line: " + resultLine);
                                writer.write(resultLine.getBytes());
                                result.add(resultLine);
                        } else {
                                Str ing resultLine = readline +",INTERNAL_CREATED_DATE\n";   

// add the internal date for faceted search
                                writer.write(resultLine.getBytes());
                        }
                        count++;
                        LOGGER.info("Just read imported row: " + readline);
                        }
                } catch (FileNotFoundException e) {
                        e.printStackTrace();
                } catch (IOException e) {
                        // TODO Auto-generated catch block
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                        e.printStackTrace();
                }
                for (String line : contents){
                String newLine = "";        
                }
                try {
                reader.close();
                writer.close();
                } catch (IOException e){ e.printStackTrace(); }
                LOGGER.info("...CSV conversion complete...");
        }

        /** MAIN ROUTINE
         * 
         * @param args
         */
        public static void main(String[] args){
                new CSVConverter(args[0], args[1]);
        }

}

Compile the file by typing:

javac com/apress/converter/csv/CSVConverter.java

After setting up the CSV conversion program properly as described above, you can run it by typing

java com.apress.converter.csv.CSVConverter inputcsvfile.csv outputcsvfile.csv

Post the modified data to the SOLR core:

./post –c crimecore1 ./modifiedcrimedata2006.csv

Now that we’ve posted the data to the Solr core, we can examine the data set in the Splr dashboard.  
Go to localhost:8983 to do this. You should see a screen similar to the one in Figure 6-4.
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Figure 6-8. Initial Solr dashboard
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Figure 6-9. Result of Solr query, showing the JSON output format

We can also evaluate data from the Solandra core we created earlier in the chapter, as shown in Figure _ _.
Now select the crimedata0 core from the Core Selector drop-down. Click on query and change the 

output format (‘wt’ parameter dropdown) to csv , so that you can see several lines of data at once. You will 
see a data display similar to the one in Figure 6-9.
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Because of Solr’s RESTful interface, we can make queries either through the dashboard (conforming to 
Lucene’s query syntax discussed earlier) or on the command line using the CURL utility.

6.4  Using the ELK Stack (Elasticsearch, Logstash, and 
Kibana)

As we mentioned before, there are alternatives to Lucene, Solr, and Nutch. Depending on the overall 
architecture of your system, a variety of technology stacks, languages, integration and plug-in helper 
libraries, and functionality are available to you. Some of these components may use Lucene or Solr, or be 
compatible with Lucene/Solr components through integration helper libraries, such as Spring Data, Spring 
MVC, or Apache Camel, among others. An example of an alternative to the basic Lucene stack, known as the 
“ELK stack,” is shown in Figure 6-6.

Elasticsearch (elasticsearch.org) is a distributed high-performance search engine . Under the hood, 
Elasticsearch uses Lucene as a core component, as shown in Figure 6-3. Elasticsearch is a strong competitor 
to SolrCloud, and is easy to scale out, maintain, monitor, and deploy.

Why would you use Elasticsearch instead of Solr? Taking a careful look at the feature matrices for Solr 
and Elasticsearch reveals that, in many ways, the two toolkits have similar functionality. They both leverage 
Apache Lucene. Both Solr and Elasticsearch can use JSON as a data exchange format, although Solr also 
supports XML.

Figure 6-10. Result of Solr query using the dashboard (Sacramento crime data core)
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Logstash (logstash.net) is a useful application to allow importing of a variety of different kinds of data 
into Elasticsearch, including CSV-formatted files and ordinary “log format” files. Kibana (https://www.
elastic.co/guide/en/kibana/current/index.html) is an open source visualization component which 
allows customizable . Together Elasticsearch, Logstash, and Kibana form the so-called “ELK stack,” which 
can be principally used to. In this section, we’ll look at a small example of the ELK stack in action.

Table 6-2. Feature comparison table of Elasticsearch features vs. Apache Solr features

JSON XML CSV HTTP 
REST

JMX Client 
Libraries

Lucene 
Query 
Parsing

Self 
Contained 
Distributed 
Cluster

Sharding Visualization Web  
Admin 
Interface

Solr X X X X X Java X X Kibana 
Port 
(Banana)

Elastic 
Search

X X Java  
Python 
Javascript

X X X Kibana

https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
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Figure 6-11. The so-called “ELK stack”: Elasticsearch, Logstash, and Kibana visualization
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Figure 6-12. ELK stack in use: Elasticsearch search engine/pipeline architecture diagram

INSTALLING ELASTICSEARCH, LOGSTASH, AND KIBANA

installing and trying out the eLK Stack couldn’t be easier. it is a familiar process if you have followed 
through the introductory chapters of the book so far. Follow the three steps below to install and test the 
eLK stack:

1. download elasticsearch from https://www.elastic.co/downloads/
elasticsearch.

Unzip the downloaded file to a convenient staging area. then,

cd $ELASTICSEARCH_HOME/bin/
./elasticsearch

 Elasticsearch will start up successfully with a display similar to that in Figure 6-3.

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
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Figure 6-13. Successful start-up of the Elasticsearch server from the binary directory

 Use the following Java program to import the crime data CSv file (or, with a little 
modification, any CSv formatted data file you wish):

public static void main(String[] args)
    {
        System.out.println( "Import crime data" );
        String originalClassPath = System.getProperty("java.class.path");
        String[] classPathEntries = originalClassPath.split(";");
        StringBuilder esClasspath = new StringBuilder();
        for (String entry : classPathEntries) {
        if (entry.contains("elasticsearch") || entry.contains("lucene")) {
        esClasspath.append(entry);
        esClasspath.append(";");
        }
        }
        System.setProperty("java.class.path", esClasspath.toString());
        System.setProperty("java.class.path", originalClassPath);
        System.setProperty("es.path.home", "/Users/kerryk/Downloads/elasticsearch-2.3.1");
        String file = "SacramentocrimeJanuary2006.csv";
        Client client = null;
        try {

        client = TransportClient.builder().build()
         .add TransportAddress(new InetSocketTransportAddress(InetAddress.getByName("localho

st"), 9300));

        int numlines = 0;
        XContentBuilder builder = null;

        int i=0;

        String currentLine = "";
        BufferedReader br = new BufferedReader(new FileReader(file));
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            while ((currentLine = br.readLine()) != null) {
            if (i > 0){
            System.out.println("Processing line: " + currentLine);
        String[] tokens = currentLine.split(",");
        String city = "sacramento";
        String recordmonthyear = "jan2006";
        String cdatetime = tokens[0];
        String address = tokens[1];
        String district = tokens[2];
        String beat = tokens[3];
        String grid = tokens[4];
        String crimedescr = tokens[5];
        String ucrnciccode = tokens[6];
        String latitude = tokens[7];
        String longitude = tokens[8];
        System.out.println("Crime description = " + crimedescr);
        i=i+1;
        System.out.println("Index is: " + i);
        Ind exResponse response = client.prepareIndex("thread", "answered", "400"+new 

Integer(i).toString()).setSource(

        jsonBuilder()
        .startObject()
        .field("cdatetime", cdatetime)
        .field("address", address)
        .field("district", district)
        .field("beat", beat)
        .field("grid", grid)
        .field("crimedescr", crimedescr)
        .field("ucr_ncic_code", ucrnciccode)
        .field("latitude", latitude)
        .field("longitude", longitude)
        .field("entrydate", new Date())
        .endObject())
        .execute().actionGet();

            } else {
                System.out.println("Ignoring first line...");
                i++;
            }
        }

    } catch (Exception e) {
        // TODO Auto-generated catch block
        e.printStackTrace();

        }
        }
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 Run the program in eclipse or in the command line. You will see a result similar to 
the one in Figure 6-14. please note that each row of the CSv is entered as a set 
of fields into the elasticsearch repository. You can also select the index name and 
index type by changing the appropriate strings in the code example.

Figure 6-14. Successful test of an Elasticsearch crime database import from the Eclipse IDE

 You can test the query capabilities of your new elasticsearch set-up by using ‘curl’ 
on the command line to execute some sample queries, such as:

Figure 6-15. You can see the schema update logged in the Elasticsearch console
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2. download Logstash from https://www.elastic.co/downloads/logstash. unzip 
the downloaded file to the staging area.

cd <your logstash staging area, LOGSTASH_HOME>

After entering some text, you will see an echoed result similar to Figure 6-6.

 You will also need to set up a configuration file for use with Logstash. Follow the 
directions found at  to make a configuration file such as the one shown in Listing 6-2.

Figure 6-16. Successful test of an Elasticsearch crime database query from the command line

https://www.elastic.co/downloads/logstash
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Listing 6-2. Typical Logstash configuration file listing

input { stdin { } }

filter {
  grok {
    match => { "message" => "%{COMBINEDAPACHELOG}" }
  }
  date {
    match => [ "timestamp" , "dd/MMM/yyyy:HH:mm:ss Z" ]
  }
}

output {
  elasticsearch { hosts => ["localhost:9200"] }
  stdout { codec => rubydebug }
}

3. download Kibana from https://www.elastic.co/downloads/kibana.

 Unzip the downloaded file to the staging area.

 In a similar way to starting the elasticsearch server:

  cd bin
./kibana

Figure 6-17. Testing your Logstash installation. You can enter text from the command line.

https://www.elastic.co/downloads/kibana
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Figure 6-18. Successful start-up of the Kibana visualization component from its binary directory
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 You can easily query for keywords or more complex queries interactively using the 
Kibana dashboard as shown in Figure 6-19.

Figure 6-19. Kibana dashboard example with crime dataset

Figure 6-20. Kibana dashboard example: highlighted search for “FRAUD.”
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 Add this schema for the crime data to elasticsearch with this curL command:

curl -XPUT http://localhost:9200/crime2 -d '
{ "mappings" : 
{ "crime2" : { "properties" : { "cdatetime" : {"type" : "string"}, "address" : {"type": 
"string"}, "district" : {"type" : "string"}, "beat": {"type" : "string"}, "grid": 
{"type" : "string"}, "crimedescr" : {"type": "string"}, "ucr_ncic_code": {"type": 
"string"},"latitude": {"type" : "string"}, "longitude": {"type" : "string"}, "location": 
{"type" : "geo_point"}}  
} } }'

 Notice the “location” tag in particular, which has a geo_point-type definition. this 
allows Kibana to identify the physical location on a map for visualization purposes, 
as shown in Figure 6-21.

Figure 6-21. The crime data for Sacramento as a visualization in Kibana

Figure 6-21 is a good example of understanding a complex data set at a glance. we can immediately 
pick out the “high crime” areas in red.
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6.5  Solr vs. ElasticSearch : Features and Logistics
In this section we will use as an example, the so-called CRUD operations (create, replace, update, and delete 
methods, with an additional search utility method) in a code example using Elasticsearch.

Listing 6-3. CRUD operations for  Elasticsearch example

package com.apress.main;

import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchType;
import org.elasticsearch.client.Client;
import static org.elasticsearch.index.query.QueryBuilders.fieldQuery;
import org.elasticsearch.node.Node;
import static org.elasticsearch.node.NodeBuilder.nodeBuilder;
import org.elasticsearch.search.SearchHit;

/**
 *
 * @author kerryk
 */

public class ElasticSearchMain {

          public static final String INDEX_NAME = "narwhal";
          public static final String THEME_NAME = "messages";

    public static void main(String args[]) throws IOException{

        Node node     = nodeBuilder().node();
        Client client = node.client();

        client.prepareIndex(INDEX_NAME, THEME_NAME, "1")
              .setSource(put("ElasticSearch: Java",
                                         "El asticSeach provides Java API, thus it executes 

all operations " +
                                          "asynchronously by using client object..",
                                         new Date(),
                                         new String[]{"elasticsearch"},
                                         "Kerry Koitzsch", "iPad", "Root")).execute().actionGet();
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        client.prepareIndex(INDEX_NAME, THEME_NAME, "2")
              .setSource(put("Java Web Application and ElasticSearch (Video)",
                                         "Today, here I am for exemplifying the usage of 
ElasticSearch which is an open source, distributed " +
                                         "and scalable full text search engine and a data 
analysis tool in a Java web application.",
                                         new Date(),
                                         new String[]{"elasticsearch"},
                                         "Ker ry Koitzsch", "Apple TV", "Root")).execute().

actionGet();

        get(client, INDEX_NAME, THEME_NAME, "1");

        update(client, INDEX_NAME, THEME_NAME, "1", "title", "ElasticSearch: Java API");
        update(client, INDEX_NAME, THEME_NAME, "1", "tags", new String[]{"bigdata"});

        get(client, INDEX_NAME, THEME_NAME, "1");

        search(client, INDEX_NAME, THEME_NAME, "title", "ElasticSearch");

        delete(client, INDEX_NAME, THEME_NAME, "1");

        node.close();
    }

    public static Map<String, Object> put(String title, String content, Date postDate, 
                                                      St ring[] tags, String author, 

String communityName, String 
parentCommunityName){

        Map<String, Object> jsonDocument = new HashMap<String, Object>();

        jsonDocument.put("title", title);
        jsonDocument.put("content", content);
        jsonDocument.put("postDate", postDate);
        jsonDocument.put("tags", tags);
        jsonDocument.put("author", author);
        jsonDocument.put("communityName", communityName);
        jsonDocument.put("parentCommunityName", parentCommunityName);
        return jsonDocument;
    }

    public static void get(Client client, String index, String type, String id){

        GetResponse getResponse = client.prepareGet(index, type, id)
                                        .execute()
                                        .actionGet();
        Map<String, Object> source = getResponse.getSource();

        System.out.println("------------------------------");
        System.out.println("Index: " + getResponse.getIndex());
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        System.out.println("Type: " + getResponse.getType());
        System.out.println("Id: " + getResponse.getId());
        System.out.println("Version: " + getResponse.getVersion());
        System.out.println(source);
        System.out.println("------------------------------");

    }

    public static void update(Client client, String index, String type, 
                                      String id, String field, String newValue){

        Map<String, Object> updateObject = new HashMap<String, Object>();
        updateObject.put(field, newValue);

        client.prepareUpdate(index, type, id)
              .setScript("ctx._source." + field + "=" + field)
              .setScriptParams(updateObject).execute().actionGet();
    }

    public static void update(Client client, String index, String type,
                                      String id, String field, String[] newValue){

        String tags = "";
        for(String tag :newValue)
            tags += tag + ", ";

        tags = tags.substring(0, tags.length() - 2);

        Map<String, Object> updateObject = new HashMap<String, Object>();
        updateObject.put(field, tags);

        client.prepareUpdate(index, type, id)
                .setScript("ctx._source." + field + "+=" + field)
                .setScriptParams(updateObject).execute().actionGet();
    }

    public static void search(Client client, String index, String type,
                                      String field, String value){

        SearchResponse response = client.prepareSearch(index)
                                        .setTypes(type)
                                        .setSearchType(SearchType.QUERY_AND_FETCH)
                                        .setQuery(fieldQuery(field, value))
                                        .setFrom(0).setSize(60).setExplain(true)
                                        .execute()
                                        .actionGet();

        SearchHit[] results = response.getHits().getHits();

        System.out.println("Current results: " + results.length);
        for (SearchHit hit : results) {
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            System.out.println("------------------------------");
            Map<String,Object> result = hit.getSource();   
            System.out.println(result);
        }
    }

    public static void delete(Client client, String index, String type, String id){

        DeleteResponse response = client.prepareDelete(index, type, id).execute().actionGet();
        System.out.println("===== Information on the deleted document:");
        System.out.println("Index: " + response.getIndex());
        System.out.println("Type: " + response.getType());
        System.out.println("Id: " + response.getId());
        System.out.println("Version: " + response.getVersion());
    }
}

Defining the CRUD operations for a search component is key to the overall architecture and logistics of 
how the customized component will “fit in” with the rest of the system.

6.6  Spring Data Components with Elasticsearch and Solr
In this section, we will develop a code example which uses Spring Data to implement the same kind of 
component using Solr and Elasticsearch as the search frameworks being used “under the hood.”

You can define the two properties for Elasticsearch and Solr respectively for your pom.xml file as 
shown here:

<spring.data.elasticsearch.version>2.0.1.RELEASE</spring.data.elasticsearch.version>
<spring.data.solr.version>2.0.1.RELEASE</spring.data.solr.version>

<dependency>
        <groupId>org.springframework.data</groupId>
        <artifactId>spring-data-elasticsearch</artifactId>
        <version>2.0.1.RELEASE</version>
</dependency>
and
<dependency>
        <groupId>org.springframework.data</groupId>
        <artifactId>spring-data-solr</artifactId>
        <version>2.0.1.RELEASE</version>
</dependency>

We can now develop Spring Data-based code examples as shown in Listing 6-5 and Listing 6-6.
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Listing 6-4. NLP program—main() executable method

package com.apress.probda.solr.search;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import com.apress.probda.context.config.SearchContext;
import com.apress.probda.context.config.WebContext;
@Configuration
@ComponentScan
@EnableAutoConfiguration
@Import({ WebContext.class, SearchContext.class })
public class Application {
        public static void main(String[] args) {
                SpringApplication.run(Application.class, args);
        }
import org.apache.solr.client.solrj.SolrServer;
import org.apache.solr.client.solrj.impl.HttpSolrServer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.solr.repository.config.EnableSolrRepositories;

@Configuration
@EnableSolrRepositories(basePackages = { "org.springframework.data.solr.showcase.product" }, 
multicoreSupport = true)
public class SearchContext {

        @Bean
        public SolrServer solrServer(@Value("${solr.host}") String solrHost) {
                return new HttpSolrServer(solrHost);
        }

}

File: WebContext.java
import java.util.List;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.web.PageableHandlerMethodArgumentResolver;
import org.springframework.web.method.support.HandlerMethodArgumentResolver;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

/**
 * @author kkoitzsch
 */
@Configuration
public class WebContext {
        @Bean
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        public WebMvcConfigurerAdapter mvcViewConfigurer() {
                return new WebMvcConfigurerAdapter() {
                        @Override
                        public void addViewControllers(ViewControllerRegistry registry) {

                                registry.addViewController("/").setViewName("search");
                                registry.addViewController("/monitor").setViewName("monitor");
                        }
                        @Override
                        pub lic void addArgumentResolvers(List<HandlerMethodArgumentResolver> 

argumentResolvers) {
                                argu mentResolvers.add(new 

PageableHandlerMethodArgumentResolver());
                        }
                };
        }
}

Listing 6-5. Spring Data code example using Solr

public static void main(String[] args) throws IOException {
        String text = "The World is a great place";
        Properties props = new Properties();
        props.setProperty("annotators", "tokenize, ssplit, pos, lemma, parse, sentiment");
        StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

        Annotation annotation = pipeline.process(text);
        List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
        for (CoreMap sentence : sentences) {
            String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
            System.out.println(sentiment + "\t" + sentence);
        }
    }

Listing 6-6. Spring Data code example using Elasticsearch (unit test)

package com.apress.probda.search.elasticsearch;
import com.apress.probda.search.elasticsearch .Application;
import com.apress.probda.search.elasticsearch .Post;
import com.apress.probda.search.elasticsearch.Tag;
import com.apress.probda.search.elasticsearch.PostService;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
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import java.util.Arrays;
import static org.hamcrest.CoreMatchers.notNullValue;
import static org.hamcrest.core.Is.is;
import static org.junit.Assert.assertThat;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = Application.class)
public class PostServiceImplTest{
    @Autowired
    private PostService postService;
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

    @Before
    public void before() {
        elasticsearchTemplate.deleteIndex(Post.class);
        elasticsearchTemplate.createIndex(Post.class);
        elasticsearchTemplate.putMapping(Post.class);
        elasticsearchTemplate.refresh(Post.class, true);
    }
    //@Test
    public void testSave() throws Exception {
        Tag tag = new Tag();
        tag.setId("1");
        tag.setName("tech");
        Tag tag2 = new Tag();
        tag2.setId("2");
        tag2.setName("elasticsearch");
        Post post = new Post();
        post.setId("1");
        post.setTitle("Bigining with spring boot application and elasticsearch");
        post.setTags(Arrays.asList(tag, tag2));
        postService.save(post);
        assertThat(post.getId(), notNullValue());
        Post post2 = new Post();
        post2.setId("1");
        post2.setTitle("Bigining with spring boot application");
        post2.setTags(Arrays.asList(tag));
        postService.save(post);
        assertThat(post2.getId(), notNullValue());
    }
    public void testFindOne() throws Exception {
    }

    public void testFindAll() throws Exception {
    }

    @Test
    public void testFindByTagsName() throws Exception {
        Tag tag = new Tag();
        tag.setId("1");
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        tag.setName("tech");
        Tag tag2 = new Tag();
        tag2.setId("2");
        tag2.setName("elasticsearch");

        Post post = new Post();
        post.setId("1");
        post.setTitle("Bigining with spring boot application and elasticsearch");
        post.setTags(Arrays.asList(tag, tag2));
        postService.save(post);

        Post post2 = new Post();
        post2.setId("1");
        post2.setTitle("Bigining with spring boot application");
        post2.setTags(Arrays.asList(tag));
        postService.save(post);

        Page<Post> posts  = postService.findByTagsName("tech", new PageRequest(0,10));
        Page<Post> posts2  = postService.findByTagsName("tech", new PageRequest(0,10));
        Page<Post> posts3  = postService.findByTagsName("maz", new PageRequest(0,10));

       assertThat(posts.getTotalElements(), is(1L));
        assertThat(posts2.getTotalElements(), is(1L));
        assertThat(posts3.getTotalElements(), is(0L));
    }
}

6.7  Using LingPipe and GATE for Customized Search
In this section, we will review a pair of useful analytical tools which may be used with Lucene and Solr to 
enhance natural language processing (NLP) analytics capabilities in a distributed analytic application. 
LingPipe (http://alias-i.com/lingpipe/) and GATE (General Architecture for Text Engineering, https://
gate.ac.uk) can be used to add natural language processing capabilities to analytical systems. A typical 
architecture for an NLP based analytical system might be similar to Figure 6-22.

http://alias-i.com/lingpipe/
https://gate.ac.uk/
https://gate.ac.uk/
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Natural language processing systems can be designed and built in a similar fashion to any other 
distributed pipelining system. The only difference is the necessary adjustments for the particular nature of 
the data and metadata itself. LingPipe, GATE, Vowpal Wabbit, and StanfordNLP allow for the processing, 
parsing, and “understanding” of text, and packages such as Emir/Caliph, ImageTerrier, and HIPI provide 
features to analyze and index image- and signal-based data. You may also wish to add packages to help 
with geolocation, such as SpatialHadoop (http://spatialhadoop.cs.umn.edu), which is discussed in more 
detail in Chapter 14.

Various input formats including raw text, XML, HTML, and PDF documents can be processed by GATE, 
as well as relational data/JDBC-mediated data. This includes data imported from Oracle, PostgreSQL, and 
others.

The Apache Tika import component might be implemented as in Listing 6-7.

Figure 6-22. NLP system architecture, using LingPipe, GATE, and NGDATA Lily

http://spatialhadoop.cs.umn.edu/
http://dx.doi.org/10.1007/978-1-4842-1910-2_14


Chapter 6 ■ advanCed SearCh teChniqueS with hadoop, LuCene, and SoLr

126

Listing 6-7. Apache Tika import routines for use throughout the PROBDA System

Package com.apress.probda.io;

import java.io.*;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;

import com.apress.probda.pc.AbstractProbdaKafkaProducer;
import org.apache.commons.lang3.StringUtils;
import org.apache.tika.exception.TikaException;
import org.apache.tika.io.TikaInputStream;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.metadata.serialization.JsonMetadata;
import org.apache.tika.parser.ParseContext;
import org.apache.tika.parser.Parser;
import org.apache.tika.parser.isatab.ISArchiveParser;
import org.apache.tika.sax.ToHTMLContentHandler;
import org.dia.kafka.solr.consumer.SolrKafkaConsumer;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import org.json.simple.JSONValue;
import org.json.simple.parser.JSONParser;
import org.json.simple.parser.ParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.SAXException;

import static org.dia.kafka.Constants.*;

public class ISAToolsKafkaProducer extends AbstractKafkaProducer {

    /**
     * Tag for specifying things coming out of LABKEY
     */
    public final static String ISATOOLS_SOURCE_VAL = "ISATOOLS";
    /**
     * ISA files default prefix
     */
    private static final String DEFAULT_ISA_FILE_PREFIX = "s_";
    /**
     * Json jsonParser to decode TIKA responses
     */
    private static JSONParser jsonParser = new JSONParser();
    ;

    /**
     * Constructor
     */
    public ISAToolsKafkaProducer(String kafkaTopic, String kafkaUrl) {
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        initializeKafkaProducer(kafkaTopic, kafkaUrl);
    }

    /**
     * @param args
     */
    public static void main(String[] args) throws IOException {
        String isaToolsDir = null;
        long waitTime = DEFAULT_WAIT;
        String kafkaTopic = KAFKA_TOPIC;
        String kafkaUrl = KAFKA_URL;

        // TODO Implement commons-cli
        String usage = "java -jar ./target/isatools-producer.jar [--tikaRESTURL <url>] 
[--isaToolsDir <dir>] [--wait <secs>] [--kafka-topic <topic_name>] [--kafka-url]\n";

        for (int i = 0; i < args.length - 1; i++) {
            if (args[i].equals("--isaToolsDir")) {
                isaToolsDir = args[++i];
            } else if (args[i].equals("--kafka-topic")) {
                kafkaTopic = args[++i];
            } else if (args[i].equals("--kafka-url")) {
                kafkaUrl = args[++i];
            }
        }

        // Checking for required parameters
        if (StringUtils.isEmpty(isaToolsDir)) {
            Sy stem.err.format("[%s] A folder containing ISA files should be specified.\n", 

ISAToolsKafkaProducer.class.getSimpleName());
            System.err.println(usage);
            System.exit(0);
        }

        // get KafkaProducer
        final ISAToolsKafkaProducer isatProd = new ISAToolsKafkaProducer(kafkaTopic, kafkaUrl);
        DirWatcher dw = new DirWatcher(Paths.get(isaToolsDir));

        // adding shutdown hook for shutdown gracefully
        Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
            public void run() {
                System.out.println();
                System.out.format("[%s] Exiting app.\n", isatProd.getClass().getSimpleName());
                isatProd.closeProducer();
            }
        }));

        // get initial ISATools files
        List<JSONObject> newISAUpdates = isatProd.initialFileLoad(isaToolsDir);
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        // send new studies to kafka
        isatProd.sendISAToolsUpdates(newISAUpdates);
        dw.processEvents(isatProd);

    }

    /**
     * Checks for files inside a folder
     *
     * @param innerFolder
     * @return
     */
    public static List<String> getFolderFiles(File innerFolder) {
        List<String> folderFiles = new ArrayList<String>();
        String[] innerFiles = innerFolder.list(new FilenameFilter() {
            public boolean accept(File dir, String name) {
                if (name.startsWith(DEFAULT_ISA_FILE_PREFIX)) {
                    return true;
                }
                return false;
            }
        });

        for (String innerFile : innerFiles) {
            File tmpDir = new File(innerFolder.getAbsolutePath() + File.separator + innerFile);
            if (!tmpDir.isDirectory()) {
                folderFiles.add(tmpDir.getAbsolutePath());
            }
        }
        return folderFiles;
    }

    /**
     * Performs the parsing request to Tika
     *
     * @param files
     * @return a list of JSON objects.
     */
    public static List<JSONObject> doTikaRequest(List<String> files) {
        List<JSONObject> jsonObjs = new ArrayList<JSONObject>();

        try {
            Parser parser = new ISArchiveParser();
            StringWriter strWriter = new StringWriter();

            for (String file : files) {
                JSONObject jsonObject = new JSONObject();

                // get metadata from tika
                InputStream stream = TikaInputStream.get(new File(file));
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                ContentHandler handler = new ToHTMLContentHandler();
                Metadata metadata = new Metadata();
                ParseContext context = new ParseContext();
                parser.parse(stream, handler, metadata, context);

                // get json object
                jsonObject.put(SOURCE_TAG, ISATOOLS_SOURCE_VAL);
                JsonMetadata.toJson(metadata, strWriter);
                jsonObject =  adjustUnifiedSchema((JSONObject) jsonParser.parse(new 

String(strWriter.toString())));
                //TODO Tika parsed content is not used needed for now
                //jsonObject.put(X_TIKA_CONTENT, handler.toString());
                Syst em.out.format("[%s] Tika message: %s \n", ISAToolsKafkaProducer.class.

getSimpleName(), jsonObject.toJSONString());

                jsonObjs.add(jsonObject);

                strWriter.getBuffer().setLength(0);
            }
            strWriter.flush();
            strWriter.close();

        } catch (IOException e) {
            e.printStackTrace();
        } catch (ParseException e) {
            e.printStackTrace();
        } catch (SAXException e) {
            e.printStackTrace();
        } catch (TikaException e) {
            e.printStackTrace();
        }
        return jsonObjs;
    }

    private static JSONObject adjustUnifiedSchema(JSONObject parse) {
        JSONObject jsonObject = new JSONObject();
        List invNames = new ArrayList<String>();
        List invMid = new ArrayList<String>();
        List invLastNames = new ArrayList<String>();

        Set<Map.Entry> set = parse.entrySet();
        for (Map.Entry entry : set) {
            String jsonKey = SolrKafkaConsumer.updateCommentPreffix(entry.getKey().toString());
            String solrKey = ISA_SOLR.get(jsonKey);

//            System.out.println("solrKey " + solrKey);
            if (solrKey != null) {
//                System.out.println("jsonKey: " + jsonKey + " -> solrKey: " + solrKey);
                if (jsonKey.equals("Study_Person_First_Name")) {
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                    inv Names.addAll(((JSONArray) JSONValue.parse(entry.getValue().
toString())));

                } else if (jsonKey.equals("Study_Person_Mid_Initials")) {
                    in vMid.addAll(((JSONArray) JSONValue.parse(entry.getValue().

toString())));
                } else if (jsonKey.equals("Study_Person_Last_Name")) {
                    in vLastNames.addAll(((JSONArray) JSONValue.parse(entry.getValue().

toString())));
                }
                jsonKey = solrKey;
            } else {
                jsonKey = jsonKey.replace(" ", "_");
            }
            jsonObject.put(jsonKey, entry.getValue());
        }

        JSONArray jsonArray = new JSONArray();

        for (int cnt = 0; cnt < invLastNames.size(); cnt++) {
            StringBuilder sb = new StringBuilder();
            if (!StringUtils.isEmpty(invNames.get(cnt).toString()))
                sb.append(invNames.get(cnt)).append(" ");
            if (!StringUtils.isEmpty(invMid.get(cnt).toString()))
                sb.append(invMid.get(cnt)).append(" ");
            if (!StringUtils.isEmpty(invLastNames.get(cnt).toString()))
                sb.append(invLastNames.get(cnt));
            jsonArray.add(sb.toString());
        }
        if (!jsonArray.isEmpty()) {
            jsonObject.put("Investigator", jsonArray.toJSONString());
        }
        return jsonObject;
    }

    /**
     * Send message from IsaTools to kafka
     *
     * @param newISAUpdates
     */
    void sendISAToolsUpdates(List<JSONObject> newISAUpdates) {
        for (JSONObject row : newISAUpdates) {
            row.put(SOURCE_TAG, ISATOOLS_SOURCE_VAL);
            this.sendKafka(row.toJSONString());
            Sys tem.out.format("[%s] New message posted to kafka.\n", this.getClass().

getSimpleName());
        }
    }
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    /**
     * Gets the application updates from a directory
     *
     * @param isaToolsTopDir
     * @return
     */
    private List<JSONObject> initialFileLoad(String isaToolsTopDir) {
        Sys tem.out.format("[%s] Checking in %s\n", this.getClass().getSimpleName(), 

isaToolsTopDir);
        List<JSONObject> jsonParsedResults = new ArrayList<JSONObject>();
        List<File> innerFolders = getInnerFolders(isaToolsTopDir);

        for (File innerFolder : innerFolders) {
            jsonParsedResults.addAll(doTikaRequest(getFolderFiles(innerFolder)));
        }

        return jsonParsedResults;
    }

    /**
     * Gets the inner folders inside a folder
     *
     * @param isaToolsTopDir
     * @return
     */
    private List<File> getInnerFolders(String isaToolsTopDir) {
        List<File> innerFolders = new ArrayList<File>();
        File topDir = new File(isaToolsTopDir);
        String[] innerFiles = topDir.list();
        for (String innerFile : innerFiles) {
            File tmpDir = new File(isaToolsTopDir + File.separator + innerFile);
            if (tmpDir.isDirectory()) {
                innerFolders.add(tmpDir);
            }
        }
        return innerFolders;
    }
}
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INSTALLING AND TESTING LINGPIPE, GATE, AND STANFORD CORE 
NLP

1. First install Lingpipe by downloading the Lingpipe release Jar file from http://
alias-i.com/lingpipe/web/download.html. You may also download Lingpipe 
models that interest you from http://alias-i.com/lingpipe/web/models.html 
. Follow the directions so as to place the models in the correct directory so that 
Lingpipe may pick up the models for the appropriate demos which require them.

2. download Gate from university of Sheffield web site (https://gate.ac.uk), and 
use the installer to install Gate components. the installation dialog is quite easy 
to use and allows you to selectively install a variety of components, as shown in 
Figure 6-24.

3. we will also introduce the StanfordnLp (http://stanfordnlp.github.io/
CoreNLP/#human-languages-supported) library component for our example.

 To get started with Stanford nLp, download the CorenLp zip file from the Github link 
above. expand the zip file.

 Make sure the following dependencies are in your pom.xml file:

           <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-corenlp</artifactId>
            <version>3.5.2</version>
            <classifier>models</classifier>
           </dependency>
           <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-corenlp</artifactId>
            <version>3.5.2</version>
           </dependency>
           <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-parser</artifactId>
            <version>3.5.2</version>
           </dependency>

 Go to Stanford nLp “home directory” (where the pom.xml file is located) and do

mvn clean package

 then test the interactive nLp shell to insure correct behavior. type

./corenlp.sh

to start the interactive nLp shell. type some sample text into the shell to see the parser in 
action. the results shown will be similar to those shown in Figure 6-17.

http://alias-i.com/lingpipe/web/download.html
http://alias-i.com/lingpipe/web/download.html
http://alias-i.com/lingpipe/web/models.html
https://gate.ac.uk/
http://stanfordnlp.github.io/CoreNLP/#human-languages-supported)
http://stanfordnlp.github.io/CoreNLP/#human-languages-supported)
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We can define an interface for generalized search as follows:

Listing 6-8. ProbdaSearchEngine java interface stub

public interface ProbdaSearchEngine<T> {

  <Q> List<T> search(final String field, final Q query, int maximumResultCount);

  List<T> search(final String query, int maximumResultCount);
…………}

Two different method signatures for search() are present. One is specifically for the field and query 
combination. Query is the Lucene query as a string, and maximumResultCount limits the number of result 
elements to a manageable amount.

We can define the implementation of the ProbdaSearchEngine interface as in Listing 6-8.

Figure 6-23. StanfordNLP interactive shell in action
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Simply click through the installation wizard. Refer to the web site and install all software components 
offered.

To use LingPipe and GATE in a program, let’s work through a simple example, as shown in Listing 6-9.  
Please refer to some of the references at the end of the chapter to get a more thorough overview of the 
features that LingPipe and GATE can provide.

Listing 6-9. LingPipe | GATE | StanfordNLP Java test program, imports

package com.apress.probda.nlp;

import java.io.*;
import java.util.*;

import edu.stanford.nlp.io.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;

public class ProbdaNLPDemo {

Figure 6-24. GATE Installation dialog. GATE is easy to install and use.
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  public static void main(String[] args) throws IOException {
    PrintWriter out;
    if (args.length > 1) {
      out = new PrintWriter(args[1]);
    } else {
      out = new PrintWriter(System.out);
    }
    PrintWriter xmlOut = null;
    if (args.length > 2) {
      xmlOut = new PrintWriter(args[2]);
    }

    StanfordCoreNLP pipeline = new StanfordCoreNLP();
    Annotation annotation;
    if (args.length > 0) {
      annotation = new Annotation(IOUtils.slurpFileNoExceptions(args[0]));
    } else {
      annotation = new Annotation(“No reply from local Probda email site”);
    }

    pipeline.annotate(annotation);
    pipeline.prettyPrint(annotation, out);
    if (xmlOut != null) {
      pipeline.xmlPrint(annotation, xmlOut);
    }
    List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
    if (sentences != null && sentences.size() > 0) {
      CoreMap sentence = sentences.get(0);
      Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
      out.println();
      out.println("The first sentence parsed is:");
      tree.pennPrint(out);
    }
  }

}

6.8  Summary
In this chapter, we took a quick overview of the Apache Lucene and Solr ecosystem. Interestingly, although 
Hadoop and Solr started out together as part of the Lucene ecosystem, they have since gone their separate 
ways and evolved into useful independent frameworks. This doesn’t mean that the Solr and Hadoop 
ecosystems cannot work together very effectively, however. Many Apache components, such as Mahout, 
LingPipe, GATE, and Stanford NLP, work seamlessly with Lucene and Solr. New technology additions 
to Solr, such as SolrCloud and others, make it easier to use RESTful APIs to interface to the Lucene/Solr 
technologies.

We worked through a complete example of using Solr and its ecosystem: from downloading, massaging, 
and inputting the data set to transforming the data and outputting results in a variety of data formats. It 
becomes even more clear that Apache Tika and Spring Data are extremely useful for data pipeline “glue.”



Chapter 6 ■ advanCed SearCh teChniqueS with hadoop, LuCene, and SoLr

136

We did not neglect competitors to the Lucene/Solr technology stack. We were able to discuss 
Elasticsearch, a strong alternative to Lucene/Solr, and describe some of the pros and cons of using 
Elasticsearch over a more “vanilla Lucene/Solr” approach. One of the most interesting parts of Elasticsearch 
is the seamless ability to visualize data, as we showed while exploring the crime statistics of Sacramento.

In the next chapter, we will discuss a number of analytic techniques and algorithms which are 
particularly useful for building distributed analytical systems, building upon what we’ve learned so far.
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PART II

Architectures and Algorithms

The second part of our book discusses standard architectures, algorithms, and techniques to build 
analytic systems using Hadoop. We also investigate rule-based systems for control, scheduling, 
and system orchestration and showcase how a rule-based controller can be a natural adjunct to a 
Hadoop-based analytical system.
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CHAPTER 7

An Overview of Analytical 
Techniques and Algorithms

In this chapter, we provide an overview of four categories of algorithm: statistical, Bayesian, ontology-driven, 
and hybrid algorithms which leverage the more basic algorithms found in standard libraries to perform 
more in-depth and accurate analyses using Hadoop.

7.1  Survey of Algorithm Types
It turns out that Apache Mahout and most of the other mainstream machine learning toolkits support a 
wide range of the algorithms we’re interested in. For example, see Figure 7-1 for a survey of the algorithms 
supported by Apache Mahout.

Number Algorithm Name Algorithm Type Description

1 naïve Bayes classifier simple Bayesian classifier: present in almost all 
modern toolkits

2 hidden Markov model classifier system state prediction by outcome observation

3 (learning) random 
forest

classifier Random forest algorithms (sometimes known 
as random decision forests) are an ensemble 
learning method for classification, regression, and 
other tasks, that construct a collection of decision 
trees at training time, outputting the class that 
is the mode of the classification classes or mean 
prediction (regression) of the individual trees.

4 (learning) multilayer 
perceptron (LMP)

classifier also implemented in the Theano toolkit and 
several others.

5 (learning) logistic 
regression

classifier also supported in scikit-learn. Really a technique 
for classification, not regression.

6 stochastic gradient 
descent (SGD)

optimizer, model 
finding

an objective function minimization routine
also supported in H2O and Vowpal Wabbit, among 
others

(continued)
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Number Algorithm Name Algorithm Type Description

7 genetic algorithms (GA) genetic 
algorithm

According to Wikipedia, “In the field of 
mathematical optimization, a genetic algorithm 
(GA) is a search heuristic that mimics the 
process of natural selection. This heuristic (also 
sometimes called a meta-heuristic) is routinely 
used to generate useful solutions to optimization 
and search problems.”

8 singular value 
decomposition (SVD)

dimensionality 
reduction

matrix decomposition for dimensionality 
reduction

9 collaborative filtering 
(CF)

recommender a technique used by some recommender systems

10 latent 
Dirichlet allocation 
(LDA)

topic modeler a powerful algorithm (learner) which 
automatically (and jointly) clusters words into 
“topics” as well as clustering documents into topic 
“mixtures”

11 spectral clustering clusterer

12 frequent pattern mining data miner

13 k-means Clustering clusterer ordinary and fuzzy k-means are available using 
Mahout

14 canopy clustering clusterer preprocessing step for k-means clusterer: two-
threshold system

Statistical and numerical algorithms are the most straightforward type of distributed algorithm we can use.
Statistical techniques include the use of standard statistic computations such as those shown in 

Figure 7-1.

Figure 7-1. Mean, standard deviation, and normal distribution are often used in statistical methods

Bayesian techniques are one of the most effective techniques for building classifiers, data modeling, 
and other purposes.

Ontology-driven algorithms, on the other hand, are a whole family of algorithms that rely on logical, 
structured, hierarchical modeling, grammars, and other techniques to provide infrastructure for modeling, 
data mining, and drawing inferences about data sets.
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Hybrid algorithms combine one or more modules consisting of different types of algorithm, linked 
together with glueware, to provide a more flexible and powerful data pipeline than would be possible 
with only a single algorithm type. For example, a neural net technology may be combined with a Bayesian 
technology and an ML technology to create “learning Bayesian networks,” a very interesting example of the 
synergy that can be obtained by using a hybrid approach.

7.2  Statistical / Numerical Techniques
Statistical classes and support methods in the example system are found in the com.apress.probda.
algorithms.statistics subpackage.

We can see a simple distributed technology stack using Apache Storm in Figure 7-2.

Figure 7-2. A distributed technology stack including Apache Storm

We can see a Tachyon-centric technology stack in Figure 7-4. Tachyon is a fault tolerant distributed  
in-memory file system
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Figure 7-4. A Tachyon-centric technology stack, showing some of the associated ecosystem

Figure 7-3. An Apache Spark-centric technology stack

7.3  Bayesian Techniques
The Bayesian techniques we implement in the example system are found in the package com.prodba.
algorithms.bayes.

Some of the Bayesian techniques (besides the naïve Bayes algorithm) supported by our most popular 
libraries include the ones shown in Figure 7-1.

The naïve Bayesian classifier is based upon the Fundamental Bayes equation as shown in Figure 7-5.



Chapter 7 ■ an Overview Of analytiCal teChniques and algOrithms

143

The equation contains four main probability types: posterior probability, likelihood, class prior 
probability, and predictor prior probability. These terms are explained in the references at the end of the 
chapter.

We can try out the Mahout text classifier in a straightforward way. First, download one of the basic data 
sets to test with. 

7.4  Ontology Driven Algorithms
The ontology driven components and support classes are to be found in the com.apress.probda.
algorithms.ontology subpackage.

To include the Protégé Core component, add the following Maven dependency to your project  
pom.xml file.

<dependency>
        <groupId>edu.stanford.protege</groupId>
        <artifactId>protege-common</artifactId>
        <version>5.0.0-beta-24</version>
</dependency>

Register and download Protégé from the web site:

http://protege.stanford.edu/products.php#desktop-protégé.

Ontologies may be defined interactively by using an ontology editor such as Stanford’s Protégé system, 
as shown in Figure 7-5.

Figure 7-5. The fundamental Bayes equation

http://protege.stanford.edu/products.php#desktop-protégé


Chapter 7 ■ an Overview Of analytiCal teChniques and algOrithms

144

Figure 7-6. Setting up SPARQL functionality with the Stanford toolkit interactive setup

You can safely select all the components, or just the ones you need. Refer to the individual online 
documentation pages to see if the components are right for your application.
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7.5  Hybrid Algorithms: Combining Algorithm Types 
The hybrid algorithms implemented in the Probda example system are found in the com.apress.prodbda.
algorithms.hybrid subpackage.

We can mix and match algorithm types to construct better data pipelines. These “hybrid systems” might 
be somewhat more complex—of necessity they usually have several additional components—but they make 
up for it in usefulness.

One of the most effective kinds of hybrid algorithm is that of the so-called “deep learning” component. 
Not everyone considers deep learners as a hybrid algorithm (they are essentially, in most cases, built on 
multilayer neural net technology), but there are some compelling reasons to treat deep learners as hybrid 
systems, as we will discuss below.

So-called “deep learning” techniques include those shown in Figure yy-yy. DeepLearning4J and 
TensorFlow toolkit are two of the more popular and powerful deep learning libraries currently available. 
Check out TensorFlow at https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.
htmlautoenc. Theano is a Python-based multidimensional array library. Check out http://deeplearning.
net/tutorial/dA.html for more details about how to use Theano.

Figure 7-7. Using an ontology editor to define ontologies, taxonomies, and grammars

https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.htmlautoenc
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.htmlautoenc
http://deeplearning.net/tutorial/dA.html
http://deeplearning.net/tutorial/dA.html
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Number Algorithm Name Algorithm Type Toolkit Description

1 Deep Belief 
Networks

neural net Deeplearning4j,

TensorFlow, 
Theano

multiple layers of hidden units, 
with layer interconnectivity only

2 (Stacked, 
Denoising) 
Autoencoders 
(DA)

variations on 
basic autoencoder 
principles

Deeplearning4j,

TensorFlow, 
Theano

A stacked autoencoder is a neural 
net consisting of multiple layers 
of sparse autoencoders in which 
each layer’s outputs are wired 
to the successive layers’ inputs. 
Denoising autoencoders can 
accept a partially corrupted input 
while recovering the original 
uncorrupted input.

3 Convolutional 
Neural Networks 
(CNN)

neural net, 
variation of MLP

Deeplearning4j,

TensorFlow, 
Theano

Sparse connectivity and shared 
weights are two features of CNNs.

4 Long Short-Term 
Memory Units 
(LSTM)

recurrent neural 
net, classifier, 
predictor

Deeplearning4j, 
TensorFlow

classification and time series 
prediction, even sentiment 
analysis

5 Recurrent Neural 
Networks

neural net Deeplearning4j,

TensorFlow

classification, time series 
prediction

6 computation 
graph

complex network 
architecture 
builder

Deeplearning4j, 
TensorFlow

Computations are represented as 
graphs.

7.6  Code Examples
In this section we discuss some extended examples of the algorithm types we talked about in earlier 
sections.

To get a sense of some algorithm comparisons, let’s use the movie dataset to evaluate some of the 
algorithms and toolkits we’ve talked about.

package com.apress.probda.datareader.csv;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.OutputStreamWriter;
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public class FileTransducer {

        /**
         * This routine splits a line which is delimited into fields by the vertical
         * bar symbol '|'
         * 
         * @param l
         * @return
         */
        public static String makeComponentsList(String l) {
                String[] genres = l.split("\\|");
                StringBuffer sb = new StringBuffer();
                for (String g : genres) {
                        sb.append("\"" + g + "\",");
                }
                String answer = sb.toString();
                return answer.substring(0, answer.length() - 1);
        }

        /**
         * The main routine processes the standard movie data files so that mahout
         * can use them.
         * 
         * @param args
         */
        public static void main(String[] args) {
if (args.length < 4){
System.out.println("Usage: <movie data input><movie output file><ratings input file> 
<ratings output file>");
                        System.exit(-1);
                }
                File file = new File(args[0]);
                if (!file.exists()) {
                        System.out.println("File: " + file + " did not exist, exiting...");
                        System.exit(-1);
                }
                System.out.println("Processing file: " + file);
                BufferedWriter bw = null;
                FileOutputStream fos = null;
                String line;
                try (BufferedReader br = new BufferedReader(new FileReader(file))) {
                        int i = 1;
                        File fout = new File(args[1]);
                        fos = new FileOutputStream(fout);
                        bw = new BufferedWriter(new OutputStreamWriter(fos));
                        while ((line = br.readLine()) != null) {
                                String[] components = line.split("::");
                                String number = components[0].trim();
                                String[] titleDate = components[1].split("\\(");
                                String title = titleDate[0].trim();
                                String date = titleDate[1].replace(")", "").trim();
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                                String genreList = makeComponentsList(components[2]);
                                String outLine = "{ \"create\" : { \"_index\" : 
\"bigmovie\", \"_type\" : \"film\", \"_id\" : \"" + i
                                                + "\" } }\n" + "{ \"id\": \"" + i + "\", 
\"title\" : \"" + title + "\", \"year\":\"" + date
                                                + "\" , \"genre\":[" + genreList + "] }";
                                i++;
                                bw.write(outLine);
                                bw.newLine();
                        }
                } catch (IOException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                } finally {
                        if (bw != null) {
                                try {
                                        bw.close();
                                } catch (IOException e) {
                                        // TODO Auto-generated catch block
                                        e.printStackTrace();
                                }
                        }
                }
                file = new File(args[2]);
                try (BufferedReader br2 = new BufferedReader(new FileReader(file))) {
                        File fileout = new File(args[3]);
                        fos = new FileOutputStream(fileout);
                        bw = new BufferedWriter(new OutputStreamWriter(fos));
                        while ((line = br2.readLine()) != null) {
                                String lineout = line.replace("::", "\t");
                                bw.write(lineout);
                        }
                } catch (IOException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                } finally {
                        if (bw != null) {
                                try {
                                        bw.close();
                                } catch (IOException e) {
                                        // TODO Auto-generated catch block
                                        e.printStackTrace();
                                }
                        }
                }
        }
}
Execute the following curl command on the command line to import the data set into elastic 
search:
curl -s -XPOST localhost:9200/_bulk --data-binary @index.json; echo
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Data sets can be imported into Elasticsearch via the command line using a CURL command. Figure 7-8 
is the result of executing such a command. The Elasticsearch server returns a JSON data structure which is 
displayed on the console as well as being indexed into the Elasticsearch system.

Figure 7-8. Importing a standard movie data set example using a CURL command

Figure 7-9. Using Kibana as a reporting and visualization tool

We can see a simple example of using Kibana as a reporting tool in Figure 7-7. Incidentally, we will 
encounter Kibana and the ELK Stack (Elasticsearch – Logstash – Kibana) throughout much of the remaining 
content in this book. While there are alternatives to using the ELK stack, it is one of the more painless ways to 
construct a data analytics system from third-party building blocks.
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7.7  Summary
In this chapter, we discussed analytical techniques and algorithms and some criteria for evaluating 
algorithm effectiveness. We touched on some of the older algorithm types: the statistical and numerical 
analytical functions. The combination or hybrid algorithm has become particularly important in recent 
days as techniques from machine learning, statistics, and other areas may be used very effectively in 
a cooperative way, as we have seen throughout this chapter. For a general introduction to distributed 
algorithms, see Barbosa (1996).

Many of these algorithm types are extremely complex. Some of them, for example the Bayesian 
techniques, have a whole literature devoted to them. For a thorough explanation of Bayesian techniques in 
particular and probabilistic techniques in general, see Zadeh (1992),

In the next chapter, we will discuss rule-based systems, available rule engine systems such as JBoss 
Drools, and some of the applications of rule-based systems for smart data collection, rule-based analytics, 
and data pipeline control scheduling and orchestration.
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CHAPTER 8

Rule Engines, System Control, and 
System Orchestration

In this chapter, we describe the JBoss Drools rule engine and how it may be used to control and orchestrate 
Hadoop analysis pipelines. We describe an example rule-based controller which can be used for a variety of 
data types and applications in combination with the Hadoop ecosystem.

 ■ Note  Most of the configuration for using the JBoss Drools system is done using Maven dependencies. The 
appropriate dependencies were shown in Chapter 3 when we discussed the initial setup of JBoss Drools. All the 
dependencies you need to effectively use JBoss Drools are included in the example PROBDA system available 
at the code download site.

8.1  Introduction to Rule Systems: JBoss Drools
JBoss Drools (www.drools.org) is used throughout the examples in this chapter. It’s not the only choice 
for a rule engine. There are many rule engine frameworks which are freely available, but Drools is a high-
powered system that can be used immediately to define many different kinds of control and architecture 
systems. JBoss Drools has another advantage. There is extensive online and in-print documentation on the 
Drools system (docs.jboss.org), programming recipes, and details of optimization, as well as explanations 
of the rule-based technology. Some of the Drools reference books are listed at the end of this chapter. These 
provide a thorough introduction to rule-based control systems, rule mechanics and editing, and other 
important details.

In this chapter, we will give a brief overview of rule-based technology with a specific application: 
defining a complex event processor (CEP) example.

CEPs are a very useful variation on the data pipeline theme, and can be used in practical systems 
involving everything from credit card fraud detection systems to complex factory control systems.

There are two kinds of data structures at work in all rule systems: rules, of course, which provide the 
“if-then-else” conditional functionality in a rule-based system (however, we will soon learn that this type 
of rule, called a “forward chaining” rule, is not the only variety of rule we will encounter; there are also 
“backward chaining” rules which will be described shortly). An additional data structure used is facts, which 
are the individual “data items.” These are kept in a repository called the working memory store. Please see 
Figure 8-1 for a simplified view of how this works in the Drools system.

http://dx.doi.org/10.1007/978-1-4842-1910-2_3
http://www.drools.org/
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 ■ Note  This book uses the latest released version of JBoss Drools, which was version 6.4.0 at the time of 
writing this book. update the drools.system.version property in your PROBDA project pom.xml if a new version 
of JBoss Drools is available and you want to use it.

Let’s get started by installing JBoss Drools and testing some basic functionality. The installation process 
is straightforward. From the JBoss Drools homepage, download the current version of Drools by clicking the 
download button, as shown in Figure 8-1.

cd to the installation directory and run examples/run-examples.sh. You will see a selection menu 
similar to that in Figure 8-2. Run some output examples to test the Drools system and observe the output in 
the console, similar to that in Figure 8-3, or a GUI-oriented example, as in Figure 8-4.

Figure 8-1. Download the Drools software from the Drools web page
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Figure 8-2. Select some Drools examples and observe the results to test the Drools system

The built-in Drools examples has a menu from which you can select different test examples, as shown 
in Figure 8-2. This is a good way to test your overall system set-up and get a sense of what the JBoss Drools 
system capabilities are.
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Figure 8-3. JBoss Drools GUI-oriented example

Some of the example components for JBoss Drools have an associated UI, as shown in Figure 8-3.
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The basic JBoss Drools rule system architecture is shown in Figure 8-4.

 ■ Note All of the example code found in this system is found in the accompanying example system 
code base in the Java package com.apress.probda.rulesystem. Please see the associated ReADMe file and 
documentation for additional notes on installation, versioning, and use.

The interface for timestamped Probda events in our system couldn’t be easier:

package com.probda.rulesystem.cep.model;

import java.util.Date;

public interface IEvent extends Fact {

        public abstract Date getTimestamp();
}

Figure 8-4. JBoss Drools rule system architecture
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The implementation of IEvent looks like this:

Listing 8-1. A basic JBoss Drools program 

Let’s add a rule system to the evaluation system by way of an example. Simply add the appropriate 
dependencies for the Drools rule system (Google “drools maven dependencies” for the most up-to-date 
versions of Drools). The complete pom.xml file (building upon our original) is shown in Listing 3-2. We 
will be leveraging the functionality of JBoss Drools in a complete analytical engine example in Chapter 8. 
Please note that we supply dependencies to connect the Drools system with Apache Camel as well as Spring 
Framework for Drools.

8.2  Rule-based Software Systems Control
Rule-based software systems control can be built up from a scheduling component such as Oozie combined 
with the appropriate functionalities in JBoss Drools or other rule frameworks, as shown in an example 
architecture in Figure 8-5.

http://dx.doi.org/10.1007/978-1-4842-1910-2_8
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8.3  System Orchestration with JBoss Drools
In this section, we’ll discuss a brief example of how to do system orchestration tasks using JBoss Drools as a 
controller. We will use the Activiti open source project (http://activiti.org) with some examples on how 
to integrate a workflow orchestrator/controller into a Spring Framework-based project.

git clone https://github.com/Activiti/Activiti.git
export ACTIVITI_HOME=/Users/kkoitzsch/activiti
             cd $ACTIVITI_HOME
mvn clean install

Figure 8-5. Rule-based software systems control architecture, using JBoss Drools as a controller

http://activiti.org/
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Don’t forget to generate the documentation by 
        cd $ACTIVITI_HOME/userguide
        mvn install
Insure Tomcat is installed. On the Mac platform, do
brew install tomcat
Tomcat will then be installed at /usr/local/Cellar/tomcat/8.5.3

Figure 8-6. Maven reactor summary for Activiti system install

Figure 8-6 shows what you can expect from the Maven reactor summary at the end of the Activiti build.

export TOMCAT_HOME=/usr/local/Cellar/tomcat/8.5.3
cd $ACTIVITI_HOME/scripts

Then run the Activiti script

./start-rest-no-jrebel.sh

You will see successful startup of Activiti as shown in Figure 8-7.
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A screen dump of the Activiti program running successfully is shown in Figure 8-7.

Figure 8-7. Activiti script running successfully
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8.4  Analytical Engine Example with Rule Control
In this section, we will demonstrate an analytical engine example with rule control.

A picture of the Activiti Explorer dashboard being run successfully is shown in Figure 8-8.

Figure 8-8. Activiti explorer dashboard running successfully

Figure 8-9. An initial Lucene-oriented system design, including user interactions and document processing
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Figure 8-10. A Lucene-oriented system design, including user interactions and document processing, step 2
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We can use the Splunk system for data ingestion.
We can use a time series–oriented database such as OpenTSDB (https://github.com/OpenTSDB/

opentsdb/releases) as an intermediate data repository.
Rule-based transformation is provided by JBoss Drools.
The document repository functionality can be provided by an instance of a Cassandra database.

Figure 8-11. A Lucene-oriented system design, including user interactions and document processing, step 3

https://github.com/OpenTSDB/opentsdb/releases
https://github.com/OpenTSDB/opentsdb/releases
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 ■ Note  Please note you are under no obligation use the technology components shown in Figure 8-12. you 
could use an alternative messaging component such as RabbitMQ, for example, instead of Apache Kafka, or 
MongoDB instead of Cassandra, depending upon your application requirements.

8.5  Summary
In this chapter, we discussed using rule-based controllers with other distributed components, especially 
with Hadoop and Spark ecosystem components. We have seen that a rule-based strategy can add a key 
ingredient to distributed data analytics: the ability to organize and control data flow in a flexible and logically 
organized manner. Scheduling and prioritization is a natural consequence of these rule-based techniques, 
and we looked at some examples of rule-based schedulers throughout the chapter.

In the next chapter, we will talk about using the techniques we have learned so far into one integrated 
analytical component which is applicable to a variety of use cases and problem domains.

Figure 8-12. An integrated system architecture with lifecycle, including the technology components used



ChAPTeR 8 ■ Rule engines, sysTeM COnTROl, AnD sysTeM ORChesTRATiOn

164

8.6  References
Amador, Lucas. Drools Developer Cookbook. Birmingham, UK: PACKT Publishing, 2012.

Bali, Michal. Drools JBoss Rules 5.0 Developers Guide. Birmingham, UK: PACKT Publishing, 2009.
Browne, Paul. JBoss Drools Business Rules. Birmingham, UK: PACKT Publishing, 2009.
Norvig, Peter. Paradigms of Artificial Intelligence: Case Studies in Common Lisp. San Mateo, CA: 

Morgan-Kaufman Publishing, 1992.



165© Kerry Koitzsch 2017 
K. Koitzsch, Pro Hadoop Data Analytics, DOI 10.1007/978-1-4842-1910-2_9

CHAPTER 9

Putting It All Together: Designing  
a Complete Analytical System

In this chapter, we describe an end-to-end design example, using many of the components discussed so 
far. We also discuss “best practices” to use during the requirements acquisition, planning, architecting, 
development, testing, and deployment phases of the system development project.

 ■ Note  This chapter makes use of many of the software components discussed elsewhere throughout the 
book, including Hadoop, Spark, Splunk, Mahout, Spring Data, Spring XD, Samza, and Kafka. Check Appendix A 
for a summary of the components and insure that you have them available when trying out the examples from 
this chapter.

Building a complete distributed analytical system is easier than it sounds. We have already discussed 
many of the important ingredients for such a system in earlier chapters. Once you understand what your 
data sources and sinks are going to be, and you have a reasonably clear idea of the technology stack to be 
used and the “glueware” to be leveraged, writing the business logic and other processing code can become a 
relatively straightforward task.

A simple end-to-end architecture is shown in Figure 9-1. Many of the components shown allow some 
leeway as to what technology you actually use for data source, processors, data sinks and repositories, and 
output modules, which include the familiar dashboards, reports, visualizations, and the like that we will see 
in other chapters. In this example, we will use the familiar importing tool Splunk to provide an input source.
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In the following section we will describe how to set up and integrate Splunk with the other components 
of our example system.

HOW TO INSTALL SPLUNK FOR THE EXAMPLE SYSTEM

Splunk (https://www.splunk.com) is a logging framework and is very easy to download, install, and 
use. it comes with a number of very useful features for the kind of example analytics systems we’re 
demonstrating here, including a built-in search facility.

To install Splunk, go to the download web page, create a user account, and download Splunk enterprise 
for your appropriate platform. All the examples shown here are using the MacoS platform.

install the Splunk enterprise appropriately for your chosen platform. on the Mac platform, if the 
installation is successful, you will see Splunk represented in your Applications directories as shown in 
Figure 9-2.

refer to http://docs.splunk.com/Documentation/Splunk/6.4.2/SearchTutorial/StartSplunk  
on how to start Splunk. please note that the Splunk Web interface can be found at  
http://localhost:8000 when started correctly.

Figure 9-1. A simple end-to-end analytics architecture

https://www.splunk.com/
http://docs.splunk.com/Documentation/Splunk/6.4.2/SearchTutorial/StartSplunk
http://localhost:8000/
http://localhost:8000/
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Figure 9-2. Successful Splunk Enterprise installation for Mac OSX
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When you point your browser at localhost:8000, you’ll initially see the Splunk login page. Use the 
default user name and password to begin with, change as instructed, and make sure the Java code you use 
for connectivity uses your updated username (‘admin’) and password(‘changename’).

Figure 9-3. Login page for Splunk Enterprise
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Download the following very useful library, splunk-library-javalogging, from github:

git clone https://github.com/splunk/splunk-library-javalogging.git

cd splunk-library-javalogging

mvn clean install

Figure 9-4. Change password during initial Splunk Enterprise setup
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In your Eclipse IDE, import the existing Maven project as shown in Figure 9-5.

Figure 9-5. Import an existing Maven to use splunk-library-javalogging

Figure 9-5 shows a dialog for importing the existing Maven project to use splunk-library-javalogging.
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Figure 9-6. Select splunk-library-javalogging for import
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Figure 9-7. Select the appropriate root directory for Maven construction

As shown in Figure 9-7, selection of the appropriate pom.xml is all you need to do in this step.
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As shown in Figure 9-8, modification to include appropriate username and password values is typically 
all that is necessary for this step of installation.

Figure 9-8. Eclipse IDE installation of Splunk test code
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Configure the HadoopConnect component for Splunk as shown in Figure 9-9.

Figure 9-9. Configure the HadoopConnect component for Splunk
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Textual search in the Splunk dashboard can be accomplished as in Figure 9-10. We can also select an 
appropriate timestamped interval to perform queries over our data set.

Visualization is an important part of this integration process. Check out some of the D3 references at the 
bottom of this chapter to get a sense of some of the techniques you can use in combination with the other 
components of the data pipeline.

9.1  Summary
In this chapter, we discussed building a complete analytical system and some of the challenges architects 
and developers encounter upon the way. We constructed a complete end-to-end analytics pipeline using 
the now-familiar technology components discussed in earlier chapters. In particular, we talked about how to 
use Splunk as an input data source. Splunk is a particularly versatile and flexible tool for all kinds of generic 
logging events.

9.2  References
Mock, Derek, Johnson, Paul R., Diakun, Josh. Splunk Operational Intelligence Cookbook. Birmingham, UK: 
PACKT Publishing, 2014.

Zhu, Nick Qi. Data Visualization with d3.js Cookbook. Birmingham, UK: PACKT Publishing, 2014.

Figure 9-10. Searching for Pro Data Analytics events in the Splunk dashboard



PART III

Components and Systems

The third part of our book describes the component parts and associated libraries which can assist 
us in building distributed analytic systems. This includes components based on a variety of different 
programming languages, architectures, and data models.
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CHAPTER 10

Data Visualizers: Seeing and 
Interacting with the Analysis

In this chapter, we will talk about how to look at—to visualize—our analytical results. This is actually quite 
a complex process, or it can be. It’s all a matter of choosing an appropriate technology stack for the kind 
of visualizing you need to do for your application. The visualization task in an analytics application can 
range from creating simple reports to full-fledged interactive systems. In this chapter we will primarily be 
discussing Angular JS and its ecosystem, including the ElasticUI visualization tool Kibana, as well as other 
visualization components for graphs, charts, and tables, including some JavaScript-based tools like D3.js 
and sigma.js.

10.1  Simple Visualizations
One of the simplest visualization architectures is shown in Figure 10-1. The front-end control interface 
may be web-based, or a stand-alone application. The control UI may be based on a single web page, or a 
more developed software plug-in or multiple page components. “Glueware” on the front end might involve 
visualization frameworks such as Angular JS, which we will discuss in detail in the following sections. On the 
back end, glueware such as Spring XD can make interfacing to a visualizer much simpler.
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Let’s talk briefly about the different components in Figure 10-1. Each circle represents different facets of 
typical use cases when using an analytics software component. You might think of the circles as individual 
sub-problems or issues we are trying to solve. For example, grouping, sorting, merging, and collating might 
be handled by a standard tabular structure, such as the one shown in Figure 10-2. Most of the sorting and 
grouping problems are solved with built-in table functionality like clicking on a column to sort rows, or to 
group items.

Providing effective display capabilities can be as simple as selecting an appropriate tabular component 
to use for row-oriented data. A good example of a tabular component which provides data import, sorting, 
pagination, and easily programmable features is the one shown in Figure 10-2. This component is available 
at https://github.com/wenzhixin/bootstrap-table. The control shown here leverages a helper library 
called Bootstrap.js (http://getbootstrap.com/javascript/) to provide the advanced functionality. Being 
able to import JSON data sets into a visualization component is a key feature which enables seamless 
integration with other UI and back-end components.

Figure 10-1. Typical visualization component architecture

https://github.com/wenzhixin/bootstrap-table
http://getbootstrap.com/javascript/
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Many of the concerns found in Figure 10-1 can be controlled by front-end controls we embed in a web 
page. For example, we are all familiar with the “Google-style” text search mechanism, which consists of 
just a text field and a button. We can implement a visualization tool using d3 that does simple analytics on 
Facebook tweets as an introduction to data visualization. As shown in Figure 10-2 and Figure 10-3, we can 
control the “what” of the display as well as the “how”: we can see a pie chart, bar chart, and bubble chart 
version of the sample data set, which is coming from a Spring XD data stream.

Figure 10-2. One tabular control can solve several visualization concerns
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Figure 10-3. Simple data visualization example of Twitter tweets using Spring XD showing trending topics 
and languages

Most of the concerns we see in Figure 10-1 (data set selection, presentation type selection, and the 
rest) are represented in Figure 10-3 and Figure 10-4. Standard controls, such as drop-down boxes, are used 
to select data sets and presentation types. Presentation types may include a wide range of graph and chart 
types, two- and three-dimensional display, and other types of presentation and report formats. Components 
such as Apache POI (https://poi.apache.org) may be used to write report files in Microsoft formats 
compatible with Excel.

The display shown here dynamically updates as new tweet data arrives through the Spring XD data 
streams. Figure 10-3 shows a slightly different visualization of the tweet data, in which we can see how some 
circles grow in size, representing the data “trending” in Twitter.

https://poi.apache.org/
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We’ll discuss Spring XD in the next section, as it is particularly useful as glueware when building visualizers.

SETTING UP THE SPRING XD COMPONENT

setting up the spring XD component, like all the spring Framework components, is basically straightforward.

after installing spring XD, start spring XD in “single node mode” with

bin/xd-singlenode
cd bin

run the XD shell with the command

./xd-shell

Figure 10-4. An additional simple data visualization example of Twitter tweets using Spring XD
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Create the streams with the following commands

 stream create tweets --definition "twitterstream | log"

 stream create tweetlang  --definition "tap:stream:tweets > field-value-counter 
--fieldName=lang" --deploy

stream create tweetcount --definition "tap:stream:tweets > aggregate-counter" --deploy

stream create tagcount --definition "tap:stream:tweets > field-value-counter 
--fieldName=entities.hashtags.text --name=hashtags" --deploy
stream deploy tweets

Figure 10-5. Architecture diagram for Twitter ➤ Spring XD ➤ visualization
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Figure 10-6. Bringing up the Spring XD shell successfully
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In the next section we will go into some comprehensive examples of a particularly useful toolkit, 
Angular JS.

10.2  Introducing Angular JS and Friends
Angular JS (https://angularjs.org) is a JavaScript-based toolkit that has become a very prominent 
contender in the data visualization library arena. It has a straightforward model-view-controller (MVC) 
architecture which enables a streamlined design and implementation process.

Incidentally, some Angular JS components such as Elastic UI (elasticui.com) are available directly out 
of the box to use with the Elastic search engine. ElasticUI with Kibana is a quck and relatively painless way to 
add visualization components.

We will spend most of the rest of this chapter discussing how to set up some examples using Angular JS 
and some other visualization toolkits, including a very interesting new arrival on the scene, JHipster.

10.3  Using JHipster to Integrate Spring XD and Angular JS
JHipster (https://jhipster.github.io) is an open source Yeoman ( ) generator designed to create 
integrated Spring Boot and Angular JS components. This makes it possible to integrate additional 
components from the rest of the Spring Framework ecosystem as well in a seamless manner. For example, 
you could use a Spring Data Hadoop-based component to build a data pipeline with summary displays 
written in AngularJS on the front end.

We are going to build a simple JHipster mini-project to show how this might work.

Figure 10-7. Using Spring XD to implement a Twitter tweet stream and then sdeploy the stream

https://angularjs.org/
https://jhipster.github.io/
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HOW TO BUILD THE ANGULAR JS EXAMPLE SYSTEM

Building an angular Js example system is relatively straightforward and we describe how to do it in  
this section.

the first step in building the angular Js example system is to make the archetype project on the 
command line. Cd to the home directory you wish to build in. then execute the following command, as 
shown in listing 13.1.

mvn archetype:generate -DgroupId=nl.ivonet -DartifactId=java-angularjs-seed 
-DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

this will create the directories and files shown in listing 10-2. Cd to the directory and make sure they 
are really there.

./pom.xml

./src

./src/main

./src/main/resources

./src/main/webapp

./src/main/webapp/index.jsp

./src/main/webapp/WEB-INF

./src/main/webapp/WEB-INF/web.xml

Figure 10-8. Successful setup of a “probda-hipster” project
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Construct the new files and directories to configure the project, as shown in listing 10-3.

mkdir -p src/main/java
mkdir -p src/test/java
mkdir -p src/test/javascript/unit
mkdir -p src/test/javascript/e2e
mkdir -p src/test/resources
rm -f ./src/main/webapp/WEB-INF/web.xml
rm -f ./src/main/webapp/index.jsp
mkdir -p ./src/main/webapp/css
touch ./src/main/webapp/css/specific.css
mkdir -p ./src/main/webapp/js
touch ./src/main/webapp/js/app.js
touch ./src/main/webapp/js/controllers.js
touch ./src/main/webapp/js/routes.js
touch ./src/main/webapp/js/services.js
touch ./src/main/webapp/js/filters.js
touch ./src/main/webapp/js/services.js
mkdir -p ./src/main/webapp/vendor
mkdir -p ./src/main/webapp/partials
mkdir -p ./src/main/webapp/img
touch README.md
touch .bowerrc

run the npm initialization to interactively build the program. ‘npm init’ will provide a step-by-step 
question-and-answer approach towards creating the project, as shown in listing x.y.

npm init

This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install  --save` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: (java-angularjs-seed)
version: (0.0.0)
description: A starter project for AngularJS combined with java and maven
entry point: (index.js)
test command: karma start test/resources/karma.conf.js
git repository: https://github.com/ivonet/java-angular-seed
keywords:
author: Ivo Woltring
license: (ISC) Apache 2.0
About to write to /Users/ivonet/dev/ordina/LabTime/java-angularjs-seed/package.json:
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{
  "name": "java-angularjs-seed",
  "version": "0.0.0",
  "description": "A starter project for AngularJS combined with java and maven",
  "main": "index.js",
  "scripts": {
    "test": "karma start test/resources/karma.conf.js"
  },
  "repository": {
    "type": "git",
    "url": "https://github.com/ivonet/java-angular-seed"
  },
  "author": "Ivo Woltring",
  "license": "Apache 2.0",
  "bugs": {
    "url": "https://github.com/ivonet/java-angular-seed/issues"
  },
  "homepage": "https://github.com/ivonet/java-angular-seed"
}

Is this ok? (yes)

now add the following content to the file: ____.

{
  "name": "java-angular-seed",
  "private": true,
  "version": "0.0.0",
  "description": "A starter project for AngularJS combined with java and maven",
  "repository": "https://github.com/ivonet/java-angular-seed",
  "license": "Apache 2.0",
  "devDependencies": {
    "bower": "^1.3.1",
    "http-server": "^0.6.1",
    "karma": "~0.12",
    "karma-chrome-launcher": "^0.1.4",
    "karma-firefox-launcher": "^0.1.3",
    "karma-jasmine": "^0.1.5",
    "karma-junit-reporter": "^0.2.2",
    "protractor": "~0.20.1",
    "shelljs": "^0.2.6"
  },
  "scripts": {
    "postinstall": "bower install",
    "prestart": "npm install",
    "start": "http-server src/main/webapp -a localhost -p 8000",
    "pretest": "npm install",
    "test": "karma start src/test/javascript/karma.conf.js",
    "test-single-run": "karma start src/test/javascript/karma.conf.js  --single-run",
    "preupdate-webdriver": "npm install",
    "update-webdriver": "webdriver-manager update",
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    "preprotractor": "npm run update-webdriver",
    "protractor": "protractor src/test/javascript/protractor-conf.js",
    "update-index-async": "node -e \"require('shelljs/global'); sed('-i', /\\/\\/@@NG_
LOADER_START@@[\\s\\S]*\\/\\/@@NG_LOADER_END@@/, '//@@NG_LOADER_START@@\\n' + cat('src/
main/webapp/vendor/angular-loader/angular-loader.min.js') + '\\n//@@NG_LOADER_END@@', 
'src/main/webapp/index.html');\""
  }
}

Figure 10-9. Building the Maven stub for the Angular JS project successfully on the command line
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Figure 10-10. Configuration file for the Angular JS example

Figure 10-11. Additional configuration file for the Angular JS example application
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{
    "directory": "src/main/webapp/vendor"
}
bower install angular#1.3.0-beta.14
bower install angular-route#1.3.0-beta.14
bower install angular-animate#1.3.0-beta.14
bower install angular-mocks#1.3.0-beta.14
bower install angular-loader#1.3.0-beta.14
bower install bootstrap

bower init
[?] name: java-angularjs-seed
[?] version: 0.0.0
[?] description: A java / maven / angularjs seed project
[?] main file: src/main/webapp/index.html
[?] what types of modules does this package expose?
[?] keywords: java,maven,angularjs,seed
[?] authors: IvoNet 
[?] license: Apache 2.0
[?] homepage: http://ivonet.nl
[?] set currently installed components as dependencies? Yes
[?] add commonly ignored files to ignore list? Yes
[?] would you like to mark this package as private which prevents it from being 
accidentally pub[?] would you like to mark this package as private which prevents it 
from being accidentally published to the registry? Yes

...

[?] Looks good? (Y/n) Y

{
    "name": "java-angularjs-seed",
    "version": "0.0.0",
    "authors": [
        "IvoNet <webmaster@ivonet.nl>"
    ],
    "description": "A java / maven / angularjs seed project",
    "keywords": [
        "java",
        "maven",
        "angularjs",
        "seed"
    ],
    "license": "Apache 2.0",
    "homepage": "http://ivonet.nl",
    "private": true,
    "ignore": [
        "**/.*",
        "node_modules",
        "bower_components",
        "src/main/webapp/vendor",
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        "test",
        "tests"
    ],
    "dependencies": {
        "angular": "1.3.0-beta.14",
        "angular-loader": "1.3.0-beta.14",
        "angular-mocks": "1.3.0-beta.14",
        "angular-route": "1.3.0-beta.14",
        "bootstrap": "3.2.0"
    },
    "main": "src/main/webapp/index.html"
}
rm -rf ./src/main/webapp/vendor
npm install

now we configure ./src/test/javascript/karma.conf.js :

module.exports = function(config){
  config.set({

    basePath : '../../../',

    files : [
      'src/main/webapp/vendor/angular**/**.min.js',
      'src/main/webapp/vendor/angular-mocks/angular-mocks.js',
      'src/main/webapp/js/**/*.js',
      'src/test/javascript/unit/**/*.js'
    ],

    autoWatch : true,

    frameworks: ['jasmine'],

    browsers : ['Chrome'],

    plugins : [
            'karma-chrome-launcher',
            'karma-firefox-launcher',
            'karma-jasmine',
            'karma-junit-reporter'
            ],

    junitReporter : {
      outputFile: 'target/test_out/unit.xml',
      suite: 'src/test/javascript/unit'
    }

  });
};
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Figure 10-12. Console result of Angular component install
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put the following content in ./src/main/webapp/weB-inF/beans.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/
ns/javaee/beans_1_1.xsd"
       bean-discovery-mode="annotated">
</beans>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>nl.ivonet</groupId>
    <artifactId>java-angularjs-seed</artifactId>
    <packaging>war</packaging>
    <version>1.0-SNAPSHOT</version>

    <name>java-angularjs-seed Maven Webapp</name>

    <url>http://ivonet.nl</url>

Figure 10-13. Data configuration in the package.json file
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    <properties>
        <artifact.name>app</artifact.name>
        <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.mockito</groupId>
            <artifactId>mockito-all</artifactId>
            <version>1.9.5</version>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>javax</groupId>
            <artifactId>javaee-api</artifactId>
            <version>7.0</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>
    <build>
        <finalName>${artifact.name}</finalName>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <compilerArguments>
                        <endorseddirs>${endorsed.dir}</endorseddirs>
                    </compilerArguments>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-war-plugin</artifactId>
                <version>2.4</version>
                <configuration>
                    <failOnMissingWebXml>false</failOnMissingWebXml>
                </configuration>
            </plugin>
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            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-dependency-plugin</artifactId>
                <version>2.6</version>
                <executions>
                    <execution>
                        <phase>validate</phase>
                        <goals>
                            <goal>copy</goal>
                        </goals>
                        <configuration>
                            <outputDirectory>${endorsed.dir}</outputDirectory>
                            <silent>true</silent>
                            <artifactItems>
                                <artifactItem>
                                    <groupId>javax</groupId>
                                    <artifactId>javaee-endorsed-api</artifactId>
                                    <version>7.0</version>
                                    <type>jar</type>
                                </artifactItem>
                            </artifactItems>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

10.4  Using d3.js, sigma.js and Others
D3.js (https://d3js.org) and sigma.js (http://sigmajs.org) are popular JavaScript libraries for data 
visualization.

Examples of the graph visualizations which are possible with d3 and sigmajs toolkits

https://d3js.org/
http://sigmajs.org/
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Figure 10-14. A portion of a sigma.js-based graph visualization example

Figure 10-15. Another typical data visualization of a portion of a graph database
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10.5  Summary
In this chapter we looked at the visual side of the analytics problem: how to see and understand the results of 
our analytical processes. The solution to the visualization challenge can be as simple as a CSV report in Excel 
all the way up to a sophisticated interactive dashboard. We emphasized the use of Angular JS, a sophisticated 
visualization toolkit based on the model-view-controller (MVC) paradigm.

In the next chapter, we discuss rule-based control and orchestration module design and implementation. 
Rule systems are a type of control system with a venerable history in computer software, and have proven 
their effectiveness in a wide range of control and scheduling applications over the course of time.

We will discover that rule-based modules can be a useful component in distributed analytics systems, 
especially for scheduling and orchestrating individual processes within the overall application execution.

We can handcraft user interfaces to suit our application, or we have the option to use some of the 
sophisticated visualization tools already available as stand-alone libraries, plug-ins, and toolkits.

Recall that we can visualize data sets directly from graph databases as well. For example, in Neo4j, 
we can browse through the crime statistics of Sacramento after loading the CSV data set. Clicking on the 
individual nodes causes a summary of the fields to appear at the bottom of the graph display, as shown in 
Figure 10-16.

Figure 10-16. Browsing crime statistics as individual nodes from a query in a Neo4j graph database
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PART IV

Case Studies and Applications

In the final part of our book, we examine case studies and applications of the kind of distributed 
systems we have discussed. We end the book with some thoughts about the future of Hadoop and 
distributed analytic systems in general.
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CHAPTER 11

A Case Study in Bioinformatics: 
Analyzing Microscope Slide Data

In this chapter, we describe an application to analyze microscopic slide data, such as might be found in 
medical examinations of patient samples or forensic evidence from a crime scene. We illustrate how a 
Hadoop system might be used to organize, analyze, and correlate bioinformatics data.

 ■ Note  This chapter uses a freely available set of fruit fly images to show how microscope images can be 
analyzed. Strictly speaking, these images are coming from an electron microscope, which enables a much higher 
magnification and resolution of the images than the ordinary optical microscope you probably first encountered 
in high school biology. The principles of distributed analytics on a sensors data output is the same, however. You 
might, for example, use images from a small drone aircraft and perform analytics on the images output from the 
drone camera. The software components and many of the analytical operations remain the same.

11.1  Introduction to Bioinformatics
Biology has had a long history as a science, spanning many centuries. Yet, only in the last fifty years or so has 
biological data used as computer data come into its own as a way of understanding the information.

Bioinformatics is the understanding of biological data as computer data, and the disciplined analysis of 
that computer data. We perform bioinformatics by leveraging specialized libraries to translate and validate 
the information contained in biological and medical data sets, such as x-rays, images of microscope slides, 
chemical and DNA analysis, sensor information such as cardiograms, MRI data, and many other kinds of 
data sources.

The optical microscope has been around for hundreds of years, but it is only relatively recently that 
microscope slide images have been analyzed by image processing software. Initially, these analyses were 
performed in a very ad-hoc fashion. Now, however, microscope slide images have become “big data” sets in 
their own right, and can be analyzed by using a data analytics pipeline as we’ve been describing throughout 
the book.

In this chapter, we examine a distributed analytics system specifically designed to perform the 
automated microscope slide analysis we saw diagrammed in Figure 8-1. As in our other examples, we 
will use standard third-party libraries to build our analytical system on top of Apache Hadoop and Spark 
infrastructure.
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For an in-depth description of techniques and algorithms for medical bioinformatics, see Kalet (2009).
Before we dive into the example, we should re-emphasize the point made in the node earlier in the 

introduction. Whether we use electron microscopy images, optical images of a microscope slide, or even 
more complex images such as the DICOM images that typically represent X-rays.

 ■ Note Several domain-specific software components are required in this case study, and include some 
packages specifically designed to integrate microscopes and their cameras into a standard image-processing 
application.

Figure 11-1. A microscope slide analytics example with software and hardware components
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The sample code example we will discuss in this chapter is based on the architecture shown in 
Figure 11-1. Mostly we’re not concerned with the physical mechanics of the mechanisms, unless we want 
fine control over the microscope’s settings. The analytics system begins where the image acquisition part 
of the process ends. As with all of our sample applications, we go through a simple technology stack–
assembling phase before we begin to work on our customized code. Working with microscopes is a special 
case of image processing, that is, “images as big data,” which we will discuss in more detail in Chapter 14.

As we select software components for our technology stack, we also evolve the high-level diagram of 
what we want to accomplish in software. One result of this thinking might look like Figure 11-2. We have data 
sources (which essentially come from the microscope camera or cameras), processing elements, analytics 
elements, and result persistence. Some other components, such as a cache repository to hold intermediate 
results, are also necessary.

Figure 11-2. A microscope slide software architecture: high-level software component diagram

http://dx.doi.org/10.1007/978-1-4842-1910-2_14
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11.2  Introduction to Automated Microscopy
Figures 11-3 to 11-5 show the stages a slide goes through in automated microscopy.

Figure 11-3. Original electron microscope slide image, showing a fruit fly tissue slice
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Figure 11-4. Contour extraction from the microscope image
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Figure 11-5. Color-coded regions in the image
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We can use a geometric model of the tissue slices as shown in Figure 11-6.

Figure 11-6. Geometric computation of slice dimensions
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We can use three-dimensional visualization tools to analyze a stack of neural tissue slices, as shown in 
the examples in Figures 11-7 and 11-8.

Figure 11-7. An example of analyzing slices of neural tissue

Figure 11-8. Another example of organizing neural tissue

11.3  A Code Example: Populating HDFS with Images
We will use the HIPI package (http://hipi.cs.virginia.edu/gettingstarted.html) to ingest the images 
into HDFS. Apache Oozie can be used to schedule the importing. We can start with a basic Hadoop job 
following the online instructions for HIPI:

package com.apress.probda.image;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

http://hipi.cs.virginia.edu/gettingstarted.html
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public class ImageProcess extends Configured implements Tool {
  public int run(String[] args) throws Exception {
    System.out.println("---- Basic HIPI Example ----");
    return 0;
  }
  public static void main(String[] args) throws Exception {
    ToolRunner.run(new ImageProcess(), args);
    System.exit(0);
  }
}

Edit, compile, and run the program to verify results.
The second iteration of the program is as follows:

package com.apress.probda.image;
import org.hipi.image.FloatImage;
import org.hipi.image.HipiImageHeader;
import org.hipi.imagebundle.mapreduce.HibInputFormat;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class ImageProcess extends Configured implements Tool {

  public static class ImageProcessMapper extends Mapper<HipiImageHeader, FloatImage, 
IntWritable, FloatImage> {
    public void map(HipiImageHeader key, FloatImage value, Context context) 
      throws IOException, InterruptedException {
    }
  }
  public static class ImageProcessReducer extends Reducer<IntWritable, FloatImage, 
IntWritable, Text> {
    public void reduce(IntWritable key, Iterable<FloatImage> values, Context context) 
      throws IOException, InterruptedException {
    }
  }
  public int run(String[] args) throws Exception {
    // Check input arguments
    if (args.length != 2) {
      System.out.println("Usage: imageProcess <input HIB> <output directory>");
      System.exit(0);
    }
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    // Initialize and configure MapReduce job
    Job job = Job.getInstance();
    // Set input format class which parses the input HIB and spawns map tasks
    job.setInputFormatClass(HibInputFormat.class);
    // Set the driver, mapper, and reducer classes which express the computation
    job.setJarByClass(ImageProcess.class);
    job.setMapperClass(ImageProcessMapper.class);
    job.setReducerClass(ImageProcessReducer.class);
    // Set the types for the key/value pairs passed to/from map and reduce layers
    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(FloatImage.class);
    job.setOutputKeyClass(IntWritable.class);
    job.setOutputValueClass(Text.class);
    // Set the input and output paths on the HDFS
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    // Execute the MapReduce job and block until it complets
    boolean success = job.waitForCompletion(true);

    // Return success or failure
    return success ? 0 : 1;
  }
  public static void main(String[] args) throws Exception {
    ToolRunner.run(new ImageProcess(), args);
    System.exit(0);
  } 
}

Look for the complete code example in the code contributions.

Figure 11-9. Successful population of HDFS with University of Virginia’s HIPI system

Check that the images have been loaded successfully with the HibInfo.sh tool by typing the following on 
the command line:

tools/hibInfo.sh flydata3.hib --show-meta
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You should see results similar to those in Figure 11-10.

11.4  Summary
In this chapter, we described an example application which uses distributed bioinformatics techniques to 
analyze microscope slide data.

In the next chapter, we will talk about a software component based on a Bayesian approach to 
classification and data modeling. This turns out to be a very useful technique to supplement our distributed 
data analytics system, and has been used in a variety of domains including finance, forensics, and medical 
applications.

Figure 11-10. Successful description of HDFS images (with metadata information included)
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CHAPTER 12

A Bayesian Analysis Component: 
Identifying Credit Card Fraud

In this chapter, we describe a Bayesian analysis software component plug-in which may be used to analyze 
streams of credit card transactions in order to identify fraudulent use of the credit card by illicit users.

 ■ Note We will primarily use the Naïve Bayes implementation provided by Apache Mahout, but we will 
discuss several potential solutions to using Bayesian analysis in general.

12.1  Introduction to Bayesian Analysis
Bayesian networks (which are also known as belief networks or probabilistic causal networks) are 
representations of observations, experiments, or hypotheses. The whole concept of “belief” and “Bayesian 
network” go hand in hand. When we perform a physical experiment, such as using a Geiger counter to 
identify radioactive minerals, or a chemical test of a soil sample to infer the presence of natural gas, coal, 
or petroleum, there is a “belief factor” associated with the results of these experiments. How accurate is 
the experiment? How reliable is the “data model” of the experiment—its premises, data, relationships 
within data variables, methodology? And how much do we believe the “conclusions” of the experiment? 
Fortunately, a lot of the infrastructure we’ve built up over the last few chapters is very useful in dealing with 
Bayesian technologies of all kinds, especially the graph databases. Almost all Bayesian network problems 
benefit from being represented as graphs—after all, they are networks—and the graph database can assist 
with a seamless representation of Bayesian problems.

 ■ Note  Bayesian analysis is a gigantic area of continually evolving concepts and technologies, which now 
include deep learning and machine learning aspects. Some of the references at the end of the chapter provide 
an overview of concepts, algorithms, and techniques, which have been used so far in Bayesian analysis.

Bayesian techniques are particularly relevant to an ongoing financial problem: the identification of 
credit card fraud. Let’s take a look at a simple credit card fraud algorithm, as shown in Figure 18-1. The 
implementation and algorithm shown is based on the work of Triparthi and Ragha (2004).
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We will describe how to build a distributed credit card fraud detector based on the algorithm shown in 
Figure 12-1, using some of the by now familiar strategies and techniques described in previous chapters.

First things first: add an environment variable to your .bash_profile file for this application:

  export CREDIT_CARD_HOME=/Users/kkoitzsch/probda/src/main/resources/creditcard

First, lets get some credit card test data. We start with the data sets found at https://www.cs.purdue.edu/ 
commugrate/data/credit_card/. This data set was the basis for one of the Code Challenges of 2009. We are 
only interested in these files:

DataminingContest2009.Task2.Test.Inputs
DataminingContest2009.Task2.Train.Inputs
DataminingContest2009.Task2.Train.Targets

Download the files into $CREDIT_CARD_HOME/data.

Figure 12-1. A credit card fraud detection algorithm, following Triparthi and Ragha (2004)

https://www.cs.purdue.edu/commugrate/data/credit_card/
https://www.cs.purdue.edu/commugrate/data/credit_card/
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Let’s look at the structure of the credit card transaction record. Each line in the CSV file is a transaction 
record consisting of the following fields:

amount,hour1,state1,zip1,custAttr1,field1,custAttr2,field2,hour2,flag1,total,field3,field4,i
ndicator1,indicator2,flag2,flag3,flag4,flag5
000000000025.90,00,CA,945,1234567890197185,3,redjhmbdzmbzg1226@sbcglobal.net,0,00,0,00000000
0025.90,2525,8,0,0,1,0,0,2
000000000025.90,00,CA,940,1234567890197186,0,puwelzumjynty@aol.com,0,00,0,000000000025.90,3
393,17,0,0,1,1,0,1
000000000049.95,00,CA,910,1234567890197187,3,quhdenwubwydu@earthlink.
net,1,00,0,000000000049.95,-737,26,0,0,1,0,0,1
000000000010.36,01,CA,926,1234567890197202,2,xkjrjiokleeur@hotmail.com,0,01,1,000000000010.3
6,483,23,0,0,1,1,0,1
000000000049.95,01,CA,913,1234567890197203,3,yzlmmssadzbmj@socal.rr.c
om,0,01,0,000000000049.95,2123,23,1,0,1,1,0,1

…and more.
Looking at the standard structure for the CSV line in this data set, we notice something about field 

number 4: while it has a 16-digit credit-card-like code, it doesn’t conform to a standard valid credit card 
number that would pass the Luhn test.

We write a program that will modify the event file to something more suitable: the fourth field of each 
record will now contain a “valid” Visa or Mastercard randomly generated credit card number, as shown in 
Figure 12-2. We want to introduce a few “bad” credit card numbers just to make sure our detector can spot them.

Figure 12-2. Merging valid and invalid “real” credit card numbers with test data
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12.2  A Bayesian Component for Credit Card Fraud Detection
A Bayesian component to identify credit card fraud from data sets is the same, in principle, to many of the 
other kinds of data pipelines we’ve been discussing. It gets back to the fundamental principle of this book: 
distributed analytics systems are always some kind of data pipeline, some kind of workflow processing. 
Different arrangements, configurations, and technology choices may be used, but they share some 
underlying identities as far as overall design goes.

12.2.1  The Basics of Credit Card Validation
We start with the fundamental principles of credit card validation. A credit card number can be determined 
as valid using the Luhn check, shown in Listing 12-1.

public static boolean checkCreditCard(String ccNumber)
    {
            int sum = 0;
            boolean alternate = false;
            for (int i = ccNumber.length() - 1; i >= 0; i--)
            {
                    int n = Integer.parseInt(ccNumber.substring(i, i + 1));
                    if (alternate)
                    {
                            n *= 2;
                            if (n > 9)
                            {
                                    n = (n % 10) + 1;
                            }
                    }
                    sum += n;
                    alternate = !alternate;
            }
            return (sum % 10 == 0);
    }
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The Luhn credit card number verification algorithm is shown in the flowchart in Figure 12-3.

We can add machine learning techniques into the fraud-detecting mix.

Figure 12-3. The simple Luhn credit card validation algorithm.
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Take a look at the algorithm flowchart in Figure 12-4. The process involves a training phase and a 
detection phase.

In the training phase, a clustering process creates the data model.
In the detection phase, the model previously created is used to detect (identify) new incoming events.

Figure 12-4. Training and detection phases of a credit card fraud detection algorithm
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An implementation of the training/detecting program is shown in Figure 12-5 and Figure 12-6.

You can run the complete examples from the code contribution.

12.3  Summary
In this chapter, we discussed a software component developed around a Bayesian classifier, specifically 
designed to identify credit card fraud in a data set. This application has been re-done and re-thought 
many times, and in this chapter, we wanted to showcase an implementation in which we used some of the 
software techniques we’ve already developed throughout the book to motivate our discussion.

In the next chapter, we will talk about a real-world application: looking for mineral resources with 
a computer simulation. “Resource finding” applications are a common type of program in which real-
world data sets are mined, correlated, and analyzed to identify likely locations of a “resource,” which might 
be anything from oil in the ground to clusters of trees in a drone image, or a particular type of cell in a 
microscopic slide.
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Figure 12-5. Starting Zookeeper from the command line or script is straightforward

Figure 12-6. Starting the Apache Storm supervisor from the command line
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CHAPTER 13

Searching for Oil: Geographical 
Data Analysis with Apache Mahout

In this chapter, we discuss a particularly interesting application for distributed big data analytics: using 
a domain model to look for likely geographic locations for valuable minerals, such as petroleum, bauxite 
(aluminum ore), or natural gas. We touch on a number of convenient technology packages to ingest, 
analyze, and visualize the resulting data, especially those well-suited for processing geolocations and other 
geography-related data types.

 ■ Note  In this chapter we use the Elasticsearch version 2.3. This version also provides the facility to use the 
MapQuest map visualizations you will see throughout this chapter and elsewhere in the book.

13.1  Introduction to Domain-Based Apache Mahout 
Reasoning

Big data analytics have many domain-specific applications, and we can use Apache Mahout to effectively 
address domain-centric concerns. Sometimes the knowledge base involved in the analytical process is 
extremely complex; data sets may be imprecise or incomplete, or the data model might be faulty, poorly 
thought out, or simply inappropriate for the solution requirements. Apache Mahout, as a tried-and-true 
machine learning infrastructure component—and the way in which it supplies well-trusted algorithms and 
tools—takes some of the headache out of building domain-based systems.

A relevant example of this domain-centric application is the “resource finder” application type. This 
includes analytical systems which process large amounts of timestamped data (sometimes over years or 
decades, in fact); verifies, harmonizes, and correlates the data; and then, through the use of a domain-
specific data model, computes analytics (and the resultant data visualizations which are the outputs of those 
analytics) to identify the location of specific “resources” (usually in the earth or in the ocean). Needless to 
say, timestamping, collation and curation of the data, as well as accurate processing of the geolocation data, 
is key towards producing accurate, relevant, and timely hypotheses, explanations, summaries, suggestions, 
and visualizations from such a “resource finder” system.
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In this type of system, four types of knowledge source are typically used, according to Khan “Prospector 
Expert System” https://www.scribd.com/doc/44131016/Prospector-Expert-System: rules (similar to 
those found in the JBoss Drools systems), semantic nets, and frames (a somewhat hybrid approach which 
is discussed thoroughly in Shank and Abelson (1981). Like other object-oriented systems, frames support 
inheritance, persistence, and the like.

In Figure 16.1, we show an abstracted view of a “hypothesis generator,” one way in which we can predict 
resource locations, such as petroleum. The hypothesis generator for this example is based on JBoss Drools, 
which we discussed in Chapter 8.

Figure 13-1. An abstract component view of a geographical data analytics process

https://www.scribd.com/doc/44131016/Prospector-Expert-System
http://dx.doi.org/10.1007/978-1-4842-1910-2_8
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In the example program, we use a DBF importer program, such as the one shown in Listing 13-1, to 
import data from DBF.

Elasticsearch is a very flexible data repository and a wide variety of data formats may be imported into it.
Download a few standard data sets just to get used to the Elasticsearch mechanisms. There are some 

samples in:

https://www.elastic.co/guide/en/kibana/3.0/snippets/logs.jsonl

as well as in
Load sample data sets just for initially testing Elasticsearch and Kibana. You can try these:

curl -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -XPOST 'localhost:9200/shakespeare/_bulk?pretty' --data-binary @shakespeare.json
curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl

 ■ Note  In a previous chapter we used apache Tika to read DBf files. In this chapter, we will use an 
alternative DBf reader by Sergey polovko (Jamel). you can download this DBf reader from github at  
https://github.com/jamel/dbf.

Listing 13-1. A simple DBF reader for geological data source information

package com.apress.probda.applications.oilfinder;

import java.io.File;
import java.util.Date;
import java.util.List;

/** We use a standard DBF reader from github.
 * 
 */
import org.jamel.dbf.processor.DbfProcessor;
import org.jamel.dbf.processor.DbfRowMapper;
import org.jamel.dbf.utils.DbfUtils;

Figure 13-2. A Mahout-based software component architecture for geographical data analysis

https://www.elastic.co/guide/en/kibana/3.0/snippets/logs.jsonl
https://github.com/jamel/dbf
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public class Main {

        static int rownum = 0;

        public static void main(String[] args) {
        File dbf = new File("BHL_GCS_NAD27.dbf"); // pass in as args[0] 

        List<OilData> oildata = DbfProcessor.loadData(dbf, new DbfRowMapper<OilData>() {
            @Override
            public OilData mapRow(Object[] row) {

                for (Object o : row) { 

                        System.out.println("Row object:  " + o); 

                }
                System.out.println("....Reading row: " + rownum + " into elasticsearch....");

                rownum++;

                System.out.println("------------------------");
                return new OilData(); // customize your constructor here
           }
        });

       // System.out.println("Oil Data: " + oildata);
    }
}

/** We will flesh out this information class as we develop the example.
 * 
 * @author kkoitzsch
 *
 */
class OilData {

        String _name;
        int _value;
        Date _createdAt;

        public OilData(String... args){

        }

        public OilData(){

        }
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        public OilData(String name, int intValue, Date createdAt) {
                _name = name;
                _value = intValue;
                _createdAt = createdAt;
        }

}

Of course, reading the geographical data (including the DBF file) is really only the first step in the 
analytical process.

Figure 13-3. A test query to verify Elasticsearch has been populated correctly with test data sets

Use the Elasticsearch-Hadoop connector (https://www.elastic.co/products/hadoop) to connect 
Elasticsearch with Hadoop-based components of the application.

To learn more about the Hadoop-Elasticsearch connector, please refer to the web page  
http://www.elastic.co/guide/en/elasticsearch/hadoop/index.html.

https://www.elastic.co/products/hadoop)
http://www.elastic.co/guide/en/elasticsearch/hadoop/index.html
http://www.elastic.co/guide/en/elasticsearch/hadoop/index.html
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We can use the Elasticsearch-Hadoop connector in combination with SpatialHadoop to provide 
distributed analytic capabilities for the kind of geolocation-based data we mean to process.

Figure 13-4. The Elasticserch-Hadoop connector and its relationship to the Hadoop ecosystem and HDFS
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We can threshold our values and supply constraints on “points of interest” (spacing, how many 
points of interest per category, and other factors), to produce visualizations showing likelihood of desired 
outcomes.

Evidence and probabilities of certain desired outcomes can be stored in the same data structure, as 
shown in Figure 13-5. The blue regions are indicative of a likelihood that there is supporting evidence for 
the desired outcome, in this case, the presence of petroleum or petroleum-related products. Red and yellow 
circles indicate high and moderate points of interest in the hypothesis space. If the grid coordinates happen 
to be geolocations, one can plot the resulting hypotheses on a map similar to those shown in Figure 13-6 and 
Figure 13-7.

Figure 13-5. Probability/evidence grid: a simple example of grid-based hypothesis analytic
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We can run simple tests to insure Kibana and Elasticsearch are displaying our geolocation data correctly.
Now it is time to describe our Mahout analytical component. For this example, we will keep the 

analytics very simple in order to outline our thought process. Needless to say, the mathematical models of 
real-world resource finders would need to be much more complex, adaptable, and allow for more variables 
within the mathematical model.

We can use another very useful tool to prototype and view some of our data content residing in Solr using 
the Spatial Solr Sandbox tool by Ryan McKinley (https://github.com/ryantxu/spatial-solr-sandbox).

Figure 13-6. Using Kibana and Elasticsearch for map visualiation in Texas example using latitude and 
logitude, and simple counts of an attribute

https://github.com/ryantxu/spatial-solr-sandbox
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13.2  Smart Cartography Systems and Hadoop Analytics
Smart cartography (SC) systems are a special type of data pipeline–based software application which 
process satellite imagery, comparing the satellite images with an image database of known accuracy, called 
the “ground truth” database. The ground truth database provides standardized geographical location 
information (such as latitude and longitude of the four corners of the rectangular image, image resolution, 
scale, and orientation parameters) as well as other information aiding the matching process.

SC systems provide useful image match feedback to the human evaluation team, and can assist 
engineers and quality assurance personnel to interactively view, validate, edit, annotate, and compare 
incoming satellite imagery with “ground truth” imagery and metadata. Use of an SC system can enable a 
small team of analysts to perform the work of a much larger evaluation team in a shorter amount of time 
with more accurate results, because of the elimination of human error due to fatigue, observation errors, and 
the like.

Figure 13-7. Using the Spatial Solr Sandbox tool to query a Solr repository for geolocation data
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SC systems can use a variety of sensor types, image formats, image resolutions, and data ingestion rates, 
and may use machine learning techniques, rule-based techniques, or inference processes to refine and 
adapt feature identification for more accurate and efficient matching between satellite image features, such 
as locations (latitude longitude information), image features (such as lakes, roads, airstrips, or rivers), and 
man-made objects (such as buildings. shopping centers, or airports).

Users of an SC system may provide feedback as to the accuracy of the computed match, which in turn 
allows the matching process to become more accurate over time as refinement takes place. The system may 
operate specifically on features selected by the user, such as the road network or man-made features such as 
buildings.

Finally, the SC matching process provides accuracy measures of the matches between images and 
ground truth data, as well as complete error and outlier information to the user in the form of reports or 
dashboard displays.

SC systems can provide an efficient and cost-effective way to evaluate satellite imagery for quality, 
accuracy, and consistency within an image sequence, and can address issues of high-resolution accuracy, 
task time to completion, scalability, and near real-time processing of satellite imagery, as well as providing a 
high-performance software solution for a variety of satellite image evaluation tasks.

One useful component to include in geolocation-centric systems is Spatial4j (https://github.com/
locationtech/spatial4j), a helper library which provides spatial and geolocation functionality for Java 
programs, evolved from some of the earlier work such as the Spatial Solr Sandbox toolkit discussed earlier.

Figure 13-8. Running the tests for Spatial4j, a commonly used geolocation java toolkit library

https://github.com/locationtech/spatial4j
https://github.com/locationtech/spatial4j
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Another useful software library to use is SpatialHadoop (http://spatialhadoop.cs.umn.edu), a 
MapReduce-based extension to Hadoop itself. SpatialHadoop provides spatial data types, indexes, and 
operations which allow the use of a simple high-level language to control the processing of geolocation-
centric data with Hadoop-based programs.

Figure 13-9. Generating a data file for use with SpatialHadoop

13.3  Summary
In this chapter, we talked about the theory and practice of searching for oil and other natural resources 
using big data analytics as a tool. We were able to load DBF data, manipulate and analyze the data with 
Mahout=based code, and output the results to a simple visualizer. We also talked about some helpful 
libraries to include in any geolocation-centric application, such as Spatial4j and SpatialHadoop.

In the next chapter, we will talk about a particularly interesting area of big data analytics: using images 
and their metadata as a data source for our analytical pipeline.
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CHAPTER 14

“Image As Big Data” Systems: 
Some Case Studies

In this chapter, we will provide a brief introduction to an example toolkit, the Image as Big Data Toolkit 
(IABDT), a Java-based open source framework for performing a wide variety of distributed image processing 
and analysis tasks in a scalable, highly available, and reliable manner. IABDT is an image processing 
framework developed over the last several years in response to the rapid evolution of big data technologies 
in general, but in particular distributed image processing technologies. IABDT is designed to accept many 
formats of imagery, signals, sensor data, metadata, and video as data input.

A general architecture for image analytics, big data storage, and compression methods for imagery 
and image-derived data is discussed, as well as standard techniques for image-as-big-data analytics. A 
sample implementation of our image analytics architecture, IABDT addresses some of the more frequently 
encountered challenges experienced by the image analytics developer, including importing images into 
a distributed file system or cache, image preprocessing and feature extraction, applying the analysis and 
result visualization. Finally, we showcase some of the features of IABDT, with special emphasis on display, 
presentation, reporting, dashboard building, and user interaction case studies to motivate and explain our 
design and methodology stack choices.

14.1  An Introduction to Images as Big Data
Rapid changes in the evolution of “big data” software techniques have made it possible to perform image 
analytics (the automated analysis and interpretation of complex semi-structured and unstructured data 
sets derived from computer imagery) with much greater ease, accuracy, flexibility, and speed than has been 
possible before, even with the most sophisticated and high-powered single computers or data centers. The 
“big data processing paradigm,” including Hadoop, Apache Spark, and distributed computing systems, have 
enabled a host of application domains to benefit from image analytics and the treatment of images as big 
data, including medical, aerospace, geospatial analysis, and document processing applications. Modular, 
efficient, and flexible toolkits are still in formative or experimental development. Integration of image 
processing components, data flow control, and other aspects of image analytics remain poorly defined and 
tentative. The rapid changes in big data technologies have made even the selection of a “technology stack” 
to build image analytic applications problematic. The need to solve these challenges in image analytics 
application development have led us to develop an architecture and baseline framework implementation 
specifically for distributed big data image analytics support.

In the past, low-level image analysis and machine learning modules were combined within a 
computational framework to accomplish domain-specific tasks. With the advent of distributed processing 
frameworks such as Hadoop and Apache Spark, it has been possible to build integrated image frameworks 
that connect seamlessly with other distributed frameworks and libraries, and in which the “image as big 
data” concept has become a fundamental principle of the framework architecture.
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Our example toolkit IABDT provides a flexible, modular architecture which is plug-in-oriented. This 
makes it possible to combine many different software libraries, toolkits, systems, and data sources within 
one integrated, distributed computational framework. IABDT is a Java- and Scala-centric framework, as it 
uses both Hadoop and its ecosystem as well as the Apache Spark framework with its ecosystem to perform 
the image processing and image analytics functionality.

IABDT may be used with NoSQL databases such as MongoDB, Neo4j, Giraph, or Cassandra, as well 
as with more traditional relational database systems such as MySQL or Postgres, to store computational 
results and serve as data repositories for intermediate data generated by pre- and post-processing stages in 
the image processing pipeline. This intermediate data might consist of feature descriptors, image pyramids, 
boundaries, video frames, ancillary sensor data such as LIDAR, or metadata. Software libraries such as 
Apache Camel and Spring Framework may be used as “glue” to integrate components with one another.

One of the motivations for creating IABDT is to provide a modular extensible infrastructure for 
performing preprocessing, analysis, as well as visualization and reporting of analysis results—specifically 
for images and signals. They leverage the power of distributed processing (as with the Apache Hadoop and 
Apache Spark frameworks) and are inspired by such toolkits as OpenCV, BoofCV, HIPI, Lire, Caliph, Emir, 
Image Terrier, Apache Mahout, and many others. The features and characteristics of these image toolkits 
are summarized in Table 14-1. IABDT provides frameworks, modular libraries, and extensible examples 
to perform big data analysis on images using efficient, configurable, and distributed data pipelining 
techniques.

Table 14-1. Mainstream image processing toolkit features and characteristics

Toolkit Name Location Implementation

Language

Description

OpenCV opencv.org many Language 
bindings, including Java

general programmatic image 
processing toolkit

BoofCV boofcv.org Java Java-based image processing 
toolkit

HIPI hipi.cs.virginia.edu Java image processing for Hadoop 
toolkit

LIRE/CALIPH/EMIR semanticmetadata.net Java image searching toolkits and 
libraries using Lucene

ImageTerrier imageterrier.org Java image indexing and search 
based using Lucene search 
engine

Java Advanced 
Imaging

oracle.com/
technetwork/java/
javase/overview/in…

Java general purpose image 
processing toolkit, venerable 
but still useful

Image as Big Data toolkits and components are becoming resources in an arsenal of other distributed 
software packages based on Apache Hadoop and Apache Spark, as shown in Figure 14-1.
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Some of the distributed implementations of the module types in Figure 14-1 which are implemented in 
IABDT include:

Genetic Systems. There are many genetic algorithms particularly suited to image analytics1, including 
techniques for sampling a large solution space, feature extraction, and classification. The first two categories 
of technique are more applicable to the image pre-processing and feature extraction phases of the analytical 
process and distributed classification techniques—even those using multiple classifiers.

Bayesian Techniques. Bayesian techniques include the naïve Bayesian algorithm found in most 
machine learning toolkits, but also much more.

Hadoop Ecosystem Extensions. New extensions can be built on top of existing Hadoop components to 
provide customized “image as big data” functionality.

Clustering, Classification, and Recommendation. These three types of analytical algorithms are present 
in most standard libraries, including Mahout, MLib, and H2O, and they form the basis for more complex 
analytical systems.

Hybrid systems integrate a lot of disparate component types into one integrated whole to perform 
a single function. Typically hybrid systems contain a control component, which might be a rule-based 
system such as Drools, or other standard control component such as Oozie, which might be used for 

Figure 14-1. Image as Big Data tookits as distributed systems
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scheduling tasks or other purposes, such as Luigi for Python (https://github.com/spotify/luigi) ), which 
comes with built-in Hadoop support. If you want to try Luigi out, install Luigi using Git, and clone it into a 
convenient subdirectory:

git clone 

https://github.com/spotify/luigi?cm_mc_uid=02629589701314462628476&cm_mc_
sid_50200000=1457296715

cd to the bin directory and start the server

./luigid 

Figure 14-2. Image as Big Data tookits as distributed systems

14.2  First Code Example Using the HIPI System
In this section, we will introduce the HIPI Hadoop image processing system and show some simple 
examples of how it can be used as a distributed data processing pipeline component for images.

HIPI (hipi.cs.virginia.edu) Is a very useful Hadoop-based image processing tool, which originated at 
the University of Virginia. It integrates with more mainstream standard image processing libraries such as 
OpenCV to provide a wide palette of image processing and analytic techniques in a Hadoop-centric way.

Several basic tools for basic Hadoop-cenric image processing tasks are included with the HIPI system.
These include tools to create “HIB” files (HIPI image bundles) as shown used in the diagram Figure 14-3.
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HIPI image bundle, or “HIB,” is the structured storage method used by HIPI to group images into one 
physical unit. The cull phase allows each HIB to be filtered out based on appropriate programmatic criteria. 
Images that are culled out are not fully decoded, making the HIPI pipeline much more efficient. The output 
of the cull phase results in image sets as shown in the diagram. Each image set has its own map phase, 
followed by a shuffle phase and corresponding reduce steps to create the final result. So, as you can see, the 
HIPI data flow is similar to the standard map-reduce data flow process. We reproduce the Hadoop data flow 
process in Figure 14-4 for your reference.

Figure 14-3. A HIPI image data flow, consisting of bunding, culling, map/shuffle and reduce to end result
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INSTALLING A BASIC HIPI SYSTEM 

Basic hIpI installation instructions follow.

 1. First, review the “getting started” page at

http://hipi.cs.virginia.edu/gettingstarted.html 

for an overview of what’s in store and updates and/or changes to the 
system.

 2. Install the basic hIpI software as shown in the “getting started” page:

git clone git@github.com:uvagfx/hipi.git

this will install the source code into a “hipi” directory. Cd to this “hipi” directory and “ls” the contents 
to review. you will need a gradle build tool installation to install from the source. the resulting build will 
appear similar to Figure 14-5.

Figure 14-4. A reference diagram of the classic map-reduce data flow, for comparison with 14-3

http://hipi.cs.virginia.edu/gettingstarted.html
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Gradle is another useful installation and build tool which is similar to Maven. Some systems, such as 
HIPI, are much easier to install using Gradle than with other techniques such as Maven.

Figure 14-5. Successful Gradle installation of the HIPI toolkit
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Installation of HIPI is only the first step, however! We have to integrate our HIPI processor with the 
analytical components to produce our results.

14.3  BDA Image Toolkits Leverage Advanced Language 
Features

The ability to use modern interpreted languages such as Python—along with interactive read-eval-
print loops (REPLs) and functional programming—are features found with most modern programming 
languages, including Java 9, Scala, and interactive Python. IABDT uses these modern programming language 
features to make the system easier to use and the API code is much more succinct as a result.

IABDT integrates seamlessly with both Hadoop 2 and Apache Spark and uses standard distributed 
libraries such as Mahout, MLib, H20 and Sparkling Water to provide analytical functionality. One of the case 
studies we discuss also uses standard Java-centric statistical libraries with Hadoop, such as R and Weka.

Figure 14-6. Example using HIPI info utility: Mage info about a 10-image HIB in the HIPI system
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14.4  What Exactly are Image Data Analytics?
Image data analytics apply the same general principles, patterns, and strategies of generic data analytics. 
The difference is the data source. We move away from the traditional ideas of analyzing numbers, line items, 
texts, documents, log entries, and other text-based data sources. Instead of a text-based data source, we are 
now dealing with data much less straightforward: the world of signals (which are essentially time series) and 
images (which can be two-dimensional images of color pixels with RGB values, or even more exotic image 
types with metadata, geolocations, and overlay information attached).

Specialized toolkits are needed to perform basic image data pipelining. At the top level, many pre-coded 
and customizable methods are provided to assist you. An assortment of these methods are shown in 
Table 14-2.

Table 14-2. A selection of methods from the Image as Big Data Toolkit

Method Name Method Signature Output Types Description

EJRCL EJRCL(Image, PropertySet) ComputationResult edges, junctions, regions, 
contours, and lines

createImagePyramid imagePyramid(Image, 
PropertySet)

ImagePyramid one image converted to an 
image pyramid, parametrically

projectBayesian projectBayesian(ImageSet, 
BayesianModel, 
PropertySet)

BayesianResult project an image set into a 
Bayesian hypothesis space

computeStatistics computeStatistics(Image, 
PropertySet)

ComputationResult basic statistics computed for 
single image, or over an image 
set or image pyramid

deepLearn deepLearn(ImageSet, 
Learner, PropertySet)

LearnerResult use standard distributed deep 
learning algorithms to process 
an image set or pyramid

multiClassify multiclassify(ImageSet, 
ClassifierModel, 
PropertySet)

ClassifierResult use multiple classifiers to 
classify an image set or image 
pyramid

Table 14-3. Display methods for visualization provided by the IABDT. Most object types in the IABDT may be 
displayed using similar methods

Method Name Method Signature Leverages Toolkit Description

display display(Image, PropertySet) BoofCV

display display(ImagePyramid, PropertySet) BoofCV

display display(ImageSet, PropertySet) BoofCV

display display(Image, FeatureSet, PropertySet) BoofCV

display display(Image, GeoLocationModel, PropertySet) BoofCV

display display(Image, ResultSet, PropertySet) BoofCV
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The image data source processor is the component responsible for data acquisition, image cleansing, 
format conversion, and other operations to “massage” the data into formats acceptable to the other pipeline 
components.

The analytical engine components can be support libraries such as R and Weka.
Intermediate data sources are the outputs of initial analytical computation.
The user control dashboard is an event handler, interactive component.
The control and configuration modules consist of rule components such as Drools or other rule engine 

or control components, and may contain other “helper” libraries for tasks such as scheduling, data filtering 
and refinement, and overall system control and configuration tasks. Typically, ZooKeeper and/or Curator 
may be used to coordinate and orchestrate the control and configuration tasks.

The distributed system infrastructure module contains underlying support and “helper” libraries.
The persistent result repositories can be any of a variety of types of data sink, including relational, 

graph, or NoSQL type databases. In-memory key-value data stores may also be used if appropriate.
The reporting modules typically consist of old-school tabular or chart presentations of analytical results.
User interaction, control, and feedback is supplied by the IABDT interaction modules, which include 

default dashboards for common use cases.

Figure 14-7. Architecture of the Image as Big Data Toolkit
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Visualization modules consist of support libraries for displaying images, overlays, feature locations, and 
other visual information which make interacting and understanding the data set easier.

14.5  Interaction Modules and Dashboards
The ability to develop appropriate displays and dashboards for distributed image processing systems are an 
essential aid to evaluation, testing, proof-of-concept and optimization of completed implementations.

Building basic user interfaces and dashboards are supported directly in the IABDT. A picture of a simple 
user interface is shown in Figure 14-8.

Figure 14-8. A simple user interface build with the IABDT

Consolidated views of the same objects, image displays which process image sequences, and image 
overlay capability are all provided by the IABD toolkit.

Dashboard, display, and interactive interfaces—both standalone application and web based—may 
be built with the IABDT user interface building module. Support for standard types of display, including 
overlays, and geolocation data, are provided in the prototype IABDT.
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14.6  Adding New Data Pipelines and Distributed Feature 
Finding

Designing a new analytical dataflow using IABDT is straightforward. Equations from an algorithm may be 
converted into stand-alone code, and from stand-alone code to a map/reduce implementation, leveraging a 
number of toolkits provided for integration with the Hadoop/Spark ecosystems, including the University of 
Virginia’s HIPI system (hipi.cs.virginia.edu), as described below.

Some distributed image processing capabilities have been explicitly developed for Spark-based systems, 
so a small digression on the Apache Spark vs. Hadoop controversy may be in order at this point. There 
has been some debate recently in the literature about whether Apache Spark has killed the map/reduce 
paradigm as well as “killed” the usefulness of the Hadoop ecosystem (for example, the Apache Mahout 
library originally started with map/reduce support only, but evolved to support Apache Spark and even 
H20 support). We changed our views as we evolved and developed the IABDT prototype system (Apache 
Spark became, more and more, a force to be reckoned with over time) and came to the realization that 
Hadoop and Spark are intimately complementary technologies, not at all meant to be separated. As a result, 
we have designed the IABDT toolkit as a modular and extremely flexible system in order that we can use 
Hadoop ecosystem components as well as Spark components easily, even when using Hadoop and Spark 
technologies together in “hybrid” dataflow development, in which components from M/R and in-memory 
(Hadoop and Spark) processing cooperate to provide the final results.

14.7  Example: A Distributed Feature-finding Algorithm
A distributed feature-finding algorithm may be constructed using the concept of a so-called “Hu Moment.”

Hu moments are used to compute characteristic shapes.
Following Kulkani (1994), we can express the mathematics of this in the following few equations.
Standard geometric moments can be computed as follows:
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Rotation and scale invariant central moments can be characterized, following Hu:
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A map/reduce task in Hadoop can be coded explicitly from the moment equations, first in java 
for experimental purposes — to test the program logic and make sure the computed values conform 
to expectations — and then converted to the appropriate map/reduce constructs. A sketch of the 
java implementation is shown in Listing 14-1. We use a standard java class, com.apress.probda.core.
ComputationalResult, to hold the answers and the “centroid” (which is also computed by our algoirithm):

Listing 14-1. Moment computation in Java

public ComputationResult computeMoments(int numpoints, double[] xpts, double[] ypts)
    {
         int i;
           // array where the moments go
            double[] moments = new double[7]; 
         double xm.ym,x,y,xsq,ysq, factor;
         xm = ym = 0.0;
             for (i = 0; i<n; i++){
                        xm += xpts[i];
                        ym += ypts[i];
                }
        // now compute the centroid
        xm /= (double) n;
        ym /= (double) n;
        // compute the seven moments for the seven equations above
        for (i=0; i<7; i++){
        x =xpts[i]-xm;
        y = ypts[i]-ym;
        // now the seven moments
        moments[0] += (xsq=x*x); // mu 20
        moments[1] += x*y;       // mu 11
        moments[2] += (ysq = y * y); // mu 02
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        moments[3] += xsq *x;        // mu 30
        moments[4] += xsq *y;        // mu 21
        moments[5] += x * ysq;       // mu 12
        moments[6] += y * ysq;       // mu 03
        }
// factor to normalize the size
        factor = 1.0 / ((double)n *(double)n); 
        // second-order moment computation
        moments[0] *= factor;
        moments[1] *= factor;
        moments[2] *= factor;
        factor /= sqrt((double)n);
        // third order moment computation
        moments[3] *= factor;
        moments[4] *= factor;
        moments[5] *= factor;
        moments[6] *= factor;
        // a variety of constructors for ComputationalResult exist.
// this one constructs a result with centroid and 
//moment array. ComputationResult instances are persistable.
        return new ComputationResult(xm, ym, moments);
    } 

From this simple java implementation, we can then implement map, reduce, and combine methods 
with signatures such as those shown in Listing 14-2.

Listing 14-2. HIPI map/reduce method signatures for moment feature extraction computation

// Method signatures for the map() and reduce() methods for
// moment feature extraction module
public void map(HipiImageHeader header, FloatImage image, Context context) throws 
IOException,
      InterruptedException

public void reduce(IntWritable key, Iterable momentComponents, Context context)
      throws IOException, InterruptedException

Lets recall the microscopy example from Chapter 11. It’s a pretty typical un-structured data pipeline 
processing analysis problem in some ways. As you recall, image sequences start out as an ordered list of 
images — they may be arranged by timestamp or in more complex arrangements such as geolocation, stereo 
pairing, or order of importance. You can imagine in a medical application which might have dozens of 
medical images of the same patient, those with life-threatening anomalies should be brought to the front of 
the queue as soon as possible.
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Other image operations might be good candidates for distributed processing, such as the Canny edge 
operation, coded up in BoofCV in Listing 14-3.

Listing 14-3. Canny Edge Detection Using BoofCV, before parallelization

package com.apress.iabdt.examples;

import java.awt.image.BufferedImage;
import java.util.List;

import com.kildane.iabdt.model.Camera;

import boofcv.alg.feature.detect.edge.CannyEdge;
import boofcv.alg.feature.detect.edge.EdgeContour;
import boofcv.alg.filter.binary.BinaryImageOps;
import boofcv.alg.filter.binary.Contour;
import boofcv.factory.feature.detect.edge.FactoryEdgeDetectors;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.ConnectRule;
import boofcv.struct.image.ImageSInt16;
import boofcv.struct.image.ImageUInt8;

public class CannyEdgeDetector {

        public static void main(String args[]) {
                BufferedImage image = UtilImageIO
                                 .loadImage("/Users/kerryk/Downloads/groundtruth-drosophila-

vnc/stack1/membranes/00.png");

                ImageUInt8 gray = ConvertBufferedImage.convertFrom(image, (ImageUInt8) null);
                ImageUInt8 edgeImage = gray.createSameShape();

                // Create a canny edge detector which will dynamically compute the
                // threshold based on maximum edge intensity
                // It has also been configured to save the trace as a graph. This is the
                // graph created while performing
                // hysteresis thresholding.

                 CannyEdge<ImageUInt8, ImageSInt16> canny = FactoryEdgeDetectors.canny(2, 
true, true, ImageUInt8.class, ImageSInt16.class);
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                // The edge image is actually an optional parameter. If you don't need
                // it just pass in null
                canny.process(gray, 0.1f, 0.3f, edgeImage);

                // First get the contour created by canny
                List<EdgeContour> edgeContours = canny.getContours();
                // The 'edgeContours' is a tree graph that can be difficult to process.
                // An alternative is to extract
                // the contours from the binary image, which will produce a single loop
                // for each connected cluster of pixels.
                // Note that you are only interested in external contours.
                 List<Contour> contours = BinaryImageOps.contour(edgeImage,  

ConnectRule.EIGHT, null);

                // display the results
                 BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage, 

false, null);
                 BufferedImage visualCannyContour = VisualizeBinaryData.

renderContours(edgeContours, null, gray.width, gray.height, null);
                 BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height, 

BufferedImage.TYPE_INT_RGB);
                 VisualizeBinaryData.renderExternal(contours, (int[]) null, 

visualEdgeContour);

                ListDisplayPanel panel = new ListDisplayPanel();
                panel.addImage(visualBinary, "Binary Edges");
                panel.addImage(visualCannyContour, "Canny GraphTrace");
                panel.addImage(visualEdgeContour, "Canny Binary Contours");
                 ShowImages.showWindow(panel, "Image As Big Data Toolkit Canny Edge 

Extraction: ", true);
        }
}

Interest points are well-defined, stable image space locations which have “particular interests.” For 
example, you might notice in Figure 14-9 that the points of interest occur at the junction points connecting 
other structures in the image. Corners, junctions, contours, and templates may be used to identify what we 
are looking for within images, and statistical analysis can be performed on the results we find.
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A typical input process for the IABDT is shown in Figure 14-10.

Figure 14-9. Finding interest points in an image: the circled + signs are the interest points
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Data sources may be processed in “batch mode” or in “streaming mode” by the data flow pipeline. The 
data source preprocessor is . The image data source preprocessor may perform image-centric preprocessing 
such as feature extraction, region identification, image pyramid construction, and other tasks to make the 
image processing part of the pipeline easier.

14.8  Low-Level Image Processors in the IABD Toolkit
Low-level image processing routines are an important part of the IABDT. Most standard image processing 
libraries, including JAI, OpenCV, and BoofCV may be used in a seamless fashion with IABDT, using Maven 
dependencies with the IABDT pom.xml file. Some of the standard low-level image processes included in the 
initial IABDT offering include Fourier operators. Fourier operators map image data into a frequency space, 
as shown in the following equation:
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Canny Edge Operators. The Canny operator can be approximated by the steps of Gaussian smoothing, 
the Sobel operator — a non-maximal suppression stage, thresholding (with hysteresis — a special kind of 
thresholding) to connecting edge points. The extracted two dimensional shapes may be persisted to an 
IABDT data source.

Line, Circle, and Ellipse Extraction Operators. There are feature extraction algorithms for line, circle, 
and ellipse shape primitives from two dimensional image data. Several sample implementations are 
included in the toolkit.

Figure 14-10. Input process for IABD Toolkit, showing image preprocessing components
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14.9  Terminology 
Below is a brief summary of some of the terms associated with image processing and ‘image as big data’ 
concepts.

Agency-Based Systems: Cooperative multi-agent systems, or agencies, are an effective way to design 
and implement IABD systems. Individual agent node processes cooperate in a programmed network 
topology to achieve common goals.

Bayesian Image Processing: Array-based image processing using Bayesian techniques typically 
involves constructing and computing with a Bayes network, a graph in which the nodes are considered as 
random variables, and the graph edges are conditional dependencies. Random variables and conditional 
dependencies are standard Bayesian concepts from the fundamental Bayesian statistics. Following Opper 
and Winther, we can characterize Bayesian optimal prediction as

y D x sgn df p f y sgn fBayes
m , |( ) = ( )ò

Object hypotheses, prediction, and sensor fusion are typical problem areas for Bayesian image 
processing.

Classification Algorithm: Distributed classification algorithms within the IABDT include large- 
and small- margin (a margin is the confidence level of a classification) classifiers. A variety of techniques 
including genetic algorithms, neural nets, boosting, and support vector machines (SVMs) may be used 
for classification. Distributed classification algorithms, such as the standard k-means, or fuzzy-k-means 
techniques, are included in standard support libraries such as Apache Mahout.

Deep Learning (DL): A branch of machine learning based on learning-based data representations, and 
algorithms modeling high-level data abstractions. Deep learning uses multiple, complex processing levels 
and multiple non-linear transformations.

Distributed System: Software systems based on a messaging passing architecture over a networked 
hardware topology. Distributed systems may be implemented in part by software frameworks such as 
Apache Hadoop and Apache Spark.

Image As Big Data (IABD): The IABD concept entails treating signals, images, and video in some 
ways, as any other source of “big data”, including the 4V conceptual basis of “variety, volume, velocity, 
and veracity”. Special requirements for IABD include various kinds of automatic processing, such as 
compression, format conversion, and feature extraction.

Machine learning (ML): Machine learning techniques may be used for a variety of image processing 
tasks, including feature extraction, scene analysis, object detection, hypothesis generation, model building 
and model instantiation.

Neural net: Neural nets are a kind of mathematical model which emulate the biological models of high-
level reasoning in humans. Many types of distributed neural net algorithm are useful for image analysis, 
feature extraction, and two- and three- dimensional model building from images.

Ontology-driven modeling: Ontologies as a description of entities within a model and the 
relationships between these entities, may be developed to drive and inform a modeling process, in which 
model refinements, metadata, and even new ontological forms and schemas, are evolved as an output of the 
modeling process.

Sensor fusion: Combination of information from multiple sensors or data sources into an integrated, 
consistent, and homogeneous data model. Sensor fusion may be accomplished by a number of 
mathematical techniques, including some Bayesian techniques.

Taxonomy: A scheme of classification and naming which builds a catalog. Defining, generating, or 
modeling a hierarchy of objects may be helped by leveraging taxonomies and related ontological data 
structures and processing techniques.



Chapter 14 ■ “Image as BIg Data” systems: some Case stuDIes

254

14.10  Summary
In this chapter, we discussed the ‘image as big data’ concept and why it is an important concept in the world 
of big data analytics techniques. The current architecture, features, and use cases for a new image-as-big-
data toolkit (IABDT), was described. In it, the complementary technologies of Apache Hadoop and Apache 
Spark, along with their respective ecosystems and support libraries, have been unified to provide low-level 
image processing operations — as well as sophisticated image analysis algorithms which may be used to 
develop distributed, customized image processing pipelines.

In the next chapter, we discuss how to build a general-purpose data processing pipeline using many of 
the techniques and technology stacks we’ve learned from previous chapters in the book.
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CHAPTER 15

Building a General Purpose Data 
Pipeline

In this chapter, we detail an end-to-end analytical system using many of the techniques we discussed 
throughout the book to provide an evaluation system the user may extend and edit to create their own 
Hadoop data analysis system. Five basic strategies to use when developing data pipelines are discussed. 
Then, we see how these strategies may be applied to build a general purpose data pipeline component.

15.1  Architecture and Description of an Example System
We built some basic data pipelines in Chapter 5. Now the time has come to extend the ideas we touched on 
into a more general purpose data pipelining application.

Please recall that the simplest data pipeline resembles Figure 15-1. It is a series of data processing stages 
linked by data transmission steps. The data transmission steps collect data from a data source and emit it 
to a data sink. The method of transmission might be different for different transmission steps, and the data 
processing stages perform transformation on data inputs, emitting a data output to the subsequent stages. 
The final output is output to a data store or visualization/reporting component.

Figure 15-1. A simple abstraction of a general purpose data pipeline

Let’s look at a more real-world example of a general purpose data pipeline. One of the simplest useful 
configurations is shown in Figure 15-2. It consists of a data source (in this case HDFS), a processing element 
(in this case Mahout), and an output stage (in this case a D3 visualizer which is part of the accompanying Big 
Data Toolkit).

http://dx.doi.org/10.1007/978-1-4842-1910-2_5
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Our first example imports a data set into HDFS, performs some simple analytics processing using 
Mahout, and passes the results of the analysis to a simple visualization component.

15.2  How to Obtain and Run the Example System
The example system is a Maven-based Java/Scala-centric system similar to many of the software 
components described throughout this book, and is available on the Apress code contribution site. See 
Appendix A and B for further details. Installation of this example system is straightforward: just follow the 
instructions included with the software download. Use of the infrastructure tools such as Java, Ant, and 
Maven have all been thoroughly described throughout the book, although the version numbers of the 
components may have changed. You can easily update version numbers within the pom.xml Maven file for 
your project.

15.3  Five Strategies for Pipeline Building
Most of this book has referred to the different strategies of data pipeline building. While software 
components, platforms, tools, and libraries may change, the fundamental strategic design methods of data 
pipeline design remain the same.

There are many strategies for data pipeline building but, broadly speaking, there are five major 
strategies based on “way of working.” These five basic strategy types are discussed briefly below.

15.3.1  Working from Data Sources and Sinks
Working from data sources and sinks is a good organizational strategy to use when you have pre-existing or 
legacy data sources to use. In particular, these might include relational data, CSV flat files, or even directories 
full of images or log files.

When working using this data-sources-and-sinks strategy, an organized approach would include the 
following:

•	 Identify data source/sink types and provide components for data ingestion, data 
validation, and data cleansing (if necessary). For the purposes of this example, we 
will use Splunk, Tika, and Spring Framework.

Figure 15-2. A real-world distributed pipeline can consist of three basic elements
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•	 Treat the “business logic” as a black box. Initially concentrate on data input 
and output as well as the supporting technology stack. If the business logic is 
relatively simple, already packaged as a library, well-defined and straightforward to 
implement, we can treat the business logic component as a self-contained module or 
“plug-in.” If the business logic requires hand-coding or is more complex

15.3.2  Middle-Out Development
Middle-out development means what it says: starting in the “middle” of the application construct and 
working towards either end, which in our examples will always be the data sources at the beginning of the 
process and the data sinks or final result repository at the end of the data pipeline. The “middle” we’re 
developing first is essentially the “business logic” or “target algorithms” to be developed. We can start with 
general technology stack considerations (such as the choice to use Hadoop, Spark, or Flink, for example, or a 
hybrid approach using one or more of these).

15.3.3  Enterprise Integration Pattern (EIP)-based Development
EIP-based development is a useful way to develop pipelines. As we’ve seen, some of the standard toolkits are 
specifically designed to implement EIP components, and other parts of the system can be conceptualized 
using EIPs. Let’s look at a couple of EIP diagrams to get started.

Figure 15-3. A simple Enterprise Integration Pattern (EIP)

We can use any of the freely available EIP diagram editors, such as the draw.io tool (draw.io) or 
Omnigraffle (omnigraffle.com), to draw EIP diagrams. We can then use Spring Integration or Apache Camel 
to implement the pipelines.

A full description of the EIP notation can be found in Hohpe and Woolf (2004).
The components shown in the abstract diagram Figure 15-4 can be implemented using Apache Camel 

or Spring Integration. The two endpoints are data ingestion and data persistence, respectively. The small TV 
screen–like symbol indicates a data visualization component and/or management console.
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15.3.4  Rule-based Messaging Pipeline Development
We discussed rule-based systems and how they may be used for control, scheduling, and ETL-oriented 
operations in Chapter 8. However, rule-based systems can be used as the center or core control mechanism 
of a data pipelining flow, as shown in Figure 15-5.

Figure 15-5. A rule-based data flow pipeline architecture

Figure 15-4. A more extended example of an EIP

Figure 15-5 shows a typical architecture for a rule-based data pipeline in which all the processing 
components in the pipe are controlled by the rule-based workflow/data management component. Let’s look 
at how such an architecture might be implemented.

http://dx.doi.org/10.1007/978-1-4842-1910-2_8
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15.3.5  Control + Data (Control Flow) Pipelining
We can essentially go back to the classic pipe-and-filter design pattern when we define a control mechanism 
and data stages to be controlled, as shown in the EIP diagram of Figure 15-7.

Figure 15-6. An EIP diagram showing a different incarnation of the data pipeline

15.4  Summary
In this chapter, we discussed construction of a general purpose data pipeline. General purpose data 
pipelines are an important starting point in big data analytical systems: both conceptually and in real world 
application building. These general purpose pipelines serve as a staging area for more application-specific 
extensions, as well as experimental proof-of-concept systems which may require more modification and 
testing before they are developed further. Starting on a strong general-purpose technology base makes it 
easier to perform re-work efficiently, and to “take a step back” if application requirements change.

Five basic pipeline building strategies were discussed: working from sources and sinks, middle-out  
development (analytical stack-centric development), enterprise integration pattern (EIP) pipeline 
development, rule-based messaging pipelines, and control + data (control flow) pipelining. Support 
libraries, techniques, and code which supports these five general purpose pipelining strategies were also 
discussed.

In the next and final chapter, we discuss directions for the future of big data analytics and what the 
future evolution of this type of system might look like.
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CHAPTER 16

Conclusions and the Future of Big 
Data Analysis

In this final chapter, we sum up what we have learned in the previous chapters and discuss some of the 
developing trends in big data analytics, including “incubator” projects and “young” projects for data 
analysis. We also speculate on what the future holds for big data analysis and the Hadoop ecosystem—
“Future Hadoop” (which may also include Apache Spark and others).

Please keep in mind that the 4Vs of big data (velocity, veracity, volume, and variety) will only become 
larger and more complex over time. Our main conclusion: the scope, range, and effectiveness of big data 
analytics solutions must also continue to grow accordingly in order to keep pace with the data available!

16.1  Conclusions and a Chronology
Throughout this book we’ve taken a technological survey of distributed business analytical systems—
specifically with Hadoop in mind—as a starting point and building block for architecture, implementation, 
deployment, and application. We’ve discussed some of the languages, toolkits, libraries, and frameworks 
which we have found to be the most useful ways to get new Hadoop BDAs up and running. We have 
tried to abide by a few strategic principles as we went along to keep things flexible and adaptable to new 
requirements and software components that might come along in the next few months or years.

These strategic principles include the following:

 1. Use a modular design/build/test strategy to maintain software dependencies, 
versions, and test/integration. In our case, we use Maven and related software 
tools to manage builds, testing, deployment, and modular addition or 
subtraction of new software modules or to update versions. This doesn’t mean 
we exclude additional necessary build tools such as Bower, Gradle, Grunt, 
and the like. On the contrary, all good build tools, content managers, and test 
frameworks should be flexible enough to work together with the others. In our 
experimental systems, for example, it is not uncommon to see Maven, Grunt, 
Bower, and Git components existing together in harmony with little friction or 
incompatibility.

 2. Strategically select a technology stack that can be adapted for future needs 
and changing requirements. Keeping an architectural “vision” in mind allows 
system designers to work together to build and maintain a coherent technology 
stack, which addresses the requirements. Making good initial choices as to 
implementation technology is important and desirable, but having a flexible 
approach, in order that mistakes may be corrected, is even more desirable.
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 3. Be able to accommodate different programming languages appropriately, in 
as seamless a manner as possible. As a consequence of the need to choose a 
technology stack selectively, even some of the simplest applications are multi-
language applications these days, and may contain Java, JavaScript, HTML, Scala, 
and Python components within one framework.

 4. Select appropriate “glueware” for component integration, testing, and 
optimization/deployment. As we have seen in the examples throughout this 
book, “glueware” is almost as important as the components being glued! 
Fortunately for the developer, many components and frameworks exist for this 
purpose, including Spring Framework, Spring Data, Apache Camel, Apache Tika, 
and specialized packages such as Commons Imaging and others.

 5. Last but not least, maintain a flexible and agile methodology to adapt systems to 
newly discovered requirements, data sets, changing technologies, and volume/
complexity/quantity of data sources and sinks. Requirements will constantly 
change, as will support technologies. An adaptive approach saves time and 
rework in the long run.

In conclusion, we have come to believe that following the strategic approach to system building 
outlined above will assist architects, developers, and managers achieve functional business analytics 
systems which are flexible, scalable, and adaptive enough to accommodate changing technologies, as well as 
being able to process challenging data sets, build data pipelines, and provide useful and eloquent reporting 
capabilities, including the right data visualizations to express your results in sufficient detail.

16.2  The Current State of Big Data Analysis
In the remainder of this final chapter we will examine the current state of Hadoop and note some future 
possible directions and developments, speculating on “Future Hadoop”—and this, of course, includes 
manifestations and evolutions of distributed technology—analogous to how Apache Spark, YARN, and 
Hadoop 2 have been milestones in the evolution of Hadoop and its ecosystem up to the present day.

First, we have to go back to the nineteenth century.
The first rumblings of a crisis in data processing technology go back at least as far as 1880. In that year, 

the United States Census was calculated to take eight years to process using the techniques commonly 
used at that time. By 1952, the US Census was processed using the UNIVAC computer’s assistance. Since 
then, challenges to the data processing techniques of the times have been met with one solution after 
another: mechanical, electronic, and semiconductor hardware solutions, paired with the evolution—and 
revolution—of software technologies (such as generalized programming languages), as well as organization 
of media (from the earliest photographs and sound recordings to the latest electronic streaming, video 
processing and storage, and digital media recording techniques).

In 1944, visionary and librarian Fremont Rider warned against the “information crisis”1 (which in those 
days meant the number of documents physically stored in a physical library) and proposed an innovative 
solution which he called the “micro-card”: a way of representing what we now call “metadata” on one side of 
a transparent microform sheet, while the individual pages of the book itself are shown on the opposite side. 
Rider suggested that the preservation of precious one-of-a-kind books and manuscripts from the destruction 
of the war that was currently raging could be achieved through the use of these “micro-cards,” and now, with 
the “data immortality” to be found on the net in such projects as www.archive.com, we see the archiving of 
electronic books anticipated by Rider’s inventions.

1In The Scholar and the Future of the Research Library, Fremont Rider describes his solution to the information 
explosion of the times. It’s good reading for anyone interested in how fundamental technical problems reassert them-
selves in different forms over time.

http://www.archive.com/
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We’ve come a long way from the perforated card and mechanical calculator, through microfilm 
solutions like Rider’s and on to the electronic computer; but keep in mind that many computational and 
analytical problems remain the same. As computational power increases, data volume and availability 
(sensors of all kinds in great number putting out data) will require not only big data analytics, but a process 
of so-called “sensor fusion,” in which different kinds of structured, semi-structured, and unstructured data 
(signals, images, and streams of all shapes and sizes) must be integrated into a common analytical picture. 
Drones and robot technology are two areas in which “future Hadoop” may shine, and robust sensor fusion 
projects are already well underway.

Statistical analysis still has its place in the world of big data analysis, no matter how advanced software 
and hardware components become. There will always be a place for “old school” visualization of statistics, 
as shown in Figure 16-1 and Figure 16-2. As for the fundamental elements of classification, clustering, 
feature analysis, identification of trends, commonalities, matching, etc., we can expect to see all these 
basic techniques recast into more and more powerful libraries. Data and metadata formats—and, most 
importantly, their standardization and adoption throughout the big data community—will allow us to evolve 
the software programming paradigms for BDAs over the next few decades.

Figure 16-1. Different kinds of “old school” bar graphs can be used to summarize grouped data
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When we think about the current state of big data analysis, many questions immediately come to mind. One 
immediate question is, when we solve a data analytics problem, how much ground do we have to cover? What 
is the limit of business analytics as far as components go (keeping in mind our problem definition and scope)? 
Where does business analytics end and other aspects of information technology and computer science begin?

Lets take a quick review of what “business analytics” really is, as far as components go. We might start 
with a laundry list of components and functionalities like this:

 1. Data Warehouse Components. Apache Hive started out as the go-to data 
warehousing technology for use with Hadoop, and is still intensively used by a 
vast number of software applications.

 2. Business Intelligence (BI) Functionalities. The traditional definition of “Business 
intelligence” (BI) includes data and process mining, predictive analytics, and 
event processing components, but in the era of distributed BI, may also include 
components involving simulation, deep learning, and complex model building. 
BI may offer a historical, current, or predictive view of data sets, and may assist in 
the domain of “operational analytics,” the improvement of existing operations by 
application of BI solutions.

 3. Enterprise Integration Management (EIM). EIM is assisted by the whole area of 
Enterprise Integration Patterns (EIPs). Many software components, including 
“glueware” such as Apache Camel, are based on implementation of all or most of the 
EIPs found in the classic book by Hohpe and Woolf, Enterprise Integration Patterns.2

Figure 16-2. “Old school” candlestick graphs can still be used to summarize chronological data

2Gregor Hohpe, Bobby Woolf. (2003) Enterprise Integration Patterns Designing, Building, and Deploying Messaging 
Systems. Addison Wesley. ISBN 978-0321200686
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 4. Enterprise Performance Management (EPM). EPM is an area of great interest 
for some vendors, particularly Cloudera. One interesting and perceptive article 
about this is “3 Ways ‘Big Data Analytics’ Will Change Enterprise Performance 
Management,” by Bernard Marr.3

 5. Analytic Applications (Individual Components and Functionality). Many 
incubating and completely new libraries and frameworks await!

 6. Key Functional Requirements: Governance, Risk, and Compliance Management 
with Auditing.

 7. Security and integrated security consistently provided throughout the core, 
support ecosystem, and distributed analytics application. In the early days 
of Hadoop development, many components within the Hadoop ecosystem 
had inadequate security considerations. Data provenance and monitoring-
distributed systems in real time are only two of the challenges facing “future 
Hadoop,” but they are important examples of the need for improved security 
measures throughout Hadoop- and Apache Spark-distributed systems.

Big data analytics capabilities will only continue to grow and prosper. Hardware and software 
technologies, including a new renaissance of Artificial Intelligence research and innovation, contributes to 
the Machine Learning and Deep Learning technologies so necessary to the further evolution of Big Data 
analytical techniques. Open source libraries and thriving software communities make development of new 
systems much more facile, even when using off-the-shelf components.

16.3  “Incubating Projects” and “Young Projects”
Throughout the book we’ve often referred to “mature software projects,” “incubating projects,” and “young 
projects.” In this section, we’d like to take a look at what these terms mean and indicate how useful it is to 
architects and developers to track the “incubating” and “young” projects that might be in the queue. Please 
note that our examples are mostly drawn from the Apache.org web site, one of the most fertile hunting 
grounds for mature and maturing technology components, but there are a wide variety of other sites 
available for specific domain requirements. For example, a variety of image processing toolkits in various 
stages of maturity, development, and use is listed at http://www.mmorph.com/resources.html and many 
other similar websites.

If you take a look at the list of Apache software components on apache.org (http://incubator.apache.
org/projects/), you’ll see a host of projects either currently in incubation, graduated from incubation, and 
even “retired” from incubation. Graduates of the incubator go on to become full-fledged Apache projects in 
their own right, while retired projects may enjoy continued development even after the “retirement” event.

While the list of incubating projects is constantly changing, it’s instructive to take a look at how 
incubating projects match up with the list of business analytics components and functionalities shown 
above. Some examples include Apache Atlas (http://atlas.incubator.apache.org) for enterprise 
governance services using Hadoop, using “taxonomy business annotations” for data classification. 
Auditing, search, lineage, and security features are provided. In contrast to the venerable Apache Hive data 
warehousing component, Lens (http://incubator.apache.org/projects/lens.html) integrates Hadoop 
with traditional data warehouses in a seamless manner, providing a single view of data. Lens graduated from 
the incubator to become a full-blown Apache project on 08-19-2015.

3http://www.smartdatacollective.com/bernardmarr/47669/3-ways-big-data-analytics-will-change-
enterprise-performance-management

Is the above link going to be valid as long as this book is in use?

http://www.mmorph.com/resources.html
http://incubator.apache.org/projects/
http://incubator.apache.org/projects/
http://atlas.incubator.apache.org/
http://incubator.apache.org/projects/lens.html)
http://www.smartdatacollective.com/bernardmarr/47669/3-ways-big-data-analytics-will-change-enterprise-performance-management
http://www.smartdatacollective.com/bernardmarr/47669/3-ways-big-data-analytics-will-change-enterprise-performance-management
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Apache Lenya (http://incubator.apache.org/projects/lenya.html), a content management 
system, has also graduated and become an Apache project in its own right.

Security is a key concern in Hadoop-distributed systems, and several incubating components address 
these concerns. Some of the currently incubating projects include:

Metron (http://incubator.apache.org/projects/metron.html), a centralized tool for security 
organization and analysis, integrates a number of components from the Hadoop ecosystem to provide a 
scalable security analytics platform.

Ranger (http://incubator.apache.org/projects/ranger.html), a management framework for 
comprehensive data security across the Hadoop platform.

“Analytic Applications” is probably the most general category listed above in the components and 
capabilities list, and there are currently several incubating implementations which support component 
integration, dataflow construction, algorithm implementations, dashboarding, statistical analysis support, 
and many other necessary components of any distributed analytics application.

A few of the analytic application-centric components currently incubating at Apache include:

 1. Apache Beam (http://incubator.apache.org/projects/beam.html) is a set of 
language-specific SDKs which define and execute data processing workflows as 
well as other types of workflows including data ingestion, integration, and others. 
Beam supports EIPs, (Enterprise Integration Patterns) in an analogous way to the 
Apache Camel system.

 2. HAWQ (http://incubator.apache.org/projects/hawq.html) is an enterprise-
quality SQL analytic engine containing an MPP (massively parallel processing) 
SQL framework derived from Pivotal’s Greenplum Database framework. HAWQ 
is native to Hadoop.

 3. Apache NiFi (http://nifi.apache.org/index.html) is a highly configurable 
dataflow system, a new addition to the Apache incubator as of this writing. 
Interestingly, NiFi provides a web-based interface to design, monitor, and control 
data flows.

 4. MadLib (http://madlib.incubator.apache.org) is a big data analytic library 
which depends on the HAWQ SQL framework (http://hawq.incubator.
apache.org), a “near real-time” enterprise database and query engine.

16.4  Speculations on Future Hadoop and Its Successors
Apache Hadoop has been with us for several years (2011–2016) at the time this book was written. Evolving 
out of the Apache Lucene and Solr search engine projects, it has taken on a life of its own and inspired 
potential “successors” like Apache Spark and others. What do the next steps in Hadoop core—and Hadoop 
ecosystem—evolution have in store for the arena of big data analytics?

One current question with Hadoop developers and architects is “Is Hadoop obsolete?” or, more 
precisely, “Given that Hadoop 1 has already been replaced by Hadoop 2, and Apache Spark seems to have 
taken the place of Hadoop in some areas, how viable is using Hadoop and its ecosystem? Are there other and 
perhaps better alternatives to the Hadoop ecosystem?”

We can only offer a tentative answer to these questions in this final section, basing our views on the 
current state of the Hadoop ecosystem and possible avenues of future development.

Please keep in mind the current functional architecture of Hadoop as shown in Figure 16-3. Let’s draw a 
few conclusions about these based on what we learned in previous chapters.

The figure shown in 16-3 will continue to evolve and some additional components may eventually be 
added or subtracted over time (for example, “Programming Language Bindings” and “Backups, Disaster 
Recovery, and Risk Management” are obvious additions we could make, but these subjects would require 
book-length treatment of their own.

http://incubator.apache.org/projects/lenya.html
http://incubator.apache.org/projects/metron.html
http://incubator.apache.org/projects/ranger.html
http://incubator.apache.org/projects/beam.html)
http://incubator.apache.org/projects/hawq.html
http://nifi.apache.org/index.html
http://madlib.incubator.apache.org)
http://hawq.incubator.apache.org/
http://hawq.incubator.apache.org/
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 1. Workflow and Scheduling: Workflow and scheduling may be processed by 
Hadoop components like Oozie.

 2. Query and Reporting Capabilities: Query and reporting capabilities could also 
include visualization and dashboard capabilities.

 3. Security, Auditing, and Compliance: New incubating projects under the Apache 
umbrella address security, auditing, and compliance challenges within a Hadoop 
ecosystem. Examples of some of these security components include Apache 
Ranger ( http://hortonworks.com/apache/ranger/ ), a Hadoop cluster security 
management tool.

 4. Cluster Coordination: Cluster coordination is usually provided by frameworks 
such as ZooKeeper and library support for Apache Curator.

 5. Distributed Storage: HDFS is not the only answer to distributed storage. Vendors 
like NetApp already use Hadoop connectors to the NFS storage system4.

 6. NoSQL Databases: As we saw in Chapter 4, there are a wide variety of NoSQL 
database technologies to choose from, including MongoDB and Cassandra. 
Graph databases such as Neo4j and Giraph are also popular NoSQL frameworks 
with their own libraries for data transformation, computation, and visualization.

 7. Data Integration Capabilities: Data integration and glueware also continue 
to evolve to keep pace with different data formats, legacy programs and data, 
relational and NoSQL databases, and data stores such as Solr/Lucene.

 8. Machine Learning: Machine learning and deep learning techniques have 
become an important part of the computation module of any BDAs.

 9. Scripting Capabilities: Scripting capabilities in advanced languages such as 
Python are developing at a rapid rate, as are interactive shells or REPLs (read-
eval-print loop). Even the venerable Java language includes a REPL in version 9.

 10. Monitoring and System Management: The basic capabilities found in Ganglia, 
Nagios, and Ambari for monitoring and managing systems will continue to 
evolve. Some of the newer entries for system monitoring and management 
include Cloudera Manager ( http://www.cloudera.com/products/cloudera-
manager.html ).

4See http://www.netapp.com/us/solutions/big-data/nfs-connector-hadoop.aspx for more information about 
the NetApp NFS | Hadoop Connector.

http://hortonworks.com/apache/ranger/
http://dx.doi.org/10.1007/978-1-4842-1910-2_4
http://www.cloudera.com/products/cloudera-manager.html
http://www.cloudera.com/products/cloudera-manager.html
http://www.netapp.com/us/solutions/big-data/nfs-connector-hadoop.aspx
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16.5  A Different Perspective: Current Alternatives to 
Hadoop

Hadoop is not the only way to go when it comes to distributed big data analytics these days. There are many 
alternatives to the standard Hadoop platform and ecosystem evolving today, and some of them are already 
supported by the Apache foundation. Please note that some of these include Apache Flink, (flink.apache.
org), which is a distributed big-data analytics framework which provides an infrastructure for batch and 
stream data processing.

Flink can consume data from messaging systems such as Apache Kafka.
Apache Storm (storm.apache.org) is another potential competitor to Apache Spark. Storm is a real-time, 

distributed stream processing computation system, and supports machine learning, ETL, and “continuous 
computation.”

Figure 16-3. A functional view of current Hadoop technologies and capabilities
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16.6  Use of Machine Learning and Deep Learning 
Techniques in “Future Hadoop”

Algorithm implementations, “helper libraries,” machine learning and deep learning libraries and 
frameworks, as well as improvements of classic libraries such as Mahout and MLib are important 
components of modern BDA implementations. They support a variety of the tasks we perform every time 
we construct a data processing pipeline. We should point out the differences between “machine learning” 
and so-called “deep learning,” a relatively new term for “multiple layer neural network” algorithms, among 
other techniques. One very interesting example of this is the Apache Horn incubator project, described in 
more detail below. Machine learning, as a whole, is often seen as a “prior stage of evolution” on the road to 
“artificial intelligence,” while “deep learning” is one step more evolved. SVMs, naïve Bayesian algorithms, 
and decision tree algorithms are typically called “shallow” learning techniques because, unlike deep 
learners, the inputs are not passed through more than one non-linear processing step before the output 
data set is emitted. These so-called “shallow” techniques are relegated to “machine learning,” while more 
advanced techniques, often using many processing stages, are part of the “deep learning” repertoire.

Some of the incubating libraries at Apache (and elsewhere) which address ML and DL concerns (and 
their support on a variety of technology stacks and platforms) include:

 1. Apache SystemML (http://systemml.apache.org): This library supports many 
standard algorithms which may be run in a distributed fashion using Hadoop or 
Spark. Efficient and scalable, SystemML may be run in a stand-alone mode as 
well as on Hadoop clusters.

 2. DL4J (http://deeplearning4j.org): DL4J has many advanced features, such as 
GPU programming support.

 3. H2O and Sparkling Water (http://h2o.org): Sparkling Water is a machine 
learning library based on H2O and Apache Spark. These components are 
programmable in Scala and feature a variety of algorithms.

 4. MLib for Apache Spark (spark.apache.org): MLib is a scalable machine learning 
library for Spark.

 5. Apache Mahout (apache.mahout.com): Mahout is a venerable and valuable part 
of the Hadoop ecosystem.

 6. Cloudera Oryx Machine Learning Library  (https://github.com/cloudera/
oryx): Oryx is a machine learning library which supports a variety of algorithms.

 7. Distributed R | Weka (https://github.com/vertica/distributedR, http://
weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.
html): Distributed R and Weka make a good pairing for distributed statistical 
analyses of all kinds, and the wide range of implemented algorithms which 
are available to R and Weka make implementing data pipelines much more 
straightforward.

 8. Apache Horn (https://horn.incubator.apache.org): Apache Horn is an 
easy-to-use incubating project for deep learning. Although in its early stages of 
development, Apache Horn is already useful for prototyping and building useful 
neural net–based components for distributed analytics.

 9. It’s useful to see the respective features of these toolkits side-by-side, so included 
here is a “feature matrix” of machine learning toolkits for your reference.

http://systemml.apache.org)
http://deeplearning4j.org/
http://h2o.org)
https://github.com/cloudera/oryx)
https://github.com/cloudera/oryx)
https://github.com/vertica/distributedR
http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html
http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html
http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html
https://horn.incubator.apache.org/
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* For the latest information on Apache Horn, see the incubation site at https://horn.incubator.
apache.org.

16.7  New Frontiers of Data Visualization and BDAs
Data visualization has always been a key component of big data analytics, and with the emerging 
combination of graph databases and sophisticated visualization libraries such as D3, sigmajs, and many 
others. It has become much more straightforward to create, visualize, and interactively edit very complex—
and very large—data sets. We saw some examples of this in the visualization chapter, Chapter 10. Future 
directions of data visualization are many, including the exploitation of holographic, virtual reality, and 
“telepresence” technologies. While many of these have been around for a while, distributed software systems 
will make sophisticated “reality systems” more and more possible as “near real-time” processing systems 
becomes more efficient. This will help achieve the objectives of dealing with larger and more complex data 
sets while maintaining compatibility, efficiency, and seamlessness with existing analytical libraries. In fact, 
many modern machine learning and deep learning frameworks, as well as statistical frameworks which 
support BDAs (such as R and Weka) contain their own visualization components and dashboards. Although 
some of the old-school visualization libraries were written in Java and even in C, many modern visualization 
libraries support a multitude of language bindings, particularly JavaScript, of course, but also Scala- and 
Python-based APIs, as we saw in early chapters.

16.8  Final Words
While we’re considering the fate of “Future Hadoop,” let’s keep in mind future issues and challenges that are 
facing big data technologies of today.

Some of these challenges are:

 1. Availability of mature predictive analytics: Being able to predict future data from 
existing data has always been a goal of business analytics, but much research and 
system building remains to be done.

 2. Images and Signals as Big Data Analytics: We dived into the “images as big data” 
concept, in Chapter 14 and, as noted there, work is just beginning on these 
complex data sources, which of course include time series data and “signals” 
from a variety of different sensors, including LIDAR, chemical sensors for 
forensic analysis, medical industrial applications, accelerometer and tilt sensor 
data from vehicles, and many others.

Figure 16-4. A feaure matrix of ML toolkits

https://horn.incubator.apache.org/
https://horn.incubator.apache.org/
http://dx.doi.org/10.1007/978-1-4842-1910-2_10
http://dx.doi.org/10.1007/978-1-4842-1910-2_14
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 3. Even Bigger Velocity, Variety and Volumes of Input Source Data: As for the 
required speed of data processing, the variety and level of structure and 
complexity (or the lack of it!), as well as raw volume of data, these requirements 
will become more and more demanding as hardware and software become 
able to deal with the increased architectural challenges and more demanding 
problem sets “future data analysis” will demand.

 4. Combining Disparate Types of Data Sources into a Unified Analysis: “Sensor 
fusion” is only one aspect of combining the data into one “unified picture” of 
the data landscape being measured and mapped by the sensors. The evolution 
of distributed AI and machine learning, and the relatively new area of “deep 
learning,” provide potential paths to moving beyond simple aggregation and 
fusion of different data sources by providing meaning, context, and prediction 
along with the raw data statistical analyses. This will enable sophisticated 
model building, data understanding systems, and advanced decision system 
applications.

 5. The Merging of Artificial Intelligence (AI) and Big Data Analytics: AI, big data, 
and data analytics have always co-existed, even from the earliest history of AI 
systems. Advances in distributed machine learning (ML) and deep learning 
(DL) have blurred the lines between these areas even more in recent years. Deep 
learning libraries, such as Deeplearning4j, are routinely used in BDA applications 
these days, and many useful application solutions have been proposed in which 
AI components have been integrated seamlessly with BDAs.

 6. Infrastructure and low-level support library evolution (including security): 
Infrastructure support toolkits for Hadoop-based applications typically 
include Oozie, Azkaban, Schedoscope, and Falcon. Low-level support and 
integration libraries include Apache Tika, Apache Camel, Spring Data and Spring 
Framework itself, among others. Specialized security components for Hadoop, 
Spark, and their ecosystems include Accumulo, Apache Sentry, Apache Knox 
Gateway, and many other recent contributions.

It’s a good time to be in the big data analysis arena, whether you are a programmer, architect, manager, 
or analyst. Many interesting and game-changing future developments await. Hadoop is often seen as one 
stage of evolution to ever more powerful distributed analytic systems, and whether this evolution moves 
on to something other than “Hadoop as we know it,” or the Hadoop system we already know evolves its 
ecosystem to process more data in better ways, distributed big data analytics is here to stay, and Hadoop is 
a major player in the current computing scene. We hope you have enjoyed this survey of big data analysis 
techniques using Hadoop as much as we have enjoyed bringing it to you.
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APPENDIX A

Setting Up the Distributed 
Analytics Environment

This appendix is a step-by-step guide to setting up a single machine for stand-alone distributed analytics 
experimentation and development, using the Hadoop ecosystem and associated tools and libraries.

Of course, in a production-distributed environment, a cluster of server resources might be available 
to provide support for the Hadoop ecosystem. Databases, data sources and sinks, and messaging software 
might be spread across the hardware installation, especially those components that have a RESTful interface 
and may be accessed through URLs. Please see the references listed at the end of the Appendix for a 
thorough explanation of how to configure Hadoop, Spark, Flink, and Phoenix, and be sure to refer to the 
appropriate info pages online for current information about these support components.

Most of the instructions given here are hardware agnostic. The instructions are especially suited, 
however, for a MacOS environment.

A last note about running Hadoop based programs in a Windows environment: While this is 
possible and is sometimes discussed in the literature and online documentation, most components are 
recommended to run in a Linux or MacOS based environment.

Overall Installation Plan
The example system contains a large number of software components built around a Java-centric maven 
project: most of these are represented in the dependencies found in your maven pom.xml files. However, 
many other components are used which use other infrastructure, languages, and libraries. How you install 
these other components—and even whether you use them at all—is somewhat optional. Your platform  
may vary.

Throughout this book, as we’ve mentioned before, we’ve stuck pretty closely to a MacOS installation 
only. There are several reasons for this. A Mac Platform is one of the easiest environments in which to build 
standalone Hadoop prototypes (in the opinion of the author), and the components used throughout the 
book have gone through multiple versions and debugging phases and are extremely solid. Let’s review the 
table of components that are present in the example system, as shown in Table A-1, before we discuss our 
overall installation plan.
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Number Component Name Discussed  
in Chapter

URL Description

1 Apache Hadoop All hadoop.apache.org map/reduce distributed 
framework

2 Apache Spark All spark.apache.org distributed streaming 
framework

3 Apache Flink 1 flink.apache.org distributed stream and batch 
framework

4 Apache Kafka 6, 9 kafka.apache.org distributed messaging 
framework

5 Apache Samza 9 samza.apache.org distributed stream processing 
framework

6 Apache Gora gora.apache.org in memory data model and 
persistence

7 Neo4J 4 neo4j.org graph database

8 Apache Giraph 4 giraph.apache.org graph database

9 JBoss Drools 8 www.drools.org rule framework

10 Apache Oozie oozie.apache.org scheduling component for 
Hadoop jobs

11 Spring Framework All https://projects.
spring.io/spring-
framework/

Inversion of Control 
Framework (IOC) and 
glueware

12 Spring Data All http://projects.spring.
io/spring-data/

Spring Data processing 
(including Hadoop)

13 Spring Integration https://projects.
spring.io/spring-
integration/

support for enterprise 
integration pattern-oriented 
programming

14 Spring XD http://projects.spring.
io/spring-xd/

“extreme data” integrating with 
other Spring components

15 Spring Batch http://projects.spring.
io/spring-batch/

reusable batch function library

16 Apache Cassandra cassandra.apache.org NoSQL database

17 Apache Lucene/Solr 6 lucene.apache.org

lucene.
apache.
org/solr

open source search 
engine

18 Solandra 6 https://github.com/
tjake/Solandra

Solr + Cassandra interfacing

19 OpenIMAJ 17 openimaj.org image processing with Hadoop

20 Splunk 9 splunk.com Java-centric logging framework

21 ImageTerrier 17 www.imageterrier.org image-oriented search 
framework with Hadoop

(continued)

http://www.drools.org/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/
https://projects.spring.io/spring-integration/
https://projects.spring.io/spring-integration/
https://projects.spring.io/spring-integration/
http://projects.spring.io/spring-xd/
http://projects.spring.io/spring-xd/
http://projects.spring.io/spring-batch/
http://projects.spring.io/spring-batch/
https://github.com/tjake/Solandra
https://github.com/tjake/Solandra
http://www.imageterrier.org/
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Number Component Name Discussed  
in Chapter

URL Description

22 Apache Camel camel.apache.org general purpose glue-ware in 
Java: implements EIP supports

23 Deeplearning4j 12 deeplearning4j.org deep learning toolkit for Java 
Hadoop and Spark

24 OpenCV | BoofCV opencv.org

boofcv.
org

used for low-level 
image processing 
operations

25 Apache Phoenix phoenix.apache.org OLTP and operational analytics 
for Hadoop

26 Apache Beam beam.incubator.apache.
org

unified model for creating data 
pipelines

27 NGDATA Lily 6 https://github.com/
NGDATA/lilyproject

Solr and Hadoop

28 Apache Katta 6 http://katta.
sourceforge.net

distributed Lucene with 
Hadoop

29 Apache Geode http://geode.apache.org distributed in-memory 
database

30 Apache Mahout 12 mahout.apache.org machine learning library with 
support for Hadoop and Spark

31 BlinkDB http://blinkdb.org massively parallel, approximate 
query engine for running 
interactive SQL queries on 
large volumes of data.

32 OpenTSDB http://opentsdb.net time series–oriented database: 
runs on Hadoop and HBase

33 University of 
Virginia HIPI

17 http://hipi.
cs.virginia.edu/
gettingstarted.html

image processing interface 
with Hadoop framework

34 Distributed R and 
Weka

https://github.com/
vertica/DistributedR

statistical analysis 
support libraries

35 Java Advanced 
Imaging (JAI)

17 http://www.oracle.
com/technetwork/java/
download-1-0-2-140451.
html

low-level image processing 
package

36 Apache Kudu kudu.apache.org fast analytics processing library 
for the Hadoop ecosystem

37 Apache Tika tika.apache.org content-analysis toolkit

(continued)

https://github.com/NGDATA/lilyproject
https://github.com/NGDATA/lilyproject
http://katta.sourceforge.net/
http://katta.sourceforge.net/
http://geode.apache.org/
http://blinkdb.org/
http://opentsdb.net/
http://hipi.cs.virginia.edu/gettingstarted.html
http://hipi.cs.virginia.edu/gettingstarted.html
http://hipi.cs.virginia.edu/gettingstarted.html
https://github.com/vertica/DistributedR
https://github.com/vertica/DistributedR
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
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Number Component Name Discussed  
in Chapter

URL Description

38 Apache Apex apex.apache.org unified stream and batch 
processing framework

39 Apache Malhar https://github.com/
apache/apex-malhar

operator and codec library for 
use with Apache Apex

40 MySQL Relational 
Database

4

41

42 Maven, Brew, 
Gradle, Gulp

All mxaven.apache.org build, compile, and version 
control infrastructure 
components

Once the initial basic components, such as Java, Maven, and your favorite IDE are installed, the other 
components may be gradually added to the system as you configure and test it, as discussed in the following 
sections.

Set Up the Infrastructure Components
If you develop code actively you may have some or all of these components already set up in your 
development environment, particularly Java, Eclipse (or your favorite IDE such as NetBeans, IntelliJ, 
or other), the Ant and Maven build utilities, and some other infrastructure components. The basic 
infrastructure components we use in the example system are listed below for your reference.

Basic Example System Setup
Set up a basic development environment. We assume that you’re starting with an empty machine. You 
will need Java, Eclipse IDE, and Maven. These provide programming language support, an interactive 
development environment (IDE), and a software build and configuration tool, respectively.

First, download the appropriate Java version for development from the Oracle web site

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

The current version of Java to use would be Java 8. Use Java–version to validate the Java version is 
correct. You should see something similar to Figure A-1.

https://github.com/apache/apex-malhar
https://github.com/apache/apex-malhar
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
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Next, download the Eclipse IDE from the Eclipse web site. Please note, we used the “Mars” version of 
the IDE for the development described in this book.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/marsr

Finally, download the Maven-compressed version from the Maven web site https://maven.apache.
org/download.cgi .

Validate correct Maven installation with

    mvn --version 

On the command line, you should see a result similar to the terminal output in Figure A-2.

Figure A-1. First step: validate Java is in place and has the correct version

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/marsr
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
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Make sure you can log in without a passkey:

ssh localhost

If not, execute the following commands:

ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 0600 ~/.ssh/authorized_keys

There are many online documents with complete instructions on using ssh with Hadoop appropriately, 
as well as several of the standard Hadoop references.

Apache Hadoop Setup
Apache Hadoop, along with Apache Spark and Apache Flink, are key components to the example system 
infrastructure. In this appendix we will discuss a simple installation process for each of these components. 
The most painless way to install these components is to refer to many of the excellent “how to” books and 
online tutorials about how to set up these basic components, such as Venner (2009).

Appropriate Maven dependencies for Hadoop must be added to your pom.xml file.
To configure the Hadoop system, there are several parameter files to alter as well.

Figure A-2. Successful Maven version check



Appendix A ■ Setting Up the diStribUted AnAlyticS environment

281

Add the appropriate properties to core-site.xml:

<configuration>
   <property>
      <name>fs.default.name</name>
      <value>hdfs://localhost:9000</value>
   </property>
</configuration>

also to hdfs-site.xml:

<configuration>
   <property>
      <name>dfs.replication</name >
      <value>1</value>
   </property>

   <property>
      <name>dfs.name.dir</name>
      <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>
   </property>

   <property>
      <name>dfs.data.dir</name>
      <value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>
   </property>
</configuration>

Install Apache Zookeeper
Download a recent release from the Zookeeper download page. Upzip the file, and add the following 
environment variables to the .bash_profile or equivalent file in the usual way. Please note that an 
installation of Zookeeper is necessary to use some of the other components, such as OpenTSDB. Review 
the installation instructions at https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_
InstallingSingleMode .

Make sure the appropriate Zookeeper environment variables are set. These include, for example:

export ZOOKEEPER_HOME = /Users/kkoitzsch/Downloads/zookeeper-3.4.8

A sample configuration file for Zookeeper is provided with the download. Place the appropriate 
configuration values in the file conf/zoo.cfg .

Start the Zookeeper server with the command

bin/zkServer.sh start

Check that the Zookeeper server is running with

ps –al | grep zook

You should see a response similar to the one in Figure A-3.

https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_InstallingSingleMode
https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_InstallingSingleMode
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Run the Zookeeper CLI (REPL) to make sure you can do simple operations using Zookeeper, as in Figure A-3.

Figure A-3. Successful Zookeeper server run and process check

Figure A-4. Zookeeper status check
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Try some simple commands in the Zookeeper CLI to insure it’s functioning properly. Executing

ls /
create /zk_test my_data
get /zk_test

should show results as in Figure A-5.

Refer to https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html for additional setup and 
configuration information.

Installing Basic Spring Framework Components
As with many of the Java-centric components we use, the Spring Framework components (and their 
ecosystem components, such as Spring XD, Spring Batch, Spring Data, and Spring Integration) essentially 
have two parts to their installation: downloading the sources and systems themselves, and adding the 
correct dependencies to the pom.xml of your Maven file. Most of the components are easy to install and use, 
and a consistent set of API standards runs through all the Spring components. There are also a great deal of 
online support, books, and Spring communities available to assist you with problem solving.

Basic Apache HBase Setup
Download a stable version of HBase from the download site in the usual way. Unzip and add the following 
environment variables to your .bash_profile or equivalent file.

Apache Hive Setup
Apache Hive has a few additional steps to its setup. You should have installed the basic components as 
shown above, including Hadoop. Download Hive from the download site, uncompress in the usual way, and 
set up a schema by running the schematool.

Figure A-5. Successful Zookeeper process check on the command line

https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html
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Additional Hive Troubleshooting Tips
Some additional tips on Hive installation and troubleshooting.

Before you run Hive for the first time, run schematool -initSchema -dbType derby
If you already ran Hive and then tried to initSchema and it's failing:

mv metastore_db metastore_db.tmp

Re-run schematool -initSchema -dbType derby
Run Hive again.

Installing Apache Falcon
Apache Falcon architecture and use is discussed in Chapter ___.

Installing Apache Falcon can be done using the following git command on the command line:

git clone https://git-wip-us.apache.org/repos/asf/falcon.git falcon
cd falcon
export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=256m -noverify" && mvn clean install

Installing Visualizer Software Components
This section discusses the installation and troubleshooting of user-interface and visualization software 
components, particularly the ones discussed in Chapter __.

Installing Gnuplot Support Software
Gnuplot is a necessary support component for OpenTSDB.

On the Mac platform, install Gnuplot using brew:

brew install gnuplot

on the command line. The successful result will be similar to that shown in Figure A-7.

Figure A-6. Successful initialization of the Hive schema using schematool
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Installing Apache Kafka Messaging System
Many of the details of installing and testing the Kafka messaging system have been discussed extensively in 
Chapter 3. We will just touch on a few reminders here.

 1. Download the Apache Kafka tar file from http://kafka.apache.org/
downloads.html

 2. Set the KAFKA_HOME environment variable.

 3. Unzip file and go to KAFKA_HOME (in this case KAFKA_HOME would be /
Users/kerryk/Downloads/kafka_2.9.1-0.8.2.2).

 4. Next, start the ZooKeeper server by typing

 5. bin/zookeeper-server-start.sh config/zookeeper.properties

 6. Once the ZooKeeper service is up and running, type:

 7. bin/kafka-server-start.sh config/server.properties

 8. To test topic creation, type:

 9. bin/kafka-topics.sh –create –zookeeper localhost:2181 –replication-factor 1 –
partitions 1 –topic ProHadoopBDA0

 10. To provide a listing of all available topics, type:

 11. bin/kafka-topics.sh –list –zookeeper localhost:2181

 12. At this stage, the result will be ProHadoopBDA0, the name of the topic you 
defined in step 5.

Figure A-7. Successful installation of Gnuplot

http://dx.doi.org/10.1007/978-1-4842-1910-2_3
http://kafka.apache.org/downloads.html
http://kafka.apache.org/downloads.html
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 13. Send some messages from the console to test the messaging sending 
functionality. Type:

 14. bin/kafka-console-producer.sh –broker-list localhost:9092 –topic 
ProHadoopBDA0 Now type some messages into the console.

 15. You can configure a multi-broker cluster by modifying the appropriate config 
files. Check the Apache Kafka documentation for step-by-step processes how to 
do this.

Installing TensorFlow for Distributed Systems
As mentioned in the TensorFlow installation directions at https://www.tensorflow.org/versions/r0.12/
get_started/index.html, insure that TensorFlow runs correctly by verifying that the following environment 
variables are set correctly:

JAVA_HOME: the location of your Java installation

HADOOP_HDFS_HOME: the location of your HDFS installation. You can also set this 
environment variable by running:

source $HADOOP_HOME/libexec/hadoop-config.sh

LD_LIBRARY_PATH: to include the path to libjvm.so. On Linux:

Export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/
server

CLASSPATH: The Hadoop jars must be added prior to running your TensorFlow 
program. The CLASSPATH set by $HADOOP_HOME/libexec/hadoop-config.
sh is insufficient. Globs must be expanded as described in the libhdfs 
documentation:

CLASSPATH=$($HADOOP_HDFS_HOME/bin/hdfs classpath --glob) python 
your_script.py

Installing JBoss Drools
JBoss Drools (http://www.drools.org) is the core infrastructure component for rule-based scheduling and 
system orchestration, as well as for BPA and other purposes that we described in Chapter 8. To install JBoss 
Drools, download the appropriate components from the JBoss Drools download site and be sure to add the 
appropriate Maven dependencies to you pom.xml file. For the example system, these dependencies are 
already added for you.

https://www.tensorflow.org/versions/r0.12/get_started/index.html
https://www.tensorflow.org/versions/r0.12/get_started/index.html
http://www.drools.org/
http://dx.doi.org/10.1007/978-1-4842-1910-2_8
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Verifying the Environment Variables
Please insure the environment variable PROBDA_HOME, which is the root project directory, is set correctly 
in the .bash_profile file.

Basic environment variable settings are essential. Most of the components require basic variables to be 
set, such as JAVA_HOME, and the PATH variable should be updated to include the binary (bin) directories 
so programs can be executed directly. Listing A-1 contains a sample environment variable file as used by the 
example program. Other appropriate variables can be added as needed. A sample .bash_profile file is also 
provided with the online example code system.

Listing A-1. A sample of a complete environment variable .bash_profile file

export PROBDA_HOME=/Users/kkoitzsch/prodba-1.0
export MAVEN_HOME=/Users/kkoitzsch/Downloads/apache-maven-3.3.9
export ANT_HOME=/Users/kkoitzsch/Downloads/apache-ant-1.9.7
export KAFKA_HOME=/Users/kkoitzsch/Downloads/
export HADOOP_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2
export HIVE_HOME=/Users/kkoitzsch/Downloads/apache-hive-2.1.0-bin
export CATALINA_HOME=/Users/kkoitzsch/Downloads/apache-tomcat-8.5.4
export SPARK_HOME=/Users/kkoitzsch/Downloads/spark-1.6.2
export PATH=$CATALINA_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$ANT_HOME/bin:$MAVEN_HOME/
bin:$PATH

Make sure to run the Hadoop configuration script $HADOOP_HOME/libexec/Hadoop-config.sh when 
appropriate as shown in Figure A-9. 

Figure A-8. Successful installation and test of JBoss Drools
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Use “printenv” on the command line to verify default environment variable settings on start-up of a 
terminal window, as shown in Figure A-9.

References
Liu, Henry H. Spring 4 for Developing Enterprise Applications: An End-to-End Approach. PerfMath,  
http://www.perfmath.com. Apparently self-published, 2014.

Venner, David. Pro Hadoop. New York, NY: Apress Publishing, 2009.

Figure A-9. Successful running of Hadoop configuration script and test with printenv

http://www.perfmath.com/
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APPENDIX B

Getting, Installing, and Running 
the Example Analytics System

The example system supplied with this book is a standard Maven project and may be used with a standard 
Java development IDE, such as Eclipse, IntelliJ, or NetBeans. All the required dependencies are included 
in the top-level pom.xml file. Download the compressed project from the URL indicated. Uncompress and 
import the project into your favorite IDE. Refer to the README file included with the example system for 
additional version and configuration information, as well as additional troubleshooting tips and up-to-date 
URL pointers. The current version information of many of the software components can be found in the 
VERSION text file accompanying the software.

Some standard infrastructure components such as databases, build tools (such as Maven itself, 
appropriate version of Java, and the like), and optional components (such as some of the computer vision–
related “helper” libraries) must be installed first on a new system before successfully using the project. 
Components such as Hadoop, Spark, Flink, and ZooKeeper should run independently, and the environment 
variables for these must be set correctly (HADOOP_HOME, SPARK_HOME, etc.). Please refer to some of the 
references given below to install standard software components such as Hadoop.

In particular, check your environment variable PROBDA_HOME by doing a “printenv” command on 
the command line, or its equivalent.

For required environment variable settings and their default values, please refer to Appendix A.
Run the system by executing the Maven command on the command line after cd’ing to the source 

directory.

cd $PROBDA_HOME
mvn clean install -DskipTests

For additional configuration and setup information, see Appendix A.
For tests and example script pointers and directions, see the associated README file.

Troubleshooting FAQ and Questions Information
Troubleshooting and FAQ information can be referred to at the appropriate web page.

Questions may be sent to the appropriate e-mail address.

References to Assist in Setting Up Standard Components
Venner, David. Pro Hadoop. New York, NY: Apress Publishing, 2009.
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